Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels
Laenen, Antonius; Curtis, R. E.
1989-01-01
Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)
NASA Astrophysics Data System (ADS)
Acton, C. E.; Priestley, K.; Mitra, S.; Gaur, V. K.; Rai, S. S.
2007-12-01
We present group velocity dispersion results from a study of regional fundamental mode Rayleigh and Love waves propagating across India and surrounding regions. Data used in this study comes from broadband stations operated in India by us in addition to data from seismograms in the region whose data is archived at the IRIS Data Management Centre. The large amount of new and available data allows an improved path coverage and accordingly increased lateral resolution than in previous similar global and regional studies. 1D path- averaged dispersion measurements have been made using multiple filter analyis for source-receiver paths and are combined to produce tomographic group velocity maps for periods between 10 and 60 s. Preliminary Rayleigh wave group velocity maps have been produced using ~2500 paths and checkerboard tests indicate an average resolution of 5 degrees with substantially higher resolution achieved over the more densely sampled Himalayan regions. Short period velocity maps correlate well with surface geology resolving low velocity regions (2.0-2.4 km/s) corresponding to the Ganges and Brahmaputra river deltas, the Indo-Gangetic plains, the Katawaz Basin in Pakhistan, the Tarim Basin in China and the Turan Depression. The Tibetan Plateau is well defined as a high velocity region (2.9-3.2 km/s) at 10 s period, but for periods greater than 20 s it becomes a low velocity region which remains a distinct feature at 60 s and is consistent with the increased crustal thickness. The southern Indian shield is characterized by high crustal group velocities (3.0-3.4 km/s) and at short periods of 10 and 15 s it is possible to make some distinction between the Singhbhum, Dharwar and Aravali cratons. Initial Love wave group velocity maps from 500 dispersion measurements show similarly low velocities at short periods across regions with high sedimentation but higher velocities compared to Rayleigh waves across the Indian shield.
NASA Astrophysics Data System (ADS)
Mitra, S.; Dey, S.; Siddartha, G.; Bhattacharya, S.
2016-12-01
We estimate 1-dimensional path average fundamental mode group velocity dispersion curves from regional Rayleigh and Love waves sampling the Indian subcontinent. The path average measurements are combined through a tomographic inversion to obtain 2-dimensional group velocity variation maps between periods of 10 and 80 s. The region of study is parametrised as triangular grids with 1° sides for the tomographic inversion. Rayleigh and Love wave dispersion curves from each node point is subsequently extracted and jointly inverted to obtain a radially anisotropic shear wave velocity model through global optimisation using Genetic Algorithm. The parametrization of the model space is done using three crustal layers and four mantle layers over a half-space with varying VpH , VsV and VsH. The anisotropic parameter (η) is calculated from empirical relations and the density of the layers are taken from PREM. Misfit for the model is calculated as a sum of error-weighted average dispersion curves. The 1-dimensional anisotropic shear wave velocity at each node point is combined using linear interpolation to obtain 3-dimensional structure beneath the region. Synthetic tests are performed to estimate the resolution of the tomographic maps which will be presented with our results. We envision to extend this to a larger dataset in near future to obtain high resolution anisotrpic shear wave velocity structure beneath India, Himalaya and Tibet.
Nonintrusive performance measurement of a gas turbine engine in real time
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko
Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculatedmore » from the gas density and the volumetric flow rate.« less
Improved momentum-transfer theory for ion mobility. 1. Derivation of the fundamental equation.
Siems, William F; Viehland, Larry A; Hill, Herbert H
2012-11-20
For the first time the fundamental ion mobility equation is derived by a bottom-up procedure, with N real atomic ion-atomic neutral collisions replaced by N repetitions of an average collision. Ion drift velocity is identified as the average of all pre- and postcollision velocities in the field direction. To facilitate velocity averaging, collisions are sorted into classes that "cool" and "heat" the ion. Averaging over scattering angles establishes mass-dependent relationships between pre- and postcollision velocities for the cooling and heating classes, and a combined expression for drift velocity is obtained by weighted addition according to relative frequencies of the cooling and heating encounters. At zero field this expression becomes identical to the fundamental low-field ion mobility equation. The bottom-up derivation identifies the low-field drift velocity as 3/4 of the average precollision ion velocity in the field direction and associates the passage from low-field to high-field conditions with the increasing dominance of "cooling" collisions over "heating" collisions. Most significantly, the analysis provides a direct path for generalization to fields of arbitrary strength.
Remote atmospheric probing by ground to ground line of sight optical methods
NASA Technical Reports Server (NTRS)
Lawrence, R. S.
1969-01-01
The optical effects arising from refractive-index variations in the clear air are qualitatively described, and the possibilities are discussed of using those effects for remotely sensing the physical properties of the atmosphere. The effects include scintillations, path length fluctuations, spreading of a laser beam, deflection of the beam, and depolarization. The physical properties that may be measured include the average temperature along the path, the vertical temperature gradient, and the distribution along the path of the strength of turbulence and the transverse wind velocity. Line-of-sight laser beam methods are clearly effective in measuring the average properties, but less effective in measuring distributions along the path. Fundamental limitations to the resolution are pointed out and experiments are recommended to investigate the practicality of the methods.
Controlled manipulation and actuation of micro-objects with magnetotactic bacteria
NASA Astrophysics Data System (ADS)
Martel, Sylvain; Tremblay, Charles C.; Ngakeng, Serge; Langlois, Guillaume
2006-12-01
Bacterial actuation and manipulation are demonstrated where Magnetospirillum gryphiswaldense magnetotactic bacteria (MTB) are used to push 3μm beads at an average velocity of 7.5μms-1 along preplanned paths by modifying the torque on a chain of magnetosomes in the bacterium with a directional magnetic field of at least 0.5G generated from a small programmed electrical current. But measured average thrusts of 0.5 and 4pN of the flagellar motor of a single Magnetospirillum gryphiswaldense and MC-1 MTB suggest that average velocities greater than 16 and 128μms-1, respectively could be achieved.
A proposed method for wind velocity measurement from space
NASA Technical Reports Server (NTRS)
Censor, D.; Levine, D. M.
1980-01-01
An investigation was made of the feasibility of making wind velocity measurements from space by monitoring the apparent change in the refractive index of the atmosphere induced by motion of the air. The physical principle is the same as that resulting in the phase changes measured in the Fizeau experiment. It is proposed that this phase change could be measured using a three cornered arrangement of satellite borne source and reflectors, around which two laser beams propagate in opposite directions. It is shown that even though the velocity of the satellites is much larger than the wind velocity, factors such as change in satellite position and Doppler shifts can be taken into account in a reasonable manner and the Fizeau phase measured. This phase measurement yields an average wind velocity along the ray path through the atmosphere. The method requires neither high accuracy for satellite position or velocity, nor precise knowledge of the refractive index or its gradient in the atmosphere. However, the method intrinsically yields wind velocity integrated along the ray path; hence to obtain higher spatial resolution, inversion techniques are required.
Velocity persistence of Brownian particles generated in a glow discharge
NASA Astrophysics Data System (ADS)
Hurd, Alan J.; Ho, Pauline
1989-06-01
Quasielastic light scattering from Brownian particles in the rarefied environment of a glow discharge exhibits Gaussianlike intensity correlation functions owing to the long mean free paths of the particles. The shape of the correlation function depends on the particles' average thermal velocity and friction coefficient, which can be related to aggregate mass and structure, and indicates a crossover from kinetic to hydrodynamic behavior.
ERIC Educational Resources Information Center
Jakoby, Bernhard
2009-01-01
The collision model is frequently introduced to describe electronic conductivity in solids. Depending on the chosen approach, the introduction of the collision time can lead to erroneous results for the average velocity of the electrons, which enters the expression for the electrical conductivity. In other textbooks, correct results are obtained…
Statistical analysis of dynamic fibrils observed from NST/BBSO observations
NASA Astrophysics Data System (ADS)
Gopalan Priya, Thambaje; Su, Jiang-Tao; Chen, Jie; Deng, Yuan-Yong; Prasad Choudhury, Debi
2018-02-01
We present the results obtained from the analysis of dynamic fibrils in NOAA active region (AR) 12132, using high resolution Hα observations from the New Solar Telescope operating at Big Bear Solar Observatory. The dynamic fibrils are seen to be moving up and down, and most of these dynamic fibrils are periodic and have a jet-like appearance. We found from our observations that the fibrils follow almost perfect parabolic paths in many cases. A statistical analysis on the properties of the parabolic paths showing an analysis on deceleration, maximum velocity, duration and kinetic energy of these fibrils is presented here. We found the average maximum velocity to be around 15 kms‑1 and mean deceleration to be around 100 ms‑2. The observed deceleration appears to be a fraction of gravity of the Sun and is not compatible with the path of ballistic motion due to gravity of the Sun. We found a positive correlation between deceleration and maximum velocity. This correlation is consistent with simulations done earlier on magnetoacoustic shock waves propagating upward.
NASA Astrophysics Data System (ADS)
Dhali, K. K.; Majhi, S.; Mitra, S.; Priestley, K.
2007-12-01
Fundamental mode Rayleigh and Love wave group velocity dispersion for paths crossing the Bay of Bengal have been calculated for earthquakes in the Indo-Burman arc and the Andaman-Sumatra subduction zone recorded at seismographs in the eastern part of Peninsula India and Sri Lanka. The ray-path coverage in this study provides a better spatial sampling than any previous studies of the region. The individual dispersion curves range from 12 to 70~s and have been clustered in four spatial groups to form average dispersion curves representative of the Bengal basin, northern, central and southern Bay of Bengal. These average dispersion curves for Rayleigh and Love waves are jointly inverted to obtain shear wave velocity structure of the lithosphere. The higher frequencies/shorter periods (12--30~s) used in the inversion constrains the sediment shear wave speed and thickness while the longer periods provide information of the upper mantle structure. The results show a remarkable increase in the sediments thickness along the Bengal Fan from south to north ranging from 6 km, around the southern tip of India, to 23 km beneath the Bengal basin. The shear wave velocity models reveal a sediment saturation beyond 7-10 km of burial leading to metamorphism and eventual increase in velocity to continent like material with depth. The average crustal thickness (loose sediments overlying consolidated sediments followed by metasediments and oceanic crust) is anomalously continental (~20-36 km) rather than being simply oceanic crust overlain by sediments. The average shear wave velocity is about 3.5-3.8 km/s which is more representative of continental crusts. Finally the low velocity zone in the uppermost mantle is possibly an effect of the expected increase in temperature due to blanketing of the fan sediments over the Bay of Bengal crust. The misfits to parts of the dispersion data using a 1D isotropic model provides an indication of the presence of polarization anisotropy in the lithosphere and sets a good starting point for modeling the anisotropic structure.
Roller, J.C.; Jackson, W.H.; Cooper, J.F.; Martina, B.A.
1963-01-01
The U.S. Geological Survey, with the assistance of United ElectroDynamics, Inc., completed ten weeks of seismic-refraction field work during the summer of 1962 in the southwestern part of the United States. This work was a continuation of a program initiated in 1961 to study traveltimes and seismic propagation paths in the earth?s crust and upper mantle in the western United States. A total of 761 seismograms were recorded along 10 profiles from 86 explosions at 18 shotpoints. Analysis of the data is continuing, but a few conclusions can be made from a preliminary study: (1) Variations in traveltimes in the Basin and Range province are large but measurable, and perhaps predictable. (2) Traveltimes of seismic waves in adjacent geologic provinces are usually significantly different. (3) The velocity of Pg along all of the profiles recorded in 1962 ranges from 5.0 to 6.5 km/sec, and averages 6.0 km/sec. (4) The average velocity of Pg in extreme northern Nevada and southern Idaho is 5.6 km/sec, and it is 6.1 km/sec in most of Nevada and California. (5) The average velocity of Pn is 7–9 km/ sec and ranges from 7.85 to 7.95 km/sec on reversed profiles where the true Pn velocity could be computed. (6) A shallow "intermediate" layer with a velocity of approximately 6.8 km/sec was found in the Snake River Plain. (7) Refraction arrivals from the mantle (Pn) were recorded in the Sierra Nevada. They indicate that the thickness of the crust in the Sierra Nevada is much greater than that in the Basin and Range province. (8) Many refinements in field techniques were made during the 1962 field season.
Holtschlag, D.J.; Koschik, J.A.
2005-01-01
Upper St. Clair River, which receives outflow from Lake Huron, is characterized by flow velocities that exceed 7 feet per second and significant channel curvature that creates complex flow patterns downstream from the Blue Water Bridge in the Port Huron, Michigan, and Sarnia, Ontario, area. Discrepancies were detected between depth-averaged velocities previously simulated by a two-dimensional (2D) hydrodynamic model and surface velocities determined from drifting buoy deployments. A detailed ADCP (acoustic Doppler current profiler) survey was done on Upper St. Clair River during July 1–3, 2003, to help resolve these discrepancies. As part of this study, a refined finite-element mesh of the hydrodynamic model used to identify source areas to public water intakes was developed for Upper St. Clair River. In addition, a numerical procedure was used to account for radial accelerations, which cause secondary flow patterns near channel bends. The refined model was recalibrated to better reproduce local velocities measured in the ADCP survey. ADCP data also were used to help resolve the remaining discrepancies between simulated and measured velocities and to describe variations in velocity with depth. Velocity data from ADCP surveys have significant local variability, and statistical processing is needed to compute reliable point estimates. In this study, velocity innovations were computed for seven depth layers posited within the river as the differences between measured and simulated velocities. For each layer, the spatial correlation of velocity innovations was characterized by use of variogram analysis. Results were used with kriging to compute expected innovations within each layer at applicable model nodes. Expected innovations were added to simulated velocities to form integrated velocities, which were used with reverse particle tracking to identify the expected flow path near a sewage outfall as a function of flow depth. Expected particle paths generated by use of the integrated velocities showed that surface velocities in the upper layers tended to originate nearer the Canadian shoreline than velocities near the channel bottom in the lower layers. Therefore, flow paths to U.S. public water intakes located on the river bottom are more likely to be in the United States than withdrawals near the water surface. Integrated velocities in the upper layers are generally consistent with the surface velocities indicated by drifting-buoy deployments. Information in the 2D hydrodynamic model and the ADCP measurements was insufficient to describe the vertical flow component. This limitation resulted in the inability to account for vertical movements on expected flow paths through Upper St. Clair River. A three dimensional hydrodynamic model would be needed to account for these effects.
Seismic Waveform Tomography of the Iranian Region
NASA Astrophysics Data System (ADS)
Maggi, A.; Priestley, K.; Jackson, J.
2001-05-01
Surprisingly little is known about the detailed velocity structure of Iran, despite the region's importance in the tectonics of the Middle East. Previous studies have concentrated mainly on fundamental mode surface wave dispersion measurements along isolated paths (e.g.~Asudeh, 1982; Cong & Mitchell, 1998; Ritzwoller et.~al, 1998), and the propagation characteristics of crust and upper mantle body waves (e.g. Hearn & Ni 1994; Rodgers et.~al 1997). We use the partitioned waveform inversion method of Nolet (1990) on several hundred regional waveforms crossing the Iranian region to produce a 3-D seismic velocity map for the crust and upper mantle of the area. The method consists of using long period seismograms from earthquakes with well determined focal mechanisms and depths to constrain 1-D path-averaged shear wave models along regional paths. The constraints imposed on the 1-D models by the seismograms are then combined with independent constraints from other methods (e.g.~Moho depths from reciever function analysis etc.), to solve for the 3-D seismic velocity structure of the region. A dense coverage of fundamental mode rayleigh waves at a period of 100~s ensures good resolution of lithospheric scale structure. We also use 20~s period fundamental mode rayleigh waves and some Pnl wavetrains to make estimates of crustal thickness variations and average crustal velocities. A few deeper events give us some coverage of higher mode rayleigh waves and mantle S waves, which sample to the base of the upper mantle. Our crustal thickness estimates range from 45~km in the southern Zagros mountains, to 40~km in central Iran and 35~km towards the north of the region. We also find inconsistencies between the 1-D models required to fit the vertical and the tranverse seismograms, indicating the presence of anisotropy.
Hydrogeological characterization of flow system in a karstic aquifer, Seymareh dam, Iran
NASA Astrophysics Data System (ADS)
Behrouj Peely, Ahmad; Mohammadi, Zargham; Raeisi, Ezzatollah; Solgi, Khashayar; Mosavi, Mohammad J.; Kamali, Majid
2018-07-01
In order to determine the characteristics of the flow system in a karstic aquifer, an extensive hydrogeological study includes dye tracing test was conducted. The aquifer suited left abutment of Seymareh Dam, in Ravandi Anticline and discharges by more than 50 springs in the southern flank. Flow system in the aquifer is mainly controlled by the reservoir of Seymareh Dam. Time variations of the spring discharge and water table in the observation wells were highly correlated with the reservoir water level. The average groundwater velocity ranges from 0.2 to more than 14 m/h based on the dye tracing test. The probable flow paths were differentiated in two groups including the flow paths in the northern and southern flanks of Ravandi Anticline. Types of groundwater flow in the proposed flow paths are determined as diffuse or conduit flow type considering groundwater velocity and shape of the breakthrough curves. An index is proposed for differentiation of diffuse and conduit flow system based on relationship of groundwater velocity and hydraulic gradient. Dominant geometry of the flow routs (e.g., conduit diameter and fracture aperture) is estimated for the groundwater flow paths toward the springs. Based on velocity variations and variance coefficient of the water table and discharge of springs on map view a major karst conduit was probably developed in the aquifer. This research emphasizes applying of an extensive hydrogeological study for characterization of flow system in the karst aquifer.
MacNeilage, Paul R.; Turner, Amanda H.
2010-01-01
Gravitational signals arising from the otolith organs and vertical plane rotational signals arising from the semicircular canals interact extensively for accurate estimation of tilt and inertial acceleration. Here we used a classical signal detection paradigm to examine perceptual interactions between otolith and horizontal semicircular canal signals during simultaneous rotation and translation on a curved path. In a rotation detection experiment, blindfolded subjects were asked to detect the presence of angular motion in blocks where half of the trials were pure nasooccipital translation and half were simultaneous translation and yaw rotation (curved-path motion). In separate, translation detection experiments, subjects were also asked to detect either the presence or the absence of nasooccipital linear motion in blocks, in which half of the trials were pure yaw rotation and half were curved path. Rotation thresholds increased slightly, but not significantly, with concurrent linear velocity magnitude. Yaw rotation detection threshold, averaged across all conditions, was 1.45 ± 0.81°/s (3.49 ± 1.95°/s2). Translation thresholds, on the other hand, increased significantly with increasing magnitude of concurrent angular velocity. Absolute nasooccipital translation detection threshold, averaged across all conditions, was 2.93 ± 2.10 cm/s (7.07 ± 5.05 cm/s2). These findings suggest that conscious perception might not have independent access to separate estimates of linear and angular movement parameters during curved-path motion. Estimates of linear (and perhaps angular) components might instead rely on integrated information from canals and otoliths. Such interaction may underlie previously reported perceptual errors during curved-path motion and may originate from mechanisms that are specialized for tilt-translation processing during vertical plane rotation. PMID:20554843
Recent acceleration of Thwaites Glacier
NASA Technical Reports Server (NTRS)
Ferrigno, J. G.
1993-01-01
The first velocity measurements for Thwaites Glacier were made by R. J. Allen in 1977. He compared features of Thwaites Glacier and Iceberg Tongue on aerial photography from 1947 and 1967 with 1972 Landsat images, and measured average annual displacements of 3.7 and 2.3 km/a. Using his photogrammetric experience and taking into consideration the lack of definable features and the poor control in the area, he estimated an average velocity of 2.0 to 2.9 km/a to be more accurate. In 1985, Lindstrom and Tyler also made velocity estimates for Thwaites Glacier. Using Landsat imagery from 1972 and 1983, their estimates of the velocities of 33 points ranged from 2.99 to 4.02 km/a, with an average of 3.6 km/a. The accuracy of their estimates is uncertain, however, because in the absence of fixed control points, they assumed that the velocities of icebergs in the fast ice were uniform. Using additional Landsat imagery in 1984 and 1990, accurate coregistration with the 1972 image was achieved based on fixed rock points. For the period 1972 to 1984, 25 points on the glacier surface ranged in average velocity from 2.47 to 2.76 km/a, with an overall average velocity of 2.62 +/- 0.02 km/a. For the period 1984 to 1990, 101 points ranged in velocity from 2.54 to 3.15 km/a, with an overall average of 2.84 km/a. During both time periods, the velocity pattern showed the same spatial relationship for three longitudinal paths. The 8-percent acceleration in a decade is significant. This recent acceleration may be associated with changes observed in this region since 1986. Fast ice melted and several icebergs calved from the base of the Iceberg Tongue and the terminus of Thwaites Glacier. However, as early as 1972, the Iceberg Tongue had very little contact with the glacier.
GPS-aided gravimetry at 30 km altitude from a balloon-borne platform
NASA Technical Reports Server (NTRS)
Lazarewicz, Andrew R.; Evans, Alan G.
1989-01-01
A balloon-borne experiment, flown at 30 km altitude over New Mexico, was used to test dynamic differential Global Positioning System (GPS) tracking in support of gravimetry at high-altitudes. The experiment package contained a gravimeter (Vibrating String Accelerometer), a full complement of inertial instruments, a TI-4100 GPS receiver and a radar transponder. The flight was supported by two GPS receivers on the ground near the flight path. From the 8 hour flight, about a forty minute period was selected for analysis. Differential GPS phase measurements were used to estimate changes in position over the sample time interval, or average velocity. In addition to average velocity, differential positions and numerical averages of acceleration were obtained in three components. Gravitational acceleration was estimated by correcting for accelerations due to translational motion, ignoring all rotational effects.
Estienne, Mark J; Harper, Allen F; Day, Jennifer L
2007-11-01
Although numerous extenders exist for diluting boar semen, little research has been conducted comparing commercial extenders with regard to maintaining sperm motility during storage. The objective was to use a computer- assisted sperm analysis system to assess motility of boar spermatozoa diluted in Beltsville Thawing Solution, Merck-III, Androhep-lite, Sperm Aid, MR-A, Modena, X-Cell, VSP, and Vital. Ejaculates from boars (n=10) were collected and sub-samples were diluted (35x10(6) spermatozoa/ml) in the different extenders and stored for seven days at 18 degrees. Extender by day interactions were detected (p<0.01) and on each day post collection, there were numerically small, but statistically significant differences in characteristics of sperm motility among extenders. For example, on day 7, the percentages of motile and progressively motile spermatozoa were highest (p<0.05) in X-Cell (90.7%) and Modena (63.9%), respectively. The average velocity measured over the actual point-to-point track followed by the sperm cell (VCL; 198.2 microm/s) and path velocity of the smoothed cell path (VAP; 106.4 microm/s) were highest (p<0.05) in Vital and Modena, respectively. Average velocity measured in a straight line from the beginning to the end of the track (VSL; 78.3 microm/s), average value of the ratio VSL/VAP (straightness; 73.2) and average value of the ratio VSL/VCL (linearity; 44.1) on day 7 were highest in Androhep-lite. In summary, changes in sperm motility during storage were affected by the extender utilized, but with the exception of Sperm Aid, all extenders maintained a high degree of sperm motility through 7 days of storage.
Adiabatic particle motion in a nearly drift-free magnetic field: Application to the geomagnetic tail
NASA Technical Reports Server (NTRS)
Stern, D. P.
1977-01-01
The guiding center motion of particles in a nearly drift free magnetic field is analyzed in order to investigate the dependence of mean drift velocity on equatorial pitch angle, the variation of local drift velocity along the trajectory, and other properties. The mean drift for adiabatic particles is expressed by means of elliptic integrals. Approximations to the twice-averaged Hamiltonian W near z = O are derived, permitting simple representation of drift paths if an electric potential also exists. In addition, the use of W or of expressions for the longitudinal invariant allows the derivation of the twice averaged Liouville equation and of the corresponding Vlasov equation. Bounce times are calculated (using the drift-free approximation), as are instantaneous guiding center drift velocities, which are then used to provide a numerical check on the formulas for the mean drift.
Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data
NASA Astrophysics Data System (ADS)
Kumar, Amit; Mukhopadhyay, Sagarika; Kumar, Naresh; Baidya, P. R.
2018-01-01
Surface waves generated by earthquakes that occurred near Sumatra, Andaman-Nicobar Island chain and Sunda arc are used to estimate crustal and upper mantle S wave velocity structure of Bay of Bengal. Records of these seismic events at various stations located along the eastern coast of India and a few stations in the north eastern part of India are selected for such analysis. These stations lie within regional distance of the selected earthquakes. The selected events are shallow focused with magnitude greater than 5.5. Data of 65, 37, 36, 53 and 36 events recorded at Shillong, Bokaro, Visakhapatnam, Chennai and Trivandrum stations respectively are used for this purpose. The ray paths from the earthquake source to the recording stations cover different parts of the Bay of Bengal. Multiple Filtering Technique (MFT) is applied to compute the group velocities of surface waves from the available data. The dispersion curves thus obtained for this data set are within the period range of 15-120 s. Joint inversion of Rayleigh and Love wave group velocity is carried out to obtain the subsurface information in terms of variation of S wave velocity with depth. The estimated S wave velocity at a given depth and layer thickness can be considered to be an average value for the entire path covered by the corresponding ray paths. However, we observe variation in the value of S wave velocity and layer thickness from data recorded at different stations, indicating lateral variation in these two parameters. Thick deposition of sediments is observed along the paths followed by surface waves to Shillong and Bokaro stations. Sediment thickness keeps on decreasing as the surface wave paths move further south. Based on velocity variation the sedimentary layer is further divided in to three parts; on top lay unconsolidated sediment, underlain by consolidated sediment. Below this lies a layer which we consider as meta-sediments. The thickness and velocity of these layers decrease from north to south. The crustal material has higher velocity at the southern part compared to that at the northern part of Bay of Bengal indicating that it changes from more oceanic type in the southern part of the Bay to more continental type to its north. Both Moho and lithosphere - asthenosphere boundary (LAB) dips gently towards north. Thicknesses of both lithosphere and asthenosphere also increase in the same direction. The mantle structure shows complex variation from south to north indicating possible effect of repeated changes in type of tectonic activity in the Bay of Bengal.
Effect of speed matching on fundamental diagram of pedestrian flow
NASA Astrophysics Data System (ADS)
Fu, Zhijian; Luo, Lin; Yang, Yue; Zhuang, Yifan; Zhang, Peitong; Yang, Lizhong; Yang, Hongtai; Ma, Jian; Zhu, Kongjin; Li, Yanlai
2016-09-01
Properties of pedestrian may change along their moving path, for example, as a result of fatigue or injury, which has never been properly investigated in the past research. The paper attempts to study the speed matching effect (a pedestrian adjusts his velocity constantly to the average velocity of his neighbors) and its influence on the density-velocity relationship (a pedestrian adjust his velocity to the surrounding density), known as the fundamental diagram of the pedestrian flow. By the means of the cellular automaton, the simulation results fit well with the empirical data, indicating the great advance of the discrete model for pedestrian dynamics. The results suggest that the system velocity and flow rate increase obviously under a big noise, i.e., a diverse composition of pedestrian crowd, especially in the region of middle or high density. Because of the temporary effect, the speed matching has little influence on the fundamental diagram. Along the entire density, the relationship between the step length and the average pedestrian velocity is a piecewise function combined two linear functions. The number of conflicts reaches the maximum with the pedestrian density of 2.5 m-2, while decreases by 5.1% with the speed matching.
Surface Wave Tomography across the Alpine-Mediterranean Mobile Belt
NASA Astrophysics Data System (ADS)
El-Sharkawy, A. M. M. E.; Meier, T. M.; Lebedev, S.; Weidle, C.; Cristiano, L.
2017-12-01
The Alpine-Mediterranean mobile belt is, tectonically, one of the most complicated and active regions in the world. Since the Mesozoic, collisions between Gondwana-derived continental blocks and Eurasia, due to the closure of a number of rather small ocean basins, have shaped the Mediterranean geology. Despite the numerous studies that have attempted to characterize the lithosphere-asthenosphere structure in that area, details of the lithospheric structure and dynamics, as well as flow in the asthenosphere are, however, poorly known. The purpose of this study is to better define the 3D shear-wave velocity structure of the lithosphere-asthenosphere system in the Mediterranean using new tomographic images obtained from surface wave tomography. An automated algorithm for inter-station phase velocity measurements is applied here to obtain Rayleigh fundamental mode phase velocities. We utilize a database consisting of more than 4000 seismic events recorded by more than 3000 broadband seismic stations within the area (WebDc/EIDA, IRIS). Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, are also included in the analysis. For each station pair, approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of fundamental modes are calculated from the phase of the cross correlation functions weighted in the time-frequency plane. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. We calculate maps of Rayleigh phase velocity at more than 100 different periods. The phase-velocity maps provide the local phase-velocity dispersion curve for each geographical grid node of the map. Each of these local dispersion curves is inverted individually for 1D shear wave velocity model using a newly implemented Particle Swarm Optimization (PSO) algorithm. The resulted 1D velocity models are then combined to construct the 3D shear-velocity model. Horizontal and vertical slices through the 3D isotropic model reveal significant variations in shear wave velocity with depth, and lateral changes in the crust and upper mantle structure emphasizing the processes associated with the convergence of the Eurasian and African plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
A Quantitative Evaluation of SCEC Community Velocity Model Version 3.0
NASA Astrophysics Data System (ADS)
Chen, P.; Zhao, L.; Jordan, T. H.
2003-12-01
We present a systematic methodology for evaluating and improving 3D seismic velocity models using broadband waveform data from regional earthquakes. The operator that maps a synthetic waveform into an observed waveform is expressed in the Rytov form D(ω ) = {exp}[{i} ω δ τ {p}(ω ) - ω δ τ {q}(ω )]. We measure the phase delay time δ τ p(ω ) and the amplitude reduction time δ τ q(ω ) as a function of frequency ω using Gee & Jordan's [1992] isolation-filter technique, and we correct the data for frequency-dependent interference and frequency-independent source statics. We have applied this procedure to a set of small events in Southern California. Synthetic seismograms were computed using three types of velocity models: the 1D Standard Southern California Crustal Model (SoCaL) [Dreger & Helmberger, 1993], the 3D SCEC Community Velocity Model, Version 3.0 (CVM3.0) [Magistrale et al., 2000], and a set of path-averaged 1D models (A1D) extracted from CVM3.0 by horizontally averaging wave slownesses along source-receiver paths. The 3D synthetics were computed using K. Olsen's finite difference code. More than 1000 measurements were made on both P and S waveforms at frequencies ranging from 0.2 to 1 Hz. Overall, the 3D model provided a substantially better fit to the waveform data than either laterally homogeneous or path-dependent 1D models. Relative to SoCaL, CVM3.0 provided a variance reduction of about 64% in δ τ p, and 41% in δ τ q. Relative to A1D, the variance reduction is about 46% and 20%, respectively. The same set of measurements can be employed to invert for both seismic source properties and seismic velocity structures. Fully numerical methods are being developed to compute the Fréchet kernels for these measurements [L. Zhao et. al., this meeting]. This methodology thus provides a unified framework for regional studies of seismic sources and Earth structure in Southern California and elsewhere.
Rayleigh-wave tomography of the Ontong-Java Plateau
NASA Astrophysics Data System (ADS)
Richardson, W. Philip; Okal, Emile A.; Van der Lee, Suzan
2000-02-01
The deep structure of the Ontong-Java Plateau (OJP) in the westcentral Pacific is investigated through a 2-year deployment of four PASSCAL seismic stations used in a passive tomographic experiment. Single-path inversions of 230 Rayleigh waveforms from 140 earthquakes mainly located in the Solomon Trench confirm the presence of an extremely thick crust, with an average depth to the Mohorovičić discontinuity of 33 km. The thickest crusts (38 km) are found in the southcentral part of the plateau, around 2°S, 157°E. Lesser values remaining much thicker than average oceanic crust (15-26 km) are found on either side of the main structure, suggesting that the OJP spills over into the Lyra Basin to the west. Such thick crustal structures are consistent with formation of the plateau at the Pacific-Phoenix ridge at 121 Ma, while its easternmost part may have formed later (90 Ma) on more mature lithosphere. Single-path inversions also reveal a strongly developed low-velocity zone at asthenospheric depths in the mantle. A three-dimensional tomographic inversion resolves a low-velocity root of the OJP extending as deep as 300 km, with shear velocity deficiencies of ˜5%, suggesting the presence of a keel, dragged along with the plateau as the latter moves as part of the drift of the Pacific plate over the mantle.
Effect of prostatic fluid on the quality of fresh and frozen-thawed canine epididymal spermatozoa.
Korochkina, E; Johannisson, A; Goodla, Lavanya; Morrell, J M; Axner, E
2014-12-01
Canine epididymal spermatozoa have a low freeze-tolerance ability compared with ejaculated spermatozoa, which could arise from the absence of prostatic fluid (PF). Therefore, the purpose of this work was to elucidate the influence of PF on the quality of canine epididymal sperm before and after freezing. Caudae epididymides were retrieved from eight dogs after routine castration. Spermatozoa were released by slicing the tissue and were extended in either Tris solution or PF before freezing. Frozen sperm samples were thawed at 70 °C for 8 seconds in a waterbath. Sperm concentration, motility using computer-assisted sperm analysis, morphology, plasma membrane, acrosome and chromatin integrity were assessed in the fresh sperm samples (after 20 minutes incubation) and at 0 and 4 hours after thawing. Progressive motility, distance straight line, distance average path, average path velocity, curvilinear velocity, straight line velocity, straightness, linearity, wobble, and beat cross frequency were significantly increased after extraction into PF. There was a higher proportion of spermatozoa with DNA damage in the PF treatment group at 4 hours after thawing than in the Tris treatment group (15.8% vs. 6.7%, P < 0.05). These results suggest that the addition of PF to canine spermatozoa activates sperm motility in fresh spermatozoa but has a negative effect on chromatin integrity after freezing-thawing. Copyright © 2014 Elsevier Inc. All rights reserved.
Joint Inversion of Phase and Amplitude Data of Surface Waves for North American Upper Mantle
NASA Astrophysics Data System (ADS)
Hamada, K.; Yoshizawa, K.
2015-12-01
For the reconstruction of the laterally heterogeneous upper-mantle structure using surface waves, we generally use phase delay information of seismograms, which represents the average phase velocity perturbation along a ray path, while the amplitude information has been rarely used in the velocity mapping. Amplitude anomalies of surface waves contain a variety of information such as anelastic attenuation, elastic focusing/defocusing, geometrical spreading, and receiver effects. The effects of elastic focusing/defocusing are dependent on the second derivative of phase velocity across the ray path, and thus, are sensitive to shorter-wavelength structure than the conventional phase data. Therefore, suitably-corrected amplitude data of surface waves can be useful for improving the lateral resolution of phase velocity models. In this study, we collect a large-number of inter-station phase velocity and amplitude ratio data for fundamental-mode surface waves with a non-linear waveform fitting between two stations of USArray. The measured inter-station phase velocity and amplitude ratios are then inverted simultaneously for phase velocity maps and local amplification factor at receiver locations in North America. The synthetic experiments suggest that, while the phase velocity maps derived from phase data only reflect large-scale tectonic features, those from phase and amplitude data tend to exhibit better recovery of the strength of velocity perturbations, which emphasizes local-scale tectonic features with larger lateral velocity gradients; e.g., slow anomalies in Snake River Plain and Rio Grande Rift, where significant local amplification due to elastic focusing are observed. Also, the spatial distribution of receiver amplification factor shows a clear correlation with the velocity structure. Our results indicate that inter-station amplitude-ratio data can be of help in reconstructing shorter-wavelength structures of the upper mantle.
NASA Astrophysics Data System (ADS)
Muschinski, A.; Hu, K.; Root, L. M.; Tichkule, S.; Wijesundara, S. N.
2010-12-01
Mean values and fluctuations of angles-of-arrival (AOAs) of light emitted from astronomical or terrestrial sources and observed through a telescope equipped with a CCD camera carry quantitative information about certain statistics of the wind and temperature field, integrated along the propagation path. While scintillometry (i.e., the retrieval of atmospheric quantities from light intensity fluctuations) has been a popular technique among micrometeorologists for many years, there have been relatively few attempts to utilize AOA observations to probe the atmospheric surface layer (ASL). Here we report results from a field experiment that we conducted at the Boulder Atmospheric Observatory (BAO) site near Erie, CO, in June 2010. During the night of 15/16 June, the ASL was characterized by intermittent turbulence and intermittent gravity-wave events. We measured temperature and wind with 12 sonics (R.M. Young, Model 81000, sampling rate 31 Hz) mounted on two portable towers at altitudes between 1.45 m and 4.84 m AGL; air pressure with two quartz-crystal barometers (Paroscientific, 10 Hz); and AOAs by means of a CCD camera (Lumenera, Model 075M, thirty 640x480 frames per second) attached to a 14-inch, Schmidt-Cassegrain telescope (Meade, Model LX200GPS) pointing at a rectangular array of four test lights (LEDs, vertical spacing 8 cm, horizontal spacing 10 cm) located at a distance of 182 m. The optical path was horizontal and 1.7 m above flat ground. The two towers were located 2 m away from the optical path. In our presentation, we focus on AOA retrievals of the following quantities: temporal fluctuations of the path-averaged, vertical temperature gradient; mean values and fluctuations of the path-averaged, lateral wind velocity; and mean values and fluctuations of the path-averaged temperature turbulence structure parameter. We compare the AOA retrievals with the collocated and simultaneous point measurements obtained with the sonics, and we analyze our observations in the framework of the Monin-Obukhov theory. The AOA techniques enable us to detect temporal fluctuations of the path-averaged vertical temperature gradient (estimated over a height increment defined by the telescope's aperture diameter) down to a few millikelvins per meter, which probably cannot be achieved with sonics. Extremely small wind velocities can also be resolved. Therefore, AOA techniques are well suited for observations of the nocturnal surface layer under quiet conditions. AOA retrieval techniques have major advantages over scintillometric techniques because AOAs can be understood within the framework of the weak-scattering theory or even geometrical optics (the eikonal-fluctuation theory), while the well-known "saturation effect" makes the weak-scattering theory invalid for intensity fluctuations in the majority of cases of practical relevance.
Are Atmospheric Updrafts a Key to Unlocking Climate Forcing and Sensitivity?
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...
2016-06-08
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
The free-flight response of Drosophila to motion of the visual environment.
Mronz, Markus; Lehmann, Fritz-Olaf
2008-07-01
In the present study we investigated the behavioural strategies with which freely flying fruit flies (Drosophila) control their flight trajectories during active optomotor stimulation in a free-flight arena. We measured forward, turning and climbing velocities of single flies using high-speed video analysis and estimated the output of a 'Hassenstein-Reichardt' elementary motion detector (EMD) array and the fly's gaze to evaluate flight behaviour in response to a rotating visual panorama. In a stationary visual environment, flight is characterized by flight saccades during which the animals turn on average 120 degrees within 130 ms. In a rotating environment, the fly's behaviour typically changes towards distinct, concentric circular flight paths where the radius of the paths increases with increasing arena velocity. The EMD simulation suggests that this behaviour is driven by a rotation-sensitive EMD detector system that minimizes retinal slip on each compound eye, whereas an expansion-sensitive EMD system with a laterally centred visual focus potentially helps to achieve centring response on the circular flight path. We developed a numerical model based on force balance between horizontal, vertical and lateral forces that allows predictions of flight path curvature at a given locomotor capacity of the fly. The model suggests that turning flight in Drosophila is constrained by the production of centripetal forces needed to avoid side-slip movements. At maximum horizontal velocity this force may account for up to 70% of the fly's body weight during yaw turning. Altogether, our analyses are widely consistent with previous studies on Drosophila free flight and those on the optomotor response under tethered flight conditions.
Umeyama, Motohiko
2012-04-13
This paper investigates the velocity and the trajectory of water particles under surface waves, which propagate at a constant water depth, using particle image velocimetry (PIV). The vector fields and vertical distributions of velocities are presented at several phases in one wave cycle. The third-order Stokes wave theory was employed to express the physical quantities. The PIV technique's ability to measure both temporal and spatial variations of the velocity was proved after a series of attempts. This technique was applied to the prediction of particle trajectory in an Eulerian scheme. Furthermore, the measured particle path was compared with the positions found theoretically by integrating the Eulerian velocity to the higher order of a Taylor series expansion. The profile of average travelling distance is also presented with a solution of zero net mass flux in a closed wave flume.
The paradoxical relationship between stallion fertility and oxidative stress.
Gibb, Zamira; Lambourne, Sarah R; Aitken, Robert J
2014-09-01
The relationship between stallion fertility and oxidative stress remains poorly understood. The purpose of this study was to identify criteria for thoroughbred fertility assessment by performing a logistical regression analysis using "dismount" sperm parameters as predictors and weekly per-cycle conception rate as the dependent variable. Paradoxically, positive relationships between fertility and oxidative stress were revealed, such that samples that produced pregnancies exhibited higher rates of 8-hydroxy-2'-deoxyguanosine release (1490.2% vs. 705.5 pg/ml/24 h) and lower vitality (60.5% vs. 69.6%) and acrosome integrity (40.2% vs. 50.1%) than those that did not. We hypothesized that the most fertile spermatozoa exhibited the highest levels of oxidative phosphorylation (OXPHOS), with oxidative stress simply being a by-product of intense mitochondrial activity. Accordingly, an experiment to investigate the relationship between oxidative stress and motility was conducted and revealed positive correlations between mitochondrial ROS and total motility (R² = 0.90), rapid motility (R² = 0.89), average path velocity (VAP; R² = 0.59), and curvilinear velocity (VCL; R² = 0.66). Similarly, lipid peroxidation was positively correlated with total motility (R² = 0.46), rapid motility (R² = 0.51), average path velocity (R² = 0.62), and VCL (R² = 0.56), supporting the aforementioned hypothesis. The relative importance of OXPHOS in supporting the motility of equine spermatozoa was contrasted with human spermatozoa, which primarily utilize glycolysis. In this study, mitochondrial inhibition significantly reduced the velocity (P < 0.01) and ATP (P < 0.05) content of equine, but not human, spermatozoa, emphasizing the former's relative dependence on OXPHOS. The equine is the first mammal in which such a positive relationship between oxidative stress and functionality has been observed, with implications for the management of stallion fertility in vitro and in vivo. © 2014 by the Society for the Study of Reproduction, Inc.
Effects of diluting medium and holding time on sperm motility analysis by CASA in ram.
Mostafapor, Somayeh; Farrokhi Ardebili, Farhad
2014-01-01
The aim of this study was to evaluate the effects of dilution rate and holding time on various motility parameters using computer-assisted sperm analysis (CASA). The semen samples were collected from three Ghezel rams. Samples were diluted in seminal plasma (SP), phosphate-buffered saline (PBS) containing 1% bovine serum albumin (BSA) and Bioexcell. The motility parameters that computed and recorded by CASA include curvilinear velocity (VCL), straight line velocity (VSL), average path velocity (VAP), straightness (STR), linearity (LIN), amplitude of lateral head displacement (ALH), and beat cross frequency (BCF). In all diluters, there was a decrease in the average of all three parameters of sperms movement velocity as the time passed, but density of this decrease was more intensive in SP. The average of ALH between diluters indicated a significant difference, as it was more in Bioexcell in comparison with the similar amount in SP and PBS. The average of LIN in the diluted sperms in Bioexcell was less than two other diluters in all three times. The motility parameters of the diluted sperms in Bioexcell and PBS indicated an important and considerable difference with the diluted sperms in SP. According to the gained results, the Bioexcell has greater ability in preserving motility of sperm in comparison with the other diluters but as SP is considered as physiological environment for sperm. It seems that the evaluation of the motility parameters in Bioexcell and PBS cannot be an accurate and comparable evaluation with SP.
Seismic Structure of India from Regional Waveform Matching
NASA Astrophysics Data System (ADS)
Gaur, V.; Maggi, A.; Priestley, K.; Rai, S.
2003-12-01
We use a neighborhood adaptive grid search procedure and reflectivity synthetics to model regional distance range (500-2000~km) seismograms recorded in India and to determine the variation in the crust and uppermost mantle structure across the subcontinent. The portions of the regional waveform which are most influenced by the crust and uppermost mantle structure are the 10-100~s period Pnl and fundamental mode surface waves. We use the adaptive grid search algorithm to match both portions of the seismogram simultaneously. This procedure results in a family of 1-D path average crust and upper mantle velocity and attenuation models whose propagation characteristics closely match those of the real Earth. Our data set currently consist of ˜20 seismograms whose propagation paths are primarily confined to the Ganges Basin in north India and the East Dharwar Craton of south India. The East Dharwar Craton has a simple and uniform structure consisting of a 36+/-2 km thick two layer crust, and an uppermost mantle with a sub-Moho velocity of 4.5~km/s. The structure of northern India is more complicated, with pronounced low velocities in the upper crustal layer due to the large sediment thicknesses in the Ganges basin.
NASA Astrophysics Data System (ADS)
Instanes, Geir; Pedersen, Audun; Toppe, Mads; Nagy, Peter B.
2009-03-01
This paper describes a novel ultrasonic guided wave inspection technique for the monitoring of internal corrosion and erosion in pipes, which exploits the fundamental flexural mode to measure the average wall thickness over the inspection path. The inspection frequency is chosen so that the group velocity of the fundamental flexural mode is essentially constant throughout the wall thickness range of interest, while the phase velocity is highly dispersive and changes in a systematic way with varying wall thickness in the pipe. Although this approach is somewhat less accurate than the often used transverse resonance methods, it smoothly integrates the wall thickness over the whole propagation length, therefore it is very robust and can tolerate large and uneven thickness variations from point to point. The constant group velocity (CGV) method is capable of monitoring the true average of the wall thickness over the inspection length with an accuracy of 1% even in the presence of one order of magnitude larger local variations. This method also eliminates spurious variations caused by changing temperature, which can cause fairly large velocity variations, but do not significantly influence the dispersion as measured by the true phase angle in the vicinity of the CGV point. The CGV guided wave CEM method was validated in both laboratory and field tests.
Statistical analysis of ultrasonic measurements in concrete
NASA Astrophysics Data System (ADS)
Chiang, Chih-Hung; Chen, Po-Chih
2002-05-01
Stress wave techniques such as measurements of ultrasonic pulse velocity are often used to evaluate concrete quality in structures. For proper interpretation of measurement results, the dependence of pulse transit time on the average acoustic impedance and the material homogeneity along the sound path need to be examined. Semi-direct measurement of pulse velocity could be more convenient than through transmission measurement. It is not necessary to assess both sides of concrete floors or walls. A novel measurement scheme is proposed and verified based on statistical analysis. It is shown that Semi-direct measurements are very effective for gathering large amount of pulse velocity data from concrete reference specimens. The variability of measurements is comparable with that reported by American Concrete Institute using either break-off or pullout tests.
NASA Astrophysics Data System (ADS)
Rham, D. J.; Preistley, K.; Tatar, M.; Paul, A.
2006-12-01
We present group velocity dispersion results from a study of regional fundamental mode Rayleigh and Love waves propagating across Iran and the surrounding region. Data for these measurements comes from field deployments within Iran by the University of Cambridge (GBR) and the Universite Joseph-Fourier (FRA) in conjunction with International Institute of Earthquake Engineering and Seismology (Iran), in addition to data from IRIS and Geofone. 1D path- averaged dispersion measurements have been made for ~5500 source-receiver paths using multiple filter analysis. We combine these observations in a tomographic inversion to produce group velocity images between 10 and 60 s period. Because of the dense path coverage, these images have substantially higher lateral resolution for this region than is currently available from global and regional group velocity studies. We observe variations in short-period wave group velocity which is consistent with the surface geology. Low group velocities (2.00-2.55 km/s) at short periods (10-20 s), for both Rayleigh and Love waves are observed beneath thick sedimentary deposits; The south Caspian Basin, Black Sea, the eastern Mediterranean, the Persian Gulf, the Makran, the southern Turan shield, and the Indus and Gangetic basins. Somewhat higher group velocity (2.80-3.15 km/s for Rayleigh, and 3.00-3.40 km/s for Love) at these periods occur in sediment poor regions, such as; the Turkish-Iranian plateau, the Arabian shield, and Kazakhstan. At intermediate periods (30-40 s) group velocities over most of the region are low (2.65-3.20 km/s for Rayleigh, and 2.80-3.45 km/s for love) compared to Arabia (3.40-3.70 km/s Rayleigh, 3.50-4.0 km/s Love). At longer periods (50-60 s) Love wave group velocities remain low (3.25-3.70 km/s) over most of Iran, but there are even lower velocities (2.80-3.00 km/s) still associated with the thick sediments of the south Caspian basin, the surrounding shield areas have much higher group velocities (3.90-4.45 km/s) at these periods. A similar pattern is seen for longer period Rayleigh waves, with low velocities (2.85-3.60 km/s) beneath the Alpine-Himalaya belt, compared to the velocities (3.80-4.10 km/s) of the Turan and Arabian shields, to the north and south respectively, no large anomaly beneath the south Caspian is observed for these longer period Rayleigh waves.
Optimum Pathways of Fish Spawning Migrations in Rivers
NASA Astrophysics Data System (ADS)
McElroy, B. J.; Jacobson, R. B.; Delonay, A.
2010-12-01
Many fish species migrate large distances upstream in rivers to spawn. These migrations require energetic expenditures that are inversely related to fecundity of spawners. Here we present the theory necessary to quantify relative energetic requirements of upstream migration pathways and then test the hypothesis that least-cost paths are taken by the federally endangered pallid sturgeon (Scaphyrhyncus Albus), a benthic rheophile, in the lower Missouri River, USA. Total work done by a fish through a migratory path is proportional to the size of the fish, the total drag on the fish, and the distance traversed. Normalizing by the work required to remain stationary at the beginning of a path, relative work expenditure at each point of the path is found to be the cube of the ratio of the velocity along the path to the velocity at the start of the path. This is the velocity of the fish relative to the river flow. A least-cost migratory pathway can be determined from the velocity field in a reach as the path that minimizes a fish's relative work expenditure. We combine location data from pallid sturgeon implanted with telemetric tags and pressure-sensitive data storage tags with depth and velocity data collected with an acoustic Doppler profiler. During spring 2010 individual sturgeon were closely followed as they migrated up the Missouri River to spawn. These show that, within a small margin, pallid sturgeon in the lower Missouri River select least-cost paths as they swim upstream (typical velocities near 1.0 - 1.2 m/s). Within the range of collected data, it is also seen that many alternative paths not selected for migration are two orders of magnitude more energetically expensive (typical velocities near 2.0 - 2.5 m/s). In general these sturgeon migrated along the inner banks of bends avoiding high velocities in the thalweg, crossing the channel where the thalweg crosses in the opposite direction in order to proceed up the inner bank of subsequent bends. Overall, these results suggest a management strategy for increasing fecundity and reproductive success could be to manage flows to lower levels during prespawn migrations thereby decreasing expenditure necessary to reach spawning sites.
Oberg, Kevin A.; Duncker, James J.
1999-01-01
In 1998, a prototype 300 kHz, side-looking Acoustic Doppler Current Profiler (ADCP) was deployed in the Chicago Sanitary and Ship Canal (CSSC) at Romeoville, Illinois. Additionally, two upward-looking ADCP's were deployed in the same acoustic path as the side-looking ADCP and in the reach defined by the upstream and downstream acoustic velocity meter (AVM) paths. All three ADCP's were synchronized to the AVM clock at the gaging station so that data were sampled simultaneously. The three ADCP's were deployed for six weeks measuring flow velocities from 0.0 to 2.5 ft/s. Velocities measured by each ADCP were compared to AVM path velocities and to velocities measured by the other ADCP's.
Impact of heliogeophysical disturbances on ionospheric HF channels
NASA Astrophysics Data System (ADS)
Uryadov, V. P.; Vybornov, F. I.; Kolchev, A. A.; Vertogradov, G. G.; Sklyarevsky, M. S.; Egoshin, I. A.; Shumaev, V. V.; Chernov, A. G.
2018-04-01
The article presents the results of the observation of a strong magnetic storm and two X-ray flares during the summer solstice in 2015, and their impact on the HF signals characteristics in ionospheric oblique sounding. It was found that the negative phase of the magnetic storm led to a strong degradation of the ionospheric channel, ultimately causing a long blackout on paths adjacent to subauroral latitudes. On mid-latitude paths, the decrease in 1FMOF reached ∼50% relative to the average values for the quiet ionosphere. It is shown that the propagation conditions via the sporadic Es layer during the magnetic storm on a subauroral path are substantially better than those for F-mode propagation via the upper ionosphere. The delay of the sharp decrease in 1FMOF during the main phase of the magnetic storm allowed us to determine the propagation velocity of the negative phase disturbances (∼100 m/s) from subauroral to mid-latitude ionosphere along two paths: Lovozero - Yoshkar-Ola and Cyprus - Nizhny Novgorod. It is shown that both the LOF and the signal/noise ratio averaged over the frequency band corresponding to the propagation mode via the sporadic Es layer correlate well with the auroral AE index. Using an over-the-horizon chirp radar with a bistatic configuration on the Cyprus - Rostov-on-Don path, we located small-scale scattering irregularities responsible for abnormal signals in the region of the equatorial boundary of the auroral oval.
Observations of changes in waveform character induced by the 1999 Mw7.6 Chi-Chi earthquake
Chen, K.H.; Furumura, T.; Rubinstein, J.; Rau, R.-J.
2011-01-01
We observe changes in the waveforms of repeating earthquakes in eastern Taiwan following the 1999 Mw7.6 Chi-Chi earthquake, while their recurrence intervals appear to be unaffected. There is a clear reduction in waveform similarity and velocity changes indicated by delayed phases at the time of the Chi-Chi event. These changes are limited to stations in and paths that cross the 70 × 100 km region surrounding the Chi-Chi source area, the area where seismic intensity and co-seismic surface displacements were largest. This suggests that damage at the near-surface is responsible for the observed waveform changes. Delays are largest in the late S-wave coda, reaching approximately 120 ms. This corresponds to a path averaged Swave velocity reduction of approximately 1%. There is also evidence that damage in the fault-zone caused changes in waveform character at sites in the footwall, where source-receiver paths propagate either along or across the rupture. The reduction in waveform similarity persists through the most recent repeating event in our study (November 15, 2007), indicating that the subsurface damage induced by the Chi-Chi earthquake did not fully heal within the first 8 years following the Chi-Chi earthquake.
Observations of changes in waveform character induced by the 1999 M w7.6 Chi-Chi earthquake
Chen, K.H.; Furumura, T.; Rubinstein, J.; Rau, R.-J.
2011-01-01
We observe changes in the waveforms of repeating earthquakes in eastern Taiwan following the 1999 Mw7.6 Chi-Chi earthquake, while their recurrence intervals appear to be unaffected. There is a clear reduction in waveform similarity and velocity changes indicated by delayed phases at the time of the Chi-Chi event. These changes are limited to stations in and paths that cross the 70 ?? 100 km region surrounding the Chi-Chi source area, the area where seismic intensity and co-seismic surface displacements were largest. This suggests that damage at the near-surface is responsible for the observed waveform changes. Delays are largest in the late S-wave coda, reaching approximately 120 ms. This corresponds to a path averaged S wave velocity reduction of approximately 1%. There is also evidence that damage in the fault-zone caused changes in waveform character at sites in the footwall, where source-receiver paths propagate either along or across the rupture. The reduction in waveform similarity persists through the most recent repeating event in our study (November 15, 2007), indicating that the subsurface damage induced by the Chi-Chi earthquake did not fully heal within the first 8 years following the Chi-Chi earthquake. ?? 2011 by the American Geophysical Union.
The lateral variation of P n velocity gradient under Eurasia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaoning
We report that mantle lid P wave velocity gradient, or P n velocity gradient, reflects the depth and lateral variations of thermal and rheological state of the uppermost mantle. Mapping the P n velocity gradient and its lateral variation helps us gain insight into the temperature, composition, and dynamics of the uppermost mantle. In addition, because P n velocity gradient has profound influence on P n propagation behavior, an accurate mapping of P n velocity gradient also improves the modeling and prediction of P n travel times and amplitudes. In this study, I used measured P n travel times tomore » derive path-specific P n velocity gradients. I then inverted these velocity gradients for two-dimensional (2-D) P n velocity-gradient models for Eurasia based on the assumption that a path-specific Pn velocity gradient is the mean of laterally varying P n velocity gradients along the P n path. Result from a Monte Carlo simulation indicates that the assumption is appropriate. The 2-D velocity-gradient models show that most of Eurasia has positive velocity gradients. High velocity gradients exist mainly in tectonically active regions. Most tectonically stable regions show low and more uniform velocity gradients. In conclusion, strong velocity-gradient variations occur largely along convergent plate boundaries, particularly under overriding plates.« less
The lateral variation of P n velocity gradient under Eurasia
Yang, Xiaoning
2017-05-03
We report that mantle lid P wave velocity gradient, or P n velocity gradient, reflects the depth and lateral variations of thermal and rheological state of the uppermost mantle. Mapping the P n velocity gradient and its lateral variation helps us gain insight into the temperature, composition, and dynamics of the uppermost mantle. In addition, because P n velocity gradient has profound influence on P n propagation behavior, an accurate mapping of P n velocity gradient also improves the modeling and prediction of P n travel times and amplitudes. In this study, I used measured P n travel times tomore » derive path-specific P n velocity gradients. I then inverted these velocity gradients for two-dimensional (2-D) P n velocity-gradient models for Eurasia based on the assumption that a path-specific Pn velocity gradient is the mean of laterally varying P n velocity gradients along the P n path. Result from a Monte Carlo simulation indicates that the assumption is appropriate. The 2-D velocity-gradient models show that most of Eurasia has positive velocity gradients. High velocity gradients exist mainly in tectonically active regions. Most tectonically stable regions show low and more uniform velocity gradients. In conclusion, strong velocity-gradient variations occur largely along convergent plate boundaries, particularly under overriding plates.« less
Chen, Chunyi; Yang, Huamin
2017-11-01
The root-mean-square (RMS) bandwidth of temporal light-flux fluctuations is formulated for both plane and spherical waves propagating in the turbulent atmosphere with location-dependent transverse wind. Two path weighting functions characterizing the joint contributions of turbulent eddies and transverse winds at various locations toward the RMS bandwidth are derived. Based on the developed formulations, the roles of variations in both the direction and magnitude of transverse wind velocity with locations over a path on the RMS bandwidth are elucidated. For propagation paths between ground and space, comparisons of the RMS bandwidth computed based on the Bufton wind profile with that calculated by assuming a nominal constant transverse wind velocity are made to exemplify the effect that location dependence of transverse wind velocity has on the RMS bandwidth. Moreover, an expression for the weighted RMS transverse wind velocity has been derived, which can be used as a nominal constant transverse wind velocity over a path for accurately determining the RMS bandwidth.
Determination of the Residence Time of Food Particles During Aseptic Sterilization
NASA Technical Reports Server (NTRS)
Carl, J. R.; Arndt, G. D.; Nguyen, T. X.
1994-01-01
The paper describes a non-invasive method to measure the time an individual particle takes to move through a length of stainless steel pipe. The food product is in two phase flow (liquids and solids) and passes through a pipe with pressures of approximately 60 psig and temperatures of 270-285 F. The proposed problem solution is based on the detection of transitory amplitude and/or phase changes in a microwave transmission path caused by the passage of the particles of interest. The particles are enhanced in some way, as will be discussed later, such that they will provide transitory changes that are distinctive enough not to be mistaken for normal variations in the received signal (caused by the non-homogeneous nature of the medium). Two detectors (transmission paths across the pipe) will be required and place at a known separation. A minimum transit time calculation is made from which the maximum velocity can be determined. This provides the minimum residence time. Also average velocity and statistical variations can be computed so that the amount of 'over-cooking' can be determined.
Flight-Path Characteristics for Decelerating From Supercircular Speed
NASA Technical Reports Server (NTRS)
Luidens, Roger W.
1961-01-01
Characteristics of the following six flight paths for decelerating from a supercircular speed are developed in closed form: constant angle of attack, constant net acceleration, constant altitude" constant free-stream Reynolds number, and "modulated roll." The vehicles were required to remain in or near the atmosphere, and to stay within the aerodynamic capabilities of a vehicle with a maximum lift-drag ratio of 1.0 and within a maximum net acceleration G of 10 g's. The local Reynolds number for all the flight paths for a vehicle with a gross weight of 10,000 pounds and a 600 swept wing was found to be about 0.7 x 10(exp 6). With the assumption of a laminar boundary layer, the heating of the vehicle is studied as a function of type of flight path, initial G load, and initial velocity. The following heating parameters were considered: the distribution of the heating rate over the vehicle, the distribution of the heat per square foot over the vehicle, and the total heat input to the vehicle. The constant G load path at limiting G was found to give the lowest total heat input for a given initial velocity. For a vehicle with a maximum lift-drag ratio of 1.0 and a flight path with a maximum G of 10 g's, entry velocities of twice circular appear thermo- dynamically feasible, and entries at velocities of 2.8 times circular are aerodynamically possible. The predominant heating (about 85 percent) occurs at the leading edge of the vehicle. The total ablated weight for a 10,000-pound-gross-weight vehicle decelerating from an initial velocity of twice circular velocity is estimated to be 5 percent of gross weight. Modifying the constant G load flight path by a constant-angle-of-attack segment through a flight- to circular-velocity ratio of 1.0 gives essentially a "point landing" capability but also results in an increased total heat input to the vehicle.
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.
2009-01-01
This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.
NASA Astrophysics Data System (ADS)
Xie, J.
2003-12-01
Pn waves from three near-colocated seismic events in the eastern Tarim Basin are well-recorded by the INDEPTH III and II arrays, which are deployed from northern to southern Tibet with a small east-west spread (between ˜88 and 91° E). The paths run southward and sample the Tibetan mantle with epicentral distances increasing from 870 to 1540 km. These waves have spectral contents that are distinctly different from those collected from the Kyrghistan network (KNET), to which the paths traverse westward through the eastern Tienshan. Pn Q beneath Tibet and Tienshan must therefore be different. Xie and Patton (1999,JGR, 104, 941-954) have simultaneously estimated source spectra of the co-located events, and path-averaged Pn Q to the KNET stations. Under a simplified geometrical spreading of Δ -1.3, they have estimated Q0 and η (Pn Q at 1 Hz and its frequency dependence) to KNET to be about 360 and 0.5, respectively. Using those estimates as a priori knowledge, we estimate that Q0 and η are ~180 and 0.3 along paths to northern Tibet, and ˜260 and 0.0 along paths to southern Tibet. The southward increase of Q0 correlates well with a similar increase in Pn velocity contained in previous tomographic images. Additionally, we measured Pn Q using a two-station method along two profiles (from station SANG to TUNL, and GANZ to MAQI) deployed during the 1991-1992 Sino-US Tibetan Plateau experiment. Both profiles are located to the east of 92° E. Along profile SANG-TUNL, we estimate Q0 and η to be ˜270 and 0.0, respectively. The Q0 value is rather high, but correlates well with the high Pn velocities of > 8.1 km/s re-measured in this study. Our results suggest that the zone of low Pn Q0 and velocity in northern Tibet, which is likely caused by high mantle temperature and partial melting, is confined to the west of 92° E. This is so despite that the zone of high Sn attenuation extends to further east.
Upper Mantle Structure beneath Afar: inferences from surface waves.
NASA Astrophysics Data System (ADS)
Sicilia, D.; Montagner, J.; Debayle, E.; Lepine, J.; Leveque, J.; Cara, M.; Ataley, A.; Sholan, J.
2001-12-01
The Afar hotspot is related to one of the most important plume from a geodynamic point of view. It has been advocated to be the surface expression of the South-West African Superswell. Below the lithosphere, the Afar plume might feed other hotspots in central Africa (Hadiouche et al., 1989; Ebinger & Sleep, 1998). The processes of interaction between crust, lithosphere and plume are not well understood. In order to gain insight into the scientific issue, we have performed a surface-wave tomography covering the Horn of Africa. A data set of 1404 paths for Rayleigh waves and 473 paths for Love waves was selected in the period range 45-200s. They were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment, in Tanzania and Saudi Arabia. Other data come from the broadband stations deployed in Ethiopia and Yemen in the framework of the French INSU program ``Horn of Africa''. The results presented here come from a path average phase velocities obtained with a method based on a least-squares minimization (Beucler et al., 2000). The local phase velocity distribution and the azimuthal anisotropy were simultaneously retrieved by using the tomographic technique of Montagner (1986). A correction of the data is applied according to the crustal structure of the 3SMAC model (Nataf & Ricard, 1996). We find low velocities down to 200 km depth beneath the Red Sea, the Gulf of Aden, Afars, the Ethiopian Plateau and southern Arabia. High velocities are present in the eastern Arabia and the Tanzania Craton. The anisotropy beneath Afar seems to be complex, but enables to map the flow pattern at the interface lithosphere-asthenosphere. The results presented here are complementary to those obtained by Debayle et al. (2001) at upper-mantle transition zone depths using waveform inversion of higher Rayle igh modes.
Finger muscle attachments for an OpenSim upper-extremity model.
Lee, Jong Hwa; Asakawa, Deanna S; Dennerlein, Jack T; Jindrich, Devin L
2015-01-01
We determined muscle attachment points for the index, middle, ring and little fingers in an OpenSim upper-extremity model. Attachment points were selected to match both experimentally measured locations and mechanical function (moment arms). Although experimental measurements of finger muscle attachments have been made, models differ from specimens in many respects such as bone segment ratio, joint kinematics and coordinate system. Likewise, moment arms are not available for all intrinsic finger muscles. Therefore, it was necessary to scale and translate muscle attachments from one experimental or model environment to another while preserving mechanical function. We used a two-step process. First, we estimated muscle function by calculating moment arms for all intrinsic and extrinsic muscles using the partial velocity method. Second, optimization using Simulated Annealing and Hooke-Jeeves algorithms found muscle-tendon paths that minimized root mean square (RMS) differences between experimental and modeled moment arms. The partial velocity method resulted in variance accounted for (VAF) between measured and calculated moment arms of 75.5% on average (range from 48.5% to 99.5%) for intrinsic and extrinsic index finger muscles where measured data were available. RMS error between experimental and optimized values was within one standard deviation (S.D) of measured moment arm (mean RMS error = 1.5 mm < measured S.D = 2.5 mm). Validation of both steps of the technique allowed for estimation of muscle attachment points for muscles whose moment arms have not been measured. Differences between modeled and experimentally measured muscle attachments, averaged over all finger joints, were less than 4.9 mm (within 7.1% of the average length of the muscle-tendon paths). The resulting non-proprietary musculoskeletal model of the human fingers could be useful for many applications, including better understanding of complex multi-touch and gestural movements.
Finger Muscle Attachments for an OpenSim Upper-Extremity Model
Lee, Jong Hwa; Asakawa, Deanna S.; Dennerlein, Jack T.; Jindrich, Devin L.
2015-01-01
We determined muscle attachment points for the index, middle, ring and little fingers in an OpenSim upper-extremity model. Attachment points were selected to match both experimentally measured locations and mechanical function (moment arms). Although experimental measurements of finger muscle attachments have been made, models differ from specimens in many respects such as bone segment ratio, joint kinematics and coordinate system. Likewise, moment arms are not available for all intrinsic finger muscles. Therefore, it was necessary to scale and translate muscle attachments from one experimental or model environment to another while preserving mechanical function. We used a two-step process. First, we estimated muscle function by calculating moment arms for all intrinsic and extrinsic muscles using the partial velocity method. Second, optimization using Simulated Annealing and Hooke-Jeeves algorithms found muscle-tendon paths that minimized root mean square (RMS) differences between experimental and modeled moment arms. The partial velocity method resulted in variance accounted for (VAF) between measured and calculated moment arms of 75.5% on average (range from 48.5% to 99.5%) for intrinsic and extrinsic index finger muscles where measured data were available. RMS error between experimental and optimized values was within one standard deviation (S.D) of measured moment arm (mean RMS error = 1.5 mm < measured S.D = 2.5 mm). Validation of both steps of the technique allowed for estimation of muscle attachment points for muscles whose moment arms have not been measured. Differences between modeled and experimentally measured muscle attachments, averaged over all finger joints, were less than 4.9 mm (within 7.1% of the average length of the muscle-tendon paths). The resulting non-proprietary musculoskeletal model of the human fingers could be useful for many applications, including better understanding of complex multi-touch and gestural movements. PMID:25853869
Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate
NASA Astrophysics Data System (ADS)
Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey
2014-05-01
We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The azimuthal coverage of the respective two-station paths is proper to analyze the observed dispersion curves in terms of both azimuthal and radial anisotropy beneath the study region. This research is supported by Joint Research Project of the Scientific and Research Council of Turkey (TUBİTAK- Grant number 111Y190) and the Russian Federation for Basic Research (RFBR).
