Epiphany sealer penetration into dentinal tubules: Confocal laser scanning microscopic study.
Ravi, S V; Nageswar, Rao; Swapna, Honwad; Sreekant, Puthalath; Ranjith, Madhavan; Mahidhar, Surabhi
2014-03-01
The aim of the following study was to evaluate the percentage and average depth of epiphany sealer penetration into dentinal tubules among the coronal, middle and apical thirds of the root using the confocal laser scanning microscopy (CLSM). A total of 10 maxillary central incisors were prepared and obturated with Resilon-Epiphany system. Sealer was mixed with fluorescent rhodamine B isothiyocyanate dye for visibility under confocal microscope. Teeth were cross-sectioned into coronal, middle and apical sections-2 mm thick. Sections were observed under CLSM. Images were analyzed for percentage and average depth of sealer penetration into dentinal tubules using the lasso tool in Adobe Photoshop CS3 (Adobe systems incorporated, San jose, CA) and laser scanning microscopy (LSM 5) image analyzer. One-way analysis of variance with Student Neuman Keuls post hoc tests, Kruskal-Wallis test and Wilcoxon signed-rank post hoc tests. The results showed that a higher percentage of sealer penetration in coronal section-89.23%, followed by middle section-84.19% and the apical section-64.9%. Average depth of sealer penetration for coronal section was 526.02 μm, middle-385.26 μm and apical-193.49 μm. Study concluded that there was higher epiphany sealer penetration seen in coronal followed by middle and least at apical third of the roots.
Estimating soil water content from ground penetrating radar coarse root reflections
NASA Astrophysics Data System (ADS)
Liu, X.; Cui, X.; Chen, J.; Li, W.; Cao, X.
2016-12-01
Soil water content (SWC) is an indispensable variable for understanding the organization of natural ecosystems and biodiversity. Especially in semiarid and arid regions, soil moisture is the plants primary source of water and largely determine their strategies for growth and survival, such as root depth, distribution and competition between them. Ground penetrating radar (GPR), a kind of noninvasive geophysical technique, has been regarded as an accurate tool for measuring soil water content at intermediate scale in past decades. For soil water content estimation with surface GPR, fixed antenna offset reflection method has been considered to have potential to obtain average soil water content between land surface and reflectors, and provide high resolution and few measurement time. In this study, 900MHz surface GPR antenna was used to estimate SWC with fixed offset reflection method; plant coarse roots (with diameters greater than 5 mm) were regarded as reflectors; a kind of advanced GPR data interpretation method, HADA (hyperbola automatic detection algorithm), was introduced to automatically obtain average velocity by recognizing coarse root hyperbolic reflection signals on GPR radargrams during estimating SWC. In addition, a formula was deduced to determine interval average SWC between two roots at different depths as well. We examined the performance of proposed method on a dataset simulated under different scenarios. Results showed that HADA could provide a reasonable average velocity to estimate SWC without knowledge of root depth and interval average SWC also be determined. When the proposed method was applied to estimation of SWC on a real-field measurement dataset, a very small soil water content vertical variation gradient about 0.006 with depth was captured as well. Therefore, the proposed method could be used to estimate average soil water content from ground penetrating radar coarse root reflections and obtain interval average SWC between two roots at different depths. It is very promising for measuring root-zone-soil-moisture and mapping soil moisture distribution around a shrub or even in field plot scale.
Fernández-Varea, J M; Andreo, P; Tabata, T
1996-07-01
Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth-dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies.
Alaskan frozen soil impact tests of the B83-C/S and Strategic Earth Penetrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dockery, H.A.; Clarke, J.B.; Stull, S.P.
To assess the penetrability of the B83 strategic bomb and a Strategic Earth Penetrator design into frozen soil and ice, Lawrence Livermore National Laboratory and Sandia National Laboratories, assisted by the US Air Force and US Army, conducted a series of tests in 1987. In April, Strategic Earth Penetrator units were dropped into multi-year sea ice and frozen tundra near Prudhoe Bay, Alaska. Calculated impact velocity ranged from 200 to 308 ft/s into ice and from 200 to 444 ft/s into frozen tundra. Tests in May include drops of a B83 design with specially designed ogive nose shape, a B83more » with a cap over the production ''cookie cutter'' nose, and a Strategic Earth Penetrator. The May tests were conducted near Fairbanks, Alaska, at Eielson Air Force Base and at Donnelly Flats on the Fort Greely Military Reservation. The type of frozen soil encountered at Eielson was very homogeneous in composition; however. Two drops impacted areas with very thin frozen soil layers at depths of about 24 in. below the surface. Velocities of these drops prior to impact ranged from 256 to 308 ft/s, and peak axial deceleration ranged from 160 to 490 g. The units penetrated to depths of 7.5-12 ft. Three other events impacted in a target area where frozen soil averaging 35 in. thick extended essentially to the surface. We calculated velocities prior to impact at 200-256 ft/s; and penetration depths of 3.2-9.6 ft. The geologic material at Donnelly Flats was primarily a very hard, rocky glacial deposit with a variable degree of ice bonding. Here, the test units dropped from 10,000 ft above ground level and achieved an average calculated velocity of 802 ft/s. Depth of penetration ranged from 7.6 to 13.5 ft.« less
Park size and disturbance: impact on soil heterogeneity - a case study Tel-Aviv- Jaffa.
NASA Astrophysics Data System (ADS)
Zhevelev, Helena; Sarah, Pariente; Oz, Atar
2015-04-01
Parks and gardens are poly-functional elements of great importance in urban areas, and can be used for optimization of physical and social components in these areas. This study aimed to investigate alteration of soil properties with land usages within urban park and with area size of park. Ten parks differed by size (2 - 50 acres) were chosen, in random, in Tel-Aviv- Jaffa city. Soil was sampled in four microenvironments ((lawn, path, picnic and peripheral area (unorganized area) of each the park)), in three points and three depth (0-2, 5-10 and 10-20 cm). Penetration depth was measured in all point of sampling. For each soil sample electrical conductivity and organic matter content were determined. Averages of penetration depth drastically increased from the most disturbed microenvironments (path and picnic) to the less disturbed ones (lawn and peripheral). The maximal heterogeneity (by variances and percentiles) of penetration depth was found in the peripheral area. In this area, penetration depth increased with increasing park size, i.e., from 2.6 cm to 3.7 cm in the small and large parks, respectively. Averages of organic matter content and electrical conductivity decreased with soil depth in all microenvironments and increased with decreasing disturbance of microenvironments. Maximal heterogeneity for both of these properties was found in the picnic area. Increase of park size was accompanied by increasing of organic matter content in the upper depth in the peripheral area, i.e., from 2.4% in the small parks to 4.5% in the large ones. In all microenvironments the increasing of averages of all studied soil properties was accompanied by increasing heterogeneity, i.e., variances and upper percentiles. The increase in the heterogeneity of the studied soil properties is attributed to improved ecological soil status in the peripheral area, on the one hand, and to the high anthropogenic pressure in the picnic area, on the other. This means that the urban park offers "islands" with better ecological conditions which improve the urban system.
What Is the Optimal Minimum Penetration Depth for "All-Inside" Meniscal Repairs?
McCulloch, Patrick C; Jones, Hugh L; Lue, Jeffrey; Parekh, Jesal N; Noble, Philip C
2016-08-01
To identify desired minimum depth setting for safe, effective placement of the all-inside meniscal suture anchors. Using 16 cadaveric knees and standard arthroscopic techniques, 3-dimensional surfaces of the meniscocapsular junction and posterior capsule were digitized. Using standard anteromedial and anterolateral portals, the distance from the meniscocapsular junction to the posterior capsule outer wall was measured for 3 locations along the posterior half of medial and lateral menisci. Multiple all-inside meniscal repairs were performed on 7 knees to determine an alternate measure of capsular thickness (X2) and compared with the digitized results. In the digitized group, the distance (X1) from the capsular junction to the posterior capsular wall was averaged in both menisci for 3 regions using anteromedial and anterolateral portals. Mean distances of 6.4 to 8.8 mm were found for the lateral meniscus and 6.5 to 9.1 mm for the medial meniscus. The actual penetration depth was determined in the repair group and labeled X2. It showed a similar pattern to the variation seen in X1 by region, although it exceeded predicted distances an average 1.7 mm in the medial and 1.5 mm in the lateral meniscus owing to visible deformation of the capsule as it pierced. Capsular thickness during arthroscopic repair measures approximately 6 to 9 mm (X1), with 1.5 to 2 mm additional depth needed to ensure penetration rather than bulging of the posterior capsule (X2), resulting in 8 to 10 mm minimum penetration depth range. Surgeons can add desired distance away from the meniscocapsular junction (L) at device implantation, finding optimal minimal setting for penetration depth (X2 + L), which for most repairable tears may be as short as 8 mm and not likely to be greater than 16 mm. Minimum depth setting for optimal placement of all-inside meniscal suture anchors when performing all-inside repair of the medial or lateral meniscus reduces risk of harming adjacent structures secondary to overpenetration and underpenetration of the posterior capsule. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Wavelength-dependent penetration depth of near infrared radiation into cartilage.
Padalkar, M V; Pleshko, N
2015-04-07
Articular cartilage is a hyaline cartilage that lines the subchondral bone in the diarthrodial joints. Near infrared (NIR) spectroscopy is emerging as a nondestructive modality for the evaluation of cartilage pathology; however, studies regarding the depth of penetration of NIR radiation into cartilage are lacking. The average thickness of human cartilage is about 1-3 mm, and it becomes even thinner as OA progresses. To ensure that spectral data collected is restricted to the tissue of interest, i.e. cartilage in this case, and not from the underlying subchondral bone, it is necessary to determine the depth of penetration of NIR radiation in different wavelength (frequency) regions. In the current study, we establish how the depth of penetration varies throughout the NIR frequency range (4000-10 000 cm(-1)). NIR spectra were collected from cartilage samples of different thicknesses (0.5 mm to 5 mm) with and without polystyrene placed underneath. A separate NIR spectrum of polystyrene was collected as a reference. It was found that the depth of penetration varied from ∼1 mm to 2 mm in the 4000-5100 cm(-1) range, ∼3 mm in the 5100-7000 cm(-1) range, and ∼5 mm in the 7000-9000 cm(-1) frequency range. These findings suggest that the best NIR region to evaluate cartilage with no subchondral bone contribution is in the range of 4000-7000 cm(-1).
There’s plenty of light at the bottom: statistics of photon penetration depth in random media
Martelli, Fabrizio; Binzoni, Tiziano; Pifferi, Antonio; Spinelli, Lorenzo; Farina, Andrea; Torricelli, Alessandro
2016-01-01
We propose a comprehensive statistical approach describing the penetration depth of light in random media. The presented theory exploits the concept of probability density function f(z|ρ, t) for the maximum depth reached by the photons that are eventually re-emitted from the surface of the medium at distance ρ and time t. Analytical formulas for f, for the mean maximum depth 〈zmax〉 and for the mean average depth reached by the detected photons at the surface of a diffusive slab are derived within the framework of the diffusion approximation to the radiative transfer equation, both in the time domain and the continuous wave domain. Validation of the theory by means of comparisons with Monte Carlo simulations is also presented. The results are of interest for many research fields such as biomedical optics, advanced microscopy and disordered photonics. PMID:27256988
Assessing stapes piston position using computed tomography: a cadaveric study.
Hahn, Yoav; Diaz, Rodney; Hartman, Jonathan; Bobinski, Matthew; Brodie, Hilary
2009-02-01
Temporal bone computed tomographic (CT) scanning in the postoperative stapedotomy patient is inaccurate in assessing stapes piston position within the vestibule. Poststapedotomy patients that have persistent vertigo may undergo CT scanning to assess the position of the stapes piston within the vestibule to rule out overly deep insertion. Vertigo is a recognized complication of the deep piston, and CT evaluation is often recommended. The accuracy of CT scan in this setting is unestablished. Stapedotomy was performed on 12 cadaver ears, and stainless steel McGee pistons were placed. The cadaver heads were then scanned using a fine-cut temporal bone protocol. Temporal bone dissection was performed with microscopic measurement of the piston depth in the vestibule. These values were compared with depth of intravestibular penetration measured on CT scan by 4 independent measurements. The intravestibular penetration as assessed by computed tomography was consistently greater than the value found on cadaveric anatomic dissection. The radiographic bias was greater when piston location within the vestibule was shallower. The axial CT scan measurement was 0.53 mm greater, on average, than the anatomic measurement. On average, the coronal CT measurement was 0.68 mm greater than the anatomic measurement. The degree of overestimation of penetration, however, was highly inconsistent. Standard temporal bone CT scan is neither an accurate nor precise examination of stapes piston depth within the vestibule. We found that CT measurement consistently overstated intravestibular piston depth. Computed tomography is not a useful study in the evaluation of piston depth for poststapedectomy vertigo and is of limited value in this setting.
Preliminary design of a space system operating a ground-penetrating radar
NASA Astrophysics Data System (ADS)
D'Errico, Marco; Ponte, Salvatore; Grassi, Michele; Moccia, Antonio
2005-12-01
Ground-penetrating radars (GPR) are currently used only in ground campaigns or in few airborne installations. A feasibility analysis of a space mission operating a GPR for archaeological applications is presented in this work with emphasis on spacecraft critical aspects: antenna dimension and power required for achieving adequate depth and accuracy. Sensor parametric design is performed considering two operating altitudes (250 and 500 km) and user requirements, such as minimum skin depth, vertical and horizontal resolution. A 500-km altitude, 6 a.m.-6 p.m. sun-synchronous orbit is an adequate compromise between atmospheric drag and payload transmitted average power (12 kW) to achieve a 3-m penetration depth. The satellite bus preliminary design is then performed, with focus on critical subsystems and technologies. The payload average power requirement can be kept within feasible limits (1 kW) by using NiH2 batteries to supply the radar transmitter, and with a strong reduction of the mission duty cycle ( 40km×1100km are observed per orbit). As for the electric power subsystem, a dual-voltage strategy is adopted, with the battery charge regulator supplied at 126 V and the bus loads at 50 V. The overall average power (1.9 kW), accounting for both payload and bus needs, can be supplied by a 20m2 GaAs solar panel for a three-year lifetime. Finally, the satellite mass is kept within reasonable limits (1.6 tons) using inflatable-rigidisable structure for both the payload antenna and the solar panels.
Carter, V.; Rybicki, N.B.
1985-01-01
Poor light penetration and grazing are among the factors potentially responsible for the lack of submersed aquatic macrophytes in the tidal Potomac River. Between 1980 and 1983, plugs, springs and tubers of Vallisneria americana Michx were transplanted from the oligohaline Potomac Estuary to six sites in the freshwater tidal Potomac River. Transplants made in 1980 and 1981 were generally successful only when protected by full exclosures which prevented grazing. Grazing resulted in the removal of whole plants or clipping off of plant leaves in unprotected plots. Plants protected in the first year were permanently established, despite the occurrence of grazing in subsequent years, at Elodea Cove and Rosier Bluff, where light penetration was high (average 1% light level was 1.6-1.7 m). Plants were not permanent;y established at Goose Island, where light penetration was lower (average 1% light level was 1.4 m) and grazing occurred, or Neabsco Bay where light penetration was very low (average 1% light level was 1.0 m) and grazing may not have occurred. In 1983, Secchi depth transparencies in the upper tidal river were improved significantly compared to 1978-1981. Both protected and unprotected transplants thrived in 1983. ?? 1985.
Soil moisture content estimation using ground-penetrating radar reflection data
NASA Astrophysics Data System (ADS)
Lunt, I. A.; Hubbard, S. S.; Rubin, Y.