Overview of hydro-acoustic current-measurement applications by the U.S. geological survey in Indiana
Morlock, Scott E.; Stewart, James A.
1999-01-01
The U.S. Geological Survey (USGS) maintains a network of 170 streamflow-gaging stations in Indiana to collect data from which continuous records of river discharges are produced. Traditionally, the discharge record from a station is produced by recording river stage and making periodic discharge measurements through a range of stage, then developing a relation between stage and discharge. Techniques that promise to increase data collection accuracy and efficiency include the use of hydro-acoustic instrumentation to measure river velocities. The velocity measurements are used to compute river discharge. In-situ applications of hydro-acoustic instruments by the USGS in Indiana include acoustic velocity meters (AVM's) at six streamflow-gaging stations and newly developed Doppler velocity meters (DVM's) at two stations. AVM's use reciprocal travel times of acoustic signals to measure average water velocities along acoustic paths, whereas DVM's use the Doppler shift of backscattered acoustic signals to compute water velocities. In addition to the in-situ applications, three acoustic Doppler current profilers (ADCP's) are used to make river-discharge measurements from moving boats at streamflow-gaging stations in Indiana. The USGS has designed and is testing an innovative unmanned platform from which to make ADCP discharge measurements.
Measuring global monopole velocities, one by one
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Eiguren, Asier; Urrestilla, Jon; Achúcarro, Ana, E-mail: asier.lopez@ehu.eus, E-mail: jon.urrestilla@ehu.eus, E-mail: achucar@lorentz.leidenuniv.nl
We present an estimation of the average velocity of a network of global monopoles in a cosmological setting using large numerical simulations. In order to obtain the value of the velocity, we improve some already known methods, and present a new one. This new method estimates individual global monopole velocities in a network, by means of detecting each monopole position in the lattice and following the path described by each one of them. Using our new estimate we can settle an open question previously posed in the literature: velocity-dependent one-scale (VOS) models for global monopoles predict two branches of scalingmore » solutions, one with monopoles moving at subluminal speeds and one with monopoles moving at luminal speeds. Previous attempts to estimate monopole velocities had large uncertainties and were not able to settle that question. Our simulations find no evidence of a luminal branch. We also estimate the values of the parameters of the VOS model. With our new method we can also study the microphysics of the complicated dynamics of individual monopoles. Finally we use our large simulation volume to compare the results from the different estimator methods, as well as to asses the validity of the numerical approximations made.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginn, Timothy R.; Weathers, Tess
Biogeochemical modeling using PHREEQC2 and a streamtube ensemble approach is utilized to understand a well-to-well subsurface treatment system at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. Treatment involves in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. Reaction kinetics, equilibrium phases, and cation exchange are used within PHREEQC2 to track pH and levels of calcium, ammonium, urea, and calcite precipitation over time, within a series of one-dimensional advective-dispersive transport paths creating a streamtube ensemble representation of the well-to-well transport. An understandingmore » of the impact of physical heterogeneities within this radial flowfield is critical for remediation design; we address this via the streamtube approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is spatially-variable in a common way, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance in the case of ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized radial non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized “fast-slow-fast” pattern of non-uniform velocity along the streamline. Breakthrough curves produced by each simulation are weighted by the path-respective flux fractions (obtained by deconvolution of tracer tests conducted at the VZRP) to obtain the flux-average of flow contributions to the observation well.« less
A generic model for the shallow velocity structure of volcanoes
NASA Astrophysics Data System (ADS)
Lesage, Philippe; Heap, Michael J.; Kushnir, Alexandra
2018-05-01
The knowledge of the structure of volcanoes and of the physical properties of volcanic rocks is of paramount importance to the understanding of volcanic processes and the interpretation of monitoring observations. However, the determination of these structures by geophysical methods suffers limitations including a lack of resolution and poor precision. Laboratory experiments provide complementary information on the physical properties of volcanic materials and their behavior as a function of several parameters including pressure and temperature. Nevertheless combined studies and comparisons of field-based geophysical and laboratory-based physical approaches remain scant in the literature. Here, we present a meta-analysis which compares 44 seismic velocity models of the shallow structure of eleven volcanoes, laboratory velocity measurements on about one hundred rock samples from five volcanoes, and seismic well-logs from deep boreholes at two volcanoes. The comparison of these measurements confirms the strong variability of P- and S-wave velocities, which reflects the diversity of volcanic materials. The values obtained from laboratory experiments are systematically larger than those provided by seismic models. This discrepancy mainly results from scaling problems due to the difference between the sampled volumes. The averages of the seismic models are characterized by very low velocities at the surface and a strong velocity increase at shallow depth. By adjusting analytical functions to these averages, we define a generic model that can describe the variations in P- and S-wave velocities in the first 500 m of andesitic and basaltic volcanoes. This model can be used for volcanoes where no structural information is available. The model can also account for site time correction in hypocenter determination as well as for site and path effects that are commonly observed in volcanic structures.
Implementation and validation of a wake model for low-speed forward flight
NASA Technical Reports Server (NTRS)
Komerath, Narayanan M.; Schreiber, Olivier A.
1987-01-01
The computer implementation and calculations of the induced velocities produced by a wake model consisting of a trailing vortex system defined from a prescribed time averaged downwash distribution are detailed. Induced velocities are computed by approximating each spiral turn by a pair of large straight vortex segments positioned at critical points relative to where the induced velocity is required. A remainder term for the rest of the spiral is added. This approach results in decreased computation time compared to classical models where each spiral turn is broken down in small straight vortex segments. The model includes features such a harmonic variation of circulation, downwash outside of the blade and/or outside the tip path plane, blade bound vorticity induced velocity with harmonic variation of circulation and time averaging. The influence of various options and parameters on the results are investigated and results are compared to experimental field measurements with which, a resonable agreement is obtained. The capabilities of the model as well as its extension possibilities are studied. The performance of the model in predicting the recently-acquired NASA Langley Inflow data base for a four-bladed rotor is compared to that of the Scully Free Wake code, a well-established program which requires much greater computational resources. It is found that the two codes predict the experimental data with essentially the same accuracy, and show the same trends.
NASA Astrophysics Data System (ADS)
El-Sharkawy, Amr; Weidle, Christian; Christiano, Luigia; Lebedev, Sergei; Meier, Thomas
2017-04-01
The Alpine-Mediterranean mobile belt is, tectonically, one of the most complicated and active regions in the world. Since the Mesozoic, collisions between Gondwana-derived continental blocks and Eurasia, due to the closure of a number of rather small ocean basins, have shaped the Mediterranean geology. During the late Mesozoic, it was dominated by subduction zones (e.g., in Anatolia, the Dinarides, the Carpathians, the Alps, the Apennines, and the Betics), which inverted the extensional regime, consuming the previously formed oceanic lithosphere, the adjacent passive continental margins and presumably partly also continental lithosphere. The location, distribution, and evolution of these subduction zones were mainly controlled by the continental or oceanic nature, density, and thickness of the lithosphere inherited from the Mesozoic rift after the European Variscan Orogeny. Despite the numerous studies that have attempted to characterize the lithosphere-asthenosphere structure in that area, details of the lithospheric structure and dynamics, as well as flow in the asthenosphere are, however, poorly known. A 3D shear-wave velocity structure of the lithosphere-asthenosphere system in the Mediterranean is investigated using new tomographic images obtained from surface wave tomography. An automated algorithm for inter-station phase velocity measurements is applied here to obtain both Rayleigh and Love fundamental mode phase velocities. We utilize a database consisting of more than 4000 seismic events recorded by more than 2000 broadband seismic stations within the area, provided by the European Integrated Data Archive (WebDc/EIDA) and IRIS. Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, are also included in the analysis. For each station pair, approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of fundamental modes are calculated from the phase of the cross correlation functions weighted in the time-frequency plane. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. A careful quality control of the resulting phase velocities is performed. We calculate maps of Love and Rayleigh phase velocity at more than 100 different periods. The phase-velocity maps provide the local phase-velocity dispersion curve for each geographical grid node of the map. Each of these local dispersion curves is inverted individually for 1D shear wave velocity model using a newly implemented Particle Swarm Optimization (PSO) algorithm. The resulted 1D velocity models are then combined to construct the 3D shear-velocity model. Horizontal and vertical cross sections through the 3D isotropic model reveal significant variations in shear wave velocity with depth, and lateral changes in the crust and upper mantle structure emphasizing the processes associated with the convergence of the Eurasian and African plates. Key words: seismic tomography, Mediterranean, surface waves, particle swarm optimization.
Kinetic constrained optimization of the golf swing hub path.
Nesbit, Steven M; McGinnis, Ryan S
2014-12-01
This study details an optimization of the golf swing, where the hand path and club angular trajectories are manipulated. The optimization goal was to maximize club head velocity at impact within the interaction kinetic limitations (force, torque, work, and power) of the golfer as determined through the analysis of a typical swing using a two-dimensional dynamic model. The study was applied to four subjects with diverse swing capabilities and styles. It was determined that it is possible for all subjects to increase their club head velocity at impact within their respective kinetic limitations through combined modifications to their respective hand path and club angular trajectories. The manner of the modifications, the degree of velocity improvement, the amount of kinetic reduction, and the associated kinetic limitation quantities were subject dependent. By artificially minimizing selected kinetic inputs within the optimization algorithm, it was possible to identify swing trajectory characteristics that indicated relative kinetic weaknesses of a subject. Practical implications are offered based upon the findings of the study. Key PointsThe hand path trajectory is an important characteristic of the golf swing and greatly affects club head velocity and golfer/club energy transfer.It is possible to increase the energy transfer from the golfer to the club by modifying the hand path and swing trajectories without increasing the kinetic output demands on the golfer.It is possible to identify relative kinetic output strengths and weakness of a golfer through assessment of the hand path and swing trajectories.Increasing any one of the kinetic outputs of the golfer can potentially increase the club head velocity at impact.The hand path trajectory has important influences over the club swing trajectory.
Kinetic Constrained Optimization of the Golf Swing Hub Path
Nesbit, Steven M.; McGinnis, Ryan S.
2014-01-01
This study details an optimization of the golf swing, where the hand path and club angular trajectories are manipulated. The optimization goal was to maximize club head velocity at impact within the interaction kinetic limitations (force, torque, work, and power) of the golfer as determined through the analysis of a typical swing using a two-dimensional dynamic model. The study was applied to four subjects with diverse swing capabilities and styles. It was determined that it is possible for all subjects to increase their club head velocity at impact within their respective kinetic limitations through combined modifications to their respective hand path and club angular trajectories. The manner of the modifications, the degree of velocity improvement, the amount of kinetic reduction, and the associated kinetic limitation quantities were subject dependent. By artificially minimizing selected kinetic inputs within the optimization algorithm, it was possible to identify swing trajectory characteristics that indicated relative kinetic weaknesses of a subject. Practical implications are offered based upon the findings of the study. Key Points The hand path trajectory is an important characteristic of the golf swing and greatly affects club head velocity and golfer/club energy transfer. It is possible to increase the energy transfer from the golfer to the club by modifying the hand path and swing trajectories without increasing the kinetic output demands on the golfer. It is possible to identify relative kinetic output strengths and weakness of a golfer through assessment of the hand path and swing trajectories. Increasing any one of the kinetic outputs of the golfer can potentially increase the club head velocity at impact. The hand path trajectory has important influences over the club swing trajectory. PMID:25435779
NASA Astrophysics Data System (ADS)
Vassallo, Maurizio; Festa, Gaetano; Bobbio, Antonella; Serra, Marcello
2016-06-01
We extracted the Green's functions from cross correlation of ambient noise recorded at broadband stations located across the Apennine belt, Southern Italy. Continuous records at 26 seismic stations acquired for 3 years were analyzed. We found the emergence of surface waves in the whole range of the investigated distances (10-140 km) with energy confined in the frequency band 0.04-0.09 Hz. This phase reproduces Rayleigh waves generated by earthquakes in the same frequency range. Arrival time of Rayleigh waves was picked at all the couples of stations to obtain the average group velocity along the path connecting the two stations. The picks were inverted in separated frequency bands to get group velocity maps then used to obtain an S wave velocity model. Penetration depth of the model ranges between 12 and 25 km, depending on the velocity values and on the depth of the interfaces, here associated to strong velocity gradients. We found a low-velocity anomaly in the region bounded by the two main faults that generated the 1980, M 6.9 Irpinia earthquake. A second anomaly was retrieved in the southeast part of the region and can be ascribed to a reminiscence of the Adria slab under the Apennine Chain.
Determination of Anisotropic Ion Velocity Distribution Function in Intrinsic Gas Plasma. Theory.
NASA Astrophysics Data System (ADS)
Mustafaev, A.; Grabovskiy, A.; Murillo, O.; Soukhomlinov, V.
2018-02-01
The first seven coefficients of the expansion of the energy and angular distribution functions in Legendre polynomials for Hg+ ions in Hg vapor plasma with the parameter E/P ≈ 400 V/(cm Torr) are measured for the first time using a planar one-sided probe. The analytic solution to the Boltzmann kinetic equation for ions in the plasma of their parent gas is obtained in the conditions when the resonant charge exchange is the predominant process, and ions acquire on their mean free path a velocity much higher than the characteristic velocity of thermal motion of atoms. The presence of an ambipolar field of an arbitrary strength is taken into account. It is shown that the ion velocity distribution function is determined by two parameters and differs substantially from the Maxwellian distribution. Comparison of the results of calculation of the drift velocity of He+ ions in He, Ar+ in Ar, and Hg+ in Hg with the available experimental data shows their conformity. The results of the calculation of the ion distribution function correctly describe the experimental data obtained from its measurement. Analysis of the result shows that in spite of the presence of the strong field, the ion velocity distribution functions are isotropic for ion velocities lower than the average thermal velocity of atoms. With increasing ion velocity, the distribution becomes more and more extended in the direction of the electric field.
Aircraft landing control system
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor); Hansen, Rolf (Inventor)
1982-01-01
Upon aircraft landing approach, flare path command signals of altitude, vertical velocity and vertical acceleration are generated as functions of aircraft position and velocity with respect to the ground. The command signals are compared with corresponding actual values to generate error signals which are used to control the flight path.
Crustal structure of the Kaapvaal craton and its significance for early crustal evolution
NASA Astrophysics Data System (ADS)
James, David E.; Niu, Fenglin; Rokosky, Juliana
2003-12-01
High-quality seismic data obtained from a dense broadband array near Kimberley, South Africa, exhibit crustal reverberations of remarkable clarity that provide well-resolved constraints on the structure of the lowermost crust and Moho. Receiver function analysis of Moho conversions and crustal multiples beneath the Kimberley array shows that the crust is 35 km thick with an average Poisson's ratio of 0.25. The density contrast across the Moho is ˜15%, indicating a crustal density about 2.86 gm/cc just above the Moho, appropriate for felsic to intermediate rock compositions. Analysis of waveform broadening of the crustal reverberation phases suggests that the Moho transition can be no more than 0.5 km thick and the total variation in crustal thickness over the 2400 km 2 footprint of the array no more than 1 km. Waveform and travel time analysis of a large earthquake triggered by deep gold mining operations (the Welkom mine event) some 200 km away from the array yield an average crustal thickness of 35 km along the propagation path between the Kimberley array and the event. P- and S-wave velocities for the lowermost crust are modeled to be 6.75 and 3.90 km/s, respectively, with uppermost mantle velocities of 8.2 and 4.79 km/s, respectively. Seismograms from the Welkom event exhibit theoretically predicted but rarely observed crustal reverberation phases that involve reflection or conversion at the Moho. Correlation between observed and synthetic waveforms and phase amplitudes of the Moho reverberations suggests that the crust along the propagation path between source and receiver is highly uniform in both thickness and average seismic velocity and that the Moho transition zone is everywhere less than about 2 km thick. While the extremely flat Moho, sharp transition zone and low crustal densities beneath the region of study may date from the time of crustal formation, a more geologically plausible interpretation involves extensive crustal melting and ductile flow during the major craton-wide Ventersdorp tectonomagmatic event near the end of Archean time.
An axisymmetric single-path model for gas transport in the conducting airways.
Madasu, Srinath; Borhan, All; Ultman, James S
2006-02-01
In conventional one-dimensional single-path models, radially averaged concentration is calculated as a function of time and longitudinal position in the lungs, and coupled convection and diffusion are accounted for with a dispersion coefficient. The axisymmetric single-path model developed in this paper is a two-dimensional model that incorporates convective-diffusion processes in a more fundamental manner by simultaneously solving the Navier-Stokes and continuity equations with the convection-diffusion equation. A single airway path was represented by a series of straight tube segments interconnected by leaky transition regions that provide for flow loss at the airway bifurcations. As a sample application, the model equations were solved by a finite element method to predict the unsteady state dispersion of an inhaled pulse of inert gas along an airway path having dimensions consistent with Weibel's symmetric airway geometry. Assuming steady, incompressible, and laminar flow, a finite element analysis was used to solve for the axisymmetric pressure, velocity and concentration fields. The dispersion calculated from these numerical solutions exhibited good qualitative agreement with the experimental values, but quantitatively was in error by 20%-30% due to the assumption of axial symmetry and the inability of the model to capture the complex recirculatory flows near bifurcations.
NASA Astrophysics Data System (ADS)
Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig
2012-01-01
In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.
Topographic Controls on Landslide and Debris-Flow Mobility
NASA Astrophysics Data System (ADS)
McCoy, S. W.; Pettitt, S.
2014-12-01
Regardless of whether a granular flow initiates from failure and liquefaction of a shallow landslide or from overland flow that entrains sediment to form a debris flow, the resulting flow poses hazards to downslope communities. Understanding controls on granular-flow mobility is critical for accurate hazard prediction. The topographic form of granular-flow paths can vary significantly across different steeplands and is one of the few flow-path properties that can be readily altered by engineered control structures such as closed-type check dams. We use grain-scale numerical modeling (discrete element method simulations) of free-surface, gravity-driven granular flows to investigate how different topographic profiles with the same mean slope and total relief can produce notable differences in flow mobility due to strong nonlinearities inherent to granular-flow dynamics. We describe how varying the profile shape from planar, to convex up, to concave up, as well how varying the number, size, and location of check dams along a flow path, changes flow velocity, thickness, discharge, energy dissipation, impact force and runout distance. Our preliminary results highlight an important path dependence for this nonlinear system, show that caution should be used when predicting flow dynamics from path-averaged properties, and provide some mechanics-based guidance for engineering control structures.
Simulation study of overtaking in pedestrian flow using floor field cellular automaton model
NASA Astrophysics Data System (ADS)
Fu, Zhijian; Xia, Liang; Yang, Hongtai; Liu, Xiaobo; Ma, Jian; Luo, Lin; Yang, Lizhong; Chen, Junmin
Properties of pedestrian may change along the moving path, for example, as a result of fatigue or injury, which has never been properly investigated in the past research. The paper attempts to study tactical overtaking in pedestrian flow. That is difficult to be modeled using a microscopic discrete model because of the complexity of the detailed overtaking behavior, and crossing/overlaps of pedestrian routes. Thus, a multi-velocity floor field cellular automaton model explaining the detailed psychical process of overtaking decision was proposed. Pedestrian can be either in normal state or in tactical overtaking state. Without tactical decision, pedestrians in normal state are driven by the floor field. Pedestrians make their tactical overtaking decisions by evaluating the walking environment around the overtaking route (the average velocity and density around the route, visual field of pedestrian) and obstructing conditions (the distance and velocity difference between the overtaking pedestrian and the obstructing pedestrian). The effects of tactical overtaking ratio, free velocity dispersion, and visual range on fundamental diagram, conflict density, and successful overtaking ratio were explored. Besides, the sensitivity analysis of the route factor relative intensity was performed.
A Dynamic Bayesian Observer Model Reveals Origins of Bias in Visual Path Integration.
Lakshminarasimhan, Kaushik J; Petsalis, Marina; Park, Hyeshin; DeAngelis, Gregory C; Pitkow, Xaq; Angelaki, Dora E
2018-06-20
Path integration is a strategy by which animals track their position by integrating their self-motion velocity. To identify the computational origins of bias in visual path integration, we asked human subjects to navigate in a virtual environment using optic flow and found that they generally traveled beyond the goal location. Such a behavior could stem from leaky integration of unbiased self-motion velocity estimates or from a prior expectation favoring slower speeds that causes velocity underestimation. Testing both alternatives using a probabilistic framework that maximizes expected reward, we found that subjects' biases were better explained by a slow-speed prior than imperfect integration. When subjects integrate paths over long periods, this framework intriguingly predicts a distance-dependent bias reversal due to buildup of uncertainty, which we also confirmed experimentally. These results suggest that visual path integration in noisy environments is limited largely by biases in processing optic flow rather than by leaky integration. Copyright © 2018 Elsevier Inc. All rights reserved.
New constraints on the upper mantle structure of the Slave craton from Rayleigh wave inversion
NASA Astrophysics Data System (ADS)
Chen, Chin-Wu; Rondenay, Stéphane; Weeraratne, Dayanthie S.; Snyder, David B.
2007-05-01
Rayleigh wave phase and amplitude data are analyzed to provide new insight into the velocity structure of the upper mantle beneath the Slave craton, in the northwestern Canadian Shield. We invert for phase velocities at periods between 20 s-142 s (with greatest sensitivity at depths of 28-200 km) using crossing ray paths from events recorded by the POLARIS broadband seismic network and the Yellowknife array. Phase velocities obtained for the Slave province are comparable to those from other cratons at shorter periods, but exceed the global average by ~2% at periods above 60 s, suggesting that the Slave craton may be an end member in terms of its high degree of mantle depletion. The one-dimensional inversion of phase velocities yields high upper-mantle S-wave velocities of 4.7 +/- 0.2 km/s that persist to 220 +/- 65 km depth and thus define the cratonic lithosphere. Azimuthal anisotropy is well resolved at all periods with a dominant fast direction of N59°E +/- 20°, suggesting that upper mantle anisotropy beneath the Slave craton is influenced by both lithospheric fabric and sub-lithospheric flow.
Lewis-Brown, Jean C.; Carleton, Glen B.; Imbrigiotta, Thomas E.
2006-01-01
Volatile organic compounds, predominantly trichloroethylene and its degradation products, have been detected in ground water at the Naval Air Warfare Center (NAWC), West Trenton, New Jersey. An air-stripping pump-and-treat system has been in operation at the NAWC since 1998. An existing ground-water-flow model was used to evaluate the effect of a change in the configuration of the network of recovery wells in the pump-and-treat system on flow paths of contaminated ground water. The NAWC is underlain by a fractured-rock aquifer composed of dipping layers of sedimentary rocks of the Lockatong and Stockton Formations. Hydraulic and solute-transport properties of the part of the aquifer composed of the Lockatong Formation were measured using aquifer tests and tracer tests. The heterogeneity of the rocks causes a wide range of values of each parameter measured. Transmissivity ranges from 95 to 1,300 feet squared per day; the storage coefficient ranges from 9 x 10-5 to 5 x 10-3; and the effective porosity ranges from 0.0003 to 0.002. The average linear velocity of contaminated ground water was determined for ambient conditions (when no wells at the site are pumped) using an existing ground-water-flow model, particle-tracking techniques, and the porosity values determined in this study. The average linear velocity of flow paths beginning at each contaminated well and ending at the streams where the flow paths terminate ranges from 0.08 to 130 feet per day. As a result of a change in the pump-and-treat system (adding a 165-foot-deep well pumped at 5 gallons per minute and reducing the pumping rate at a nearby 41-foot-deep well by the same amount), water in the vicinity of three 100- to 165-foot-deep wells flows to the deep well rather than the shallower well.
Differences between nonprecipitating tropical and trade wind marine shallow cumuli
Ghate, Virendra P.; Miller, Mark A.; Zhu, Ping
2015-11-13
In this study, marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scalemore » was 50%-70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s –1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures« less
Differences between nonprecipitating tropical and trade wind marine shallow cumuli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghate, Virendra P.; Miller, Mark A.; Zhu, Ping
In this study, marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scalemore » was 50%-70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s –1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures« less
Low Sound Velocity Contributing to the High Thermoelectric Performance of Ag8SnSe6
Li, Wen; Lin, Siqi; Ge, Binghui; Yang, Jiong; Zhang, Wenqing
2016-01-01
Conventional strategies for advancing thermoelectrics by minimizing the lattice thermal conductivity focus on phonon scattering for a short mean free path. Here, a design of slow phonon propagation as an effective approach for high‐performance thermoelectrics is shown. Taking Ag8SnSe6 as an example, which shows one of the lowest sound velocities among known thermoelectric semiconductors, the lattice thermal conductivity is found to be as low as 0.2 W m−1 K−1 in the entire temperature range. As a result, a peak thermoelectric figure of merit zT > 1.2 and an average zT as high as ≈0.8 are achieved in Nb‐doped materials, without relying on a high thermoelectric power factor. This work demonstrates not only a guiding principle of low sound velocity for minimal lattice thermal conductivity and therefore high zT, but also argyrodite compounds as promising thermoelectric materials with weak chemical bonds and heavy constituent elements. PMID:27980995
Low Sound Velocity Contributing to the High Thermoelectric Performance of Ag8SnSe6.
Li, Wen; Lin, Siqi; Ge, Binghui; Yang, Jiong; Zhang, Wenqing; Pei, Yanzhong
2016-11-01
Conventional strategies for advancing thermoelectrics by minimizing the lattice thermal conductivity focus on phonon scattering for a short mean free path. Here, a design of slow phonon propagation as an effective approach for high-performance thermoelectrics is shown. Taking Ag 8 SnSe 6 as an example, which shows one of the lowest sound velocities among known thermoelectric semiconductors, the lattice thermal conductivity is found to be as low as 0.2 W m -1 K -1 in the entire temperature range. As a result, a peak thermoelectric figure of merit zT > 1.2 and an average zT as high as ≈0.8 are achieved in Nb-doped materials, without relying on a high thermoelectric power factor. This work demonstrates not only a guiding principle of low sound velocity for minimal lattice thermal conductivity and therefore high zT , but also argyrodite compounds as promising thermoelectric materials with weak chemical bonds and heavy constituent elements.
NASA Astrophysics Data System (ADS)
Livorati, André L. P.; Palmero, Matheus S.; Díaz-I, Gabriel; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.
2018-02-01
We study the dynamics of an ensemble of non interacting particles constrained by two infinitely heavy walls, where one of them is moving periodically in time, while the other is fixed. The system presents mixed dynamics, where the accessible region for the particle to diffuse chaotically is bordered by an invariant spanning curve. Statistical analysis for the root mean square velocity, considering high and low velocity ensembles, leads the dynamics to the same steady state plateau for long times. A transport investigation of the dynamics via escape basins reveals that depending of the initial velocity ensemble, the decay rates of the survival probability present different shapes and bumps, in a mix of exponential, power law and stretched exponential decays. After an analysis of step-size averages, we found that the stable manifolds play the role of a preferential path for faster escape, being responsible for the bumps and different shapes of the survival probability.
Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling (Invited)
NASA Astrophysics Data System (ADS)
Maceira, M.; Zhang, H.; Rowe, C. A.
2009-12-01
We focus on the development and application of advanced multivariate inversion techniques to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle that satisfies several independent geophysical datasets. Building on previous efforts of joint invesion using surface wave dispersion measurements, gravity data, and receiver functions, we have added a fourth dataset, seismic body wave P and S travel times, to the simultaneous joint inversion method. We present a 3D seismic velocity model of the crust and upper mantle of northwest China resulting from the simultaneous, joint inversion of these four data types. Surface wave dispersion measurements are primarily sensitive to seismic shear-wave velocities, but at shallow depths it is difficult to obtain high-resolution velocities and to constrain the structure due to the depth-averaging of the more easily-modeled, longer-period surface waves. Gravity inversions have the greatest resolving power at shallow depths, and they provide constraints on rock density variations. Moreover, while surface wave dispersion measurements are primarily sensitive to vertical shear-wave velocity averages, body wave receiver functions are sensitive to shear-wave velocity contrasts and vertical travel-times. Addition of the fourth dataset, consisting of seismic travel-time data, helps to constrain the shear wave velocities both vertically and horizontally in the model cells crossed by the ray paths. Incorporation of both P and S body wave travel times allows us to invert for both P and S velocity structure, capitalizing on empirical relationships between both wave types’ seismic velocities with rock densities, thus eliminating the need for ad hoc assumptions regarding the Poisson ratios. Our new tomography algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program.
Infrasonic array observations at I53US of the 2006 Augustine Volcano eruptions
Wilson, C.R.; Olson, J.V.; Szuberla, Curt A.L.; McNutt, Steve; Tytgat, Guy; Drob, Douglas P.
2006-01-01
The recent January 2006 Augustine eruptions, from the 11th to the 28th, have produced a series of 12 infrasonic signals that were observed at the I53US array at UAF. the eruption times for the signals were provided by the Alaska Volcanic Observatory at UAF using seismic sensors and a Chaparral microphone that are installed on Augustine Island. The bearing and distance of Augustine from I53US are, respectively, 207.8 degrees and 675 km. The analysis of the signals is done with a least-squares detector/estimator that calculates, from the 28 different sensor-pairs in the array, the mean of the cross-correlation maxima (MCCM), the horizontal trace-velocity and the azimuth of arrival of the signal using a sliding-window of 2000 data points. The data were bandpass filtered from 0.03 to 0.10 Hz. The data are digitized at a rate of 20 Hz. The average values of the signal parameters for all 12 Augustine signals are as follows: MCCM=0.85 (std 0.14), Trace-velocity=0.346 (std 0.016) km/sec, Azimuth=209 (std 2) deg. The celerity for each signal was calculated using the range 675 km and the individual travel times to I53US. The average celerity for all ten eruption signals was 0.27 (std 0.02) km/sec. Ray tracing studies, using mean values of the wind speed and temperature profiles (along the path) from NRL, have shown that there was propagation to I53US by both stratospheric and thermospheric ray paths from the volcano.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, A
2000-12-28
This is an informal report on preliminary efforts to investigate earthquake focal mechanisms and earth structure in the Anatolian (Turkish) Plateau. Seismic velocity structure of the crust and upper mantle and earthquake focal parameters for event in the Anatolian Plateau are estimated from complete regional waveforms. Focal mechanisms, depths and seismic moments of moderately large crustal events are inferred from long-period (40-100 seconds) waveforms and compared with focal parameters derived from global teleseismic data. Using shorter periods (10-100 seconds) we estimate the shear and compressional velocity structure of the crust and uppermost mantle. Results are broadly consistent with previous studiesmore » and imply relatively little crustal thickening beneath the central Anatolian Plateau. Crustal thickness is about 35 km in western Anatolia and greater than 40 km in eastern Anatolia, however the long regional paths require considerable averaging and limit resolution. Crustal velocities are lower than typical continental averages, and even lower than typical active orogens. The mantle P-wave velocity was fixed to 7.9 km/s, in accord with tomographic models. A high sub-Moho Poisson's Ratio of 0.29 was required to fit the Sn-Pn differential times. This is suggestive of high sub-Moho temperatures, high shear wave attenuation and possibly partial melt. The combination of relatively thin crust in a region of high topography and high mantle temperatures suggests that the mantle plays a substantial role in maintaining the elevation.« less
NASA Astrophysics Data System (ADS)
Huang, Y.; Yao, H.; Wu, F. T.; Liang, W.; Huang, B.; Lin, C.; Wen, K.
2013-12-01
Although orogeny seems to have stopped in western Taiwan large and small earthquakes do occur in the Taiwan Strait. Limited studies have focused on this region before and were barely within reach for comprehensive projects like TAICRUST and TAIGER for logistical reasons; thus, the overall crustal structures of the Taiwan Strait remain unknown. Time domain empirical Green's function (TDEGF) from ambient seismic noise to determine crustal velocity structure allows us to study an area using station pairs on its periphery. This research aims to resolve 1-D average crustal and upper mantle S-wave velocity (Vs) structures alone paths of several broadband station-pairs across the Taiwan Strait; 5-120 s Rayleigh wave phase velocity dispersion data derived by combining TDEGF and traditional surface wave two-station method (TS). The average Vs structures show significant differences in the upper 15 km as expected. In general, the highest Vs are observed in the coastal area of Mainland China and the lowest Vs appear along the southwest offshore of the Taiwan Island; they differ by about 0.6-1.1 km/s. For different parts of the Strait, the Vs are lower in the middle by about 0.1-0.2 km/s relative to those in the northern and southern parts. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island.
NASA Astrophysics Data System (ADS)
Ku, C. S.; Kuo, Y. T.; Chao, W. A.; You, S. H.; Huang, B. S.; Chen, Y. G.; Taylor, F. W.; Yih-Min, W.
2017-12-01
Two earthquakes, MW 8.1 in 2007 and MW 7.1 in 2010, hit the Western Province of Solomon Islands and caused extensive damage, but motivated us to set up the first seismic network in this area. During the first phase, eight broadband seismic stations (BBS) were installed around the rupture zone of 2007 earthquake. With one-year seismic records, we cross-correlated the vertical component of ambient noise recorded in our BBS and calculated Rayleigh-wave group velocity dispersion curves on inter-station paths. The genetic algorithm to invert one-dimensional crustal velocity model is applied by fitting the averaged dispersion curves. The one-dimensional crustal velocity model is constituted by two layers and one half-space, representing the upper crust, lower crust, and uppermost mantle respectively. The resulted thickness values of the upper and lower crust are 6.4 and 14.2 km, respectively. Shear-wave velocities (VS) of the upper crust, lower crust, and uppermost mantle are 2.53, 3.57 and 4.23 km/s with the VP/VS ratios of 1.737, 1.742 and 1.759, respectively. This first layered crustal velocity model can be used as a preliminary reference to further study seismic sources such as earthquake activity and tectonic tremor.
Robust H∞ output-feedback control for path following of autonomous ground vehicles
NASA Astrophysics Data System (ADS)
Hu, Chuan; Jing, Hui; Wang, Rongrong; Yan, Fengjun; Chadli, Mohammed
2016-03-01
This paper presents a robust H∞ output-feedback control strategy for the path following of autonomous ground vehicles (AGVs). Considering the vehicle lateral velocity is usually hard to measure with low cost sensor, a robust H∞ static output-feedback controller based on the mixed genetic algorithms (GA)/linear matrix inequality (LMI) approach is proposed to realize the path following without the information of the lateral velocity. The proposed controller is robust to the parametric uncertainties and external disturbances, with the parameters including the tire cornering stiffness, vehicle longitudinal velocity, yaw rate and road curvature. Simulation results based on CarSim-Simulink joint platform using a high-fidelity and full-car model have verified the effectiveness of the proposed control approach.
Impacts of two super typhoons on the Kuroshio and marginal seas on the Pacific coast of Japan
NASA Astrophysics Data System (ADS)
Tada, Hiroaki; Uchiyama, Yusuke; Masunaga, Eiji
2018-02-01
High-resolution downscaling ocean modeling was conducted to investigate the impacts of two super typhoons on the Kuroshio in the fall of 2014 off the Kyushu and Shikoku Islands, Japan. The model result was compared with field observations and satellite altimetry. The synoptic and mesoscale oceanic structures around the Kuroshio exhibit a good reproducibility. The typhoons generated near-inertial oscillations (NIOs) and near-inertial internal waves (NIIWs) around the Kuroshio path, particularly on the right side of the typhoon tracks. The NIOs developed in the mixed layer to alter the direction of the Kuroshio by 30°. The associated velocity off the Shikoku and Kyushu Islands was significantly decelerated by 0.2 ms-1. The velocity almost vanished off Kyushu Island and thus induced an unstable fluctuating path shortly after both typhoons passed over that region. The NIIWs were also excited at the thermocline, resulting in the oscillation of the Kuroshio path occurred in the entire water column. In contrast, off Shikoku Island, the typhoons shifted the Kuroshio path northward to enhance the interactions with the topographies. This shift caused considerable eddy shedding from the capes that resulted in mesoscale counterclockwise circulations as cyclonic quasi-standing eddies with a shedding period of 3 days in the north of the Kuroshio path. The magnitude, direction, and meridional location of the path of the Kuroshio prominently fluctuated with the propagation of these eddies, manifested off Shikoku Island. Furthermore, these eddies induced sporadic northward intrusions of the Kuroshio warm water through the Kii Channel into the Seto Inland Sea (SIS), where a weak but persisting southward outflow prevails under normal conditions. Therefore, the process could collectively be called the "typhoon-Kuroshio-eddy interaction", which conceptually differs from the "typhoon-eddy-Kuroshio interaction" in the previous studies, where the Kuroshio was modulated by eddy collision. The wind stress curl and intrusions associated with the typhoons jointly provoked the inversion of the counterclockwise SIS residual circulation. The resultant spatially averaged volume flux was 8 times as high as that under normal conditions.
On the dynamics of jellyfish locomotion via 3D particle tracking velocimetry
NASA Astrophysics Data System (ADS)
Piper, Matthew; Kim, Jin-Tae; Chamorro, Leonardo P.
2016-11-01
The dynamics of jellyfish (Aurelia aurita) locomotion is experimentally studied via 3D particle tracking velocimetry. 3D locations of the bell tip are tracked over 1.5 cycles to describe the jellyfish path. Multiple positions of the jellyfish bell margin are initially tracked in 2D from four independent planes and individually projected in 3D based on the jellyfish path and geometrical properties of the setup. A cubic spline interpolation and the exponentially weighted moving average are used to estimate derived quantities, including velocity and acceleration of the jellyfish locomotion. We will discuss distinctive features of the jellyfish 3D motion at various swimming phases, and will provide insight on the 3D contraction and relaxation in terms of the locomotion, the steadiness of the bell margin eccentricity, and local Reynolds number based on the instantaneous mean diameter of the bell.
NASA Astrophysics Data System (ADS)
Ichinose, G. A.
2006-12-01
Many scientific issues for the Basin and Range Province (BRP) remain unsettled including structural evolution, strain rates, slip partitioning and earthquake source physics. A catalog of earthquake source parameters including locations and moment tensors is the basis for tectonic and geophysical study. New instrumentation from the Advance National Seismic System, EarthScope Plate Boundary Observatory, Bigfoot and US-Array brings the opportunity for high quality research; therefore, a catalog is an underlying foundation for examining the BRP. We are continuing to generate a moment tensor catalog for the BRP (Mw<3.5) using long-period regional waves spanning back to 1990. Iterative waveform inversion method (e.g., Nolet et al., 1986, Randell, 1994) is used to calibrate the BRP velocity and density structure using two northern and southern BRP earthquakes. The calibrated models generate realistic synthetics for (f<0.5Hz) with ~50-80% variance reduction. We averaged all path specific models to construct a 1-D BRP community background model. The crust is relatively simple between 5-20km (~6.12km/s) and there is a strong velocity gradient in the upper 5- km. There are lower velocities in the upper crust but higher velocities in the mid-crust for the Sierra Nevada paths relative to BRP. There is also a lower crust high-velocity anomaly near Battle Mountain and Elko that is faster by ~5% and may indicate a wider area of under-plating by basaltic magmas. There are significant low velocity zones in the upper and mid crust mainly across the Walker Lane Belt that may indicate the presence of fluids. We are continuing to work on assessing the performance of these newly calibrated models in improving the estimation of moment tensors down to lower magnitudes and mapping out holes in the seismic network which can be filled to improve moment tensor catalog. We also are looking at how these models work at locating earthquakes and comparing synthetics with those computed from models constrained from different data including refraction, surface wave dispersion, and travel-time tomography.
Neutron production mechanism in a plasma focus.
NASA Technical Reports Server (NTRS)
Lee, J. H.; Shomo, L. P.; Williams, M. D.; Hermansdorfer, H.
1971-01-01
The neutrons emitted by a plasma focus were analyzed by using a time-of-flight method. Flight paths as large as 80 m were used to obtain better than 10% energy resolution. The energy spectrum of neutrons from d-d reactions in the plasma focus shows a sharp onset with average maximum energies of 2.8 and 3.2 MeV in the radial and the axial directions, respectively. The average half-width of the energy spectrum was 270 keV with a shot-to-shot variation between 150 and 400 keV. Simultaneous measurements in the axial and radial directions showed no appreciable difference in the half-widths and thus indicated randomly oriented ion velocities in the plasma. A converging ion model is described which is found to be in agreement with the measured quantities.
Spatiotemporal Path-Matching for Comparisons Between Ground- Based and Satellite Lidar Measurements
NASA Technical Reports Server (NTRS)
Berkoff, Timothy A.; Valencia, Sandra; Welton, Ellsworth J.; Spinhirne, James D.
2005-01-01
The spatiotemporal sampling differences between ground-based and satellite lidar data can contribute to significant errors for direct measurement comparisons. Improvement in sample correspondence is examined by the use of radiosonde wind velocity to vary the time average in ground-based lidar data to spatially match coincident satellite lidar measurements. Results are shown for the 26 February 2004 GLAS/ICESat overflight of a ground-based lidar stationed at NASA GSFC. Statistical analysis indicates that improvement in signal correlation is expected under certain conditions, even when a ground-based observation is mismatched in directional orientation to the satellite track.
NASA Technical Reports Server (NTRS)
Cathcart, J. R.; Frank, A. J.; Massaglia, J. L.
1968-01-01
Computer program analyzes the entries and planetary trajectories of space vehicles. It obtains the equivalence of altitude and flight path angle, respectively, to acceleration load factor with respect to velocity for a given inertial velocity.
Robotics virtual rail system and method
Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID
2011-07-05
A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.
NASA Astrophysics Data System (ADS)
Ichinose, G. A.; Saikia, C. K.
2007-12-01
We applied the moment tensor (MT) analysis scheme to identify seismic sources using regional seismograms based on the representation theorem for the elastic wave displacement field. This method is applied to estimate the isotropic (ISO) and deviatoric MT components of earthquake, volcanic, and isotropic sources within the Basin and Range Province (BRP) and western US. The ISO components from Hoya, Bexar, Montello and Junction were compared to recently well recorded recent earthquakes near Little Skull Mountain, Scotty's Junction, Eureka Valley, and Fish Lake Valley within southern Nevada. We also examined "dilatational" sources near Mammoth Lakes Caldera and two mine collapses including the August 2007 event in Utah recorded by US Array. Using our formulation we have first implemented the full MT inversion method on long period filtered regional data. We also applied a grid-search technique to solve for the percent deviatoric and %ISO moments. By using the grid-search technique, high-frequency waveforms are used with calibrated velocity models. We modeled the ISO and deviatoric components (spall and tectonic release) as separate events delayed in time or offset in space. Calibrated velocity models helped the resolution of the ISO components and decrease the variance over the average, initial or background velocity models. The centroid location and time shifts are velocity model dependent. Models can be improved as was done in previously published work in which we used an iterative waveform inversion method with regional seismograms from four well recorded and constrained earthquakes. The resulting velocity models reduced the variance between predicted synthetics by about 50 to 80% for frequencies up to 0.5 Hz. Tests indicate that the individual path-specific models perform better at recovering the earthquake MT solutions even after using a sparser distribution of stations than the average or initial models.
High-resolution shallow structure revealed with ambient noise tomography on a dense array
NASA Astrophysics Data System (ADS)
Zeng, X.; Thurber, C. H.; Luo, Y.; Matzel, E.; Team, P.
2016-12-01
A dense seismic array was deployed by the PoroTomo research team at Brady Hot Springs, Nevada in March 2016. The array consisted of 238 short-period three-component geophones (5-Hz corner frequency) with about 60 m spacing. Over the 15 day deployment, the array recorded over 6,000 active source signals (vibroseis sweeps) and ambient noise that was dominated by traffic noise.We adopted the one-bit method to better reduce the effect of the active source. Spectral whitening was performed between 0.5 and 2 Hz. The continuous record was chopped into 1 minute segments. The 1-minute cross-correlation functions were initially stacked linearly, and then the phase-weighted stacking method was applied to improve signal quality. More than two million noise correlation functions (NCFs) have been obtained.The Rayleigh wave group velocity was measured on the symmetric component of the NCFs with the frequency-time analysis method. The average group velocity is about 400 m/s at 4 Hz, which is consistent with preliminary active source result. To avoid mis-picking possible precursors, the arrival time was picked at the peak in a two-second time window predicted with the average group velocity of the fundamental mode. The quality of the arrival measurements is defined by the signal-to-noise ratio. We were able to pick reliable arrivals at about 35% of the station-pairs. Since the straight-ray assumption may not be valid in a strongly heterogeneous medium, the wave path was traced with a finite difference scheme and the LSQR method was utilized to invert group velocity. The heterogeneous features of the group velocity map are consistent with a local geologic map. The PoroTomo project is funded by a grant from the U.S. Department of Energy.
Time optimized path-choice in the termite hunting ant Megaponera analis.
Frank, Erik T; Hönle, Philipp O; Linsenmair, K Eduard
2018-05-10
Trail network systems among ants have received a lot of scientific attention due to their various applications in problem solving of networks. Recent studies have shown that ants select the fastest available path when facing different velocities on different substrates, rather than the shortest distance. The progress of decision-making by these ants is determined by pheromone-based maintenance of paths, which is a collective decision. However, path optimization through individual decision-making remains mostly unexplored. Here we present the first study of time-optimized path selection via individual decision-making by scout ants. Megaponera analis scouts search for termite foraging sites and lead highly organized raid columns to them. The path of the scout determines the path of the column. Through installation of artificial roads around M. analis nests we were able to influence the pathway choice of the raids. After road installation 59% of all recorded raids took place completely or partly on the road, instead of the direct, i.e. distance-optimized, path through grass from the nest to the termites. The raid velocity on the road was more than double the grass velocity, the detour thus saved 34.77±23.01% of the travel time compared to a hypothetical direct path. The pathway choice of the ants was similar to a mathematical model of least time allowing us to hypothesize the underlying mechanisms regulating the behavior. Our results highlight the importance of individual decision-making in the foraging behavior of ants and show a new procedure of pathway optimization. © 2018. Published by The Company of Biologists Ltd.
Footwear and Foam Surface Alter Gait Initiation of Typical Subjects
Vieira, Marcus Fraga; Sacco, Isabel de Camargo Neves; Nora, Fernanda Grazielle da Silva Azevedo; Rosenbaum, Dieter; Lobo da Costa, Paula Hentschel
2015-01-01
Gait initiation is the task commonly used to investigate the anticipatory postural adjustments necessary to begin a new gait cycle from the standing position. In this study, we analyzed whether and how foot-floor interface characteristics influence the gait initiation process. For this purpose, 25 undergraduate students were evaluated while performing a gait initiation task in three experimental conditions: barefoot on a hard surface (barefoot condition), barefoot on a soft surface (foam condition), and shod on a hard surface (shod condition). Two force plates were used to acquire ground reaction forces and moments for each foot separately. A statistical parametric mapping (SPM) analysis was performed in COP time series. We compared the anterior-posterior (AP) and medial-lateral (ML) resultant center of pressure (COP) paths and average velocities, the force peaks under the right and left foot, and the COP integral x force impulse for three different phases: the anticipatory postural adjustment (APA) phase (Phase 1), the swing-foot unloading phase (Phase 2), and the support-foot unloading phase (Phase 3). In Phase 1, significantly smaller ML COP paths and velocities were found for the shod condition compared to the barefoot and foam conditions. Significantly smaller ML COP paths were also found in Phase 2 for the shod condition compared to the barefoot and foam conditions. In Phase 3, increased AP COP velocities were found for the shod condition compared to the barefoot and foam conditions. SPM analysis revealed significant differences for vector COP time series in the shod condition compared to the barefoot and foam conditions. The foam condition limited the impulse-generating capacity of COP shift and produced smaller ML force peaks, resulting in limitations to body-weight transfer from the swing to the support foot. The results suggest that footwear and a soft surface affect COP and impose certain features of gait initiation, especially in the ML direction of Phase 1. PMID:26270323
The August 21, 2017 American total solar eclipse through the eyes of GPS
NASA Astrophysics Data System (ADS)
Kundu, Bhaskar; Panda, Dibyashakti; Gahalaut, Vineet K.; Catherine, J. K.
2018-04-01
We explored spatio-temporal variation in Total Electron Contents (TEC) in the ionosphere caused by the recent August 21, 2017 total solar eclipse, which was observed over the United States of America. The path of total solar eclipse passes through the continental parts of the United States of America, starting in the northwestern state of Oregon and ending in the southeastern state of South Carolina, approximately covering 4000 km length. Across this length EarthScope Plate Boundary Observatory (PBO) has been operating a dense cGPS/GNSS networks. During the course of passage of the solar eclipse, the sudden decline in solar radiation by temporarily obscuration by the Moon caused a drop of ˜6-9 × 1016 electrons/m2in the ionosphere with time-delay at the cGPS sites. The significant drop in TEC at cGPS sites captured the average migration velocity of shadow along the eclipse path (0.74 km/s), from which we estimated the Moon's orbital velocity (˜1 km/s). Further, this event also caused some marginal increase in TEC during the eclipse in the Earth's ionosphere in the magnetically conjugate region at the tip of South America and Antarctica, consistent with the model predictions of SAMI3 by Naval Research Laboratory.
Stringer, Simon M; Rolls, Edmund T
2006-12-01
A key issue is how networks in the brain learn to perform path integration, that is update a represented position using a velocity signal. Using head direction cells as an example, we show that a competitive network could self-organize to learn to respond to combinations of head direction and angular head rotation velocity. These combination cells can then be used to drive a continuous attractor network to the next head direction based on the incoming rotation signal. An associative synaptic modification rule with a short term memory trace enables preceding combination cell activity during training to be associated with the next position in the continuous attractor network. The network accounts for the presence of neurons found in the brain that respond to combinations of head direction and angular head rotation velocity. Analogous networks in the hippocampal system could self-organize to perform path integration of place and spatial view representations.
Time-Domain Pure-state Polarization Analysis of Surface Waves Traversing California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Walter, W R; Lay, T
A time-domain pure-state polarization analysis method is used to characterize surface waves traversing California parallel to the plate boundary. The method is applied to data recorded at four broadband stations in California from twenty-six large, shallow earthquakes which occurred since 1988, yielding polarization parameters such as the ellipticity, Euler angles, instantaneous periods, and wave incident azimuths. The earthquakes are located along the circum-Pacific margin and the ray paths cluster into two groups, with great-circle paths connecting stations MHC and PAS or CMB and GSC. The first path (MHC-PAS) is in the vicinity of the San Andreas Fault System (SAFS), andmore » the second (CMB-GSC) traverses the Sierra Nevada Batholith parallel to and east of the SAFS. Both Rayleigh and Love wave data show refractions due to lateral velocity heterogeneities under the path, indicating that accurate phase velocity and attenuation analysis requires array measurements. The Rayleigh waves are strongly affected by low velocity anomalies beneath Central California, with ray paths bending eastward as waves travel toward the south, while Love waves are less affected, providing observables to constrain the depth extent of the anomalies. Strong lateral gradients in the lithospheric structure between the continent and the ocean are the likely cause of the path deflections.« less
Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean
NASA Astrophysics Data System (ADS)
Godfrey, Karen E.; Dalton, Colleen A.; Ritsema, Jeroen
2017-05-01
Variations in the phase velocity of fundamental-mode Rayleigh waves across the Indian Ocean are determined using two inversion approaches. First, variations in phase velocity as a function of seafloor age are estimated using a pure-path age-dependent inversion method. Second, a two-dimensional parameterization is used to solve for phase velocity within 1.25° × 1.25° grid cells. Rayleigh wave travel time delays have been measured between periods of 38 and 200 s. The number of measurements in the study area ranges between 4139 paths at a period of 200 s and 22,272 paths at a period of 40 s. At periods < 100 s, the phase velocity variations are strongly controlled by seafloor age and shown to be consistent with temperature variations predicted by the half-space-cooling model for a mantle potential temperature of 1400°C. The inferred thermal structure beneath the Indian Ocean is most similar to the structure of the Pacific upper mantle, where phase velocities can also be explained by a half-space-cooling model. The thermal structure is not consistent with that of the Atlantic upper mantle, which is best fit by a plate-cooling model and requires a thin plate. Removing age-dependent phase velocity from the 2-D maps of the Indian Ocean highlights anomalously high velocities at the Rodriguez Triple Junction and the Australian-Antarctic Discordance and anomalously low velocities immediately to the west of the Central Indian Ridge.
Inner Core Anisotropy in Attenuation
NASA Astrophysics Data System (ADS)
Yu, W.; Wen, L.
2004-12-01
It is now well established that the compressional velocity in the Earth's inner core varies in both direction and geographic location. The compressional waves travel faster along the polar directions than along the equatorial directions. Such polar-equatorial difference is interpreted as a result of inner core anisotropy in velocity (with a magnitude of about 3%) and such anisotropy appears to be stronger in the ``western hemisphere" (180oW -40oE) than in the ``eastern hemisphere" (40oE-180oE). Along the equatorial paths, the compressional velocity also exhibits a hemispheric pattern with the eastern hemisphere being about 1% higher than the western hemisphere. Possible explanations for the causes of the velocity in anisotropy and the hemispheric difference in velocity along the equatorial paths include different geometric inclusions of melt or different alignments of iron crystals which are known to be anisotropic in velocities. Here, we report an observation of ubiquitous correlation between small (large) amplitude and fast (slow) travel time of the PKIKP waves sampling the top 300 km of the inner core. We study this correlation by jointly analyzing the differential travel times and amplitude ratios of the PKiKP-PKIKP and the PKPbc-PKIKP phases recorded by the Global Seismographic Network (1990-2001), various regional seismic networks (BANJO, BLSP, FREESIA, GEOFON, GEOSCOPE, Kazakhstan, Kyrgyz, MEDNET, and OHP), and several PASSCAL Networks deployed in Alaska and Antarctica (XE: 1999-2001, XF: 1995-1996, and YI: 1998-1999). Our dataset consists of 310 PKiKP-PKIKP and 240 PKPbc-PKIKP phases, selected from a total of more than 16,000 observations. PKIKP waves exhibit relatively smaller amplitudes for those sampling the eastern hemisphere along the equatorial paths and even smaller amplitudes for those sampling the polar paths in the western hemisphere. One simple explanation for the velocity-attenuation relation is that the inner core is anisotropic in attenuation and the direction of high attenuation correlates with that of high P velocity. Different anisotropic behaviors in velocity and attenuation can be best explained by different alignments of iron crystals under the hypothesis that iron crystals are anisotropic in both velocity and attenuation and their axes of high P velocity correspond to those of high attenuation.
Boundary Layer Control of a Circular Cylinder Using a Synthetic Jet
2005-06-01
Average Velocity at . 375 Hz .............................................................................65 Figure 54 Average Velocity at 0.45 Hz...Figure 53 Average Velocity at . 375 Hz Columns=0; Rows=0 Figure 54 Average Velocity at 0.45 Hz Columns=0; Rows=0 Figure 55 Average Velocity
Pn Tomography of the Central and Eastern United States
NASA Astrophysics Data System (ADS)
Zhang, Q.; Sandvol, E. A.; Liu, M.
2005-12-01
Approximately 44,000 Pn phase readings from the ISC and NEIC catalogs and 750 hand picked arrivals were inverted to map the velocity structure of mantle lithosphere in the Central and Eastern United States (CEUS). Overall we have a high density of ray paths within the active seismic zones in the eastern and southern parts of the CEUS, while ray coverage is relatively poor to the west of Great Lakes as well as along the eastern and southern coastlines of the U.S. The average Pn velocity in the CEUS is approximately 8.03 km/s. High Pn velocities (~8.18 km/s) within the northeastern part of the North American shield are reliable, while the resolution of the velocity image of the American shield around the mid-continent rift (MCR) is relatively low due to the poor ray coverage. Under the East Continent Rift (EC), the northern part of the Reelfoot Rift Zone (RRZ), and the South Oklahoma Aulacogen (SO), we also observe high velocity lithospheric mantle (~8.13-8.18 km/s). Typical Pn velocities (~7.98 km/s) are found between those three high velocity blocks. Low velocities are shown in the northern and southern Appalachians (~7.88-7.98 km/s) as well as the Rio Grande Rift (~7.88 km/s). In the portion of our model with the highest ray density, the Pn azimuthal anisotropy seems to be robust. These fast directions appear to mirror the boundaries of the low Pn velocity zone and parallel the Appalachians down to the southwest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, S; Gaherty, J; Schwartz, S
2007-07-25
We investigate the lithospheric and upper mantle structure as well as the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy throughout the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with about 4% anisotropy in the lithosphere, increasing to about 4.8% anisotropy across themore » lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithospheric lid, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models, which are constructed from previously determined shear-wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocity values are similar to many other continental rift and oceanic ridge environments. These low velocities combined with the sharp velocity contrast across the LAB may indicate the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with active rifting processes in the Red Sea.« less
A theoretical framework to predict the most likely ion path in particle imaging.
Collins-Fekete, Charles-Antoine; Volz, Lennart; Portillo, Stephen K N; Beaulieu, Luc; Seco, Joao
2017-03-07
In this work, a generic rigorous Bayesian formalism is introduced to predict the most likely path of any ion crossing a medium between two detection points. The path is predicted based on a combination of the particle scattering in the material and measurements of its initial and final position, direction and energy. The path estimate's precision is compared to the Monte Carlo simulated path. Every ion from hydrogen to carbon is simulated in two scenarios, (1) where the range is fixed and (2) where the initial velocity is fixed. In the scenario where the range is kept constant, the maximal root-mean-square error between the estimated path and the Monte Carlo path drops significantly between the proton path estimate (0.50 mm) and the helium path estimate (0.18 mm), but less so up to the carbon path estimate (0.09 mm). However, this scenario is identified as the configuration that maximizes the dose while minimizing the path resolution. In the scenario where the initial velocity is fixed, the maximal root-mean-square error between the estimated path and the Monte Carlo path drops significantly between the proton path estimate (0.29 mm) and the helium path estimate (0.09 mm) but increases for heavier ions up to carbon (0.12 mm). As a result, helium is found to be the particle with the most accurate path estimate for the lowest dose, potentially leading to tomographic images of higher spatial resolution.
Altered perceptual sensitivity to kinematic invariants in Parkinson's disease.
Dayan, Eran; Inzelberg, Rivka; Flash, Tamar
2012-01-01
Ample evidence exists for coupling between action and perception in neurologically healthy individuals, yet the precise nature of the internal representations shared between these domains remains unclear. One experimentally derived view is that the invariant properties and constraints characterizing movement generation are also manifested during motion perception. One prominent motor invariant is the "two-third power law," describing the strong relation between the kinematics of motion and the geometrical features of the path followed by the hand during planar drawing movements. The two-thirds power law not only characterizes various movement generation tasks but also seems to constrain visual perception of motion. The present study aimed to assess whether motor invariants, such as the two thirds power law also constrain motion perception in patients with Parkinson's disease (PD). Patients with PD and age-matched controls were asked to observe the movement of a light spot rotating on an elliptical path and to modify its velocity until it appeared to move most uniformly. As in previous reports controls tended to choose those movements close to obeying the two-thirds power law as most uniform. Patients with PD displayed a more variable behavior, choosing on average, movements closer but not equal to a constant velocity. Our results thus demonstrate impairments in how the two-thirds power law constrains motion perception in patients with PD, where this relationship between velocity and curvature appears to be preserved but scaled down. Recent hypotheses on the role of the basal ganglia in motor timing may explain these irregularities. Alternatively, these impairments in perception of movement may reflect similar deficits in motor production.
Effects of exposure to 17-alpha-ethynylestradiol on sperm quality of tench (Tinca tinca).
Oropesa, A L; Martín-Hidalgo, D; Fallola, C; Gil, M C
2015-10-01
Alterations of sperm quality were studied in tench (Tinca tinca) exposed to sub-lethal doses of 17-alpha-ethynylestradiol-EE2-(50, 100 and 500μg/kg t.w) under semi-static conditions for 30 days. Thus, different biomarkers of sperm quality were assessed: concentration and volume of ejaculate, total number of spermatozoa, percentage of motile spermatozoa, sperm motility and percentage of live and dead spermatozoa. Sperm motility was examined by computer-assisted image analysis and the viability of spermatozoa was assessed through flow cytometry. The most relevant alterations observed were significant reductions in the reproductive parameters such as testicular somatic index, spermatozoa concentration, straight line velocity, curvilinear velocity, average path velocity and wobble in tench exposed to 50μg/kg t.w of EE2. Our study about the effects of EE2 on the sperm quality in tench provides new evidences which strengthen the fact that this synthetic estrogen is included in the list of non-monotonic dose response compounds in animal studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Chymotrypsin effects on the determination of sperm parameters and seminal biochemistry markers.
Chen, Fang; Lu, Jin-Chun; Xu, Hui-Ru; Huang, Yu-Feng; Lu, Nian-Qing
2006-01-01
Few reports of the effects of treatment with chymotrypsin on the determination of sperm parameters and seminal biochemistry markers are documented. Sperm parameters of 63 liquefied and 27 non-liquefied samples, untreated or treated with chymotrypsin, were evaluated using computer-assisted semen analysis. In addition, biochemistry markers such as gamma-glutamyltranspeptidase, alpha-glucosidase and fructose in 50 liquefied and 39 non-liquefied samples, untreated or treated with chymotrypsin, were determined. Treatment with chymotrypsin had no effect on sperm concentration, motility, motility a and b, straightness, curvilinear velocity, straight line velocity, average path velocity and beat cross frequency in both liquefied and non-liquefied semen. However, linearity (p=0.025) decreased and the amplitude of the lateral head (p=0.029) increased significantly in non-liquefied semen after treatment with chymotrypsin. The levels of gamma-glutamyltranspeptidase, alpha-glucosidase and fructose in seminal plasma were unaffected by chymotrypsin, regardless of liquefaction status. Chymotrypsin had no effects on the detection of sperm parameters and biochemistry markers, and could be used to treat non-liquefied samples before semen analysis in the andrology laboratory.
Program for narrow-band analysis of aircraft flyover noise using ensemble averaging techniques
NASA Technical Reports Server (NTRS)
Gridley, D.
1982-01-01
A package of computer programs was developed for analyzing acoustic data from an aircraft flyover. The package assumes the aircraft is flying at constant altitude and constant velocity in a fixed attitude over a linear array of ground microphones. Aircraft position is provided by radar and an option exists for including the effects of the aircraft's rigid-body attitude relative to the flight path. Time synchronization between radar and acoustic recording stations permits ensemble averaging techniques to be applied to the acoustic data thereby increasing the statistical accuracy of the acoustic results. Measured layered meteorological data obtained during the flyovers are used to compute propagation effects through the atmosphere. Final results are narrow-band spectra and directivities corrected for the flight environment to an equivalent static condition at a specified radius.
Velocity Inversion In Cylindrical Couette Gas Flows
NASA Astrophysics Data System (ADS)
Dongari, Nishanth; Barber, Robert W.; Emerson, David R.; Zhang, Yonghao; Reese, Jason M.
2012-05-01
We investigate a power-law probability distribution function to describe the mean free path of rarefied gas molecules in non-planar geometries. A new curvature-dependent model is derived by taking into account the boundary-limiting effects on the molecular mean free path for surfaces with both convex and concave curvatures. In comparison to a planar wall, we find that the mean free path for a convex surface is higher at the wall and exhibits a sharper gradient within the Knudsen layer. In contrast, a concave wall exhibits a lower mean free path near the surface and the gradients in the Knudsen layer are shallower. The Navier-Stokes constitutive relations and velocity-slip boundary conditions are modified based on a power-law scaling to describe the mean free path, in accordance with the kinetic theory of gases, i.e. transport properties can be described in terms of the mean free path. Velocity profiles for isothermal cylindrical Couette flow are obtained using the power-law model. We demonstrate that our model is more accurate than the classical slip solution, especially in the transition regime, and we are able to capture important non-linear trends associated with the non-equilibrium physics of the Knudsen layer. In addition, we establish a new criterion for the critical accommodation coefficient that leads to the non-intuitive phenomena of velocity-inversion. Our results are compared with conventional hydrodynamic models and direct simulation Monte Carlo data. The power-law model predicts that the critical accommodation coefficient is significantly lower than that calculated using the classical slip solution and is in good agreement with available DSMC data. Our proposed constitutive scaling for non-planar surfaces is based on simple physical arguments and can be readily implemented in conventional fluid dynamics codes for arbitrary geometric configurations.
Seismic attenuation of the inner core: Viscoelastic or stratigraphic?
Cormier, V.F.; Xu, L.; Choy, G.L.
1998-01-01
Broadband velocity waveforms of PKIKP in the distance range 150??to 180??are inverted for inner core attenuation. A mean Q?? of 244 is determined at 1 Hz from 8 polar and 9 equatorial paths. The scatter in measured Q-1 exceeds individual error estimates, suggesting significant variation in attenuation with path. These results are interpreted by (1) viscoelasticity, in which the relaxation spectrum has a low-frequency corner near or slightly above the frequency band of short-period body waves, and by (2) stratigraphic (scattering) attenuation, in which attenuation and pulse broadening are caused by the interference of scattered multiples in a velocity structure having rapid fluctuations along a PKIKP path. In the scattering interpretation, PKIKP attenuation is only weakly affected by the intrinsic shear attenuation measured in the free-oscillation band. Instead, its frequency dependence, path variations, and fluctuations are all explained by scattering attenuation in a heterogeneous fabric resulting from solidification texturing of intrinsically anisotropic iron. The requisite fabric may consist of either single or ordered groups of crystals with P velocity differences of at least 5% and as much as 12% between two crystallographic axes at scale lengths of 0.5 to 2 km in the direction parallel to the axis of rotation and longer in the cylindrically radial direction, perpendicular to the axis of rotation.Broadband velocity waveforms of PKIKP in the distance range 150?? to 180?? are inverted for inner core attenuation. A mean Q?? of 244 is determined at 1 Hz from 8 polar and 9 equatorial paths. The scatter in the measured Q-1 exceeds individual error estimates, indicating significant variation in attenuation with path. The results are interpreted by viscoelasticity and stratigraphic (scattering) attenuation.
An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements.
Dabiri, John O; Bose, Sanjeeb; Gemmell, Brad J; Colin, Sean P; Costello, John H
2014-02-01
We describe and characterize a method for estimating the pressure field corresponding to velocity field measurements such as those obtained by using particle image velocimetry. The pressure gradient is estimated from a time series of velocity fields for unsteady calculations or from a single velocity field for quasi-steady calculations. The corresponding pressure field is determined based on median polling of several integration paths through the pressure gradient field in order to reduce the effect of measurement errors that accumulate along individual integration paths. Integration paths are restricted to the nodes of the measured velocity field, thereby eliminating the need for measurement interpolation during this step and significantly reducing the computational cost of the algorithm relative to previous approaches. The method is validated by using numerically simulated flow past a stationary, two-dimensional bluff body and a computational model of a three-dimensional, self-propelled anguilliform swimmer to study the effects of spatial and temporal resolution, domain size, signal-to-noise ratio and out-of-plane effects. Particle image velocimetry measurements of a freely swimming jellyfish medusa and a freely swimming lamprey are analyzed using the method to demonstrate the efficacy of the approach when applied to empirical data.