2005-06-01
Ground-penetrating radar (GPR) reflection travel time data were used to estimate changes in soil water content under a range of soil saturation conditions throughout the growing season at a California winery. Data were collected during three data acquisition campaigns over an 80 by 180 m area using 100 MHz surface GPR antennas. GPR reflections were associated with a thin, low permeability clay layer located 0.8-1.3 m below the ground surface that was identified from borehole information and mapped across the study area. Field infiltration tests and neutron probe logs suggest that the thin clay layer inhibited vertical water flow, and was coincident with high volumetric water content (VWC) values. The GPR reflection two-way travel time and the depth of the reflector at the borehole locations were used to calculate an average dielectric constant for soils above the reflector. A site-specific relationship between the dielectric constant and VWC was then used to estimate the depth-averaged VWC of the soils above the reflector. Compared to average VWC measurements from calibrated neutron probe logs over the same depth interval, the average VWC estimates obtained from GPR reflections had an RMS error of 0.018 m 3 m -3. These results suggested that the two-way travel time to a GPR reflection associated with a geological surface could be used under natural conditions to obtain estimates of average water content when borehole control is available and the reflection strength is sufficient. The GPR reflection method therefore, has potential for monitoring soil water content over large areas and under variable hydrological conditions.
Wide field video-rate two-photon imaging by using spinning disk beam scanner
NASA Astrophysics Data System (ADS)
Maeda, Yasuhiro; Kurokawa, Kazuo; Ito, Yoko; Wada, Satoshi; Nakano, Akihiko
2018-02-01
The microscope technology with wider view field, deeper penetration depth, higher spatial resolution and higher imaging speed are required to investigate the intercellular dynamics or interactions of molecules and organs in cells or a tissue in more detail. The two-photon microscope with a near infrared (NIR) femtosecond laser is one of the technique to improve the penetration depth and spatial resolution. However, the video-rate or high-speed imaging with wide view field is difficult to perform with the conventional two-photon microscope. Because point-to-point scanning method is used in conventional one, so it's difficult to achieve video-rate imaging. In this study, we developed a two-photon microscope with spinning disk beam scanner and femtosecond NIR fiber laser with around 10 W average power for the microscope system to achieve above requirements. The laser is consisted of an oscillator based on mode-locked Yb fiber laser, a two-stage pre-amplifier, a main amplifier based on a Yb-doped photonic crystal fiber (PCF), and a pulse compressor with a pair of gratings. The laser generates a beam with maximally 10 W average power, 300 fs pulse width and 72 MHz repetition rate. And the beam incident to a spinning beam scanner (Yokogawa Electric) optimized for two-photon imaging. By using this system, we achieved to obtain the 3D images with over 1mm-penetration depth and video-rate image with 350 x 350 um view field from the root of Arabidopsis thaliana.
Cyclic mechanical loading promotes bacterial penetration along composite restoration marginal gaps
Khvostenko, D.; Salehi, S.; Naleway, S. E.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.
2015-01-01
Objectives Secondary caries is the most common reason for composite restoration replacement and usually forms between dentin and the filling. The objective of this study was to investigate the combined effect of cyclic loading and bacterial exposure on bacterial penetration into gaps at the interface between dentin and resin composite restorative material using a novel bioreactor system and test specimen design. Methods Human molars were machined into 3 mm thick disks with 2 mm deep × 5 mm diameter cavity preparations into which composite restorations were placed. A ∼15-30 micrometer (small) or ∼300 micrometer wide (large) dentin-restoration gap was introduced along half of the interface between the dentin and restoration. Streptococcus mutans UA 159 biofilms were grown on each sample prior to testing in a bioreactor both with and without cyclic loading. Both groups of samples were tested for 2 weeks and post-test biofilm viability was confirmed with a live-dead assay. Samples were fixed, mounted and cross-sectioned to reveal the gaps and observe the depth of bacterial penetration. Results It was shown that for large gap samples the bacteria easily penetrated to the full depth of the gap independent of loading or non-loading conditions. The results for all cyclically loaded small gap samples show a consistently deep bacterial penetration down 100% of the gap while the average penetration depth was only 67% for the non-loaded samples with only two of six samples reaching 100%. Significance A new bioreactor was developed that allows combining cyclic mechanical loading and bacterial exposure of restored teeth for bacterial biofilm and demineralization studies. Cyclic loading was shown to aid bacterial penetration into narrow marginal gaps, which could ultimately promote secondary caries formation. PMID:25900624
Helioseismic Constraints on the Depth Dependence of Large-Scale Solar Convection
NASA Astrophysics Data System (ADS)
Woodard, Martin F.
2017-08-01
A recent helioseismic statistical waveform analysis of subsurface flow based on a 720-day time series of SOHO/MDI Medium-l spherical-harmonic coefficients has been extended to cover a greater range of subphotospheric depths. The latest analysis provides estimates of flow-dependent oscillation-mode coupling-strength coefficients b(s,t;n,l) over the range l = 30 to 150 of mode degree (angular wavenumber) for solar p-modes in the approximate frequency range 2 to 4 mHz. The range of penetration depths of this mode set covers most of the solar convection zone. The most recent analysis measures spherical harmonic (s,t) components of the flow velocity for odd s in the angular wavenumber range 1 to 19 for t not much smaller than s at a given s. The odd-s b(s,t;n,l) coefficients are interpreted as averages over depth of the depth-dependent amplitude of one spherical-harmonic (s,t) component of the toroidal part of the flow velocity field. The depth-dependent weighting function defining the average velocity is the fractional kinetic energy density in radius of modes of the (n,l) multiplet. The b coefficients have been converted to estimates of root velocity power as a function of l0 = nu0*l/nu(n,l), which is a measure of mode penetration depth. (nu(n,l) is mode frequency and nu0 is a reference frequency equal to 3 mHz.) A comparison of the observational results with simple convection models will be presented.
Transcranial light-tissue interaction analysis
NASA Astrophysics Data System (ADS)
Aulakh, Kavleen; Zakaib, Scott; Willmore, William G.; Ye, Winnie N.
2016-03-01
The penetration depth of light plays a crucial role in therapeutic medical applications. In order to design effective medical photonic devices, an in-depth understanding of light's ability to penetrate tissues (including bone, skin, and fat) is necessary. The amount of light energy absorbed or scattered by tissues affects the intensity of light reaching an intended target in vivo. In this study, we examine the transmittance of light through a variety of cranial tissues for the purpose of determining the efficacy of neuro stimulation using a transcranial laser. Tissue samples collected from a pig were irradiated with a pulsed laser. We first determine the optimal irradiation wavelength of the laser to be 808nm. With varying peak and average power of the laser, we found an inverse and logarithmic relationship between the penetration depth and the intensity of the light. After penetrating the skin and skull of the pig, the light decreases in intensity at a rate of approximately 90.8 (+/-0.4) percent for every 5 mm of brain tissue penetrated. We also found the correlation between the irradiation time and dosage, using three different lasers (with peak power of 500, 1000, and 1500mW respectively). These data will help deduce what laser power is required to achieve a clinically-realistic model for a given irradiation time. This work is fundamental and the experimental data can be used to supplement existing and future research on the effects of laser light on brain tissue for the design of medical devices.
Preliminary studies: far-field microwave dosimetric measurements of a full-scale model of man.
Olsen, R G
1979-12-01
Measurements of microwave heating were made in a full-size, upright human model. The 75-Kg model, composed of electrically simulated muscle, was placed in the far-zone of a standard-gain horn inside an absorber-lined chamber. Pulsed energy at 1.29 GHz was obtained from a military radar transmitter (AN/TPS-1G) and produced radiation at 6-14 mW/cm2 average power density at the location of the model. Microwave heating at the front surface was measured at nine locations on the phantom. Measurements at several depths within the phantom were also made at a central location to gain information on the depth-of-penetration of the microwave energy. Results of the frontal surface measurements and of the penetration study permitted a calculation of the approximate whole-body average specific absorption rate (SAR) when the model's long axis was parallel to the E-field vector. For a normalized power density of 1 mW/cm2 at a frequency of 1.29 GHz, the whole-body average SAR approximated 0.03 W/Kg. This result agrees well with theoretical predictions based on absorption in prolate spheroidal models of man.
A comparison of observed and analytically derived remote sensing penetration depths for turbid water
NASA Technical Reports Server (NTRS)
Morris, W. D.; Usry, J. W.; Witte, W. G.; Whitlock, C. H.; Guraus, E. A.
1981-01-01
The depth to which sunlight will penetrate in turbid waters was investigated. The tests were conducted in water with a single scattering albedo range, and over a range of solar elevation angles. Two different techniques were used to determine the depth of light penetration. It showed little change in the depth of sunlight penetration with changing solar elevation angle. A comparison of the penetration depths indicates that the best agreement between the two methods was achieved when the quasisingle scattering relationship was not corrected for solar angle. It is concluded that sunlight penetration is dependent on inherent water properties only.
Topical tacrolimus in alopecia areata.
Price, Vera H; Willey, Andrea; Chen, Bryan K
2005-01-01
Eleven patients with alopecia areata affecting 10% to 75% of the scalp, average duration 6 years, had no terminal hair growth in response to tacrolimus ointment 0.1% applied twice daily for 24 weeks. Treatment failure may reflect insufficient depth of penetration of the ointment formulation and less than optimal patient selection.
Prediction of soil frost penetration depth in northwest of Iran using air freezing indices
NASA Astrophysics Data System (ADS)
Mohammadi, H.; Moghbel, M.; Ranjbar, F.
2016-11-01
Information about soil frost penetration depth can be effective in finding appropriate solutions to reduce the agricultural crop damage, transportations, and building facilities. Amongst proper methods to achieve this information are the statistical and empirical models capable of estimating soil frost penetration depth. Therefore, the main objective of this research is to calculate soil frost penetration depth in northwest of Iran during the year 2007-2008 to validate two different models accuracy. To do so, the relationship between air and soil temperature in different depths (5-10-20-30-50-100 cm) at three times of the day (3, 9, and 15 GMT) for 14 weather stations over 7 provinces was analyzed using linear regression. Then, two different air freezing indices (AFIs) including Norwegian and Finn AFI was implemented. Finally, the frost penetration depth was calculated by McKeown method and the accuracy of models determined by actual soil frost penetration depth. The results demonstrated that there is a significant correlation between air and soil depth temperature in all studied stations up to the 30 cm under the surface. Also, according to the results, Norwegian index can be effectively used for determination of soil frost depth penetration and the correlation coefficient between actual and estimated soil frost penetration depth is r = 0.92 while the Finn index overestimates the frost depth in all stations with correlation coefficient r = 0.70.
Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance.
Hiddink, Jan Geert; Jennings, Simon; Sciberras, Marija; Szostek, Claire L; Hughes, Kathryn M; Ellis, Nick; Rijnsdorp, Adriaan D; McConnaughey, Robert A; Mazor, Tessa; Hilborn, Ray; Collie, Jeremy S; Pitcher, C Roland; Amoroso, Ricardo O; Parma, Ana M; Suuronen, Petri; Kaiser, Michel J
2017-08-01
Bottom trawling is the most widespread human activity affecting seabed habitats. Here, we collate all available data for experimental and comparative studies of trawling impacts on whole communities of seabed macroinvertebrates on sedimentary habitats and develop widely applicable methods to estimate depletion and recovery rates of biota after trawling. Depletion of biota and trawl penetration into the seabed are highly correlated. Otter trawls caused the least depletion, removing 6% of biota per pass and penetrating the seabed on average down to 2.4 cm, whereas hydraulic dredges caused the most depletion, removing 41% of biota and penetrating the seabed on average 16.1 cm. Median recovery times posttrawling (from 50 to 95% of unimpacted biomass) ranged between 1.9 and 6.4 y. By accounting for the effects of penetration depth, environmental variation, and uncertainty, the models explained much of the variability of depletion and recovery estimates from single studies. Coupled with large-scale, high-resolution maps of trawling frequency and habitat, our estimates of depletion and recovery rates enable the assessment of trawling impacts on unprecedented spatial scales.
Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance
Hiddink, Jan Geert; Jennings, Simon; Sciberras, Marija; Szostek, Claire L.; Hughes, Kathryn M.; Ellis, Nick; Rijnsdorp, Adriaan D.; McConnaughey, Robert A.; Mazor, Tessa; Hilborn, Ray; Collie, Jeremy S.; Pitcher, C. Roland; Amoroso, Ricardo O.; Parma, Ana M.; Suuronen, Petri; Kaiser, Michel J.
2017-01-01
Bottom trawling is the most widespread human activity affecting seabed habitats. Here, we collate all available data for experimental and comparative studies of trawling impacts on whole communities of seabed macroinvertebrates on sedimentary habitats and develop widely applicable methods to estimate depletion and recovery rates of biota after trawling. Depletion of biota and trawl penetration into the seabed are highly correlated. Otter trawls caused the least depletion, removing 6% of biota per pass and penetrating the seabed on average down to 2.4 cm, whereas hydraulic dredges caused the most depletion, removing 41% of biota and penetrating the seabed on average 16.1 cm. Median recovery times posttrawling (from 50 to 95% of unimpacted biomass) ranged between 1.9 and 6.4 y. By accounting for the effects of penetration depth, environmental variation, and uncertainty, the models explained much of the variability of depletion and recovery estimates from single studies. Coupled with large-scale, high-resolution maps of trawling frequency and habitat, our estimates of depletion and recovery rates enable the assessment of trawling impacts on unprecedented spatial scales. PMID:28716926
Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth
Sharma, Utkarsh; Chang, Ernest W.; Yun, Seok H.
2009-01-01
Multiple scattering in a sample presents a significant limitation to achieve meaningful structural information at deeper penetration depths in optical coherence tomography (OCT). Previous studies suggest that the spectral region around 1.7 µm may exhibit reduced scattering coefficients in biological tissues compared to the widely used wavelengths around 1.3 µm. To investigate this long-wavelength region, we developed a wavelength-swept laser at 1.7 µm wavelength and conducted OCT or optical frequency domain imaging (OFDI) for the first time in this spectral range. The constructed laser is capable of providing a wide tuning range from 1.59 to 1.75 µm over 160 nm. When the laser was operated with a reduced tuning range over 95 nm at a repetition rate of 10.9 kHz and an average output power of 12.3 mW, the OFDI imaging system exhibited a sensitivity of about 100 dB and axial and lateral resolution of 24 µm and 14 µm, respectively. We imaged several phantom and biological samples using 1.3 µm and 1.7 µm OFDI systems and found that the depth-dependent signal decay rate is substantially lower at 1.7 µm wavelength in most, if not all samples. Our results suggest that this imaging window may offer an advantage over shorter wavelengths by increasing the penetration depths as well as enhancing image contrast at deeper penetration depths where otherwise multiple scattered photons dominate over ballistic photons. PMID:19030057
NASA Technical Reports Server (NTRS)
Morris, W. D.; Witte, W. G.; Whitlock, C. H.
1980-01-01
Remote sensing of water quality is dicussed. Remote sensing penetration depth is a function both of water type and wavelength. Results of three tests to help demonstrate the magnitude of this dependence are presented. The water depth to which the remote-sensor data was valid was always less than that of the Secchi disk depth, although not always the same fraction of that depth. The penetration depths were wavelength dependent and showed the greatest variation for the water type with largest Secchi depth. The presence of a reflective plate, simulating a reflective subsurface, increased the apparent depth of light penetration from that calculated for water of infinite depth.
A Quantitative Model of Keyhole Instability Induced Porosity in Laser Welding of Titanium Alloy
NASA Astrophysics Data System (ADS)
Pang, Shengyong; Chen, Weidong; Wang, Wen
2014-06-01
Quantitative prediction of the porosity defects in deep penetration laser welding has generally been considered as a very challenging task. In this study, a quantitative model of porosity defects induced by keyhole instability in partial penetration CO2 laser welding of a titanium alloy is proposed. The three-dimensional keyhole instability, weld pool dynamics, and pore formation are determined by direct numerical simulation, and the results are compared to prior experimental results. It is shown that the simulated keyhole depth fluctuations could represent the variation trends in the number and average size of pores for the studied process conditions. Moreover, it is found that it is possible to use the predicted keyhole depth fluctuations as a quantitative measure of the average size of porosity. The results also suggest that due to the shadowing effect of keyhole wall humps, the rapid cooling of the surface of the keyhole tip before keyhole collapse could lead to a substantial decrease in vapor pressure inside the keyhole tip, which is suggested to be the mechanism by which shielding gas enters into the porosity.
Changes in anthropogenic carbon storage in the Northeast Pacific in the last decade
NASA Astrophysics Data System (ADS)
Chu, Sophie N.; Wang, Zhaohui Aleck; Doney, Scott C.; Lawson, Gareth L.; Hoering, Katherine A.
2016-07-01
In order to understand the ocean's role as a sink for anthropogenic carbon dioxide (CO2), it is important to quantify changes in the amount of anthropogenic CO2 stored in the ocean interior over time. From August to September 2012, an ocean acidification cruise was conducted along a portion of the P17N transect (50°N 150°W to 33.5°N 135°W) in the Northeast Pacific. These measurements are compared with data from the previous occupation of this transect in 2001 to estimate the change in the anthropogenic CO2 inventory in the Northeast Pacific using an extended multiple linear regression (eMLR) approach. Maximum increases in the surface waters were 11 µmol kg-1 over 11 years near 50°N. Here, the penetration depth of anthropogenic CO2 only reached ˜300 m depth, whereas at 33.5°N, penetration depth reached ˜600 m. The average increase of the depth-integrated anthropogenic carbon inventory was 0.41 ± 0.12 mol m-2 yr-1 across the transect. Lower values down to 0.20 mol m-2 yr-1 were observed in the northern part of the transect near 50°N and increased up to 0.55 mol m-2 yr-1 toward 33.5°N. This increase in anthropogenic carbon in the upper ocean resulted in an average pH decrease of 0.002 ± 0.0003 pH units yr-1 and a 1.8 ± 0.4 m yr-1 shoaling rate of the aragonite saturation horizon. An average increase in apparent oxygen utilization of 13.4 ± 15.5 µmol kg-1 centered on isopycnal surface 26.6 kg m-3 from 2001 to 2012 was also observed.
Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations
Khvostenko, D.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.
2015-01-01
Objectives Bioactive glass (BAG) is known to possess antimicrobial and remineralizing properties; however, the use of BAG as a filler for resin based composite restorations to slow recurrent caries has not been studied. Accordingly, the objective of this study was to investigate the effect of 15 wt% BAG additions to a resin composite on bacterial biofilms penetrating into marginal gaps of simulated tooth fillings in vitro during cyclic mechanical loading. Methods Human molars were machined into approximately 3 mm thick disks of dentin and 1.5–2 mm deep composite restorations were placed. A narrow 15–20 micrometer wide dentin-composite gap was allowed to form along half of the margin by not applying dental adhesive to that region. Two different 72 wt% filled composites were used, one with 15 wt% BAG filler (15BAG) and the balance silanated strontium glass and one filled with OX-50 and silanated strontium glass without BAG (0BAG – control). Samples of both groups had Streptococcus mutans biofilms grown on the surface and were tested inside a bioreactor for two weeks while subjected to periods of cyclic mechanical loading. After post-test biofilm viability was confirmed, each specimen was fixed in glutaraldehyde, gram positive stained, mounted in resin and cross-sectioned to reveal the gap profile. Depth of biofilm penetration for 0BAG and 15BAG was quantified as the fraction of gap depth. The data were compared using a Student’s t-test. Results The average depth of bacterial penetration into the marginal gap for the 15BAG samples was significantly smaller (~61%) in comparison to 0BAG, where 100% penetration was observed for all samples with the biofilm penetrating underneath of the restoration in some cases. Significance BAG containing resin dental composites reduce biofilm penetration into marginal gaps of simulated tooth restorations. This suggests BAG containing composites may have the potential to slow the development and propagation of secondary tooth decay at restoration margins. PMID:26621028
NASA Astrophysics Data System (ADS)
Han, D. Y.; Cao, P.; Liu, J.; Zhu, J. B.
2017-12-01
Cutter spacing is an essential parameter in the TBM design. However, few efforts have been made to study the optimum cutter spacing incorporating penetration depth. To investigate the influence of pre-set penetration depth and cutter spacing on sandstone breakage and TBM performance, a series of sequential laboratory indentation tests were performed in a biaxial compression state. Effects of parameters including penetration force, penetration depth, chip mass, chip size distribution, groove volume, specific energy and maximum angle of lateral crack were investigated. Results show that the total mass of chips, the groove volume and the observed optimum cutter spacing increase with increasing pre-set penetration depth. It is also found that the total mass of chips could be an alternative means to determine optimum cutter spacing. In addition, analysis of chip size distribution suggests that the mass of large chips is dominated by both cutter spacing and pre-set penetration depth. After fractal dimension analysis, we found that cutter spacing and pre-set penetration depth have negligible influence on the formation of small chips and that small chips are formed due to squeezing of cutters and surface abrasion caused by shear failure. Analysis on specific energy indicates that the observed optimum spacing/penetration ratio is 10 for the sandstone, at which, the specific energy and the maximum angle of lateral cracks are smallest. The findings in this paper contribute to better understanding of the coupled effect of cutter spacing and pre-set penetration depth on TBM performance and rock breakage, and provide some guidelines for cutter arrangement.
Depth of penetration of a 785nm wavelength laser in food powders
NASA Astrophysics Data System (ADS)
Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Kim, Moon S.; Peng, Yankun; Schmidt, Walter F.
2015-05-01
Raman spectroscopy is a useful, rapid, and non-destructive method for both qualitative and quantitative evaluation of chemical composition. However it is important to measure the depth of penetration of the laser light to ensure that chemical particles at the very bottom of a sample volume is detected by Raman system. The aim of this study was to investigate the penetration depth of a 785nm laser (maximum power output 400mw) into three different food powders, namely dry milk powder, corn starch, and wheat flour. The food powders were layered in 5 depths between 1 and 5 mm overtop a Petri dish packed with melamine. Melamine was used as the subsurface reference material for measurement because melamine exhibits known and identifiable Raman spectral peaks. Analysis of the sample spectra for characteristics of melamine and characteristics of milk, starch and flour allowed determination of the effective penetration depth of the laser light in the samples. Three laser intensities (100, 200 and 300mw) were used to study the effect of laser intensity to depth of penetration. It was observed that 785nm laser source was able to easily penetrate through every point in all three food samples types at 1mm depth. However, the number of points that the laser could penetrate decreased with increasing depth of the food powder. ANOVA test was carried out to study the significant effect of laser intensity to depth of penetration. It was observed that laser intensity significantly influences the depth of penetration. The outcome of this study will be used in our next phase of study to detect different chemical contaminants in food powders and develop quantitative analysis models for detection of chemical contaminants.
Closed loop control of penetration depth during CO₂ laser lap welding processes.
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis In 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.
Penetration depth of MgB2 measured using Josephson junctions and SQUIDs
NASA Astrophysics Data System (ADS)
Cunnane, Daniel; Zhuang, Chenggang; Chen, Ke; Xi, X. X.; Yong, Jie; Lemberger, T. R.
2013-02-01
The penetration depth of MgB2 was measured using two methods of different mechanisms. The first method used MgB2 Josephson junctions and the magnetic field dependence of the junction critical current. The second method deduced the penetration depth from the inductance of a MgB2 microstrip used to modulate the voltage of a MgB2 DC SQUID. The two methods showed a consistent value of the low-temperature penetration depth for MgB2 to be about 40 nm. Both the small penetration depth value and its temperature dependence are in agreement with a microscopic theory for MgB2 in the clean limit.
Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P.; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis in 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth. PMID:23112646
Controlling Force and Depth in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Adams, Glynn; Loftus, Zachary; McCormac, Nathan; Venable, Richard
2005-01-01
Feedback control of the penetration force applied to a pin tool in friction stir welding has been found to be a robust and reliable means for controlling the depth of penetration of the tool. This discovery has made it possible to simplify depth control and to weld with greater repeatability, even on workpieces with long weld joints. Prior to this discovery, depths of penetration in friction stir welding were controlled by hard-tooled roller assemblies or by depth actuators controlled by feedback from such external sensors as linear variable-differential transformers or laser-based devices. These means of control are limited: A hard-tooled roller assembly confines a pin tool to a preset depth that cannot be changed easily during the welding process. A measurement by an external sensor is only an indirect indicative of the depth of penetration, and computations to correlate such a measurement with a depth of penetration are vulnerable to error. The present force-feedback approach exploits the proportionality between the depth and the force of penetration Unlike a depth measurement taken by an external sensor, a force measurement can be direct because it can be taken by a sensor coupled directly to the pin tool. The reading can be processed through a modern electronic servo control system to control an actuator to keep the applied penetration force at the desired level. In comparison with the older depth-control methods described above, this method offers greater sensitivity to plasticizing of the workpiece metal and is less sensitive to process noise, resulting in a more consistent process. In an experiment, a tapered panel was friction stir welded while controlling the force of penetration according to this method. The figure is a plot of measurements taken during the experiment, showing that force was controlled with a variation of 200 lb (890 N), resulting in control of the depth of penetration with a variation of 0.004 in. (0.1 mm).
Qian, Feifei; Zhang, Tingnan; Korff, Wyatt; Umbanhowar, Paul B; Full, Robert J; Goldman, Daniel I
2015-10-08
Natural substrates like sand, soil, leaf litter and snow vary widely in penetration resistance. To search for principles of appendage design in robots and animals that permit high performance on such flowable ground, we developed a ground control technique by which the penetration resistance of a dry granular substrate could be widely and rapidly varied. The approach was embodied in a device consisting of an air fluidized bed trackway in which a gentle upward flow of air through the granular material resulted in a decreased penetration resistance. As the volumetric air flow, Q, increased to the fluidization transition, the penetration resistance decreased to zero. Using a bio-inspired hexapedal robot as a physical model, we systematically studied how locomotor performance (average forward speed, v(x)) varied with ground penetration resistance and robot leg frequency. Average robot speed decreased with increasing Q, and decreased more rapidly for increasing leg frequency, ω. A universal scaling model revealed that the leg penetration ratio (foot pressure relative to penetration force per unit area per depth and leg length) determined v(x) for all ground penetration resistances and robot leg frequencies. To extend our result to include continuous variation of locomotor foot pressure, we used a resistive force theory based terradynamic approach to perform numerical simulations. The terradynamic model successfully predicted locomotor performance for low resistance granular states. Despite variation in morphology and gait, the performance of running lizards, geckos and crabs on flowable ground was also influenced by the leg penetration ratio. In summary, appendage designs which reduce foot pressure can passively maintain minimal leg penetration ratio as the ground weakens, and consequently permits maintenance of effective locomotion over a range of terradynamically challenging surfaces.
Liu, Feng; Wang, Yugang; Xue, Jianming; Wang, Sixue; Du, Guanhua; Zhao, Weijiang
2003-02-01
The penetration depth of low-energy heavy ions in botanic samples was detected with a new transmission measurement. In the measurement, highly oriented pyrolytic graphite (HOPG) pieces were placed behind the botanic samples with certain thickness. During the irradiation of heavy ions with energy of tens of keV, the energetic particles transmitted from those samples were received by the HOPG pieces. After irradiation, scanning tunneling microscope (STM) was applied to observe protrusion-like damage induced by these transmitted ions on the surface of the HOPG. The statistical average number density of protrusions and the minimum transmission rate of the low-energy heavy ions can be obtained. The detection efficiency of the new method for low-energy heavy ions was about 0.1-1 and the background in the measurement can be reduced to as low as 1.0 x 10(8) protrusions/cm2. With this method, the penetration depth of the energetic particles was detected to be no less than 60 micrometers in kidney bean slices when the slices were irradiated by 100 keVAr+ ion at the fluence of 5 x 10(16) ions/cm2. c2002 Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Liu, Feng; Wang, Yugang; Xue, Jianming; Wang, Sixue; Du, Guanhua; Zhao, Weijiang
2003-01-01
The penetration depth of low-energy heavy ions in botanic samples was detected with a new transmission measurement. In the measurement, highly oriented pyrolytic graphite (HOPG) pieces were placed behind the botanic samples with certain thickness. During the irradiation of heavy ions with energy of tens of keV, the energetic particles transmitted from those samples were received by the HOPG pieces. After irradiation, scanning tunneling microscope (STM) was applied to observe protrusion-like damage induced by these transmitted ions on the surface of the HOPG. The statistical average number density of protrusions and the minimum transmission rate of the low-energy heavy ions can be obtained. The detection efficiency of the new method for low-energy heavy ions was about 0.1-1 and the background in the measurement can be reduced to as low as 1.0 x 10(8) protrusions/cm2. With this method, the penetration depth of the energetic particles was detected to be no less than 60 micrometers in kidney bean slices when the slices were irradiated by 100 keVAr+ ion at the fluence of 5 x 10(16) ions/cm2. c2002 Elsevier Science Ltd. All rights reserved.
Calculation of effective penetration depth in X-ray diffraction for pharmaceutical solids.
Liu, Jodi; Saw, Robert E; Kiang, Y-H
2010-09-01
The use of the glancing incidence X-ray diffraction configuration to depth profile surface phase transformations is of interest to pharmaceutical scientists. The Parratt equation has been used to depth profile phase changes in pharmaceutical compacts. However, it was derived to calculate 1/e penetration at glancing incident angles slightly below the critical angle of condensed matter and is, therefore, applicable to surface studies of materials such as single crystalline nanorods and metal thin films. When the depth of interest is 50-200 microm into the surface, which is typical for pharmaceutical solids, the 1/e penetration depth, or skin depth, can be directly calculated from an exponential absorption law without utilizing the Parratt equation. In this work, we developed a more relevant method to define X-ray penetration depth based on the signal detection limits of the X-ray diffractometer. Our definition of effective penetration depth was empirically verified using bilayer compacts of varying known thicknesses of mannitol and lactose.
Ground-penetrating radar--A tool for mapping reservoirs and lakes
Truman, C.C.; Asmussen, L.E.; Allison, H.D.
1991-01-01
Ground-penetrating radar was evaluated as a tool for mapping reservoir and lake bottoms and providing stage-storage information. An impulse radar was used on a 1.4-ha (3.5-acre) reservoir with 31 transects located 6.1 m (20 feet) apart. Depth of water and lateral extent of the lake bottom were accurately measured by ground-penetrating radar. A linear (positive) relationship existed between measured water depth and ground-penetrating radar-determined water depth (R2=0.989). Ground-penetrating radar data were used to create a contour map of the lake bottom. Relationships between water (contour) elevation and water surface area and volume were established. Ground-penetrating radar proved to be a useful tool for mapping lakes, detecting lake bottom variations, locating old stream channels, and determining water depths. The technology provides accurate, continuous profile data in a relatively short time compared to traditional surveying and depth-sounding techniques.
Beta particle transport and its impact on betavoltaic battery modeling.