Edwards, James P; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
NASA Astrophysics Data System (ADS)
Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
Speight, S M; Estienne, M J; Harper, A F; Crawford, R J; Knight, J W; Whitaker, B D
2012-03-01
Semen characteristics in boars fed organic or inorganic sources of Se were assessed in 3 experiments. Crossbred boars were randomly assigned at weaning to 1 of 3 dietary treatments: I) basal diets with no supplemental Se (control), II) basal diets with 0.3 mg/kg of supplemental Se from an organic source (Sel-Plex, Alltech Inc., Nicholasville, KY), and III) basal diets supplemented with 0.3 mg/kg of supplemental Se from sodium selenite (Premium Selenium 270, North American Nutrition Co. Inc., Lewisburg, OH). For Exp. 1, semen was collected from boars (n = 10/dietary treatment) on 5 consecutive days at 15 mo of age. Effects of treatment × day were detected for the proportions of progressively motile (P = 0.02) and rapidly moving (P = 0.03) spermatozoa, and measures of sperm velocity, including path velocity of the smoothed cell path (P = 0.05) and average velocity measured in a straight line from the beginning to the end of the track (P = 0.05). Negative effects of day of semen collection on sperm motility were least pronounced in boars fed Sel-Plex. Experiment 2 was conducted when boars were 17 mo of age, and semen was collected (n = 10 boars/dietary treatment), diluted in commercially available extenders, and stored at 18°C for 9 d. Effects of treatment × day were detected for percentages of motile (P = 0.01) and static (P = 0.01) spermatozoa, amplitude of lateral head displacement (P = 0.02), frequency with which the sperm track crossed the sperm path (P = 0.04), straightness (P = 0.01), and average size of all sperm heads (P = 0.03). In general, sperm cells from boars fed Sel-Plex were better able to maintain motility during liquid storage compared with boars fed sodium selenite. For Exp. 3, semen was collected from boars (n = 6/dietary treatment) at 23 mo of age, and spermatozoa were evaluated at d 1 and 8 after semen collection using in vitro fertilization procedures. There was a tendency for an effect (P = 0.11) of dietary treatment on fertilization rate with Sel-Plex-fed boars having the greatest value (70.7%). The results of this study suggest that there are positive effects of dietary supplementation with Sel-Plex on boar semen characteristics and that organic Se supplementation may help ameliorate the negative effects of semen storage on characteristics of sperm motility.
Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.
Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe
2013-08-01
We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.
Crash tests of four low-wing twin-engine airplanes with truss-reinforced fuselage structure
NASA Technical Reports Server (NTRS)
Williams, M. S.; Fasanella, E. L.
1982-01-01
Four six-place, low-wing, twin-engine, general aviation airplane test specimens were crash tested under controlled free flight conditions. All airplanes were impacted on a concrete test surface at a nomial flight path velocity of 27 m/sec. Two tests were conducted at a -15 deg flight path angle (0 deg pitch angle and 15 deg pitch angle), and two were conducted at a -30 deg flight path angle (-30 deg pitch angle). The average acceleration time histories (crash pulses) in the cabin area for each principal direction were calculated for each crash test. In addition, the peak floor accelerations were calculated for each test as a function of aircraft fuselage longitudinal station number. Anthropomorphic dummy accelerations were analyzed using the dynamic response index and severity index (SI) models. Parameters affecting the dummy restraint system were studied; these parameters included the effect of no upper torso restraint, measurement of the amount of inertia-reel strap pullout before locking, measurement of dummy chest forward motion, and loads in the restraints. With the SI model, the dummies with no shoulder harness received head impacts above the concussive threshold.
Walters, Daniel; Stringer, Simon; Rolls, Edmund
2013-01-01
The head direction cell system is capable of accurately updating its current representation of head direction in the absence of visual input. This is known as the path integration of head direction. An important question is how the head direction cell system learns to perform accurate path integration of head direction. In this paper we propose a model of velocity path integration of head direction in which the natural time delay of axonal transmission between a linked continuous attractor network and competitive network acts as a timing mechanism to facilitate the correct speed of path integration. The model effectively learns a "look-up" table for the correct speed of path integration. In simulation, we show that the model is able to successfully learn two different speeds of path integration across two different axonal conduction delays, and without the need to alter any other model parameters. An implication of this model is that, by learning look-up tables for each speed of path integration, the model should exhibit a degree of robustness to damage. In simulations, we show that the speed of path integration is not significantly affected by degrading the network through removing a proportion of the cells that signal rotational velocity.
Walters, Daniel; Stringer, Simon; Rolls, Edmund
2013-01-01
The head direction cell system is capable of accurately updating its current representation of head direction in the absence of visual input. This is known as the path integration of head direction. An important question is how the head direction cell system learns to perform accurate path integration of head direction. In this paper we propose a model of velocity path integration of head direction in which the natural time delay of axonal transmission between a linked continuous attractor network and competitive network acts as a timing mechanism to facilitate the correct speed of path integration. The model effectively learns a “look-up” table for the correct speed of path integration. In simulation, we show that the model is able to successfully learn two different speeds of path integration across two different axonal conduction delays, and without the need to alter any other model parameters. An implication of this model is that, by learning look-up tables for each speed of path integration, the model should exhibit a degree of robustness to damage. In simulations, we show that the speed of path integration is not significantly affected by degrading the network through removing a proportion of the cells that signal rotational velocity. PMID:23526976
Transport of Helium Pickup Ions within the Focusing Cone: Reconciling STEREO Observations with IBEX
NASA Astrophysics Data System (ADS)
Quinn, P. R.; Schwadron, N. A.; Möbius, E.
2016-06-01
Recent observations of the pickup helium focusing cone by STEREO/Plasma and Suprathermal Ion Composition indicate an inflow longitude of the interstellar wind that differs from the observations of IBEX by 1\\buildrel{\\circ}\\over{.} 8+/- 2\\buildrel{\\circ}\\over{.} 4. It has been under debate whether the transport of helium pickup ions with an anisotropic velocity distribution is the cause of this difference. If so, the roughly field-aligned pickup ion streaming relative to the solar wind should create a shift in the pickup ion density relative to the focusing cone. A large pickup ion streaming depends on the size of the mean free path. Therefore, the observed longitudinal shift in the pickup ion density relative to the neutral focusing cone may carry fundamental information about the mean free path experienced by pickup ions inside 1 au. We test this hypothesis using the Energetic Particle Radiation Environment Module (EPREM) model by simulating the transport of helium pickup ions within the focusing cone finding a mean free path of {λ }\\parallel =0.19+0.29(-0.19) au. We calculate the average azimuthal velocity of pickup ions and find that the anisotropic distribution reaches ˜8% of the solar wind speed. Lastly, we isolate transport effects within EPREM, finding that pitch-angle scattering, adiabatic focusing, perpendicular diffusion, and particle drift contribute to shifting the focusing cone 20.00%, 69.43%, 10.56%, and \\lt 0.01 % , respectively. Thus we show with the EPREM model that the transport of pickup ions does indeed shift the peak of the focusing cone relative to the progenitor neutral atoms and this shift provides fundamental information on the scattering of pickup ions inside 1 au.
NASA Astrophysics Data System (ADS)
Cao, Haotian; Song, Xiaolin; Zhao, Song; Bao, Shan; Huang, Zhi
2017-08-01
Automated driving has received a broad of attentions from the academia and industry, since it is effective to greatly reduce the severity of potential traffic accidents and achieve the ultimate automobile safety and comfort. This paper presents an optimal model-based trajectory following architecture for highly automated vehicle in its driving tasks such as automated guidance or lane keeping, which includes a velocity-planning module, a steering controller and a velocity-tracking controller. The velocity-planning module considering the optimal time-consuming and passenger comforts simultaneously could generate a smooth velocity profile. The robust sliding mode control (SMC) steering controller with adaptive preview time strategy could not only track the target path well, but also avoid a big lateral acceleration occurred in its path-tracking progress due to a fuzzy-adaptive preview time mechanism introduced. In addition, an SMC controller with input-output linearisation method for velocity tracking is built and validated. Simulation results show this trajectory following architecture are effective and feasible for high automated driving vehicle, comparing with the Driver-in-the-Loop simulations performed by an experienced driver and novice driver, respectively. The simulation results demonstrate that the present trajectory following architecture could plan a satisfying longitudinal speed profile, track the target path well and safely when dealing with different road geometry structure, it ensures a good time efficiency and driving comfort simultaneously.
Effect of 655 nm laser different powers on dog sperm motility parameters
NASA Astrophysics Data System (ADS)
Corral-Baqués, M. I.; Rigau, T.; Rivera, M. M.; Rodríguez-Gil, J. E.; Rigau, J.
2006-04-01
Introduction: One of the most appreciated features of the sperm is its motility, which depends on a big energy consumption despite differences among species. Laser acts direct or indirectly on mitochondria increasing ATP production. Material and method: By means of a Computer Aided Sperm Analysis (CASA) we have studied the effects of a 655 nm continuous wave diode laser irradiation at different power outputs with a dose of 3.3418 J on sperm motility. After an eosine-nigrosine stain to establish its quality, the second fraction of fresh beagle dog sperm was divided into 5 groups, 1 control and four to be irradiated respectively with an average output power of 6.84 mW, 15.43 mW, 33.05 mW and 49.66 mW. At times 0 and 45 minutes from irradiation pictures were taken and analysed with the Sperm class Analyzer SCA2002 programme. The motility parameters of 4987 spermatozoa studied were: curvilinear velocity (VCL), progressive velocity (VSL), straightness (STR), wobble (WOB), average path velocity (VAP), linearity (LIN), mean amplitude of lateral head displacement (ALHmed), beat cross frequency (BCF) and the total motility (MT). At time 15 minutes after irradiation a hypoosmotic swelling test (HOST) was done. Results: Several motility parameters that affect the overall motile sperm subpopulation structure have been changed by different output powers of a 655 nm diode laser irradiation, and prevents the decrease of the sperm motility properties along time.
Thirty-Second Walk Test: Expansion of Normative Data.
Lieberstein, Michael; Weingarten, Goldie; Vialu, Carlo; Itzkowitz, Adina; Doyle, Maura; Covino, Frank; Kaplan, Sandra L
2018-01-01
To collect 30-second walk test (30sWT) normative data on a large, diverse sample of school children developing typically, ages 5 to 13 years, and describe the influences of gender, body mass index, and path shape on distance walked. Five physical therapists administered the 30sWT on 1223 children developing typically (boys = 517, girls = 706) from 20 urban schools. Average distances (standard deviation) ranged from 139.1 (20.3) to 163.0 (18.6) ft; children aged 10 years walked the farthest and those aged 5 years the shortest. Distance steadily increased from ages 5 to 10 years, steadily decreased from ages 11 to 13 years; children aged 8, 9, and 10 years had statistical but not functionally meaningful gender differences. Body mass index and path shape had no meaningful effects. Distance and velocities are similar to prior studies. This study updated 30sWT normative values with a large, ethnically diverse, urban sample developing typically. Norms may be useful as part of a comprehensive examination.
Mao, Shanhua; Wu, Fei; Cao, Xinyi; He, Min; Liu, Naijia; Wu, Huihui; Yang, Zhihong; Ding, Qiang; Wang, Xuanchun
2016-01-01
TDRP (Testis Development-Related Protein), a nuclear factor, might play an important role in spermatogenesis. However, the molecular mechanisms of TDRP underlying these fundamental processes remain elusive. In this study, a Tdrp-deficient mouse model was generated. Fertility tests and semen analysis were performed. Tdrp-deficient mice were not significantly different from wild-type littermates in development of testes, genitourinary tract, or sperm count. Morphologically, spermatozoa of the Tdrp-deficient mice was not significantly different from the wild type. Several sperm motility indexes, i.e. the average path velocity (VAP), the straight line velocity (VSL) and the curvilinear velocity (VCL) were significantly decreased in Tdrp-deficient mice (p<0.05). The proportion of slow velocity sperm also increased significantly in the mutant mice (p<0.05). However, fertility tests showed that no significant difference inaverage offspring amount (AOA), frequency of copulatory plug (FCP), and frequency of conception (FC). Furthermore, TDRP1 could interact with PRM2, which might be the molecular mechanism of its nuclear function in spermatozoa. In conclusion, these data collectively demonstrated that Tdrp deficiency impaired the sperm motility, but Tdrp deficiency alone was not sufficient to cause male infertility in mice. Additionally, TDRP1 might participate in spermatogenes is through interaction with PRM2.
Wilkes, Donald F.; Purvis, James W.; Miller, A. Keith
1997-01-01
An infinitely variable transmission is capable of operating between a maximum speed in one direction and a minimum speed in an opposite direction, including a zero output angular velocity, while being supplied with energy at a constant angular velocity. Input energy is divided between a first power path carrying an orbital set of elements and a second path that includes a variable speed adjustment mechanism. The second power path also connects with the orbital set of elements in such a way as to vary the rate of angular rotation thereof. The combined effects of power from the first and second power paths are combined and delivered to an output element by the orbital element set. The transmission can be designed to operate over a preselected ratio of forward to reverse output speeds.
Brownian motion of a circle swimmer in a harmonic trap
NASA Astrophysics Data System (ADS)
Jahanshahi, Soudeh; Löwen, Hartmut; ten Hagen, Borge
2017-02-01
We study the dynamics of a Brownian circle swimmer with a time-dependent self-propulsion velocity in an external temporally varying harmonic potential. For several situations, the noise-free swimming paths, the noise-averaged mean trajectories, and the mean-square displacements are calculated analytically or by computer simulation. Based on our results, we discuss optimal swimming strategies in order to explore a maximum spatial range around the trap center. In particular, we find a resonance situation for the maximum escape distance as a function of the various frequencies in the system. Moreover, the influence of the Brownian noise is analyzed by comparing noise-free trajectories at zero temperature with the corresponding noise-averaged trajectories at finite temperature. The latter reveal various complex self-similar spiral or rosette-like patterns. Our predictions can be tested in experiments on artificial and biological microswimmers under dynamical external confinement.
2014-01-01
Background A balance test provides important information such as the standard to judge an individual’s functional recovery or make the prediction of falls. The development of a tool for a balance test that is inexpensive and widely available is needed, especially in clinical settings. The Wii Balance Board (WBB) is designed to test balance, but there is little software used in balance tests, and there are few studies on reliability and validity. Thus, we developed a balance assessment software using the Nintendo Wii Balance Board, investigated its reliability and validity, and compared it with a laboratory-grade force platform. Methods Twenty healthy adults participated in our study. The participants participated in the test for inter-rater reliability, intra-rater reliability, and concurrent validity. The tests were performed with balance assessment software using the Nintendo Wii balance board and a laboratory-grade force platform. Data such as Center of Pressure (COP) path length and COP velocity were acquired from the assessment systems. The inter-rater reliability, the intra-rater reliability, and concurrent validity were analyzed by an intraclass correlation coefficient (ICC) value and a standard error of measurement (SEM). Results The inter-rater reliability (ICC: 0.89-0.79, SEM in path length: 7.14-1.90, SEM in velocity: 0.74-0.07), intra-rater reliability (ICC: 0.92-0.70, SEM in path length: 7.59-2.04, SEM in velocity: 0.80-0.07), and concurrent validity (ICC: 0.87-0.73, SEM in path length: 5.94-0.32, SEM in velocity: 0.62-0.08) were high in terms of COP path length and COP velocity. Conclusion The balance assessment software incorporating the Nintendo Wii balance board was used in our study and was found to be a reliable assessment device. In clinical settings, the device can be remarkably inexpensive, portable, and convenient for the balance assessment. PMID:24912769
Park, Dae-Sung; Lee, GyuChang
2014-06-10
A balance test provides important information such as the standard to judge an individual's functional recovery or make the prediction of falls. The development of a tool for a balance test that is inexpensive and widely available is needed, especially in clinical settings. The Wii Balance Board (WBB) is designed to test balance, but there is little software used in balance tests, and there are few studies on reliability and validity. Thus, we developed a balance assessment software using the Nintendo Wii Balance Board, investigated its reliability and validity, and compared it with a laboratory-grade force platform. Twenty healthy adults participated in our study. The participants participated in the test for inter-rater reliability, intra-rater reliability, and concurrent validity. The tests were performed with balance assessment software using the Nintendo Wii balance board and a laboratory-grade force platform. Data such as Center of Pressure (COP) path length and COP velocity were acquired from the assessment systems. The inter-rater reliability, the intra-rater reliability, and concurrent validity were analyzed by an intraclass correlation coefficient (ICC) value and a standard error of measurement (SEM). The inter-rater reliability (ICC: 0.89-0.79, SEM in path length: 7.14-1.90, SEM in velocity: 0.74-0.07), intra-rater reliability (ICC: 0.92-0.70, SEM in path length: 7.59-2.04, SEM in velocity: 0.80-0.07), and concurrent validity (ICC: 0.87-0.73, SEM in path length: 5.94-0.32, SEM in velocity: 0.62-0.08) were high in terms of COP path length and COP velocity. The balance assessment software incorporating the Nintendo Wii balance board was used in our study and was found to be a reliable assessment device. In clinical settings, the device can be remarkably inexpensive, portable, and convenient for the balance assessment.
14 CFR 29.59 - Takeoff path: Category A.
Code of Federal Regulations, 2010 CFR
2010-01-01
... addition— (1) The takeoff path must remain clear of the height-velocity envelope established in accordance with § 29.87; (2) The rotorcraft must be flown to the engine failure point; at which point, the...
Rosenblum, Uri; Melzer, Itshak
2017-01-01
About 90% of people with multiple sclerosis (PwMS) have gait instability and 50% fall. Reliable and clinically feasible methods of gait instability assessment are needed. The study investigated the reliability and validity of the Narrow Path Walking Test (NPWT) under single-task (ST) and dual-task (DT) conditions for PwMS. Thirty PwMS performed the NPWT on 2 different occasions, a week apart. Number of Steps, Trial Time, Trial Velocity, Step Length, Number of Step Errors, Number of Cognitive Task Errors, and Number of Balance Losses were measured. Intraclass correlation coefficients (ICC2,1) were calculated from the average values of NPWT parameters. Absolute reliability was quantified from standard error of measurement (SEM) and smallest real difference (SRD). Concurrent validity of NPWT with Functional Reach Test, Four Square Step Test (FSST), 12-item Multiple Sclerosis Walking Scale (MSWS-12), and 2 Minute Walking Test (2MWT) was determined using partial correlations. Intraclass correlation coefficients (ICCs) for most NPWT parameters during ST and DT ranged from 0.46-0.94 and 0.55-0.95, respectively. The highest relative reliability was found for Number of Step Errors (ICC = 0.94 and 0.93, for ST and DT, respectively) and Trial Velocity (ICC = 0.83 and 0.86, for ST and DT, respectively). Absolute reliability was high for Number of Step Errors in ST (SEM % = 19.53%) and DT (SEM % = 18.14%) and low for Trial Velocity in ST (SEM % = 6.88%) and DT (SEM % = 7.29%). Significant correlations for Number of Step Errors and Trial Velocity were found with FSST, MSWS-12, and 2MWT. In persons with PwMS performing the NPWT, Number of Step Errors and Trial Velocity were highly reliable parameters. Based on correlations with other measures of gait instability, Number of Step Errors was the most valid parameter of dynamic balance under the conditions of our test.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A159).
Path Finding on High-Dimensional Free Energy Landscapes
NASA Astrophysics Data System (ADS)
Díaz Leines, Grisell; Ensing, Bernd
2012-07-01
We present a method for determining the average transition path and the free energy along this path in the space of selected collective variables. The formalism is based upon a history-dependent bias along a flexible path variable within the metadynamics framework but with a trivial scaling of the cost with the number of collective variables. Controlling the sampling of the orthogonal modes recovers the average path and the minimum free energy path as the limiting cases. The method is applied to resolve the path and the free energy of a conformational transition in alanine dipeptide.
A Comparison of Two Path Planners for Planetary Rovers
NASA Technical Reports Server (NTRS)
Tarokh, M.; Shiller, Z.; Hayati, S.
1999-01-01
The paper presents two path planners suitable for planetary rovers. The first is based on fuzzy description of the terrain, and genetic algorithm to find a traversable path in a rugged terrain. The second planner uses a global optimization method with a cost function that is the path distance divided by the velocity limit obtained from the consideration of the rover static and dynamic stability. A description of both methods is provided, and the results of paths produced are given which show the effectiveness of the path planners in finding near optimal paths. The features of the methods and their suitability and application for rover path planning are compared
Finite-frequency sensitivity kernels for head waves
NASA Astrophysics Data System (ADS)
Zhang, Zhigang; Shen, Yang; Zhao, Li
2007-11-01
Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the `banana-doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.
Swimming behaviour and ascent paths of brook trout in a corrugated culvert
Goerig, Elsa; Bergeron, Normand E.; Castro-Santos, Theodore R.
2017-01-01
Culverts may restrict fish movements under some hydraulic conditions such as shallow flow depths or high velocities. Although swimming capacity imposes limits to passage performance, behaviour also plays an important role in the ability of fish to overcome velocity barriers. Corrugated metal culverts are characterized by unsteady flow and existence of low‐velocity zones, which can improve passage success. Here, we describe swimming behaviour and ascent paths of 148 wild brook trout in a 1.5‐m section of a corrugated metal culvert located in Raquette Stream, Québec, Canada. Five passage trials were conducted in mid‐August, corresponding to specific mean cross‐sectional flow velocities ranging from 0.30 to 0.63 m/s. Fish were individually introduced to the culvert and their movements recorded with a camera located above the water. Lateral and longitudinal positions were recorded at a rate of 3 Hz in order to identify ascent paths. These positions were related to the distribution of flow depths and velocities in the culvert. Brook trout selected flow velocities from 0.2 to 0.5 m/s during their ascents, which corresponded to the available flow velocities in the culvert at the low‐flow conditions. This however resulted in the use of low‐velocity zones at higher flows, mainly located along the walls of the culvert. Some fish also used the corrugations for sheltering, although the behaviour was marginal and did not occur at the highest flow condition. This study improves knowledge on fish behaviour during culvert ascents, which is an important aspect for developing reliable and accurate estimates of fish passage ability.
Acceleration of O+ from the cusp to the plasma sheet
NASA Astrophysics Data System (ADS)
Liao, J.; Kistler, L. M.; Mouikis, C. G.; Klecker, B.; Dandouras, I.
2015-02-01
Heavy ions from the ionosphere that are accelerated in the cusp/cleft have been identified as a direct source for the hot plasma in the plasma sheet. However, the details of the acceleration and transport that transforms the originally cold ions into the hot plasma sheet population are not fully understood. The polar orbit of the Cluster satellites covers the main transport path of the O+ from the cusp to the plasma sheet, so Cluster is ideal for tracking its velocity changes. However, because the cusp outflow is dispersed according to its velocity as it is transported to the tail, due to the velocity filter effect, the observed changes in beam velocity over the Cluster orbit may simply be the result of the spacecraft accessing different spatial regions and not necessarily evidence of acceleration. Using the Cluster Ion Spectrometry/Composition Distribution Function instrument onboard Cluster, we compare the distribution function of streaming O+ in the tail lobes with the initial distribution function observed over the cusp and reveal that the observations of energetic streaming O+ in the lobes around -20 RE are predominantly due to the velocity filter effect during nonstorm times. During storm times, the cusp distribution is further accelerated. In the plasma sheet boundary layer, however, the average O+ distribution function is above the upper range of the outflow distributions at the same velocity during both storm and nonstorm times, indicating that acceleration has taken place. Some of the velocity increase is in the direction perpendicular to the magnetic field, indicating that the E × B velocity is enhanced. However, there is also an increase in the parallel direction, which could be due to nonadiabatic acceleration at the boundary or wave heating.
Acoustic velocity meter systems
Laenen, Antonius
1985-01-01
Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.
Grizard, Geneviève; Ouchchane, Lemlih; Roddier, Héléne; Artonne, Christine; Sion, Benoît; Vasson, Marie-Paule; Janny, Laurent
2007-01-01
Due to its extensive production and application, the toxicity of chloracetanilide herbicide alachlor[2-chloro-2',6'-diethyl-N-(methoxymethyl)-acetanilide] should be evaluated to establish minimum effects. In this study, we have examined the in vitro effects of alachlor on human sperm motion using a computer-assisted sperm analyser (CASA). An evaluation of both reactive oxygen species (ROS) and markers of apoptosis was also performed to investigate the mechanism by which alachlor modifies the sperm movement. After exposure up to 2 h to alachlor (0, 0.18, 0.37, 0.90 and 1.85 mM), the percentage of viable, motile spermatozoa and sperm velocities were concentration and/or time dependently decreased. The most sensitive parameters were progressive motility, mean average path velocity and mean straight velocity. Alachlor (1.85 mM) induced an increase in ROS production. A decrease of mitochondrial membrane potential (DeltaPsi(m)), an increase of both phosphatidylserine (PS) externalization and DNA fragmentation, which were concentration and/or time dependent, were also observed. It is possible that toxic effects of alachlor result in an oxidative stress which could act as a mediator of apoptosis. Alachlor could also contribute to some hypofertility cases.
Semianalytical computation of path lines for finite-difference models
Pollock, D.W.
1988-01-01
A semianalytical particle tracking method was developed for use with velocities generated from block-centered finite-difference ground-water flow models. Based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate directions, the method allows an analytical expression to be obtained describing the flow path within an individual grid cell. Given the intitial position of a particle anywhere in a cell, the coordinates of any other point along its path line within the cell, and the time of travel between them, can be computed directly. For steady-state systems, the exit point for a particle entering a cell at any arbitrary location can be computed in a single step. By following the particle as it moves from cell to cell, this method can be used to trace the path of a particle through any multidimensional flow field generated from a block-centered finite-difference flow model. -Author
Planar maneuvering control of underwater snake robots using virtual holonomic constraints.
Kohl, Anna M; Kelasidi, Eleni; Mohammadi, Alireza; Maggiore, Manfredi; Pettersen, Kristin Y
2016-11-24
This paper investigates the problem of planar maneuvering control for bio-inspired underwater snake robots that are exposed to unknown ocean currents. The control objective is to make a neutrally buoyant snake robot which is subject to hydrodynamic forces and ocean currents converge to a desired planar path and traverse the path with a desired velocity. The proposed feedback control strategy enforces virtual constraints which encode biologically inspired gaits on the snake robot configuration. The virtual constraints, parametrized by states of dynamic compensators, are used to regulate the orientation and forward speed of the snake robot. A two-state ocean current observer based on relative velocity sensors is proposed. It enables the robot to follow the path in the presence of unknown constant ocean currents. The efficacy of the proposed control algorithm for several biologically inspired gaits is verified both in simulations for different path geometries and in experiments.
Lidar measurements of boundary layers, aerosol scattering and clouds during project FIFE
NASA Technical Reports Server (NTRS)
Eloranta, Edwin W. (Principal Investigator)
1995-01-01
A detailed account of progress achieved under this grant funding is contained in five journal papers. The titles of these papers are: The calculation of area-averaged vertical profiles of the horizontal wind velocity using volume imaging lidar data; Volume imaging lidar observation of the convective structure surrounding the flight path of an instrumented aircraft; Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from Volume Imaging Lidar data; An accuracy analysis of the wind profiles calculated from Volume Imaging Lidar data; and Calculation of divergence and vertical motion from volume-imaging lidar data. Copies of these papers form the body of this report.
Climate change velocity underestimates climate change exposure in mountainous regions
Solomon Z. Dobrowski; Sean A. Parks
2016-01-01
Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...
[Analysis of the swimming pattern and the velocity of bacteria using video tracking method].
Shigematsu, M
1997-04-01
The swimming patterns and the velocities of several flagellated bacteria were measured by a computer assisted video tracking method. The moving path of the individual bacterium revealed that the bacterium frequently changed its swimming direction and velocity. The velocity among bacterial strains varies widely. In low viscous environment. Campylobacter jejuni has characteristic swimming pattern with frequent changes in their swimming direction. As the viscosity increase, C. jejuni increases its velocity at a little higher viscosity of 3 centipoise (cP) and secondly increases at about 40 cP. Different from other flagellated bacteria, the swimming pattern of C. jejuni in these two velocity peaks were changed. C. jejuni exhibited continuously forward moving path in the first peak, but in the second it repeated back and forth swimming pattern. We thus assumed that C. jejuni may use a different swimming mode in high viscous media from the original mode mediated by the propelling force of the flagella. This method is useful for a detail analysis of bacterial movement and moving patterns in different environmental conditions.
Gollob, Stephan; Kocur, Georg Karl; Schumacher, Thomas; Mhamdi, Lassaad; Vogel, Thomas
2017-02-01
In acoustic emission analysis, common source location algorithms assume, independently of the nature of the propagation medium, a straight (shortest) wave path between the source and the sensors. For heterogeneous media such as concrete, the wave travels in complex paths due to the interaction with the dissimilar material contents and with the possible geometrical and material irregularities present in these media. For instance, cracks and large air voids present in concrete influence significantly the way the wave travels, by causing wave path deviations. Neglecting these deviations by assuming straight paths can introduce significant errors to the source location results. In this paper, a novel source localization method called FastWay is proposed. It accounts, contrary to most available shortest path-based methods, for the different effects of material discontinuities (cracks and voids). FastWay, based on a heterogeneous velocity model, uses the fastest rather than the shortest travel paths between the source and each sensor. The method was evaluated both numerically and experimentally and the results from both evaluation tests show that, in general, FastWay was able to locate sources of acoustic emissions more accurately and reliably than the traditional source localization methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Takizawa, Ken; Beaucamp, Anthony
2017-09-18
A new category of circular pseudo-random paths is proposed in order to suppress repetitive patterns and improve surface waviness on ultra-precision polished surfaces. Random paths in prior research had many corners, therefore deceleration of the polishing tool affected the surface waviness. The new random path can suppress velocity changes of the polishing tool and thus restrict degradation of the surface waviness, making it suitable for applications with stringent mid-spatial-frequency requirements such as photomask blanks for EUV lithography.
Flight Path Synthesis and HUD Scaling for V/STOL Terminal Area Operations
DOT National Transportation Integrated Search
1995-04-01
A two circle horizontal flightpath synthesis algorithm for Vertical/Short : Takeoff and Landing (V/STOL) terminal area operations is presented. This : algorithm provides a flight-path that is tangential to the aircraft's velocity : vector at the inst...
Research Effort in Atmospheric Propagation.
velocity and air mean free path on wire microthermal measurements was reported. The results were that the procedure of calibrating a microthermal ...molecular mean free path is larger can increase the error another 4%. A discussion of refractive index spectra obtained from airborne microthermal
NASA Astrophysics Data System (ADS)
Janowczyk, Andrew; Chandran, Sharat; Feldman, Michael; Madabhushi, Anant
2011-03-01
In this paper we present the concept and associated methodological framework for a novel locally adaptive scale notion called local morphological scale (LMS). Broadly speaking, the LMS at every spatial location is defined as the set of spatial locations, with associated morphological descriptors, which characterize the local structure or heterogeneity for the location under consideration. More specifically, the LMS is obtained as the union of all pixels in the polygon obtained by linking the final location of trajectories of particles emanating from the location under consideration, where the path traveled by originating particles is a function of the local gradients and heterogeneity that they encounter along the way. As these particles proceed on their trajectory away from the location under consideration, the velocity of each particle (i.e. do the particles stop, slow down, or simply continue around the object) is modeled using a physics based system. At some time point the particle velocity goes to zero (potentially on account of encountering (a) repeated obstructions, (b) an insurmountable image gradient, or (c) timing out) and comes to a halt. By using a Monte-Carlo sampling technique, LMS is efficiently determined through parallelized computations. LMS is different from previous local scale related formulations in that it is (a) not a locally connected sets of pixels satisfying some pre-defined intensity homogeneity criterion (generalized-scale), nor is it (b) constrained by any prior shape criterion (ball-scale, tensor-scale). Shape descriptors quantifying the morphology of the particle paths are used to define a tensor LMS signature associated with every spatial image location. These features include the number of object collisions per particle, average velocity of a particle, and the length of the individual particle paths. These features can be used in conjunction with a supervised classifier to correctly differentiate between two different object classes based on local structural properties. In this paper, we apply LMS to the specific problem of classifying regions of interest in Ovarian Cancer (OCa) histology images as either tumor or stroma. This approach is used to classify lymphocytes as either tumor infiltrating lymphocytes (TILs) or non-TILs; the presence of TILs having been identified as an important prognostic indicator for disease outcome in patients with OCa. We present preliminary results on the tumor/stroma classification of 11,000 randomly selected locations of interest, across 11 images obtained from 6 patient studies. Using a Probabilistic Boosting Tree (PBT), our supervised classifier yielded an area under the receiver operation characteristic curve (AUC) of 0.8341 +/-0.0059 over 5 runs of randomized cross validation. The average LMS computation time at every spatial location for an image patch comprising 2000 pixels with 24 particles at every location was only 18s.
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
Shock wave properties of anorthosite and gabbro
NASA Technical Reports Server (NTRS)
Boslough, M. B.; Ahrens, T. J.
1984-01-01
Hugoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from particl velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.
Analytic non-Maxwellian electron velocity distribution function in a Hall discharge plasma
NASA Astrophysics Data System (ADS)
Shagayda, Andrey; Tarasov, Alexey
2017-10-01
The electron velocity distribution function in the low-pressure discharges with the crossed electric and magnetic fields, which occur in magnetrons, plasma accelerators, and Hall thrusters with a closed electron drift, is not Maxwellian. A deviation from equilibrium is caused by a large electron mean free path relative to the Larmor radius and the size of the discharge channel. In this study, we derived in the relaxation approximation the analytical expression of the electron velocity distribution function in a weakly ionized Lorentz plasma with the crossed electric and magnetic fields in the presence of the electron density and temperature gradients in the direction of the electric field. The solution was obtained in the stationary approximation far from boundary surfaces, when diffusion and mobility are determined by the classical effective collision frequency of electrons with ions and atoms. The moments of the distribution function including the average velocity, the stress tensor, and the heat flux were calculated and compared with the classical hydrodynamic expressions. It was shown that a kinetic correction to the drift velocity stems from a contribution of the off-diagonal component of the stress tensor. This correction becomes essential if the drift velocity in the crossed electric and magnetic fields would be comparable to the thermal velocity of electrons. The electron temperature has three different components at a nonzero effective collision frequency and two different components in the limit when the collision frequency tends to zero. It is shown that, in the presence of ionization collisions, the components of the heat flux have additives that are not related to the temperature gradient, and arise because of the electron drift.
NASA Astrophysics Data System (ADS)
Rabidoux, Katie; Pisano, D. J.; Garland, C. A.; Guzmán, Rafael; Castander, Francisco J.; Wolfe, Spencer A.
2018-01-01
While bright, blue, compact galaxies are common at z∼ 1, they are relatively rare in the local universe, and their evolutionary paths are uncertain. We have obtained resolved H I observations of nine z∼ 0 luminous compact blue galaxies (LCBGs) using the Giant Metrewave Radio Telescope and Very Large Array in order to measure their kinematic and dynamical properties and better constrain their evolutionary possibilities. We find that the LCBGs in our sample are rotating galaxies that tend to have nearby companions, relatively high central velocity dispersions, and can have disturbed velocity fields. We calculate rotation velocities for each galaxy by measuring half of the velocity gradient along their major axes and correcting for inclination using axis ratios derived from SDSS images of each galaxy. We compare our measurements to those previously made with single dishes and find that single-dish measurements tend to overestimate LCBGs’ rotation velocities and H I masses. We also compare the ratio of LCBGs’ rotation velocities and velocity dispersions to those of other types of galaxies and find that LCBGs are strongly rotationally supported at large radii, similar to other disk galaxies, though within their half-light radii the {V}{rot}/σ values of their H I are comparable to stellar {V}{rot}/σ values of dwarf elliptical galaxies. We find that LCBGs’ disks on average are gravitationally stable, though conditions may be conducive to local gravitational instabilities at the largest radii. Such instabilities could lead to the formation of star-forming gas clumps in the disk, resulting eventually in a small central bulge or bar.
Improvements in mode-based waveform modeling and application to Eurasian velocity structure
NASA Astrophysics Data System (ADS)
Panning, M. P.; Marone, F.; Kim, A.; Capdeville, Y.; Cupillard, P.; Gung, Y.; Romanowicz, B.
2006-12-01
We introduce several recent improvements to mode-based 3D and asymptotic waveform modeling and examine how to integrate them with numerical approaches for an improved model of upper-mantle structure under eastern Eurasia. The first step in our approach is to create a large-scale starting model including shear anisotropy using Nonlinear Asymptotic Coupling Theory (NACT; Li and Romanowicz, 1995), which models the 2D sensitivity of the waveform to the great-circle path between source and receiver. We have recently improved this approach by implementing new crustal corrections which include a non-linear correction for the difference between the average structure of several large regions from the global model with further linear corrections to account for the local structure along the path between source and receiver (Marone and Romanowicz, 2006; Panning and Romanowicz, 2006). This model is further refined using a 3D implementation of Born scattering (Capdeville, 2005). We have made several recent improvements to this method, in particular introducing the ability to represent perturbations to discontinuities. While the approach treats all sensitivity as linear perturbations to the waveform, we have also experimented with a non-linear modification analogous to that used in the development of NACT. This allows us to treat large accumulated phase delays determined from a path-average approximation non-linearly, while still using the full 3D sensitivity of the Born approximation. Further refinement of shallow regions of the model is obtained using broadband forward finite-difference waveform modeling. We are also integrating a regional Spectral Element Method code into our tomographic modeling, allowing us to move beyond many assumptions inherent in the analytic mode-based approaches, while still taking advantage of their computational efficiency. Illustrations of the effects of these increasingly sophisticated steps will be presented.
Walters, D M; Stringer, S M
2010-07-01
A key question in understanding the neural basis of path integration is how individual, spatially responsive, neurons may self-organize into networks that can, through learning, integrate velocity signals to update a continuous representation of location within an environment. It is of vital importance that this internal representation of position is updated at the correct speed, and in real time, to accurately reflect the motion of the animal. In this article, we present a biologically plausible model of velocity path integration of head direction that can solve this problem using neuronal time constants to effect natural time delays, over which associations can be learned through associative Hebbian learning rules. The model comprises a linked continuous attractor network and competitive network. In simulation, we show that the same model is able to learn two different speeds of rotation when implemented with two different values for the time constant, and without the need to alter any other model parameters. The proposed model could be extended to path integration of place in the environment, and path integration of spatial view.
Path integration in tactile perception of shapes.
Moscatelli, Alessandro; Naceri, Abdeldjallil; Ernst, Marc O
2014-11-01
Whenever we move the hand across a surface, tactile signals provide information about the relative velocity between the skin and the surface. If the system were able to integrate the tactile velocity information over time, cutaneous touch may provide an estimate of the relative displacement between the hand and the surface. Here, we asked whether humans are able to form a reliable representation of the motion path from tactile cues only, integrating motion information over time. In order to address this issue, we conducted three experiments using tactile motion and asked participants (1) to estimate the length of a simulated triangle, (2) to reproduce the shape of a simulated triangular path, and (3) to estimate the angle between two-line segments. Participants were able to accurately indicate the length of the path, whereas the perceived direction was affected by a direction bias (inward bias). The response pattern was thus qualitatively similar to the ones reported in classical path integration studies involving locomotion. However, we explain the directional biases as the result of a tactile motion aftereffect. Copyright © 2014 Elsevier B.V. All rights reserved.
Remote determination of the velocity index and mean streamwise velocity profiles
NASA Astrophysics Data System (ADS)
Johnson, E. D.; Cowen, E. A.
2017-09-01
When determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, k=Ub/Usurf, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.
Near real-time digital holographic microscope based on GPU parallel computing
NASA Astrophysics Data System (ADS)
Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan
2018-01-01
A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,
NASA Astrophysics Data System (ADS)
Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian
2017-04-01
Flow pattern and seasonal as well as diurnal temperature variations control ecological and biogeochemical conditions in hyporheic sediments. In particular, hyporheic temperatures have a great impact on many microbial processes. In this study we used 3-D coupled water flow and heat transport simulations applying the HydroGeoSphere code in combination with high frequent observations of hydraulic heads and temperatures for quantifying reach scale water and heat flux across the river groundwater interface and hyporheic temperature dynamics of a lowland gravel-bed river. The magnitude and dynamics of simulated temperatures matched the observed with an average mean absolute error of 0.7 °C and an average Nash Sutcliffe Efficiency of 0.87. Our results highlight that the average temperature in the hyporheic zone follows the temperature in the river which is characterized by distinct seasonal and daily temperature cycles. Individual hyporheic flow path temperature substantially varies around the average hyporheic temperature. Hyporheic flow path temperature was found to strongly depend on the flow path residence time and the temperature gradient between river and groundwater; that is, in winter the average flow path temperature of long flow paths is potentially higher compared to short flow paths. Based on the simulation results we derived a general empirical relationship, estimating the influence of hyporheic flow path residence time on hyporheic flow path temperature. Furthermore we used an empirical temperature relationship between effective temperature and respiration rate to estimate the influence of hyporheic flow path residence time and temperature on hyporheic oxygen consumption. This study highlights the relation between complex hyporheic temperature patterns, hyporheic residence times and their implications on temperature sensitive biogeochemical processes.
Method and system for modulation of gain suppression in high average power laser systems
Bayramian, Andrew James [Manteca, CA
2012-07-31
A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.
Distribution and Kinematics of O VI in the Galactic Halo
NASA Astrophysics Data System (ADS)
Savage, B. D.; Sembach, K. R.; Wakker, B. P.; Richter, P.; Meade, M.; Jenkins, E. B.; Shull, J. M.; Moos, H. W.; Sonneborn, G.
2003-05-01
Far-Ultraviolet Spectroscopic Explorer (FUSE) spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI λλ1031.93, 1037.62 absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km s-1 reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T~3×105 K in the Milky Way thick disk/halo. The integrated column density, log[N(O VI) cm-2], ranges from 13.85 to 14.78 with an average value of 14.38 and a standard deviation of 0.18. Large irregularities in the gas distribution are found to be similar over angular scales extending from <1° to 180°, implying a considerable amount of small- and large-scale structure in the absorbing gas. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI midplane density of n0(O VI)=1.7×10-8 cm-3, a scale height of ~2.3 kpc, and a ~0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low- and intermediate-velocity H I, Hα emission from the warm ionized gas at ~104 K, and hot X-ray-emitting gas at ~106 K. The O VI has an average velocity dispersion, b~60 km s-1, and standard deviation of 15 km s-1. Thermal broadening alone cannot explain the large observed profile widths. The average O VI absorption velocities toward high-latitude objects (|b|>45deg) range from -46 to 82 km s-1, with a high-latitude sample average of 0 km s-1 and a standard deviation of 21 km s-1. High positive velocity O VI absorbing wings extending from ~100 to ~250 km s-1 observed along 21 lines of sight may be tracing the flow of O VI into the halo. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the north. If a fountain flow dominates, a mass flow rate of approximately 1.4 Msolar yr-1 of cooling hot gas to each side of the Galactic plane with an average density of 10-3 cm-3 is required to explain the average value of log[N(O VI)sin|b|] observed in the southern Galactic hemisphere. Such a flow rate is comparable to that estimated for the Galactic intermediate-velocity clouds.
NASA Astrophysics Data System (ADS)
Thiemann, Edward M. B.
Lightning detection and geolocation networks have found widespread use by the utility, air traffic control and forestry industries as a means of locating strikes and predicting imminent recurrence. Accurate lightning geolocation requires detecting VLF radio emissions at multiple sites using a distributed sensor network with typical baselines exceeding 150 km, along with precision time of arrival estimation to triangulate the origin of a strike. The trend has been towards increasing network accuracy without increasing sensor density by incorporating precision GPS synchronized clocks and faster front-end signal processing. Because lightning radio waveforms evolve as they propagate over a finitely conducting earth, and that measurements for a given strike may have disparate propagation path lengths, accurate models are required to determine waveform fiducials for precise strike location. The transition between the leader phase and return stroke phase may offer such a fiducial and warrants quantitative modeling to improve strike location accuracy. The VLF spectrum of the ubiquitous downward negative lightning strike is able to be modeled by the transfer of several Coulombs of negative charge from cloud to ground in a two-step process. The lightning stepped leader ionizes a plasma channel downward from the cloud at a velocity of approximately 0.05c, leaving a column of charge in its path. Upon connection with a streamer, the subsequent return stroke initiates at or near ground level and travels upward at an average but variable velocity of 0.3c. The return stroke neutralizes any negative charge along its path. Subsequent dart leader and return strokes often travel smoothly down the heated channel left by a preceding stroke, lacking the halting motion of the preceding initial stepped leader and initial return stroke. Existing lightning models often neglect the leader current and rely on approximations when solving for the return stroke. In this thesis, I present an analytic solution to Maxwell's Equations for the lightning leader followed by a novel return stroke model. I model the leader as a downward propagating boxcar function of uniform charge density and constant velocity, and the subsequent return stroke is modeled as an upward propagating boxcar with a time dependent velocity. Charge conservation is applied to ensure self-consistency of the driving current and charge sources, and physical observations are used to support model development. The resulting transient electric and magnetic fields are presented at various distances and delay times and compared with measured waveforms and previously published models.
Flow over bedforms in a large sand-bed river: A field investigation
Holmes, Robert R.; Garcia, Marcelo H.
2008-01-01
An experimental field study of flows over bedforms was conducted on the Missouri River near St. Charles, Missouri. Detailed velocity data were collected under two different flow conditions along bedforms in this sand-bed river. The large river-scale data reflect flow characteristics similar to those of laboratory-scale flows, with flow separation occurring downstream of the bedform crest and flow reattachment on the stoss side of the next downstream bedform. Wave-like responses of the flow to the bedforms were detected, with the velocity decreasing throughout the flow depth over bedform troughs, and the velocity increasing over bedform crests. Local and spatially averaged velocity distributions were logarithmic for both datasets. The reach-wise spatially averaged vertical-velocity profile from the standard velocity-defect model was evaluated. The vertically averaged mean flow velocities for the velocity-defect model were within 5% of the measured values and estimated spatially averaged point velocities were within 10% for the upper 90% of the flow depth. The velocity-defect model, neglecting the wake function, was evaluated and found to estimate thevertically averaged mean velocity within 1% of the measured values.
Scalability of transport parameters with pore sizes in isodense disordered media
NASA Astrophysics Data System (ADS)
Reginald, S. William; Schmitt, V.; Vallée, R. A. L.
2014-09-01
We study light multiple scattering in complex disordered porous materials. High internal phase emulsion-based isodense polystyrene foams are designed. Two types of samples, exhibiting different pore size distributions, are investigated for different slab thicknesses varying from L = 1 \\text{mm} to 10 \\text{mm} . Optical measurements combining steady-state and time-resolved detection are used to characterize the photon transport parameters. Very interestingly, a clear scalability of the transport mean free path \\ellt with the average size of the pores S is observed, featuring a constant velocity of the transport energy in these isodense structures. This study strongly motivates further investigations into the limits of validity of this scalability as the scattering strength of the system increases.
Chulick, G.S.; Mooney, W.D.
2002-01-01
We present a new set of contour maps of the seismic structure of North America and the surrounding ocean basins. These maps include the crustal thickness, whole-crustal average P-wave and S-wave velocity, and seismic velocity of the uppermost mantle, that is, Pn and Sn. We found the following: (1) The average thickness of the crust under North America is 36.7 km (standard deviation [s.d.] ??8.4 km), which is 2.5 km thinner than the world average of 39.2 km (s.d. ?? 8.5) for continental crust; (2) Histograms of whole-crustal P- and S-wave velocities for the North American crust are bimodal, with the lower peak occurring for crust without a high-velocity (6.9-7.3 km/sec) lower crustal layer; (3) Regions with anomalously high average crustal P-wave velocities correlate with Precambrian and Paleozoic orogens; low average crustal velocities are correlated with modern extensional regimes; (4) The average Pn velocity beneath North America is 8.03 km/sec (s.d. ?? 0.19 km/sec); (5) the well-known thin crust beneath the western United States extends into northwest Canada; (6) the average P-wave velocity of layer 3 of oceanic crust is 6.61 km/ sec (s.d. ?? 0.47 km/sec). However, the average crustal P-wave velocity under the eastern Pacific seafloor is higher than the western Atlantic seafloor due to the thicker sediment layer on the older Atlantic seafloor.
NASA Technical Reports Server (NTRS)
Boslough, M. B.; Ahrens, T. J.
1985-01-01
Huyoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from partial velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.
Newberry EGS Seismic Velocity Model
Templeton, Dennise
2013-10-01
We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.
Physical aspects of Hurricane Hugo in Puerto Rico
Scatena, F.N.; Larsen, Matthew C.
1991-01-01
On 18 September 1989 the western part ofHurricane Hugo crossed eastern Puerto Rico and the Luquillo Experimental Forest (LEF). Storm-facing slopes on the northeastern part of the island that were within 15 km of the eye and received greater than 200 mm of rain were most affected by the storm. In the LEF and nearby area, recurrence intervals associated with Hurricane Hugo were 50 yr for wind velocity, 10 to 31 yr for stream discharge, and 5 yr for rainfall intensity. To compare the magnitudes of the six hurricanes to pass over PuertoRico since 1899, 3 indices were developed using the standardized values of the product of: the maximum sustained wind speed at San Juan squared and storm duration; the square of the product of the maximum sustained wind velocity at San Juan and the ratio of the distance between the hurricane eye and San Juan to the distance between the eye and percentage of average annual rainfall delivered by the storm. Based on these indices, HurricaneHugo was of moderate intensity. However, because of the path of Hurricane Hugo, only one of these six storms (the 1932 storm) caused more damage to the LEF than Hurricane Hugo. Hurricanes of Hugo's magnitude are estimated to pass over the LEF once every 50-60 yr, on average.
NASA Astrophysics Data System (ADS)
Buffin-Belanger, T. K.; Rice, S. P.; Reid, I.; Lancaster, J.
2009-12-01
Fluvial habitats can be described from a series of physical variables but to adequately address the habitat quality it becomes necessary to develop an understanding that combines the physical variables with the behaviour of the inhabitating organisms. The hypothesis of flow refugia provide a rational that can explain the persistence of macroinvertebrate communities in gravel-bed rivers when spates occur. The movement behaviour of macroinvertebrates is a key element to the flow refugia hypothesis, but little is known about how local near-bed turbulence and bed microtopography may affect macroinvertebrate movements. We reproduced natural gravel-bed substrates with contrasting gravel bed textures in a large flume where we were able to document the movement behaviour of the cased caddisfly Potamophylax latipennis for a specific discharge. The crawling paths and drift events of animals were analysed from video recordings. Characteristics of movements differ from one substrate to another. The crawling speed is higher for the small grain-size substrates but the mean travel distance remains approximately the same between substrates. For each substrate, the animals tended to follow consistent paths across the surface. The number of drift events and mean distance drifted is higher for the small grain-size substrate. ADV measurements close to the boundary allow detailed characterisation of near-bed hydraulic variables, including : skewness coefficients, TKE, UV correlation coefficients and integral time scales from autocorrelation analysis. For these variables, the vertical patterns of turbulence parameters are similar between the substrates but the amplitude of the average values and standard errors vary significantly. The spatial distribution of this variability is considered in relation to the crawling paths. It appears that the animals tend to crawl within areas of the substrate where low flow velocities and low turbulent kinetic energies are found, while sites that insects avoided were characterised by higher elevations, velocities and turbulence.
Identification of Preferential Groundwater Flow Pathways from Local Tracer Breakthrough Curves
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.; Dearden, R.; Wealthall, G.
2009-12-01
Characterizing preferential groundwater flow paths in the subsurface is a key factor in the design of in situ remediation technologies. When applying reaction-based remediation methods, such as enhanced bioremediation, preferential flow paths result in fast solute migration and potentially ineffective delivery of reactants, thereby adversely affecting treatment efficiency. The presence of such subsurface conduits was observed at the SABRe (Source Area Bioremediation) research site. Non-uniform migration of contaminants and electron donor during the field trials of enhanced bioremediation supported this observation. To better determine the spatial flow field of the heterogeneous aquifer, a conservative tracer test was conducted. Breakthrough curves were obtained at a reference plane perpendicular to the principal groundwater flow direction. The resulting dataset was analyzed using three different methods: peak arrival times, analytical solution fitting and moment analysis. Interpretation using the peak arrival time method indicated areas of fast plume migration. However, some of the high velocities are supported by single data points, thus adding considerable uncertainty to the estimated velocity distribution. Observation of complete breakthrough curves indicated different types of solute breakthrough, corresponding to different transport mechanisms. Sharp peaks corresponded to high conductivity preferential flow pathways, whereas more dispersed breakthrough curves with long tails were characteristic of significant dispersive mixing and dilution. While analytical solutions adequately quantified flow characteristics for the first type of curves, they failed to do so for the second type, in which case they gave unrealistic results. Therefore, a temporal moment analysis was performed to obtain complete spatial distributions of mass recovery, velocity and dispersivity. Though the results of moment analysis qualitatively agreed with the results of previous methods, more realistic estimates of velocities were obtained and the presence of one major preferential flow pathway was confirmed. However, low mass recovery and deviations from the 10% scaling rule for dispersivities indicate that insufficient spatial and temporal monitoring, as well as interpolation and truncation errors introduced uncertainty in the flow and transport parameters estimated by the method of moments. The results of the three analyses are valuable for enhancing the understanding of mass transport and remediation performance. Comparing the different interpretation methods, increasing the amount of concentration data considered in the analysis, the derived velocity fields were smoother and the estimated local velocities and dispersivities became more realistic. In conclusion, moment analysis is a method that represents a smoothed average of the velocity across the entire breakthrough curve, whereas the peak arrival time, which may be a less well constrained estimate, represents the physical peak arrival and typically yields a higher velocity than the moment analysis. This is an important distinction when applying the results of the tracer test to field sites.
Evaluation of fins used in underwater swimming.
Pendergast, D R; Mollendorf, J; Logue, C; Samimy, S
2003-01-01
Underwater swimmers use fins which augment thrust to overcome drag and propel the diver. The VdotO2 of swimming as a function of speed, velocity as a function of kick frequency, maximal speed (v), maximal oxygen consumption (VdotO2) and the maximal thrust were determined for eight fins in 10 male divers swimming at 1.25 m depth in a 60 m annular pool. A theoretical analysis of fin cycles was also performed. VdotO2 increased as a second order polynomial as a function of velocity; VdotO2 = 0.045 + 1.65B V + 1.66 (2) V2 (r2 = 0.997), VdotO2 = 0.25 + 1.03 V + 1.83 V2 (r2 = 0.997) and VdotO2 = -0.15 + 2.26 V + 1.49 V2 (r2 = 0.997), for least, average and most economical fins respectively. Kick frequency increased linearly with velocity and had a unique movement path (signature), giving theoretical values that agreed with the measured thrust, drag and efficiency. In conclusion, virtually all thrust comes from the downward power stroke, with rigid fins kicked deep (high drag), while flexible fins are kicked less deep but with higher frequency (low efficiency). Kick depth and frequency explain the performance of the eight tested fins, and should be optimized to enhance diver performance.
Dagdeviren, Omur E
2018-08-03
The effect of surface disorder, load, and velocity on friction between a single asperity contact and a model surface is explored with one-dimensional and two-dimensional Prandtl-Tomlinson (PT) models. We show that there are fundamental physical differences between the predictions of one-dimensional and two-dimensional models. The one-dimensional model estimates a monotonic increase in friction and energy dissipation with load, velocity, and surface disorder. However, a two-dimensional PT model, which is expected to approximate a tip-sample system more realistically, reveals a non-monotonic trend, i.e. friction is inert to surface disorder and roughness in wearless friction regime. The two-dimensional model discloses that the surface disorder starts to dominate the friction and energy dissipation when the tip and the sample interact predominantly deep into the repulsive regime. Our numerical calculations address that tracking the minimum energy path and the slip-stick motion are two competing effects that determine the load, velocity, and surface disorder dependence of friction. In the two-dimensional model, the single asperity can follow the minimum energy path in wearless regime; however, with increasing load and sliding velocity, the slip-stick movement dominates the dynamic motion and results in an increase in friction by impeding tracing the minimum energy path. Contrary to the two-dimensional model, when the one-dimensional PT model is employed, the single asperity cannot escape to the minimum energy minimum due to constraint motion and reveals only a trivial dependence of friction on load, velocity, and surface disorder. Our computational analyses clarify the physical differences between the predictions of the one-dimensional and two-dimensional models and open new avenues for disordered surfaces for low energy dissipation applications in wearless friction regime.
NASA Astrophysics Data System (ADS)
Krogh, J.; Dalton, C. A.; Ma, Z.
2017-12-01
Rayleigh wave dispersion extracted from ambient seismic noise has been widely used to image crustal and uppermost mantle structure in continents, but there have been relatively few studies within ocean basins. Here, we extract Rayleigh wave dispersion from ambient noise across the Arctic basin and surrounding continents. Continuous time series were collected from 427 broadband stations for the time period 1990-2016. Following the method described by Ma and Dalton (2017), we cross-correlated the noise records for 57,782 pairs of stations and measured phase arrival times for the frequency range 5-30 mHz. After data selection, which utilized criteria for path length, signal-to-noise ratio, and waveform quality, between 670 and 20,284 paths remained. Phase-velocity maps for the study region were determined from only the ambient noise Rayleigh waves and from a combined data set of ambient noise and earthquakes. Resolution tests and hit count maps illustrate the enhanced path coverage and resolution that is afforded by combining the two data sets. The maps show a clear association with tectonic features, including: fast velocities associated with the Siberian, Baltic, and North American cratons; very slow velocities associated with Iceland and the Alaska-Aleutian subduction zone; and an abrupt transition between the low-velocity North American Cordillera and fast-velocity craton that corresponds nearly perfectly with surface topography. The ultra-slow spreading Gakkel Ridge has only a weak seismic signature, although the dependence of seismic velocity on seafloor age is apparent in the maps. These results will be used to investigate the variations in temperature, composition, and melt and volatile content in the Arctic lithosphere and asthenosphere.
Adjoint analysis of the source and path sensitivities of basin-guided waves
NASA Astrophysics Data System (ADS)
Day, Steven M.; Roten, Daniel; Olsen, Kim B.
2012-05-01
Simulations of earthquake rupture on the southern San Andreas Fault (SAF) reveal large amplifications in the San Gabriel and Los Angeles Basins (SGB and LAB) apparently associated with long-range path effects. Geometrically similar excitation patterns can be recognized repeatedly in different SAF simulations (e.g. Love wave-like energy with predominant period around 4 s, channelled southwestwardly from the SGB into LAB), yet the amplitudes with which these distinctive wavefield patterns are excited change, depending upon source details (slip distribution, direction and velocity of rupture). We describe a method for rapid calculation of the sensitivity of such predicted wavefield features to perturbations of the source kinematics, using a time-reversed (adjoint) wavefield simulation. The calculations are analogous to those done in adjoint tomography, and the same time-reversed calculation also yields path-sensitivity kernels that give further insight into the excitation mechanism. For rupture on the southernmost 300 km of SAF, LAB excitation is greatest for slip concentrated between the northern Coachella Valley and the transverse ranges, propagating to the NE and with rupture velocities between 3250 and 3500 m s-1 along that fault segment; that is, within or slightly above the velocity range (between Rayleigh and S velocities) that is energetically precluded in the limit of a sharp rupture front, highlighting the potential value of imposing physical constraints (such as from spontaneous rupture models) on source parametrizations. LAB excitation is weak for rupture to the SW and for ruptures in either direction located north of the transverse transverse ranges, whereas Ventura Basin (VTB) is preferentially excited by NE ruptures situated north of the transverse ranges. Path kernels show that LAB excitation is mediated by surface waves deflected by the velocity contrast along the southern margin of the transverse ranges, having most of their energy in basement rock until they impinge on the eastern edge of SGB, through which they are then funnelled into LAB. VTB amplification is enhanced by a similar waveguide effect.
NASA Astrophysics Data System (ADS)
Hohert, Geoffrey; Pahlevaninezhad, Hamid; Lee, Anthony; Lane, Pierre M.
2016-03-01
Endoscopic catheter-based imaging systems that employ a 2-dimensional rotary or 3-dimensional rotary-pullback scanning mechanism require constant angular velocity at the distal tip to ensure correct angular registration of the collected signal. Non-uniform rotational distortion (NURD) - often present due to a variety of mechanical issues - can result in inconsistent position and velocity profiles at the tip, limiting the accuracy of any measurements. Since artifacts like NURD are difficult to identify and characterize during tissue imaging, phantoms with well-defined patterns have been used to quantify position and/or velocity error. In this work we present a fast, versatile, and cost-effective method for making fused deposition modeling 3D printed phantoms for identifying and quantifying NURD errors along an arbitrary user-defined pullback path. Eight evenly-spaced features are present at the same orientation at all points on the path such that deviations from expected geometry can be quantified for the imaging catheter. The features are printed vertically and then folded together around the path to avoid issues with printer head resolution. This method can be adapted for probes of various diameters and for complex imaging paths with multiple bends. We demonstrate imaging using the 3D printed phantoms with a 1mm diameter rotary-pullback OCT catheter and system as a means of objectively evaluating the mechanical performance of similarly constructed probes.
Percolation flux and Transport velocity in the unsaturated zone, Yucca Mountain, Nevada
Yang, I.C.
2002-01-01
The percolation flux for borehole USW UZ-14 was calculated from 14C residence times of pore water and water content of cores measured in the laboratory. Transport velocity is calculated from the depth interval between two points divided by the difference in 14C residence times. Two methods were used to calculate the flux and velocity. The first method uses the 14C data and cumulative water content data directly in the incremental intervals in the Paintbrush nonwelded unit and the Topopah Spring welded unit. The second method uses the regression relation for 14C data and cumulative water content data for the entire Paintbrush nonwelded unit and the Topopah Spring Tuff/Topopah Spring welded unit. Using the first method, for the Paintbrush nonwelded unit in boreholeUSW UZ-14 percolation flux ranges from 2.3 to 41.0 mm/a. Transport velocity ranges from 1.2 to 40.6 cm/a. For the Topopah Spring welded unit percolation flux ranges from 0.9 to 5.8 mm/a in the 8 incremental intervals calculated. Transport velocity ranges from 1.4 to 7.3 cm/a in the 8 incremental intervals. Using the second method, average percolation flux in the Paintbrush nonwelded unit for 6 boreholes ranges from 0.9 to 4.0 mm/a at the 95% confidence level. Average transport velocity ranges from 0.6 to 2.6 cm/a. For the Topopah Spring welded unit and Topopah Spring Tuff, average percolation flux in 5 boreholes ranges from 1.3 to 3.2 mm/a. Average transport velocity ranges from 1.6 to 4.0 cm/a. Both the average percolation flux and average transport velocity in the PTn are smaller than in the TS/TSw. However, the average minimum and average maximum values for the percolation flux in the TS/TSw are within the PTn average range. Therefore, differences in the percolation flux in the two units are not significant. On the other hand, average, average minimum, and average maximum transport velocities in the TS/TSw unit are all larger than the PTn values, implying a larger transport velocity for the TS/TSw although there is a small overlap.
A Contribution to the Understanding of the Regional Seismic Structure in the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Di Luccio, F.; Thio, H.; Pino, N.
2001-12-01
Regional earthquakes recorded by two digital broadband stations (BGIO and KEG) located in the Eastern Mediterranean have been analyzed in order to study the seismic structure in this region. The area consists of different tectonic provinces, which complicate the modeling of the seismic wave propagation. We have modeled the Pnl arrivals using the FK-integration technique (Saikia, 1994) along different paths at the two stations, at several distances, ranging from 400 to 1500 km. Comparing the synthetics obtained by using several models compiled by other authors, we have constructed a velocity model, considering the informations deriving from group velocity distribution, in order to determine the finer structure in the analyzed paths. The model has been perturbed by trial and error until a compressional velocity profile has been found producing the shape of the observed waveforms. The crustal thickness, upper mantle P-wave velocity and 410-km discontinuity determine the shape of the observed waveform portions.
In-situ and path-averaged measurements of aerosol optical properties
NASA Astrophysics Data System (ADS)
van Binsbergen, Sven A.; Grossmann, Peter; February, Faith J.; Cohen, Leo H.; van Eijk, Alexander M. J.; Stein, Karin U.
2017-09-01
This paper compares in-situ and path-averaged measurements of the electro-optical transmission, with emphasis on aerosol effects. The in-situ sensors consisted of optical particle counters (OPC), the path-averaged data was provided by a 7-wavelength transmissometer (MSRT) and scintillometers (BLS). Data were collected at two sites: a homogeneous test site in Northern Germany, and over the inhomogeneous False Bay near Cape Town, South Africa. A retrieval algorithm was developed to infer characteristics of the aerosol size distribution (Junge approximation) from the MSRT data. A comparison of the various sensors suggests that the optical particle counters are over optimistic in their estimate of the transmission. For the homogeneous test site, in-situ and path-averaged sensors yield similar results. For the inhomogeneous test site, sensors may react differently or temporally separated to meteorological events such as a change in wind speed and/or direction.
The velocity field of growing ear cartilage.
Cox, R W; Peacock, M A
1978-01-01
The velocity vector field of the growing rabbit ear cartilage has been investigated between 12 and 299 days. Empirical curves have been computed for path lines and for velocities between 12 and 87 days. The tissue movement has been found to behave as an irrotational flow of material. Stream lines and velocity equipotential lines have been calculated and provide akinematic description of the changes during growth. The importance of a knowledge of the velocity vector in physical descriptions of growth and morphological differentiation at the tissue and cellular levels is emphasized. PMID:689993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modjaz, Maryam; Liu, Yuqian Q.; Bianco, Federica B.
We present the first systematic investigation of spectral properties of 17 Type Ic Supernovae (SNe Ic), 10 broad-lined SNe Ic (SNe Ic-bl) without observed gamma-ray bursts (GRBs), and 11 SNe Ic-bl with GRBs (SN-GRBs) as a function of time in order to probe their explosion conditions and progenitors. Using a number of novel methods, we analyze a total of 407 spectra, which were drawn from published spectra of individual SNe as well as from the densely time-sampled spectra of Modjaz et al (2014). In order to quantify the diversity of the SN spectra as a function of SN subtype, wemore » construct average spectra of SNe Ic, SNe Ic-bl without GRBs, and SNe Ic-bl with GRBs. We find that SN 1994I is not a typical SN Ic, contrasting the general view, while the spectra of SN 1998bw/GRB 980425 are representative of mean spectra of SNe Ic-bl. We measure the ejecta absorption and width velocities using a new method described here and find that SNe Ic-bl with GRBs, on average, have quantifiably higher absorption velocities, as well as broader line widths than SNe without observed GRBs. In addition, we search for correlations between SN-GRB spectral properties and the energies of their accompanying GRBs. Finally, we show that the absence of clear He lines in optical spectra of SNe Ic-bl, and in particular of SN-GRBs, is not due to them being too smeared-out due to the high velocities present in the ejecta. This implies that the progenitor stars of SN-GRBs are probably free of the He-layer, in addition to being H-free, which puts strong constraints on the stellar evolutionary paths needed to produce such SN-GRB progenitors at the observed low metallicities.« less
[Effects of hepatitis B virus on human semen parameters and sperm DNA integrity].
Liu, Hao; Geng, Chun-Hui; Wang, Wei; Xiao, Ke-Lin; Xiong, Li-Kuan; Huang, Yong-Xiang; Yang, Xiao-Ling; Li, Jin
2013-10-01
To investigate the effects of hepatitis B virus (HBV) in semen on human semen parameters and sperm DNA integrity. We detected HBV DNA in the semen samples of 153 HBsAg-seropositive patients by real-time fluorescence quantitative PCR and calculated the sperm nuclear DNA fragmentation index (DFI) by sperm chromatin dispersion (SCD) assay. We compared the semen parameters between the HBV DNA-positive group (A, n = 43) and HBV DNA-negative group (B, n = 110) and analyzed the correlation of sperm DFI with the number of HBV DNA copies in the semen. HBV DNA was detected in 43 (28.1%) of the 153 semen samples. No statistically significant differences were observed in age, semen volume and sperm concentration between groups A and B (P >0.05). Compared with group B, group A showed significantly decreased sperm viability ([58.0 +/- 18.8]% vs [51.4 +/-17.1]%, P<0.05), progressively motile sperm ([29.6 +/- 13.3]% vs [24.5 +/- 10.1]%, P<0.05), average straight-line velocity ([23.7 +/- 4.0] microm/s vs [19.9 +/- 4.5 ] microm/s, P<0.01) and average path velocity ([26.5 +/- 7.0] microm/s vs [23.4 +/- 5.3] microm/s, P<0.01), but remarkably decreased sperm DFI ([19.3 +/- 8.0]% vs [24.2 +/- 9.4]%, P<0.01). The number of HBV DNA copies in semen exhibited a significant positive correlation with sperm DFI (r = 0.819, P < 0.01). HBV DNA in semen is not significantly associated with the number of sperm, but may affect sperm viability, velocity and DFI. There is a load-effect relationship between the number of HBV DNA copies in semen and sperm nuclear DNA integrity.