Alam, Tariq R; Pierson, Mark A; Prelas, Mark A
2017-12-01
Simulation of beta particle transport from a Ni-63 radioisotope in silicon using the Monte Carlo N-Particle (MCNP) transport code for monoenergetic beta particle average energy, monoenergetic beta particle maximum energy, and the more precise full beta energy spectrum of Ni-63 were demonstrated. The beta particle penetration depth and the shape of the energy deposition varied significantly for different transport approaches. A penetration depth of 2.25±0.25µm with a peak in energy deposition was found when using a monoenergetic beta particle average energy and a depth of 14.25±0.25µm with an exponential decrease in energy deposition was found when using a full beta energy spectrum and a 0° angular variation. For a 90° angular variation, i.e. an isotropic source, the penetration depth was decreased to 12.75±0.25µm and the backscattering coefficient increased to 0.46 with 30.55% of the beta energy escaping when using a full beta energy spectrum. Similarly, for a 0° angular variation and an isotropic source, an overprediction in the short circuit current and open circuit voltage solved by a simplified drift-diffusion model was observed when compared to experimental results from the literature. A good agreement in the results was found when self-absorption and isotope dilution in the source was considered. The self-absorption effect was 15% for a Ni-63 source with an activity of 0.25mCi. This effect increased to about 28.5% for a higher source activity of 1mCi due to an increase in thickness of the Ni-63 source. Source thicknesses of approximately 0.1µm and 0.4µm for these Ni-63 activities predicted about 15% and 28.5% self-absorption in the source, respectively, using MCNP simulations with an isotropic source. The modeling assumptions with different beta particle energy inputs, junction depth of the semiconductor, backscattering of beta particles, an isotropic beta source, and self-absorption of the radioisotope have significant impacts in betavoltaic battery design. Copyright © 2017 Elsevier Ltd. All rights reserved.
In-plane magnetic penetration depth of superconducting CaKFe4As4
NASA Astrophysics Data System (ADS)
Khasanov, Rustem; Meier, William R.; Wu, Yun; Mou, Daixiang; Bud'ko, Sergey L.; Eremin, Ilya; Luetkens, Hubertus; Kaminski, Adam; Canfield, Paul C.; Amato, Alex
2018-04-01
The temperature dependence of the in-plane magnetic penetration depth (λa b) in an extensively characterized sample of superconducting CaKFe4As4(Tc≃35 K ) was investigated using muon-spin rotation (μ SR ). A comparison of λab -2(T ) measured by μ SR with the one inferred from angle-resolved photoemission spectroscopy (ARPES) data confirms the presence of multiple gaps at the Fermi level. An agreement between μ SR and ARPES requires the presence of additional bands, which are not resolved by ARPES experiments. These bands are characterized by small superconducting gaps with an average zero-temperature value of Δ0=2.4 (2 ) meV . Our data suggest that in CaKFe4As4 the s± order parameter symmetry acquires a more sophisticated form by allowing a sign change not only between electron and hole pockets, but also within pockets of similar type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu-wen Tan; Ying Jin; Hui Yu
2013-10-31
We have evaluated the dynamic effects of the analyte diffusion on the 1/e light penetration depths of normal, benign and cancerous human lung tissue in vitro, as well as have monitored and quantified the dynamic change in the light penetration depths of the mentioned human lung tissue after application of 25 % and 50 % glycerol solution, respectively. The light penetration depths of the analyte diffusion in the lung tissue are measured using the Fourierdomain optical coherence tomography (FD-OCT). Experimental results show that the application of glycerol as a chemical agent can significantly enhance light penetration depths into the humanmore » normal lung (NL), lung benign granulomatosis (LBG) and lung squamous cell carcinoma (LSCC) tissue. In-depth transport of the glycerol molecules in the NL, LBG and LSCC tissue at a lower glycerol concentration (25 %) are faster than those at a higher glycerol concentration (50 %), and the 1/e light penetration depths at a lower glycerol concentration (25 %) are smaller than those at a higher glycerol concentration (50 %), respectively. Their differences in the maximal 1/e light penetration depths of the NL, LBG and LSCC tissue at a higher and a lower glycerol concentrations were only 8.8 %, 6.8 % and 4.7 %, respectively. (biophotonics)« less
Al Jabbari, Youssef S; Koutsoukis, Theodoros; Barmpagadaki, Xanthoula; El-Danaf, Ehab A; Fournelle, Raymond A; Zinelis, Spiros
2015-02-01
The effects of voltage and laser beam (spot) diameter on the penetration depth during laser beam welding in a representative nickel-chromium (Ni-Cr) dental alloy were the subject of this study. The cast alloy specimens were butted against each other and laser welded at their interface using various voltages (160-390 V) and spot diameters (0.2-1.8 mm) and a constant pulse duration of 10 ms. After welding, the laser beam penetration depths in the alloy were measured. The results were plotted and were statistically analyzed with a two-way ANOVA, employing voltage and spot diameter as the discriminating variables and using Holm-Sidak post hoc method (a = 0.05). The maximum penetration depth was 4.7 mm. The penetration depth increased as the spot diameter decreased at a fixed voltage and increased as the voltage increased at a fixed spot diameter. Varying the parameters of voltage and laser spot diameter significantly affected the depth of penetration of the dental cast Ni-Cr alloy. The penetration depth of laser-welded Ni-Cr dental alloys can be accurately adjusted based on the aforementioned results, leading to successfully joined/repaired dental restorations, saving manufacturing time, reducing final cost, and enhancing the longevity of dental prostheses.
Hansen, Bruce P.; Lane, John W.
1995-01-01
Four geophysical techniques were used to determine bedrock-fracture orientation and other site characteristics that can be used to determine ground-water movement and contaminant transport at a fractured crystalline bedrock site in Millville and Uxbridge, Massachusetts. Azimuthal seismic- refraction and azimuthal square-array direct-current resistivity surveys were conducted at three sites. Borehole-radar surveys were conducted in a cluster of three wells. Ground-penetrating radar surveys were conducted along roads in the study area. Azimuthal seismic-refraction data indicated a primary fracture strike between 56 and 101 degrees at three sites. Graphical and analytical analysis of azimuthal square-array resistivity data indicated a primary fracture strike from 45 to 90 degrees at three sites. Directional borehole-radar data from three wells indicated 46 fractures or fracture zones located as far as 147 feet from the surveyed wells. Patterns of low radar-wave velocity and high radar- wave attenuation from cross-hole radar surveys of two well pairs were interpreted as a planar fracture zone that strikes 297 degrees and dips 55 degrees south. Ground-penetrating radar surveys with 100-MHz antennas penetrated as much as 150 feet of bedrock where the bedrock surface was at or near land surface. Horizontal and subhorizontal fractures were observed on the ground-penetrating radar records at numerous locations. Correlation of data sets indicates good agreement and indicates primary high- angle fracturing striking east-northeast. Secondary bedrock porosity and average fracture aperture determined from square-array resistivity data averaged 0.0044 and 0.0071 foot. Depths to bedrock observed on the ground-penetrating radar records were 0 to 20 feet below land surface along most of the area surveyed. A bedrock depth from 45 to 50 feet below land surface was observed along one section of Conestoga Drive.
Results of the mole penetration tests in different materials
NASA Astrophysics Data System (ADS)
Wawrzaszek, Roman; Seweryn, Karol; Grygorczuk, Jerzy; Banaszkiewicz, Marek; Rybus, Tomasz; Wisniewski, Lukasz; Neal, Clive R.; Huang, Shaopeng
2010-05-01
Mole devices are low velocity, medium to high energy, self-driven penetrators, designed as a carrier of different sensors for in situ investigations of subsurface layers of planetary bodies. The maximum insertion depth of such devices is limited by energy of single mole's stroke and soil resistance for the dynamic penetration. A mole penetrator ‘KRET' has been designed, developed, and successfully tested at Space Research Centre PAS in Poland. The principle of operation of the mole bases on the interaction between three masses: the cylindrical casing, the hammer, and the rest of the mass, acting as a support mass. This approach takes advantage of the MUPUS penetrator (a payload of Philae lander on Rosetta mission) insertion tests knowledge. Main parameters of the mole KRET are listed below: - outer diameter: 20.4mm, - length: 330mm, - total mass: 488g, - energy of the driving spring: 2.2J, - average power consumption: 0.28W, - average insertion progress/stroke: 8.5mm, The present works of Space Research Center PAS team are focused on three different activities. First one includes investigations of the mole penetration effectiveness in the lunar analogues (supported by ESA PECS project). Second activity, supported by Polish national fund, is connected with numerical calculation of the heat flow investigations and designing and developing the Heat Flow Probe Hardware Component (HPHC) for L-GIP NASA project. It's worth noting that L-GIP project refers to ILN activity. Last activity focuses on preparing the second version of the mole ready to work in low thermal and pressure conditions. Progress of a mole penetrator in granular medium depends on the mechanical properties of this medium. The mole penetrator ‘KRET' was tested in different materials: dry quartz sand (0.3 - 0.8 grain size), wet quartz sand, wheat flour and lunar regolith mechanical simulant - Chemically Enhanced OB-1 (CHENOBI). Wheat flour was selected due to its high cohesion rate and small grain size. Influence of the material compaction on the mole progress was also investigated. For these tests the small testbed has been used. It allowed us to test our mole penetrator up to the depth of 0.5 meters. Obtained results show that 'KRET' is able to penetrate even compacted lunar regolith simulant CHENOBI with minimum progress rate about 2mm per stroke. Moreover, we have confirmed that the mole works properly in both materials with low and high cohesion.
Investigation of molecular penetration depth variation with SMBI fluxes
NASA Astrophysics Data System (ADS)
Zhou, Yu-Lin; Wang, Zhan-Hui; Xu, Min; Wang, Qi; Nie, Lin; Feng, Hao; Sun, Wei-Guo
2016-09-01
We study the molecular penetration depth variation with the SMBI fluxes. The molecular transport process and the penetration depth during SMBI with various injection velocities and densities are simulated and compared. It is found that the penetration depth of molecules strongly depends on the radial convective transport of SMBI and it increases with the increase of the injection velocity. The penetration depth does not vary much once the SMBI injection density is larger than a critical value due to the dramatic increase of the dissociation rate on the fueling path. An effective way to improve the SMBI penetration depth has been predicted, which is SMBI with a large radial injection velocity and a lower molecule injection density than the critical density. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375053, 11575055, 11405022, and 11405112), the Chinese National Fusion Project for ITER (Grant Nos. 2013GB107001 and 2013GB112005), the International S&T Cooperation Program of China (Grant No. 2015DFA61760), and the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province of China (Grant No. 2014TD0023).
Dudley, Nicholas J; Gibson, Nicholas M
2017-02-01
The aim of this study was to test the hypothesis that grey levels are a suitable alternative measure of sensitivity in ultrasound imaging quality assurance, as there are several caveats in the use of penetration depth. In a primary cohort of nine probes, where measurements had been made for 6 to 34 mo, both penetration depth and mean grey level fell below tolerance for six probes; both penetration depth and mean grey level remained within tolerance for three probes. In a secondary cohort where a measurement programme had been in place for a shorter period, grey level and/or penetration depth fell below tolerance in 15 of 66 probes; the sensitivity and specificity of at least 10% loss of grey level in predicting >5% loss in penetration depth were 91% and 93%, respectively. A loss of grey level accompanies a loss of penetration and provides a suitable alternative measure of sensitivity. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Konopnicki, Sandra; Sharaf, Basel; Resnick, Cory; Patenaude, Adam; Pogal-Sussman, Tracy; Hwang, Kyung-Gyun; Abukawa, Harutsugi; Troulis, Maria J
2015-05-01
Deep bone penetration into implanted scaffolds remains a challenge in tissue engineering. The purpose of this study was to evaluate bone penetration depth within 3-dimensionally (3D) printed β-tricalcium phosphate (β-TCP) and polycaprolactone (PCL) scaffolds, seeded with porcine bone marrow progenitor cells (pBMPCs), and implanted early in vivo. Scaffolds were 3D printed with 50% β-TCP and 50% PCL. The pBMPCs were harvested, isolated, expanded, and differentiated into osteoblasts. Cells were seeded into the scaffolds and constructs were incubated in a rotational oxygen-permeable bioreactor system for 14 days. Six 2- × 2-cm defects were created in each mandible (N = 2 minipigs). In total, 6 constructs were placed within defects and 6 defects were used as controls (unseeded scaffolds, n = 3; empty defects, n = 3). Eight weeks after surgery, specimens were harvested and analyzed by hematoxylin and eosin (H&E), 4',6-diamidino-2-phenylindole (DAPI), and CD31 staining. Analysis included cell counts, bone penetration, and angiogenesis at the center of the specimens. All specimens (N = 12) showed bone formation similar to native bone at the periphery. Of 6 constructs, 4 exhibited bone formation in the center. Histomorphometric analysis of the H&E-stained sections showed an average of 22.1% of bone in the center of the constructs group compared with 1.87% in the unseeded scaffolds (P < .05). The 2 remaining constructs, which did not display areas of mature bone in the center, showed massive cell penetration depth by DAPI staining, with an average of 2,109 cells/0.57 mm(2) in the center compared with 1,114 cells/0.57 mm(2) in the controls (P < .05). CD31 expression was greater in the center of the constructs compared with the unseeded scaffolds (P < .05). 3D printed β-TCP and PCL scaffolds seeded with pBMPCs and implanted early into porcine mandibular defects display good bone penetration depth. Further study with a larger sample and larger bone defects should be performed before human applications. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Agreement Between Local and Global Measurements of the London Penetration Depth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippman, Thomas M.; Kalisky, Beena; Kim, Hyunsoo
Recent measurements of the superconducting penetration depth in Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} appeared to disagree on the magnitude and curvature of {delta}{lambda}{sub ab}(T), even near optimal doping. These measurements were carried out on different samples grown by different groups. To understand the discrepancy, we use scanning SQUID susceptometry and a tunnel diode resonator to measure the penetration depth in a single sample. The penetration depth observed by the two techniques is identical with no adjustments. We conclude that any discrepancies arise from differences between samples, either in growth or crystal preparation.
Steuperaert, Margo; Falvo D'Urso Labate, Giuseppe; Debbaut, Charlotte; De Wever, Olivier; Vanhove, Christian; Ceelen, Wim; Segers, Patrick
2017-11-01
The intraperitoneal (IP) administration of chemotherapy is an alternative treatment for peritoneal carcinomatosis, allowing for higher intratumor concentrations of the cytotoxic agent compared to intravenous administration. Nevertheless, drug penetration depths are still limited to a few millimeters. It is thus necessary to better understand the limiting factors behind this poor penetration in order to improve IP chemotherapy delivery. By developing a three-dimensional computational fluid dynamics (CFD) model for drug penetration in a tumor nodule, we investigated the impact of a number of key parameters on the drug transport and penetration depth during IP chemotherapy. Overall, smaller tumors showed better penetration than larger ones, which could be attributed to the lower IFP in smaller tumors. Furthermore, the model demonstrated large improvements in penetration depth by subjecting the tumor nodules to vascular normalization therapy, and illustrated the importance of the drug that is used for therapy. Explicitly modeling the necrotic core had a limited effect on the simulated penetration. Similarly, the penetration depth remained virtually constant when the Darcy permeability of the tissue changed. Our findings illustrate that the developed parametrical CFD model is a powerful tool providing more insight in the drug transport and penetration during IP chemotherapy.
Theoretical analysis of nonnuniform skin effects on drawdown variation
NASA Astrophysics Data System (ADS)
Chen, C.-S.; Chang, C. C.; Lee, M. S.