Cope, Alex J; Sabo, Chelsea; Gurney, Kevin; Vasilaki, Eleni; Marshall, James A R
2016-05-01
We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee's behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer.
Sabo, Chelsea; Gurney, Kevin; Vasilaki, Eleni; Marshall, James A. R.
2016-01-01
We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee’s behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer. PMID:27148968
Guidance and Control for Tactical Guided Weapons with Emphasis on Simulation and Testing
1979-05-01
VELOCITY TARGET TRAJECTORY NA MORE DIRECT MISSILE PATH NOTE: IN THE DIRECT PATH. LINE OF SIGHT RATE IS POSITIVE BEFORE BURNOUT AND NEGATIVE...FOLLOWING BURNOUT FIGURE 3-1 PROPORTIONAL NAVIGATION GUIDANCE AND A MORE DIRECT APPROACH PATH In thi Studie small two, b Becaus the ga for ot...During the tests, the missile was suspended in low- frequency slings, and both launch and burnout flight conditions were tested. An active
Spatial interpolation of river channel topography using the shortest temporal distance
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Xian, Cuiling; Chen, Huajin; Grieneisen, Michael L.; Liu, Jiaming; Zhang, Minghua
2016-11-01
It is difficult to interpolate river channel topography due to complex anisotropy. As the anisotropy is often caused by river flow, especially the hydrodynamic and transport mechanisms, it is reasonable to incorporate flow velocity into topography interpolator for decreasing the effect of anisotropy. In this study, two new distance metrics defined as the time taken by water flow to travel between two locations are developed, and replace the spatial distance metric or Euclidean distance that is currently used to interpolate topography. One is a shortest temporal distance (STD) metric. The temporal distance (TD) of a path between two nodes is calculated by spatial distance divided by the tangent component of flow velocity along the path, and the STD is searched using the Dijkstra algorithm in all possible paths between two nodes. The other is a modified shortest temporal distance (MSTD) metric in which both the tangent and normal components of flow velocity were combined. They are used to construct the methods for the interpolation of river channel topography. The proposed methods are used to generate the topography of Wuhan Section of Changjiang River and compared with Universal Kriging (UK) and Inverse Distance Weighting (IDW). The results clearly showed that the STD and MSTD based on flow velocity were reliable spatial interpolators. The MSTD, followed by the STD, presents improvement in prediction accuracy relative to both UK and IDW.
Inference and Biogeochemical Response of Vertical Velocities inside a Mode Water Eddy
NASA Astrophysics Data System (ADS)
Barceló-Llull, B.; Pallas Sanz, E.; Sangrà, P.
2016-02-01
With the aim to study the modulation of the biogeochemical fluxes by the ageostrophic secondary circulation in anticyclonic mesoscale eddies, a typical eddy of the Canary Eddy Corridor was interdisciplinary surveyed on September 2014 in the framework of the PUMP project. The eddy was elliptical shaped, 4 month old, 110 km diameter and 400 m depth. It was an intrathermocline type often also referred as mode water eddy type. We inferred the mesoscale vertical velocity field resolving a generalized omega equation from the 3D density and ADCP velocity fields of a five-day sampled CTD-SeaSoar regular grid centred on the eddy. The grid transects where 10 nautical miles apart. Although complex, in average, the inferred omega velocity field (hereafter w) shows a dipolar structure with downwelling velocities upstream of the propagation path (west) and upwelling velocities downstream. The w at the eddy center was zero and maximum values were located at the periphery attaining ca. 6 m day-1. Coinciding with the occurrence of the vertical velocities cells a noticeable enhancement of phytoplankton biomass was observed at the eddy periphery respect to the far field. A corresponding upward diapycnal flux of nutrients was also observed at the periphery. As minimum velocities where reached at the eddy center, lineal Ekman pumping mechanism was discarded. Minimum values of phytoplankton biomass where also observed at the eddy center. The possible mechanisms for such dipolar w cell are still being investigated, but an analysis of the generalized omega equation forcing terms suggest that it may be a combination of horizontal deformation and advection of vorticity by the ageostrophic current (related to nonlinear Ekman pumping). As expected for Trades, the wind was rather constant and uniform with a speed of ca. 5 m s-1. Diagnosed nonlinear Ekman pumping leaded also to a dipolar cell that mirrors the omega w dipolar cell.
Application of the clinical version of the narrow path walking test to identify elderly fallers.
Gimmon, Yoav; Barash, Avi; Debi, Ronen; Snir, Yoram; Bar David, Yair; Grinshpon, Jacob; Melzer, Itshak
2016-01-01
Falling during walking is a common problem among the older population. Hence, the challenge facing clinicians is identifying who is at risk of falling during walking, for providing an effective intervention to reduce that risk. We aimed to assess whether the clinical version of the narrow path walking test (NPWT) could identify older adults who are reported falls. A total of 160 older adults were recruited and asked to recall fall events during the past year. Subjects were instructed to walk in the laboratory at a comfortable pace within a 6 meter long narrow path, 3 trials under single task (ST) and 3 trials dual task (DT) conditions without stepping outside the path (i.e., step errors). The average trial time, number of steps, trial velocity, number of step errors, and number of cognitive task errors were calculated for ST and DT. Fear of falling, performance oriented mobility assessment (POMA) and mini-metal state examination (MMSE) were measured as well. Sixty-one subjects reported that they had fallen during the past year and 99 did not. Fallers performed more steps, and were slower than non-fallers. There were no significant differences, however, in the number of steps errors, the cognitive task errors in ST and DT in POMA and MMSE. Our data demonstrates slower gait speed and more steps during the NPWT in ST and DT in fallers. There is no added value of DT over the ST for identification of faller's older adults. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Method of and apparatus for accelerating a projectile
Goldstein, Yeshayahu S. A.; Tidman, Derek A.
1986-01-01
A projectile is accelerated along a confined path by supplying a pulsed high pressure, high velocity plasma jet to the rear of the projectile as the projectile traverses the path. The jet enters the confined path at a non-zero angle relative to the projectile path. The pulse is derived from a dielectric capillary tube having an interior wall from which plasma forming material is ablated in response to a discharge voltage. The projectile can be accelerated in response to the kinetic energy in the plasma jet or in response to a pressure increase of gases in the confined path resulting from the heat added to the gases by the plasma.
Particle Image Velocimetry Around Swimming Paramecia
NASA Astrophysics Data System (ADS)
Giarra, Matthew; Jana, Saikat; Jung, Sunghwan; Vlachos, Pavlos
2011-11-01
Microorganisms like paramecia propel themselves by synchronously beating thousands of cilia that cover their bodies. Using micro-particle image velocimetry (μPIV), we quantitatively measured velocity fields created by the movement of Paramecium multimicronucleatum through a thin (~100 μm) film of water. These velocity fields exhibited different features during different swimming maneuvers, which we qualitatively categorized as straight forward, turning, or backward motion. We present the velocity fields measured around organisms during each type of motion, as well as calculated path lines and fields of vorticity. For paramecia swimming along a straight path, we observed dipole-like flow structures that are characteristic of a prolate-spheroid translating axially in a quiescent fluid. Turning and backward-swimming organisms showed qualitatively different patterns of vortices around their bodies. Finally, we offer hypotheses about the roles of these different flow patterns in the organism's ability to maneuver.
Iqbal, S; Riaz, A; Andrabi, S M H; Shahzad, Q; Durrani, A Z; Ahmad, N
2016-11-01
The effects of l-cysteine in extender on antioxidant enzymes profile during cryopreservation, post-thaw quality parameters and in vivo fertility of Nili-Ravi buffalo bull spermatozoa were studied. Semen samples from 4 buffalo bulls were diluted in Tris-citric acid-based extender having different concentrations of l-cysteine (0.0, 0.5, 1.0, 2.0 and 3.0 mm) and frozen in 0.5-ml French straws. The antioxidative enzymes [catalase, super oxide dismutase and total glutathione (peroxidase and reductase)] were significantly higher (P < 0.05) at pre-freezing and post-thawing in extender containing 2.0 mm l-cysteine as compared to other groups. Post-thaw total motility (%), progressive motility (%), rapid velocity (%), average path velocity (μm s -1 ), straight line velocity (μm s -1 ), curvilinear velocity (μm s -1 ), beat cross frequency (Hz), viable spermatozoa with intact plasmalemma (%), acrosome and DNA integrity (%) were higher with the addition of 2.0 mm l-cysteine as compared to other groups (P < 0.05). The fertility rates (59 versus 43%) were higher (P < 0.05) in buffaloes inseminated with doses containing 2.0 mm of l-cysteine than in the control. In conclusion, the addition of 2.0 mm l-cysteine in extender improved the antioxidant enzymes profile, post-thaw quality and in vivo fertility of Nili-Ravi buffalo bull spermatozoa. © 2016 Blackwell Verlag GmbH.
Aerosol optical properties inferred from in-situ and path-averaged measurements
NASA Astrophysics Data System (ADS)
van Binsbergen, Sven A.; Grossmann, Peter; Cohen, Leo H.; van Eijk, Alexander M. J.; Stein, Karin U.
2017-09-01
This paper compares in-situ and path-averaged measurements of the electro-optical transmission, with emphasis on aerosol effects. The in-situ sensors consisted of optical particle counters (OPC) and a visibility meter, the path-averaged data was provided by a 7-wavelength transmissometer (MSRT) and a scintillometer (BLS). Data was collected at a test site in Northern Germany. A retrieval algorithm was developed to infer characteristics of the aerosol size distribution (Junge approximation) from the MSRT data. A comparison of the various sensors suggests that the optical particle counters are over-optimistic in their estimate of the transmission.
Lateral variations in the crustal structure of the Indo-Eurasian collision zone
NASA Astrophysics Data System (ADS)
Gilligan, Amy; Priestley, Keith
2018-05-01
The processes involved in continental collisions remain contested, yet knowledge of these processes is crucial to improving our understanding of how some of the most dramatic features on Earth have formed. As the largest and highest orogenic plateau on Earth today, Tibet is an excellent natural laboratory for investigating collisional processes. To understand the development of the Tibetan Plateau we need to understand the crustal structure beneath both Tibet and the Indian Plate. Building on previous work, we measure new group velocity dispersion curves using data from regional earthquakes (4424 paths) and ambient noise data (5696 paths), and use these to obtain new fundamental mode Rayleigh Wave group velocity maps for periods from 5-70 s for a region including Tibet, Pakistan and India. The dense path coverage at the shortest periods, due to the inclusion of ambient noise measurements, allows features of up to 100 km scale to be resolved in some areas of the collision zone, providing one of the highest resolution models of the crust and uppermost mantle across this region. We invert the Rayleigh wave group velocity maps for shear wave velocity structure to 120 km depth and construct a 3D velocity model for the crust and uppermost mantle of the Indo-Eurasian collision zone. We use this 3D model to map the lateral variations in the crust and in the nature of the crust-mantle transition (Moho) across the Indo-Eurasian collision zone. The Moho occurs at lower shear velocities below north eastern Tibet than it does beneath western and southern Tibet and below India. The east-west difference across Tibet is particularly apparent in the elevated velocities observed west of 84° E at depths exceeding 90 km. This suggests that Indian lithosphere underlies the whole of the Plateau in the west, but possibly not in the east. At depths of 20-40 km our crustal model shows the existence of a pervasive mid-crustal low velocity layer (˜10% decrease in velocity, Vs <3.4 km/s) throughout all of Tibet, as well as beneath the Pamirs, but not below India. The thickness of this layer, the lowest velocity in the layer and the degree of velocity reduction vary across the region. Combining our Rayleigh wave observations with previously published Love wave dispersion measurements (Acton et al., 2010), we find that the low velocity layer has a radial anisotropic signature with Vsh > Vsv. The characteristics of the low velocity layer are supportive of deformation occurring through ductile flow in the mid-crust.
Evolved atmospheric entry corridor with safety factor
NASA Astrophysics Data System (ADS)
Liang, Zixuan; Ren, Zhang; Li, Qingdong
2018-02-01
Atmospheric entry corridors are established in previous research based on the equilibrium glide condition which assumes the flight-path angle to be zero. To get a better understanding of the highly constrained entry flight, an evolved entry corridor that considers the exact flight-path angle is developed in this study. Firstly, the conventional corridor in the altitude vs. velocity plane is extended into a three-dimensional one in the space of altitude, velocity, and flight-path angle. The three-dimensional corridor is generated by a series of constraint boxes. Then, based on a simple mapping method, an evolved two-dimensional entry corridor with safety factor is obtained. The safety factor is defined to describe the flexibility of the flight-path angle for a state within the corridor. Finally, the evolved entry corridor is simulated for the Space Shuttle and the Common Aero Vehicle (CAV) to demonstrate the effectiveness of the corridor generation approach. Compared with the conventional corridor, the evolved corridor is much wider and provides additional information. Therefore, the evolved corridor would benefit more to the entry trajectory design and analysis.
Optimum flight paths of turbojet aircraft
NASA Technical Reports Server (NTRS)
Miele, Angelo
1955-01-01
The climb of turbojet aircraft is analyzed and discussed including the accelerations. Three particular flight performances are examined: minimum time of climb, climb with minimum fuel consumption, and steepest climb. The theoretical results obtained from a previous study are put in a form that is suitable for application on the following simplifying assumptions: the Mach number is considered an independent variable instead of the velocity; the variations of the airplane mass due to fuel consumption are disregarded; the airplane polar is assumed to be parabolic; the path curvatures and the squares of the path angles are disregarded in the projection of the equation of motion on the normal to the path; lastly, an ideal turbojet with performance independent of the velocity is involved. The optimum Mach number for each flight condition is obtained from the solution of a sixth order equation in which the coefficients are functions of two fundamental parameters: the ratio of minimum drag in level flight to the thrust and the Mach number which represents the flight at constant altitude and maximum lift-drag ratio.
The global short-period wavefield modelled with a Monte Carlo seismic phonon method
Shearer, Peter M.; Earle, Paul
2004-01-01
At high frequencies (∼1 Hz), much of the seismic energy arriving at teleseismic distances is not found in the main phases (e.g. P, PP, S, etc.) but is contained in the extended coda that follows these arrivals. This coda results from scattering off small-scale velocity and density perturbations within the crust and mantle and contains valuable information regarding the depth dependence and strength of this heterogeneity as well as the relative importance of intrinsic versus scattering attenuation. Most analyses of seismic coda to date have concentrated on S-wave coda generated from lithospheric scattering for events recorded at local and regional distances. Here, we examine the globally averaged vertical-component, 1-Hz wavefield (>10° range) for earthquakes recorded in the IRIS FARM archive from 1990 to 1999. We apply an envelope-function stacking technique to image the average time–distance behavior of the wavefield for both shallow (≤50 km) and deep (≥500 km) earthquakes. Unlike regional records, our images are dominated by P and P coda owing to the large effect of attenuation on PPand S at high frequencies. Modelling our results is complicated by the need to include a variety of ray paths, the likely contributions of multiple scattering and the possible importance of P-to-S and S-to-P scattering. We adopt a stochastic, particle-based approach in which millions of seismic phonons are randomly sprayed from the source and tracked through the Earth. Each phonon represents an energy packet that travels along the appropriate ray path until it is affected by a discontinuity or a scatterer. Discontinuities are modelled by treating the energy normalized reflection and transmission coefficients as probabilities. Scattering probabilities and scattering angles are computed in a similar fashion, assuming random velocity and density perturbations characterized by an exponential autocorrelation function. Intrinsic attenuation is included by reducing the energy contained in each particle as an appropriate function of traveltime. We find that most scattering occurs in the lithosphere and upper mantle, as previous results have indicated, but that some lower-mantle scattering is likely also required. A model with 3 to 4 per cent rms velocity heterogeneity at 4-km scale length in the upper mantle and 0.5 per cent rms velocity heterogeneity at 8-km scale length in the lower mantle (with intrinsic attenuation of Qα= 450 above 200 km depth andQα= 2500 below 200 km) provides a reasonable fit to both the shallow- and deep-earthquake observations, although many trade-offs exist between the scale length, depth extent and strength of the heterogeneity.
Light Propagation in Turbulent Media
NASA Astrophysics Data System (ADS)
Perez, Dario G.
2003-07-01
First, we make a revision of the up-to-date Passive Scalar Fields properties: also, the refractive index is among them. Afterwards, we formulated the properties that make the family of `isotropic' fractional Brownian motion (with parameter H) a good candidate to simulate the turbulent refractive index. Moreover, we obtained its fractal dimension which matches the estimated by Constantin for passive scalar, and thus the parameter H determines the state of the turbulence. Next, using a path integral velocity representation, with the Markovian model, to calculate the effects of the turbulence over a system of grids. Finally, with the tools of Stochastic Calculus for fractional Brownian motions we studied the ray-equation coming from the Geometric Optics in the turbulent case. Our analysis covers those cases where average temperature gradients are relevant.
NASA Astrophysics Data System (ADS)
Osagie, Abel U.; Nawawi, Mohd.; Khalil, Amin Esmail; Abdullah, Khiruddin
2017-06-01
We have investigated the average P-wave travel-time residuals for some stations around Southern Thailand, Peninsular Malaysia and Singapore at regional distances. Six years (January, 2010-December, 2015) record of events from central and northern Sumatra was obtained from the digital seismic archives of Integrated Research Institute for Seismology (IRIS). The criteria used for the data selection are designed to be above the magnitude of mb 4.5, depth less than 200 km and an epicentral distance shorter than 1000 km. Within this window a total number of 152 earthquakes were obtained. Furthermore, data were filtered based on the clarity of the seismic phases that are manually picked. A total of 1088 P-wave arrivals and 962 S-wave arrivals were hand-picked from 10 seismic stations around the Peninsula. Three stations IPM, KUM, and KOM from Peninsular Malaysia, four stations BTDF, NTU, BESC and KAPK from Singapore and three stations SURA, SRIT and SKLT located in the southern part of Thailand are used. Station NTU was chosen as the Ref. station because it recorded the large number of events. Travel-times were calculated using three 1-D models (Preliminary Ref. Earth Model PREM (Dziewonski and Anderson, 1981, IASP91, and Lienert et al., 1986) and an adopted two-point ray tracing algorithm. For the three models, we corroborate our calculated travel-times with the results from the use of TAUP travel-time calculation software. Relative to station NTU, our results show that the average P wave travel-time residual for PREM model ranges from -0.16 to 0.45 s for BESC and IPM respectively. For IASP91 model, the average residual ranges from -0.25 to 0.24 s for SRIT and SKLT respectively, and ranges from -0.22 to 0.30 s for KAPK and IPM respectively for Lienert et al. (1986) model. Generally, most stations have slightly positive residuals relative to station NTU. These corrections reflect the difference between actual and estimated model velocities along ray paths to stations and can compensate for heterogeneous velocity structure near individual stations. The computed average travel-time residuals can reduce errors attributable to station correction in the inversion of hypocentral parameters around the Peninsula. Due to the heterogeneity occasioned by the numerous fault systems, a better 1-D velocity model for the Peninsula is desired for more reliable hypocentral inversion and other seismic investigations.
Vertical mass transfer in open channel flow
Jobson, Harvey E.
1968-01-01
The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size range. The total sediment transfer coefficient is equal to the sum of the coefficient due to tangential velocity fluctuations and the coefficient due to the curvature of the fluid particle path lines. A numerical solution to the conservation of mass equation is given. The effects of the transfer coefficient, fall velocity and bed conditions on the predicted concentration profiles are illustrated.
Hotspots and superswell beneath Africa inferred from surface wave anisotropic tomography.
NASA Astrophysics Data System (ADS)
Sebai, A.; Stutzmann, E.; Montagner, J.-P.; Sicilia, D.; Beucler, E.
2003-04-01
In order to study the interaction at depth of hotspots with lithosphere and asthenosphere beneath Africa, we have determined an anisotropic tomographic model using Rayleigh and Love waves. We computed phase velocities along 1480 Rayleigh wave and 452 Love wave paths crossing Africa. For each path, fundamental mode and overtone phase velocities are computed in the period range 46-240sec by waveform inversion using the method derived by Beucler at al. (2003). These phase velocities are corrected for the effect of shallow layers and their lateral variations in velocity and anisotropy are then obtained using the method of Montagner (1986). Rayleigh and Love wave phase velocity maps are inverted together with the corresponding errors to obtain the anisotropic 3D S-wave velocity model. In this model, the Afar hotspot corresponds to the strongest negative velocity anomaly. The Tibesti and Darfur hotspots are located close to the Afar zone and the possible connection between the two areas is investigated. At shallow depth, the rift system of West and Central Africa is characterized by a negative velocity anomaly where it is difficult to separate the influence of the Mt Cameroun, Darfur and Tibesti hospots. In the superswell area, the positive anomaly at shallow depth is consistent with the existence of elevated plateaux and high bathymetry suggesting that the superplume is pushing the lithosphere upward. Anisotropy directions are in agreement with the convergence of Africa toward Eurasia with a roughly North-South fast direction.
Transition path time distributions
NASA Astrophysics Data System (ADS)
Laleman, M.; Carlon, E.; Orland, H.
2017-12-01
Biomolecular folding, at least in simple systems, can be described as a two state transition in a free energy landscape with two deep wells separated by a high barrier. Transition paths are the short part of the trajectories that cross the barrier. Average transition path times and, recently, their full probability distribution have been measured for several biomolecular systems, e.g., in the folding of nucleic acids or proteins. Motivated by these experiments, we have calculated the full transition path time distribution for a single stochastic particle crossing a parabolic barrier, including inertial terms which were neglected in previous studies. These terms influence the short time scale dynamics of a stochastic system and can be of experimental relevance in view of the short duration of transition paths. We derive the full transition path time distribution as well as the average transition path times and discuss the similarities and differences with the high friction limit.
A Regional Seismic Travel Time Model for North America
2010-09-01
velocity at the Moho, the mantle velocity gradient, and the average crustal velocity. After tomography across Eurasia, rigorous tests find that Pn...velocity gradient, and the average crustal velocity. After tomography across Eurasia rigorous tests find that Pn travel time residuals are reduced...and S-wave velocity in the crustal layers and in the upper mantle. A good prior model is essential because the RSTT tomography inversion is invariably
A study of regional waveform calibration in the eastern Mediterranean
NASA Astrophysics Data System (ADS)
Di Luccio, F.; Pino, N. A.; Thio, H. K.
2003-06-01
We modeled P nl phases from several moderate magnitude earthquakes in the eastern Mediterranean to test methods and develop path calibrations for determining source parameters. The study region, which extends from the eastern part of the Hellenic arc to the eastern Anatolian fault, is dominated by moderate earthquakes that can produce significant damage. Our results are useful for analyzing regional seismicity as well as seismic hazard, because very few broadband seismic stations are available in the selected area. For the whole region we have obtained a single velocity model characterized by a 30 km thick crust, low upper mantle velocities and a very thin lid overlaying a distinct low velocity layer. Our preferred model proved quite reliable for determining focal mechanism and seismic moment across the entire range of selected paths. The source depth is also well constrained, especially for moderate earthquakes.
Safe Maritime Autonomous Path Planning in a High Sea State
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Quadrelli, Marco; Huntsberger, Terrance L.
2014-01-01
This paper presents a path planning method for sea surface vehicles that prevents capsizing and bow-diving in a high sea-state. A key idea is to use response amplitude operators (RAOs) or, in control terminology, the transfer functions from a sea state to a vessel's motion, in order to find a set of speeds and headings that results in excessive pitch and roll oscillations. This information is translated to arithmetic constraints on the ship's velocity, which are passed to a model predictive control (MPC)-based path planner to find a safe and optimal path that achieves specified goals. An obstacle avoidance capability is also added to the path planner. The proposed method is demonstrated by simulations.
A Comparison of the Energetic Cost of Running in Marathon Racing Shoes.
Hoogkamer, Wouter; Kipp, Shalaya; Frank, Jesse H; Farina, Emily M; Luo, Geng; Kram, Rodger
2018-04-01
Reducing the energetic cost of running seems the most feasible path to a sub-2-hour marathon. Footwear mass, cushioning, and bending stiffness each affect the energetic cost of running. Recently, prototype running shoes were developed that combine a new highly compliant and resilient midsole material with a stiff embedded plate. The aim of this study was to determine if, and to what extent, these newly developed running shoes reduce the energetic cost of running compared with established marathon racing shoes. 18 high-caliber athletes ran six 5-min trials (three shoes × two replicates) in prototype shoes (NP), and two established marathon shoes (NS and AB) during three separate sessions: 14, 16, and 18 km/h. We measured submaximal oxygen uptake and carbon dioxide production during minutes 3-5 and averaged energetic cost (W/kg) for the two trials in each shoe model. Compared with the established racing shoes, the new shoes reduced the energetic cost of running in all 18 subjects tested. Averaged across all three velocities, the energetic cost for running in the NP shoes (16.45 ± 0.89 W/kg; mean ± SD) was 4.16 and 4.01% lower than in the NS and AB shoes, when shoe mass was matched (17.16 ± 0.92 and 17.14 ± 0.97 W/kg, respectively, both p < 0.001). The observed percent changes were independent of running velocity (14-18 km/h). The prototype shoes lowered the energetic cost of running by 4% on average. We predict that with these shoes, top athletes could run substantially faster and achieve the first sub-2-hour marathon.
Darr, Christa R; Cortopassi, Gino A; Datta, Sandipan; Varner, Dickson D; Meyers, Stuart A
2016-09-15
Mitochondrial oxygen consumption is a sensitive indicator of spermatozoal health in the context of cryopreservation. We investigated oxygen consumption of equine sperm mitochondria during incubation in four commercially available sperm cryopreservation extenders: modified INRA 96, BotuCrio, EZ Freezin-"LE" and "MFR5", in addition to several other parameters including motility, reactive oxygen species (ROS) production and viability. All experimental endpoints, with the exception of average path velocity, were affected significantly by freezing extender type after freezing and thawing. Sperm in INRA 96 had the lowest average progressive motility after thawing (24 ± 4.8%, P < 0.05). Sperm in EZ Freezin-"LE" had the highest post thaw viability (79 ± 3.1%, P < 0.05) and lowest post thaw ROS production (13 ± 2.4%), but sperm in BotuCrio had the highest maximal oxygen consumption levels, while also demonstrating similar ROS production and viability. This difference would not have been detected using conventional sperm analytical methods. In addition, sperm in BotuCrio had the highest average total motility (49 ± 7.4%), progressive motility (41 ± 6.4%), and velocity (VAP, 90 ± 3.6 μm/s) indicating that this medium preserved mitochondrial function optimally after cryopreservation. Mitochondrial oxygen consumption was positively correlated with traditional measures of sperm function including motility and viability (r = 0.62 and r = 0.49, respectively, P < 0.05), thus making it a sensitive method for determining cryopreservation success and mitochondrial function in stallion sperm. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Yang; Stehly, Laurent; Paul, Anne; AlpArray Working Group
2018-05-01
Taking advantage of the large number of seismic stations installed in Europe, in particular in the greater Alpine region with the AlpArray experiment, we derive a new high-resolution 3-D shear-wave velocity model of the European crust and uppermost mantle from ambient noise tomography. The correlation of up to four years of continuous vertical-component seismic recordings from 1293 broadband stations (10° W-35° E, 30° N-75° N) provides Rayleigh wave group velocity dispersion data in the period band 5-150 s at more than 0.8 million virtual source-receiver pairs. Two-dimensional Rayleigh wave group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. A probabilistic 3-D shear-wave velocity model, including probability densities for the depth of layer boundaries and S-wave velocity values, is obtained by non-linear Bayesian inversion. A weighted average of the probabilistic model is then used as starting model for the linear inversion step, providing the final Vs model. The resulting S-wave velocity model and Moho depth are validated by comparison with previous geophysical studies. Although surface-wave tomography is weakly sensitive to layer boundaries, vertical cross-sections through our Vs model and the associated probability of presence of interfaces display striking similarities with reference controlled-source (CSS) and receiver-function sections across the Alpine belt. Our model even provides new structural information such as a ˜8 km Moho jump along the CSS ECORS-CROP profile that was not imaged by reflection data due to poor penetration across a heterogeneous upper crust. Our probabilistic and final shear wave velocity models have the potential to become new reference models of the European crust, both for crustal structure probing and geophysical studies including waveform modeling or full waveform inversion.
Validation of the kinetic-turbulent-neoclassical theory for edge intrinsic rotation in DIII-D
NASA Astrophysics Data System (ADS)
Ashourvan, Arash; Grierson, B. A.; Battaglia, D. J.; Haskey, S. R.; Stoltzfus-Dueck, T.
2018-05-01
In a recent kinetic model of edge main-ion (deuterium) toroidal velocity, intrinsic rotation results from neoclassical orbits in an inhomogeneous turbulent field [T. Stoltzfus-Dueck, Phys. Rev. Lett. 108, 065002 (2012)]. This model predicts a value for the toroidal velocity that is co-current for a typical inboard X-point plasma at the core-edge boundary (ρ ˜ 0.9). Using this model, the velocity prediction is tested on the DIII-D tokamak for a database of L-mode and H-mode plasmas with nominally low neutral beam torque, including both signs of plasma current. Values for the flux-surface-averaged main-ion rotation velocity in the database are obtained from the impurity carbon rotation by analytically calculating the main-ion—impurity neoclassical offset. The deuterium rotation obtained in this manner has been validated by direct main-ion measurements for a limited number of cases. Key theoretical parameters of ion temperature and turbulent scale length are varied across a wide range in an experimental database of discharges. Using a characteristic electron temperature scale length as a proxy for a turbulent scale length, the predicted main-ion rotation velocity has a general agreement with the experimental measurements for neutral beam injection (NBI) powers in the range PNBI < 4 MW. At higher NBI power, the experimental rotation is observed to saturate and even degrade compared to theory. TRANSP-NUBEAM simulations performed for the database show that for discharges with nominally balanced—but high powered—NBI, the net injected torque through the edge can exceed 1 Nm in the counter-current direction. The theory model has been extended to compute the rotation degradation from this counter-current NBI torque by solving a reduced momentum evolution equation for the edge and found the revised velocity prediction to be in agreement with experiment. Using the theory modeled—and now tested—velocity to predict the bulk plasma rotation opens up a path to more confidently projecting the confinement and stability in ITER.
NASA Astrophysics Data System (ADS)
Smolenskaya, N. M.; Smolenskii, V. V.
2018-01-01
The paper presents models for calculating the average velocity of propagation of the flame front, obtained from the results of experimental studies. Experimental studies were carried out on a single-cylinder gasoline engine UIT-85 with hydrogen additives up to 6% of the mass of fuel. The article shows the influence of hydrogen addition on the average velocity propagation of the flame front in the main combustion phase. The dependences of the turbulent propagation velocity of the flame front in the second combustion phase on the composition of the mixture and operating modes. The article shows the influence of the normal combustion rate on the average flame propagation velocity in the third combustion phase.
Water evaporation: a transition path sampling study.
Varilly, Patrick; Chandler, David
2013-02-07
We use transition path sampling to study evaporation in the SPC/E model of liquid water. On the basis of thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.
Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony
2017-12-01
When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer ® . The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed.
Yuan, Liming; Thomas, Rick; Iannacchione, Anthony
2017-01-01
When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer®. The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed. PMID:29201495
Accurate path integration in continuous attractor network models of grid cells.
Burak, Yoram; Fiete, Ila R
2009-02-01
Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.
Integration across Time Determines Path Deviation Discrimination for Moving Objects
Whitaker, David; Levi, Dennis M.; Kennedy, Graeme J.
2008-01-01
Background Human vision is vital in determining our interaction with the outside world. In this study we characterize our ability to judge changes in the direction of motion of objects–a common task which can allow us either to intercept moving objects, or else avoid them if they pose a threat. Methodology/Principal Findings Observers were presented with objects which moved across a computer monitor on a linear path until the midline, at which point they changed their direction of motion, and observers were required to judge the direction of change. In keeping with the variety of objects we encounter in the real world, we varied characteristics of the moving stimuli such as velocity, extent of motion path and the object size. Furthermore, we compared performance for moving objects with the ability of observers to detect a deviation in a line which formed the static trace of the motion path, since it has been suggested that a form of static memory trace may form the basis for these types of judgment. The static line judgments were well described by a ‘scale invariant’ model in which any two stimuli which possess the same two-dimensional geometry (length/width) result in the same level of performance. Performance for the moving objects was entirely different. Irrespective of the path length, object size or velocity of motion, path deviation thresholds depended simply upon the duration of the motion path in seconds. Conclusions/Significance Human vision has long been known to integrate information across space in order to solve spatial tasks such as judgment of orientation or position. Here we demonstrate an intriguing mechanism which integrates direction information across time in order to optimize the judgment of path deviation for moving objects. PMID:18414653
NASA Astrophysics Data System (ADS)
Ballard, S.; Hipp, J. R.; Encarnacao, A.; Young, C. J.; Begnaud, M. L.; Phillips, W. S.
2012-12-01
Seismic event locations can be made more accurate and precise by computing predictions of seismic travel time through high fidelity 3D models of the wave speed in the Earth's interior. Given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we describe a methodology for accomplishing this by exploiting the full model covariance matrix and show examples of path-dependent travel time prediction uncertainty computed from SALSA3D, our global, seamless 3D tomographic P-velocity model. Typical global 3D models have on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiplication methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix, we solve for the travel-time covariance associated with arbitrary ray-paths by summing the model covariance along both ray paths. Setting the paths equal and taking the square root yields the travel prediction uncertainty for the single path.
Sperm quality analysis in XX, XY and YY males of the Nile tilapia (Oreochromis niloticus).
Gennotte, V; François, E; Rougeot, C; Ponthier, J; Deleuze, S; Mélard, C
2012-07-01
In Nile tilapia (Oreochromis niloticus), individuals with atypical sexual genotype are commonly used in farming (use of YY males to produce all-male offspring), but they also constitute major tools to study sex determinism mechanisms. In other species, sexual genotype and sex reversal procedures affect different aspects of biology, such as growth, behavior and reproductive success. The aim of this study was to assess the influence of sexual genotype on sperm quality in Nile tilapia. Milt characteristics were compared in XX (sex-reversed), XY and YY males in terms of gonadosomatic index, sperm count, sperm motility and duration of sperm motility. Sperm motility was measured by computer-assisted sperm analysis (CASA) quantifying several parameters: total motility, progressive motility, curvilinear velocity, straight line velocity, average path velocity and linearity. None of the sperm traits measured significantly differed between the three genotypes. Mean values of gonadosomatic index, sperm concentration and sperm motility duration of XX, XY and YY males, respectively ranged from 0.92 to 1.33%, from 1.69 to 2.22 ×10(9) cells mL(-1) and from 18'04″ to 27'32″. Mean values of total motility and curvilinear velocity 1 min after sperm activation, respectively ranged from 53 to 58% and from 71 to 76 μm s(-1) for the three genotypes. After 3 min of activity, all the sperm motility and velocity parameters dropped by half and continued to slowly decrease thereafter. Seven min after activation, only 9 to 13% of spermatozoa were still progressive. Our results prove that neither sexual genotype nor hormonal sex reversal treatments affect sperm quality in male Nile tilapias with atypical sexual genotype. Copyright © 2012 Elsevier Inc. All rights reserved.
Connolly, J G; Brown, I D; Lee, A G; Kerkut, G A
1985-01-01
The swimming velocity and the amplitude of the helical swimming path of T. pyriformis-NT1 cells grown at 20 degrees C (Tg 20 degrees C) and 38 degrees C (Tg 38 degrees C) were monitored between 0 and 40 degrees C in the presence and absence of electric fields. Within physiological limits the swimming velocity increased and the amplitude decreased as temperature was raised. The temperature profiles of these properties were not linear, and showed discontinuities at different temperatures for the different cultures. The break points in Arrhenius plots of the resting potential, regenerative spike magnitude, repolarization time, swimming velocity and swimming amplitude are tabulated and compared. The initial breakpoints upon cooling were clustered about the breakpoints in fluorescence polarization of D.P.H. in extracted phospholipids, and around the transition temperatures estimated from the literature for the pellicular membrane of these cells. The average of the initial breakpoints on cooling was 22.9 degrees C for Tg 38 degrees C cells and 13.7 degrees C for Tg 20 degrees C cells, a shift of 9.2 degrees C. Unlike Paramecium there is no depolarizing receptor potential in Tetrahymena upon warming. It is suggested that this may be the basis of a behavioural difference between Tetrahymena and Paramecium--namely that in Tetrahymena maximum swimming velocity occurs above growth temperature whereas in Paramecium the two points coincide. Swimming velocity and resting potential were correlated with membrane fluidity within physiological limits, but for other parameters the relationship with fluidity was more complex.(ABSTRACT TRUNCATED AT 250 WORDS)
Hoffard, Stuart H.
1980-01-01
Tests were conducted in 1978 to determine the feasibility of using an acoustic velocity meter to measure the Sacramento-San Joaquin Delta outflow in the Chipps Island Channel, Suisun Bay, Calif. Three parts of transducers with frequencies of 100, 40, and 24 kilohertz were installed on a cross-channel test path and operated at three elevations, 15.5, 8.0, and 4.0 feet below mean lower low water, to test signal transmission at varying depths. Transmission was most reliable at the lowest depth, and the 24-kilohertz transducers at the 7-millivolt threshold of signal strength met the study 's criterion of no persistent signal loss of more than one hour 's duration in any phase of the tidal cycle. Signal strength was statistically correlated with the environmental factors of wind velocity, wind direction, solar insolation, electrical conductivity, water temperature, water velocity, stage, rate of change in stage, and the acceleration of the rate of change in stage. All correlations were weak. Signal strength is apparently a function of the interaction of several environmental factors. A 32-day test to observe if aquatic growth on the transducers would affect signal transmission showed no reduction in signal strength. Suspended-sediment samples indicated that both the size and concentration of particles are greater than presumed in earlier studies. According to the results of this study, chances are good for reliable transmission of acoustic velocity meter signals. Usually some signals were much stronger than the average 20-second signal strength at 15-minute intervals used for correlation and the frequency analysis. Superior equipment is now being developed specifically for the Chipps Island site to transmit signals several times stronger than the signals analyzed in these tests. (USGS)
Pidlisecky, Adam; Haines, S.S.
2011-01-01
Conventional processing methods for seismic cone penetrometer data present several shortcomings, most notably the absence of a robust velocity model uncertainty estimate. We propose a new seismic cone penetrometer testing (SCPT) data-processing approach that employs Bayesian methods to map measured data errors into quantitative estimates of model uncertainty. We first calculate travel-time differences for all permutations of seismic trace pairs. That is, we cross-correlate each trace at each measurement location with every trace at every other measurement location to determine travel-time differences that are not biased by the choice of any particular reference trace and to thoroughly characterize data error. We calculate a forward operator that accounts for the different ray paths for each measurement location, including refraction at layer boundaries. We then use a Bayesian inversion scheme to obtain the most likely slowness (the reciprocal of velocity) and a distribution of probable slowness values for each model layer. The result is a velocity model that is based on correct ray paths, with uncertainty bounds that are based on the data error. ?? NRC Research Press 2011.
NASA Astrophysics Data System (ADS)
Abramov, Rafail V.
2018-06-01
For the gas near a solid planar wall, we propose a scaling formula for the mean free path of a molecule as a function of the distance from the wall, under the assumption of a uniform distribution of the incident directions of the molecular free flight. We subsequently impose the same scaling onto the viscosity of the gas near the wall and compute the Navier-Stokes solution of the velocity of a shear flow parallel to the wall. Under the simplifying assumption of constant temperature of the gas, the velocity profile becomes an explicit nonlinear function of the distance from the wall and exhibits a Knudsen boundary layer near the wall. To verify the validity of the obtained formula, we perform the Direct Simulation Monte Carlo computations for the shear flow of argon and nitrogen at normal density and temperature. We find excellent agreement between our velocity approximation and the computed DSMC velocity profiles both within the Knudsen boundary layer and away from it.
Scan path entropy and arrow plots: capturing scanning behavior of multiple observers
Hooge, Ignace; Camps, Guido
2013-01-01
Designers of visual communication material want their material to attract and retain attention. In marketing research, heat maps, dwell time, and time to AOI first hit are often used as evaluation parameters. Here we present two additional measures (1) “scan path entropy” to quantify gaze guidance and (2) the “arrow plot” to visualize the average scan path. Both are based on string representations of scan paths. The latter also incorporates transition matrices and time required for 50% of the observers to first hit AOIs (T50). The new measures were tested in an eye tracking study (48 observers, 39 advertisements). Scan path entropy is a sensible measure for gaze guidance and the new visualization method reveals aspects of the average scan path and gives a better indication in what order global scanning takes place. PMID:24399993
Induced velocity field of a jet in a crossflow
NASA Technical Reports Server (NTRS)
Fearn, R. L.; Weston, R. P.
1978-01-01
An experimental investigation of a subsonic round jet exhausting perpendicularly from a flat plate into a subsonic crosswind of the same temperature was conducted. Velocity and pressure measurements were made in planes perpendicular to the path of the jet for ratios of jet velocity to crossflow velocity ranging from 3 to 10. The results of these measurements are presented in tabular and graphical forms. A pair of diffuse contrarotating vortices is identified as a significant feature of the flow, and the characteristics of the vortices are discussed.
Dynamics of Polarons in Organic Conjugated Polymers with Side Radicals.
Liu, J J; Wei, Z J; Zhang, Y L; Meng, Y; Di, B
2017-03-16
Based on the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model, and using the molecular dynamics method, we discuss the dynamics of electron and hole polarons propagating along a polymer chain, as a function of the distance between side radicals and the magnitude of the transfer integrals between the main chain and the side radicals. We first discuss the average velocities of electron and hole polarons as a function of the distance between side radicals. It is found that the average velocities of the electron polarons remain almost unchanged, while the average velocities of hole polarons decrease significantly when the radical distance is comparable to the polaron width. Second, we have found that the average velocities of electron polarons decrease with increasing transfer integral, but the average velocities of hole polarons increase. These results may provide a theoretical basis for understanding carriers transport properties in polymers chain with side radicals.
An improved car-following model with two preceding cars' average speed
NASA Astrophysics Data System (ADS)
Yu, Shao-Wei; Shi, Zhong-Ke
2015-01-01
To better describe cooperative car-following behaviors under intelligent transportation circumstances and increase roadway traffic mobility, the data of three successive following cars at a signalized intersection of Jinan in China were obtained and employed to explore the linkage between two preceding cars' average speed and car-following behaviors. The results indicate that two preceding cars' average velocity has significant effects on the following car's motion. Then an improved car-following model considering two preceding cars' average velocity was proposed and calibrated based on full velocity difference model and some numerical simulations were carried out to study how two preceding cars' average speed affected the starting process and the traffic flow evolution process with an initial small disturbance, the results indicate that the improved car-following model can qualitatively describe the impacts of two preceding cars' average velocity on traffic flow and that taking two preceding cars' average velocity into account in designing the control strategy for the cooperative adaptive cruise control system can improve the stability of traffic flow, suppress the appearance of traffic jams and increase the capacity of signalized intersections.
Rayleigh-Wave Group-Velocity Tomography of Saudi Arabia
NASA Astrophysics Data System (ADS)
Tang, Zheng; Mai, P. Martin; Chang, Sung-Joon; Zahran, Hani
2017-04-01
We use surface-wave tomography to investigate the lithospheric structure of the Arabian plate, which is traditionally divided into the Arabian shield in the west and the Arabian platform in the east. The Arabian shield is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks. The Arabian platform is primarily covered by very thick Paleozoic, Mesozoic and Cenozoic sediments. We develop high-resolution tomographic images from fundamental-mode Rayleigh-wave group-velocities across Saudi Arabia, utilizing the teleseismic data recorded by the permanent Saudi National Seismic Network (SNSN). Our study extends previous efforts on surface wave work by increasing ray path density and improving spatial resolution. Good quality dispersion measurements for roughly 3000 Rayleigh-wave paths have been obtained and utilized for the group-velocity tomography. We have applied the Fast Marching Surface Tomography (FMST) scheme of Rawlinson (2005) to obtain Rayleigh-wave group-velocity images for periods from 8 s to 40 s on a 0.8° 0.8° grid and at resolutions approaching 2.5° based on the checkerboard tests. Our results indicate that short-period group-velocity maps (8-15 s) correlate well with surface geology, with slow velocities delineating the main sedimentary features including the Arabian platform, the Persian Gulf and Mesopotamia. For longer periods (20-40 s), the velocity contrast is due to the differences in crustal thickness and subduction/collision zones. The lower velocities are sensitive to the thicker continental crust beneath the eastern Arabia and the subduction/collision zones between the Arabian and Eurasian plate, while the higher velocities in the west infer mantle velocity.
NASA Astrophysics Data System (ADS)
Pasyanos, M. E.; Walter, W. R.; Hazler, S. E.
- We present results from a large-scale study of surface-wave group velocity dispersion across the Middle East, North Africa, southern Eurasia and the Mediterranean. Our database for the region is populated with seismic data from regional events recorded at permanent and portable broadband, three-component digital stations. We have measured the group velocity using a multiple narrow-band filter on deconvolved displacement data. Overall, we have examined more than 13,500 seismograms and made good quality dispersion measurements for 6817 Rayleigh- and 3806 Love-wave paths. We use a conjugate gradient method to perform a group-velocity tomography. Our current results include both Love- and Rayleigh-wave inversions across the region for periods from 10 to 60 seconds. Our findings indicate that short-period structure is sensitive to slow velocities associated with large sedimentary features such as the Mediterranean Sea and Persian Gulf. We find our long-period Rayleigh-wave inversion is sensitive to crustal thickness, such as fast velocities under the oceans and slow along the relatively thick Zagros Mts. and Turkish-Iranian Plateau. We also find slow upper mantle velocities along known rift systems. Accurate group velocity maps can be used to construct phase-matched filters along any given path. The filters can improve weak surface wave signals by compressing the dispersed signal. The signals can then be used to calculate regionally determined MS measurements, which we hope can be used to extend the threshold of mb:MS discriminants down to lower magnitude levels. Other applications include using the group velocities in the creation of a suitable background model for forming station calibration maps, and using the group velocities to model the velocity structure of the crust and upper mantle.
Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA
2008-02-26
A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.
Scaling laws for ignition at the National Ignition Facility from first principles.
Cheng, Baolian; Kwan, Thomas J T; Wang, Yi-Ming; Batha, Steven H
2013-10-01
We have developed an analytical physics model from fundamental physics principles and used the reduced one-dimensional model to derive a thermonuclear ignition criterion and implosion energy scaling laws applicable to inertial confinement fusion capsules. The scaling laws relate the fuel pressure and the minimum implosion energy required for ignition to the peak implosion velocity and the equation of state of the pusher and the hot fuel. When a specific low-entropy adiabat path is used for the cold fuel, our scaling laws recover the ignition threshold factor dependence on the implosion velocity, but when a high-entropy adiabat path is chosen, the model agrees with recent measurements.
Velocity of mist droplets and suspending gas imaged separately
NASA Astrophysics Data System (ADS)
Kuethe, Dean O.; McBride, Amber; Altobelli, Stephen A.
2012-03-01
Nuclear Magnetic Resonance Images (MRIs) of the velocity of water droplets and velocity of the suspending gas, hexafluoroethane, are presented for a vertical and horizontal mist pipe flow. In the vertical flow, the upward velocity of the droplets is clearly slower than the upward velocity of the gas. The average droplet size calculated from the average falling velocity in the upward flow is larger than the average droplet size of mist drawn from the top of the pipe measured with a multi-stage aerosol impactor. Vertical flow concentrates larger particles because they have a longer transit time through the pipe. In the horizontal flow there is a gravity-driven circulation with high-velocity mist in the lower portion of the pipe and low-velocity gas in the upper portion. MRI has the advantages that it can image both phases and that it is unperturbed by optical opacity. A drawback is that the droplet phase of mist is difficult to image because of low average spin density and because the signal from water coalesced on the pipe walls is high. To our knowledge these are the first NMR images of mist.
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Rust, W. D.
1993-01-01
Velocities, optical risetimes, and transmission line model peak currents for seven natural positive return strokes are reported. The average 2D positive return stroke velocity for channel segments of less than 500 m in length starting near the base of the channel is 0.8 +/- 0.3 x 10 exp 8 m/s, which is slower than the present corresponding average velocity for natural negative first return strokes of 1.7 +/- 0.7 x 10 exp 8/s. It is inferred that positive stroke peak currents in the literature, which assume the same velocity as negative strokes, are low by a factor of 2. The average 2D positive return stroke velocity for channel segments of greater than 500 m starting near the base of the channel is 0.9 +/- 0.4 x 10 exp 8 m/s. The corresponding average velocity for the present natural negative first strokes is 1.2 +/- 0.6 x 10 exp 8 m/s. No significant velocity change with height is found for positive return strokes.
Frankel, Tyler; Yonkos, Lance; Ampy, Franklin; Frankel, Jack
2018-04-01
Progestins are utilized as a component of human contraceptives, and commonly enter the environment via wastewater treatment plant effluent. Certain progestins activate fish androgen receptors and cause decreases in fecundity and masculinization of females. We used a nest acquisition assay and computer-assisted sperm analysis to examine the effects of levonorgestrel on male fathead minnow (Pimephales promelas) reproductive fitness. Males were exposed to 0, 10, or 100 ng/L levonorgestrel for 14 d. Combinations of a control male and a male from one of the treatments were placed into a competitive nesting assay, and the time each male spent holding the nest and time spent exhibiting aggressive behaviors were analyzed at 48 h postexposure. Semen samples were analyzed for total motility, straight-line velocity, curvilinear velocity, average path velocity, linearity, beat cross frequency, and wobble at 0, 30, 60, 90, and 120 s postactivation. Males exposed to either 10 or 100 ng/L of levonorgestrel exhibited increased nest acquisition success and lower levels of aggression compared with control-control pairings, as well as decreases in multiple sperm motion characteristics. Our results suggest that further research is required to ascertain the effects of levonorgestrel on male gamete quality and reproductive behaviors. Environ Toxicol Chem 2018;37:1131-1137. © 2017 SETAC. © 2017 SETAC.
Freezability of water buffalo spermatozoa is improved with the addition of catalase in cryodiluent.
Ali, L; Hassan Andrabi, S M; Ahmed, H; Hussain Shah, A A
Catalase enzyme is usually distributed in mammalian seminal plasma, where it decomposes hydrogen peroxide into water and oxygen and enhances sperm survivability. To evaluate the effect of catalase (0, 100, 200 or 300 IU/ml) added in tris-citric acid (TCA) based extender on motion characteristics, viability and DNA integrity of bubaline spermatozoa at post dilution (PD) and post thawing (PT) stages of cryopreservation. Collection of semen was done in four Nili-Ravi bulls with an artificial vagina (42 degree C). Qualified semen samples from each bull were further subdivided into four aliquots for dilution with the experimental TCA extender containing either 0.0 (T1), 100 IU (T2), 200 IU (T3) or 300 IU (T4) catalase (activity12660 U/mg). At PT, mean computer progressive motility, average path velocity, straight line velocity, curvilinear velocity, visual motility and DNA integrity were higher (P < 0.05) in catalase fortified treatment groups as compared with control. Regarding plasma membrane integrity and supra-vital plasma membrane integrity, at PT the mean values were higher (P < 0.05) in T4 as compared with control. At PD and PT, mean acrosomal integrity of buffalo bull spermatozoa was higher (P < 0.05) in T4 group as compared with control. Addition of catalase at a concentration of 300IU/ml in TCA cryodiluent improved the freezability of water buffalo spermatozoa.
Golshahi, Karim; Shabani, Nariman; Aramli, Mohammad Sadegh; Noori, Elnaz
2015-10-01
This study was designed to test the effect of post-thaw storage time on sperm motility parameters of Caspian brown trout (n=7). Furthermore, we investigated the effect of sperm-to-egg ratios of 100,000:1, 300,000:1 and 600,000:1 on fertility of cryopreserved Caspian brown semen. Quality was assessed by measuring sperm motility parameters and fertilization rates at the eyed and hatching stages. The percentage of post-thawed sperm motility, curvilinear velocity (VCL) and amplitude of lateral head displacement (ALH) were not affected by 60 min of storage, whereas a decrease in straight line velocity (VSL), average path velocity (VAP) and linearity (LIN) were found in cryopreserved semen. Thus, the cryopreserved sperm of Caspian brown trout could be stored up to 60 min without loss of the percentage of sperm motility. The fertilization rate was not affected by 60 min of post-thaw storage and was over 70% for sperm-to-egg ratios of both 300,000 and 600,000:1. To our knowledge, this study is the first to report the high post-thaw fertilization ability of Caspian brown trout semen at a sperm-to-egg ratio as low as 300,000:1. This procedure after scaling up can be recommended for routine Caspian brown trout sperm cryopreservation. Copyright © 2015 Elsevier Inc. All rights reserved.
Computer-aided sperm analysis: a useful tool to evaluate patient's response to varicocelectomy.
Ariagno, Julia I; Mendeluk, Gabriela R; Furlan, María J; Sardi, M; Chenlo, P; Curi, Susana M; Pugliese, Mercedes N; Repetto, Herberto E; Cohen, Mariano
2017-01-01
Preoperative and postoperative sperm parameter values from infertile men with varicocele were analyzed by computer-aided sperm analysis (CASA) to assess if sperm characteristics improved after varicocelectomy. Semen samples of men with proven fertility (n = 38) and men with varicocele-related infertility (n = 61) were also analyzed. Conventional semen analysis was performed according to WHO (2010) criteria and a CASA system was employed to assess kinetic parameters and sperm concentration. Seminal parameters values in the fertile group were very far above from those of the patients, either before or after surgery. No significant improvement in the percentage normal sperm morphology (P = 0.10), sperm concentration (P = 0.52), total sperm count (P = 0.76), subjective motility (%) (P = 0.97) nor kinematics (P = 0.30) was observed after varicocelectomy when all groups were compared. Neither was significant improvement found in percentage normal sperm morphology (P = 0.91), sperm concentration (P = 0.10), total sperm count (P = 0.89) or percentage motility (P = 0.77) after varicocelectomy in paired comparisons of preoperative and postoperative data. Analysis of paired samples revealed that the total sperm count (P = 0.01) and most sperm kinetic parameters: curvilinear velocity (P = 0.002), straight-line velocity (P = 0.0004), average path velocity (P = 0.0005), linearity (P = 0.02), and wobble (P = 0.006) improved after surgery. CASA offers the potential for accurate quantitative assessment of each patient's response to varicocelectomy.
Bencharif, D; Amirat, L; Pascal, O; Anton, M; Schmitt, E; Desherces, S; Delhomme, G; Langlois, M-L; Barrière, P; Larrat, M; Tainturier, D
2010-04-01
Twenty sperm samples from five dogs were frozen in liquid nitrogen at -196 degrees C in 16 different media, two control media containing 20% egg yolk and 6% low-density lipoproteins (LDL); 10 test media containing 6% LDL (the active cryoprotective ingredient of chicken egg yolk) combined with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mmol of glutamine respectively at 4%, 5%, 7%, and 8% LDL. Following thawing, sperm mobility was assessed using an image analyser, HAMILTON THORN CERROS 12. The percentage of mobile spermatozoa was 62.05% in the 6% LDL + 20 mmol glutamine medium compared with 48.90% in the egg yolk-based medium (p < 0.05) or 57.55% for the 6% LDL medium (p < 0.05). Furthermore, in most cases, the motility parameters (average path velocity, curvilinear velocity, straight line velocity) in the 6% LDL + 20 mmol glutamine medium, were superior, to a statistically significant extent, to those in the control media. Finally, the 6% LDL + 20 mmol glutamine combination provides spermatozoa with better protection during freezing than egg yolk or the 6% LDL medium alone in terms of acrosome integrity (fluorescein isothiocyanate--Pisum sativum agglutinin test: p < 0.05), the flagellar plasma membrane (hypo-osmotic test: p < 0.05 for 6% LDL), the DNA (acridine orange test; no significant difference) and the integrity of the acrosome (Spermac test: no significant difference).
Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.
Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan
2017-02-01
The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.
Muscle Force-Velocity Relationships Observed in Four Different Functional Tests
Zivkovic, Milena Z.; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan
2017-01-01
Abstract The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force–velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles. PMID:28469742
NASA Astrophysics Data System (ADS)
Weathers, T. S.; Ginn, T. R.; Spycher, N.; Barkouki, T. H.; Fujita, Y.; Smith, R. W.
2009-12-01
Subsurface contamination is often mitigated with an injection/extraction well system. An understanding of heterogeneities within this radial flowfield is critical for modeling, prediction, and remediation of the subsurface. We address this using a Lagrangian approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). A well-to-well treatment system that incorporates in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90 has been explored at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. PHREEQC2 provides a one-dimensional advective-dispersive transport option that can be and has been used in streamtube ensemble models. Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is variable in space, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance if kinetic reactions are present with multiple components, if kinetic reaction rates vary in space, if the reactions involve multiple phases (e.g. heterogeneous reactions), and/or if they impact physical characteristics (porosity/permeability), as does ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized “fast-slow-fast” nonuniform velocity along the streamline. Breakthrough curves produced by each simulation are weighted by the path-respective flux fractions (obtained by deconvolution of tracer tests conducted at the VZRP) to obtain the flux-average of flow contributions to the observation well. Breakthrough data from urea injection experiments performed at the VZRP are compared to the model results from the PHREEQC2 variable velocity ensemble.
Zhu, Daqi; Huang, Huan; Yang, S X
2013-04-01
For a 3-D underwater workspace with a variable ocean current, an integrated multiple autonomous underwater vehicle (AUV) dynamic task assignment and path planning algorithm is proposed by combing the improved self-organizing map (SOM) neural network and a novel velocity synthesis approach. The goal is to control a team of AUVs to reach all appointed target locations for only one time on the premise of workload balance and energy sufficiency while guaranteeing the least total and individual consumption in the presence of the variable ocean current. First, the SOM neuron network is developed to assign a team of AUVs to achieve multiple target locations in 3-D ocean environment. The working process involves special definition of the initial neural weights of the SOM network, the rule to select the winner, the computation of the neighborhood function, and the method to update weights. Then, the velocity synthesis approach is applied to plan the shortest path for each AUV to visit the corresponding target in a dynamic environment subject to the ocean current being variable and targets being movable. Lastly, to demonstrate the effectiveness of the proposed approach, simulation results are given in this paper.
Rosowski, John J; Bowers, Peter; Nakajima, Hideko H
2018-03-01
While most models of cochlear function assume the presence of only two windows into the mammalian cochlea (the oval and round windows), a position that is generally supported by several lines of data, there is evidence for additional sound paths into and out of the inner ear in normal mammals. In this report we review the existing evidence for and against the 'two-window' hypothesis. We then determine how existing data and inner-ear anatomy restrict transmission of sound through these additional sound pathways in cat by utilizing a well-tested model of the cat inner ear, together with anatomical descriptions of the cat cochlear and vestibular aqueducts (potential additional windows to the cochlea). We conclude: (1) The existing data place limits on the size of the cochlear and vestibular aqueducts in cat and are consistent with small volume-velocities through these ducts during ossicular stimulation of the cochlea, (2) the predicted volume velocities produced by aqueducts with diameters half the size of the bony diameters match the functional data within ±10 dB, and (3) these additional volume velocity paths contribute to the inner ear's response to non-acoustic stimulation and conductive pathology. Copyright © 2017 Elsevier B.V. All rights reserved.
Simulation of the fixed optical path difference of near infrared wind imaging interferometer
NASA Astrophysics Data System (ADS)
Rong, Piao; Zhang, Chunmin; Yan, Tingyu; Liu, Dongdong; Li, Yanfen
2017-02-01
As an important part of the earth, atmosphere plays a vital role in filtering the solar radiation, adjusting the temperature and organizing the water circulation and keeping human survival. The passive atmospheric wind measurement is based on the imaging interferometer technology and Doppler effect of electromagnetic wave. By using the wind imaging interferometer to get four interferograms of airglow emission lines, the atmospheric wind velocity, temperature, pressure and emission rate can be derived. Exploring the multi-functional and integrated innovation of detecting wind temperature, wind velocity and trace gas has become a research focus in the field. In the present paper, the impact factors of the fixed optical path difference(OPD) of near infrared wind imaging interferometer(NIWII) are analyzed and the optimum value of the fixed optical path difference is simulated, yielding the optimal results of the fixed optical path difference is 20 cm in near infrared wave band (the O2(a1Δg) airglow emission at 1.27 microns). This study aims at providing theoretical basis and technical support for the detection of stratosphere near infrared wind field and giving guidance for the design and development of near infrared wind imaging interferometer.
Detonation velocity in poorly mixed gas mixtures
NASA Astrophysics Data System (ADS)
Prokhorov, E. S.
2017-10-01
The technique for computation of the average velocity of plane detonation wave front in poorly mixed mixture of gaseous hydrocarbon fuel and oxygen is proposed. Here it is assumed that along the direction of detonation propagation the chemical composition of the mixture has periodic fluctuations caused, for example, by layered stratification of gas charge. The technique is based on the analysis of functional dependence of ideal (Chapman-Jouget) detonation velocity on mole fraction (with respect to molar concentration) of the fuel. It is shown that the average velocity of detonation can be significantly (by more than 10%) less than the velocity of ideal detonation. The dependence that permits to estimate the degree of mixing of gas mixture basing on the measurements of average detonation velocity is established.
Chen, Kate Huihsuan; Furumura, Takashi; Rubinstein, Justin L.
2015-01-01
We observe crustal damage and its subsequent recovery caused by the 1999 M7.6 Chi-Chi earthquake in central Taiwan. Analysis of repeating earthquakes in Hualien region, ~70 km east of the Chi-Chi earthquake, shows a remarkable change in wave propagation beginning in the year 2000, revealing damage within the fault zone and distributed across the near surface. We use moving window cross correlation to identify a dramatic decrease in the waveform similarity and delays in the S wave coda. The maximum delay is up to 59 ms, corresponding to a 7.6% velocity decrease averaged over the wave propagation path. The waveform changes on either side of the fault are distinct. They occur in different parts of the waveforms, affect different frequencies, and the size of the velocity reductions is different. Using a finite difference method, we simulate the effect of postseismic changes in the wavefield by introducing S wave velocity anomaly in the fault zone and near the surface. The models that best fit the observations point to pervasive damage in the near surface and deep, along-fault damage at the time of the Chi-Chi earthquake. The footwall stations show the combined effect of near-surface and the fault zone damage, where the velocity reduction (2–7%) is twofold to threefold greater than the fault zone damage observed in the hanging wall stations. The physical models obtained here allow us to monitor the temporal evolution and recovering process of the Chi-Chi fault zone damage.
NASA Astrophysics Data System (ADS)
Loubet, Benjamin; Buysse, Pauline; Lafouge, Florence; Ciuraru, Raluca; Decuq, Céline; Zurfluh, Olivier
2017-04-01
Field scale flux measurements of volatile organic compounds (VOC) are essential for improving our knowledge of VOC emissions from ecosystems. Many VOCs are emitted from and deposited to ecosystems. Especially less known, are crops which represent more than 50% of French terrestrial surfaces. In this study, we evaluate a new on-line methodology for measuring VOC fluxes by Eddy Covariance with a PTR-Qi-TOF-MS. Measurements were performed at the ICOS FR-GRI site over a crop using a 30 m long high flow rate sampling line and an ultrasonic anemometer. A Labview program was specially designed for acquisition and on-line covariance calculation: Whole mass spectra ( 240000 channels) were acquired on-line at 10 Hz and stored in a temporary memory. Every 5 minutes, the spectra were mass-calibrated and normalized by the primary ion peak integral at 10 Hz. The mass spectra peaks were then retrieved from the 5-min averaged spectra by withdrawing the baseline, determining the resolution and using a multiple-peak detection algorithm. In order to optimize the peak detection algorithm for the covariance, we determined the covariances as the integrals of the peaks of the vertical-air-velocity-fluctuation weighed-averaged-spectra. In other terms, we calculate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, X.M.; Carlos, R.C.; Kirkland, M.W.
1999-07-01
At microwave frequencies, each centimeter of precipitable water vapor (PWV) causes about 6.45 cm of extra electrical path length relative to the {open_quotes}dry{close_quotes} air. The fluctuations of the water vapor dominate the changes of the effective path length through the atmosphere in a relatively short time period of a few hours. In this paper we describe a microwave interferometer developed for water vapor investigations and present the observation results. The interferometer consists of 10 antennas along two orthogonal 400-m arms that form many baselines (antenna pairs) ranging from 100 to 400 m. All the antennas receive a common CW signalmore » (11.7 GHz) from a geostationary television satellite, and phase differences between pairs of antennas are measured. The phase differences reflect the column-integrated water vapor differences from the top of the atmosphere to the spatially separated antennas at the ground. The interferometric, baseline-differential measurements allow us to study the statistical properties of the PWV fluctuations, as well as the turbulent activity of the convective boundary layer (CBL). Structure function analysis of the interferometer measurements shows good agreement with results obtained from the Very Large Array (VLA) and with a theoretical model developed for radio astronomical very long baseline interferometry (VLBI), reported previously by other investigators. The diurnally varying structure constant correlates remarkably well with the combination of the latent and sensible heat fluxes measured simultaneously from a 10-m meteorological tower. The average drift velocity of the PWV over the interferometer was also derived from the measurements. The derived velocity agrees well during the morning hours with the wind measured by an anemometer at the center of the interferometer. {copyright} 1999 American Geophysical Union« less
Observed Rayleigh Wave Group Velocities and Spectral Amplitudes for Some Eurasian Paths
1974-02-28
group velocities. I-l ^m FFCT’ON II DATA AND METHOD OF ANALYSIS A. DATA USED Seismic recordings rom the VLPE stations at Chiang Mai , Thailard...20:08:31 mi 5.2 5.2 3.4 29 LPE STATION PARAMETERS AND EPICENTRAL DISTANCES VLPE Station Parameters Station Chiang Mai , Thailand Fairbanks
Changes in blood velocity following microvascular free tissue transfer.
Hanasono, Matthew M; Ogunleye, Olubunmi; Yang, Justin S; Hartley, Craig J; Miller, Michael J
2009-09-01
Understanding how pedicle blood velocities change after free tissue transfer may enable microvascular surgeons to predict when thrombosis is most likely to occur. A 20-MHz Doppler probe was used to measure arterial and venous blood velocities prior to pedicle division and 20 minutes after anastomosis in 32 microvascular free flaps. An implantable Doppler probe was then used to measure arterial and venous blood velocities daily for 5 days. Peak arterial blood velocity averaged 30.6 cm/s prior to pedicle division and increased to 36.5 cm/s 20 minutes after anastomosis ( P < 0.05). Peak venous blood velocity averaged 7.6 cm/s prior to pedicle division and increased to 12.4 cm/s 20 minutes after anastomosis ( P < 0.05). Peak arterial blood velocities averaged 34.0, 37.7, 43.8, 37.9, 37.6 cm/s on postoperative days (PODs) 1 through 5, respectively. Peak venous blood velocities averaged 11.9, 14.5, 18.2, 16.8, 17.7 cm/s on PODs 1 through 5, respectively. The peak arterial blood velocity on POD 3, and peak venous blood velocities on PODs 2, 3, and 5 were significantly higher than 20 minutes after anastomosis ( P < 0.05). Arterial and venous blood velocities increase for the first 3 postoperative days, potentially contributing to the declining risk for pedicle thrombosis during this time period.
Force and moment rotordynamic coefficients for pump-impeller shroud surfaces
NASA Technical Reports Server (NTRS)
Childs, Dara W.
1987-01-01
Governing equations of motion are derived for a bulk-flow model of the leakage path between an impeller shroud and a pump housing. The governing equations consist of a path-momentum, a circumferential - momentum, and a continuity equation. The fluid annulus between the impeller shroud and pump housing is assumed to be circumferentially symmetric when the impeller is centered; i.e., the clearance can vary along the pump axis but does not vary in the circumferential direction. A perturbation expansion of the governing equations in the eccentricity ratio yields a set of zeroth and first-order governing equations. The zeroth-order equations define the leaking rate and the circumferential and path velocity distributions and pressure distributions for a centered impeller position. The first-order equations define the perturbations in the velocity and pressure distributions due to either a radial-displacement perturbation or a tilt perturbation of the impeller. Integration of the perturbed pressure and shear-stress distribution acting on the rotor yields the reaction forces and moments acting on the impeller face.