2003-04-01
Under field conditions, the skin zone surrounding the well screen is rarely uniformly distributed in the vertical direction. To understand such non-uniform skin effects on drawdown variation, we assume the skin factor to be an arbitrary, continuous or piece-wise continuous function S_k(z), and incorporate it into a well hydraulics model for constant rate pumping in a homogeneous, vertically anisotropic, confined aquifer. Solutions of depth-specific drawdown and vertical average drawdown are determined by using the Gram-Schmidt method. The non-uniform effects of S_k(z) in vertical average drawdown are averaged out, and can be represented by a constant skin factor S_k. As a result, drawdown of fully penetrating observation wells can be analyzed by appropriate well hydraulics theories assuming a constant skin factor. The S_k is the vertical average value of S_k(z) weighted by the well bore flux q_w(z). In depth-specific drawdown, however, the non-uniform effects of S_k(z) vary with radial and vertical distances, which are under the influence of the vertical profile of S_k(z) and the vertical anisotropy ratio, K_r/K_z. Therefore, drawdown of partially penetrating observation wells may reflect the vertical anisotropy as well as the non-uniformity of the skin zone. The method of determining S_k(z) developed herein involves the use of q_w(z) as can be measured with the borehole flowmeter, and K_r/K_z and S_k as can be determined by the conventional pumping test.
Munition Penetration Depth Prediction: SERDP SEED Project MR 2629
2017-08-01
ER D C/ CR RE L TR -1 7- 12 Strategic Environmental Research and Development Program (SERDP) Munition Penetration-Depth Prediction...release; distribution is unlimited. The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and... Research and Development Program (SERDP) ERDC/CRREL TR-17-12 August 2017 Munition Penetration-Depth Prediction SERDP SEED Project MR-2629 Arnold J
Box simulations of rotating magnetoconvection. Effects of penetration and turbulent pumping
NASA Astrophysics Data System (ADS)
Ziegler, U.; Rüdiger, G.
2003-04-01
Various effects of penetration in rotating magnetoconvection are studied by means of three-dimensional numerical simulations employing the code NIRVANA. A local, 2-layer model is applied dividing the computational domain (which is a rectangular box placed tangentially on a sphere at latitude 45deg) in an unstable polytropic region on top of a stable polytropic region. Different realizations of convection are examined parameterized by Taylor numbers Ta=0,6 x 104, 6x 105 and magnetic field strengths β = 5,50,500,5000,infty . We find a rather distinctive behavior of the penetration depth Delta on the system parameters (Ta,β). In non-rotating convection Delta is a monotonically decreasing function of β-1 which is due to magnetic quenching effects. Also, penetration is subject to rotational quenching, i.e. Delta is reduced for increasing rotation rate. In the intermediate regime of (Ta,β), the effects of rotation and magnetic field on Delta do not simply add (see Fig. 3). We find, nevertheless, a very strong reduction of the penetration depth of overshooting turbulence by both rotation and magnetism. Penetrative convection is closely associated with the mixing of a passive scalar quantity advected with the flow. In the long term, the tracer material penetrates significantly deeper into the stable layer than suggested by Delta which is due to the cumulative effect of isolated, fast-moving plumes. In case of a weak magnetic field, penetrative convection also serves to ensure a downward transport of magnetic flux by turbulent pumping with an average rate gammaz ~ -7x 10-3 measured in units of the sound speed at the top z-boundary. For larger magnetic fields the pumping effect is quenched and even changes sign in the convection zone. This effect is suggested as being due to the effect of ``turbulent buoyancy'' which in density-stratified media transports a given magnetic field upwards if it is not too strong (Kichatinov & Rüdiger \\cite{Kichatinov92}).
NASA Astrophysics Data System (ADS)
Li, Lang-quan; Huang, Wei; Yan, Li; Li, Shi-bin
2017-10-01
The dual transverse injection system with a front hydrogen porthole and a rear air porthole arranged in tandem is proposed, and this is a realistic approach for mixing enhancement and penetration improvement of transverse injection in a scramjet combustor. The influence of this dual transverse injection system on mixing characteristics has been evaluated numerically based on grid independency analysis and code validation. The numerical approach employed in the current study has been validated against the available experimental data in the open literature, and the predicted wall static pressure distributions show reasonable agreement with the experimental data for the cases with different jet-to-crossflow pressure ratios. The obtained results predicted by the three-dimensional Reynolds-average Navier - Stokes (RANS) equations coupled with the two equation k-ω shear stress transport (SST) turbulence model show that the air pothole has an great impact on penetration depth and mixing efficiency, and the effect of air jet on flow field varies with different values of the aspect ratio. The air porthole with larger aspect ratio can increase the fuel penetration depth. However, when the aspect ratio is relatively small, the fuel penetration depth decreases, and even smaller than that of the single injection system. At the same time, the air pothole has a highly remarkable improvement on mixing efficiency, especially in the near field. The smaller the aspect ratio of the air porthole is, the higher the mixing efficiency in the near field is. This is due to its larger circulation in the near field. The dual injection system owns more losses of stagnation pressure than the single injection system.
NASA Technical Reports Server (NTRS)
Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)
1992-01-01
A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.
Slab Penetration vs. Slab Stagnation: Mantle Reflectors as an Indicator
NASA Astrophysics Data System (ADS)
Okeler, A.; Gu, Y. J.; Schultz, R.; Contenti, S. M.
2011-12-01
Subducting oceanic lithosphere along convergent margins may stagnate near the base of the upper mantle or penetrate into the lower mantle. These dynamic processes cause extensive thermal and compositional variations, which can be observed in terms of impedance contrast (reflectivity) and topography of mantle transition zone (MTZ) discontinuities, i.e., 410- and 660-km discontinuities. In this study, we utilize ~ 15000 surface-reflected shear waves (SS) and their precursory arrivals (S410S and S660S) to analyze subduction related deformations on mantle reflectivity structure. We apply pre-stack, time-to-depth migration technique to SS precursors, and move weak underside reflections using PREM-predicted travel-time curves. Common Mid-point gathers are formed to investigate structure under the western Pacific, south America, and Mediterranean convergent boundaries. In general, mantle reflectivity structures are consistent with previous seismic tomography models. In regions of slab penetration (e.g., southern Kurile arc, Aegean Sea), our results show 1) a substantial decrease in S660S amplitude, and 2) strong lower mantle reflector(s) at ~ 900 km depth. These reflective structures are supported by zones of high P and S velocities extending into the lower mantle. Our 1-D synthetic simulations suggest that the decreasing S660S amplitudes are, at least partially, associated with shear wave defocusing due to changes in reflector depth (by ±20 km) within averaging bin. Assuming a ~500 km wide averaging area, a dipping reflector with 6-8 % slope can reduce the amplitude of a SS precursor by ~50%. On the other hand, broad depressions with strong impedance contrast at the base of the MTZ characterize the regions of slab stagnation, such as beneath the Tyrrhenian Sea and northeastern China. For the latter region, substantial topography on the 660-km discontinuity west of the Wadati-Benioff zone suggests that the stagnant part of the Pacific plate across Honshu arc is not nearly as flat as previously suggested.
Maps and documentation of seismic CPT soundings in the central, eastern, and western United States
Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.
2010-01-01
Nine hundred twenty seven seismic cone penetration tests (CPT) in a variety of geologic deposits and geographic locations were conducted by the U.S. Geological Survey (USGS) primarily between 1998 and 2008 for the purpose of collecting penetration test data to evaluate the liquefaction potential of different types of surficial geologic deposits (table 1). The evaluation is described in Holzer and others (in press). This open-file report summarizes the seismic CPT and geotechnical data that were collected for the evaluation, outlines the general conditions under which the data were acquired, and briefly describes the geographic location of each study area and local geologic conditions. This report also describes the field methods used to obtain the seismic CPT data and summarizes the results of shear-wave velocities measurements at 2-m intervals in each sounding. Although the average depth of the 927 soundings was 18.5 m, we estimated a time-averaged shear-wave velocity to depths of 20 m and 30 m, VS20 and VS30, respectively, for soundings deeper than 10 m and 20 m. Soil sampling also was selectively conducted in many of the study areas at representative seismic CPT soundings. These data are described and laboratory analyses of geotechnical properties of these samples are summarized in table 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E Nazaretski; J Thibodaux; I Vekhter
2011-12-31
We report the local measurements of the magnetic penetration depth in a superconducting Nb film using magnetic force microscopy (MFM). We developed a method for quantitative extraction of the penetration depth from single-parameter simultaneous fits to the lateral and height profiles of the MFM signal, and demonstrate that the obtained value is in excellent agreement with that obtained from the bulk magnetization measurements.
In-plane magnetic penetration depth of superconducting CaKFe 4 As 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khasanov, Rustem; Meier, William R.; Wu, Yun
Here, the temperature dependence of the in-plane magnetic penetration depth (λ ab) in an extensively characterized sample of superconducting CaKFe 4As 4(T c≃35K) was investigated using muon-spin rotation (μSR). A comparison of λ –2 ab(T) measured by μSR with the one inferred from angle-resolved photoemission spectroscopy (ARPES) data confirms the presence of multiple gaps at the Fermi level. An agreement between μSR and ARPES requires the presence of additional bands, which are not resolved by ARPES experiments. These bands are characterized by small superconducting gaps with an average zero-temperature value of Δ 0=2.4(2)meV. Our data suggest that in CaKFe 4Asmore » 4 the s ± order parameter symmetry acquires a more sophisticated form by allowing a sign change not only between electron and hole pockets, but also within pockets of similar type.« less
In-plane magnetic penetration depth of superconducting CaKFe 4 As 4
Khasanov, Rustem; Meier, William R.; Wu, Yun; ...
2018-04-09
Here, the temperature dependence of the in-plane magnetic penetration depth (λ ab) in an extensively characterized sample of superconducting CaKFe 4As 4(T c≃35K) was investigated using muon-spin rotation (μSR). A comparison of λ –2 ab(T) measured by μSR with the one inferred from angle-resolved photoemission spectroscopy (ARPES) data confirms the presence of multiple gaps at the Fermi level. An agreement between μSR and ARPES requires the presence of additional bands, which are not resolved by ARPES experiments. These bands are characterized by small superconducting gaps with an average zero-temperature value of Δ 0=2.4(2)meV. Our data suggest that in CaKFe 4Asmore » 4 the s ± order parameter symmetry acquires a more sophisticated form by allowing a sign change not only between electron and hole pockets, but also within pockets of similar type.« less
Exploring infrared sensoring for real time welding defects monitoring in GTAW.
Alfaro, Sadek C A; Franco, Fernand Díaz
2010-01-01
This paper presents an evaluation of an infrared sensor for monitoring the welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose of the study is to develop a real time system control. It is known that the arc welding pool temperature is related to the weld penetration depth; therefore, by monitoring the temperature, the arc pool temperature and penetration depth are also monitored. Various experiments were performed; in some of them the current was varied and the temperature changes were registered, in others, defects were induced throughout the path of the weld bead for a fixed current. These simulated defects resulted in abrupt changes in the average temperature values, thus providing an indication of the presence of a defect. The data has been registered with an acquisition card. To identify defects in the samples under infrared emissions, the timing series were analyzed through graphics and statistic methods. The selection of this technique demonstrates the potential for infrared emission as a welding monitoring parameter sensor.
Exploring Infrared Sensoring for Real Time Welding Defects Monitoring in GTAW
Alfaro, Sadek C. A.; Franco, Fernand Díaz
2010-01-01
This paper presents an evaluation of an infrared sensor for monitoring the welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose of the study is to develop a real time system control. It is known that the arc welding pool temperature is related to the weld penetration depth; therefore, by monitoring the temperature, the arc pool temperature and penetration depth are also monitored. Various experiments were performed; in some of them the current was varied and the temperature changes were registered, in others, defects were induced throughout the path of the weld bead for a fixed current. These simulated defects resulted in abrupt changes in the average temperature values, thus providing an indication of the presence of a defect. The data has been registered with an acquisition card. To identify defects in the samples under infrared emissions, the timing series were analyzed through graphics and statistic methods. The selection of this technique demonstrates the potential for infrared emission as a welding monitoring parameter sensor. PMID:22219697
NASA Astrophysics Data System (ADS)
Cooper, J. F.; Papitashvili, N. E.
2016-12-01
The surfaces of Mercury, the Moon, the moons of Mars, the asteroids, and other small bodies of the inner solar system have been directly weathered for millions to billions of years by solar wind, energetic particle, and solar ultraviolet irradiation. Surface regolith layers to meters in depth are formed by impacts of smaller bodies and micrometeoroids. Sample return missions to small bodies, such as Osiris-REx to the asteroid Bennu, are intended to recover information on the early history of solar system formation, but must contend with the long-term space weathering effects that perturb the original structure and composition of the affected bodies. Solar wind plasma ions at keV energies penetrate only to sub-micron depths, while more energetic solar & heliospheric particles up to MeV energies reach centimeter depths, and higher-energy galactic cosmic rays to GeV energies fully penetrate through the impact regolith. The weathering effects vary with energy and penetration depth from ion implantation and erosive sputtering at solar wind energies to chemical and structural evolution driven by MeV - GeV particles. The energy versus depth dependence of such effects is weighted by the differential flux distributions of the incident particles as measured near the orbits of the affected bodies over long periods of time. Our Virtual Energetic Particle Observatory (http://vepo.gsfc.nasa.gov/) enables simultaneous access to multiple data sets from 1973 through the present in the form of differential flux spectral plots and downloadable data tables. The most continuous VEPO coverage exists for geospace data sources at 1 AU from the Interplanetary Monitoring Platform 8 (IMP-8), launched in 1973, through the present 1-AU constellation including the ACE, WIND, SOHO, and Stereo-A/B spacecraft. Other mission data, e.g. more occasionally from Pioneer-10/11, Helios-1/2, Voyager-1/2, and Ulysses, extend heliospheric coverage from the orbit of Mercury to that of Mars, the asteroid belt, and beyond. Using data from the VEPO services, we show the time-averaged spectra of protons and helium during 1973 - 2016 from Mercury to Mars. The main contributors on solar cycle time scales at keV to MeV energies are large solar flare and ICME events. These time-averaged spectra can then be used for space weathering models of the inner solar system.
Crater Morphology of Engineered and Natural Impactors into Planetary Ice
NASA Astrophysics Data System (ADS)
Danner, M.; Winglee, R.; Koch, J.
2017-12-01
Crater morphology of engineered impactors, such as those proposed for the Europa Kinetic Ice Penetrator (EKIP) mission, varies drastically from that of natural impactors (i.e. Asteroids, meteoroids). Previous work of natural impact craters in ice have been conducted with the intent to bound the thickness of Europa's ice crust; this work focuses on the depth, size, and compressional effects caused by various impactor designs, and the possible effects to the Europan surface. The present work details results from nine projectiles that were dropped on the Taku Glacier, AK at an altitude of 775 meters above surface; three rocks to simulate natural impactors, and six iterations of engineered steel and aluminum penetrator projectiles. Density measurements were taken at various locations within the craters, as well as through a cross section of the crater. Due to altitude restrictions, projectiles remained below terminal velocity. The natural/rock impact craters displayed typical cratering characteristics such as shallow, half meter scale depth, and orthogonal compressional forcing. The engineered projectiles produced impact craters with depths averaging two meters, with crater widths matching the impactor diameters. Compressional waves from the engineered impactors propagated downwards, parallel to direction of impact. Engineered impactors create significantly less lateral fracturing than natural impactors. Due to the EKIP landing mechanism, sampling of pristine ice closer to the lander is possible than previously thought with classical impact theory. Future work is planned to penetrate older, multiyear ice with higher velocity impacts.
Vadhana, Sekar; Latha, Jothi; Velmurugan, Natanasabapathy
2015-05-01
This study evaluated the penetration depth of 2% chlorhexidine digluconate (CHX) into root dentinal tubules and the influence of passive ultrasonic irrigation (PUI) using a confocal laser scanning microscope (CLSM). Twenty freshly extracted anterior teeth were decoronated and instrumented using Mtwo rotary files up to size 40, 4% taper. The samples were randomly divided into two groups (n = 10), that is, conventional syringe irrigation (CSI) and PUI. CHX was mixed with Rhodamine B dye and was used as the final irrigant. The teeth were sectioned at coronal, middle and apical levels and viewed under CLSM to record the penetration depth of CHX. The data were statistically analyzed using Kruskal-Wallis and Mann-Whitney U tests. The mean penetration depths of 2% CHX in coronal, middle and apical thirds were 138 µm, 80 µm and 44 µm in CSI group, respectively, whereas the mean penetration depths were 209 µm, 138 µm and 72 µm respectively in PUI group. Statistically significant difference was present between CSI group and PUI group at all three levels (p < 0.01 for coronal third and p < 0.001 for middle and apical thirds). On intragroup analysis, both groups showed statistically significant difference among three levels (p < 0.001). Penetration depth of 2% CHX into root dentinal tubules is deeper in coronal third when compared to middle and apical third. PUI aided in deeper penetration of 2% CHX into dentinal tubules when compared to conventional syringe irrigation at all three levels.
Measurement of in-situ strength using projectile penetration: Tests of a new launching system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hearst, J.R.; Newmark, R.L.; Charest, J.A.
1987-10-01
The Lawrence Livermore National Laboratory has a continuing need to measure rock strength in situ, both for simple prediction of cavity size, and as input to computational models. In a previous report we compared two methods for measuring formation strength in situ: projectile penetration and a cone penetrometer. We determined that the projectile method was more promising for application to our large-diameter (2-4-m) hole environment. A major practical problem has been the development of a launcher and an apparatus for measuring depth of penetration that would be suitable for use in large-diameter holes. We are developing a gas-gun launcher systemmore » that will be capable of measuring both depth of penetration and deceleration of a reusable projectile. The current version of the launcher is trailer-mounted for testing at our Nevada Test Site (NTS) in tunnels and outcrops, but its design is such that it can be readily adapted for emplacement hole use. We test the current launcher on 60-cm cubes of gypsum cement, mixed to provie a range of densities (1.64 to 2.0 g/cc) and strengths (3 to 17 MPa). We compared depth of penetration of a 84-g projectile from a ''Betsy'' seismic gun - traveling on the order of 500 m/s - with the depth of penetration of a 13-kg projectile from the gas gun - traveling on the order of 30 m/s. For projectiles with the same nose size and shape, impacting targets of approximately constant strength, penetration depth was proportional to projectile kinetic energy. The ratio of kinetic energy to penetration depth was approximately proportional to target strength. Tests in tuffs with a wide range of strengths at NTS gave a similar linear relationship between the ratio of kinetic energy to penetration and target strength, and also a linear relationship between deceleration and strength. It appears that penetration can indeed be used as a semiquantitative measure of strength.« less
Penetration tests to study the mechanical tribological properties of chisel type knife
NASA Astrophysics Data System (ADS)
Vlăduţoiu, L.; Chişiu, G.; Andrei, T.; Predescu, A.; Muraru, C.; Vlăduţ, V.
2017-02-01
The goal of this study was to analyze the behaviour of chisel knife type penetration in a certain type of sand. A series of penetration tests were carried out with chisel knife type, the answer to penetration depending mainly on nature, shape, size of knife and operating parameters such as speed, depth and working conditions. Tests were conducted in work conditions with wet sand and dry sand and determined force of resistance to penetration of the chisel knife type to a certain depth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambers, C.P.
1993-03-01
Sphalerite is associated with very well crystallized kaolinite (VWCK) in geodes, siderite nodules and coal cleats in the Illinois Basin and allows estimation of the temperature of formation of the VWCK using fluid inclusions. The approximate depth of kaolinite growth and the relative timing of coal fracturing can then be ascertained. Sphalerite associated with VWCK was extracted from Mississippian geodes collected near Keokuk, Iowa, and from Pennsylvanian siderite nodules and coal collected in SW Indiana. Inclusions in the sphalerite consist of VWCK; large, negative crystal, two-phase fluid inclusions; small, fracture-related, two-phase fluid inclusions; and organic inclusions. Homogenization temperatures of 89more » C [+-] 10, 115 C [+-] 15, 89 C [+-] 5 were measured for the two-phase inclusions in sphalerite from the geodes, siderite nodules and coal, respectively. Freezing temperatures of the inclusions in the geode and siderite nodule sphalerite were measured at [minus]13.5 C [+-] 0.5 and [minus]9.4 C [+-] 0.2, indicating moderate salinity. Using a geothermal gradient range of 23--36 C/km and an average surface temperature of 20 C, kaolinite and sphalerite probably grew at depths of about 1.9 to 4.1 km. In SW Indiana, VWCK occurs in vertical, non-penetrative joints in vitrinite layers. Penetrative joint sets rarely contain VWCK. At nearly all of the 28 sites studied, two sets of barren cleats occur oriented N10W to NSE and N80E to N95E. The orientation of barren, penetrative cleats shows that the maximum horizontal stress rotated CW from the earlier stress field. Rare VWCK in the late cleats suggests they also formed at depth after the thermal maxima.« less
Morphology of meteoroid and space debris craters on LDEF metal targets
NASA Technical Reports Server (NTRS)
Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.
1994-01-01
We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.
Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E
2015-05-01
In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.
Geohydrology of volcanic tuff penetrated by test well UE-25b#1, Yucca Mountain, Nye County, Nevada
Lahoud, R.G.; Lobmeyer, D.H.; Whitfield, M.S.
1984-01-01
Test well UE-25bNo1, located on the east side of Yucca Mountain in the southwestern part of the Nevada Test Site, was drilled to a total depth of 1,220 meters and hydraulically tested as part of a program to evaluate the suitability of Yucca Mountain as a nuclear-waste repository. The well penetrated almost 46 meters of alluvium and 1,174 meters of Tertiary volcanic tuffs. The composite hydraulic head for aquifers penetrated by the well was 728.9 meters above sea level (471.4 meters below land surface) with a slight decrease in loss of hydraulic head with depth. Average hydraulic conductivities for stratigraphic units determined from pumping tests, borehole-flow surveys, and packer-injection tests ranged from less than 0.001 meter per day for the Tram Member of the Crater Flat Tuff to 1.1 meters per day for the Bullfrog Member of the Crater Flat Tuff. The small values represented matrix permeability of unfractured rock; the large values probably resulted from fracture permeability. Chemical analyses indicated that the water is a soft sodium bicarbonate type, slightly alkaline, with large concentrations of dissolved silica and sulfate. Uncorrected carbon-14 age dates of the water were 14,100 and 13,400 years. (USGS)
Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide.
Yang, Lin; Zhang, Qian; Cui, Zhiguang; Gerboth, Matthew; Zhao, Yang; Xu, Terry T; Walker, D Greg; Li, Deyu
2017-12-13
Thermal transport in amorphous silicon dioxide (a-SiO 2 ) is traditionally treated as random walks of vibrations owing to its greatly disordered structure, which results in a mean free path (MFP) approximately the same as the interatomic distance. However, this picture has been debated constantly and in view of the ubiquitous existence of thin a-SiO 2 layers in nanoelectronic devices, it is imperative to better understand this issue for precise thermal management of electronic devices. Different from the commonly used cross-plane measurement approaches, here we report on a study that explores the in-plane thermal conductivity of double silicon nanoribbons with a layer of a-SiO 2 sandwiched in-between. Through comparing the thermal conductivity of the double ribbon samples with that of corresponding single ribbons, we show that thermal phonons can ballistically penetrate through a-SiO 2 of up to 5 nm thick even at room temperature. Comprehensive examination of double ribbon samples with various oxide layer thicknesses and van der Waals bonding strengths allows for extraction of the average ballistic phonon penetration depth in a-SiO 2 . With solid experimental data demonstrating ballistic phonon transport through a-SiO 2 , this work should provide important insight into thermal management of electronic devices.
NASA Astrophysics Data System (ADS)
Mustafa, F. H.; Jaafar, M. S.
2013-03-01
The determination of the penetration depth of laser light with different sources wavelengths into human skin is one of the preconditions of improving the photodynamic therapy (PDT) procedure for skin diseases. This research is planned to explore which wavelengths would be the most advantageous for use in PDT for superficial skin diseases, and to demonstrate that the red laser exposure of 635 nm wavelength is a suitable choice for all skin types in PDT. A realistic skin model (RSM) in the Advanced Systems Analysis Program (ASAP) software has been used to create different types of skin and to simulate laser sources with wavelengths of 635, 532, 405, 365, 308 and 295 nm. The penetration depths of different kinds of laser into the skin as well as their transmission have been calculated. Comparison of the depth of penetration of different wavelengths for all types of skin has been made. A large variation is found in the penetration depth of laser lights in all skin types. The transmission of lasers on the epidermis and dermis in different skin types occur, and the transmission dose changes significantly with the skin depths. The results of the present study provide a basis for understanding the penetration depth of laser in various skin colors and the responses of the skin to laser to improve dose-drug activation in PDT. The differences in spectral transmission between the red laser and the other lasers suggest that the red laser could be a suitable laser for all skin types.
Photoacoustic and ultrasound imaging of cancellous bone tissue.
Yang, Lifeng; Lashkari, Bahman; Tan, Joel W Y; Mandelis, Andreas
2015-07-01
We used ultrasound (US) and photoacoustic (PA) imaging modalities to characterize cattle trabecular bones. The PA signals were generated with an 805-nm continuous wave laser used for optimally deep optical penetration depth. The detector for both modalities was a 2.25-MHz US transducer with a lateral resolution of ~1 mm at its focal point. Using a lateral pixel size much larger than the size of the trabeculae, raster scanning generated PA images related to the averaged values of the optical and thermoelastic properties, as well as density measurements in the focal volume. US backscatter yielded images related to mechanical properties and density in the focal volume. The depth of interest was selected by time-gating the signals for both modalities. The raster scanned PA and US images were compared with microcomputed tomography (μCT) images averaged over the same volume to generate similar spatial resolution as US and PA. The comparison revealed correlations between PA and US modalities with the mineral volume fraction of the bone tissue. Various features and properties of these modalities such as detectable depth, resolution, and sensitivity are discussed.
Magnetic field penetration in niobium- and vanadium-based Josephson junctions
NASA Astrophysics Data System (ADS)
Cucolo, A. M.; Pace, S.; Vaglio, R.; di Chiara, A.; Peluso, G.; Russo, M.
1983-02-01
Measurements on the temperature dependence of the magnetic field penetration in Nb-NbxOy-Pb and V-VxOy-Pb Josephson junctions have been performed. Results on the zero-temperature penetration depth in niobium films are far above the bulk values although consistent with other measurements on junctions reported in the literature. For vanadium junctions anomalously large penetration depth values are obtained at low temperatures. Nevertheless, the temperature dependence is in reasonable agreement with the local dirty limit model.
Preservation and storage of prepared ballistic gelatine.
Mattijssen, E J A T; Alberink, I; Jacobs, B; van den Boogaard, Y
2016-02-01
The use of ballistic gelatine, generally accepted as a human muscle tissue simulant in wound ballistic studies, might be improved by adding a preservative (Methyl 4-hydroxybenzoate) which inhibits microbial growth. This study shows that replacing a part of the gelatine powder by the preservative does not significantly alter the penetration depth of projectiles. Storing prepared blocks of ballistic gelatine over time decreased the penetration depth of projectiles. Storage of prepared gelatine for 4 week already showed a significant effect on the penetration depth of projectiles. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong
2015-03-01
We investigated the performance of endoscopic diffuse optical spectroscopy probes with circular or linear fiber arrangements for tubular organ cancer detection. Probe performance was measured by penetration depth. A Monte Carlo model was employed to simulate light transport in the hollow cylinder that both emits and receives light from the inner boundary of the sample. The influence of fiber configurations and tissue optical properties on penetration depth was simulated. The results show that under the same condition, probes with circular fiber arrangement penetrate deeper than probes with linear fiber arrangement, and the difference between the two probes' penetration depth decreases with an increase in the 'distance between source and detector (SD)' and the radius of the probe. Other results show that the penetration depths and their differences both decrease with an increase in the absorption coefficient and the reduced scattering coefficient but remain constant with changes in the anisotropy factor. Moreover, the penetration depth was more affected by the absorption coefficient than the reduced scattering coefficient. It turns out that in NIR band, probes with linear fiber arrangements are more appropriate for diagnosing superficial cancers, whereas probes with circular fiber arrangements should be chosen for diagnosing adenocarcinoma. But in UV-VIS band, the two probe configurations exhibit nearly the same. These results are useful in guiding endoscopic diffuse optical spectroscopy-based diagnosis for esophageal, cervical, colorectal and other cancers.
Aydın, Zeliha Uğur; Özyürek, Taha; Keskin, Büşra; Baran, Talat
2018-04-12
The aim of the present study was to compare the effect of chitosan nanoparticle, QMix, and 17% EDTA on the penetrability of a calcium silicate-based sealer into dentinal tubules using a confocal laser scanning microscope (CLSM). Sixty mandibular premolar teeth were selected and randomly divided into three groups (n = 20) before root canal preparation according to the solution used in the final rinse protocol: chitosan, QMix, and EDTA groups. Twenty teeth of each group were filled with a TotalFill BC sealers' single gutta-percha cone and with 0.1% rhodamine B. The specimens were horizontally sectioned at 3 and 5 mm from the apex, and the slices were analyzed in CLSM (4×). Total percentage and maximum depth of sealer penetration were measured using confocal laser scanning microscopy with using Image J analysis software. Dentinal tubule's penetration depth, percentage, and area were measured using imaging software. Kruskal-Wallis test was used for statistical analysis. The level of significance was set at 5%. Results of Kruskal-Wallis analysis showed that there was a significant difference in the percentage and depth of sealer penetration among all groups at 3 and 5 mm level sections (P < 0.05). Within the groups, the minimum sealer penetration depth was recorded for chitosan nanoparticle group. Greater depth of sealer penetration was recorded at 5 mm as compared to 3 mm in all the groups. Within the limitation of the present study, it can be concluded that QMix and EDTA promoted sealer penetration superior to that achieved by chitosan nanoparticle.
NASA Astrophysics Data System (ADS)
Subashini, L.; Vasudevan, M.
2012-02-01
Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.
Hatirli, Hüseyin; Yasa, Bilal; Yasa, Elif
2018-01-30
The aim of the study was to evaluate microleakage and the penetration-depths of different fissure-sealant materials applied with/without enameloplasty after cyclic aging. One-hundred-sixty mandibular molars were divided into non-invasive and enameloplasty preparation groups and eight material subgroups, including: flowable composites (microhyrid, nanohybrid, and nanofilled), three resin-based (unfilled, filled, and highly-filled), a giomer-based, and a glass-ionomer-based fissure sealant. Specimens were subjected to two-year cyclic chewing and brushing simulation. After 5% basic-fuchsin dye penetration, specimens were sectioned and scored under stereomicroscope. Kruskal-Wallis statistical data showed that preparation type significantly affected the penetration of all tested materials (p<0.05), but not significantly affected microleakage (p>0.05). Flowable composites showed the best and the glass-ionomer-based sealant showed the worst penetration and microleakage. Slight preparation of fissures is not important in microleakage. However, enameloplasty significantly enhanced the depth of penetration of the sealants. Flowable composites offer promising results at the fissure sealing.
Spatial Distribution of Trehalose Dihydrate Crystallization in Tablets by X-ray Diffractometry.