Further constraints on the African superplume structure
NASA Astrophysics Data System (ADS)
Ni, Sidao; Helmberger, Don V.
2003-11-01
It is well established that there is a large-scale low velocity structure in the lowermost mantle beneath Africa, extending from the Southeastern Atlantic Ocean to the Southwestern Indian Ocean with a volume greater than 10 billion km 3 (>7000 km long, 1000 km across and 1200 km high) [Earth Planet. Sci. Lett. 206 (2003) 119]. This low velocity structure is often called the African superplume. Various studies also require sharp boundaries for the plume. However, as for its height and shear velocity reduction, there has been some controversy, especially concerning the velocities at the core-mantle-boundary (CMB). Here, we present an assortment of phases involving S diff, SKS, S and S cS with both vertical and horizontal paths sampling a 2D corridor through the structure. Travel time and waveform modeling of these seismic phases argues for a model with shear velocity reduction of approximately 3% within the superplume (which is basically a 200 km thick layer low velocity layer beneath the Southern Atlantic Ocean, and a 1200 km high structure beneath South Africa), and against a model of a substantially reduced low velocity layer (up to 10%, 300 km) beneath the superplume. We also analyzed P diff and the differential times of P cP-P and compared them with S diff and S cS-S observations along the same great circle paths. The P-velocity is not very anomalous, at most -0.5%, much smaller than -1% as expected from a thermal anomaly with -3% lower S-velocity [Geophys. Res. Lett. 27 (2000) 421], thus again arguing for a chemical origin which was suggested from the modeling of African superplume sharp sides [Science 296 (2002) 1850].
NASA Astrophysics Data System (ADS)
Persaud, P.; Di Luccio, F.; Clayton, R. W.
2012-12-01
This study contributes to our understanding of the Pacific-North America lithospheric structure beneath the Gulf of California and its western and eastern confining regions, by mapping fundamental mode surface wave group velocities. We measure the dispersion of Rayleigh and Love surface waves to create a series of 2D maps of group velocities, which provide important information on the earth structure beneath the study region. Although several surface waves studies were published in the last decade, all of them were done using phase velocity measurements based on the two stations method. Here we combine dispersion measurements at the regional scale with data at teleseismic distances to provide a more complete dataset for studies of earth structure. We also analyze group velocities from short to long periods in order to define structural features at both crustal and mantle scales. Our study uses earthquakes recorded by the Network of Autonomously Recording Seismographs (NARS-Baja), a set of 14 broadband seismic stations that flank the Gulf of California. From the NEIC bulletin we selected 140 events recorded by the NARS-Baja array. In order to have dispersion measurements in a wide range of periods, we used regional earthquakes with M > 4.2 and teleseismic events with M > 6.9. We first computed the dispersion curves for the surface wave paths crossing the region. Then, the along path group velocity measurements for multiple periods are converted into tomographic images using kernels which vary in off-path width with the square root of the period. Dispersion measurements show interesting and consistent features for both Rayleigh and Love waves. At periods equal to or shorter than 15 s, when surface waves are primarily sensitive to shear velocity in the upper 15 km of the crust, slow group velocities beneath the northern-central Gulf reveal the presence of a thick sedimentary layer, relative to the southern Gulf. Group velocities beneath the northwestern side of Baja are faster than the rest of the peninsula. At deeper crustal levels, group velocities become faster in the northern Gulf, whereas in the central Gulf a slow velocity patch becomes more localized. At periods of 30 s and longer, tomographic maps become more complex, reflecting the variation in lithospheric structure beneath the study area. Above 40 s, two areas of high velocity are clearly incoming from the Pacific. Going even deeper into the mantle (60-100 s), the velocity pattern becomes less heterogeneous and relatively slow. The separation between low velocities beneath the East Pacific Rise and the Rivera Transform fault zone and high velocities beneath the northern tip of the Rivera plate is clear at these periods. At even longer periods, tomographic maps are relatively homogeneous beneath Baja and the Gulf, as well as onshore and offshore.
New insights into the crowd characteristics in Mina
NASA Astrophysics Data System (ADS)
Wang, J. Y.; Weng, W. G.; Zhang, X. L.
2014-11-01
The significance of the study of the characteristics of crowd behavior is indubitable for safely organizing mass activities. There is insufficient material to conduct such research. In this paper, the Mina crowd disaster is quantitatively re-investigated. Its instantaneous velocity field is extracted from video material based on the cross-correlation algorithm. The properties of the stop-and-go waves, including fluctuation frequencies, wave propagation speeds, characteristic speeds, and time and space averaged velocity variances, are analyzed in detail. Thus, the database of the stop-and-go wave features is enriched, which is very important to crowd studies. The ‘turbulent’ flows are investigated with the proper orthogonal decomposition (POD) method which is widely used in fluid mechanics. And time series and spatial analysis are conducted to investigate the characteristics of the ‘turbulent’ flows. In this paper, the coherent structures and movement process are described by the POD method. The relationship between the jamming point and crowd path is analyzed. And the pressure buffer recognized in this paper is consistent with Helbing's high-pressure region. The results revealed here may be helpful for facilities design, modeling crowded scenarios and the organization of large-scale mass activities.
Human motion behavior while interacting with an industrial robot.
Bortot, Dino; Ding, Hao; Antonopolous, Alexandros; Bengler, Klaus
2012-01-01
Human workers and industrial robots both have specific strengths within industrial production. Advantageously they complement each other perfectly, which leads to the development of human-robot interaction (HRI) applications. Bringing humans and robots together in the same workspace may lead to potential collisions. The avoidance of such is a central safety requirement. It can be realized with sundry sensor systems, all of them decelerating the robot when the distance to the human decreases alarmingly and applying the emergency stop, when the distance becomes too small. As a consequence, the efficiency of the overall systems suffers, because the robot has high idle times. Optimized path planning algorithms have to be developed to avoid that. The following study investigates human motion behavior in the proximity of an industrial robot. Three different kinds of encounters between the two entities under three robot speed levels are prompted. A motion tracking system is used to capture the motions. Results show, that humans keep an average distance of about 0,5m to the robot, when the encounter occurs. Approximation of the workbenches is influenced by the robot in ten of 15 cases. Furthermore, an increase of participants' walking velocity with higher robot velocities is observed.
Asymmetry in Determinants of Running Speed During Curved Sprinting.
Ishimura, Kazuhiro; Sakurai, Shinji
2016-08-01
This study investigates the potential asymmetries between inside and outside legs in determinants of curved running speed. To test these asymmetries, a deterministic model of curved running speed was constructed based on components of step length and frequency, including the distances and times of different step phases, takeoff speed and angle, velocities in different directions, and relative height of the runner's center of gravity. Eighteen athletes sprinted 60 m on the curved path of a 400-m track; trials were recorded using a motion-capture system. The variables were calculated following the deterministic model. The average speeds were identical between the 2 sides; however, the step length and frequency were asymmetric. In straight sprinting, there is a trade-off relationship between the step length and frequency; however, such a trade-off relationship was not observed in each step of curved sprinting in this study. Asymmetric vertical velocity at takeoff resulted in an asymmetric flight distance and time. The runners changed the running direction significantly during the outside foot stance because of the asymmetric centripetal force. Moreover, the outside leg had a larger tangential force and shorter stance time. These asymmetries between legs indicated the outside leg plays an important role in curved sprinting.
NASA Astrophysics Data System (ADS)
Escobar, L.; Weeraratne, D. S.; Kohler, M. D.
2013-05-01
The Pacific-North America plate boundary, located in Southern California, presents an opportunity to study a unique tectonic process that has been shaping the plate tectonic setting of the western North American and Mexican Pacific margin since the Miocene. This is one of the few locations where the interaction between a migrating oceanic spreading center and a subduction zone can be studied. The rapid subduction of the Farallon plate outpaced the spreading rate of the East Pacific Rise rift system causing it to be subducted beneath southern California and northern Mexico 30 Ma years ago. The details of microplate capture, reorganization, and lithospheric deformation on both the Pacific and North American side of this boundary is not well understood, but may have important implications for fault activity, stresses, and earthquake hazard analysis both onshore and offshore. We use Rayleigh waves recorded by an array of 34 ocean bottom seismometers deployed offshore southern California for a 12 month duration from August 2010 to 2011. Our array recorded teleseismic earthquakes at distances ranging from 30° to 120° with good signal-to-noise ratios for magnitudes Mw ≥ 5.9. The events exhibit good azimuthal distribution and enable us to solve simultaneously for Rayleigh wave phase velocities and azimuthal anisotropy. Fewer events occur at NE back-azimuths due to the lack of seismicity in central North America. We consider seismic periods between 18 - 90 seconds. The inversion technique considers non-great circle path propagation by representing the arriving wave field as two interfering plane waves. This takes advantage of statistical averaging of a large number of paths that travel offshore southern California and northern Mexico allowing for improved resolution and parameterization of lateral seismic velocity variations at lithospheric and sublithospheric depths. We present phase velocity results for periods sampling mantle structure down to 150 km depth along the west coast margin. With this study, we seek to understand the strength and deformation of the Pacific oceanic lithosphere resulting from plate convergence and subduction beneath Southern California 30 Ma as well as translational stresses present today. We also test for predictions of several geodynamic models which describe the kinematic mantle flow that accompanies plate motion within this area including passive mantle drag due to Pacific plate motion and toroidal flow in the western U.S. region that may extend offshore.
Depth extent of hemispherical difference in equatorial path velocities in the upper inner core
NASA Astrophysics Data System (ADS)
Tanaka, S.
2010-12-01
So far, the hypothesis of hemispherical inner core is likely to be robust through many studies of body waves and free oscillations. Its fine structure, however, is still unknown. Here I focus on the thickness of hemispherical difference seen in the equatorial path velocities. Previously, the depth extent is examined with PKP(BC)-PKP(DF) and PKP(CD)-PKP(DF) times as a function of epicentral distance because PKP(AB)-PKP(DF) times are too noisy to detect a very small difference that is expected to be about 0.5 s. To extend the available depth (distance) range for PKP(DF), I choose PKP(Cdiff) as a reference, partly including PKP(BC). Broadband seismic arrays or dense networks is needed for the identification of small and vague PKP(Cdiff) signal. After grouping by the combinations of seismic arrays and hypocenter regions in the distance range between 150° and 160°, 5 sampled areas are collected, which are North Africa, Central Africa, the Indian Ocean, Northeastern Asia, and the western coast of North America. In this study, I analyze short period waveforms through the band-pass filter with cut off frequencies of 1 and 5 Hz because this frequency range is more sensitive to the structure. As the ray theory is not valid for diffracted waves, I calculate theoretical PKP waves using the reflectivity method and apply the same filter as used in the observed waveforms for comparison. The travel time differences of PKP(Cdiff)-PKP(DF) are well explained by ak135 as an average, and the geographical pattern of the data scatter is consistent with the hemispherical distribution defined by Tanaka and Hamaguchi [1997]. To explain the scatter of differential travel times, thickness of hemispherical heterogeneity in the upper inner core is required to be approximately 500 km rather than 200 km that is previously proposed. The velocity perturbation is assumed to have the maximum at the top of the inner core and reduce with depth. Tentatively, the maximum velocity perturbations of +0.3% and -0.4% is proposed for eastern and western hemispheres, respectively. The data scatter in the western hemisphere is larger than that in eastern hemisphere, suggesting the existence of complex structure in the western.
Ring-averaged ion velocity distribution function probe for laboratory magnetized plasma experiment
NASA Astrophysics Data System (ADS)
Kawamori, Eiichirou; Chen, Jinting; Lin, Chiahsuan; Lee, Zongmau
2017-10-01
Ring-averaged velocity distribution function of ions at a fixed guiding center position is a fundamental quantity in the gyrokinetic plasma physics. We have developed a diagnostic tool for the ring averaged velocity distribution function of ions for laboratory plasma experiments, which is named as the ring-averaged ion distribution function probe (RIDFP). The RIDFP is a set of ion collectors for different velocities. It is designed to be immersed in magnetized plasmas and achieves momentum selection of incoming ions by the selection of the ion Larmor radii. To nullify the influence of the sheath potential surrounding the RIDFP on the orbits of the incoming ions, the electrostatic potential of the RIDFP body is automatically adjusted to coincide with the space potential of the target plasma with the use of an emissive probe and a voltage follower. The developed RIDFP successfully measured the equilibrium ring-averaged velocity distribution function of a laboratory magnetized plasma, which was in accordance with the Maxwellian distribution having an ion temperature of 0.2 eV.
Ring-averaged ion velocity distribution function probe for laboratory magnetized plasma experiment.
Kawamori, Eiichirou; Chen, Jinting; Lin, Chiahsuan; Lee, Zongmau
2017-10-01
Ring-averaged velocity distribution function of ions at a fixed guiding center position is a fundamental quantity in the gyrokinetic plasma physics. We have developed a diagnostic tool for the ring averaged velocity distribution function of ions for laboratory plasma experiments, which is named as the ring-averaged ion distribution function probe (RIDFP). The RIDFP is a set of ion collectors for different velocities. It is designed to be immersed in magnetized plasmas and achieves momentum selection of incoming ions by the selection of the ion Larmor radii. To nullify the influence of the sheath potential surrounding the RIDFP on the orbits of the incoming ions, the electrostatic potential of the RIDFP body is automatically adjusted to coincide with the space potential of the target plasma with the use of an emissive probe and a voltage follower. The developed RIDFP successfully measured the equilibrium ring-averaged velocity distribution function of a laboratory magnetized plasma, which was in accordance with the Maxwellian distribution having an ion temperature of 0.2 eV.
Differential Group-Velocity Detection of Fluid Paths Leland Timothy Long
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Leland Timothy
2003-06-01
The objective of differential surface-wave interpretation is to identify and locate temporal perturbations in the shear-wave velocity. Perturbations in phase velocity are created when the stress and/or fluid content of soils changes, such as in pumping to remove or flush out contaminants. Differential surface wave analysis is a potential method to track the movement of fluids during remediation programs. This proposal is to develop and test this new technology to aid in the selection and design of remediation options in shallow aquifers.
Improved Radial Velocity Precision with a Tunable Laser Calibrator
NASA Astrophysics Data System (ADS)
Cramer, Claire; Brown, S.; Dupree, A. K.; Lykke, K. R.; Smith, A.; Szentgyorgyi, A.
2010-01-01
We present radial velocities obtained using a novel laser-based wavelength calibration technique. We have built a prototype laser calibrator for the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method makes use of spectra from thorium-argon hollow cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator solves these problems. The laser is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order to generate a calibration spectrum, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We present these results as well as an application of tunable laser calibration to stellar radial velocities determined with the infrared Ca triplet in globular clusters M15 and NGC 7492. We also suggest how the tunable laser could be useful for other instruments, including single-object, cross-dispersed echelle spectrographs, and adapted for infrared spectroscopy.
Hydrocarbon fluid, ejector refrigeration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, G.J.; Foster, A.R.
1993-08-31
A refrigeration system is described comprising: a vapor ejector cycle including a working fluid having a property such that entropy of the working fluid when in a saturated vapor state decreases as pressure decreases, the vapor ejector cycle comprising: a condenser located on a common fluid flow path; a diverter located downstream from the condenser for diverting the working fluid into a primary fluid flow path and a secondary fluid flow path parallel to the primary fluid flow path; an evaporator located on the secondary fluid flow path; an expansion device located on the secondary fluid flow path upstream ofmore » the evaporator; a boiler located on the primary fluid flow path parallel to the evaporator for boiling the working fluid, the boiler comprising an axially extending core region having a substantially constant cross sectional area and a porous capillary region surrounding the core region, the core region extending a length sufficient to produce a near sonic velocity saturated vapor; and an ejector having an outlet in fluid communication with the inlet of the condenser and an inlet in fluid communication with the outlet of the evaporator and the outlet of the boiler and in which the flows of the working fluid from the evaporator and the boiler are mixed and the pressure of the working fluid is increased to at least the pressure of the condenser, the ejector inlet, located downstream from the axially extending core region, including a primary nozzle located sufficiently close to the outlet of the boiler to minimize a pressure drop between the boiler and the primary nozzle, the primary nozzle of the ejector including a converging section having an included angle and length preselected to receive the working fluid from the boiler as a near sonic velocity saturated vapor.« less
NASA Technical Reports Server (NTRS)
Mcalister, K. W.
1981-01-01
A procedure is described for visualizing nonsteady fluid flow patterns over a wide velocity range using discrete nonluminous particles. The paramount element responsible for this capability is a pulse-forming network with variable inductance that is used to modulate the discharge of a fixed amount of electrical energy through a xenon flashtube. The selectable duration of the resultant light emission functions as a variable shutter so that particle path images of constant length can be recorded. The particles employed as flow markers are hydrogen bubbles that are generated by electrolysis in a water tunnel. Data are presented which document the characteristics of the electrical circuit and establish the relation of particle velocity to both section inductance and film exposure.
NASA Astrophysics Data System (ADS)
Güler, Fatma; Kasap, Emin
Using the curvature theory for the ruled surfaces a technique for robot trajectory planning is presented. This technique ensures the calculation of robot’s next path. The positional variation of the Tool Center Point (TCP), linear velocity, angular velocity are required in the work area of the robot. In some circumstances, it may not be physically achievable and a re-computation of the robot trajectory might be necessary. This technique is suitable for re-computation of the robot trajectory. We obtain different robot trajectories which change depending on the darboux angle function and define trajectory ruled surface family with a common trajectory curve with the rotation trihedron. Also, the motion of robot end effector is illustrated with examples.
Dynamic compression of copper to over 450 GPa: A high-pressure standard
Kraus, R. G.; Davis, J. -P.; Seagle, C. T.; ...
2016-04-12
We obtained an absolute stress-density path for shocklessly compressed copper to over 450 GPa. A magnetic pressure drive is temporally tailored to generate shockless compression waves through over 2.5-mm-thick copper samples. Furthermore, the free-surface velocity data is analyzed for Lagrangian sound velocity using the iterative Lagrangian analysis (ILA) technique, which relies upon the method of characteristics. We correct for the effects of strength and plastic work heating to determine an isentropic compression path. By assuming a Debye model for the heat capacity, we can further correct the isentrope to an isotherm. Finally, our determination of the isentrope and isotherm ofmore » copper represents a highly accurate pressure standard for copper to over 450 GPa.« less
Lithosphere/Asthenosphere Boundary depth inferred from global surface wave tomography
NASA Astrophysics Data System (ADS)
Burgos, G.; Montagner, J.-P.; Beucler, E.; Trampert, J.; Ritzwoller, M. H.; Capdeville, Y.; Shapiro, N. M.
2012-04-01
The coupling between the rigid lithosphere and the weaker underlying asthenosphere is a key point of Plate Tectonics and Mantle dynamics. The characterization of the properties of the Lithosphere/Asthenosphere Boundary (LAB) is essential for understanding the Upper Mantle. Recent studies, using receiver functions for example, provide local constraints. In this study a global view by surface wave tomography is given. A large amount of data from different groups (Harvard, Boulder, Utrecht, Paris) has been collected. There are more than 100,000 phase and group velocities measurements on the fundamental mode of Rayleigh and Love waves. This global scale dataset in the period range 15s-200s, enables us to investigate the LAB with an approximative lateral resolution of 500km. The regionalization of the path-averaged velocities is performed to extract isotropic and azimuthally anisotropic terms of local velocities. We derive our own crustal model (taking account of topography-bathymetry, sediments and crustal thickness) by a MonteCarlo inversion with the shorter periods of the data. A forward estimation of the LAB properties on a global map is provided. We choose a low parametrization (isotropic Vs layers) of the Upper Mantle adjusted with the larger periods of the data by MonteCarlo inversion. Then we present a new tomographic model obtained by inverting the larger periods of phase velocities in the least square sense, including isotropic Vs velocity, radial anisotropy and azimuthal anisotropy. Different proxies for the LAB are builded from this 3D Upper Mantle model, such as the strongest negative Sv velocity gradient or the variation of azimuthal anisotropy fast axis. LAB determination seems consistent in oceanic regions in all of the proxies, presenting a good correlation with ocean floor ages. While the estimated depths beneath continents still unclear depending on the type of parametrizations compared to receiver functions or heat flux studies.
Proxies of Lithosphere/Asthenosphere Boundary from global surface wave tomography
NASA Astrophysics Data System (ADS)
Burgos, G.; Montagner, J.; Beucler, E.; Trampert, J.; Ritzwoller, M. H.; Capdeville, Y.; Shapiro, N. M.
2011-12-01
The coupling between rigid lithosphere and the weaker underlying asthenosphere is a key point of Plate Tectonics and Mantle dynamics. The characterization of the properties of the Lithosphere/Asthenosphere Boundary (LAB) is essential for understanding the Upper Mantle. Recent studies, using receiver functions for example, provide local constraints. In this study a global view by surface wave tomography is given. A large amount of data from different groups (Harvard, Boulder, Utrecht, Paris) has been collected. There are more than 100,000 phase and group velocities measurements on the fundamental mode of Rayleigh and Love waves. This global scale dataset in the period range 15s-200s, enables us to investigate the LAB with an approximative lateral resolution of 500km. The regionalization of the path-averaged velocities is performed to extract isotropic and azimuthally anisotropic terms of local velocities. We derive our own crustal model (taking account of topography-bathymetry, sediments and crustal thickness) by a MonteCarlo inversion with the shorter periods of the data. A forward estimation of the LAB properties on a global map is provided. We choose a low parametrization (isotropic Vs layers) of the Upper Mantle ajusted with the larger periods of the data by MonteCarlo inversion. Then we present a new tomographic model obtained by inverting the larger periods of phase velocities in the least square sense, including isotropic Vs velocity, radial anisotropy and azimuthal anisotropy. Different proxies for the LAB are builded from this 3D Upper Mantle model, such as the strongest negative Sv velocity gradient or the variation of azimuthal anisotropy fast axis. LAB determination seems consistent in oceanic regions in all of the proxies, presenting a good correlation with ocean floor ages. While the estimated depths beneath continents still unclear depending on the type of parametrizations compared to receiver functions or heat flux studies.
Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins
Chulick, Gary S.; Detweiler, Shane; Mooney, Walter D.
2013-01-01
We present a new set of contour maps of the seismic structure of South America and the surrounding ocean basins. These maps include new data, helping to constrain crustal thickness, whole-crustal average P-wave and S-wave velocity, and the seismic velocity of the uppermost mantle (Pn and Sn). We find that: (1) The weighted average thickness of the crust under South America is 38.17 km (standard deviation, s.d. ±8.7 km), which is ∼1 km thinner than the global average of 39.2 km (s.d. ±8.5 km) for continental crust. (2) Histograms of whole-crustal P-wave velocities for the South American crust are bi-modal, with the lower peak occurring for crust that appears to be missing a high-velocity (6.9–7.3 km/s) lower crustal layer. (3) The average P-wave velocity of the crystalline crust (Pcc) is 6.47 km/s (s.d. ±0.25 km/s). This is essentially identical to the global average of 6.45 km/s. (4) The average Pn velocity beneath South America is 8.00 km/s (s.d. ±0.23 km/s), slightly lower than the global average of 8.07 km/s. (5) A region across northern Chile and northeast Argentina has anomalously low P- and S-wave velocities in the crust. Geographically, this corresponds to the shallowly-subducted portion of the Nazca plate (the Pampean flat slab first described by Isacks et al., 1968), which is also a region of crustal extension. (6) The thick crust of the Brazilian craton appears to extend into Venezuela and Colombia. (7) The crust in the Amazon basin and along the western edge of the Brazilian craton may be thinned by extension. (8) The average crustal P-wave velocity under the eastern Pacific seafloor is higher than under the western Atlantic seafloor, most likely due to the thicker sediment layer on the older Atlantic seafloor.
NASA Technical Reports Server (NTRS)
Fearn, R. L.; Weston, R. P.
1979-01-01
A subsonic round jet injected from a flat plate into a subsonic crosswind of the same temperature was investigated. Velocity and pressure measurements in planes perpendicular to the path of the jet were made for nominal jet injection angles of 45 deg, 60 deg, 75 deg, 90 deg, and 105 deg and for jet/cross flow velocity ratios of four and eight. The velocity measurements were obtained to infer the properties of the vortex pair associated with a jet in a cross flow. Jet centerline and vortex trajectories were determined and fit with an empirical equation that includes the effects of jet injection angle, jet core length, and jet/cross flow velocity ratios.
NASA Technical Reports Server (NTRS)
Kimball, G., Jr.
1980-01-01
A simulator comparison of the velocity vector control wheel steering (VCWS) system and a decoupled longitudinal control system is presented. The piloting task was to use the electronic attitude direction indicator (EADI) to capture and maintain a 3 degree glide slope in the presence of wind shear and to complete the landing using the perspective runway included on the EADI. The decoupled control system used constant prefilter and feedback gains to provide steady state decoupling of flight path angle, pitch angle, and forward velocity. The decoupled control system improved the pilots' ability to control airspeed and flight path angle during the final stages of an approach made in severe wind shear. The system also improved their ability to complete safe landings. The pilots preferred the decoupled control system in severe winds and, on a pilot rating scale, rated the approach and landing task with the decoupled control system as much as 3 to 4 increments better than use of the VCWS system.
A method for measuring aircraft height and velocity using dual television cameras
NASA Technical Reports Server (NTRS)
Young, W. R.
1977-01-01
A unique electronic optical technique, consisting of two closed circuit television cameras and timing electronics, was devised to measure an aircraft's horizontal velocity and height above ground without the need for airborne cooperative devices. The system is intended to be used where the aircraft has a predictable flight path and a height of less than 660 meters (2,000 feet) at or near the end of an air terminal runway, but is suitable for greater aircraft altitudes whenever the aircraft remains visible. Two television cameras, pointed at zenith, are placed in line with the expected path of travel of the aircraft. Velocity is determined by measuring the time it takes the aircraft to travel the measured distance between cameras. Height is determined by correlating this speed with the time required to cross the field of view of either camera. Preliminary tests with a breadboard version of the system and a small model aircraft indicate the technique is feasible.
NASA Astrophysics Data System (ADS)
Kamiyama, M.; Orourke, M. J.; Flores-Berrones, R.
1992-09-01
A new type of semi-empirical expression for scaling strong-motion peaks in terms of seismic source, propagation path, and local site conditions is derived. Peak acceleration, peak velocity, and peak displacement are analyzed in a similar fashion because they are interrelated. However, emphasis is placed on the peak velocity which is a key ground motion parameter for lifeline earthquake engineering studies. With the help of seismic source theories, the semi-empirical model is derived using strong motions obtained in Japan. In the derivation, statistical considerations are used in the selection of the model itself and the model parameters. Earthquake magnitude M and hypocentral distance r are selected as independent variables and the dummy variables are introduced to identify the amplification factor due to individual local site conditions. The resulting semi-empirical expressions for the peak acceleration, velocity, and displacement are then compared with strong-motion data observed during three earthquakes in the U.S. and Mexico.
Autonomous search and surveillance with small fixed wing aircraft
NASA Astrophysics Data System (ADS)
McGee, Timothy Garland
Small unmanned aerial vehicles (UAVs) have the potential to act as low cost tools in a variety of both civilian and military applications including traffic monitoring, border patrol, and search and rescue. While most current operational UAV systems require human operators, advances in autonomy will allow these systems to reach their full potential as sensor platforms. This dissertation specifically focuses on developing advanced control, path planning, search, and image processing techniques that allow small fixed wing aircraft to autonomously collect data. The problems explored were motivated by experience with the development and experimental flight testing of a fleet of small autonomous fixed wing aircraft. These issues, which have not been fully addressed in past work done on ground vehicles or autonomous helicopters, include the influence of wind and turning rate constraints, the non-negligible velocity of ground targets relative to the aircraft velocity, and limitations on sensor size and processing power on small vehicles. Several contributions for the autonomous operation of small fixed wing aircraft are presented. Several sliding surface controllers are designed which extend previous techniques to include variable sliding surface coefficients and the use of spatial vehicle dynamics. These advances eliminate potential singularities in the control laws to follow spatially defined paths and allow smooth transition between controllers. The optimal solution for the problem of path planning through an ordered set of points for an aircraft with a bounded turning rate in the presence of a constant wind is then discussed. Path planning strategies are also explored to guarantee that a searcher will travel within sensing distance of a mobile ground target. This work assumes only a maximum velocity of the target and is designed to succeed for any possible path of the target. Closed-loop approximations of both the path planning and search techniques, using the sliding surface controllers already discussed, are also studied. Finally, a novel method is presented to detect obstacles by segmenting an image into sky and non-sky regions. The feasibility of this method is demonstrated experimentally on an aircraft test bed.
NASA Astrophysics Data System (ADS)
van Gent, P. L.; Schrijer, F. F. J.; van Oudheusden, B. W.
2018-04-01
Pseudo-tracking refers to the construction of imaginary particle paths from PIV velocity fields and the subsequent estimation of the particle (material) acceleration. In view of the variety of existing and possible alternative ways to perform the pseudo-tracking method, it is not straightforward to select a suitable combination of numerical procedures for its implementation. To address this situation, this paper extends the theoretical framework for the approach. The developed theory is verified by applying various implementations of pseudo-tracking to a simulated PIV experiment. The findings of the investigations allow us to formulate the following insights and practical recommendations: (1) the velocity errors along the imaginary particle track are primarily a function of velocity measurement errors and spatial velocity gradients; (2) the particle path may best be calculated with second-order accurate numerical procedures while ensuring that the CFL condition is met; (3) least-square fitting of a first-order polynomial is a suitable method to estimate the material acceleration from the track; and (4) a suitable track length may be selected on the basis of the variation in material acceleration with track length.
Trajectory generation for an on-road autonomous vehicle
NASA Astrophysics Data System (ADS)
Horst, John; Barbera, Anthony
2006-05-01
We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.
Fischer, Jason L.; Bennion, David; Roseman, Edward F.; Manny, Bruce A.
2015-01-01
Lake sturgeon (Acipenser fulvescens) populations have suffered precipitous declines in the St. Clair–Detroit River system, following the removal of gravel spawning substrates and overfishing in the late 1800s to mid-1900s. To assist the remediation of lake sturgeon spawning habitat, three hydrodynamic models were integrated into a spatial model to identify areas in two large rivers, where water velocities were appropriate for the restoration of lake sturgeon spawning habitat. Here we use water velocity data collected with an acoustic Doppler current profiler (ADCP) to assess the ability of the spatial model and its sub-models to correctly identify areas where water velocities were deemed suitable for restoration of fish spawning habitat. ArcMap 10.1 was used to create raster grids of water velocity data from model estimates and ADCP measurements which were compared to determine the percentage of cells similarly classified as unsuitable, suitable, or ideal for fish spawning habitat remediation. The spatial model categorized 65% of the raster cells the same as depth-averaged water velocity measurements from the ADCP and 72% of the raster cells the same as surface water velocity measurements from the ADCP. Sub-models focused on depth-averaged velocities categorized the greatest percentage of cells similar to ADCP measurements where 74% and 76% of cells were the same as depth-averaged water velocity measurements. Our results indicate that integrating depth-averaged and surface water velocity hydrodynamic models may have biased the spatial model and overestimated suitable spawning habitat. A model solely integrating depth-averaged velocity models could improve identification of areas suitable for restoration of fish spawning habitat.
Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.
2017-10-19
Vertical one-dimensional shear wave velocity (VS) profiles are presented for strong-motion sites in Arizona for a suite of stations surrounding the Palo Verde Nuclear Generating Station. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS30), the average velocity for the entire profile (VSZ), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The VS profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean-square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.
NASA Astrophysics Data System (ADS)
Wood, Brian; He, Xiaoliang; Apte, Sourabh
2017-11-01
Turbulent flows through porous media are encountered in a number of natural and engineered systems. Many attempts to close the Navier-Stokes equation for such type of flow have been made, for example using RANS models and double averaging. On the other hand, Whitaker (1996) applied volume averaging theorem to close the macroscopic N-S equation for low Re flow. In this work, the volume averaging theory is extended into the turbulent flow regime to posit a relationship between the macroscale velocities and the spatial velocity statistics in terms of the spatial averaged velocity only. Rather than developing a Reynolds stress model, we propose a simple algebraic closure, consistent with generalized effective viscosity models (Pope 1975), to represent the spatial fluctuating velocity and pressure respectively. The coefficients (one 1st order, two 2nd order and one 3rd order tensor) of the linear functions depend on averaged velocity and gradient. With the data set from DNS, performed with inertial and turbulent flows (pore Re of 300, 500 and 1000) through a periodic face centered cubic (FCC) unit cell, all the unknown coefficients can be computed and the closure is complete. The macroscopic quantity calculated from the averaging is then compared with DNS data to verify the upscaling. NSF Project Numbers 1336983, 1133363.
NASA Astrophysics Data System (ADS)
Griffith, David W. T.; Pöhler, Denis; Schmitt, Stefan; Hammer, Samuel; Vardag, Sanam N.; Platt, Ulrich
2018-03-01
In complex and urban environments, atmospheric trace gas composition is highly variable in time and space. Point measurement techniques for trace gases with in situ instruments are well established and accurate, but do not provide spatial averaging to compare against developing high-resolution atmospheric models of composition and meteorology with resolutions of the order of a kilometre. Open-path measurement techniques provide path average concentrations and spatial averaging which, if sufficiently accurate, may be better suited to assessment and interpretation with such models. Open-path Fourier transform spectroscopy (FTS) in the mid-infrared region, and differential optical absorption spectroscopy (DOAS) in the UV and visible, have been used for many years for open-path spectroscopic measurements of selected species in both clean air and in polluted environments. Near infrared instrumentation allows measurements over longer paths than mid-infrared FTS for species such as greenhouse gases which are not easily accessible to DOAS.In this pilot study we present the first open-path near-infrared (4000-10 000 cm-1, 1.0-2.5 µm) FTS measurements of CO2, CH4, O2, H2O and HDO over a 1.5 km path in urban Heidelberg, Germany. We describe the construction of the open-path FTS system, the analysis of the collected spectra, several measures of precision and accuracy of the measurements, and the results a four-month trial measurement period in July-November 2014. The open-path measurements are compared to calibrated in situ measurements made at one end of the open path. We observe significant differences of the order of a few ppm for CO2 and a few tens of ppb for CH4 between the open-path and point measurements which are 2 to 4 times the measurement repeatability, but we cannot unequivocally assign the differences to specific local sources or sinks. We conclude that open-path FTS may provide a valuable new tool for investigations of atmospheric trace gas composition in complex, small-scale environments such as cities.
Conversion and control of an all-terrain vehicle for use as an autonomous mobile robot
NASA Astrophysics Data System (ADS)
Jacob, John S.; Gunderson, Robert W.; Fullmer, R. R.
1998-08-01
A systematic approach to ground vehicle automation is presented, combining low-level controls, trajectory generation and closed-loop path correction in an integrated system. Development of cooperative robotics for precision agriculture at Utah State University required the automation of a full-scale motorized vehicle. The Triton Predator 8- wheeled skid-steering all-terrain vehicle was selected for the project based on its ability to maneuver precisely and the simplicity of controlling the hydrostatic drivetrain. Low-level control was achieved by fitting an actuator on the engine throttle, actuators for the left and right drive controls, encoders on the left and right drive shafts to measure wheel speeds, and a signal pick-off on the alternator for measuring engine speed. Closed loop control maintains a desired engine speed and tracks left and right wheel speeds commands. A trajectory generator produces the wheel speed commands needed to steer the vehicle through a predetermined set of map coordinates. A planar trajectory through the points is computed by fitting a 2D cubic spline over each path segment while enforcing initial and final orientation constraints at segment endpoints. Acceleration and velocity profiles are computed for each trajectory segment, with the velocity over each segment dependent on turning radius. Left and right wheel speed setpoints are obtained by combining velocity and path curvature for each low-level timestep. The path correction algorithm uses GPS position and compass orientation information to adjust the wheel speed setpoints according to the 'crosstrack' and 'downtrack' errors and heading error. Nonlinear models of the engine and the skid-steering vehicle/ground interaction were developed for testing the integrated system in simulation. These test lead to several key design improvements which assisted final implementation on the vehicle.
NASA Astrophysics Data System (ADS)
Hipp, J. R.; Ballard, S.; Begnaud, M. L.; Encarnacao, A. V.; Young, C. J.; Phillips, W. S.
2015-12-01
Recently our combined SNL-LANL research team has succeeded in developing a global, seamless 3D tomographic P- and S-velocity model (SALSA3D) that provides superior first P and first S travel time predictions at both regional and teleseismic distances. However, given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we describe a methodology for accomplishing this by exploiting the full model covariance matrix and show examples of path-dependent travel time prediction uncertainty computed from our latest tomographic model. Typical global 3D SALSA3D models have on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes a prior model covariance constraint) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiplication methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix, we solve for the travel-time covariance associated with arbitrary ray-paths by summing the model covariance along both ray paths. Setting the paths equal and taking the square root yields the travel prediction uncertainty for the single path.
Transition path time distributions for Lévy flights
NASA Astrophysics Data System (ADS)
Janakiraman, Deepika
2018-07-01
This paper presents a study of transition path time distributions for Lévy noise-induced barrier crossing. Transition paths are short segments of the reactive trajectories and span the barrier region of the potential without spilling into the reactant/product wells. The time taken to traverse this segment is referred to as the transition path time. Since the transition path is devoid of excursions in the minimum, the corresponding time will give the exclusive barrier crossing time, unlike . This work explores the distribution of transition path times for superdiffusive barrier crossing, analytically. This is made possible by approximating the barrier by an inverted parabola. Using this approximation, the distributions are evaluated in both over- and under-damped limits of friction. The short-time behaviour of the distributions, provide analytical evidence for single-step transition events—a feature in Lévy-barrier crossing as observed in prior simulation studies. The average transition path time is calculated as a function of the Lévy index (α), and the optimal value of α leading to minimum average transition path time is discussed, in both the limits of friction. Langevin dynamics simulations corroborating with the analytical results are also presented.
Arc Crustal Structure around Mount Rainier Constrained by Receiver Functions and Seismic Noise
NASA Astrophysics Data System (ADS)
Obrebski, M. J.; Abers, G. A.; Foster, A. E.
2013-12-01
Volcanic arcs along subduction zones are thought to be loci for continental growth. Nevertheless, the amount of material transferred from the mantle to crust and the associated magmatic plumbing are poorly understood. While partial melting of mantle peridotite produces basaltic melt, the average composition of continental crust is andesitic. Several models of magma production, migration and differentiation have been proposed to explain the average crust composition in volcanic arcs. The formation of mafic cumulate and restite during fractional crystallization and partial melting has potential to alter the structure of the crust-mantle interface (Moho). The computed composition and distribution of crust and mantle rocks based on these different models convert into distinctive vertical velocity profiles, which seismic imaging methods can unravel . With a view to put more constraints on magmatic processes in volcanic arc, we analyze the shear wave velocity (Vs) distribution in the crust and uppermost mantle below Mount Rainier, WA, in the Cascadia arc. We resolve the depth of the main velocity contrasts based on converted phases, for which detection in the P coda is facilitated by source normalization or receiver function (RF) analysis. To alleviate the trade-off between depth and velocity intrinsic to RF analysis, we jointly invert RF with frequency-dependent surface wave velocities. We analyze earthquake surface waves to constrain long period dispersion curves (20-100 s). For shorter period (5-20s), we use seismic noise cross-correlograms and Aki's spectral formulation, which allows longer periods for given path. We use a transdimensional Bayesian scheme to explore the model space (shear velocity in each layer, number of interfaces and their respective depths). This approach tends to minimize the number of layers required to fit the observations given their noise level. We apply this tool to a set of broad-band stations from permanent and EarthScope temporary stations, all within 35 km of Mt Rainier. The receiver functions significantly differ from one station to another, indicating short wavelength lateral contrast in the lithospheric structure. Below arc stations offset from Mount Rainier, preliminary models show a rather clear Moho transition around 40km, separating lower crust with 3.6-3.9 km/s shear velocity, from a ~ 20 km thick mantle lid with Vs ~ 4.2 km/s. In contrast, at station PANH located 9 km east of Mount Rainier, the exact location of the Moho is not clear. Shear velocity ranges from 3.3 to 3.9 km/s from the surface down to 55 km depth, with the exception of a fast layer imaged between 25 and 32 km depth with Vs ~ 4.2 km/s. It seems likely that partial melt in the mantle, combined with high-velocity underplated or differentiated lower crust, are acting in various ways to create a complicated structure around the Moho.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen
Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime nonprecipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land surface forcing and are not influenced by synoptic weather events. The case includes early morning initial profiles of temperature and moisture with a residual layer; diurnally varying sensible and latent heat fluxes, which represent a domain average over different land surface types; simplified large-scalemore » horizontal advective tendencies and subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well reproduced by LES; however, the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 m. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity, and updraft mass flux. Both observations and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen
Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime non-precipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land-surface forcing, and are not influenced by synoptic weather events. The case includes: early-morning initial profiles of temperature and moisture with a residual layer; diurnally-varying sensible and latent heat fluxes which represent a domain average over different land-surface types; simplified large-scale horizontal advective tendencies andmore » subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well-reproduced by LES, however the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 meters. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity and updraft mass flux. Finally, both observation and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less
First status report on regional ground-water flow modeling for the Paradox Basin, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, R.W.
1984-05-01
Regional ground-water flow within the principal hydrogeologic units of the Paradox Basin is evaluated by developing a conceptual model of the flow regime in the shallow aquifers and the deep-basin brine aquifers and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analysis (a limited parametric study) is conducted to define the system response to changes in hydrologic properties or boundary conditions. A direct method for sensitivity analysis using an adjoint form of the flow equation is applied to the conceptualized flow regime in the Leadville limestone aquifer. All steps leading to the final results and conclusions aremore » incorporated in this report. The available data utilized in this study is summarized. The specific conceptual models, defining the areal and vertical averaging of litho-logic units, aquifer properties, fluid properties, and hydrologic boundary conditions, are described in detail. Two models were evaluated in this study: a regional model encompassing the hydrogeologic units above and below the Paradox Formation/Hermosa Group and a refined scale model which incorporated only the post Paradox strata. The results are delineated by the simulated potentiometric surfaces and tables summarizing areal and vertical boundary fluxes, Darcy velocities at specific points, and ground-water travel paths. Results from the adjoint sensitivity analysis include importance functions and sensitivity coefficients, using heads or the average Darcy velocities to represent system response. The reported work is the first stage of an ongoing evaluation of the Gibson Dome area within the Paradox Basin as a potential repository for high-level radioactive wastes.« less
Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen; ...
2017-09-19
Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime non-precipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land-surface forcing, and are not influenced by synoptic weather events. The case includes: early-morning initial profiles of temperature and moisture with a residual layer; diurnally-varying sensible and latent heat fluxes which represent a domain average over different land-surface types; simplified large-scale horizontal advective tendencies andmore » subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well-reproduced by LES, however the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 meters. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity and updraft mass flux. Finally, both observation and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less
Simms, Laura E.; Engebretson, Mark J.; Pilipenko, Viacheslav; ...
2016-04-07
The daily maximum relativistic electron flux at geostationary orbit can be predicted well with a set of daily averaged predictor variables including previous day's flux, seed electron flux, solar wind velocity and number density, AE index, IMF Bz, Dst, and ULF and VLF wave power. As predictor variables are intercorrelated, we used multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Empirical models produced from regressions of flux on measured predictors from 1 day previous were reasonably effective at predicting novel observations. Adding previous flux to the parameter set improves the predictionmore » of the peak of the increases but delays its anticipation of an event. Previous day's solar wind number density and velocity, AE index, and ULF wave activity are the most significant explanatory variables; however, the AE index, measuring substorm processes, shows a negative correlation with flux when other parameters are controlled. This may be due to the triggering of electromagnetic ion cyclotron waves by substorms that cause electron precipitation. VLF waves show lower, but significant, influence. The combined effect of ULF and VLF waves shows a synergistic interaction, where each increases the influence of the other on flux enhancement. Correlations between observations and predictions for this 1 day lag model ranged from 0.71 to 0.89 (average: 0.78). Furthermore, a path analysis of correlations between predictors suggests that solar wind and IMF parameters affect flux through intermediate processes such as ring current ( Dst), AE, and wave activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simms, Laura E.; Engebretson, Mark J.; Pilipenko, Viacheslav
The daily maximum relativistic electron flux at geostationary orbit can be predicted well with a set of daily averaged predictor variables including previous day's flux, seed electron flux, solar wind velocity and number density, AE index, IMF Bz, Dst, and ULF and VLF wave power. As predictor variables are intercorrelated, we used multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Empirical models produced from regressions of flux on measured predictors from 1 day previous were reasonably effective at predicting novel observations. Adding previous flux to the parameter set improves the predictionmore » of the peak of the increases but delays its anticipation of an event. Previous day's solar wind number density and velocity, AE index, and ULF wave activity are the most significant explanatory variables; however, the AE index, measuring substorm processes, shows a negative correlation with flux when other parameters are controlled. This may be due to the triggering of electromagnetic ion cyclotron waves by substorms that cause electron precipitation. VLF waves show lower, but significant, influence. The combined effect of ULF and VLF waves shows a synergistic interaction, where each increases the influence of the other on flux enhancement. Correlations between observations and predictions for this 1 day lag model ranged from 0.71 to 0.89 (average: 0.78). Furthermore, a path analysis of correlations between predictors suggests that solar wind and IMF parameters affect flux through intermediate processes such as ring current ( Dst), AE, and wave activity.« less
NASA Astrophysics Data System (ADS)
Zeng, Wenhui; Yi, Jin; Rao, Xiao; Zheng, Yun
2017-11-01
In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task's completion time. Accordingly, a new approach based on Pythagorean Hodograph (PH) curves and Modified Harmony Search algorithm is proposed to solve the two-stage path-planning problem subject to kinematic constraints such as velocity, acceleration, and minimum turning radius. First, a method of path planning based on PH curves for a single robot is proposed. Second, a mathematical model of the two-stage path-planning problem for multiple car-like robots with variable motion subject to kinematic constraints is constructed that the first-stage minimizes the total length of all paths and the second-stage minimizes the task's completion time. Finally, a modified harmony search algorithm is applied to solve the two-stage optimization problem. A set of experiments demonstrate the effectiveness of the proposed approach.
NASA Technical Reports Server (NTRS)
Panda, J.; Seasholtz, R. G.
2005-01-01
Recent advancement in the molecular Rayleigh scattering based technique allowed for simultaneous measurement of velocity and density fluctuations with high sampling rates. The technique was used to investigate unheated high subsonic and supersonic fully expanded free jets in the Mach number range of 0.8 to 1.8. The difference between the Favre averaged and Reynolds averaged axial velocity and axial component of the turbulent kinetic energy is found to be small. Estimates based on the Morkovin's "Strong Reynolds Analogy" were found to provide lower values of turbulent density fluctuations than the measured data.
Hopkins, Carl
2011-05-01
In architectural acoustics, noise control and environmental noise, there are often steady-state signals for which it is necessary to measure the spatial average, sound pressure level inside rooms. This requires using fixed microphone positions, mechanical scanning devices, or manual scanning. In comparison with mechanical scanning devices, the human body allows manual scanning to trace out complex geometrical paths in three-dimensional space. To determine the efficacy of manual scanning paths in terms of an equivalent number of uncorrelated samples, an analytical approach is solved numerically. The benchmark used to assess these paths is a minimum of five uncorrelated fixed microphone positions at frequencies above 200 Hz. For paths involving an operator walking across the room, potential problems exist with walking noise and non-uniform scanning speeds. Hence, paths are considered based on a fixed standing position or rotation of the body about a fixed point. In empty rooms, it is shown that a circle, helix, or cylindrical-type path satisfy the benchmark requirement with the latter two paths being highly efficient at generating large number of uncorrelated samples. In furnished rooms where there is limited space for the operator to move, an efficient path comprises three semicircles with 45°-60° separations.
Grassi, G; Cappello, N; Gheorghe, M F; Salton, L; Di Bisceglie, C; Manieri, C; Benedetto, C
2010-11-01
The objective of this study is to determine the optimal conditions for human semen incubation treated with exogenous platelet activating factor (ePAF) for intra-uterine insemination (IUI). This prospective study was carried out on 32 infertile men and each semen sample was processed with the ISolate Sperm Separation Medium, washed with sperm washing medium (SWM) and resuspended either in SWM alone (control samples), or with ePAF 0.1, 0.5, and 1.0 μM. Each concentration was subsequently incubated and evaluated at 5, 15, 30, and 60 min. The motility parameters were evaluated by the computer-aided sperm analysis (C.A.S.A.) system. Curvilinear velocity, straight line velocity, average path velocity, rapid and progressive motility significantly increased compared to control samples at an ePAF concentration of 0.1 μM (with at least 15 min of incubation). The best results were obtained with ePAF concentrations of: 0.1 μM (60 min of incubation) and 0.5 μM (30-60 min of incubation). In conclusion, results are enhanced when ePAF is added to standard semen preparation for IUI. An ePAF concentration of 0.1 μM, with an incubation time of 15 min, can be used for semen samples with normal motility. Whilst, for semen samples with poor motility, the ePAF concentration is best increased to 0.5 μM and/or the incubation time prolonged to 60 min.
NASA Technical Reports Server (NTRS)
Cho, Soo-Yong; Greber, Isaac
1994-01-01
Numerical investigations on a diffusing S-duct with/without vortex generators and a straight duct with vortex generators are presented. The investigation consists of solving the full three-dimensional unsteady compressible mass averaged Navier-Stokes equations. An implicit finite volume lower-upper time marching code (RPLUS3D) has been employed and modified. A three-dimensional Baldwin-Lomax turbulence model has been modified in conjunction with the flow physics. A model for the analysis of vortex generators in a fully viscous subsonic internal flow is evaluated. A vortical structure for modeling the shed vortex is used as a source term in the computation domain. The injected vortex paths in the straight duct are compared with the analysis by two kinds of prediction models. The flow structure by the vortex generators are investigated along the duct. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with the experimental wall static-pressure, static- and total-pressure field, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and velocity profiles in wall coordinates are presented. In order to investigate the effect of vortex generators, various vortex strengths are examined in this study. The total-pressure recovery and distortion coefficients are obtained at the exit of the S-duct. The numerical results clearly depict the interaction between the low velocity flow by the flow separation and the injected vortices.
Hsu, Ping-Chi; Guo, Yueliang Leon; Li, Mei-Hui
2004-02-01
Polychlorinated biphenyls (PCBs) are considered potential endocrine disruptors due to their ability to act as estrogens, antiestrogens and goitrogens. The aim of this study is to ascertain whether acute postnatal treatment with 3,3',4,4'-tetrachlorobiphenyl (CB 77) affects sperm function and hormone levels in adult rats. Male Sprague-Dawley rats received CB 77 by ip injection of 2 or 20 mg/kg at day 21 and sacrificed at day 112. At day 112, right and left testis weights were significantly increased, whereas sperm count, motility, total motile sperm count, curvilinear velocity, average path velocity, straight-line velocity, and beat-cross frequency for motile sperm were significantly decreased in rats treated with 20 mg/kg CB 77. Sperm-oocyte penetration rate was significantly reduced in rats treated with either 2 or 20 mg/kg CB 77. There was high sperm acrosome reaction rate (ARR) in the 20 mg/kg CB 77-treated rats. There was a significant increase in thyroid-stimulating hormone level in the 20 mg/kg CB 77 group. However, no changes were seen in serum testosterone, thyroid hormones, or prolactin concentrations at day 112. In summary, this study showed that postnatal exposure to CB 77 might affect spermatogenesis, motility, ARR, and ability of fertilizing oocytes in mature rats. These results suggest that the sperm functions may be more susceptible or adapt less readily than the thyroid functions to endocrine disruption caused by dioxin-like PCB congeners.
Alkaloids from areca (betel) nuts and their effects on human sperm motility in vitro.
Yuan, Jingsong; Yang, Dajian; Liang, Yonghong; Gao, Wenping; Ren, Zhipeng; Zeng, Wei; Wang, Baorong; Han, Jian; Guo, Dean
2012-04-01
An improved high-performance liquid chromatography (HPLC) method was established to rapidly and simultaneously determine 3 main alkaloids (arecoline, arecaidine, and guvacine) in areca (betel) nuts (AN), and 12 AN samples from the main betel palm growing areas on the Chinese Mainland were collected and determined. Semen samples from acceptable volunteers were treated in vitro with different concentrations of the 3 alkaloids to evaluate the effects on sperm motility (SM). Highly motile spermatozoa were selected from the samples and divided into 5 equal fractions. Various concentrations of each alkaloid were added to 4 of the 5 fractions, and 1 fraction was used as a control. All fractions were incubated for 4 h. A computer-aided sperm analysis system was used to measure 5 SM parameters, motility, average path velocity, straight-line velocity, curvilinear velocity, linearity, and amplitude of lateral head displacement. The results showed that the contents of the amount of alkaloids in AN differed markedly in different places in China and were higher in the kernel than in the husk, and higher in dried AN than in fresh AN. Arecoline had the strongest reduction effect on human SM and the effect was strongly dose dependent. Arecaidine had a much weaker reduction effect than arecoline, and guvacine had the least reduction effect. These findings also demonstrate that betel quid could have adverse effects on the gonadal functions of betel quid consumers. © 2012 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Roth, Mathias K.; MacMahan, Jamie; Reniers, Ad; Özgökmen, Tamay M.; Woodall, Kate; Haus, Brian
2017-04-01
Motivated by the Deepwater Horizon oil spill, the Surfzone and Coastal Oil Pathways Experiment obtained Acoustic Doppler Current Profiler (ADCP) Eulerian and GPS-drifter based Lagrangian "surface" (<1 m) flow observations in the northern Gulf of Mexico to describe the influence of small-scale river plumes on surface material transport pathways in the nearshore. Lagrangian paths are qualitatively similar to surface pathlines derived from non-traditional, near-surface ADCP velocities, but both differ significantly from depth-averaged subsurface pathlines. Near-surface currents are linearly correlated with wind velocities (r =0.76 in the alongshore and r =0.85 in the cross-shore) at the 95% confidence level, and are 4-7 times larger than theoretical estimates of wind and wave-driven surface flow in an un-stratified water column. Differences in near-surface flow are attributed to the presence of a buoyant river plume forced by winds from passing extratropical storms. Plume boundary fronts induce a horizontal velocity gradient where drifters deployed outside of the plume in oceanic water routinely converge, slow, and are re-directed. When the plume flows west parallel to the beach, the seaward plume boundary front acts as a coastal barrier that prevents 100% of oceanic drifters from beaching within 27 km of the inlet. As a result, small-scale, wind-driven river plumes in the northern Gulf of Mexico act as coastal barriers that prevent offshore surface pollution from washing ashore west of river inlets.
NASA Astrophysics Data System (ADS)
Zou, Zongxing; Tang, Huiming; Xiong, Chengren; Su, Aijun; Criss, Robert E.
2017-10-01
The Jiweishan rockslide of June 5, 2009 in China provides an important opportunity to elucidate the kinetic characteristics of high-speed, long-runout debris flows. A 2D discrete element model whose mechanical parameters were calibrated using basic field data was used to simulate the kinetic behavior of this catastrophic landslide. The model output shows that the Jiweishan debris flow lasted about 3 min, released a gravitational potential energy of about 6 × 10^13 J with collisions and friction dissipating approximately equal amounts of energy, and had a maximum fragment velocity of 60-70 m/s, almost twice the highest velocity of the overall slide mass (35 m/s). Notable simulated characteristics include the high velocity and energy of the slide material, the preservation of the original positional order of the slide blocks, the inverse vertical grading of blocks, and the downslope sorting of the slide deposits. Field observations that verify these features include uprooted trees in the frontal collision area of the air-blast wave, downslope reduction of average clast size, and undamaged plants atop huge blocks that prove their lack of downslope tumbling. The secondary acceleration effect and force chains derived from the numerical model help explain these deposit features and the long-distance transport. Our back-analyzed frictions of the motion path in the PFC model provide a reference for analyzing and predicting the motion of similar geological hazards.
NASA Technical Reports Server (NTRS)
Lackner, James R.; DiZio, Paul
2002-01-01
Subjects exposed to constant velocity rotation in a large fully-enclosed room that rotates initially make large reaching errors in pointing to targets. The paths and endpoints of their reaches are deviated in the direction of the transient lateral Coriolis forces generated by the forward velocity of their reaches. With additional reaches, subjects soon reach in straighter paths and become more accurate at landing on target even in the absence of visual feedback about their movements. Two factors contribute to this adaptation: first, muscle spindle and golgi tendon organ feedback interpreted in relation to efferent commands provide information about movement trajectory, and second, somatosensory stimulation of the fingertip at the completion of a reach provides information about the location of the fingertip relative to the torso.
Surface Wave Detection and Measurement Using a One Degree Global Dispersion Grid
2006-05-01
explosions at all major test sites .................................................................... 21 List of Figures (continued) Figure 17 Page...surface - . 7 " wave phase and group velocity dispersion curves from underground nuclear test sites (Stevens, 1986; Stevens and McLaughlin, 19881...calculated from earth models for 270 paths ( test site - station combinations) at 10 frequencies between 0.01 5 and 0.06 Hz; phase and group velocity
Constrained trajectory optimization for kinematically redundant arms
NASA Technical Reports Server (NTRS)
Carignan, Craig R.; Tarrant, Janice M.
1990-01-01
Two velocity optimization schemes for resolving redundant joint configurations are compared. The Extended Moore-Penrose Technique minimizes the joint velocities and avoids obstacles indirectly by adjoining a cost gradient to the solution. A new method can incorporate inequality constraints directly to avoid obstacles and singularities in the workspace. A four-link arm example is used to illustrate singularity avoidance while tracking desired end-effector paths.
A Preliminary Look at the Crust and Upper Mantle of North Africa Using Libyan Seismic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasyanos, M
2005-08-05
In recent years, LLNL has been developing methods to jointly invert both surface wave dispersion data and teleseismic receiver functions. The technique holds great promise in accurately estimating seismic structure, including important tectonic parameters such as basin thickness, crustal thickness, upper mantle velocity, etc. We proposed applying this method to some recently available data from several Libyan stations, as we believe the technique has not been applied to any stations in Libya. The technique holds the promise of improving our understanding of the crust and upper mantle in Libya and North Africa. We recently requested seismic data from stations GHARmore » (Gharyan) and MARJ (Al Marj) in Libya for about 20 events. The events were large events at regional distances suitable for making dispersion measurements. An example of waveforms recorded at the two stations from an earthquake in Italy is shown in Figure 1. The paths traverse the Ionian Sea. Notice the slow short period group velocities of the surface waves across the Mediterranean, particularly to the easternmost station MARJ. However, because of data availability, signal-to-noise ratio, etc. we were unable to make measurements for every one of these events at both stations. Figure 2 shows a map of paths for 20 sec Rayleigh waves in the eastern Mediterranean region. Paths measured at the two Libyan stations are shown in green. Rayleigh wave dispersion measurements at 20 sec period are sensitive to velocities in the upper 20 km or so, and reveal sediment thickness, crustal velocity, and crustal thickness. Tomographic inversions reveal the sharp group velocity contrast between regions with deep sedimentary basins and those without. Figure 3, the result of an inversion made before adding the new dispersion measurements, shows slow group velocities in the Black Sea, Adriatic Sea, and Eastern Mediterranean. In general, these features correspond well with the sediment thickness model from Laske, shown in Figure 4. Details in and around the Sirt (Sirte) Basin in northern Libya, however, are poorly defined.« less
NASA Astrophysics Data System (ADS)
Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.
2014-12-01
Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex structures. In the future, approximate 3-D sensitivity kernels for dispersion data will be incorporated to account for finite-frequency effect of surface wave propagation. In addition, our approach provides a consistent framework for joint inversion of surface wave dispersion and body wave traveltime data for 3-D Vp and Vs structures.
Analysis of the three-dimensional structure of a bubble wake using PIV and Galilean decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.
1999-07-01
Bubbly flow plays a key role in a variety of natural and industrial processes. An accurate and complete description of the phase interactions in two-phase bubbly flow is not available at this time. These phase interactions are, in general, always three-dimensional and unsteady. Therefore, measurement techniques utilized to obtain qualitative and quantitative data from two-phase flow should be able to acquire transient and three-dimensional data, in order to provide information to test theoretical models and numerical simulations. Even for dilute bubble flows, in which bubble interaction is at a minimum, the turbulent motion of the liquid generated by the bubblemore » is yet to be completely understood. For many years, the design of systems with bubbly flows was based primarily on empiricism. Dilute bubbly flows are an extension of single bubble dynamics, and therefore improvements in the description and modeling of single bubble motion, the flow field around the bubble, and the dynamical interactions between the bubble and the flow will consequently improve bubbly flow modeling. The improved understanding of the physical phenomena will have far-reaching benefits in upgrading the operation and efficiency of current processes and in supporting the development of new and innovative approaches. A stereoscopic particle image velocimetry measurement of the flow generated by the passage of a single air-bubble rising in stagnant water, in a circular pipe is presented. Three-dimensional velocity fields within the measurement zone were obtained. Ensemble-averaged instantaneous velocities for a specific bubble path were calculated and interpolated to obtain mean three-dimensional velocity fields. A Galilean velocity decomposition is used to study the vorticity generated in the flow.« less
NASA Astrophysics Data System (ADS)
Hung, S. H.; Lin, P. Y.; Gaherty, J. B.; Russell, J. B.; Jin, G.; Collins, J. A.; Lizarralde, D.; Evans, R. L.; Hirth, G.
2017-12-01
Surface wave dispersion and magnetotelluric survey from the NoMelt Experiment conducted on 70 Ma central Pacific seafloor revealed an electrically resistive, high shear wave velocity lid of 80 km thick underlain by a non-highly conductive, low-velocity layer [Sarafian et al., 2015; Lin et al., 2016]. The vertical structure of the upper mantle consistent with these observational constraints suggests a plausible convection scenario, where the seismically fast, dehydrated lithosphere preserving very strong fossil spreading fabric moves at a constant plate speed over the hydrated, melt-free athenospheric mantle with the presence of either pressure-driven return flow or thermally-driven small scale circulation. To explore 3-D variations in compressional shear wave velocities related to the lithospheric and asthenospheric mantle dynamics, we employ a multichannel cross correlation method to measure relative traveltime residuals based on the vertical P and traverse S waveforms filtered at 10-33 s from telseismic earthquakes at epicentral distance between 30 and 98 degrees. The obtained P and S residuals show on average peak-to-peak variations of ±0.5 s and ±1 s, respectively, across the NoMelt OBS array. Particularly, the P residuals for most of the events display an asymmetrical pattern with respect to an axis oriented nearly N-S to NE-SW through the array. Preliminary ray-based P tomography results reveal similar asymmetric variations in the uppermost 100 km mantle. To verify the resulting structural features, we will further perform both the P and S traveltime tomography and resolution tests based on a multiscale finite-frequency approach which properly takes into account both the 3D off-path sensitivities of the measured residuals and data-adaptive resolution of the model.
Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui
2018-06-01
Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.
Kotula-Balak, Malgorzata; Grzmil, Pawel; Chojnacka, Katarzyna; Andryka, Katarzyna; Bilinska, Barbara
2014-05-15
Photoperiod is an environmental signal that controls physiology and behavior of all organisms. Bank voles, which are seasonal breeders, are stimulated to reproduce by the long photoperiod associated with spring and summer. To date, physiology of bank vole spermatozoa has not been explored, although they constitute an interesting model for examining the relationship between photoperiod and xenoestrogen on spermatozoa function. In an attempt to evaluate the acute effect of 4-tert-octylphenol (OP) an in vitro system was used. Spermatozoa isolated from the cauda epididymidies of long-day (LD; 18 h light: 6 h darkness) and short-day (SD; 6 h light: 18 h darkness) bank voles were treated with two OP concentrations (10(-4) M and 10(-8)M, respectively). OP-treated spermatozoa were used for the examination of motility parameters (computer-assisted semen analyzer CEROS), acrosome integrity (Commassie blue staining), cAMP production (immunoenzymatic assay) and cell viability (flow-cytometry analysis). The study revealed the photoperiod-dependent effect of short OP-treatment on motility parameters of vole spermatozoa. In LD spermatozoa, an increase of velocities: (curvilinear velocity [VCL], average path velocity [VAP] straight line velocity [VSL]) and head activity (amplitude of the lateral head displacement, [ALH]) was found. Interestingly, in SD spermatozoa opposite effect on VCL, VAP, VSL and ALH was observed, however only after treatment with 10(-4)M OP. The dose-dependent influence of OP upon acrosome integrity, as well as cAMP levels, in relation to the reproductive status of voles was observed. Moreover, OP exposure affected spermatozoa morphology rather than spermatozoa viability. Copyright © 2014 Elsevier Inc. All rights reserved.
Khalil Ur Rehman, H; Andrabi, S M H; Ahmed, H; Shah, S A H
2017-10-01
The effects of freezing methods (FR1, nonprogrammable/static, 5 cm above liquid nitrogen [LN 2 ] for 10 min, plunging in LN 2 ; FR2, programmable medium, +4°C to -15°C at 3°C min -1 , from -15 to -80°C at 10°C min -1 and final holding for 1 min at -80°C, plunging in LN 2 ; FR3, programmable fast, from initial holding at +4°C for 2 min, from +4°C to -20°C at 10°C min -1 , from -20°C to -100°C at 30°C min -1 , final holding for 1 min at -100°C and plunging in LN 2 ) were assessed on post-thaw in vitro quality and in vivo fertility of water buffalo spermatozoa. Mean sperm progressive motility (%), rapid velocity (%), average path velocity (μm s -1 ), straight line velocity (μm s -1 ), curved line velocity (μm s -1 ), integrities (%) of plasmalemma, mitochondrial transmembrane, DNA and acrosome were higher (p < .05) in samples cryopreserved with FR3 compared to FR1 and FR2. Similarly, in vivo fertility (%) of buffalo spermatozoa was higher (p < .05) with FR3 than FR1 (%; 68.0 versus 50.0). We concluded that programmable fast-freezing method (FR3) improves the post-thaw in vitro quality and in vivo fertility of water buffalo spermatozoa. © 2016 Blackwell Verlag GmbH.
Kinematics of Visually-Guided Eye Movements
Hess, Bernhard J. M.; Thomassen, Jakob S.
2014-01-01
One of the hallmarks of an eye movement that follows Listing’s law is the half-angle rule that says that the angular velocity of the eye tilts by half the angle of eccentricity of the line of sight relative to primary eye position. Since all visually-guided eye movements in the regime of far viewing follow Listing’s law (with the head still and upright), the question about its origin is of considerable importance. Here, we provide theoretical and experimental evidence that Listing’s law results from a unique motor strategy that allows minimizing ocular torsion while smoothly tracking objects of interest along any path in visual space. The strategy consists in compounding conventional ocular rotations in meridian planes, that is in horizontal, vertical and oblique directions (which are all torsion-free) with small linear displacements of the eye in the frontal plane. Such compound rotation-displacements of the eye can explain the kinematic paradox that the fixation point may rotate in one plane while the eye rotates in other planes. Its unique signature is the half-angle law in the position domain, which means that the rotation plane of the eye tilts by half-the angle of gaze eccentricity. We show that this law does not readily generalize to the velocity domain of visually-guided eye movements because the angular eye velocity is the sum of two terms, one associated with rotations in meridian planes and one associated with displacements of the eye in the frontal plane. While the first term does not depend on eye position the second term does depend on eye position. We show that compounded rotation - displacements perfectly predict the average smooth kinematics of the eye during steady- state pursuit in both the position and velocity domain. PMID:24751602
Bravo, J A; Montanero, J; Calero, R; Roy, T J
2011-11-01
The aims of this study were to identify different motile sperm subpopulations in fresh ejaculates from six Ile de France rams, by using a computer-assisted sperm motility analysis (CASA) system, and to evaluate the effects of individual ram and season on population distribution. Overall sperm motility and individual kinematic parameters of motile spermatozoa were evaluated for 125,312 spermatozoa, defined by curvilinear velocity (VCL), linear velocity (VSL), average path velocity (VAP), linearity coefficient (LIN), straightness coefficient (STR), wobble coefficient (WOB), mean amplitude of lateral head displacement (ALH) and frequency of head displacement (BCF). A multivariate cluster analysis was carried out to classify these spermatozoa into a reduced number of subpopulations according to their movement patterns. The statistical analysis clustered the whole motile sperm population into five separate groups: subpopulation 1, constituted by rapid, progressive and non sinuous spermatozoa (VCL=126.41 μm/s, STR=92.87% and LIN=86.47%); subpopulation 2, characterized by progressive spermatozoa with moderate velocity (VCL=74.74 μm/s and STR=84.03%); subpopulation 3, represented by rapid, progressive and sinuous spermatozoa (VCL=130.45 μm/s, STR=76.02% and LIN=47.68%); subpopulation 4 represents rapid nonprogressive spermatozoa (VCL=128.69 μm/s and STR=44.09%); subpopulation 5 includes poorly motile, nonprogressive spermatozoa with a very irregular trajectory (VCL=36.81 μm/s and STR=47.04%). Our results show the existence of five subpopulations of motile spermatozoa in ram ejaculates. The frequency distribution of spermatozoa within subpopulations was quite similar for the six rams, and the five subpopulations turned out to be very stable along seasons. Copyright © 2011 Elsevier B.V. All rights reserved.
Shah, S A H; Andrabi, S M H; Qureshi, I Z
2017-10-01
Effects of curcumin as antioxidant in extender were evaluated on freezability of buffalo spermatozoa. Semen from each of the five bulls (n = 3 replicates, six ejaculates/bull, a total of 30 ejaculates) was diluted in Tris-citric acid extender containing curcumin (0.5, 1.0, 1.5 or 2.0 mM) or control. At pre-freezing and post-thawing, total antioxidant contents (μM/L) and lipid peroxidation levels (μM/ml) were higher (p < .05) and lower (p < .05) respectively, with 1.5 and 2.0 mM compared to 0.5 and 1.0 mM curcumin and control. At post-thawing, progressive motility (PM, %) and rapid velocity (RV, %) were higher (p < .05) with 1.5 mM compared to other doses of curcumin and control (except in case of RV, 1.5 was similar with 1.0 mM). Kinematics (average path velocity, μm/s; straight-line velocity, μm/s; curved-line velocity, μm/s; straightness, %; linearity, %), in vitro longevity (%, PM and RV) and DNA integrity (%) at post-thawing were higher (p < .05) with 1.5 mM compared to control. At post-thawing, supravital plasma membrane integrity (%) and viable spermatozoa with intact acrosome (%) were higher with 1.5 compared to 2.0 mM curcumin and control. We concluded that freezability of water buffalo spermatozoa is improved with the addition of 1.5 mM curcumin in extender. © 2016 Blackwell Verlag GmbH.
Anisotropic surface wave tomography in the Horn of Africa.
NASA Astrophysics Data System (ADS)
Sicilia, D.; Montagner, J. P.; Debayle, E.; Leveque, J. J.; Cara, M.; Lepine, J. C.; Beucler, E.; Sebai, A.
2003-04-01
One of the largest continental hotspot is located in the Afar Depression, in East of Africa. It has been advocated to be the surface expression of the South-West African Superswell, which is the antipode of the Pacific Superswell in the framework of the mantle degree 2 pattern. We performed an anisotropic surface wave tomography in the Horn of Africa in order to image the seismic structure beneath the region. Data were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment in Tanzania and Saudi Arabia. We supplemented our data base with a French deployment of 5 portable broadband stations surrounding the Afar Hotspot. Path average phase velocities are obtained using a method based on a least-squares minimization (Beucler et al., 2002). The data are corrected from the effect of the crust according to the a priori 3SMAC model (Nataf et Ricard, 1996). 3D-models of velocity, radial and azimuthal anisotropies are inverted for. We find low velocities beneath the Red Sea, the Gulf of Aden, the South East of the Tanzania Craton, the Hotspot and Central Africa. High velocities are present in the eastern Arabia and the Tanzania Craton. These results are in agreement with the anisotropic model of Debayle et al.(2002). The flow pattern can be derived from fast axis directions of seismic anisotropy. The anisotropy model beneath Afar displays a complex pattern, in which the hotspot seems to play a perturbating role. The azimuthal anisotropy shows that the Afar plume might be interpreted as feeding other hotspots in central Africa. The directions of fast axis are in good agreement with the results of previous SKS studies performed in the region (Gao et al., 1997; Wolfe et al., 1999; Barruol and Ismail, 2001).
NASA Astrophysics Data System (ADS)
Harun, S. I.; Idris, S. R. A.; Tamar Jaya, N.
2017-09-01
Local exhaust ventilation (LEV) is an engineering system frequently used in the workplace to protect operators from hazardous substances. The objective of this project is design and fabricate the ventilation system as installation for chamber room of laser cutting machine and to stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed. LEV’s fabricated with rated voltage D.C 10.8V and 1.5 ampere. Its capacity 600 ml, continuously use limit approximately 12-15 minute, overall length LEV’s fabricated is 966 mm with net weight 0.88 kg and maximum airflow is 1.3 meter cubic per minute. Stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed and fabricated overall result get 2 main gas vapor which air and carbon dioxide. For air gas which experimented by using anemometer, general duct velocity that produce is same with other gas produce, carbon dioxide which 5 m/s until 10 m/s. Overall result for 5 m/s and 10 m/s as minimum and maximum duct velocity produce for both air and carbon dioxide. The air gas flow velocity that captured by LEV’s fabricated, 3.998 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 79.960% and 7.667 m/s average velocity captured from 10 m/s duct velocity with efficiency of 76.665%. For carbon dioxide gas flow velocity that captured by LEV’s fabricated, 3.674 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 73.480% and 8.255 m/s average velocity captured from 10 m/s duct velocity with efficiency of 82.545%.
Human sperm steer with second harmonics of the flagellar beat.
Saggiorato, Guglielmo; Alvarez, Luis; Jikeli, Jan F; Kaupp, U Benjamin; Gompper, Gerhard; Elgeti, Jens
2017-11-10
Sperm are propelled by bending waves traveling along their flagellum. For steering in gradients of sensory cues, sperm adjust the flagellar waveform. Symmetric and asymmetric waveforms result in straight and curved swimming paths, respectively. Two mechanisms causing spatially asymmetric waveforms have been proposed: an average flagellar curvature and buckling. We image flagella of human sperm tethered with the head to a surface. The waveform is characterized by a fundamental beat frequency and its second harmonic. The superposition of harmonics breaks the beat symmetry temporally rather than spatially. As a result, sperm rotate around the tethering point. The rotation velocity is determined by the second-harmonic amplitude and phase. Stimulation with the female sex hormone progesterone enhances the second-harmonic contribution and, thereby, modulates sperm rotation. Higher beat frequency components exist in other flagellated cells; therefore, this steering mechanism might be widespread and could inspire the design of synthetic microswimmers.
Feynman-Kac formula for stochastic hybrid systems.
Bressloff, Paul C
2017-01-01
We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.
NASA Astrophysics Data System (ADS)
Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian
2017-11-01
Flow patterns in conjunction with seasonal and diurnal temperature variations control ecological and biogeochemical conditions in hyporheic sediments. In particular, hyporheic temperatures have a great impact on many temperature-sensitive microbial processes. In this study, we used 3-D coupled water flow and heat transport simulations applying the HydroGeoSphere code in combination with high-resolution observations of hydraulic heads and temperatures to quantify reach-scale water and heat flux across the river-groundwater interface and hyporheic temperature dynamics of a lowland gravel bed river. The model was calibrated in order to constrain estimates of the most sensitive model parameters. The magnitude and variations of the simulated temperatures matched the observed ones, with an average mean absolute error of 0.7°C and an average Nash Sutcliffe efficiency of 0.87. Our results indicate that nonsubmerged streambed structures such as gravel bars cause substantial thermal heterogeneity within the saturated sediment at the reach scale. Individual hyporheic flow path temperatures strongly depend on the flow path residence time, flow path depth, river, and groundwater temperature. Variations in individual hyporheic flow path temperatures were up to 7.9°C, significantly higher than the daily average (2.8°C), but still lower than the average seasonal hyporheic temperature difference (19.2°C). The distribution between flow path temperatures and residence times follows a power law relationship with exponent of about 0.37. Based on this empirical relation, we further estimated the influence of hyporheic flow path residence time and temperature on oxygen consumption which was found to partly increase by up to 29% in simulations.
Climate change velocity underestimates climate change exposure in mountainous regions
Dobrowski, Solomon Z.; Parks, Sean A.
2016-01-01
Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545
NASA Astrophysics Data System (ADS)
Rodgers, Arthur J.; Walter, William R.; Mellors, Robert J.; Al-Amri, Abdullah M. S.; Zhang, Yu-Shen
1999-09-01
Regional seismic waveforms reveal significant differences in the structure of the Arabian Shield and the Arabian Platform. We estimate lithospheric velocity structure by modelling regional waveforms recorded by the 1995-1997 Saudi Arabian Temporary Broadband Deployment using a grid search scheme. We employ a new method whereby we narrow the waveform modelling grid search by first fitting the fundamental mode Love and Rayleigh wave group velocities. The group velocities constrain the average crustal thickness and velocities as well as the crustal velocity gradients. Because the group velocity fitting is computationally much faster than the synthetic seismogram calculation this method allows us to determine good average starting models quickly. Waveform fits of the Pn and Sn body wave arrivals constrain the mantle velocities. The resulting lithospheric structures indicate that the Arabian Platform has an average crustal thickness of 40 km, with relatively low crustal velocities (average crustal P- and S-wave velocities of 6.07 and 3.50 km s^-1 , respectively) without a strong velocity gradient. The Moho is shallower (36 km) and crustal velocities are 6 per cent higher (with a velocity increase with depth) for the Arabian Shield. Fast crustal velocities of the Arabian Shield result from a predominantly mafic composition in the lower crust. Lower velocities in the Arabian Platform crust indicate a bulk felsic composition, consistent with orogenesis of this former active margin. P- and S-wave velocities immediately below the Moho are slower in the Arabian Shield than in the Arabian Platform (7.9 and 4.30 km s^-1 , and 8.10 and 4.55 km s^-1 , respectively). This indicates that the Poisson's ratios for the uppermost mantle of the Arabian Shield and Platform are 0.29 and 0.27, respectively. The lower mantle velocities and higher Poisson's ratio beneath the Arabian Shield probably arise from a partially molten mantle associated with Red Sea spreading and continental volcanism, although we cannot constrain the lateral extent of a zone of partially molten mantle.
Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure
NASA Astrophysics Data System (ADS)
Jia, Tianxia
2011-12-01
This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located in seismic active zones. SPAC analysis of microtremors provides an efficient way to estimate Vs structure. Compared with other Vs estimating methods, SPAC is noninvasive and does not require any active sources, and therefore, it is especially useful in big cities. I applied SPAC method in two urban areas. The first is the historic city, Charleston, South Carolina, where high levels of seismic hazard lead to great public concern. Accurate Vs information, therefore, is critical for seismic site classification and site response studies. The second SPAC study is in Manhattan, New York City, where depths of high velocity contrast and soil-to-bedrock are different along the island. The two experiments show that Vs structure could be estimated with good accuracy using SPAC method compared with borehole and other techniques. SPAC is proved to be an effective technique for Vs estimation in urban areas. One important issue in seismology is the inversion of subsurface structures from surface recordings of seismograms. My third project focuses on solving this complex geophysical inverse problems, specifically, surface wave phase velocity dispersion curve inversion for shear wave velocity. In addition to standard linear inversion, I developed advanced inversion techniques including joint inversion using borehole data as constrains, nonlinear inversion using Monte Carlo, and Simulated Annealing algorithms. One innovative way of solving the inverse problem is to make inference from the ensemble of all acceptable models. The statistical features of the ensemble provide a better way to characterize the Earth model.
NASA Astrophysics Data System (ADS)
Handayani, Langlang; Prasetya Aji, Mahardika; Susilo; Marwoto, Putut
2016-08-01
An alternative approach of an arts-based instruction for Basic Physics class has been developed through the implementation of video analysis of a Javanesse traditional dance: Bambangan Cakil. A particular movement of the dance -weapon throwing- was analyzed by employing the LoggerPro software package to exemplify projectile motion. The results of analysis indicated that the movement of the thrown weapon in Bambangan Cakil dance provides some helping explanations of several physics concepts of projectile motion: object's path, velocity, and acceleration, in a form of picture, graph and also table. Such kind of weapon path and velocity can be shown via a picture or graph, while such concepts of decreasing velocity in y direction (weapon moving downward and upward) due to acceleration g can be represented through the use of a table. It was concluded that in a Javanesse traditional dance there are many physics concepts which can be explored. The study recommends to bring the traditional dance into a science class which will enable students to get more understanding of both physics concepts and Indonesia cultural heritage.
Hjalmarson, H.W.
1994-01-01
Flood hazards of distributary-flow areas in Maricopa County, Arizona, can be distinguished on the basis of morphological features. Five distributary-flow areas represent the range of flood-hazard degree in the study area. Descriptive factors, including the presence of desert varnish and the absence of saguaro cactus, are more useful than traditional hydraulic-based methods in defining hazards. The width, depth, and velocity exponents of the hydraulic-geometry relations at the primary diffluences of the sites are similar to theoretical exponents for streams with cohesive bank material and the average exponents of stream channels in other areas in the United States. Because of the unexplained scatter of the values of the exponent of channel width, however, the use of average hydraulic-geometry relations is con- sidered inappropriate for characterizing flood hazards for specific distributary-flow in Maricopa County. No evidence has been found that supports the use of stochastic modeling of flows or flood hazards of many distributary-flow areas. The surface of many distributary-flow areas is stable with many distributary channels eroded in the calcreted surface material. Many distributary- flow areas do not appear to be actively aggrading today, and the paths of flow are not changing.
Turbulent fluid motion IV-averages, Reynolds decomposition, and the closure problem
NASA Technical Reports Server (NTRS)
Deissler, Robert G.
1992-01-01
Ensemble, time, and space averages as applied to turbulent quantities are discussed, and pertinent properties of the averages are obtained. Those properties, together with Reynolds decomposition, are used to derive the averaged equations of motion and the one- and two-point moment or correlation equations. The terms in the various equations are interpreted. The closure problem of the averaged equations is discussed, and possible closure schemes are considered. Those schemes usually require an input of supplemental information unless the averaged equations are closed by calculating their terms by a numerical solution of the original unaveraged equations. The law of the wall for velocities and temperatures, the velocity- and temperature-defect laws, and the logarithmic laws for velocities and temperatures are derived. Various notions of randomness and their relation to turbulence are considered in light of ergodic theory.
Variations of Solar Non-axisymmetric Activity
NASA Astrophysics Data System (ADS)
Gyenge, N.; Baranyi, T.; Ludmány, A.
The temporal behaviour of solar active longitudes has been examined by using two sunspot catalogues, the Greenwich Photoheliographic Results (GPR) and the Debrecen Photoheliographic Data (DPD). The time-longitude diagrams of the activity distribution reveal the preferred longitudinal zones and their migration with respect to the Carrington frame. The migration paths outline a set of patterns in which the activity zone has alternating prograde/retrograde angular velocities with respect to the Carrington rotation rate. The time profiles of these variations can be described by a set of successive parabolae. Two similar migration paths have been selected from these datasets, one northern path during cycles 21 - 22 and one southern path during cycles 13 - 14, for closer examination and comparison of their dynamical behaviours. The rates of sunspot emergence exhibited in both migration paths similar periodicities, close to 1.3 years. This behaviour may imply that the active longitude is connected to the bottom of convection zone.
Calibration method helps in seismic velocity interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzman, C.E.; Davenport, H.A.; Wilhelm, R.
1997-11-03
Acoustic velocities derived from seismic reflection data, when properly calibrated to subsurface measurements, help interpreters make pure velocity predictions. A method of calibrating seismic to measured velocities has improved interpretation of subsurface features in the Gulf of Mexico. In this method, the interpreter in essence creates a kind of gauge. Properly calibrated, the gauge enables the interpreter to match predicted velocities to velocities measured at wells. Slow-velocity zones are of special interest because they sometimes appear near hydrocarbon accumulations. Changes in velocity vary in strength with location; the structural picture is hidden unless the variations are accounted for by mappingmore » in depth instead of time. Preliminary observations suggest that the presence of hydrocarbons alters the lithology in the neighborhood of the trap; this hydrocarbon effect may be reflected in the rock velocity. The effect indicates a direct use of seismic velocity in exploration. This article uses the terms seismic velocity and seismic stacking velocity interchangeably. It uses ground velocity, checkshot average velocity, and well velocity interchangeably. Interval velocities are derived from seismic stacking velocities or well average velocities; they refer to velocities of subsurface intervals or zones. Interval travel time (ITT) is the reciprocal of interval velocity in microseconds per foot.« less
14 CFR 29.79 - Landing: Category A.
Code of Federal Regulations, 2010 CFR
2010-01-01
... approach and landing path must be established to avoid the critical areas of the height-velocity envelope... surface after complete power failure occurring during normal cruise. [Doc. No. 24802, 61 FR 21900, May 10...
Computational Modeling of Seismic Wave Propagation Velocity-Saturation Effects in Porous Rocks
NASA Astrophysics Data System (ADS)
Deeks, J.; Lumley, D. E.
2011-12-01
Compressional and shear velocities of seismic waves propagating in porous rocks vary as a function of the fluid mixture and its distribution in pore space. Although it has been possible to place theoretical upper and lower bounds on the velocity variation with fluid saturation, predicting the actual velocity response of a given rock with fluid type and saturation remains an unsolved problem. In particular, we are interested in predicting the velocity-saturation response to various mixtures of fluids with pressure and temperature, as a function of the spatial distribution of the fluid mixture and the seismic wavelength. This effect is often termed "patchy saturation' in the rock physics community. The ability to accurately predict seismic velocities for various fluid mixtures and spatial distributions in the pore space of a rock is useful for fluid detection, hydrocarbon exploration and recovery, CO2 sequestration and monitoring of many subsurface fluid-flow processes. We create digital rock models with various fluid mixtures, saturations and spatial distributions. We use finite difference modeling to propagate elastic waves of varying frequency content through these digital rock and fluid models to simulate a given lab or field experiment. The resulting waveforms can be analyzed to determine seismic traveltimes, velocities, amplitudes, attenuation and other wave phenomena for variable rock models of fluid saturation and spatial fluid distribution, and variable wavefield spectral content. We show that we can reproduce most of the published effects of velocity-saturation variation, including validating the Voigt and Reuss theoretical bounds, as well as the Hill "patchy saturation" curve. We also reproduce what has been previously identified as Biot dispersion, but in fact in our models is often seen to be wave multi-pathing and broadband spectral effects. Furthermore, we find that in addition to the dominant seismic wavelength and average fluid patch size, the smoothness of the fluid patches are a critical factor in determining the velocity-saturation response; this is a result that we have not seen discussed in the literature. Most importantly, we can reproduce all of these effects using full elastic wavefield scattering, without the need to resort to more complicated squirt-flow or poroelastic models. This is important because the physical properties and parameters we need to model full elastic wave scattering, and predict a velocity-saturation curve, are often readily available for projects we undertake; this is not the case for poroelastic or squirt-flow models. We can predict this velocity saturation curve for a specific rock type, fluid mixture distribution and wavefield spectrum.
NASA Technical Reports Server (NTRS)
Elliott, Joe W.; Althoff, Susan L.; Sailey, Richard H.
1988-01-01
An experimental investigation was conducted in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center to measure the inflow into a scale model helicopter rotor in forward flight (micron sub infinity = 0.30). The measurements were made with a two component Laser Velocimeter (LV) one chord above the plane formed by the path of the rotor tips (tip path plane). A conditional sampling technique was employed to determine the azimuthal position of the rotor at the time that each velocity measurement was made so that the azimuthal fluctuations in velocity could be determined. Measurements were made at a total of 180 separate locations in order to clearly define the inflow character. These data are presented without analysis.
Tick, David; Satici, Aykut C; Shen, Jinglin; Gans, Nicholas
2013-08-01
This paper presents a novel navigation and control system for autonomous mobile robots that includes path planning, localization, and control. A unique vision-based pose and velocity estimation scheme utilizing both the continuous and discrete forms of the Euclidean homography matrix is fused with inertial and optical encoder measurements to estimate the pose, orientation, and velocity of the robot and ensure accurate localization and control signals. A depth estimation system is integrated in order to overcome the loss of scale inherent in vision-based estimation. A path following control system is introduced that is capable of guiding the robot along a designated curve. Stability analysis is provided for the control system and experimental results are presented that prove the combined localization and control system performs with high accuracy.
NASA Astrophysics Data System (ADS)
Hipp, J. R.; Encarnacao, A.; Ballard, S.; Young, C. J.; Phillips, W. S.; Begnaud, M. L.
2011-12-01
Recently our combined SNL-LANL research team has succeeded in developing a global, seamless 3D tomographic P-velocity model (SALSA3D) that provides superior first P travel time predictions at both regional and teleseismic distances. However, given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we show a methodology for accomplishing this by exploiting the full model covariance matrix. Our model has on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiply methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix we solve for the travel-time covariance associated with arbitrary ray-paths by integrating the model covariance along both ray paths. Setting the paths equal gives variance for that path. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Multi-objective four-dimensional vehicle motion planning in large dynamic environments.
Wu, Paul P-Y; Campbell, Duncan; Merz, Torsten
2011-06-01
This paper presents Multi-Step A∗ (MSA∗), a search algorithm based on A∗ for multi-objective 4-D vehicle motion planning (three spatial and one time dimensions). The research is principally motivated by the need for offline and online motion planning for autonomous unmanned aerial vehicles (UAVs). For UAVs operating in large dynamic uncertain 4-D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and a grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles, and the rules of the air. It is shown that MSA∗ finds a cost optimal solution using variable length, angle, and velocity trajectory segments. These segments are approximated with a grid-based cell sequence that provides an inherent tolerance to uncertainty. The computational efficiency is achieved by using variable successor operators to create a multiresolution memory-efficient lattice sampling structure. The simulation studies on the UAV flight planning problem show that MSA∗ meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of a vector neighborhood-based A∗.
Redundancy, Self-Motion, and Motor Control
Martin, V.; Scholz, J. P.; Schöner, G.
2011-01-01
Outside the laboratory, human movement typically involves redundant effector systems. How the nervous system selects among the task-equivalent solutions may provide insights into how movement is controlled. We propose a process model of movement generation that accounts for the kinematics of goal-directed pointing movements performed with a redundant arm. The key element is a neuronal dynamics that generates a virtual joint trajectory. This dynamics receives input from a neuronal timer that paces end-effector motion along its path. Within this dynamics, virtual joint velocity vectors that move the end effector are dynamically decoupled from velocity vectors that do not. Moreover, the sensed real joint configuration is coupled back into this neuronal dynamics, updating the virtual trajectory so that it yields to task-equivalent deviations from the dynamic movement plan. Experimental data from participants who perform in the same task setting as the model are compared in detail to the model predictions. We discover that joint velocities contain a substantial amount of self-motion that does not move the end effector. This is caused by the low impedance of muscle joint systems and by coupling among muscle joint systems due to multiarticulatory muscles. Back-coupling amplifies the induced control errors. We establish a link between the amount of self-motion and how curved the end-effector path is. We show that models in which an inverse dynamics cancels interaction torques predict too little self-motion and too straight end-effector paths. PMID:19718817
Improving 1D Site Specific Velocity Profiles for the Kik-Net Network
NASA Astrophysics Data System (ADS)
Holt, James; Edwards, Benjamin; Pilz, Marco; Fäh, Donat; Rietbrock, Andreas
2017-04-01
Ground motion predication equations (GMPEs) form the cornerstone of modern seismic hazard assessments. When produced to a high standard they provide reliable estimates of ground motion/spectral acceleration for a given site and earthquake scenario. This information is crucial for engineers to optimise design and for regulators who enforce legal minimum safe design capacities. Classically, GMPEs were built upon the assumption that variability around the median model could be treated as aleatory. As understanding improved, it was noted that the propagation could be segregated into the response of the average path from the source and the response of the site. This is because the heterogeneity of the near-surface lithology is significantly different from that of the bulk path. It was then suggested that the semi-ergodic approach could be taken if the site response could be determined, moving uncertainty away from aleatory to epistemic. The determination of reliable site-specific response models is therefore becoming increasingly critical for ground motion models used in engineering practice. Today it is common practice to include proxies for site response within the scope of a GMPE, such as Vs30 or site classification, in an effort to reduce the overall uncertainty of the predication at a given site. However, these proxies are not always reliable enough to give confident ground motion estimates, due to the complexity of the near-surface. Other approaches of quantifying the response of the site include detailed numerical simulations (1/2/3D - linear, EQL, non-linear etc.). However, in order to be reliable, they require highly detailed and accurate velocity and, for non-linear analyses, material property models. It is possible to obtain this information through invasive methods, but is expensive, and not feasible for most projects. Here we propose an alternative method to derive reliable velocity profiles (and their uncertainty), calibrated using almost 20 years of recorded data from the Kik-Net network. First, using a reliable subset of sites, the empirical surface to borehole (S/B) ratio is calculated in the frequency domain using all events recorded at that site. In a subsequent step, we use numerical simulation to produce 1D SH transfer function curves using a suite of stochastic velocity models. Comparing the resulting amplification with the empirical S/B ratio we find optimal 1D velocity models and their uncertainty. The method will be tested to determine the level of initial information required to obtain a reliable Vs profile (e.g., starting Vs model, only Vs30, site-class, H/V ratio etc.) and then applied and tested against data from other regions using site-to-reference or empirical spectral model amplification.
NASA Technical Reports Server (NTRS)
Forbes, T. G.; Hones, E. W., Jr.; Bame, S. J.; Asbridge, J. R.; Paschmann, G.; Sckopke, N.; Russell, C. T.
1981-01-01
From an ISEE survey of substorm dropouts and recoveries during the period February 5 to May 25, 1978, 66 timing events observed by the Los Alamos Scientific Laboratory/Max-Planck-Institut Fast Plasma Experiments were studied in detail. Near substorm onset, both the average timing velocity and the bulk flow velocity at the edge of the plasma sheet are inward, toward the center. Measured normal to the surface of the plasma sheet, the timing velocity is 23 + or - 18 km/s and the proton flow velocity is 20 + or - 8 km/s. During substorm recovery, the plasma sheet reappears moving outward with an average timing velocity of 133 + or - 31 km/s; however, the corresponding proton flow velocity is only 3 + or - 7 km/s in the same direction. It is suggested that the difference between the average timing velocity for the expansion of the plasma sheet and the plasma bulk flow perpendicular to the surface of the sheet during substorm recovery is most likely the result of surface waves moving past the position of the satellites.
Transport of active ellipsoidal particles in ratchet potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ai, Bao-Quan, E-mail: aibq@scnu.edu.cn; Wu, Jian-Chun
2014-03-07
Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, whilemore » for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities)« less
A concept for a fuel efficient flight planning aid for general aviation
NASA Technical Reports Server (NTRS)
Collins, B. P.; Haines, A. L.; Wales, C. J.
1982-01-01
A core equation for estimation of fuel burn from path profile data was developed. This equation was used as a necessary ingredient in a dynamic program to define a fuel efficient flight path. The resultant algorithm is oriented toward use by general aviation. The pilot provides a description of the desired ground track, standard aircraft parameters, and weather at selected waypoints. The algorithm then derives the fuel efficient altitudes and velocities at the waypoints.
Ghost fringe removal techniques using Lissajous data presentation
Erskine, David J.; Eggert, J. H.; Celliers, P. M.; ...
2016-03-14
A VISAR (Velocity Interferometer System for Any Reflector) is a Dopplervelocity interferometer which is an important optical diagnostic in shockwave experiments at the national laboratories, used to measureequation of state(EOS) of materials under extreme conditions. Unwanted reflection of laser light from target windows can produce an additional component to the VISAR fringe record that can distort and obscure the true velocity signal. When accurately removing this so-called ghost artifact component is essential for achieving high accuracy EOSmeasurements, especially when the true light signal is only weakly reflected from the shock front. Independent of the choice of algorithm for processing themore » raw data into a complex fringe signal, we have found it beneficial to plot this signal as a Lissajous and seek the proper center of this path, even under time varying intensity which can shift the perceived center. Moreover, the ghost contribution is then solved by a simple translation in the complex plane that recenters the Lissajous path. For continuous velocity histories, we find that plotting the fringe magnitude vs nonfringing intensity and optimizing linearity is an invaluable tool for determining accurate ghost offsets. For discontinuous velocity histories, we have developed graphically inspired methods which relate the results of two VISARs having different velocity per fringe proportionalities or assumptions of constant fringe magnitude to find the ghost offset. The technique can also remove window reflection artifacts in generic interferometers, such as in the metrology of surfaces.« less
Arnold, Heinz J P; Müller, Marcus; Waldhaus, Jörg; Hahn, Hartmut; Löwenheim, Hubert
2010-02-01
Whole-organ culture of a sensory organ in a rotating wall vessel bioreactor provides a powerful in vitro model for physiological and pathophysiological investigation as previously demonstrated for the postnatal inner ear. The model is of specific relevance as a tool for regeneration research. In the immature inner ear explant, the density was only 1.29 g/cm(3). The high density of 1.68 g/cm(3) of the functionally mature organ resulted in enhanced settling velocity and deviation from its ideal circular orbital path causing enhanced shear stress. The morphometric and physical properties, as well as the dynamic motion patterns of explants, were analyzed and numerically evaluated by an orbital path index. Application of a novel buoyancy bead technique resulted in a 6.5- to 14.8-fold reduction of the settling velocity. The deviation of the explant from its ideal circular orbital path was adjusted as indicated by an optimum value for the orbital path index (-1.0). Shear stress exerted on the inner ear explant was consequently reduced 6.4- to 15.0-fold. The culture conditions for postnatal stages were optimized, and the preconditions for transferring this in vitro model toward mature high-density stages established. This buoyancy technique may also be useful in tissue engineering of other high-density structures.
Donath, Lars; Zahner, Lukas; Roth, Ralf; Fricker, Livia; Cordes, Mareike; Hanssen, Henner; Schmidt-Trucksäss, Arno; Faude, Oliver
2013-03-01
Impaired balance and gait performance increase fall-risk in seniors. Acute effects of different exercise bouts on gait and balance were not yet addressed. Therefore, 19 healthy seniors (10 women, 9 men, age: 64.6 ± 3.2 years) were examined on 3 days. After exhaustive treadmill testing, participants randomly completed a 2-km treadmill walking test (76 ± 8 % VO(2max)) and a resting control condition. Standing balance performance (SBALP) was assessed by single limb-eyes opened (SLEO) and double limb-eyes closed (DLEC) stance. Gait parameters were collected at comfortable walking velocity. A condition × time interaction of center of pressure path length (COP(path)) was observed for both balance tasks (p < 0.001). Small (Cohen's d = 0.42, p = 0.05) and large (d = 1.04, p < 0.001) COP(path) increases were found after 2-km and maximal exercise during DLEC. Regarding SLEO, slightly increased COP(path) occurred after 2-km walking (d = 0.29, p = 0.65) and large increases after exhaustive exercise (d = 1.24, p < 0.001). No significant differences were found for gait parameters. Alterations of SBALP after exhaustive exercise might lead to higher fall-risk in seniors. Balance changes upon 2-km testing might be of minor relevance. Gait is not affected during single task walking at given velocities.
Michel, Anna P M; Kapit, Jason; Witinski, Mark F; Blanchard, Romain
2017-04-10
Methane is a powerful greenhouse gas that has both natural and anthropogenic sources. The ability to measure methane using an integrated path length approach such as an open/long-path length sensor would be beneficial in several environments for examining anthropogenic and natural sources, including tundra landscapes, rivers, lakes, landfills, estuaries, fracking sites, pipelines, and agricultural sites. Here a broadband monolithic distributed feedback-quantum cascade laser array was utilized as the source for an open-path methane sensor. Two telescopes were utilized for the launch (laser source) and receiver (detector) in a bistatic configuration for methane sensing across a 50 m path length. Direct-absorption spectroscopy was utilized with intrapulse tuning. Ambient methane levels were detectable, and an instrument precision of 70 ppb with 100 s averaging and 90 ppb with 10 s averaging was achieved. The sensor system was designed to work "off the grid" and utilizes batteries that are rechargeable with solar panels and wind turbines.
2012-01-01
Background Modern high-velocity projectiles produce temporary cavities and can thus cause extensive tissue destruction along the bullet path. It is still unclear whether gelatin blocks, which are used as a well-accepted tissue simulant, allow the effects of projectiles to be adequately investigated and how these effects are influenced by caliber size. Method Barium titanate particles were distributed throughout a test chamber for an assessment of wound contamination. We fired .22-caliber Magnum bullets first into gelatin blocks and then into porcine hind limbs placed behind the chamber. Two other types of bullets (.222-caliber bullets and 6.5 × 57 mm cartridges) were then shot into porcine hind limbs. Permanent and temporary wound cavities as well as the spatial distribution of barium titanate particles in relation to the bullet path were evaluated radiologically. Results A comparison of the gelatin blocks and hind limbs showed significant differences (p < 0.05) in the mean results for all parameters. There were significant differences between the bullets of different calibers in the depth to which barium titanate particles penetrated the porcine hind limbs. Almost no particles, however, were found at a penetration depth of 10 cm or more. By contrast, gas cavities were detected along the entire bullet path. Conclusion Gelatin is only of limited value for evaluating the path of high-velocity projectiles and the contamination of wounds by exogenous particles. There is a direct relationship between the presence of gas cavities in the tissue along the bullet path and caliber size. These cavities, however, are only mildly contaminated by exogenous particles. PMID:22490236
Roerdink, Melvyn; Huibers, Alja V.; Evers, Lotte L. W.; Beek, Peter J.
2017-01-01
In swimming propelling efficiency is partly determined by intra-cyclic velocity fluctuations. The higher these fluctuations are at a given average swimming velocity, the less efficient is the propulsion. This study explored whether the leg-arm coordination (i.e. phase relation ϕ) within the breaststroke cycle can be influenced with acoustic pacing, and whether the so induced changes are accompanied by changes in intra-cyclic velocity fluctuations. Twenty-six participants were asked to couple their propulsive leg and arm movements to a double-tone metronome beat and to keep their average swimming velocity constant over trials. The metronome imposed five different phase relations ϕi (90, 135, 180, 225 and 270°) of leg-arm coordination. Swimmers adjusted their technique under the influence of the metronome, but failed to comply to the velocity requirement for ϕ = 90 and 135°. For imposed ϕ = 180, 225 and 270°, the intra-cyclic velocity fluctuations increased with increasing ϕ, while average swimming velocity did not differ. This suggests that acoustic pacing may be used to adjust ϕ and thereby performance of breaststroke swimming given the dependence of propelling efficiency on ϕ. PMID:29023496
van Houwelingen, Josje; Roerdink, Melvyn; Huibers, Alja V; Evers, Lotte L W; Beek, Peter J
2017-01-01
In swimming propelling efficiency is partly determined by intra-cyclic velocity fluctuations. The higher these fluctuations are at a given average swimming velocity, the less efficient is the propulsion. This study explored whether the leg-arm coordination (i.e. phase relation ϕ) within the breaststroke cycle can be influenced with acoustic pacing, and whether the so induced changes are accompanied by changes in intra-cyclic velocity fluctuations. Twenty-six participants were asked to couple their propulsive leg and arm movements to a double-tone metronome beat and to keep their average swimming velocity constant over trials. The metronome imposed five different phase relations ϕi (90, 135, 180, 225 and 270°) of leg-arm coordination. Swimmers adjusted their technique under the influence of the metronome, but failed to comply to the velocity requirement for ϕ = 90 and 135°. For imposed ϕ = 180, 225 and 270°, the intra-cyclic velocity fluctuations increased with increasing ϕ, while average swimming velocity did not differ. This suggests that acoustic pacing may be used to adjust ϕ and thereby performance of breaststroke swimming given the dependence of propelling efficiency on ϕ.
Return stroke velocities and currents using a solid state silicon detector system
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Rust, W. David
1988-01-01
A small, portable device has been developed to measure return stroke velocities. With the device, velocities from 135 strokes that consist of 92 natural return strokes and 43 triggered return strokes have been analyzed. The average return stroke velocity for longer channels, greater than 500 meters, is 1.2 + or - 0.3 x 10 to the 8th m/s for both natural and triggered return strokes. For shorter channel lengths, less than 500 m, natural lightning has a statistically higher average return stroke velocity of 1.9 + or - 0.7 x 10 to the 8th m/s than triggered lightning with an average return stroke velocity of 1.4 + or - 0.4 x 10 to the 8th m/s. Using the transmission line model of the return stroke, natural lightning has a peak current distribution that is log-normal with a median value of 19 kA. Return stroke velocities and currents were determined for two distant single stroke natural positive cloud-to-ground flashes. The velocities were 1.0 and 1.7 x 10 to the 8th ms/s while the estimated peak current for each positive flash was over 125 kA.
Interior near-field acoustical holography in flight.
Williams, E G; Houston, B H; Herdic, P C; Raveendra, S T; Gardner, B
2000-10-01
In this paper boundary element methods (BEM) are mated with near-field acoustical holography (NAH) in order to determine the normal velocity over a large area of a fuselage of a turboprop airplane from a measurement of the pressure (hologram) on a concentric surface in the interior of the aircraft. This work represents the first time NAH has been applied in situ, in-flight. The normal fuselage velocity was successfully reconstructed at the blade passage frequency (BPF) of the propeller and its first two harmonics. This reconstructed velocity reveals structure-borne and airborne sound-transmission paths from the engine to the interior space.
Izquierdo, M; González-Badillo, J J; Häkkinen, K; Ibáñez, J; Kraemer, W J; Altadill, A; Eslava, J; Gorostiaga, E M
2006-09-01
The purpose of this study was to examine the effect of different loads on repetition speed during single sets of repetitions to failure in bench press and parallel squat. Thirty-six physical active men performed 1-repetition maximum in a bench press (1 RM (BP)) and half squat position (1 RM (HS)), and performed maximal power-output continuous repetition sets randomly every 10 days until failure with a submaximal load (60 %, 65 %, 70 %, and 75 % of 1RM, respectively) during bench press and parallel squat. Average velocity of each repetition was recorded by linking a rotary encoder to the end part of the bar. The values of 1 RM (BP) and 1 RM (HS) were 91 +/- 17 and 200 +/- 20 kg, respectively. The number of repetitions performed for a given percentage of 1RM was significantly higher (p < 0.001) in half squat than in bench press performance. Average repetition velocity decreased at a greater rate in bench press than in parallel squat. The significant reductions observed in the average repetition velocity (expressed as a percentage of the average velocity achieved during the initial repetition) were observed at higher percentage of the total number of repetitions performed in parallel squat (48 - 69 %) than in bench press (34 - 40 %) actions. The major finding in this study was that, for a given muscle action (bench press or parallel squat), the pattern of reduction in the relative average velocity achieved during each repetition and the relative number of repetitions performed was the same for all percentages of 1RM tested. However, relative average velocity decreased at a greater rate in bench press than in parallel squat performance. This would indicate that in bench press the significant reductions observed in the average repetition velocity occurred when the number of repetitions was over one third (34 %) of the total number of repetitions performed, whereas in parallel squat it was nearly one half (48 %). Conceptually, this would indicate that for a given exercise (bench press or squat) and percentage of maximal dynamic strength (1RM), the pattern of velocity decrease can be predicted over a set of repetitions, so that a minimum repetition threshold to ensure maximal speed performance is determined.
Survey of the Influence of the Width of Urban Branch Roads on the Meeting of Two-Way Vehicle Flows
Chen, Qun; Zhao, Yunan; Pan, Shuangli; Wang, Yan
2016-01-01
Branch roads, which are densely distributed in cities, allow for the flow of local traffic and provide connections between the city and outlying areas. Branch roads are typically narrow, and two-way traffic flows on branch roads are thus affected when vehicles traveling in opposite directions meet. This study investigates the changes in the velocities of vehicles when they meet on two-way branch roads. Various widths of branch roads were selected, and their influence on traffic flows was investigated via a video survey. The results show that, depending on the average vehicle velocity, branch roads require different widths to prevent a large decrease in velocity when vehicles meet. When the velocity on a branch road is not high (e.g., the average velocity without meeting is approximately 6 m/s), appropriately increasing the road width will notably increase the meeting velocity. However, when the velocity is high (e.g., the average velocity without meeting is greater than 10 m/s), there is a large decrease in velocity when meeting even if the road surface is wide (6.5 m). This study provides a basis for selecting the width of urban branch roads and the simulation of bidirectional traffic on such roads. PMID:26881427
Survey of the Influence of the Width of Urban Branch Roads on the Meeting of Two-Way Vehicle Flows.
Chen, Qun; Zhao, Yunan; Pan, Shuangli; Wang, Yan
2016-01-01
Branch roads, which are densely distributed in cities, allow for the flow of local traffic and provide connections between the city and outlying areas. Branch roads are typically narrow, and two-way traffic flows on branch roads are thus affected when vehicles traveling in opposite directions meet. This study investigates the changes in the velocities of vehicles when they meet on two-way branch roads. Various widths of branch roads were selected, and their influence on traffic flows was investigated via a video survey. The results show that, depending on the average vehicle velocity, branch roads require different widths to prevent a large decrease in velocity when vehicles meet. When the velocity on a branch road is not high (e.g., the average velocity without meeting is approximately 6 m/s), appropriately increasing the road width will notably increase the meeting velocity. However, when the velocity is high (e.g., the average velocity without meeting is greater than 10 m/s), there is a large decrease in velocity when meeting even if the road surface is wide (6.5 m). This study provides a basis for selecting the width of urban branch roads and the simulation of bidirectional traffic on such roads.
NASA Astrophysics Data System (ADS)
Kincaid, T. R.; Meyer, B. A.
2009-12-01
In groundwater flow modeling, aquifer permeability is typically defined through model calibration. Since the pattern and size of conduits are part of a karstic permeability framework, those parameters should be constrainable through the same process given a sufficient density of measured conditions. H2H Associates has completed a dual-permeability steady-state model of groundwater flow through the western Santa Fe River Basin, Florida from which a 380.9 km network of saturated conduits was delineated through model calibration to heads and spring discharges. Two calibration datasets were compiled describing average high-water and average low-water conditions based on heads at 145 wells and discharge from 18 springs for the high-water scenario and heads at 188 wells and discharge from 9 springs for the low-water scenario. An initial conduit network was defined by assigning paths along mapped conduits and inferring paths along potentiometric troughs between springs and swallets that had been connected by groundwater tracing. These initial conduit assignments accounted for only 13.75 and 34.1 km of the final conduit network respectively. The model was setup using FEFLOW™ where conduits were described as discrete features embedded in a porous matrix. Flow in the conduits was described by the Manning-Strickler equation where variables for conduit area and roughness were used to adjust the volume and velocity of spring flows. Matrix flow was described by Darcy’s law where hydraulic conductivity variations were limited to three geologically defined internally homogeneous zones that ranged from ~2E-6 m/s to ~4E-3 m/s. Recharge for both the high-water and low-water periods was determined through a water budget analysis where variations were restricted to nine zones defined by land-use. All remaining variations in observed head were then assumed to be due to conduits. The model was iteratively calibrated to the high-water and low-water datasets wherein the location, size and roughness of the conduits were assigned as needed to accurately simulate observed heads and spring discharges while bounding simulated velocities by the tracer test results. Conduit diameters were adjusted to support high-water spring discharges but the locations were best determined by calibration to the low-water head field. The final model calibrated to within 5% of the total head change across the model region at 143 of the 145 wells in the high-water scenario and at 176 of the 188 wells in the low-water scenario. Simulated spring discharges fell within 13% of the observed range under high-water conditions and to within 100% of the observed range under low-water conditions. Simulated velocities ranged from as low as 10-4 m/day in the matrix to as high as 10+3 m/day in the largest conduits. The significance of these results that we emphasize here is two-fold. First, plausible karstic groundwater flow conditions can be reasonably simulated if adequate efforts are made to include springs, swallets, caves, and traced flow paths. And second, detailed saturated conduit networks can be delineated from careful evaluation of hydraulic head data particularly when dense datasets can be constructed by correlating values obtained from different wells under similar hydraulic periods.
Angular width of the Cherenkov radiation with inclusion of multiple scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jian, E-mail: jzheng@ustc.edu.cn
2016-06-15
Visible Cherenkov radiation can offer a method of the measurement of the velocity of charged particles. The angular width of the radiation is important since it determines the resolution of the velocity measurement. In this article, the angular width of Cherenkov radiation with inclusion of multiple scattering is calculated through the path-integral method, and the analytical expressions are presented. The condition that multiple scattering processes dominate the angular distribution is obtained.
High Resolution Near-Bed Observations in Winter Near Cape Hatteras, North Carolina
2010-06-01
Druck pressure sensors, Campbell optical backscatter, and Seatech or Wetlabs CSTAR transmission sensors. All the transmissometers were 25 cm path...14.0 m Depth Flobee Tripods Sontek hydra Acoustic Doppler velocimeter (ADV), thermistor 3D flow velocity, temperature 8 Hz for 17.5 min hourly Pulse...coherent acoustic Doppler profiler (PCADP), thermistor Profiles of 3D flow velocity, temperature 1 Hz for 17.5 min hourly, 6.3 cm bins Pressure
PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1994-01-01
A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and DEC VAX series computers running VMS. Format statements in the code may need to be rewritten depending on your FORTRAN compiler. The source code and sample data are available on a 5.25 inch 360K MS-DOS format diskette. This program was developed in 1972 and was last updated in 1991. IBM and IBM PC are registered trademarks of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. DEC VAX, and VMS are trademarks of Digital Equipment Corporation.
Kozieł, Sławomir M; Malina, Robert M
2018-01-01
Predicted maturity offset and age at peak height velocity are increasingly used with youth athletes, although validation studies of the equations indicated major limitations. The equations have since been modified and simplified. The objective of this study was to validate the new maturity offset prediction equations in independent longitudinal samples of boys and girls. Two new equations for boys with chronological age and sitting height and chronological age and stature as predictors, and one equation for girls with chronological age and stature as predictors were evaluated in serial data from the Wrocław Growth Study, 193 boys (aged 8-18 years) and 198 girls (aged 8-16 years). Observed age at peak height velocity for each youth was estimated with the Preece-Baines Model 1. The original prediction equations were included for comparison. Predicted age at peak height velocity was the difference between chronological age at prediction and maturity offset. Predicted ages at peak height velocity with the new equations approximated observed ages at peak height velocity in average maturing boys near the time of peak height velocity; a corresponding window for average maturing girls was not apparent. Compared with observed age at peak height velocity, predicted ages at peak height velocity with the new and original equations were consistently later in early maturing youth and earlier in late maturing youth of both sexes. Predicted ages at peak height velocity with the new equations had reduced variation compared with the original equations and especially observed ages at peak height velocity. Intra-individual variation in predicted ages at peak height velocity with all equations was considerable. The new equations are useful for average maturing boys close to the time of peak height velocity; there does not appear to be a clear window for average maturing girls. The new and original equations have major limitations with early and late maturing boys and girls.
NASA Astrophysics Data System (ADS)
Valisetty, R.; Rajendran, A.; Agarwal, G.; Dongare, A.; Ianni, J.; Namburu, R.
2018-07-01
The Hugoniot elastic limit (HEL, or the shock precursor) decay phenomenon was investigated under an uniaxial strain condition, in a plate-on-plate impact configuration, using large-scale molecular dynamics (MD) high performance computing (HPC) simulations on a multi-billion 5000 Å thick nanocrystalline aluminum (nc-Al) system with an average grain size of 1000 Å and at five impact velocities ranging from 0.7 to 1.5 km s‑1. The averaged stress and strain distributions were obtained in the shock fronts’ travel direction using a material conserving atom slicing method. The loading paths in terms of the Rayleigh lines experienced by the atom system in the evolving shock fronts exhibited a strong dependency on the shock stress levels. This dependency decreased as the impact velocity increased from 0.7 to 1.5 km s‑1. By combining the HELs from MD results with plate impact experimental data, the precursor decay for the nc-Al was predicted from nano-to-macro scale thickness range. The evolving shock fronts were characterized in terms of parameters such as the shock front thickness, shock rise time and strain rate. The MD results were further analyzed using a crystal analysis algorithm and a twin dislocation identification method to obtain the densities of the atomistic defects evolving behind the evolving shock fronts. High-fidelity large-scale HPC simulation results showed that certain dislocation partials strongly influenced the elastic–plastic transition response across the HELs. The twinning dislocations increased by more than a factor of 10 during the transition and remained constant under further shock compression.
Association between obesity and sperm quality.
Ramaraju, G A; Teppala, S; Prathigudupu, K; Kalagara, M; Thota, S; Kota, M; Cheemakurthi, R
2018-04-01
There is awareness of likelihood of abnormal spermatozoa in obese men; however, results from previous studies are inconclusive. Advances in computer-aided sperm analysis (CASA) enable precise evaluation of sperm quality and include assessment of several parameters. We studied a retrospective cohort of 1285 men with CASA data from our infertility clinic during 2016. Obesity (BMI ≥30) was associated with lower (mean ± SE) volume (-0.28 ± 0.12, p-value = .04), sperm count (48.36 ± 16.51, p-value = .002), concentration (-15.83 ± 5.40, p-value = .01), progressive motility (-4.45 ± 1.92, p-value = .001), total motility (-5.50 ± 2.12, p-value = .002), average curve velocity (μm/s) (-2.09 ± 0.85, p-value = .001), average path velocity (μm/s) (-1.59 ± 0.75, p-value = .006), and higher per cent head defects (0.92 ± 0.81, p-value = .02), thin heads (1.12 ± 0.39, p-value = .007) and pyriform heads (1.36 ± 0.65, p-value = .02). Obese men were also more likely to have (odds ratio, 95% CI) oligospermia (1.67, 1.15-2.41, p-value = .007) and asthenospermia (1.82, 1.20-2.77, p-value = .005). This is the first report of abnormal sperm parameters in obese men based on CASA. Clinicians may need to factor in paternal obesity prior to assisted reproduction. © 2017 Blackwell Verlag GmbH.
Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths
Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.
2011-01-01
This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.
Velocity distributions among colliding asteroids
NASA Technical Reports Server (NTRS)
Bottke, William F., Jr.; Nolan, Michael C.; Greenberg, Richard; Kolvoord, Robert A.
1994-01-01
The probability distribution for impact velocities between two given asteroids is wide, non-Gaussian, and often contains spikes according to our new method of analysis in which each possible orbital geometry for collision is weighted according to its probability. An average value would give a good representation only if the distribution were smooth and narrow. Therefore, the complete velocity distribution we obtain for various asteroid populations differs significantly from published histograms of average velocities. For all pairs among the 682 asteroids in the main-belt with D greater than 50 km, we find that our computed velocity distribution is much wider than previously computed histograms of average velocities. In this case, the most probable impact velocity is approximately 4.4 km/sec, compared with the mean impact velocity of 5.3 km/sec. For cases of a single asteroid (e.g., Gaspra or Ida) relative to an impacting population, the distribution we find yields lower velocities than previously reported by others. The width of these velocity distributions implies that mean impact velocities must be used with caution when calculating asteroid collisional lifetimes or crater-size distributions. Since the most probable impact velocities are lower than the mean, disruption events may occur less frequently than previously estimated. However, this disruption rate may be balanced somewhat by an apparent increase in the frequency of high-velocity impacts between asteroids. These results have implications for issues such as asteroidal disruption rates, the amount/type of impact ejecta available for meteoritical delivery to the Earth, and the geology and evolution of specific asteroids like Gaspra.
Patel, Rita; Donohue, Kevin D; Unnikrishnan, Harikrishnan; Kryscio, Richard J
2015-04-01
This article presents a quantitative method for assessing instantaneous and average lateral vocal-fold motion from high-speed digital imaging, with a focus on developmental changes in vocal-fold kinematics during childhood. Vocal-fold vibrations were analyzed for 28 children (aged 5-11 years) and 28 adults (aged 21-45 years) without voice disorders. The following kinematic features were analyzed from the vocal-fold displacement waveforms: relative velocity-based features (normalized average and peak opening and closing velocities), relative acceleration-based features (normalized peak opening and closing accelerations), speed quotient, and normalized peak displacement. Children exhibited significantly larger normalized peak displacements, normalized average and peak opening velocities, normalized average and peak closing velocities, peak opening and closing accelerations, and speed quotient compared to adult women. Values of normalized average closing velocity and speed quotient were higher in children compared to adult men. When compared to adult men, developing children typically have higher estimates of kinematic features related to normalized displacement and its derivatives. In most cases, the kinematic features of children are closer to those of adult men than adult women. Even though boys experience greater changes in glottal length and pitch as they mature, results indicate that girls experience greater changes in kinematic features compared to boys.
Pacific slab beneath northeast China revealed by regional and teleseismic waveform modeling
NASA Astrophysics Data System (ADS)
WANG, X.; Chen, Q. F.; Wei, S.
2015-12-01
Accurate velocity and geometry of the slab is essential for better understanding of the thermal, chemical structure of the mantle earth, as well as geodynamics. Recent tomography studies show similar morphology of the subducting Pacific slab beneath northeast China, which was stagnant in the mantle transition zone with thickness of more than 200km and an average velocity perturbation of ~1.5% [Fukao and Obayashi, 2013]. Meanwhile, waveform-modeling studies reveal that the Pacific slab beneath Japan and Kuril Island has velocity perturbation up to 5% and thickness up to 90km [Chen et al., 2007; Zhan et al., 2014]. These discrepancies are probably caused by the smoothing and limited data coverage in the tomographic inversions. Here we adopted 1D and 2D waveform modeling methods to study the fine structure of Pacific slab beneath northeast China using dense regional permanent and temporary broadband seismic records. The residual S- and P-wave travel time, difference between data and 1D synthetics, shows significant difference between the eastern and western stations. S-wave travel time residuals indicate 5-10s earlier arrivals for stations whose ray path lies within the slab, compared with those out of the slab. Teleseimic waveforms were used to rule out the major contribution of the possible low velocity structure above 200km. Furthermore, we use 2D finite-difference waveform modeling to confirm the velocity perturbation and geometry of the slab. Our result shows that the velocity perturbation in the slab is significantly higher than those reported in travel-time tomography studies. ReferencesChen, M., J. Tromp, D. Helmberger, and H. Kanamori (2007), Waveform modeling of the slab beneath Japan, J. Geophys. Res.-Solid Earth, 112(B2), 19, doi:10.1029/2006jb004394.Fukao, Y., and M. Obayashi (2013), Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity, J. Geophys. Res.-Solid Earth, 118(11), 5920-5938, doi:10.1002/2013jb010466.Zhan, Z. W., D. V. Helmberger, and D. Z. Li (2014), Imaging subducted slab structure beneath the Sea of Okhotsk with teleseismic waveforms, Phys. Earth Planet. Inter., 232, 30-35, doi:10.1016/j.pepi.2014.03.008.
Optimum swimming pathways of fish spawning migrations in rivers
McElroy, Brandon; DeLonay, Aaron; Jacobson, Robert
2012-01-01
Fishes that swim upstream in rivers to spawn must navigate complex fluvial velocity fields to arrive at their ultimate locations. One hypothesis with substantial implications is that fish traverse pathways that minimize their energy expenditure during migration. Here we present the methodological and theoretical developments necessary to test this and similar hypotheses. First, a cost function is derived for upstream migration that relates work done by a fish to swimming drag. The energetic cost scales with the cube of a fish's relative velocity integrated along its path. By normalizing to the energy requirements of holding a position in the slowest waters at the path's origin, a cost function is derived that depends only on the physical environment and not on specifics of individual fish. Then, as an example, we demonstrate the analysis of a migration pathway of a telemetrically tracked pallid sturgeon (Scaphirhynchus albus) in the Missouri River (USA). The actual pathway cost is lower than 105 random paths through the surveyed reach and is consistent with the optimization hypothesis. The implication—subject to more extensive validation—is that reproductive success in managed rivers could be increased through manipulation of reservoir releases or channel morphology to increase abundance of lower-cost migration pathways.
NASA Astrophysics Data System (ADS)
Mehta, R. D.
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
NASA Technical Reports Server (NTRS)
Mehta, R. D.
1985-01-01
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes
Kitamura, Tasuku; Imafuku, Michio
2015-01-01
Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model's physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly. PMID:26041360
Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes.
Kitamura, Tasuku; Imafuku, Michio
2015-06-22
Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model's physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Barbosa, Tiago M.; Costa, Mário J.; Morais, Jorge E; Moreira, Marc; Silva, António J.; Marinho, Daniel A.
2012-01-01
The aim of this research was to develop a path-flow analysis model to highlight the relationships between buoyancy and prone gliding tests and some selected anthropometrical and biomechanical variables. Thirty-eight young male swimmers (12.97 ± 1.05 years old) with several competitive levels were evaluated. It were assessed the body mass, height, fat mass, body surface area, vertical buoyancy, prone gliding after wall push-off, stroke length, stroke frequency and velocity after a maximal 25 [m] swim. The confirmatory model included the body mass, height, fat mass, prone gliding test, stroke length, stroke frequency and velocity. All theoretical paths were verified except for the vertical buoyancy test that did not present any relationship with anthropometrical and biomechanical variables nor with the prone gliding test. The good-of-fit from the confirmatory path-flow model, assessed with the standardized root mean square residuals (SRMR), is considered as being close to the cut-off value, but even so not suitable of the theory (SRMR = 0.11). As a conclusion, vertical buoyancy and prone gliding tests are not the best techniques to assess the swimmer’s hydrostatic and hydrodynamic profile, respectively. PMID:23486528
NASA Astrophysics Data System (ADS)
Contini, D.; Donateo, A.; Belosi, F.; Grasso, F. M.; Santachiara, G.; Prodi, F.
2010-08-01
This work reports an analysis of the concentration, size distribution, and deposition velocity of atmospheric particles over snow and iced surfaces on the Nansen Ice Sheet (Antarctica). Measurements were performed using the eddy-correlation method at a remote site during the XXII Italian expedition of the National Research Program in Antarctica (PNRA) in 2006. The measurement system was based on a condensation particle counter (CPC) able to measure particles down to 9 nm in diameter with a 50% efficiency and a Differential Mobility Particle Sizer for evaluating particle size distributions from 11 to 521 nm diameter in 39 channels. A method based on postprocessing with digital filters was developed to take into account the effect of the slow time response of the CPC. The average number concentration was 1338 cm-3 (median, 978 cm-3; interquartile range, 435-1854 cm-3). Higher concentrations were observed at low wind velocities. Results gave an average deposition velocity of 0.47 mm/s (median, 0.19 mm/s; interquartile range, -0.21 -0.88 mm/s). Deposition increased with the friction velocity and was on average 0.86 mm/s during katabatic wind characterized by velocities higher than 4 m/s. Observed size distributions generally presented two distinct modes, the first at approximately 15-20 nm and the second (representing on average 70% of the total particles) at 60-70 nm. Under strong-wind conditions, the second mode dominated the average size distribution.
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...
2016-10-20
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Measuring the seismic velocity in the top 15 km of Earth's inner core
NASA Astrophysics Data System (ADS)
Godwin, Harriet; Waszek, Lauren; Deuss, Arwen
2018-01-01
We present seismic observations of the uppermost layer of the inner core. This was formed most recently, thus its seismic features are related to current solidification processes. Previous studies have only constrained the east-west hemispherical seismic velocity structure in the Earth's inner core at depths greater than 15 km below the inner core boundary. The properties of shallower structure have not yet been determined, because the seismic waves PKIKP and PKiKP used for differential travel time analysis arrive close together and start to interfere. Here, we present a method to make differential travel time measurements for waves that turn in the top 15 km of the inner core, and measure the corresponding seismic velocity anomalies. We achieve this by generating synthetic seismograms to model the overlapping signals of the inner core phase PKIKP and the inner core boundary phase PKiKP. We then use a waveform comparison to attribute different parts of the signal to each phase. By measuring the same parts of the signal in both observed and synthetic data, we are able to calculate differential travel time residuals. We apply our method to data with ray paths which traverse the Pacific hemisphere boundary. We generate a velocity model for this region, finding lower velocity for deeper, more easterly ray paths. Forward modelling suggests that this region contains either a high velocity upper layer, or variation in the location of the hemisphere boundary with depth and/or latitude. Our study presents the first direct seismic observation of the uppermost 15 km of the inner core, opening new possibilities for further investigating the inner core boundary region.
Influence of visual path information on human heading perception during rotation.
Li, Li; Chen, Jing; Peng, Xiaozhe
2009-03-31
How does visual path information influence people's perception of their instantaneous direction of self-motion (heading)? We have previously shown that humans can perceive heading without direct access to visual path information. Here we vary two key parameters for estimating heading from optic flow, the field of view (FOV) and the depth range of environmental points, to investigate the conditions under which visual path information influences human heading perception. The display simulated an observer traveling on a circular path. Observers used a joystick to rotate their line of sight until deemed aligned with true heading. Four FOV sizes (110 x 94 degrees, 48 x 41 degrees, 16 x 14 degrees, 8 x 7 degrees) and depth ranges (6-50 m, 6-25 m, 6-12.5 m, 6-9 m) were tested. Consistent with our computational modeling results, heading bias increased with the reduction of FOV or depth range when the display provided a sequence of velocity fields but no direct path information. When the display provided path information, heading bias was not influenced as much by the reduction of FOV or depth range. We conclude that human heading and path perception involve separate visual processes. Path helps heading perception when the display does not contain enough optic-flow information for heading estimation during rotation.
Windshear certification data base for forward-look detection systems
NASA Technical Reports Server (NTRS)
Switzer, George F.; Hinton, David A.; Proctor, Fred H.
1994-01-01
Described is an introduction to a comprehensive database that is to be used for certification testing of airborne forward-look windshear detection systems. The database was developed by NASA Langley Research Center, at the request of the Federal Aviation Administration (FAA), to support the industry initiative to certify and produce forward-looking windshear detection equipment. The database contains high-resolution three-dimensional fields for meteorological variables that may be sensed by forward-looking systems. The database is made up of seven case studies that are generated by the Terminal Area Simulation System, a state-of-the-art numerical system for the realistic modeling of windshear phenomena. The selected cases contained in the certification documentation represent a wide spectrum of windshear events. The database will be used with vendor-developed sensor simulation software and vendor-collected ground-clutter data to demonstrate detection performance in a variety of meteorological conditions using NASA/FAA pre-defined path scenarios for each of the certification cases. A brief outline of the contents and sample plots from the database documentation are included. These plots show fields of hazard factor, or F-factor (Bowles 1990), radar reflectivity, and velocity vectors on a horizontal plane overlayed with the applicable certification paths. For the plot of the F-factor field the region of 0.105 and above signify an area of hazardous, performance decreasing windshear, while negative values indicate regions of performance increasing windshear. The values of F-factor are based on 1-Km averaged segments along horizontal flight paths, assuming an air speed of 150 knots (approx. 75 m/s). The database has been released to vendors participating in the certification process. The database and associated document have been transferred to the FAA for archival storage and distribution.
Empirical Green's function analysis: Taking the next step
Hough, S.E.
1997-01-01
An extension of the empirical Green's function (EGF) method is presented that involves determination of source parameters using standard EGF deconvolution, followed by inversion for a common attenuation parameter for a set of colocated events. Recordings of three or more colocated events can thus be used to constrain a single path attenuation estimate. I apply this method to recordings from the 1995-1996 Ridgecrest, California, earthquake sequence; I analyze four clusters consisting of 13 total events with magnitudes between 2.6 and 4.9. I first obtain corner frequencies, which are used to infer Brune stress drop estimates. I obtain stress drop values of 0.3-53 MPa (with all but one between 0.3 and 11 MPa), with no resolved increase of stress drop with moment. With the corner frequencies constrained, the inferred attenuation parameters are very consistent; they imply an average shear wave quality factor of approximately 20-25 for alluvial sediments within the Indian Wells Valley. Although the resultant spectral fitting (using corner frequency and ??) is good, the residuals are consistent among the clusters analyzed. Their spectral shape is similar to the the theoretical one-dimensional response of a layered low-velocity structure in the valley (an absolute site response cannot be determined by this method, because of an ambiguity between absolute response and source spectral amplitudes). I show that even this subtle site response can significantly bias estimates of corner frequency and ??, if it is ignored in an inversion for only source and path effects. The multiple-EGF method presented in this paper is analogous to a joint inversion for source, path, and site effects; the use of colocated sets of earthquakes appears to offer significant advantages in improving resolution of all three estimates, especially if data are from a single site or sites with similar site response.
The phenotypic equilibrium of cancer cells: From average-level stability to path-wise convergence.
Niu, Yuanling; Wang, Yue; Zhou, Da
2015-12-07
The phenotypic equilibrium, i.e. heterogeneous population of cancer cells tending to a fixed equilibrium of phenotypic proportions, has received much attention in cancer biology very recently. In the previous literature, some theoretical models were used to predict the experimental phenomena of the phenotypic equilibrium, which were often explained by different concepts of stabilities of the models. Here we present a stochastic multi-phenotype branching model by integrating conventional cellular hierarchy with phenotypic plasticity mechanisms of cancer cells. Based on our model, it is shown that: (i) our model can serve as a framework to unify the previous models for the phenotypic equilibrium, and then harmonizes the different kinds of average-level stabilities proposed in these models; and (ii) path-wise convergence of our model provides a deeper understanding to the phenotypic equilibrium from stochastic point of view. That is, the emergence of the phenotypic equilibrium is rooted in the stochastic nature of (almost) every sample path, the average-level stability just follows from it by averaging stochastic samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gas turbine power plant with supersonic shock compression ramps
Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA
2008-10-14
A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.
Optimization of Time-Dependent Particle Tracing Using Tetrahedral Decomposition
NASA Technical Reports Server (NTRS)
Kenwright, David; Lane, David
1995-01-01
An efficient algorithm is presented for computing particle paths, streak lines and time lines in time-dependent flows with moving curvilinear grids. The integration, velocity interpolation and step-size control are all performed in physical space which avoids the need to transform the velocity field into computational space. This leads to higher accuracy because there are no Jacobian matrix approximations or expensive matrix inversions. Integration accuracy is maintained using an adaptive step-size control scheme which is regulated by the path line curvature. The problem of cell-searching, point location and interpolation in physical space is simplified by decomposing hexahedral cells into tetrahedral cells. This enables the point location to be done analytically and substantially faster than with a Newton-Raphson iterative method. Results presented show this algorithm is up to six times faster than particle tracers which operate on hexahedral cells yet produces almost identical particle trajectories.
Sodars and their application for investigation of the turbulent structure of the lower atmosphere
NASA Astrophysics Data System (ADS)
Krasnenko, N. P.; Shamanaeva, L. G.
2016-11-01
Possibilities of sodar application for investigation of the spatiotemporal dynamics of three components of wind velocity vector, longitudinal and transverse structural functions of wind velocity field, structural characteristics of temperature and wind velocity, turbulent kinetic energy dissipation rate, and outer scales of temperature and dynamic turbulence in the atmospheric boundary layer are analyzed. The original closed iterative algorithm of sodar data processing taking into account the classical and molecular absorption and the turbulent sound attenuation on the propagation path is used that allows the vertical profiles of the characteristics of temperature and wind velocity field to be reconstructed simultaneously and their interrelations to be investigated. It is demonstrated how the structure of temperature and wind turbulence is visualised in real time.
Girsanov reweighting for path ensembles and Markov state models
NASA Astrophysics Data System (ADS)
Donati, L.; Hartmann, C.; Keller, B. G.
2017-06-01
The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules. We present a method to obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSMs) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended to reweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor "on the fly" during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process and an artificial many-body system to alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.
P wave velocity of Proterozoic upper mantle beneath central and southern Asia
NASA Astrophysics Data System (ADS)
Nyblade, Andrew A.; Vogfjord, Kristin S.; Langston, Charles A.