Thakral, Naveen K; Yamada, Hiroyuki; Stephenson, Gregory A; Suryanarayanan, Raj
2015-10-05
Crystallization of trehalose dihydrate (C12H22O11·2H2O) was induced by storing tablets of amorphous anhydrous trehalose (C12H22O11) at 65% RH (RT). Our goal was to evaluate the advantages and limitations of two approaches of profiling spatial distribution of drug crystallization in tablets. The extent of crystallization, as a function of depth, was determined in tablets stored for different time-periods. The first approach was glancing angle X-ray diffractometry, where the penetration depth of X-rays was modulated by the incident angle. Based on the mass attenuation coefficient of the matrix, the depth of X-ray penetration was calculated as a function of incident angle, which in turn enabled us to "calculate" the extent of crystallization to different depths. In the second approach, the tablets were split into halves and the split surfaces were analyzed directly. Starting from the tablet surface and moving toward the midplane, XRD patterns were collected in 36 "regions", in increments of 0.05 mm. The results obtained by the two approaches were, in general, in good agreement. Additionally, the results obtained were validated by determining the "average" crystallization in the entire tablet by using synchrotron radiation in the transmission mode. The glancing angle method could detect crystallization up to ∼650 μm and had a "surface bias". Being a nondestructive technique, this method will permit repeated analyses of the same tablet at different time points, for example, during a stability study. However, split tablet analyses, while a "destructive" technique, provided comprehensive and unbiased depth profiling information.
Pahuja, Natasha; Shetty, Rohit; Jayadev, Chaitra; Nuijts, Rudy; Hedge, Bharath; Arora, Vishal
2015-01-01
To compare the penetration of riboflavin using a microscope-integrated real time spectral domain optical coherence tomography (ZEISS OPMI LUMERA 700 and ZEISS RESCAN 700) in keratoconus patients undergoing accelerated collagen crosslinking (ACXL) between epithelium on (epi-on) and epithelium off (epi-off). Intraoperative images were obtained during each of the procedures. Seven keratoconus patients underwent epi-on ACXL and four underwent epi-off ACXL. A software tool was developed using Microsoft.NET and Open Computer Vision (OpenCV) libraries for image analysis. Pre- and postprocedure images were analyzed for changes in the corneal hyperreflectance pattern as a measure of the depth of riboflavin penetration. The mean corneal hyperreflectance in the epi-on group was 12.97 ± 1.49 gray scale units (GSU) before instillation of riboflavin and 14.46 ± 2.09 GSU after AXCL (P = 0.019) while in the epi-off group it was 11.43 ± 2.68 GSU and 16.98 ± 8.49 GSU, respectively (P = 0.002). The average depth of the band of hyperreflectance in the epi-on group was 149.39 ± 15.63 microns and in the epi-off group it was 191.04 ± 32.18 microns. This novel in vivo, real time imaging study demonstrates riboflavin penetration during epi-on and epi-off ACXL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, P.E.; Smartt, H.B.; Johnson, J.A.
1997-12-31
We develop a model of the depth of penetration of the weld pool in gas metal arc welding (GMAW) which demonstrates interaction between the arc, filler wire and weld pool. This model is motivated by the observations of Essers and Walter which suggest a relationship between droplet momentum and penetration depth. A model of gas metal arc welding was augmented to include an improved model of mass transfer and a simple model of accelerating droplets in a plasma jet to obtain the mass and momentum of impinging droplets. The force of the droplets and depth of penetration is correlated bymore » a dimensionless linear relation used to predict weld pool depth for a range of values of arc power and contact tip to workpiece distance. Model accuracy is examined by comparing theoretical predictions and experimental measurements of the pool depth obtained from bead on plate welds of carbon steel in an argon rich shielding gas. Moreover, theoretical predictions of pool depth are compared to the results obtained from the heat conduction model due to Christensen et al. which suggest that in some cases the momentum of impinging droplets is a better indicator of the depth of the weld pool and the presence of a deep, narrow penetration.« less
Prajapati, Deepesh; Nayak, Rashmi; Pai, Deepika; Upadhya, Nagraj; K Bhaskar, Vipin; Kamath, Pujan
2017-01-01
To evaluate the effectiveness of resin infiltration on artificial caries lesion by assessing the depth of resin penetration and the change in microhardness of lesion postinfiltration. Totally 45 human extracted premolars were used to create an artificial demineralized lesion in enamel using demineralizing solution. A total of 15 samples (group I) were infiltrated with resin. The depth of resin penetration was studied using scanning electron microscope (SEM). Other half (n = 30) of samples was equally divided into three subgroups and Vickers hardness number (VHN) values were obtained to measure the surface microhardness as group 11 a-before demineralization, 11 b-after demineralization, IIc-postresin infiltration. Mean depth of penetration in group I was 516.8 urn. There was statistically significant increase in VHN values of demineralized lesion postresin infiltration (independent Student's t-test, p < 0.001). Penetration depth of the resin infiltrant was deep enough to render beneficial effects, while significant increase in microhardness was observed postresin infiltration. Infiltrant used can be considered as a valid treatment option for noncavitated lesions. Prajapati D, Nayak R, Pai D, Upadhya N, Bhaskar VK, Kamath P. Effect of Resin Infiltration on Artificial Caries: An in vitro Evaluation of Resin Penetration and Microhardness. Int J Clin Pediatr Dent 2017;10(3):250-256.
Planetary and Primitive Object Strength Measurements and Sampling Apparatus
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
1997-01-01
We present experimental data and a model for the low-velocity (subsonic, 0 - 1000 m/s) penetration of brittle materials by both solid and hollow (i.e., coring) penetrators. The experiments show that penetration is proportional to momentum/frontal area of the penetrator. Because of the buildup of a cap in front of blunt penetrators, the presence or absence of a streamlined or sharp front end usually has a negligible effect for impact into targets with strength. The model accurately predicts the dependence of penetration depth on the various parameters of the target-penetrator system, as well as the qualitative condition of the target material ingested by a corer. In particular, penetration depth is approximately inversely proportional to the static bearing strength of the target. The bulk density of the target material has only a small effect on penetration, whereas friction can be significant, especially at higher impact velocities, for consolidated materials. This trend is reversed for impacts into unconsolidated materials. The present results suggest that the depth of penetration is a good measure of the strength, but not the density, of a consolidated target. Both experiments and model results show that, if passage through the mouth of a coring penetrator requires initially porous target material to be compressed to less than 26% porosity, the sample collected by the corer will be highly fragmented. If the final porosity remains above 26%, then most materials, except cohesionless materials, such as dry sand, will be collected as a compressed slug of material.
A comparison of the DPSS UV laser ablation characteristic of 1024 and H10F WC-Co
NASA Astrophysics Data System (ADS)
See, Tian Long; Chantzis, Dimitrios; Royer, Raphael; Metsios, Ioannis; Antar, Mohammad; Marimuthu, Sundar
2017-07-01
An investigation on ablation characteristics of 1024 and H10F cobalt cemented tungsten carbide (WC-Co) with a DPSS nanosecond UV laser (50 ns pulse width, 355 nm wavelength, 90 W average power and 10 kHz repetition rate) is presented. The ablation characteristic parameters such as ablation threshold, incubation effect and optical penetration depth were evaluated based on the spot ablation diameter and depth. It was observed that the ablation threshold is significantly influenced by the number of pulses (NOP) and it decreases with increase NOP which is attributed to the incubation effect. Only one ablation region is observed at low laser fluence and an additional molten ablation region is observed at high laser fluence accompanied with cracks. The cracks formation is due to the thermal induced stress and changes in WC microstructure during laser beam irradiation. The crack depth is proportional to the thickness of the molten WC region. The ablation threshold of 1024 WC-Co and H10F WC-Co were found to be Fth1 =4.32 J/cm2 and Fth1 =4.26 J/cm2 respectively. The difference in chemical composition has insignificant effect on the ablation threshold value of the material. The incubation factor and optical penetration depth values of 1024 WC-Co and H10F WC-Co were found to be ξ=0.73, α-1 =411 nm and ξ=0.75, α-1 =397 nm respectively.
Absorption spectra and light penetration depth of normal and pathologically altered human skin
NASA Astrophysics Data System (ADS)
Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.
2007-05-01
A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.
Olimpio, Joseph R.
2000-01-01
Ground-penetrating radar was used to measure the depth and extent of existing and infilled scour holes and previous scour surfaces at seven bridges in New Hampshire from April 1996 to November 1998. Ground-penetrating-radar survey techniques initially were used by the U.S. Geological Survey to study streambed scour at 30 bridges. Sixteen of the 30 bridges were re-surveyed where floods exceeded a 2-year recurrence interval. A 300-megahertz signal was used in the ground-penetrating radar system that penetrated through depths as great as 20 feet of water and as great as 32 feet of streambed materials. Existing scour-hole dimensions, infilled thickness, previous scour surfaces, and streambed materials were detected using ground-penetrating radar. Depths to riprap materials and pier footings were identified and verified with bridge plans. Post data-collection-processing techniques were applied to assist in the interpretation of the data, and the processed data were displayed and printed as line plots. Processing included distance normalization, migration, and filtering but processing was kept to a minimum and some interference from multiple reflections was left in the record. Of the 16 post-flood bridges, 22 ground-penetrating-radar cross sections at 7 bridges were compared and presented in this report. Existing scour holes were detected during 1996 (pre-flood) data collection in nine cross sections where scour depths ranged from 1 to 3 feet. New scour holes were detected during 1998 (post-flood) data collection in four cross sections where scour depths were as great as 4 feet deep. Infilled scour holes were detected in seven cross sections, where depths of infilling ranged from less than 1 to 4 feet. Depth of infilling by means of steel rod and hammer was difficult to verify in the field because of cobble and boulder streambeds or deep water. Previous scour surfaces in streambed materials were identified in 15 cross sections and the depths to these surfaces ranged from 1 to 10 feet below the streambed. Riprap materials or pier footings were identified in all cross sections. Calculated record depths generally agree with bridge plans. Pier footings were exposed at two bridges and steel pile was exposed at one bridge. Exposures were verified by field observations.
NASA Astrophysics Data System (ADS)
Chang, J. S.; Sohn, H. Y.
2012-08-01
Top-blow injection of a gas-solid jet through a circular lance is used in the Mitsubishi Continuous Smelting Process. One problem associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas-solid jet rather than the circular jet was designed in this laboratory. With this new configuration, the solid particles fed through the center tube leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different from that with a circular lance where the solid particles leave the lance at the same high velocity as the gas. In previous cold-model investigations in this laboratory, the effects of the gas velocity, particle feed rate, lance height of the annular lance, and the cross-sectional area of the gas jet were studied and compared with the circular lance. This study examined the effect of the density and size of the solid particles on the penetration behavior of the annular gas-solid jet, which yielded some unexpected results. The variation in the penetration depth with the density of the solid particles at the same mass feed rate was opposite for the circular lance and the annular lance. In the case of the circular lance, the penetration depth became shallower as the density of the solid particles increased; on the contrary, for the annular lance, the penetration depth became deeper with the increasing density of particles. However, at the same volumetric feed rate of the particles, the density effect was small for the circular lance, but for the annular lance, the jets with higher density particles penetrated more deeply. The variation in the penetration depth with the particle diameter was also different for the circular and the annular lances. With the circular lance, the penetration depth became deeper as the particle size decreased for all the feed rates, but with the annular lance, the effect of the particle size was small. The overall results including the previous work indicated that the penetration behavior of an annular jet is much less sensitive to the variations in operating variables than that of a circular jet. Correlation equations for the penetration depth that show good agreements with the measured values have been developed.
Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G
2016-01-01
Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaacs, Sivan, E-mail: sivan.isaacs@gmail.com; Abdulhalim, Ibrahim; NEW CREATE Programme, School of Materials Science and Engineering, 1 CREATE Way, Research Wing, #02-06/08, Singapore 138602
2015-05-11
Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark linemore » is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.« less
Rothschild, Bruce
2017-03-01
Controversy exists regarding possible correlation of periodontal disease with rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Confounding factors may relate to stringency of inflammatory disease diagnosis and the effect of therapeutic intervention for RA on periodontal disease. These factors are investigated in this study. Forty-five individuals with documented RA (n = 15), spondyloarthropathy (n = 15), and calcium pyrophosphate deposition disease (CPPD) (n = 15), from the Hamann-Todd collection of human skeletons compiled from 1912 to 1938, and 15 individuals contemporarily incorporated in the collection were examined for tooth loss, cavity occurrence, average and maximum lingual and buccal depth of space between tooth and bone, periosteal reaction, serpentine bone resorption, abscess formation, and root penetration of the bone surface and analyzed by analysis of variance. Tooth loss was common, but actual number of teeth lost, cavity occurrence, average and maximum lingual and buccal depth of space between tooth and bone, periosteal reaction, serpentine grooving surrounding teeth (considered a sign of inflammation), abscess formation, and root exposure (penetration of bone surface) were indistinguishable among controls and individuals with RA, spondyloarthropathy, and CPPD. Although many factors can affect periodontal disease, presence of inflammatory arthritis does not appear to be one of them. The implication is that dental disease was common in the general population and not necessarily associated with arthritis, at least before the advent of modern rheumatologic medications. As specific diagnosis did not affect prevalence, perhaps current prevalence controversy may relate to current intervention, a subject for further study.
Depth and type of substrate influence the ability of Nasonia vitripennis to locate a host
Frederickx, Christine; Dekeirsschieter, Jessica; Verheggen, François J.; Haubruge, Eric
2014-01-01
Abstract The foraging behaviour of a parasitoid insect species includes the host’s habitat and subsequent location of the host. Habitats substrate, substrate moisture, and light levels can affect the host searching of different species of parasitoids. However, the depth at which parasitoids concentrate their search effort is another important ecological characteristic and plays an important role in locating a host. Here, we investigated the ability of a pupal parasitoid, Nasonia vitripennis Walker (Hymenoptera: Pteromalidae), to penetrate and kill fly pupae located at different depths of the substrate. Three different types of substrate were tested: loam soil, compost, and vermiculite substrate. In both loam soil and compost, all of the parasitism activity was restricted to pupae placed directly on the surface. Parasitism activity in vermiculite showed that the average number of pupae parasitized decreased with depth of substrate. These results suggest that fly pupae situated deeper in the substrate are less subjected to parasitism by N. vitripennis . PMID:25373205
Neutron reflectometry as a tool to study magnetism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felcher, G. P.
1999-09-21
Polarized-neutron specular reflectometry (PNR) was developed in the 1980's as a means of measuring magnetic depth profiles in flat films. Starting from simple profiles, and gradually solving structures of greater complexity, PNR has been used to observe or clarify a variety of magnetic phenomena. It has been used to measure the absolute magnetization of films of thickness not exceeding a few atomic planes, the penetration of magnetic fields in micron-thick superconductors, and the detailed magnetic coupling across non-magnetic spacers in multilayers and superlattices. Although PNR is considered a probe of depth dependent magnetic structure, laterally averaged in the plane ofmore » the film, the development of new scattering techniques promises to enable the characterization of lateral magnetic structures. Retaining the depth-sensitivity of specular reflectivity, off-specular reflectivity may be brought to resolve in-plane structures over nanometer to micron length scales.« less
NASA Astrophysics Data System (ADS)
Yu, Hyeonseung; Lee, Peter; Jo, YoungJu; Lee, KyeoReh; Tuchin, Valery V.; Jeong, Yong; Park, YongKeun
2016-12-01
We demonstrate that simultaneous application of optical clearing agents (OCAs) and complex wavefront shaping in optical coherence tomography (OCT) can provide significant enhancement of penetration depth and imaging quality. OCA reduces optical inhomogeneity of a highly scattering sample, and the wavefront shaping of illumination light controls multiple scattering, resulting in an enhancement of the penetration depth and signal-to-noise ratio. A tissue phantom study shows that concurrent applications of OCA and wavefront shaping successfully operate in OCT imaging. The penetration depth enhancement is further demonstrated for ex vivo mouse ears, revealing hidden structures inaccessible with conventional OCT imaging.