1996-05-01
P wave velocity structure of Proterozoic upper mantle beneath central and southern Africa was investigated by forward modeling of Pnl waveforms from four moderate size earthquakes. The source-receiver path of one event crosses central Africa and lies outside the African superswell while the source-receiver paths for the other events cross Proterozoic lithosphere within southern Africa, inside the African superswell. Three observables (Pn waveshape, PL-Pn time, and Pn/PL amplitude ratio) from the Pnl waveform were used to constrain upper mantle velocity models in a grid search procedure. For central Africa, synthetic seismograms were computed for 5880 upper mantle models using the generalized ray method and wavenumber integration; synthetic seismograms for 216 models were computed for southern Africa. Successful models were taken as those whose synthetic seismograms had similar waveshapes to the observed waveforms, as well as PL-Pn times within 3 s of the observed times and Pn/PL amplitude ratios within 30% of the observed ratio. Successful models for central Africa yield a range of uppermost mantle velocity between 7.9 and 8.3 km s-1, velocities between 8.3 and 8.5 km s-1 at a depth of 200 km, and velocity gradients that are constant or slightly positive. For southern Africa, successful models yield uppermost mantle velocities between 8.1 and 8.3 km s-1, velocities between 7.9 and 8.4 km s-1 at a depth of 130 km, and velocity gradients between -0.001 and 0.001 s-1. Because velocity gradients are controlled strongly by structure at the bottoming depths for Pn waves, it is not easy to compare the velocity gradients obtained for central and southern Africa. For central Africa, Pn waves turn at depths of about 150-200 km, whereas for southern Africa they bottom at ˜100-150 km depth. With regard to the origin of the African superswell, our results do not have sufficient resolution to test hypotheses that invoke simple lithospheric reheating. However, our models are not consistent with explanations for the African superswell invoking extensive amounts of lithospheric thinning. If extensive lithospheric thinning had occurred beneath southern Africa, as suggested previously, then upper mantle P wave velocities beneath southern Africa would likely be lower than those in our models.
Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi
2017-01-01
Introduction: We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. Materials and Methods: The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. Results: When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Conclusions: Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity. PMID:28132996
Reexamination of group velocities of structured light pulses
NASA Astrophysics Data System (ADS)
Saari, Peeter
2018-06-01
Recently, a series of theoretical and experimental papers on free-space propagation of pulsed Laguerre-Gaussian and Bessel beams was published, which reached contradictory and controversial results about group velocities of such pulses. Depending on the measurement scheme, the group velocity can be defined differently. We analyze how different versions of group velocity are related to the measurable travel time (time of flight) of the pulse between input (source) and output (detecting) planes. The analysis is tested on a theoretical model—the Bessel-Gauss pulse whose propagation path exhibits both subluminal and superluminal regions. Our main conclusion from resolving the contradictions in the literature is that different versions of group velocity are appropriate, depending on whether or not the beam is hollow and how the pulse is recorded in the output plane—integrally or with spatial resolution.
First evidence for high anelastic attenuation beneath the Red Sea from Love wave analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadiouche, Ouiza
Attenuation coefficients of Love waves are determined for two seismic paths along the Red Sea. The attenuation coefficients are obtained using the multiple filter method for periods from 25 to 130 s along one path and from 40 to 130 s along the second one. The two sets of observations are in good agreement with anomalously high attenuation coefficients similar to those reported across a young part of the Pacific Ocean. Indeed, the values lie on average between 3.3 {plus minus} 0.6 and 1.1 {plus minus} 0.3 (10{sup {minus}4}km{sup {minus}1}) higher values being observed at shorter periods. In a secondmore » part of the paper, these apparent attenuation observations are interpreted in terms of a distribution of intrinsic absorption in the upper mantle. A frequency independent Q{sub {beta}} model is obtained using a trial-and-error method. The best fit to the data required a large and very low Q{sub {beta}} (30-50) zone below a depth of 50 km, underlying a thin and high Q{sub {beta}} (200-300) lid. These results are consistent with high heat flows and low velocities which characterize this tectonically active area, and corroborate the inference of anomalously high temperatures and low viscosity in the upper mantle beneath the Red Sea from recent seismological results.« less
Application of a Split-Fiber Probe to Velocity Measurement in the NASA Research Compressor
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan
2003-01-01
A split-fiber probe was used to acquire unsteady data in a research compressor. The probe has two thin films deposited on a quartz cylinder 200 microns in diameter. A split-fiber probe allows simultaneous measurement of velocity magnitude and direction in a plane that is perpendicular to the sensing cylinder, because it has its circumference divided into two independent parts. Local heat transfer considerations indicated that the probe direction characteristic is linear in the range of flow incidence angles of +/- 35. Calibration tests confirmed this assumption. Of course, the velocity characteristic is nonlinear as is typical in thermal anemometry. The probe was used extensively in the NASA Glenn Research Center (GRC) low-speed, multistage axial compressor, and worked reliably during a test program of several months duration. The velocity and direction characteristics of the probe showed only minute changes during the entire test program. An algorithm was developed to decompose the probe signals into velocity magnitude and velocity direction. The averaged unsteady data were compared with data acquired by pneumatic probes. An overall excellent agreement between the averaged data acquired by a split-fiber probe and a pneumatic probe boosts confidence in the reliability of the unsteady content of the split-fiber probe data. To investigate the features of unsteady data, two methods were used: ensemble averaging and frequency analysis. The velocity distribution in a rotor blade passage was retrieved using the ensemble averaging method. Frequencies of excitation forces that may contribute to high cycle fatigue problems were identified by applying a fast Fourier transform to the absolute velocity data.
Lugez, Elodie; Sadjadi, Hossein; Joshi, Chandra P; Akl, Selim G; Fichtinger, Gabor
2017-04-01
Electromagnetic (EM) catheter tracking has recently been introduced in order to enable prompt and uncomplicated reconstruction of catheter paths in various clinical interventions. However, EM tracking is prone to measurement errors which can compromise the outcome of the procedure. Minimizing catheter tracking errors is therefore paramount to improve the path reconstruction accuracy. An extended Kalman filter (EKF) was employed to combine the nonlinear kinematic model of an EM sensor inside the catheter, with both its position and orientation measurements. The formulation of the kinematic model was based on the nonholonomic motion constraints of the EM sensor inside the catheter. Experimental verification was carried out in a clinical HDR suite. Ten catheters were inserted with mean curvatures varying from 0 to [Formula: see text] in a phantom. A miniaturized Ascension (Burlington, Vermont, USA) trakSTAR EM sensor (model 55) was threaded within each catheter at various speeds ranging from 7.4 to [Formula: see text]. The nonholonomic EKF was applied on the tracking data in order to statistically improve the EM tracking accuracy. A sample reconstruction error was defined at each point as the Euclidean distance between the estimated EM measurement and its corresponding ground truth. A path reconstruction accuracy was defined as the root mean square of the sample reconstruction errors, while the path reconstruction precision was defined as the standard deviation of these sample reconstruction errors. The impacts of sensor velocity and path curvature on the nonholonomic EKF method were determined. Finally, the nonholonomic EKF catheter path reconstructions were compared with the reconstructions provided by the manufacturer's filters under default settings, namely the AC wide notch and the DC adaptive filter. With a path reconstruction accuracy of 1.9 mm, the nonholonomic EKF surpassed the performance of the manufacturer's filters (2.4 mm) by 21% and the raw EM measurements (3.5 mm) by 46%. Similarly, with a path reconstruction precision of 0.8 mm, the nonholonomic EKF surpassed the performance of the manufacturer's filters (1.0 mm) by 20% and the raw EM measurements (1.7 mm) by 53%. Path reconstruction accuracies did not follow an apparent trend when varying the path curvature and sensor velocity; instead, reconstruction accuracies were predominantly impacted by the position of the EM field transmitter ([Formula: see text]). The advanced nonholonomic EKF is effective in reducing EM measurement errors when reconstructing catheter paths, is robust to path curvature and sensor speed, and runs in real time. Our approach is promising for a plurality of clinical procedures requiring catheter reconstructions, such as cardiovascular interventions, pulmonary applications (Bender et al. in medical image computing and computer-assisted intervention-MICCAI 99. Springer, Berlin, pp 981-989, 1999), and brachytherapy.
Sun, Yanzhao; Zhang, Tao; Zheng, Dandan
2018-04-10
Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to -17%. In addition, the rationality of the simulation was proved by experiments.
Zhang, Tao; Zheng, Dandan
2018-01-01
Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to −17%. In addition, the rationality of the simulation was proved by experiments. PMID:29642577
NASA Astrophysics Data System (ADS)
Qin, Xuerong; van Sebille, Erik; Sen Gupta, Alexander
2014-04-01
Lagrangian particle tracking within ocean models is an important tool for the examination of ocean circulation, ventilation timescales and connectivity and is increasingly being used to understand ocean biogeochemistry. Lagrangian trajectories are obtained by advecting particles within velocity fields derived from hydrodynamic ocean models. For studies of ocean flows on scales ranging from mesoscale up to basin scales, the temporal resolution of the velocity fields should ideally not be more than a few days to capture the high frequency variability that is inherent in mesoscale features. However, in reality, the model output is often archived at much lower temporal resolutions. Here, we quantify the differences in the Lagrangian particle trajectories embedded in velocity fields of varying temporal resolution. Particles are advected from 3-day to 30-day averaged fields in a high-resolution global ocean circulation model. We also investigate whether adding lateral diffusion to the particle movement can compensate for the reduced temporal resolution. Trajectory errors reveal the expected degradation of accuracy in the trajectory positions when decreasing the temporal resolution of the velocity field. Divergence timescales associated with averaging velocity fields up to 30 days are faster than the intrinsic dispersion of the velocity fields but slower than the dispersion caused by the interannual variability of the velocity fields. In experiments focusing on the connectivity along major currents, including western boundary currents, the volume transport carried between two strategically placed sections tends to increase with increased temporal averaging. Simultaneously, the average travel times tend to decrease. Based on these two bulk measured diagnostics, Lagrangian experiments that use temporal averaging of up to nine days show no significant degradation in the flow characteristics for a set of six currents investigated in more detail. The addition of random-walk-style diffusion does not mitigate the errors introduced by temporal averaging for large-scale open ocean Lagrangian simulations.
SPARSE—A subgrid particle averaged Reynolds stress equivalent model: testing with a priori closure
Davis, Sean L.; Sen, Oishik; Udaykumar, H. S.
2017-01-01
A Lagrangian particle cloud model is proposed that accounts for the effects of Reynolds-averaged particle and turbulent stresses and the averaged carrier-phase velocity of the subparticle cloud scale on the averaged motion and velocity of the cloud. The SPARSE (subgrid particle averaged Reynolds stress equivalent) model is based on a combination of a truncated Taylor expansion of a drag correction function and Reynolds averaging. It reduces the required number of computational parcels to trace a cloud of particles in Eulerian–Lagrangian methods for the simulation of particle-laden flow. Closure is performed in an a priori manner using a reference simulation where all particles in the cloud are traced individually with a point-particle model. Comparison of a first-order model and SPARSE with the reference simulation in one dimension shows that both the stress and the averaging of the carrier-phase velocity on the cloud subscale affect the averaged motion of the particle. A three-dimensional isotropic turbulence computation shows that only one computational parcel is sufficient to accurately trace a cloud of tens of thousands of particles. PMID:28413341
SPARSE-A subgrid particle averaged Reynolds stress equivalent model: testing with a priori closure.
Davis, Sean L; Jacobs, Gustaaf B; Sen, Oishik; Udaykumar, H S
2017-03-01
A Lagrangian particle cloud model is proposed that accounts for the effects of Reynolds-averaged particle and turbulent stresses and the averaged carrier-phase velocity of the subparticle cloud scale on the averaged motion and velocity of the cloud. The SPARSE (subgrid particle averaged Reynolds stress equivalent) model is based on a combination of a truncated Taylor expansion of a drag correction function and Reynolds averaging. It reduces the required number of computational parcels to trace a cloud of particles in Eulerian-Lagrangian methods for the simulation of particle-laden flow. Closure is performed in an a priori manner using a reference simulation where all particles in the cloud are traced individually with a point-particle model. Comparison of a first-order model and SPARSE with the reference simulation in one dimension shows that both the stress and the averaging of the carrier-phase velocity on the cloud subscale affect the averaged motion of the particle. A three-dimensional isotropic turbulence computation shows that only one computational parcel is sufficient to accurately trace a cloud of tens of thousands of particles.
NASA Astrophysics Data System (ADS)
Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi
2017-11-01
The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.
NASA Astrophysics Data System (ADS)
Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred
2016-05-01
Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they contribute to the global increase of greenhouse gas concentrations. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents standoff detection of CH4 and N2O leaks using a quantum cascade laser open-path system that retrieves path-averaged concentrations by collecting the backscattered light from a remote hard target. It is a true standoff system and differs from other open-path systems that are deployed as point samplers or long-path transmission systems that use retroreflectors. The measured absorption spectra are obtained using a thermal intra-pulse frequency chirped DFB quantum cascade laser at ~7.7 µm wavelength range with ~200 ns pulse width. Making fast time resolved observations, the system simultaneously realizes high spectral resolution and range to the target, resulting in path-averaged concentration retrieval. The system performs measurements at high speed ~15 Hz and sufficient range (up to 45 m, ~148 feet) achieving an uncertainty of 3.1 % and normalized sensitivity of 3.3 ppm m Hz-1/2 for N2O and 9.3 % and normalized sensitivity of 30 ppm m Hz-1/2 for CH4 with a 0.31 mW average power QCL. Given these characteristics, this system is promising for mobile or multidirectional search and remote detection of gas leaks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laitinen, T.; Dalla, S.; Huttunen-Heikinmaa, K.
2015-06-10
To understand the origin of Solar Energetic Particles (SEPs), we must study their injection time relative to other solar eruption manifestations. Traditionally the injection time is determined using the Velocity Dispersion Analysis (VDA) where a linear fit of the observed event onset times at 1 AU to the inverse velocities of SEPs is used to derive the injection time and path length of the first-arriving particles. VDA does not, however, take into account that the particles that produce a statistically observable onset at 1 AU have scattered in the interplanetary space. We use Monte Carlo test particle simulations of energeticmore » protons to study the effect of particle scattering on the observable SEP event onset above pre-event background, and consequently on VDA results. We find that the VDA results are sensitive to the properties of the pre-event and event particle spectra as well as SEP injection and scattering parameters. In particular, a VDA-obtained path length that is close to the nominal Parker spiral length does not imply that the VDA injection time is correct. We study the delay to the observed onset caused by scattering of the particles and derive a simple estimate for the delay time by using the rate of intensity increase at the SEP onset as a parameter. We apply the correction to a magnetically well-connected SEP event of 2000 June 10, and show it to improve both the path length and injection time estimates, while also increasing the error limits to better reflect the inherent uncertainties of VDA.« less
Read, Tyson J. G.; Segre, Paolo S.; Middleton, Kevin M.; Altshuler, Douglas L.
2016-01-01
Turning in flight requires reorientation of force, which birds, bats and insects accomplish either by shifting body position and total force in concert or by using left–right asymmetries in wingbeat kinematics. Although both mechanisms have been observed in multiple species, it is currently unknown how each is used to control changes in trajectory. We addressed this problem by measuring body and wingbeat kinematics as hummingbirds tracked a revolving feeder, and estimating aerodynamic forces using a quasi-steady model. During arcing turns, hummingbirds symmetrically banked the stroke plane of both wings, and the body, into turns, supporting a body-dependent mechanism. However, several wingbeat asymmetries were present during turning, including a higher and flatter outer wingtip path and a lower more deviated inner wingtip path. A quasi-steady analysis of arcing turns performed with different trajectories revealed that changes in radius were associated with asymmetrical kinematics and forces, and changes in velocity were associated with symmetrical kinematics and forces. Collectively, our results indicate that both body-dependent and -independent force orientation mechanisms are available to hummingbirds, and that these kinematic strategies are used to meet the separate aerodynamic challenges posed by changes in velocity and turning radius. PMID:27030042
NASA Astrophysics Data System (ADS)
Tung, Ying-Hung; Hu, Jyr-Ching
2017-04-01
Our study focused on the Lushan Settlement, located in the slate belt of Central Range in Taiwan. We adopted L-band ALOS SAR data to generate the line of sight (LOS) velocities in study area using PS-InSAR technique constrained by continuous GPS data in the period from 2007 to 2010. The result revealed a subsidence rate in LOS up to -15 mm/yr. In addition, the borehole inclinometers, installed by Central Geological Survey, recorded a slip depth more than 120 m just in the northeastern of the village. Based on the results of PS-InSAR, records of inclinometers and field geological study, we adopt 2-D and 3-D numerical simulations by using Particle Flow Code to investigate scenario-based runout paths, particle velocities and landslide-affected area, which are useful information for decision support and future landslide hazard assessment. We analyzed different scenarios based on a dipping of the potential sliding surface varying from 20 to 5 degree. In each scenario, sliding of the unstable slope with a high frictional coefficient of the subsurface implied that the sliding surface of this creeping slope has still been developing. Furthermore, with 3-dimentaion models we analyzed the runout paths of rock mass, velocities of movement, and catastrophic landslide-impact area in the scenario that once the sliding surface fully develops or shear failure happens. Generally, the total runout distance could be more than 400 m, and the largest debris thickness might reach 100 m. Because of a low dipping angle of the sliding surface, the movement could last several minutes with a maxima velocity about 2 m/s. Moreover, a landslide-dam will form and capacity of dam could be predicted. In the worst case, the settlement, which is on the slope crown, might be destroyed and buried by debris.
Using Computer Simulations to Model Scoria Cone Growth
NASA Astrophysics Data System (ADS)
Bemis, K. G.; Mehta, R. D.
2016-12-01
Scoria cones form from the accumulation of scoria delivered by either bursting lava bubbles (Strombolian style eruptions) or the gas thrust of an eruption column (Hawaiian to sub-Plinian style eruption). In this study, we focus on connecting the distribution of scoria delivery to the eventual cone shape rather than the specifics of the mechanism of delivery. For simplicity, we choose to model ballistic paths, that follow the scoria from ejection from crater to landing on the surface and then avalanching down slope. The first stage corresponds to Strombolian-like bursts of the bubble. The second stage only occurs if the angle of repose is greater than 30 degrees. After this condition is met, the scoria particles grain flow downwards until a stable slope is formed. These two stages of the volcanic eruption repeat themselves in the number of phases. We hypothesize that the horizontal travel distance of the ballistic paths, and as a result the width of the volcano, is primarily dependent of the velocity of the particles bursting from the bubble in the crater. Other parameters that may affect the shape of cinder cones are air resistance on ballistic paths, ranges in particle size, ballistic ejection angles, and the total number of particles. Ejection velocity, ejection angle, particle size and air resistance control the delivery distribution of scoria; a similar distribution of scoria can be obtained by sedimentation from columns and the controlling parameters of such (gas thrust velocity, particle density, etc.) can be related to the ballistic delivery in terms of eruption energy and particle characteristics. We present a series of numerical experiments that test our hypotheses by varying different parameters one or more at a time in sets each designed to test a specific hypothesis. Volcano width increases as ejection velocity, ejection angle (measured from surface), or the total number of scoria particles increases. Ongoing investigations seek the controls on crater width.
Uncertainty analysis in seismic tomography
NASA Astrophysics Data System (ADS)
Owoc, Bartosz; Majdański, Mariusz
2017-04-01
Velocity field from seismic travel time tomography depends on several factors like regularization, inversion path, model parameterization etc. The result also strongly depends on an initial velocity model and precision of travel times picking. In this research we test dependence on starting model in layered tomography and compare it with effect of picking precision. Moreover, in our analysis for manual travel times picking the uncertainty distribution is asymmetric. This effect is shifting the results toward faster velocities. For calculation we are using JIVE3D travel time tomographic code. We used data from geo-engineering and industrial scale investigations, which were collected by our team from IG PAS.
NASA Technical Reports Server (NTRS)
Ellison, D. C.; Jones, F. C.; Eichler, D.
1981-01-01
A collisionless quasi-parallel shock is simulated by Monte Carlo techniques. The scattering of all velocity particles from thermal to high energy is assumed to occur so that the mean free path is directly proportional to velocity times the mass-to-charge-ratio, and inversely proporational to the plasma density. The shock profile and velocity spectra are obtained, showing preferential acceleration of high A/Z particles relative to protons. The inclusion of the back pressure of the scattering particles on the inflowing plasma produces a smoothing of the shock profile, which implies that the spectra are steeper than for a discontinuous shock.
A wind model for an elevated STOL-port configuration
NASA Technical Reports Server (NTRS)
Peterka, J. A.; Cermak, J. E.
1974-01-01
Measurements of mean velocity magnitude and direction as well as three-dimensional turbulence intensity were made in the flow over a model of an elevated STOL-port. A 1:300 scale model was placed in a wind tunnel flow simulating the mean velocity profile and turbulence characteristics of atmospheric winds over a typical city environment excluding detailed wake structures of possible nearby buildings. Hot-wire anemometer measurements of velocity and turbulence were made along approach and departure paths of aircraft operating on the runway centerline and at specified lateral distances from the centerline. Approach flow directions simulated were 0 and 30 degrees to the runway centerline.
Bedload fluctuations in a steep macro-rough channel
NASA Astrophysics Data System (ADS)
Ghilardi, Tamara; Franca, Mário J.; Schleiss, Anton J.
2014-05-01
It is known that bedload fluctuates over time in steep rivers with wide grain size distributions, even when conditions of constant sediment feed and water discharge are met. Bedload fluctuations are periodic and related to fluctuations in the flow velocity and channel bed morphology. In cascade morphologies, the presence of large relatively immobile boulders has a strong impact on flow conditions and sediment transport; their influence on bedload fluctuations is considered in this research. Sediment transport fluctuations were investigated in a set of 38 laboratory experiments carried out on a steep tilting flume, under several conditions of constant sediment and water discharge, for three different slopes (S=6.7%, 9.9%, and 13%). The impact of the diameter and spatial density of randomly placed boulders was studied for several flow conditions. Along with the sediment transport and bulk mean flow velocity, the boulder protrusion, boulder surface, and number of hydraulic jumps, which are indicators of the channel morphology, were measured regularly during the experiments. Periodic bedload pulses are clearly visible in the data collected during the experiments, along with well correlated fluctuations in the flow velocity and bed morphology parameters. Well-behaved cyclic oscillations in the auto-correlation and cross-correlation functions confirm the periodicity of the observed fluctuations and show that the durations of these cycles are similar, although not necessarily in phase. A detailed analysis of data time series and image acquired during the tests show a link between bedload pulses and different bed states, boulder protrusion, and surface grain size distributions. A feedback system exists among channel morphology, flow kinematics and sediment transport. A phase analysis for the observed variables, based on the identification of bedload cycles in the instantaneous signal, is performed. The link between the phases of bedload and each of the morphological parameters show a hysteretic path. The relation between the phase-averaged bedload and the phase-averaged flow velocity show a considerable lesser degree of hysteresis. Comparing the phase averaged bedload of the experiments, it is observed that the shape of bedload cycles is the same for all tested hydraulic conditions. The cycles present a long duration low sediment transport event and a shorter peak transport event. This indicates that long periods of sediment aggradations alternate with short erosion periods, even under constant hydraulic conditions. The bedload pulses may be characterized by their amplitude and period as a function of various boulder spatial densities and diameters. We show that for higher stream power, the fluctuations decrease, both in cycle duration and in amplitude. The presence of boulders increases the stream power needed to transport a given amount of sediment, thus decreasing fluctuations. KEY WORDS: Bedload fluctuations; Morphological changes; Sediment transport; Boulders; Steep channel.
Path attenuation statistics influenced by orientation of rain cells
NASA Technical Reports Server (NTRS)
Goldhirsh, J.
1976-01-01
The influence of path azimuth on fade and space diversity statistics associated with propagation along earth-satellite paths at a frequency of 18 GHz is examined. A radar rain reflectivity data base obtained during the summer of 1973 is injected into a modeling program and the attenuation along parallel earth-satellite paths are obtained for a conglomeration of azimuths. Statistics are separated into two groupings: one pertaining to earth-satellite paths oriented in the northwest-southeast and the other in the northeast-southwest quadrants using a fixed elevation angle of 45 deg. The latter case shows fading to be greater with a degraded space diversity suggesting rain cells to be elongated along this direction. Cell dimensions are analyzed for both sets of quadrants and are found to have average values larger by 2 km in the northeast-southwest quadrants; a result consistent with the fade and space diversity results. Examination of the wind direction for the 14 rain days of data analyzed shows good correlation of the average or median wind directions with the directions of maximum fading and degraded space diversity.
NASA Astrophysics Data System (ADS)
Xin, Fengxin; Guo, Jinjia; Sun, Jiayun; Li, Jie; Zhao, Chaofang; Liu, Zhishen
2017-06-01
An open-path atmospheric CO2 measurement system was built based on tunable diode laser absorption spectroscopy (TDLAS). The CO2 absorption line near 2 μm was selected, measuring the atmospheric CO2 with direct absorption spectroscopy and carrying on the comparative experiment with multipoint measuring instruments of the open-path. The detection limit of the TDLAS system is 1.94×10-6. The calibration experiment of three AZ-7752 handheld CO2 measuring instruments was carried out with the Los Gatos Research gas analyzer. The consistency of the results was good, and the handheld instrument could be used in the TDLAS system after numerical calibration. With the contrast of three AZ-7752 and their averages, the correlation coefficients are 0.8828, 0.9004, 0.9079, and 0.9393 respectively, which shows that the open-path TDLAS has the best correlation with the average of three AZ-7752 and measures the concentration of atmospheric CO2 accurately. Multipoint measurement provides a convenient comparative method for open-path TDLAS.
NASA Astrophysics Data System (ADS)
Vadivel, R.; Bhaskaran, V. Murali
2010-10-01
The main reason for packet loss in ad hoc networks is the link failure or node failure. In order to increase the path stability, it is essential to distinguish and moderate the failures. By knowing individual link stability along a path, path stability can be identified. In this paper, we develop an adaptive reliable routing protocol using combined link stability estimation for mobile ad hoc networks. The main objective of this protocol is to determine a Quality of Service (QoS) path along with prolonging the network life time and to reduce the packet loss. We calculate a combined metric for a path based on the parameters Link Expiration Time, Node Remaining Energy and Node Velocity and received signal strength to predict the link stability or lifetime. Then, a bypass route is established to retransmit the lost data, when a link failure occurs. By simulation results, we show that the proposed reliable routing protocol achieves high delivery ratio with reduced delay and packet drop.
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Sun, Zhenping; Cao, Dongpu; Liu, Daxue; He, Hangen
2017-03-01
This study proposes a novel integrated local trajectory planning and tracking control (ILTPTC) framework for autonomous vehicles driving along a reference path with obstacles avoidance. For this ILTPTC framework, an efficient state-space sampling-based trajectory planning scheme is employed to smoothly follow the reference path. A model-based predictive path generation algorithm is applied to produce a set of smooth and kinematically-feasible paths connecting the initial state with the sampling terminal states. A velocity control law is then designed to assign a speed value at each of the points along the generated paths. An objective function considering both safety and comfort performance is carefully formulated for assessing the generated trajectories and selecting the optimal one. For accurately tracking the optimal trajectory while overcoming external disturbances and model uncertainties, a combined feedforward and feedback controller is developed. Both simulation analyses and vehicle testing are performed to verify the effectiveness of the proposed ILTPTC framework, and future research is also briefly discussed.
Channel Characterization for Free-Space Optical Communications
2012-07-01
parameters. From the path- average parameters, a 2nC profile model, called the HAP model, was constructed so that the entire channel from air to ground...SR), both of which are required to estimate the Power in the Bucket (PIB) and Power in the Fiber (PIF) associated with the FOENEX data beam. UCF was...of the path-average values of 2nC , the resulting HAP 2nC profile model led to values of ground level 2 nC that compared very well with actual
Carotid-Femoral Pulse Wave Velocity: Impact of Different Arterial Path Length Measurements
Sugawara, Jun; Hayashi, Koichiro; Yokoi, Takashi; Tanaka, Hirofumi
2009-01-01
Background Carotid-femoral pulse wave velocity (PWV) is the most established index of arterial stiffness. Yet there is no consensus on the methodology in regard to the arterial path length measurements conducted on the body surface. Currently, it is not known to what extent the differences in the arterial path length measurements affect absolute PWV values. Methods Two hundred fifty apparently healthy adults (127 men and 123 women, 19-79 years) were studied. Carotid-femoral PWV was calculated using (1) the straight distance between carotid and femoral sites (PWVcar–fem), (2) the straight distance between suprasternal notch and femoral site minus carotid arterial length (PWV(ssn–fem)-(ssn–car)), (3) the straight distance between carotid and femoral sites minus carotid arterial length (PWV(car–fem)-(ssn–car)), and (4) the combined distance from carotid site to the umbilicus and from the umbilicus to femoral site minus carotid arterial length (PWV(ssn–umb–fem)-(ssn–car)). Results All the calculated PWV were significantly correlated with each other (r=0.966-0.995). PWV accounting for carotid arterial length were 16-31% lower than PWVcar–fem. PWVcar–fem value of 12 m/sec corresponded to 8.3 m/sec for PWV(ssn–fem)-(ssn–car), 10.0 m/sec for PWV(car–fem)-(ssn–car), and 8.9 m/sec for PWV(ssn–umb–fem)-(ssn–car). Conclusion Different body surface measurements used to estimate arterial path length would produce substantial variations in absolute PWV values. PMID:20396400
Donohue, Kevin D.; Unnikrishnan, Harikrishnan; Kryscio, Richard J.
2015-01-01
Purpose This article presents a quantitative method for assessing instantaneous and average lateral vocal-fold motion from high-speed digital imaging, with a focus on developmental changes in vocal-fold kinematics during childhood. Method Vocal-fold vibrations were analyzed for 28 children (aged 5–11 years) and 28 adults (aged 21–45 years) without voice disorders. The following kinematic features were analyzed from the vocal-fold displacement waveforms: relative velocity-based features (normalized average and peak opening and closing velocities), relative acceleration-based features (normalized peak opening and closing accelerations), speed quotient, and normalized peak displacement. Results Children exhibited significantly larger normalized peak displacements, normalized average and peak opening velocities, normalized average and peak closing velocities, peak opening and closing accelerations, and speed quotient compared to adult women. Values of normalized average closing velocity and speed quotient were higher in children compared to adult men. Conclusions When compared to adult men, developing children typically have higher estimates of kinematic features related to normalized displacement and its derivatives. In most cases, the kinematic features of children are closer to those of adult men than adult women. Even though boys experience greater changes in glottal length and pitch as they mature, results indicate that girls experience greater changes in kinematic features compared to boys. PMID:25652615
Mean-field velocity difference model considering the average effect of multi-vehicle interaction
NASA Astrophysics Data System (ADS)
Guo, Yan; Xue, Yu; Shi, Yin; Wei, Fang-ping; Lü, Liang-zhong; He, Hong-di
2018-06-01
In this paper, a mean-field velocity difference model(MFVD) is proposed to describe the average effect of multi-vehicle interactions on the whole road. By stability analysis, the stability condition of traffic system is obtained. Comparison with stability of full velocity-difference (FVD) model and the completeness of MFVD model are discussed. The mKdV equation is derived from MFVD model through nonlinear analysis to reveal the traffic jams in the form of the kink-antikink density wave. Then the numerical simulation is performed and the results illustrate that the average effect of multi-vehicle interactions plays an important role in effectively suppressing traffic jam. The increase strength of the mean-field velocity difference in MFVD model can rapidly reduce traffic jam and enhance the stability of traffic system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasyanos, M E
This paper presents the results of a large-scale study of surface wave dispersion performed across Eurasia and North Africa. Improvements were made to previous surface wave work by enlarging the study region, increasing path density, improving spatial resolution, and expanding the period range. This study expands the coverage area northwards and eastwards relative to a previous dispersion analysis, which covered only North Africa and the Middle East. We have significantly increased the number of seismograms examined and group velocity measurements made. We have now made good quality dispersion measurements for about 30,000 Rayleigh wave and 20,000 Love wave paths, andmore » have incorporated measurements from several other researchers into the study. A conjugate gradient method was employed for the group velocity tomography, which improved the inversion from the previous study by adopting a variable smoothness. This technique allows us to go to higher resolution where the data allow without producing artifacts. The current results include both Love and Rayleigh wave inversions across the region for periods from 7 to 100 seconds at 1{sup o} resolution. Short period group velocities are sensitive to slow velocities associated with large sedimentary features such as the Caspian Sea, West Siberian Platform, Mediterranean Sea, Bay of Bengal, Tarim Basin, and Persian Gulf. Intermediate periods are sensitive to differences in crustal thickness, such as those between oceanic and continental crust or along orogenic zones and continental plateaus. At longer periods, fast velocities are consistently found beneath cratons while slow upper mantle velocities occur along rift systems, subduction zones, and collision zones such as the Tethys Belt. We have compared the group velocities at various periods with features such as sediment thickness, topographic height, crustal thickness, proximity to plate boundaries, lithospheric age and lithospheric thickness, and find significant correlations. We don't find any similar correlation between the longest period surface waves and hot spots.« less
Phase-resolved and time-averaged puff motions of an excited stack-issued transverse jet
NASA Astrophysics Data System (ADS)
Hsu, C. M.; Huang, R. F.
2013-07-01
The dynamics of puff motions in an excited stack-issued transverse jet were studied experimentally in a wind tunnel. The temporal and spatial evolution processes of the puffs induced by acoustic excitation were examined using the smoke flow visualization method and high-speed particle image velocimetry. The temporal and spatial evolutions of the puffs were examined using phase-resolved ensemble-averaged velocity fields and the velocity, length scales, and vorticity characteristics of the puffs were studied. The time-averaged velocity fields were calculated to analyze the velocity distributions and vorticity contours. The results show that a puff consists of a pair of counter-rotating vortex rings. An initial vortex ring was formed due to a concentration of vorticity at the lee side of the issuing jet at the instant of the mid-oscillation cycle. A vortex ring rotating in the opposite direction to that of the initial vortex ring was subsequently formed at the upwind side of the issuing jet. These two counter-rotating vortex rings formed a "mushroom" vortex pair, which was deflected by the crossflow and traveled downstream along a time-averaged trajectory of zero vorticity. The trajectory was situated far above the time-averaged streamline evolving from the leading edge of the tube. The velocity magnitudes of the vortex rings at the upwind and the lee side decreased with time evolution as the puffs traveled downstream due to momentum dissipation and entrainment effects. The puffs traveling along the trajectory of zero vorticity caused large velocities to appear above the leading-edge streamline.
Anomalous top layer in the inner core beneath the eastern hemisphere
NASA Astrophysics Data System (ADS)
Yu, W.; Wen, L.; Niu, F.
2003-12-01
Recent studies reported hemispheric variations in seismic velocity and attenuation in the top of the inner core. It, however, remains unclear how the inner core hemisphericity extends deep in the inner core. Here, we analyze PKPbc-PKIKP and PKiKP-PKIKP waveforms collected from the Global Seismographic Network (GSN), regional recordings from the German Regional Seismic Network (GRSN) and Graefenberg (GRF) sampling along the equatorial path (the ray path whose ray angle is larger than 35o from the Earth's rotation axis). The observed global and regional PKPbc-PKIKP differential traveltimes and PKIKP/PKPbc amplitude ratios suggest a simple W2 model (Wen/Niu:2002) in the western hemisphere with a constant velocity gradient of 0.049(km/sec)/100km and a Q value of 600 in the top 400 km of the inner core. In the eastern hemisphere, the data require a change of velocity gradient and Q value at about 235 km below the inner core boundary (ICB). Based on forward modeling, we construct radial velocity and attenuation models in the eastern hemisphere which can explain both the PKiKP-PKIKP and PKPbc-PKIKP observations. The inner core in the eastern hemisphere has a flat velocity gradient extending to about 235 km below the ICB. We test two solutions for the velocity models in the deeper portion of the inner core, with one having a first-order discontinuity at 235 km below the ICB with a velocity jump of 0.07(km/sec) followed by the PREM gradient, and the other having a gradual velocity transition with 0.1(km/sec)/100km gradient extended from 235 km to 375 km below the ICB followed by the PREM gradient. The observed traveltimes exclude the sharp discontinuity velocity model, as it predicts a kink in differential traveltimes at distance of 151o-152o which is not observed in the global and regional datasets. The observed PKIKP/PKPbc amplitude ratios can be best explained by a step function of attenuation with a Q value of 250 at the top 300 km and a Q value of 600 at 300-400 km below the ICB. The top portion of the inner core in the eastern hemisphere is anomalous compared to the rest of the inner core, in having a flat velocity gradient, higher velocities and higher attenuation.
NASA Astrophysics Data System (ADS)
Carcione, José M.; Gei, Davide
2004-05-01
We estimate the concentration of gas hydrate at the Mallik 2L-38 research site using P- and S-wave velocities obtained from well logging and vertical seismic profiles (VSP). The theoretical velocities are obtained from a generalization of Gassmann's modulus to three phases (rock frame, gas hydrate and fluid). The dry-rock moduli are estimated from the log profiles, in sections where the rock is assumed to be fully saturated with water. We obtain hydrate concentrations up to 75%, average values of 37% and 21% from the VSP P- and S-wave velocities, respectively, and 60% and 57% from the sonic-log P- and S-wave velocities, respectively. The above averages are similar to estimations obtained from hydrate dissociation modeling and Archie methods. The estimations based on the P-wave velocities are more reliable than those based on the S-wave velocities.
The FUSE Survey of 0 VI in the Galactic Halo
NASA Technical Reports Server (NTRS)
Sonneborn, George; Savage, B. D.; Wakker, B. P.; Sembach, K. R.; Jenkins, E. B.; Moos, H. W.; Shull, J. M.
2003-01-01
This paper summarizes the results of the Far-Ultraviolet Spectroscopic Explorer (FUSE) program to study 0 VI in the Milky Way halo. Spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km/s reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T approx. 3 x 10(exp 5) K in the Milky Way thick disk/halo. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI mid-plane density of n(sub 0)(O VI) = 1.7 x 10(exp -2)/cu cm, a scale height of approx. 2.3 kpc, and a approx. 0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low and intermediate velocity H I, Ha emission from the warm ionized gas at approx. l0(exp 4) K, and hot X-ray emitting gas at approx. l0(exp 6) K . The O VI has an average velocity dispersion, b approx. 60 km/s and standard deviation of 15 km/s. Thermal broadening alone cannot explain the large observed profile widths. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the North.
Analysis of current-meter data at Columbia River gaging stations, Washington and Oregon
Savini, John; Bodhaine, G.L.
1971-01-01
The U.S. Geological Survey developed equipment to measure stream velocity simultaneously with 10 current meters arranged in a vertical and to measure velocity closer to the streambed than attainable with conventional equipment. With the 10 current meters, synchronous velocities were recorded for a period of 66 minutes at 10 different depths in one vertical of one gaging-station cross section. In addition, with a current meter installed on a special bracket to allow measurements to 0.5 foot above streambed, data were obtained at two to four verticals in four gaging-station cross sections. The mean velocity determined for the 66-minute period of record was 3.30 fps (feet per second). The graphic record of velocity was analyzed on a minute-by-minute basis. It was noted that the shape of the vertical velocity curves (plot of horizontal flow velocities measured in a vertical) changed from one minute to the next, but the change seemed to be random. Velocities obtained at different depths in the, profile fluctuated significantly, with the 1-minute velocities obtained at 0.05 depth (5 percent of total depths measured from the surface at indicated vertical) showing the smallest range--0.66 fps--and those at 0.55 depth the largest range--l.22 fps. The standard deviation, expressed in feet per second, of the velocity at each point in the vertical tended to increase with depth--from 0.16 fps at 0.05 depth to a maximum of 0.24 fps at 0.75 depth. The standard deviation, expressed as a percentage of the mean velocity, ranged from about 4 percent near the surface to 11 percent at 0.95 depth. In spite of the fluctuation in mean velocity that occurred during the 66 minutes and observation period of 4 minutes yields a mean velocity that differs from the 66-minute mean by less than one-half of a percent. Determining the mean velocity by averaging the 10-point observations of the 66minute run proved to be as accurate as by plotting the vertical velocity curvy (from the averaged 10 points) and then integrating the depth-velocity profile. In comparing the velocity obtained by integrating the depth-velocity profile with the 10-point mean velocity for other field data, collected beyond that obtained during the 66-minute run, the difference ranged from -1.3 to +1.7 percent and averaged -0.2 percent. Extension of the curve below the 0.95 depth by use of a power function proved to be fairly accurate (when compared with actual measurements within this reach made with the special current-meter bracket). However, the extension did not improve significantly the accuracy of the integrated-curve mean velocity. Both the one- and two-point methods were found to agree with the 10-point velocity. In computing mean river velocity, values determined by the two-point method ranged from -1.4 to +1.6 percent when compared with the base integrated-curve mean river velocity. The one-point method yielded results that ranged from -1.9 to +4.4 percent and averaged 40.1 percent. In determining river flow by use of the midsection and mean-section methods, the mean-section method uniformly yields lower flows for the same dart.. The range in difference is from -0.2 percent to -1.6 percent, with an average difference of -0.6 percent.
NASA Astrophysics Data System (ADS)
Prindle-Sheldrake, K. L.; Tanimoto, T.
2003-12-01
Analysis of teleseismic waves generated by large earthquakes worldwide across the Southern California TriNet Seismic Broadband Array has yielded high quality measurements of both surface waves and body waves. Rayleigh waves and Love waves were previously analyzed using a spectral fitting technique (Tanimoto. and Prindle-Sheldrake, GRL 2002; Prindle-Sheldrake and Tanimoto, submitted to JGR), producing a three-dimensional S-wave velocity structure. Features in our velocity structure show some regional contrasts with respect to the starting model (SCEC 2.2), which has detailed crustal structure, but laterally homogeneous upper mantle structure. The most prominent of which is a postulated fast velocity anomaly located west of the Western Transverse Ranges that could be related to a rotated remnant plate from Farallon subduction. Analysis indicates that, while Rayleigh wave data are mostly sensitive to mantle structure, Love wave data require some modifications of crustal structure from SCEC 2.2 model. Recent advances in our velocity structure focus on accommodation of finite frequency effect, and the addition of body waves to the data. Thus far, 118 events have been analyzed for body waves. A simple geometrical approach is used to represent the finite frequency effect in phase velocity maps. Due to concerns that, for seismic phases between 10-100 seconds, structure away from the ray theoretical is also sampled by a propagating surface wave, we have adopted a technique which examines a normal mode formula in its asymptotic limit (Tanimoto, GRL 2003 in press). An ellipse, based on both distance from source to receiver and wavelength, can be used to approximate the effect on the structure along the ray path and adjacent structure. Three models were tested in order to select the appropriate distribution within the ellipse; the first case gives equal weight to all blocks within the ellipse; case 2 incorporates a Gaussian function which falls off perpendicular to the ray path, allowing the amplitude to peak at the receiver; case 3 is the same as case 2, yet removes the effect of the peak at the receiver. A major improvement is that the locale under consideration has expanded due to the effect of ray paths spreading over a larger area than the ray theoretical. Comparison of the three techniques yields very similar results, and all techniques show an exceptional correlation to the ray theoretical phase velocity maps. After analyzing our data in terms of the finite frequency effect, we find that little change has occurred as a result of employing this technique other than expanding our region of study. P-wave measurements were obtained from the data set for 118 events. Preliminary results show systematic patterns. We have successfully measured 30 S-wave events which we plan to incorporate into our velocity structure. Our goal is to proceed with a joint inversion of P-waves, S-waves and Surface waves for a collective Southern California velocity structure.
NASA Technical Reports Server (NTRS)
Howle, R. E.; Krause, M. C.; Craven, C. E.; Gorzynski, E. J.; Edwards, B. B.
1976-01-01
The first detailed velocity profile data on thermally induced dust vortices are presented. These dust devils will be analyzed and studied to determine their flow fields and origin in an effort to correlate this phenomena with the generation and characteristics of tornadoes. A continuing effort to increase mankind's knowledge of vortex and other meteorological phenomena will hopefully allow the prediction of tornado occurrence, their path, and perhaps eventually even lead to some technique for their destruction.
Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.; Conaway, Jeffrey S.
2017-01-01
Thermal cameras with high sensitivity to medium and long wavelengths can resolve features at the surface of flowing water arising from turbulent mixing. Images acquired by these cameras can be processed with particle image velocimetry (PIV) to compute surface velocities based on the displacement of thermal features as they advect with the flow. We conducted a series of field measurements to test this methodology for remote sensing of surface velocities in rivers. We positioned an infrared video camera at multiple stations across bridges that spanned five rivers in Alaska. Simultaneous non-contact measurements of surface velocity were collected with a radar gun. In situ velocity profiles were collected with Acoustic Doppler Current Profilers (ADCP). Infrared image time series were collected at a frequency of 10Hz for a one-minute duration at a number of stations spaced across each bridge. Commercial PIV software used a cross-correlation algorithm to calculate pixel displacements between successive frames, which were then scaled to produce surface velocities. A blanking distance below the ADCP prevents a direct measurement of the surface velocity. However, we estimated surface velocity from the ADCP measurements using a program that normalizes each ADCP transect and combines those normalized transects to compute a mean measurement profile. The program can fit a power law to the profile and in so doing provides a velocity index, the ratio between the depth-averaged and surface velocity. For the rivers in this study, the velocity index ranged from 0.82 – 0.92. Average radar and extrapolated ADCP surface velocities were in good agreement with average infrared PIV calculations.
Velocity changes, long runs, and reversals in the Chromatium minus swimming response.
Mitchell, J G; Martinez-Alonso, M; Lalucat, J; Esteve, I; Brown, S
1991-01-01
The velocity, run time, path curvature, and reorientation angle of Chromatium minus were measured as a function of light intensity, temperature, viscosity, osmotic pressure, and hydrogen sulfide concentration. C. minus changed both velocity and run time. Velocity decreased with increasing light intensity in sulfide-depleted cultures and increased in sulfide-replete cultures. The addition of sulfide to cultures grown at low light intensity (10 microeinsteins m-2 s-1) caused mean run times to increase from 10.5 to 20.6 s. The addition of sulfide to cultures grown at high light intensity (100 microeinsteins m-2 s-1) caused mean run times to decrease from 15.3 to 7.7 s. These changes were maintained for up to an hour and indicate that at least some members of the family Chromatiaceae simultaneously modulate velocity and turning frequency for extended periods as part of normal taxis. Images PMID:1991736
Theoretical analysis of stack gas emission velocity measurement by optical scintillation
NASA Astrophysics Data System (ADS)
Yang, Yang; Dong, Feng-Zhong; Ni, Zhi-Bo; Pang, Tao; Zeng, Zong-Yong; Wu, Bian; Zhang, Zhi-Rong
2014-04-01
Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously.
The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm.
Han, Gaining; Fu, Weiping; Wang, Wen
2016-01-01
In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.
The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm
Han, Gaining; Fu, Weiping; Wang, Wen
2016-01-01
In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability. PMID:26880881
The NACA Impact Basin and Water Landing Tests of a Float Model at Various Velocities and Weights
NASA Technical Reports Server (NTRS)
Batterson, Sidney A
1944-01-01
The first data obtained in the United States under the controlled testing conditions necessary for establishing relationships among the numerous parameters involved when a float having both horizontal and vertical velocity contacts a water surface are presented. The data were obtained at the NACA impact basin. The report is confined to a presentation of the relationship between resultant velocity and impact normal acceleration for various float weights when all other parameters are constant. Analysis of the experimental results indicated that the maximum impact normal acceleration was proportional to the square of the resultant velocity, that increases in float weight resulted in decreases in the maximum impact normal acceleration, and that an increase in the flight-path angle caused increased impact normal acceleration.
Bohm velocity in the presence of a hot cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palacio Mizrahi, J. H.; Krasik, Ya. E.
2013-08-15
The spatial distribution of the plasma and beam electrons in a region whose extension from a hot cathode is larger than the Debye length, but smaller than the electron mean free path, is analyzed. In addition, the influence of electrons thermionically emitted from a hot cathode and the ratio of electron-to-ion mass on the Bohm velocity and on the ion and electron densities at the plasma-sheath boundary in a gas discharge are studied. It is shown that thermionic emission has the effect of increasing the Bohm velocity, and this effect is more pronounced for lighter ions. In addition, it ismore » shown that the Bohm velocity cannot be increased to more than 24% above its value when there is no electron emission.« less
Ultrafast optomechanical pulse picking
NASA Astrophysics Data System (ADS)
Lilienfein, Nikolai; Holzberger, Simon; Pupeza, Ioachim
2017-01-01
State-of-the-art optical switches for coupling pulses into and/or out of resonators are based on either the electro-optic or the acousto-optic effect in transmissive elements. In high-power applications, the damage threshold and other nonlinear and thermal effects in these elements impede further improvements in pulse energy, duration, and average power. We propose a new optomechanical switching concept which is based solely on reflective elements and is suitable for switching times down to the ten-nanosecond range. To this end, an isolated section of a beam path is moved in a system comprising mirrors rotating at a high angular velocity and stationary imaging mirrors, without affecting the propagation of the beam thereafter. We discuss three variants of the concept and exemplify practical parameters for its application in regenerative amplifiers and stack-and-dump enhancement cavities. We find that optomechanical pulse picking has the potential to achieve switching rates of up to a few tens of kilohertz while supporting pulse energies of up to several joules.
Monitoring and Prediction of Precipitable Water Vapor using GPS data in Turkey
NASA Astrophysics Data System (ADS)
Ansari, Kutubuddin; Althuwaynee, Omar F.; Corumluoglu, Ozsen
2016-12-01
Although Global Positioning System (GPS) primarily provide accurate estimates of position, velocity and time of the receiver, as the signals pass through the atmoshphere carrying its signatures, thus offers opportunities for atmoshpheric applications. Precipitable water vapor (PWV) is a vital component of the atmosphere and significantly influences atmospheric processes like rainfall and atmospheric temperature. The developing networks of continuously operating GPS can be used to efficiently estimate PWV. The Turkish Permanent GPS Network (TPGN) is employed to monitor PWV information in Turkey. This work primarily aims to derive long-term data of PWV by using atmospheric path delays observed through continuously operating TPGN from November 2014 to October 2015. A least square mathematical approach was then applied to establish the relation of the observed PWV to rainfall and temperature. The modeled PWV was correlated with PWV estimated from GPS data, with an average correlation of 67.10 %-88.60 %. The estimated root mean square error (RMSE) varied from 2.840 to 6.380, with an average of 4.697. Finally, data of TPGN, rainfall, and temperature were obtained for less than 2 months (November 2015 to December 2015) and assessed to validate the mathematical model. This study provides a basis for determining PWV by using rainfall and temperature data.
HOST turbine heat transfer subproject overview
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.
1986-01-01
The experimental part of the turbine heat transfer subproject consists of six large experiments, which are highlighted in this overview, and three of somewhat more modest scope. One of the initial efforts was the stator airfoil heat transfer program. The non-film cooled and the showerhead film cooled data have already been reported. The gill region film cooling effort is currently underway. The investigation of secondary flows in a 90 deg curved duct, was completed. The first phase examined flows with a relatively thin inlet boundary layer and low free stream turbulence. The second phase studied a thicker inlet boundary layer and higher free stream turbulence. A comparison of analytical and experimental cross flow velocity vectors is shown for the 60 deg plane. Two experiments were also conducted in the high pressure facility. One examined full coverage film cooled vanes, and the other, advanced instrumentation. The other three large experimental efforts were conducted in a rotation reference frame. An experiment to obtain gas path airfoil heat transfer coefficients in the large, low speed turbine was completed. Single-stage data with both high and low-inlet turbulence were taken. The second phase examined a one and one-half stage turbine and focused on the second vane row. Under phase 3 aerodynamic quantities such as interrow time-averaged and rms values of velocity, flow angle, inlet turbulence, and surface pressure distribution were measured.
Investigation of the residue in an electric rail gun employing a plasma armature
NASA Technical Reports Server (NTRS)
Bauer, D. P.; Barber, J. P.
1984-01-01
The performance of dc electric rail guns using plasma-armature-accelerated projectiles was studied. It was found that the initial rail launcher acceleration profile was consistent with the simulation, but that after the projectile had traveled approximately 25 to 30 cm along the gun, a considerable portion of the current in the projectile armature commutated into a secondary current path. Also noted were the lower than expected muzzle velocities. It was proposed that the secondary current path was a relatively high conductivity layer of residue on the launcher bore.
Apparatus for sampling and characterizing aerosols
Dunn, Patrick F.; Herceg, Joseph E.; Klocksieben, Robert H.
1986-01-01
Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.
NASA Technical Reports Server (NTRS)
Steinmetz, G. G.
1986-01-01
The development of an electronic primary flight display format aligned with the aircraft velocity vector, a simulation evaluation comparing this format with an electronic attitude-aligned primary flight display format, and a flight evaluation of the velocity-vector-aligned display format are described. Earlier tests in turbulent conditions with the electronic attitude-aligned display format had exhibited unsteadiness. A primary objective of aligning the display format with the velocity vector was to take advantage of a velocity-vector control-wheel steering system to provide steadiness of display during turbulent conditions. Better situational awareness under crosswind conditions was also achieved. The evaluation task was a curved, descending approach with turbulent and crosswind conditions. Primary flight display formats contained computer-drawn perspective runway images and flight-path angle information. The flight tests were conducted aboard the NASA Transport Systems Research Vehicle (TSRV). Comparative results of the simulation and flight tests were principally obtained from subjective commentary. Overall, the pilots preferred the display format aligned with the velocity vector.
NASA Astrophysics Data System (ADS)
Subramaniam, Shankar; Sun, Bo
2015-11-01
The presence of solid particles in a steady laminar flow generates velocity fluctuations with respect to the mean fluid velocity that are termed pseudo-turbulence. The level of these pseudo-turbulent velocity fluctuations has been characterized in statistically homogeneous fixed particle assemblies and freely evolving suspensions using particle-resolved direct numerical simulation (PR-DNS) by Mehrabadi et al. (JFM, 2015), and it is found to be a significant contribution to the total kinetic energy associated with the flow. The correlation of these velocity fluctuations with temperature (or a passive scalar) generates a flux term that appears in the transport equation for the average fluid temperature (or average scalar concentration). The magnitude of this transport of temperature-velocity covariance is quantified using PR-DNS of thermally fully developed flow past a statistically homogeneous fixed assembly of particles, and the budget of the average fluid temperature equation is presented. The relation of this transport term to the axial dispersion coefficient (Brenner, Phil. Trans. Roy. Soc. A, 1980) is established. The simulation results are then interpreted in the context of our understanding of axial dispersion in gas-solid flow. NSF CBET 1336941.
NASA Astrophysics Data System (ADS)
Cao, Bochao; Xu, Hongyi
2018-05-01
Based on direct numerical simulation (DNS) data of the straight ducts, namely square and rectangular annular ducts, detailed analyses were conducted for the mean streamwise velocity, relevant velocity scales, and turbulence statistics. It is concluded that turbulent boundary layers (TBL) should be broadly classified into three types (Type-A, -B, and -C) in terms of their distribution patterns of the time-averaged local wall-shear stress (τ _w ) or the mean local frictional velocity (u_τ ) . With reference to the Type-A TBL analysis by von Karman in developing the law-of-the-wall using the time-averaged local frictional velocity (u_τ ) as scale, the current study extended the approach to the Type-B TBL and obtained the analytical expressions for streamwise velocity in the inner-layer using ensemble-averaged frictional velocity (\\bar{{u}}_τ ) as scale. These analytical formulae were formed by introducing the general damping and enhancing functions. Further, the research applied a near-wall DNS-guided integration to the governing equations of Type-B TBL and quantitatively proved the correctness and accuracy of the inner-layer analytical expressions for this type.
Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.; Zangwill, Aliza; Estevez, Ivan; Lai, Lena
2015-01-01
Vertical one-dimensional shear wave velocity (Vs) profiles are presented for 25 strong-motion instrument sites along the Mid-Atlantic eastern seaboard, Piedmont region, and Appalachian region, which surround the epicenter of the M5.8 Mineral, Virginia, Earthquake of August 23, 2011. Testing was performed at sites in Pennsylvania, Maryland, West Virginia, Virginia, the District of Columbia, North Carolina, and Tennessee. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS,30), the average velocity for the entire profile (VS,Z), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The Vs profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. A large trailer-mounted active source was used to shake the ground during the testing and produce the surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.
Seismic properties of the crust and uppermost mantle of North America
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B.; Keller, G. R.
1983-01-01
Seismic refraction profiles for the North American continent were compiled. The crustal models compiled data on the upper mantle seismic velocity (P sub n), the crustal thickness (H sub c) and the average seismic velocity of the crystalline crust (V sub p). Compressional wave parameters were compared with shear wave data derived from surface wave dispersion models and indicate an average value for Poisson's ratio of 0.252 for the crust and of 0.273 for the uppermost mantle. Contour maps illustrate lateral variations in crustal thickness, upper mantle velocity and average seismic velocity of the crystalline crust. The distribution of seismic parameters are compared with a smoothed free air anomaly map of North America and indicate that a complidated mechanism of isostatic compensation exists for the North American continent. Several features on the seismic contour maps also correlate with regional magnetic anomalies.
Measuring average angular velocity with a smartphone magnetic field sensor
NASA Astrophysics Data System (ADS)
Pili, Unofre; Violanda, Renante
2018-02-01
The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper, we present a further alternative that is smartphone-based, making use of the real-time magnetic field (simply called B-field in what follows) data gathering capability of the B-field sensor of the smartphone device as the timer for measuring average rotational period and average angular velocity. The in-built B-field sensor in smartphones has already found a number of uses in undergraduate experimental physics. For instance, in elementary electrodynamics, it has been used to explore the well-known Bio-Savart law and in a measurement of the permeability of air.
O'Brien, J K; Roth, T L; Stoops, M A; Ball, R L; Steinman, K J; Montano, G A; Love, C C; Robeck, T R
2015-01-01
White rhinoceros ejaculates (n=9) collected by electroejaculation from four males were shipped (10°C, 12h) to develop procedures for the production of chilled and frozen-thawed sex-sorted spermatozoa of adequate quality for artificial insemination (AI). Of all electroejaculate fractions, 39.7% (31/78) exhibited high quality post-collection (≥70% total motility and membrane integrity) and of those, 54.8% (17/31) presented reduced in vitro quality after transport and were retrospectively determined to exhibit urine-contamination (≥21.0μg creatinine/ml). Of fractions analyzed for creatinine concentration, 69% (44/64) were classified as urine-contaminated. For high quality non-contaminated fractions, in vitro parameters (motility, velocity, membrane, acrosome and DNA integrity) of chilled non-sorted and sorted spermatozoa were well-maintained at 5°C up to 54h post-collection, whereby >70% of post-transport (non-sorted) or post-sort (sorted) values were retained. By 54h post-collection, some motility parameters were higher (P<0.05) for non-sorted spermatozoa (total motility, rapid velocity, average path velocity) whereas all remaining motion parameters as well as membrane, acrosome and DNA integrity were similar between sperm types. In comparison with a straw method, directional freezing resulted in enhanced (P<0.05) motility and velocity of non-sorted and sorted spermatozoa, with comparable overall post-thaw quality between sperm types. High purity enrichment of X-bearing (89±6%) or Y-bearing (86±3%) spermatozoa was achieved using moderate sorting rates (2540±498X-spermatozoa/s; 1800±557Y-spermatozoa/s). Collective in vitro characteristics of sorted-chilled or sorted-frozen-thawed spermatozoa derived from high quality electroejaculates indicate acceptable fertility potential for use in AI. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of pH on rheotaxis of bull sperm using microfluidics.
El-Sherry, T M; Abdel-Ghani, M A; Abou-Khalil, N S; Elsayed, M; Abdelgawad, M
2017-10-01
The aim of the present research is to study the effect of pH values on the sperm rheotaxis properties. Semen collected from bulls was diluted with SOF medium (1:10). pH of the medium was adjusted using a digital pH meter to the following pH values: 6.0, 6.2, 6.4, 6.4, 6.8, 7.0. All kinetic parameters of sperm (n = 3,385) were determined through a computer-assisted sperm analysis (CASA) system using microfluidic devices with controlled flow velocity. The following parameters were determined: total motility (TM%), positive rheotaxis (PR%), straightline velocity (VSL, μm/s), average path velocity (VAP, μm/s), linearity (LIN, as VSL/VCL, %), beat cross-frequency (BCF, Hz) and curvilinear velocity (VCL, μm/s). Nitric oxide, calcium and potassium were estimated in semen at different pH values. To confirm the effect of nitric oxide and K + , we used sodium nitroprusside (an NO donor) and KCL as (a K + donor) to see their effect on sperm PR%. The results showed no difference in TM% at pH (6-7). The PR% was the lowest at pH 6 and 7. The best parameters for the PR% were at pH 6.4-6.6. The concentration of Ca +2 did not change at different pH values. The mean NO values decreased with the increase of pH; however, the mean values of K + increased with the increase of pH. Addition of high concentration of NO and K + to the semen media at fixed pH level had a negative effect on TM% and PR%. In conclusion, the bull sperm had the best rheotaxis properties at pH 6.4-6.6 and sensitive to the change of seminal NO and K + . © 2017 Blackwell Verlag GmbH.
Viveiros, A T M; Isaú, Z A; Caneppele, D; Leal, M C
2012-09-01
Sperm cryopreservation is an important method for preserving genetic information and facilitating artificial reproduction. The objective was to investigate whether the cryopreservation process affects postthaw sperm motility, embryogenesis, and larval growth in the fish Brycon insignis. Sperm was diluted in methyl glycol and Beltsville Thawing solution, frozen in a nitrogen vapor vessel (dry shipper) and stored in liquid nitrogen. Half of the samples were evaluated both subjectively (% of motile sperm and motility quality score-arbitrary grading system from 0 [no movement] to 5 [rapidly swimming sperm]) and in a computer-assisted sperm analyzer (CASA; percentage of motile sperm and velocity). The other half was used for fertilization and the evaluation of embryogenesis (cleavage and gastrula stages), hatching rate, percentage of larvae with normal development and larval growth up to 112 days posthatching (dph). Fresh sperm was analyzed subjectively (percentage of motile sperm and motility quality score) and used as the control. In the subjective analysis, sperm motility significantly decreased from 100% motile sperm and quality score of 5 in fresh sperm to 54% motile sperm and quality score of 3 after thawing. Under computer-assisted sperm analyzer evaluation, postthaw sperm had 67% motile sperm, 122 μm/sec of curvilinear velocity, 87 μm/sec of straight-line velocity and 103 μm/sec of average path velocity. There were no significant differences between progenies (pooled data) for the percentage of viable embryos in cleavage (62%) or gastrula stages (24%) or in the hatching rate (24%), percentage of normal hatched larvae (93%), larval body weight (39.8 g), or standard length (12.7 cm) at 112 days posthatching. Based on these findings, cryopreserved sperm can be used as a tool to restore the population of endangered species, such as B. insignis, as well as for aquaculture purposes, without any concern regarding quality of the offspring. Copyright © 2012 Elsevier Inc. All rights reserved.
Ro, Kyoung S; Johnson, Melvin H; Varma, Ravi M; Hashmonay, Ram A; Hunt, Patrick
2009-08-01
Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remote sensing techniques. We evaluated this method to estimate emission rates from simulated distributed methane sources. A scanning open-path tunable diode laser was used to collect path-integrated concentrations (PICs) along different optical paths on a vertical plane downwind of controlled methane releases. Each cycle consists of 3 ground-level PICs and 2 above ground PICs. Three- to 10-cycle moving averages were used to reconstruct mass equivalent concentration plum maps on the vertical plane. The VRPM algorithm estimated emission rates of methane along with meteorological and PIC data collected concomitantly under different atmospheric stability conditions. The derived emission rates compared well with actual released rates irrespective of atmospheric stability conditions. The maximum error was 22 percent when 3-cycle moving average PICs were used; however, it decreased to 11% when 10-cycle moving average PICs were used. Our validation results suggest that this new VRPM method may be used for improved estimations of greenhouse gas emission from a variety of agricultural sources.
NASA Astrophysics Data System (ADS)
Che-Aron, Z.; Abdalla, A. H.; Abdullah, K.; Hassan, W. H.
2013-12-01
In recent years, Cognitive Radio (CR) technology has largely attracted significant studies and research. Cognitive Radio Ad Hoc Network (CRAHN) is an emerging self-organized, multi-hop, wireless network which allows unlicensed users to opportunistically access available licensed spectrum bands for data communication under an intelligent and cautious manner. However, in CRAHNs, a lot of failures can easily occur during data transmission caused by PU (Primary User) activity, topology change, node fault, or link degradation. In this paper, an attempt has been made to evaluate the performance of the Multi-Radio Link-Quality Source Routing (MR-LQSR) protocol in CRAHNs under different path failure rate. In the MR-LQSR protocol, the Weighted Cumulative Expected Transmission Time (WCETT) is used as the routing metric. The simulations are carried out using the NS-2 simulator. The protocol performance is evaluated with respect to performance metrics like average throughput, packet loss, average end-to-end delay and average jitter. From the simulation results, it is observed that the number of path failures depends on the PUs number and mobility rate of SUs (Secondary Users). Moreover, the protocol performance is greatly affected when the path failure rate is high, leading to major service outages.
Artificial intelligence-assisted occupational lung disease diagnosis.
Harber, P; McCoy, J M; Howard, K; Greer, D; Luo, J
1991-08-01
An artificial intelligence expert-based system for facilitating the clinical recognition of occupational and environmental factors in lung disease has been developed in a pilot fashion. It utilizes a knowledge representation scheme to capture relevant clinical knowledge into structures about specific objects (jobs, diseases, etc) and pairwise relations between objects. Quantifiers describe both the closeness of association and risk, as well as the degree of belief in the validity of a fact. An independent inference engine utilizes the knowledge, combining likelihoods and uncertainties to achieve estimates of likelihood factors for specific paths from work to illness. The system creates a series of "paths," linking work activities to disease outcomes. One path links a single period of work to a single possible disease outcome. In a preliminary trial, the number of "paths" from job to possible disease averaged 18 per subject in a general population and averaged 25 per subject in an asthmatic population. Artificial intelligence methods hold promise in the future to facilitate diagnosis in pulmonary and occupational medicine.
NASA Astrophysics Data System (ADS)
Satish Jeyashekar, Nigil; Seiner, John
2006-11-01
The closure problem in chemically reacting turbulent flows would be solved when velocity, temperature and number density (transport variables) are known. The transport variables provide input to momentum, heat and mass transport equations leading to analysis of turbulence-chemistry interaction, providing a pathway to improve combustion efficiency. There are no measurement techniques to determine all three transport variables simultaneously. This paper shows the formulation to compute flow velocity from temperature and number density measurements, made from spontaneous Raman scattering, using kinetic theory of dilute gases coupled with Maxwell-Boltzmann velocity distribution. Temperature and number density measurements are made in a mach 1.5 supersonic air flow with subsonic hydrogen co-flow. Maxwell-Boltzmann distribution can be used to compute the average molecular velocity of each species, which in turn is used to compute the mass-averaged velocity or flow velocity. This formulation was validated by Raman measurements in a laminar adiabatic burner where the computed flow velocities were in good agreement with hot-wire velocity measurements.
Favre-Averaged Turbulence Statistics in Variable Density Mixing of Buoyant Jets
NASA Astrophysics Data System (ADS)
Charonko, John; Prestridge, Kathy
2014-11-01
Variable density mixing of a heavy fluid jet with lower density ambient fluid in a subsonic wind tunnel was experimentally studied using Particle Image Velocimetry and Planar Laser Induced Fluorescence to simultaneously measure velocity and density. Flows involving the mixing of fluids with large density ratios are important in a range of physical problems including atmospheric and oceanic flows, industrial processes, and inertial confinement fusion. Here we focus on buoyant jets with coflow. Results from two different Atwood numbers, 0.1 (Boussinesq limit) and 0.6 (non-Boussinesq case), reveal that buoyancy is important for most of the turbulent quantities measured. Statistical characteristics of the mixing important for modeling these flows such as the PDFs of density and density gradients, turbulent kinetic energy, Favre averaged Reynolds stress, turbulent mass flux velocity, density-specific volume correlation, and density power spectra were also examined and compared with previous direct numerical simulations. Additionally, a method for directly estimating Reynolds-averaged velocity statistics on a per-pixel basis is extended to Favre-averages, yielding improved accuracy and spatial resolution as compared to traditional post-processing of velocity and density fields.
NASA Astrophysics Data System (ADS)
Caparanga, Alvin R.; Reyes, Rachael Anne L.; Rivas, Reiner L.; De Vera, Flordeliza C.; Retnasamy, Vithyacharan; Aris, Hasnizah
2017-11-01
This study utilized the 3k factorial design with k as the two varying factors namely, temperature and air velocity. The effects of temperature and air velocity on the drying rate curves and on the average particle diameter of the arrowroot starch were investigated. Extracted arrowroot starch samples were dried based on the designed parameters until constant weight was obtained. The resulting initial moisture content of the arrowroot starch was 49.4%. Higher temperatures correspond to higher drying rates and faster drying time while air velocity effects were approximately negligible or had little effect. Drying rate is a function of temperature and time. The constant rate period was not observed for the drying rate of arrowroot starch. The drying curves were fitted against five mathematical models: Lewis, Page, Henderson and Pabis, Logarithmic and Midili. The Midili Model was the best fit for the experimental data since it yielded the highest R2 and the lowest RSME values for all runs. Scanning electron microscopy (SEM) was used for qualitative analysis and for determination of average particle diameter of the starch granules. The starch granules average particle diameter had a range of 12.06 - 24.60 μm. The use of ANOVA proved that particle diameters for each run varied significantly with each other. And, the Taguchi Design proved that high temperatures yield lower average particle diameter, while high air velocities yield higher average particle diameter.
Boore, D.M.; Thompson, E.M.; Cadet, H.
2011-01-01
Using velocity profiles from sites in Japan, California, Turkey, and Europe, we find that the time-averaged shear-wave velocity to 30 m (V S30), used as a proxy for site amplification in recent ground-motion prediction equations (GMPEs) and building codes, is strongly correlated with average velocities to depths less than 30 m (V Sz, with z being the averaging depth). The correlations for sites in Japan (corresponding to the KiK-net network) show that V S30 is systematically larger for a given V Sz than for profiles from the other regions. The difference largely results from the placement of the KiK-net station locations on rock and rocklike sites, whereas stations in the other regions are generally placed in urban areas underlain by sediments. Using the KiK-net velocity profiles, we provide equations relating V S30 to V Sz for z ranging from 5 to 29 m in 1-m increments. These equations (and those for California velocity profiles given in Boore, 2004b) can be used to estimate V S30 from V Sz for sites in which velocity profiles do not extend to 30 m. The scatter of the residuals decreases with depth, but, even for an averaging depth of 5 m, a variation in log V S30 of 1 standard deviation maps into less than a 20% uncertainty in ground motions given by recent GMPEs at short periods. The sensitivity of the ground motions to V S30 uncertainty is considerably larger at long periods (but is less than a factor of 1.2 for averaging depths greater than about 20 m). We also find that V S30 is correlated with V Sz for z as great as 400 m for sites of the KiK-net network, providing some justification for using V S30 as a site-response variable for predicting ground motions at periods for which the wavelengths far exceed 30 m.
NASA Astrophysics Data System (ADS)
Zhong, Mi; Liu, Qi-Jun; Qin, Han; Jiao, Zhen; Zhao, Feng; Shang, Hai-Lin; Liu, Fu-Sheng; Liu, Zheng-Tang
2017-06-01
First-principles calculations were employed to investigate the influences of pressure on methyl group, elasticity, sound velocity and sensitivity of solid nitromethane. The obtained structural parameters based on the GGA-PB E +G calculations are in good agreement with theoretical and experimental data. The rotation of methyl group appears under pressure, which influences the mechanical, thermal properties and sensitivity of solid NM. The anisotropy of elasticity, sound velocity and Debye temperature under pressure have been shown, which are related to the thermal properties of solid NM. The enhanced sensitivity with the increasing pressure has been discussed and the change of the most likely transition path is associated with methyl group.
Particle acceleration in step function shear flows - A microscopic analysis
NASA Technical Reports Server (NTRS)
Jokipii, J. R.; Morfill, G. E.
1990-01-01
The transport of energetic particles in a moving, scattering fluid, which has a large shear in its velocity over a distance small compared with the scattering mean free path is discussed. The analysis is complementary to an earlier paper by Earl, Jokipii, and Morfill (1988), which considered effects of more-gradual shear in the diffusion approximation. The case in which the scattering fluid undergoes a step function change in velocity, in the direction normal to the flow is considered. An analytical, approximate calculation and a Monte Carlo analysis of particle motion are presented. It is found that particles gain energy at a rate proportional to the square of the magnitude of the velocity change.
Bergeron, Normand E.; Constantin, Pierre-Marc; Goerig, Elsa; Castro-Santos, Theodore R.
2016-01-01
We used video recording and near-infrared illumination to document the spatial behavior of brook trout of various sizes attempting to pass corrugated culverts under different hydraulic conditions. Semi-automated image analysis was used to digitize fish position at high temporal resolution inside the culvert, which allowed calculation of various spatial behavior metrics, including instantaneous ground and swimming speed, path complexity, distance from side walls, velocity preference ratio (mean velocity at fish lateral position/mean crosssectional velocity) as well as number and duration of stops in forward progression. The presentation summarizes the main results and discusses how they could be used to improve fish passage performance in culverts.
Transient Deformation of Stable Continental Lithosphere by the 2011 M9.0 Tohoku-Oki Megatrust
NASA Astrophysics Data System (ADS)
Hong, T. K.; Chi, D.
2015-12-01
The Korean Peninsula was dislocated laterally by 1-6cm after the 11 March 2011 M9.0 Tohoku-Oki megathrust at a distance of ~1300 km. These lateral displacements produced apparent tensional stresses of 1-7 kPa in the crust of the peninsula, perturbing the medium. Temporal variation of seismic velocities is investigated to assess the lithospheric responses to the megatrust. The Green's function over inter-station paths are retrieved from ambient noises recorded at broadband seismic stations that are densely deployed over the peninsula. The ambient noises are bandpass-filtered between 0.03 and 0.08 Hz, and spectral whitening and one-bit normalization are applied. The fundamental-mode Rayleigh waves are retrieved by stacking the cross-correlation functions of 10-days-long ambient noises from 2010 to 2015. The traveltime changes of Rayleigh waves with respect to the reference traveltimes are calculated by comparing the stacked cross-correlation functions. The reference Rayleigh waves are calculated by stacking the cross-correlation functions for 4 to 6 months before the megathrust. The traveltime changes are normalized by the inter-station distances. Abrupt traveltime delays are observed right after the megathrust, which are particularly strong along paths subparallel to the great-circle direction to the megathrust. The peak traveltime delay reaches 0.028 s/km, which corresponds to shear velocity decrease of 8.9 %. The traveltime delays are weak along the paths deviated from the great-circle directions. The observation suggests that the transient tension stress field caused longitudinal lithospheric perturbation with preferential mineral orientation and fluid migration, decreasing the seismic velocities. The traveltime delays were recovered with rates of 0.000025 to 0.000059 s/km per day, completing the recovery in several hundred days after the megathrust.
Lü, Xiao-Jing; Li, Ning; Weng, Chun-Sheng
2014-03-01
The effect detection of detonation exhaust can provide measurement data for exploring the formation mechanism of detonation, the promotion of detonation efficiency and the reduction of fuel waste. Based on tunable diode laser absorption spectroscopy technique combined with double optical path cross-correlation algorithm, the article raises the diagnosis method to realize the on-line testing of detonation exhaust velocity, temperature and H2O gas concentration. The double optical path testing system is designed and set up for the valveless pulse detonation engine with the diameter of 80 mm. By scanning H2O absorption lines of 1343nm with a high frequency of 50 kHz, the on-line detection of gas-liquid pulse detonation exhaust is realized. The results show that the optical testing system based on tunable diode laser absorption spectroscopy technique can capture the detailed characteristics of pulse detonation exhaust in the transient process of detonation. The duration of single detonation is 85 ms under laboratory conditions, among which supersonic injection time is 5.7 ms and subsonic injection time is 19.3 ms. The valveless pulse detonation engine used can work under frequency of 11 Hz. The velocity of detonation overflowing the detonation tube is 1,172 m x s(-1), the maximum temperature of detonation exhaust near the nozzle is 2 412 K. There is a transitory platform in the velocity curve as well as the temperature curve. H2O gas concentration changes between 0-7% during detonation under experimental conditions. The research can provide measurement data for the detonation process diagnosis and analysis, which is of significance to advance the detonation mechanism research and promote the research of pulse detonation engine control technology.
Regional correlations of VS30 averaged over depths less than and greater than 30 meters
Boore, David M.; Thompson, Eric M.; Cadet, Héloïse
2011-01-01
Using velocity profiles from sites in Japan, California, Turkey, and Europe, we find that the time-averaged shear-wave velocity to 30 m (VS30), used as a proxy for site amplification in recent ground-motion prediction equations (GMPEs) and building codes, is strongly correlated with average velocities to depths less than 30 m (VSz, with z being the averaging depth). The correlations for sites in Japan (corresponding to the KiK-net network) show that VSz is systematically larger for a given VSz than for profiles from the other regions. The difference largely results from the placement of the KiK-net station locations on rock and rocklike sites, whereas stations in the other regions are generally placed in urban areas underlain by sediments. Using the KiK-net velocity profiles, we provide equations relating VS30 to VSz for z ranging from 5 to 29 m in 1-m increments. These equations (and those for California velocity profiles given in Boore, 2004b) can be used to estimate VS30 from VSz for sites in which velocity profiles do not extend to 30 m. The scatter of the residuals decreases with depth, but, even for an averaging depth of 5 m, a variation in logVS30 of ±1 standard deviation maps into less than a 20% uncertainty in ground motions given by recent GMPEs at short periods. The sensitivity of the ground motions to VS30 uncertainty is considerably larger at long periods (but is less than a factor of 1.2 for averaging depths greater than about 20 m). We also find that VS30 is correlated with VSz for z as great as 400 m for sites of the KiK-net network, providing some justification for using VS30 as a site-response variable for predicting ground motions at periods for which the wavelengths far exceed 30 m.
Turbulent Flow Structure Inside a Canopy with Complex Multi-Scale Elements
NASA Astrophysics Data System (ADS)
Bai, Kunlun; Katz, Joseph; Meneveau, Charles
2015-06-01
Particle image velocimetry laboratory measurements are carried out to study mean flow distributions and turbulent statistics inside a canopy with complex geometry and multiple scales consisting of fractal, tree-like objects. Matching the optical refractive indices of the tree elements with those of the working fluid provides unobstructed optical paths for both illuminations and image acquisition. As a result, the flow fields between tree branches can be resolved in great detail, without optical interference. Statistical distributions of mean velocity, turbulence stresses, and components of dispersive fluxes are documented and discussed. The results show that the trees leave their signatures in the flow by imprinting wake structures with shapes similar to the trees. The velocities in both wake and non-wake regions significantly deviate from the spatially-averaged values. These local deviations result in strong dispersive fluxes, which are important to account for in canopy-flow modelling. In fact, we find that the streamwise normal dispersive flux inside the canopy has a larger magnitude (by up to four times) than the corresponding Reynolds normal stress. Turbulent transport in horizontal planes is studied in the framework of the eddy viscosity model. Scatter plots comparing the Reynolds shear stress and mean velocity gradient are indicative of a linear trend, from which one can calculate the eddy viscosity and mixing length. Similar to earlier results from the wake of a single tree, here we find that inside the canopy the mean mixing length decreases with increasing elevation. This trend cannot be scaled based on a single length scale, but can be described well by a model, which considers the coexistence of multi-scale branches. This agreement indicates that the multi-scale information and the clustering properties of the fractal objects should be taken into consideration in flows inside multi-scale canopies.
Borowska, Alicja; Szwaczkowski, Tomasz; Kamiński, Stanisław; Hering, Dorota M; Kordan, Władysław; Lecewicz, Marek
2018-05-01
Use of information theory can be an alternative statistical approach to detect genome regions and candidate genes that are associated with livestock traits. The aim of this study was to verify the validity of the SNPs effects on some semen quality variables of bulls using entropy analysis. Records from 288 Holstein-Friesian bulls from one AI station were included. The following semen quality variables were analyzed: CASA kinematic variables of sperm (total motility, average path velocity, straight line velocity, curvilinear velocity, amplitude of lateral head displacement, beat cross frequency, straightness, linearity), sperm membrane integrity (plazmolema, mitochondrial function), sperm ATP content. Molecular data included 48,192 SNPs. After filtering (call rate = 0.95 and MAF = 0.05), 34,794 SNPs were included in the entropy analysis. The entropy and conditional entropy were estimated for each SNP. Conditional entropy quantifies the remaining uncertainty about values of the variable with the knowledge of SNP. The most informative SNPs for each variable were determined. The computations were performed using the R statistical package. A majority of the loci had relatively small contributions. The most informative SNPs for all variables were mainly located on chromosomes: 3, 4, 5 and 16. The results from the study indicate that important genome regions and candidate genes that determine semen quality variables in bulls are located on a number of chromosomes. Some detected clusters of SNPs were located in RNA (U6 and 5S_rRNA) for all the variables for which analysis occurred. Associations between PARK2 as well GALNT13 genes and some semen characteristics were also detected. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jatiault, Romain; Dhont, Damien; Loncke, Lies; de Madron, Xavier Durrieu; Dubucq, Dominique; Channelliere, Claire; Bourrin, François
2018-06-01
Numerous recurrent seep sites were identified in the deep-water environment of the Lower Congo Basin from the analysis of an extensive dataset of satellite-based synthetic-aperture radar images. The integration of current data was used to link natural oil slicks with active seep-related seafloor features. Acoustic Doppler current profiler measurements across the water column provided an efficient means to evaluate the horizontal deflection of oil droplets rising through the water column. Eulerian propagation model based on a range of potential ascension velocities helped to approximate the path for rising oil plume through the water column using two complementary methods. The first method consisted in simulating the reversed trajectory of oil droplets between sea-surface oil slick locations observed during current measurements and seep-related seafloor features while considering a range of ascension velocities. The second method compared the spatial spreading of natural oil slicks from 21 years of satellite monitoring observations for water depths ranging from 1200 to 2700 m against the modeled deflections during the current measurement period. The mapped oil slick origins are restricted to a 2.5 km radius circle from associated seep-related seafloor features. The two methods converge towards a range of ascension velocities for oil droplets through the water column, estimated between 3 and 8 cm s-1. The low deflection values validate that the sub-vertical projection of the average surface area of oil slicks at the sea surface can be used to identify the origin of expelled hydrocarbon from the seafloor, which expresses as specific seafloor disturbances (i.e. pockmarks or mounds) known to expel fluids.
Zheng, Yuxin; Zhang, Nina; Liu, Shujie; Li, Qingwang; Jiang, Zhongliang
2017-12-01
In this study, water-soluble Laminaria japonica polysaccharide3 (LJP-P3) was investigated for the cryoprotective effects on bull sperm. Five concentrations of LJP-P3 with 0.1, 1, 10, 50 and 100 mmol/L were added into the extenders of bull semen, respectively, and the effects on quality of sperm after freezing-thawing were assessed. The results showed that the kinematic parameters of bull sperm including linear motile sperm (LM), curvilinear line velocity (VCL) value, straight line velocity (VSL) and velocity of the average path (VAP) were greater in the extenders containing LJP-P3 (P<0.05). In comparison to those of other treatments and control group the extenders containing 1.0, 10.0 and 50.0 mmol/L of LJP-P3 led to higher percentage of mitochondrial activity and sperm membrane integrity(P<0.05), and the acrosome integrity of bull cryopreservation sperm were significantly improved in all treatment groups. Moreover, the higher GSH-Px, SOD and CAT levels in bull cryopreservation sperm were favored from the extenders of 10.0, 50.0 and 100.0 mmol/L LJP-P3 added (P<0.05) compared with other treatments and control group. In addition, the results of artificial insemination showed that both the pregnancy rate and the number of calving were higher in the group of semen containing 10 mmol/L of LJP-P3 than that of control group (P <0.05). In summary, LJP-P3 exhibited a greater cryoprotective effect to bull sperm and the most suitable concentration of LJP-P3 is 10.0 mmol/L. Copyright © 2017 Elsevier Inc. All rights reserved.
Bag, Sadhan; Joshi, Anil; Naqvi, S M K; Mittal, J P
2004-08-01
The objectives were to assess the effect of post-thaw in vitro incubation on motion characteristics and acrosomal integrity of ram spermatozoa of native Malpura and Bharat Merino breeds maintained under a semi-arid tropical environment. Good quality semen samples of both breeds were diluted, packaged in medium-sized straws, and frozen under controlled conditions. Straws were thawed at 60 degrees C for 10s and thawed samples were incubated at 37 degrees C for 4h. Post-thaw motion characteristics and acrosomal integrity of incubated spermatozoa were assessed (by computer-aided semen analysis and Giemsa staining, respectively) just prior to incubation and at hourly intervals thereafter. There was a significant effect of incubation time on motility characteristics and the proportion of spermatozoa with normal acrosomes; 81.4% (arcsin transformed value, 65.2) of spermatozoa were motile at the start of incubation, with 47.9% (arcsin transformed value, 44.4) motile after 4h. At the corresponding times, there were normal acrosomes in 65.8 (arcsin transformed value, 54.8) and 55.7% (arcsin transformed value, 48.9) of spermatozoa, respectively. The percentage straightness of spermatozoa varied during incubation (P < 0.01). However, there was no significant change in percentage linearity, curvilinear velocity, average path velocity, straight line velocity, lateral head displacement, and beat cross frequency of spermatozoa during incubation. There were no breed variations in any motility parameters during incubation, except percentage straightness (P < 0.05), lateral head displacement (P < 0.05) and beat cross frequency (P < 0.01). That sperm motility and acrosomal morphology were very acceptable immediately post-thaw and after 4h of incubation indicated the efficacy of cryopreserving ram spermatozoa under controlled conditions in medium-sized straws.
Effects of oral cimetidine on the reproductive system of male rats
Liu, Xu; Jia, Yuling; Chong, Liming; Jiang, Juan; Yang, Yang; Li, Lei; Ma, Aicui; Sun, Zuyue; Zhou, Li
2018-01-01
Cimetidine is widely used for the treatment of digestive tract ulcers, but it induces testis injury. To explore the mechanisms underlying cimetidine-induced toxicity towards the testis, the effects of oral cimetidine on the reproductive system of male rats were assessed. Cimetidine was orally administered to male rats at 20, 40 or 120 mg/kg/day for 9 weeks. The rats were then euthanized, and serum, testis, epididymis, prostate gland, seminal vesicle, preputial gland, levator ani muscle and sphincter ani samples were collected. Sperm parameters were obtained by computer-assisted sperm analysis. Serum hormone levels were measured by ELISA. Protein expression levels were detected by immunohistochemistry. Apoptosis was assessed with the DeadEnd™ Colorimetric Apoptosis Detection System. The results indicated that the sperm average path velocity, straight line velocity and curvilinear velocity were significantly decreased in the 120 mg/kg cimetidine group compared with the control group, while luteinizing hormone and testosterone levels were significantly higher compared with the control group. Testicular lesions were observed by histopathology in the 120 mg/kg cimetidine group. The amounts of cells positive for cyclooxygenase-2 (COX-2) and nuclear factor κB (NF-κB) were increased in the 120 mg/kg cimetidine group compared with the control group. The amounts of cells positive for iNOS were increased in all cimetidine treatment groups. In addition, apoptotic cells were significantly more abundant in the 120 mg/kg cimetidine group compared with the control group, as indicated by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling. Overall, 9 weeks of oral cimetidine induced pathological changes in the testicles and hormone secretion disorder in rats. COX-2, iNOS and NF-κB upregulation and induction of apoptosis may be associated with the reproductive toxicity caused by cimetidine.
Combining path integration and remembered landmarks when navigating without vision.
Kalia, Amy A; Schrater, Paul R; Legge, Gordon E
2013-01-01
This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information.
Combining Path Integration and Remembered Landmarks When Navigating without Vision
Kalia, Amy A.; Schrater, Paul R.; Legge, Gordon E.
2013-01-01
This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information. PMID:24039742
Diffusion in biased turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlad, M.; Spineanu, F.; Misguich, J. H.
2001-06-01
Particle transport in two-dimensional divergence-free stochastic velocity fields with constant average is studied. Analytical expressions for the Lagrangian velocity correlation and for the time-dependent diffusion coefficients are obtained. They apply to stationary and homogeneous Gaussian velocity fields.
Spatially averaged flow over a wavy boundary revisited
McLean, S.R.; Wolfe, S.R.; Nelson, J.M.
1999-01-01
Vertical profiles of streamwise velocity measured over bed forms are commonly used to deduce boundary shear stress for the purpose of estimating sediment transport. These profiles may be derived locally or from some sort of spatial average. Arguments for using the latter procedure are based on the assumption that spatial averaging of the momentum equation effectively removes local accelerations from the problem. Using analogies based on steady, uniform flows, it has been argued that the spatially averaged velocity profiles are approximately logarithmic and can be used to infer values of boundary shear stress. This technique of using logarithmic profiles is investigated using detailed laboratory measurements of flow structure and boundary shear stress over fixed two-dimensional bed forms. Spatial averages over the length of the bed form of mean velocity measurements at constant distances from the mean bed elevation yield vertical profiles that are highly logarithmic even though the effect of the bottom topography is observed throughout the water column. However, logarithmic fits of these averaged profiles do not yield accurate estimates of the measured total boundary shear stress. Copyright 1999 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.
1986-01-01
Measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan were acquired using a laser anemometer. Measurements were obtained on axisymmetric surfaces located at 10 and 50 percent span from the shroud, with the fan operating at maximum efficiency at design speed. The ensemble-average and variance of the measured velocities are used to identify rotor-wake-generated (deterministic) unsteadiness and turbulence, respectively. Correlations of both deterministic and turbulent velocity fluctuations provide information on the characteristics of unsteady interactions within the stator row. These correlations are derived from the Navier-Stokes equation in a manner similar to deriving the Reynolds stress terms, whereby various averaging operators are used to average the aperiodic, deterministic, and turbulent velocity fluctuations which are known to be present in multistage turbomachines. The correlations of deterministic and turbulent velocity fluctuations throughout the axial fan stator row are presented. In particular, amplification and attenuation of both types of unsteadiness are shown to occur within the stator blade passage.
NASA Technical Reports Server (NTRS)
Whitney, W. J.; Stewart, W. L.
1972-01-01
The selection and design of velocity diagrams for axial flow turbines are considered. Application is treated in two parts which includes: (1) mean-section diagrams, and (2) radial variation of diagrams. In the first part, the velocity diagrams occurring at the mean section are assumed to represent the average conditions encountered by the turbine. The different types of diagrams, their relation to stage efficiency, and their selection when staging is required are discussed. In the second part, it is shown that in certain cases the mean-section diagrams may or may not represent the average flow conditions for the entire blade span. In the case of relatively low hub- to tip-radius ratios, substantial variations in the velocity diagrams are encountered. The radial variations in flow conditions and their effect on the velocity diagrams are considered.
Importance sampling studies of helium using the Feynman-Kac path integral method
NASA Astrophysics Data System (ADS)
Datta, S.; Rejcek, J. M.
2018-05-01
In the Feynman-Kac path integral approach the eigenvalues of a quantum system can be computed using Wiener measure which uses Brownian particle motion. In our previous work on such systems we have observed that the Wiener process numerically converges slowly for dimensions greater than two because almost all trajectories will escape to infinity. One can speed up this process by using a generalized Feynman-Kac (GFK) method, in which the new measure associated with the trial function is stationary, so that the convergence rate becomes much faster. We thus achieve an example of "importance sampling" and, in the present work, we apply it to the Feynman-Kac (FK) path integrals for the ground and first few excited-state energies for He to speed up the convergence rate. We calculate the path integrals using space averaging rather than the time averaging as done in the past. The best previous calculations from variational computations report precisions of 10-16 Hartrees, whereas in most cases our path integral results obtained for the ground and first excited states of He are lower than these results by about 10-6 Hartrees or more.
A Lagrangian View of Stratospheric Trace Gas Distributions
NASA Technical Reports Server (NTRS)
Schoeberl, M. R.; Sparling, L.; Dessler, A.; Jackman, C. H.; Fleming, E. L.
1998-01-01
As a result of photochemistry, some relationship between the stratospheric age-of-air and the amount of tracer contained within an air sample is expected. The existence of such a relationship allows inferences about transport history to be made from observations of chemical tracers. This paper lays down the conceptual foundations for the relationship between age and tracer amount, developed within a Lagrangian framework. In general, the photochemical loss depends not only on the age of the parcel but also on its path. We show that under the "average path approximation" that the path variations are less important than parcel age. The average path approximation then allows us to develop a formal relationship between the age spectrum and the tracer spectrum. Using the relation between the tracer and age spectra, tracer-tracer correlations can be interpreted as resulting from mixing which connects parts of the single path photochemistry curve, which is formed purely from the action of photochemistry on an irreducible parcel. This geometric interpretation of mixing gives rise to constraints on trace gas correlations, and explains why some observations are do not fall on rapid mixing curves. This effect is seen in the ATMOS observations.
A surface wave reflector in Southwestern Japan
NASA Astrophysics Data System (ADS)
Mak, S.; Koketsu, K.; Miyake, H.; Obara, K.; Sekine, S.
2009-12-01
Surface waves at short periods (<35s) are affected severely by heterogeneities in the crust and the uppermost mantle. When the scale of heterogeneity is sufficiently large, its effect can be studied in a deterministic way using conventional concepts of reflection and refraction. A well-known example is surface wave refraction at continental margin. We present a case study to investigate the composition of surface wave coda in a deterministic approach. A long duration of surface wave coda with a predominant period of 20s is observed during various strong earthquakes around Japan. The coda shows an unambiguous propagation direction, implying a deterministic nature. Beamforming and particle motion analysis suggest that the surface wave later arrivals could be explained by Love wave reflections by a point reflector located at offshore southeast to Kyushu. The reflection demonstrates a seemingly incidence-independent favorable azimuth in emitting strength. In additional to beamforming, we use a new regional crustal velocity model to perform a grid-search ray-tracing with the assumption of point reflector to further constrain to location of coda generation. Because strong velocity anomalies exist near the zone of interest, we decide to use a network shortest-path ray-tracing method, instead of analytical methods like shooting and bending, to avoid the problems like convergence, shadow zone, and smooth model assumption. Two geological features are found to be related to the formation of the coda. The primary one is the intersection between the Kyushu-Palau Ridge and the Nankai Trough at offshore southeast to Kyushu (hereafter referred as "KPR-NT"), which may act as a point reflector. There is a strong Love wave phase velocity anomaly at KPR-NT but not other parts of the ridge, implying that topography is irrelevant. Rayleigh wave phase velocity does not experience a strong anomaly there, which is consistent to the absence of Rayleigh wave reflections implied by the observed particle motions. The secondary one is a low phase velocity (<2km/s for T=20s) at the accretionary wedge of the Nankai Trough due to the thick sediment. Such a long and narrow low velocity zone, with its southwest tip at KPR-NT, is a potential wave-guide to channel waves towards KPR-NT. The longer duration of deterministic later arrivals than the direct arrival is partially explained by multi-pathing due to the wave-guide. The surface wave coda is observable for earthquakes whose propagation path does not include the accretionary wedge, implying that the wedge is an enhancer but not indispensable of the formation of the observed coda.
Flight-path estimation in passive low-altitude flight by visual cues
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kohn, S.
1993-01-01
A series of experiments was conducted, in which subjects had to estimate the flight path while passively being flown in straight or in curved motion over several types of nominally flat, textured terrain. Three computer-generated terrain types were investigated: (1) a random 'pole' field, (2) a flat field consisting of random rectangular patches, and (3) a field of random parallelepipeds. Experimental parameters were the velocity-to-height (V/h) ratio, the viewing distance, and the terrain type. Furthermore, the effect of obscuring parts of the visual field was investigated. Assumptions were made about the basic visual-field information by analyzing the pattern of line-of-sight (LOS) rate vectors in the visual field. The experimental results support these assumptions and show that, for both a straight as well as a curved flight path, the estimation accuracy and estimation times improve with the V/h ratio. Error scores for the curved flight path are found to be about 3 deg in visual angle higher than for the straight flight path, and the sensitivity to the V/h ratio is found to be considerably larger. For the straight motion, the flight path could be estimated successfully from local areas in the far field. Curved flight-path estimates have to rely on the entire LOS rate pattern.
Kinesin-microtubule interactions during gliding assays under magnetic force
NASA Astrophysics Data System (ADS)
Fallesen, Todd L.
Conventional kinesin is a motor protein capable of converting the chemical energy of ATP into mechanical work. In the cell, this is used to actively transport vesicles through the intracellular matrix. The relationship between the velocity of a single kinesin, as it works against an increasing opposing load, has been well studied. The relationship between the velocity of a cargo being moved by multiple kinesin motors against an opposing load has not been established. A major difficulty in determining the force-velocity relationship for multiple motors is determining the number of motors that are moving a cargo against an opposing load. Here I report on a novel method for detaching microtubules bound to a superparamagnetic bead from kinesin anchor points in an upside down gliding assay using a uniform magnetic field perpendicular to the direction of microtubule travel. The anchor points are presumably kinesin motors bound to the surface which microtubules are gliding over. Determining the distance between anchor points, d, allows the calculation of the average number of kinesins, n, that are moving a microtubule. It is possible to calculate the fraction of motors able to move microtubules as well, which is determined to be ˜ 5%. Using a uniform magnetic field parallel to the direction of microtubule travel, it is possible to impart a uniform magnetic field on a microtubule bound to a superparamagnetic bead. We are able to decrease the average velocity of microtubules driven by multiple kinesin motors moving against an opposing force. Using the average number of kinesins on a microtubule, we estimate that there are an average 2-7 kinesins acting against the opposing force. By fitting Gaussians to the smoothed distributions of microtubule velocities acting against an opposing force, multiple velocities are seen, presumably for n, n-1, n-2, etc motors acting together. When these velocities are scaled for the average number of motors on a microtubule, the force-velocity relationship for multiple motors follows the same trend as for one motor, supporting the hypothesis that multiple motors share the load.
Normalized velocity profiles of field-measured turbidity currents
Xu, Jingping
2010-01-01
Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.
Spatial curvilinear path following control of underactuated AUV with multiple uncertainties.
Miao, Jianming; Wang, Shaoping; Zhao, Zhiping; Li, Yuan; Tomovic, Mileta M
2017-03-01
This paper investigates the problem of spatial curvilinear path following control of underactuated autonomous underwater vehicles (AUVs) with multiple uncertainties. Firstly, in order to design the appropriate controller, path following error dynamics model is constructed in a moving Serret-Frenet frame, and the five degrees of freedom (DOFs) dynamic model with multiple uncertainties is established. Secondly, the proposed control law is separated into kinematic controller and dynamic controller via back-stepping technique. In the case of kinematic controller, to overcome the drawback of dependence on the accurate vehicle model that are present in a number of path following control strategies described in the literature, the unknown side-slip angular velocity and attack angular velocity are treated as uncertainties. Whereas in the case of dynamic controller, the model parameters perturbations, unknown external environmental disturbances and the nonlinear hydrodynamic damping terms are treated as lumped uncertainties. Both kinematic and dynamic uncertainties are estimated and compensated by designed reduced-order linear extended state observes (LESOs). Thirdly, feedback linearization (FL) based control law is implemented for the control model using the estimates generated by reduced-order LESOs. For handling the problem of computational complexity inherent in the conventional back-stepping method, nonlinear tracking differentiators (NTDs) are applied to construct derivatives of the virtual control commands. Finally, the closed loop stability for the overall system is established. Simulation and comparative analysis demonstrate that the proposed controller exhibits enhanced performance in the presence of internal parameter variations, external unknown disturbances, unmodeled nonlinear damping terms, and measurement noises. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Surface Wave Tomography with Spatially Varying Smoothing Based on Continuous Model Regionalization
NASA Astrophysics Data System (ADS)
Liu, Chuanming; Yao, Huajian
2017-03-01
Surface wave tomography based on continuous regionalization of model parameters is widely used to invert for 2-D phase or group velocity maps. An inevitable problem is that the distribution of ray paths is far from homogeneous due to the spatially uneven distribution of stations and seismic events, which often affects the spatial resolution of the tomographic model. We present an improved tomographic method with a spatially varying smoothing scheme that is based on the continuous regionalization approach. The smoothness of the inverted model is constrained by the Gaussian a priori model covariance function with spatially varying correlation lengths based on ray path density. In addition, a two-step inversion procedure is used to suppress the effects of data outliers on tomographic models. Both synthetic and real data are used to evaluate this newly developed tomographic algorithm. In the synthetic tests, when the contrived model has different scales of anomalies but with uneven ray path distribution, we compare the performance of our spatially varying smoothing method with the traditional inversion method, and show that the new method is capable of improving the recovery in regions of dense ray sampling. For real data applications, the resulting phase velocity maps of Rayleigh waves in SE Tibet produced using the spatially varying smoothing method show similar features to the results with the traditional method. However, the new results contain more detailed structures and appears to better resolve the amplitude of anomalies. From both synthetic and real data tests we demonstrate that our new approach is useful to achieve spatially varying resolution when used in regions with heterogeneous ray path distribution.
Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro
NASA Astrophysics Data System (ADS)
Jin, Jing; Tian, Hai-Ting; Pan, Xiong; Song, Ning-Fang
2010-03-01
The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.
Droplet Deformation Prediction With the Droplet Deformation and Breakup Model (DDB)
NASA Technical Reports Server (NTRS)
Vargas, Mario
2012-01-01
The Droplet Deformation and Breakup Model was used to predict deformation of droplets approaching the leading edge stagnation line of an airfoil. The quasi-steady model was solved for each position along the droplet path. A program was developed to solve the non-linear, second order, ordinary differential equation that governs the model. A fourth order Runge-Kutta method was used to solve the equation. Experimental slip velocities from droplet breakup studies were used as input to the model which required slip velocity along the particle path. The center of mass displacement predictions were compared to the experimental measurements from the droplet breakup studies for droplets with radii in the range of 200 to 700 mm approaching the airfoil at 50 and 90 m/sec. The model predictions were good for the displacement of the center of mass for small and medium sized droplets. For larger droplets the model predictions did not agree with the experimental results.
Optical mapping of prefrontal brain connectivity and activation during emotion anticipation.
Wang, Meng-Yun; Lu, Feng-Mei; Hu, Zhishan; Zhang, Juan; Yuan, Zhen
2018-09-17
Accumulated neuroimaging evidence shows that the dorsal lateral prefrontal cortex (dlPFC) is activated during emotion anticipation. The aim of this work is to examine the brain connectivity and activation differences in dlPFC between the positive, neutral and negative emotion anticipation by using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses were first assessed for all subjects during the performance of various emotion anticipation tasks. And then small-world analysis was performed, in which the small-world network indicators including the clustering coefficient, average path length, average node degree, and measure of small-world index were calculated for the functional brain networks associated with the positive, neutral and negative emotion anticipation, respectively. We discovered that compared to negative and neutral emotion anticipation, the positive one exhibited enhanced brain activation in the left dlPFC. Although the functional brain networks for the three emotion anticipation cases manifested the small-world properties regarding the clustering coefficient, average path length, average node degree, and measure of small-world index, the positive one showed significantly higher clustering coefficient and shorter average path length than those from the neutral and negative cases. Consequently, the small-world network indicators and brain activation in dlPPC were able to distinguish well between the positive, neutral and negative emotion anticipation. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.; Chriss, Randall M.; Strazisar, Anthony J.; Wood, Jerry R.
1995-01-01
A laser anemometer system was used to provide detailed surveys of the three-dimensional velocity field within the NASA low-speed centrifugal impeller operating with a vaneless diffuser. Both laser anemometer and aerodynamic performance data were acquired at the design flow rate and at a lower flow rate. Floor path coordinates, detailed blade geometry, and pneumatic probe survey results are presented in tabular form. The laser anemometer data are presented in the form of pitchwise distributions of axial, radial, and relative tangential velocity on blade-to-blade stream surfaces at 5-percent-of-span increments, starting at 95-percent-of-span from the hub. The laser anemometer data are also presented as contour and wire-frame plots of throughflow velocity and vector plots of secondary velocities at all measurement stations through the impeller.
A two-beam acoustic system for tissue analysis.
Sachs, T D; Janney, C D
1977-03-01
In the 'thermo-acoustic sensing technique' (TAST), a burst of sound, called the 'thermometer' beam is passed through tissue and its transit time is measured. A focused sound field, called the heating field, then warms a small volume in the path of the therometer beam, in proportion to the absorption. Finally, the therometer beam burst is repeated and its transit time subtracted from that of the initial thermometer burst. This difference measures the velocity perturbation in the tissue produced by the heating field. The transit time difference is td = K integral of infinity-infinity IP dchi where K is the instrument constant, I the heating field intensity, and P a perturbation factor which characterizes the tissues. The integration is carried out along the path of the thermometer beam. The perturbation factor is P = (formula: see text) where C is the specific heat, rho the denisty, V the velocity of sound, (formula: see text) the temperature coefficient of velocity and alpha the heating field absorption coefficient which is apparently sensitive to tissue structure and condition. Experiments on a fixed human brain showed an ability to distinguish between various tissue types combined with a spatial resolution of better than 3 mm. Should predictions based on the data and theory prove correct, TAST may become a non-invasive alternative to biopsy.
Explicit wave action conservation for water waves on vertically sheared flows
NASA Astrophysics Data System (ADS)
Quinn, Brenda; Toledo, Yaron; Shrira, Victor
2016-04-01
Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical structure of the currents in wave modelling which is currently universal, might lead to significant errors in wave amplitude and the predicted wave ray paths. An extension of the work toward the more complex case of turbulent currents will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my
This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, anmore » advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.« less
CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm.
Boutsianis, Evangelos; Guala, Michele; Olgac, Ufuk; Wildermuth, Simon; Hoyer, Klaus; Ventikos, Yiannis; Poulikakos, Dimos
2009-01-01
There is considerable interest in computational and experimental flow investigations within abdominal aortic aneurysms (AAAs). This task stipulates advanced grid generation techniques and cross-validation because of the anatomical complexity. The purpose of this study is to examine the feasibility of velocity measurements by particle tracking velocimetry (PTV) in realistic AAA models. Computed tomography and rapid prototyping were combined to digitize and construct a silicone replica of a patient-specific AAA. Three-dimensional velocity measurements were acquired using PTV under steady averaged resting boundary conditions. Computational fluid dynamics (CFD) simulations were subsequently carried out with identical boundary conditions. The computational grid was created by splitting the luminal volume into manifold and nonmanifold subsections. They were filled with tetrahedral and hexahedral elements, respectively. Grid independency was tested on three successively refined meshes. Velocity differences of about 1% in all three directions existed mainly within the AAA sack. Pressure revealed similar variations, with the sparser mesh predicting larger values. PTV velocity measurements were taken along the abdominal aorta and showed good agreement with the numerical data. The results within the aneurysm neck and sack showed average velocity variations of about 5% of the mean inlet velocity. The corresponding average differences increased for all velocity components downstream the iliac bifurcation to as much as 15%. The two domains differed slightly due to flow-induced forces acting on the silicone model. Velocity quantification through narrow branches was problematic due to decreased signal to noise ratio at the larger local velocities. Computational wall pressure and shear fields are also presented. The agreement between CFD simulations and the PTV experimental data was confirmed by three-dimensional velocity comparisons at several locations within the investigated AAA anatomy indicating the feasibility of this approach.
NASA Astrophysics Data System (ADS)
Simmonds, P. G.; Derwent, R. G.; Manning, A. J.; Grant, A.; O'Doherty, S.; Spain, T. G.
2011-02-01
During stable nocturnal inversions with low wind speeds, we observed strong depletions of both hydrogen and ozone caused by deposition to the peat bogs in the vicinity of the Mace Head Atmospheric Research Station, Connemara, County Galway, Ireland. From these temporally correlated fluxes and using a simple box model, we have estimated the strength of the molecular hydrogen soil sink over a 14-yr period (1995-2008). Over this entire period 269 nocturnal deposition events were identified that satisfied the strict selection criteria. The average hydrogen deposition velocity determined from these events was 0.53 mm s-1, covering a range of 0.18-1.29 mm s-1, which is in agreement with the range of deposition velocities reported in the literature for similar peaty biomes. By annually averaging all of the nocturnal inversion events over the most seasonally active period from April-September we reveal a positive correlation with ambient temperature in the relative deposition velocities of hydrogen and ozone, which is not readily apparent in all of the individual events. Furthermore, average hydrogen deposition velocities and accumulated rainfall from 48 h before and during each event were to a reasonable extent anti-correlated. However, due to the large uncertainties in determining monthly mean H2 deposition velocities there is no statistically significant trend in the hydrogen deposition velocities over time.
Shear velocity profiles in the crust and lithospheric mantle across Tibet
NASA Astrophysics Data System (ADS)
Agius, M. R.; Lebedev, S.
2010-12-01
We constrain variations in the crustal and lithospheric structure across Tibet, using phase velocities of seismic surface waves. The data are seismograms recorded by broadband instruments of permanent and temporary networks within and around the plateau. Phase-velocity measurements are performed in broad period ranges using an elaborate recent implementation of the 2-station method. A combination of the cross-correlation and multimode-waveform-inversion measurements using tens to hundreds of seismograms per station pair produces robust, accurate phase-velocity curves for Rayleigh and Love waves. We use our new measurements to infer phase-velocity variations and to constrain S-velocity profiles in different parts of the plateau, including radial anisotropy and depths of lithospheric discontinuities. We observe a mid-crustal low-velocity zone (LVZ) in the 20-45 km depth range across the plateau, with S-velocities within a 3.2-3.5 km/s range. This LVZ coincides with a low-resistivity layer inferred from magnetotelluric studies, interpreted as evidence for partial melting in the middle crust. Surface-wave data are also consistent with radial anisotropy in this layer, indicative of horizontal flow. At the north-eastern boundary of the plateau, past the Kunlun Fault, the mid-crustal LVZ, in the sense of an S-velocity decrease with depth in the 15-25 km depth range, is not required by the surface-wave data although the velocity is still relatively low. The mantle-lithosphere structure shows a pronounced contrast between the south-western and central-northern parts of the plateau. The south-west is underlain by a thick, high-velocity, craton-like lithospheric mantle. Below central Lhasa the uppermost mantle appears to be close to global average with an increase in velocity between 150 - 250 km depth. Beneath central and northern Tibet, the average S velocity between the Moho and 200 km depth is close to the global continental average (4.5 km/s). In order to investigate the finer detail of the lithosphere in the North we perform an extensive series of test inversions. We find that surface-wave dispersion measurements alone are consistent both with models that have low S velocity just beneath the Moho, increasing with depth below, and with models that display a thin high-velocity mantle lid underlain by a low-velocity zone (asthenosphere). To resolve this non-uniqueness from the inversion model, we combine our surface-wave measurements in the Qiangtang Block with receiver-function constraints on the Moho depth, and Sn constraints on the uppermost mantle S velocities. We show that the data is matched significantly better with models that contain a thin, high-velocity lithosphere (up to 90 km thick) underlain by a low-velocity zone than by models with no wave-speed decrease between the Moho and ~100 km depth. In the deeper upper mantle (below ~150 km depth), S velocity increases and is likely to exceed the global average value.
What Determines Different Anomalous Transport Behavior in Different Porous Media?
NASA Astrophysics Data System (ADS)
Bijeljic, B.; Raeini, A.; Mostaghimi, P.; Blunt, M. J.
2012-12-01
Solute transport in porous media is of importance in many scientific fields and applications, notably in contaminant migration in subsurface hydrology, geological storage of carbon-dioxide, packed bed reactors and chromatography in chemical engineering, and tracer studies in enhanced oil recovery. The non-Fickian nature of dispersive processes in heterogeneous media has been demonstrated experimentally from pore to field scales. However, the exact relationship between structure, velocity field and transport has not been fully understood. We study and explain the origin of non-Fickian transport behavior as a function of pore-scale heterogeneity by simulating flow and transport directly on micro-CT images of pore space of the media with increasing pore-scale complexity: beadpack, Bentheimer sandstone and Portland limestone. The Navier-Stokes equations are solved to compute the flow field and the streamline method is used to transport particles by advection, while the random walk method is used for diffusion. The connectivity of the fast flow paths for beadpack, Bentheimer sandstone and Portland carbonate is presented in Figs.1a-c. We show how computed propagators (concentration vs. displacement) for beadpack, sandstone and carbonate depend on the spread in the velocity distribution. A narrow velocity distribution in the beadpack leads to the least anomalous behaviour where the propagators rapidly become Gaussian (Fig.1d); the wider velocity distribution in the sandstone gives rise to a small immobile concentration peak, and a large secondary mobile peak moving at approximately the average flow speed (Fig.1e); in the carbonate with the widest velocity distribution the stagnant concentration peak is persistent, while the emergence of a smaller secondary mobile peak is observed, leading to a highly anomalous behavior (Fig.1f). This defines different generic nature of transport in the three media and quantifies the effect of pore structure on transport. Moreover, the propagators obtained by the model are in a very good agreement with the propagators measured on beadpack, Bentheimer sandstone and Portland carbonate cores in NMR experiments. We discuss the importance of these findings on a suite of six carbonate micro-CT images, classifying them in terms of degree of anomalous transport that can have an impact on the field scale transport.igure 1 Normalized flow fields, presented as the ratios of the magnitude of u at the voxel centers divided by the average flow speed u av for (a) beadpack (b) Bentheimer sandstone and (c) Portland carbonate. Probability of molecular displacement P(ς) in the image as a function of displacement ς at t=2s for (d) beadpack, (e) Bentheimer sandstone, and (f) Portland carbonate. The coordinates are rescaled by the nominal mean displacement <ς> 0 = uavt.
Rotation and anisotropy of galaxies revisited
NASA Astrophysics Data System (ADS)
Binney, James
2005-11-01
The use of the tensor virial theorem (TVT) as a diagnostic of anisotropic velocity distributions in galaxies is revisited. The TVT provides a rigorous global link between velocity anisotropy, rotation and shape, but the quantities appearing in it are not easily estimated observationally. Traditionally, use has been made of a centrally averaged velocity dispersion and the peak rotation velocity. Although this procedure cannot be rigorously justified, tests on model galaxies show that it works surprisingly well. With the advent of integral-field spectroscopy it is now possible to establish a rigorous connection between the TVT and observations. The TVT is reformulated in terms of sky-averages, and the new formulation is tested on model galaxies.
Fisher, Jason C.; Rousseau, Joseph P.; Bartholomay, Roy C.; Rattray, Gordon W.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, evaluated a three-dimensional model of groundwater flow in the fractured basalts and interbedded sediments of the eastern Snake River Plain aquifer at and near the Idaho National Laboratory to determine if model-derived estimates of groundwater movement are consistent with (1) results from previous studies on water chemistry type, (2) the geochemical mixing at an example well, and (3) independently derived estimates of the average linear groundwater velocity. Simulated steady-state flow fields were analyzed using backward particle-tracking simulations that were based on a modified version of the particle tracking program MODPATH. Model results were compared to the 5-microgram-per-liter lithium contour interpreted to represent the transition from a water type that is primarily composed of tributary valley underflow and streamflow-infiltration recharge to a water type primarily composed of regional aquifer water. This comparison indicates several shortcomings in the way the model represents flow in the aquifer. The eastward movement of tributary valley underflow and streamflow-infiltration recharge is overestimated in the north-central part of the model area and underestimated in the central part of the model area. Model inconsistencies can be attributed to large contrasts in hydraulic conductivity between hydrogeologic zones. Sources of water at well NPR-W01 were identified using backward particle tracking, and they were compared to the relative percentages of source water chemistry determined using geochemical mass balance and mixing models. The particle tracking results compare reasonably well with the chemistry results for groundwater derived from surface-water sources (-28 percent error), but overpredict the proportion of groundwater derived from regional aquifer water (108 percent error) and underpredict the proportion of groundwater derived from tributary valley underflow from the Little Lost River valley (-74 percent error). These large discrepancies may be attributed to large contrasts in hydraulic conductivity between hydrogeologic zones and (or) a short-circuiting of underflow from the Little Lost River valley to an area of high hydraulic conductivity. Independently derived estimates of the average groundwater velocity at 12 well locations within the upper 100 feet of the aquifer were compared to model-derived estimates. Agreement between velocity estimates was good at wells with travel paths located in areas of sediment-rich rock (root-mean-square error [RMSE] = 5.2 feet per day [ft/d]) and poor in areas of sediment-poor rock (RMSE = 26.2 ft/d); simulated velocities in sediment-poor rock were 2.5 to 4.5 times larger than independently derived estimates at wells USGS 1 (less than 14 ft/d) and USGS 100 (less than 21 ft/d). The models overprediction of groundwater velocities in sediment-poor rock may be attributed to large contrasts in hydraulic conductivity and a very large, model-wide estimate of vertical anisotropy (14,800).
Shock Boundary Layer Interaction Flow Control with Micro Vortex Generators
2011-05-01
Pitot rake ( p̄02p01 ) u = time-averaged streamwise velocity ufs = time-averaged freestream streamwise velocity u∗ = √ τw ρw = wall-shear velocity w...upstream of the normal shock-wave 2 = station 2, at the Pitot rake location I. Introduction With the exception of the scramjet, all current air-breathing...to this.7 1 shock holder near-normal shock μVGs 123 143 14 hole Pitot rake 6o x vg variable φ cylinder mounted on the centre-line 380 M ∞ =1.4
Model-Averaged ℓ1 Regularization using Markov Chain Monte Carlo Model Composition
Fraley, Chris; Percival, Daniel
2014-01-01
Bayesian Model Averaging (BMA) is an effective technique for addressing model uncertainty in variable selection problems. However, current BMA approaches have computational difficulty dealing with data in which there are many more measurements (variables) than samples. This paper presents a method for combining ℓ1 regularization and Markov chain Monte Carlo model composition techniques for BMA. By treating the ℓ1 regularization path as a model space, we propose a method to resolve the model uncertainty issues arising in model averaging from solution path point selection. We show that this method is computationally and empirically effective for regression and classification in high-dimensional datasets. We apply our technique in simulations, as well as to some applications that arise in genomics. PMID:25642001
Plummer, Niel; Eggleston, John R.; Raffensperger, Jeff P.; Hunt, Andrew G.; Casile, Gerolamo C.; Andreasen, D.C.
2012-01-01
Apparent groundwater ages along two flow paths in the upper Patapsco aquifer of the Maryland Atlantic Coastal Plain, USA, were estimated using 14C, 36Cl and 4He data. Most of the ages range from modern to about 500 ka, with one sample at 117 km downgradient from the recharge area dated by radiogenic 4He accumulation at more than one Ma. Last glacial maximum (LGM) water was located about 20 km downgradient on the northern flow path, where the radiocarbon age was 21.5 ka, paleorecharge temperatures were 0.5–1.5 °C (a maximum cooling of about 12 °C relative to the modern mean annual temperature of 13 °C), and Cl–, Cl/Br, and stable isotopes of water were minimum. Low recharge temperatures (typically 5–7 °C) indicate that recharge occurred predominantly during glacial periods when coastal heads were lowest due to low sea-level stand. Flow velocities averaged about 1.0 m a–1 in upgradient parts of the upper Patapsco aquifer and decreased from 0.13 to 0.04 m a–1 at 40 and 80 km further downgradient, respectively. This study demonstrates that most water in the upper Patapsco aquifer is non-renewable on human timescales under natural gradients, thus highlighting the importance of effective water-supply management to prolong the resource.
Force and Stress along Simulated Dissociation Pathways of Cucurbituril-Guest Systems.
Velez-Vega, Camilo; Gilson, Michael K
2012-03-13
The field of host-guest chemistry provides computationally tractable yet informative model systems for biomolecular recognition. We applied molecular dynamics simulations to study the forces and mechanical stresses associated with forced dissociation of aqueous cucurbituril-guest complexes with high binding affinities. First, the unbinding transitions were modeled with constant velocity pulling (steered dynamics) and a soft spring constant, to model atomic force microscopy (AFM) experiments. The computed length-force profiles yield rupture forces in good agreement with available measurements. We also used steered dynamics with high spring constants to generate paths characterized by a tight control over the specified pulling distance; these paths were then equilibrated via umbrella sampling simulations and used to compute time-averaged mechanical stresses along the dissociation pathways. The stress calculations proved to be informative regarding the key interactions determining the length-force profiles and rupture forces. In particular, the unbinding transition of one complex is found to be a stepwise process, which is initially dominated by electrostatic interactions between the guest's ammoniums and the host's carbonyl groups, and subsequently limited by the extraction of the guest's bulky bicyclooctane moiety; the latter step requires some bond stretching at the cucurbituril's extraction portal. Conversely, the dissociation of a second complex with a more slender guest is mainly driven by successive electrostatic interactions between the different guest's ammoniums and the host's carbonyl groups. The calculations also provide information on the origins of thermodynamic irreversibilities in these forced dissociation processes.
1984-03-01
cosines can change, some- times drastically. ’Those changes are taking-place along a temporary path which is " fuzzy " at first. It is fatal to the program...for this " fuzziness " to be allowed to influence the endpoint velocity compo- nents (located at "new"). Zherefore, the computation of the velocity...8217,CEZLX,XTEIIP .CLD,YNES,JELYETS?.IP,YCLD,ZNE’J,ZELZ, 1ZTslip ZOLC CCflMO§ /AECS/VECE3.LC,,NiI2.0ZE’,TPvo: CC2,461- /A E-4/ AG1 , AHP 1_1AI I , AJ 1 ,AJZ2
Spatiotemporal Dynamics of Bumblebees Foraging under Predation Risk
NASA Astrophysics Data System (ADS)
Lenz, Friedrich; Ings, Thomas C.; Chittka, Lars; Chechkin, Aleksei V.; Klages, Rainer
2012-03-01
We analyze 3D flight paths of bumblebees searching for nectar in a laboratory experiment with and without predation risk from artificial spiders. For the flight velocities we find mixed probability distributions reflecting the access to the food sources while the threat posed by the spiders shows up only in the velocity correlations. The bumblebees thus adjust their flight patterns spatially to the environment and temporally to predation risk. Key information on response to environmental changes is contained in temporal correlation functions, as we explain by a simple emergent model.
Bailey, James L.; Vresk, Josip
1989-01-01
A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.
Optical wave distortion at perturbations of air density near aircrafts with subsonic velocities
NASA Astrophysics Data System (ADS)
Banakh, V. A.; Sukharev, A. A.
2017-11-01
The mean intensity, intensity fluctuations, and regular and random displacements of optical beams propagating through a zone of increased density formed at subsonic airflow about a turret in the turbulent atmosphere have been analyzed. It has been shown that the presence of perturbations around a turret due to the subsonic velocity of aircraft affects slightly the studied characteristics of the beam. Data illustrating changes in the studied beam characteristics for paths of different geometry and different turbulent conditions of radiation propagation are presented.
A Global 3D P-Velocity Model of the Earth’s Crust and Mantle for Improved Event Location -- SALSA3D
2010-09-01
incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified two layer crustal model derived from... crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path...upper mantle, and a third tessellation with variable resolution to all crustal layers. The crustal tessellation (not shown) has 2° triangles in oceanic
NASA Astrophysics Data System (ADS)
Kidmose, Jacob; Dahl, Mette; Engesgaard, Peter; Nilsson, Bertel; Christensen, Britt S. B.; Andersen, Stine; Hoffmann, Carl Christian
2010-05-01
SummaryA field-scale pulse-injection experiment with the herbicide Isoproturon was conducted in a Danish riparian wetland. A non-reactive tracer (bromide) experiment was also carried out to characterize the physical transport system. Groundwater flow and reactive transport modelling was used to simulate flow paths, residence times, as well as bromide and Isoproturon distributions. The wetland can be characterized by two distinct riparian flow paths; one flow path discharges 2/3 of the incoming groundwater directly to the free water surface of the wetland near the foot of the hillslope with an average residence time of 205 days, and another flow path diffusively discharging the remaining 1/3 of the incoming groundwater to the stream with an average residence time of 425 days. The reactive transport simulations reveal that Isoproturon is retarded by a factor of 2-4, which is explained by the high organic content in the peat layer of the wetland. Isoproturon was found to be aerobically degraded with a half-life in the order of 12-80 days. Based on the quantification of flow paths, residence times and half-lives it is estimated that about 2/3 of the injected Isoproturon is removed in the wetland. Thus, close to 1/3 may find its way to the stream through overland flow. It is also possible that high concentrations of metabolites will reach the stream.
NASA Astrophysics Data System (ADS)
Hirakawa, E. T.; Ezzedine, S. M.
2017-12-01
Recorded motions from underground chemical explosions are complicated by long duration seismic coda as well as motion in the tangential direction. The inability to distinguish the origins of these complexities as either source or path effects comprises a limitation to effective monitoring of underground chemical explosions. With numerical models, it is possible to conduct rigorous sensitivity analyses for chemical explosive sources and their resulting ground motions under the influence of many attributes, including but not limited to complex velocity structure, topography, and non-linear source characteristics. Previously we found that topography can cause significant scattering in the direct wave but leads to relatively little motion in the coda. Here, we aim to investigate the contribution from the low-velocity weathered layer that exists in the shallow subsurface apart from and in combination with surface topography. We use SW4, an anelastic anisotropic fourth order finite difference code to simulate chemical explosive source in a 1D velocity structure consisting of a single weathered layer over a half space. A range of velocity magnitudes are used for the upper weathered layer with the velocities always being lower than that of the granitic underlaying layer. We find that for lower weathered layer velocities, the wave train is highly dispersed and causes a large percentage of energy to be contained in the coda in relation to the entire time series. The percentage of energy contained in the coda grows with distance from the source but saturates at a certain distance that depends on weathered layer velocity and thickness. The saturation onset distance increases with decreasing layer thickness and increasing velocity of the upper layer. Measurements of relative coda energy and coda saturation onset distance from real recordings can provide an additional constraint on the properties of the weathered layer in remote sites as well as test sites like the Nevada National Security Site (NNSS). The results of this modeling study will aid in distinguishing source effects from path effects to the recorded motions in experiments such as the Source Physics Experiment (SPE). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Edge-to-center plasma density ratios in two-dimensional plasma discharges
NASA Astrophysics Data System (ADS)
Lucken, R.; Croes, V.; Lafleur, T.; Raimbault, J.-L.; Bourdon, A.; Chabert, P.
2018-03-01
Edge-to-center plasma density ratios—so-called h factors—are important parameters for global models of plasma discharges as they are used to calculate the plasma losses at the reactor walls. There are well-established theories for h factors in the one-dimensional (1D) case. The purpose of this paper is to establish h factors in two-dimensional (2D) systems, with guidance from a 2D particle-in-cell (PIC) simulation. We derive analytical solutions of a 2D fluid theory that includes the effect of ion inertia, but assumes a constant (independent of space) ion collision frequency (using an average ion velocity) across the discharge. Predicted h factors from this 2D fluid theory have the same order of magnitude and the same trends as the PIC simulations when the average ion velocity used in the collision frequency is set equal to the ion thermal velocity. The best agreement is obtained when the average ion velocity varies with pressure (but remains independent of space), going from half the Bohm velocity at low pressure, to the thermal velocity at high pressure. The analysis also shows that a simple correction of the widely-used 1D heuristic formula may be proposed to accurately incorporate 2D effects.
Rupture History of the 2001 Nisqually Washington Earthquake
NASA Astrophysics Data System (ADS)
Xu, Q.; Creager, K. C.; Crosson, R. S.
2001-12-01
We analyze the temporal-spatial rupture history of the magnitude 6.8 February 28, 2001 Nisqually earthquake using about two dozen 3-component strong-motion records from the Pacific Northwest Seismic Network (PNSN) and the USGS National Strong Motion Program (NSMP) network. We employ a finite-fault inversion scheme similar to Hartzell and Heaton [Bull. Seism. Soc. Am., 1983] to recover the slip history. We assume rupture initiates at the epicenter and origin time determined using PNSN P arrival times and a high-resolution 3-D velocity model. Hypocentral depth is 54 km based on our analysis of teleseismic pP-P times and the regional 3-D model. Using the IASP91 standard Earth model to explain the pP-P times gives a depth of 58 km. Three-component strong motion accelerograms are integrated to obtain velocity, low-pass filtered at 4 s period and windowed to include the direct P- and S- wave arrivals. Theoretical Green's functions are calculated using the Direct Solution Method (DSM) [Cummins, etal, Geophys. Res. Lett., 1994] for each of 169, 4km x 4km, subfaults which lie on one of the two fault plates specified by the Harvard CMT solution. A unique 1-D model that gives an adequate representation of velocity structure for each station is obtained by path averaging the 3-D tomographic model. The S velocity model is generated from the P velocity model. For Vp larger than 4.5 km/s, We use the linear relationship Vs=0.18+0.52Vp obtained from laboratory measurements of local mafic rock samples. For slower velocities, probably associated with sedimentary rocks, we derived Vs=Vp/2.04 which best fits the strong-motion S-arrival times. The resulting source model indicates unilateral rupture along a fault that is elongated in the north-south direction. Inversion for the near vertical (strike 1° , dip 72° ) and horizontal (strike 183° , dip 18° ) fault planes reveal the same source directivity, however, the horizontal fault plane gives a slightly better fit to the data than the vertical one. We will also incorporate teleseismic P pP and sP waves into the waveform modeling to provide additional constraints on vertical source directivity.
Trauma potential and ballistic parameters of cal. 9 mm P.A. dummy launchers.
Frank, Matthias; Bockholdt, Britta; Philipp, Klaus-Peter; Ekkernkamp, Axel
2010-07-15
Blank cartridge actuated dummy launching devices are used by migratory bird hunters to train dogs to retrieve downed birds. The devices create a loud noise while simultaneously propelling a hard foam dummy for retrieval. A newly developed dummy launcher is based on a modified cal. 9 mm P.A. blank handgun with an extension tube pinned and welded to the barrel imitation. Currently, there are no experimental investigations on the ballistic background and trauma potential of these uncommon shooting devices. An experimental test set-up consisting of a photoelectric infrared light barrier was used for measurement of the velocity of hard foam dummies propelled with an automatic dummy launcher. Ballistic parameters of the dummies and an aluminium sleeve as improvised projectile (kinetic energy (E), impulse (p), energy density (E') and threshold velocity (v(tsh)) to cause penetrating wounds as a function of cross-sectional density (S)) were calculated. The average velocity (v) of the dummies was measured 25.71 m/s exerting an average impulse (p) of 3.342 Ns. The average kinetic energy (E) was calculated 43.04 J with an average energy density (E') of 0.069 J/mm(2). The average velocity (v) of the aluminium sleeves as improvised projectiles was measured 79.58 m/s exerting an average impulse (p) of 2.228 Ns. The average kinetic energy (E) of the aluminium sleeves was calculated as 88.70 J with an average energy density (E') of 0.282 J/mm(2). The energy delivered by these shooting devices is high enough to cause relevant injuries. The absence of skin penetration must not mislead the emergency physician or forensic expert into neglecting the potential damage from these devices. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
DOAS (differential optical absorption spectroscopy) urban pollution measurements
NASA Astrophysics Data System (ADS)
Stevens, Robert K.; Vossler, T. L.
1991-05-01
During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. Over path 1 (1099 m) and path 2 (1824 m), ozone (03), sulfur dioxide (SO2) nitrogen dioxide (NO2), nitrous acid (HNO2) formaldehyde (HCHO), benzene, toluene, and o-xylene were measured. Nitric oxide (NO) and ammonia (NH3) were monitored over path 3 (143 m). The data quality and data capture depended on the compound being measured and the path over which it was measured. Data quality criteria for each compound were chosen such that the average relative standard deviation would be less than 25%. Data capture ranged from 43% for o-xylene for path 1 to 95% for ozone for path 2. Benzene, toluene, and o-xylene concentrations measured over path 2, which crossed over an interstate highway, were higher than concentrations measured over path 1, implicating emissions from vehicles on the highway as a significant source of these compounds. Federal Reference Method (FRN) instruments were located near the DOAS light receivers and measurements of 03, NO2, and NO were made concurrently with the DOAS. Correlation coefficients greater than 0.85 were obtained between the DOAS and FRM's; however, there was a difference between the mean values obtained by the two methods for 03 and NO. A gas chromatograph for measuring volatile organic compounds was operated next to the FRN's. Correlation coefficients of about 0.66 were obtained between the DOAS and GC measurements of benzene and o- xylene. However, the correlation coefficient between the DOAS and GC measurements of toluene averaged only 0.15 for the two DOAS measurement paths. The lack of correlation and other factors indicate the possibility of a localized source of toluene near the GC. In general, disagreements between the two measurement methods could be caused by atmospheric inhomogeneities or interferences in the DOAS and other methods.
Scale-invariant Green-Kubo relation for time-averaged diffusivity
NASA Astrophysics Data System (ADS)
Meyer, Philipp; Barkai, Eli; Kantz, Holger
2017-12-01
In recent years it was shown both theoretically and experimentally that in certain systems exhibiting anomalous diffusion the time- and ensemble-averaged mean-squared displacement are remarkably different. The ensemble-averaged diffusivity is obtained from a scaling Green-Kubo relation, which connects the scale-invariant nonstationary velocity correlation function with the transport coefficient. Here we obtain the relation between time-averaged diffusivity, usually recorded in single-particle tracking experiments, and the underlying scale-invariant velocity correlation function. The time-averaged mean-squared displacement is given by 〈δ2¯〉 ˜2 DνtβΔν -β , where t is the total measurement time and Δ is the lag time. Here ν is the anomalous diffusion exponent obtained from ensemble-averaged measurements 〈x2〉 ˜tν , while β ≥-1 marks the growth or decline of the kinetic energy 〈v2〉 ˜tβ . Thus, we establish a connection between exponents that can be read off the asymptotic properties of the velocity correlation function and similarly for the transport constant Dν. We demonstrate our results with nonstationary scale-invariant stochastic and deterministic models, thereby highlighting that systems with equivalent behavior in the ensemble average can differ strongly in their time average. If the averaged kinetic energy is finite, β =0 , the time scaling of 〈δ2¯〉 and 〈x2〉 are identical; however, the time-averaged transport coefficient Dν is not identical to the corresponding ensemble-averaged diffusion constant.
Determining average path length and average trapping time on generalized dual dendrimer
NASA Astrophysics Data System (ADS)
Li, Ling; Guan, Jihong
2015-03-01
Dendrimer has wide number of important applications in various fields. In some cases during transport or diffusion process, it transforms into its dual structure named Husimi cactus. In this paper, we study the structure properties and trapping problem on a family of generalized dual dendrimer with arbitrary coordination numbers. We first calculate exactly the average path length (APL) of the networks. The APL increases logarithmically with the network size, indicating that the networks exhibit a small-world effect. Then we determine the average trapping time (ATT) of the trapping process in two cases, i.e., the trap placed on a central node and the trap is uniformly distributed in all the nodes of the network. In both case, we obtain explicit solutions of ATT and show how they vary with the networks size. Besides, we also discuss the influence of the coordination number on trapping efficiency.
Efficient packet transportation on complex networks with nonuniform node capacity distribution
NASA Astrophysics Data System (ADS)
He, Xuan; Niu, Kai; He, Zhiqiang; Lin, Jiaru; Jiang, Zhong-Yuan
2015-03-01
Provided that node delivery capacity may be not uniformly distributed in many realistic networks, we present a node delivery capacity distribution in which each node capacity is composed of uniform fraction and degree related proportion. Based on the node delivery capacity distribution, we construct a novel routing mechanism called efficient weighted routing (EWR) strategy to enhance network traffic capacity and transportation efficiency. Compared with the shortest path routing and the efficient routing strategies, the EWR achieves the highest traffic capacity. After investigating average path length, network diameter, maximum efficient betweenness, average efficient betweenness, average travel time and average traffic load under extensive simulations, it indicates that the EWR appears to be a very effective routing method. The idea of this routing mechanism gives us a good insight into network science research. The practical use of this work is prospective in some real complex systems such as the Internet.