NASA Astrophysics Data System (ADS)
Purohit, Geetanjali; Pattanaik, Anup; Nayak, Pratibindhya
2018-05-01
Anisotropic properties of Sommerfeld coefficient and penetration depth for single crystal NdFeAsO1-xFx has been studied by using modified phenomenological Ginzburg-Landau (GL) theory. In the above two-band superconducting system, the calculated value of Sommerfeld coefficient shows very close proximity with the experimental result as reported by Welp. Further, anisotropic ratio of penetration depth also calculated and reported for this system. The results of anisotropic properties of the above superconducting system implied that modified GL-theory in the form presented here can be applicable to the above superconducting system.
Monitoring of copper nanoparticle penetration into dentin of human tooth in vitro
NASA Astrophysics Data System (ADS)
Selifonov, Alexey A.; Glukhovskoy, Evgeny G.; Skibina, Yulia S.; Zakharevich, Andrey M.; Begletsova, Nadezhda N.; Tuchin, Valery V.
2018-04-01
Study of the penetration depth of synthesized copper nanoparticles into cut samples of human dentin was conducted. The scanning electron microscopy was used to determine the elemental composition of fresh transverse cleavage of the dentin cut for determination of the copper nanoparticles penetration with an effective antiseptic effect. The morphology of the cut surface of the dentin of a human tooth was studied and the lower limit of the diffusion boundary was determined. It was found that copper nanoparticles penetrate into the dentin cut to a depth of 1.8 μm with the diffusion coefficient of 1.8×10-11 cm2/s. Despite the rather small size of the synthesized copper nanoparticles (20-80 nm), a rather small penetration depth can be explained by the high aggregation ability of copper nanoparticles, as well as the ability of a micellar solution of sodium dodecyl sulfate, in which nanoparticles were stabilized, to form conglomerates in micelles of much larger sizes.
Anisotropy of the penetration depth in La2-xSrxCuO4 in underdoped and overdoped regions
NASA Astrophysics Data System (ADS)
Zaleski, A. J.; Klamut, J.
1999-12-01
We present the results of measurements of the penetration depth anisotropy in pulverized, ceramic La2-xSrxCuO4. The measurements were carried out for x = 0.08, 0.1, 0.125, 0.15 and 0.2. The powdered samples, immersed in wax, were magnetically oriented in a static magnetic field of 10 T. The penetration depth in the a-b plane, icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>ab, and perpendicular to it, icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>icons/Journals/Common/perp" ALT="perp" ALIGN="MIDDLE"/>, were derived from alternating-current susceptibility measurements. For underdoped samples they both vary linearly with temperature (for the low-temperature region), while for the samples from the overdoped region the measured points can be fitted by an exponential function. These results support Uemura's picture (Uemura Y J 1997 Physica C 282-287 194) of crossover from Bose-Einstein condensation to a Bardeen-Cooper-Schrieffer mechanism of superconductivity. The penetration depth values extrapolated to T = 0 may be described by a quadratic function of the strontium concentration (for both icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>ab and icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>icons/Journals/Common/perp" ALT="perp" ALIGN="MIDDLE"/>). The anisotropy of the penetration depth as a function of the substitution shows a similar dependence to the critical temperature Tc(x).
Soil Moisture Content Estimation using GPR Reflection Travel Time
NASA Astrophysics Data System (ADS)
Lunt, I. A.; Hubbard, S. S.; Rubin, Y.
2003-12-01
Ground-penetrating radar (GPR) reflection travel time data were used to estimate changes in soil water content under a range of soil saturation conditions throughout the growing season at a California winery. Data were collected during four data acquisition campaigns over an 80 by 180 m area using 100 MHz surface GPR antennae. GPR reflections were associated with a thin, low permeability clay layer located between 0.8 to 1.3 m below the ground surface that was calibrated with borehole information and mapped across the study area. Field infiltration tests and neutron probe logs suggest that the thin clay layer inhibited vertical water flow, and was coincident with high volumetric water content (VWC) values. The GPR reflection two-way travel time and the depth of the reflector at borehole locations were used to calculate an average dielectric constant for soils above the reflector. A site-specific relationship between the dielectric constant and VWC was then used to estimate the depth-averaged VWC of the soils above the reflector. Compared to average VWC measurements from calibrated neutron probe logs over the same depth interval, the average VWC estimates obtained from GPR reflections had an RMS error of 2 percent. We also investigated the estimation of VWC using reflections associated with an advancing water front, and found that estimates of average VWC to the water front could be obtained with similar accuracy. These results suggested that the two-way travel time to a GPR reflection associated with a geological surface or wetting front can be used under natural conditions to obtain estimates of average water content when borehole control is available. The GPR reflection method therefore has potential for monitoring soil water content over large areas and under variable hydrological conditions.
Demonstration of UXO-PenDepth for the Estimation of Projectile Penetration Depth
2010-08-01
Effects (JTCG/ME) in August 2001. The accreditation process included verification and validation (V&V) by a subject matter expert (SME) other than...Within UXO-PenDepth, there are three sets of input parameters that are required: impact conditions (Fig. 1a), penetrator properties , and target... properties . The impact conditions that need to be defined are projectile orientation and impact velocity. The algorithm has been evaluated against
Prediction methods of spudcan penetration for jack-up units
NASA Astrophysics Data System (ADS)
Zhang, Ai-xia; Duan, Meng-lan; Li, Hai-ming; Zhao, Jun; Wang, Jian-jun
2012-12-01
Jack-up units are extensively playing a successful role in drilling engineering around the world, and their safety and efficiency take more and more attraction in both research and engineering practice. An accurate prediction of the spudcan penetration depth is quite instrumental in deciding on whether a jack-up unit is feasible to operate at the site. The prediction of a too large penetration depth may lead to the hesitation or even rejection of a site due to potential difficulties in the subsequent extraction process; the same is true of a too small depth prediction due to the problem of possible instability during operation. However, a deviation between predictive results and final field data usually exists, especially when a strong-over-soft soil is included in the strata. The ultimate decision sometimes to a great extent depends on the practical experience, not the predictive results given by the guideline. It is somewhat risky, but no choice. Therefore, a feasible predictive method for the spudcan penetration depth, especially in strata with strong-over-soft soil profile, is urgently needed by the jack-up industry. In view of this, a comprehensive investigation on methods of predicting spudcan penetration is executed. For types of different soil profiles, predictive methods for spudcan penetration depth are proposed, and the corresponding experiment is also conducted to validate these methods. In addition, to further verify the feasibility of the proposed methods, a practical engineering case encountered in the South China Sea is also presented, and the corresponding numerical and experimental results are also presented and discussed.
Subsurface Cavity Detection by Using Integrated Geophysical Methods
NASA Astrophysics Data System (ADS)
Aykaç, Sinem; Rezzan Ozerk, Zeynep; Işıkdeniz Şerifoǧlu, Betül; Bihter Demirci, Büşra; Timur, Emre; Çakir, Korhan
2016-04-01
Global warming experienced in recent years in Turkey has led to a severe drought around the Konya Plain in central Anatolia .As a result, excessive amount of ground water was drawn in the region for the sustainability of agricultural activities. So, five small-scale shallow depth sinkholes have occured at different times, at an average interval between 400-450 m. in the study area; Konya-Atlantı. Generally, sinkholes formation occurres among natural processes has turned into disasters caused by humans due to excessive use of groundwater. Consequently, investigations were carried out within a partnership research programme on cavity detection and ground penetration radar, microgravity and multi-frequency electromagnetic methods were jointly utilized. . Exact locations and dimensions of two possible hidden cavities were determined by using these multidisciplinary methods. Keywords: Cavity;Ground-penetrating radar;Konya;Microgravimetry;Multi-frequency electromagnetic method.
Mujica Ascencio, Saul; Choe, ChunSik; Meinke, Martina C; Müller, Rainer H; Maksimov, George V; Wigger-Alberti, Walter; Lademann, Juergen; Darvin, Maxim E
2016-07-01
Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin. Copyright © 2016 Elsevier B.V. All rights reserved.
Penetration depth measurement of near-infrared hyperspectral imaging light for milk powder
USDA-ARS?s Scientific Manuscript database
The increasingly common application of near-infrared (NIR) hyperspectral imaging technique to the analysis of food powders has led to the need for optical characterization of samples. This study was aimed at exploring the feasibility of quantifying penetration depth of NIR hyperspectral imaging ligh...
Projectile penetration into ballistic gelatin.
Swain, M V; Kieser, D C; Shah, S; Kieser, J A
2014-01-01
Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (<120m/s). The results of sphere penetration depth versus projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. © 2013 Published by Elsevier Ltd.
Magnetic Penetration Effects in Small Superconducting Devices
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Adams, J. S.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Hsieh, W.-T.; Kelly, D. P.; Nagler, P. C.; Porst, J.-P.; Sadleir, J. E.;
2011-01-01
The temperature dependent behavior of a superconducting body in an applied magnetic field involves flux penetration/expulsion both from screening currents (within a magnetic penetration depth) and variations in the superconducting order parameter (locally to form vortices or a mixed state, or globally in the Meissner effect). The temperature dependence of the magnetic penetration depth, in particular, has been used to make highly sensitive macroscopic thermometers. For the microscopic device volumes required in sensitive low temperature photon detectors, properties of actual thin film materials, non-uniformity of applied magnetic fields, and the influence of measurement circuit dynamics are complicating factors. We discuss the various penetration effects as demonstrated in a particularly promising combination of material and geometry that we have used to make sensitive x-ray microcalorimeters.
Andraski, Brian J.
1997-01-01
Soil-water movement under natural-site and simulated waste-site conditions were compared by monitoring four experimental sites in the Mojave Desert, Nevada, during a 5-year period: one vegetated soil profile, one soil profile where vegetation was removed, and two nonvegetated test trenches. Precipitation ranged from 14 to 162 mm/yr. Temporal changes in water content measured by neutron probe were limited to the upper 0.5–1 m; values ranged from 0.01 to 0.19 m3/m3. Water potential and temperature were measured by thermocouple psychrometers; 77% remained operable for ≥4.5 years. For vegetated soil, precipitation that accumulated in the upper 0.75 m of soil was removed by evapotranspiration: water potentials decreased seasonally by 4 to >8 MPa. During 2 years with below-average precipitation, water potentials below the app arent root zone decreased by 2.3 (1.2-m depth) to 0.4 MPa (5-m depth), and the gradients became predominantly upward. Water potentials then rebounded during 2 years with near- and above-average precipitation, and seasonally variant water potential gradients were reestablished above the 4.2-m depth. Under nonvegetated waste-site conditions, data indicated the long-term accumulation and shallow, but continued, penetration of precipitation: water potentials showed moisture penetration to depths of 0.75−1.85 m. The method of simulated-waste drum placement (stacked versus random) and the associated differences in subsidence showed no measurable influence on the water balance of the trenches: subsidence totaled ≤13 mm during the study. Water potentials below the trenches and below the 2-m depth for the nonvegetated soil remained low (≈−5.5 to −7.5 MPa) and indicated the persistence of typically upward driving forces for isothermal water flow. Water fluxes estimated from water potential and temperature data suggested that isothermal liquid, isothermal vapor, and nonisothermal vapor flow need to be considered in the conceptualization of unsaturated flow at the field sites. Below the depth of temporal water content change, the estimated liquid fluxes ranged from 10−10 to 10−15 cm/s, isothermal vapor fluxes ranged from 10−10 to 10−13 cm/s, and the nonisothermal vapor fluxes ranged from 10−8 to 10−10cm/s.
Liao, Ai-Ho; Ma, Wan-Chun; Wang, Chih-Hung; Yeh, Ming-Kung
2016-09-01
Recently, the feasibility and effects of using microbubbles (MBs) as an ultrasound (US) contrast agent for enhancing the penetration in transdermal delivery in vivo have been demonstrated, but the mechanism and efficiency are unclear. This study demonstrates the penetration depth, concentration and efficiency of transdermal α-arbutin delivery during 4 weeks after US treatment with MBs in mice. Experimental animals were randomly divided into the following four groups (n = 5 animals per group): (1) penetrating α-arbutin alone (C), (2) US combined with penetrating α-arbutin, (3) US combined with MBs and penetrating α-arbutin, and (4) US combined with diluted MBs and penetrating α-arbutin (UBD). The penetration depths in agarose phantoms and pigskin were 47 and 84% greater for group UBD, respectively, than for group C. The in vitro skin penetration by 2% α-arbutin after 3 h was 83% greater in group UBD than in group C. The degree of in vivo skin whitening (quantified as the luminosity index) in group UBD significantly increased by 25% after 1 week, 34% after 2 weeks, and then stabilized after 3 weeks at 37% in C57BL/6J mice over a 4-week experimental period. Our results indicate that combined treatment with optimal US and MBs can increase skin permeability so as to enhance α-arbutin delivery to inhibit melanogenesis without damaging the skin in mice.
Temperature-Enhanced Follicular Penetration of Thermoresponsive Nanogels
NASA Astrophysics Data System (ADS)
Jung, Sora; Nagel, Gregor; Giulbudagian, Michael; Calderón, Marcelo; Patzelt, Alexa; Knorr, Fanny; Lademann, Jürgen
2018-05-01
Hair follicles can serve as an effective reservoir for dermal drug delivery upon the topical application of particulate substances. Here, the follicular penetration of an indodicarbocyanine-labelled thermoresponsive nanogel (189 nm) having a cloud point temperature of 34°C and linked via an acid-labile linker to the model drug indocarbocyanine was investigated. In total, 227 hair follicles of porcine ear skin were examined after topical application of the thermoresponsive nanogels at room temperature (21°C), physiological skin surface temperature (32°C) and core body temperature (37°C) for the follicular penetration depths of indodicarbocyanine and indocarbocyanine using confocal laser scanning microscopy. The results showed a significantly increased mean follicular penetration of the carrier to a depth of 298.8±85.8 μm after incubation at 37°C compared to samples incubated at 21°C and 32°C with mean follicular penetration depths of 202.7±81.7 μm and 219.4±52.9 μm, respectively (p<0.001). Possibly structural changes in the thermoresponsive nanogel induced by the increased incubation temperature led to an enhancement of follicular penetration. Therefore, thermoresponsive nanogels may be suitable for the temperature-enhanced penetration into the hair follicles under physiological conditions.
NASA Technical Reports Server (NTRS)
Yang, Yuekui; Marshak, Alexander; Chiu, J. Christine; Wiscombe, Warren J.; Palm, Stephen P.; Davis, Anthony B.; Spangenberg, Douglas A.; Nguyen, Louis; Spinhirne, James D.; Minnis, Patrick
2008-01-01
Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
Pulsed power systems for environmental and industrial applications
NASA Astrophysics Data System (ADS)
Neau, E. L.
1994-10-01
The development of high peak power simulators, laser drivers, free electron lasers, and Inertial Confinement Fusion drivers is being extended to high average power short-pulse machines with the capabilities of performing new roles in environmental cleanup and industrial manufacturing processes. We discuss a new class of short-pulse, high average power accelerator that achieves megavolt electron and ion beams with 10's of kiloamperes of current and average power levels in excess of 100 kW. Large treatment areas are possible with these systems because kilojoules of energy are available in each output pulse. These systems can use large area x-ray converters for applications requiring grater depth of penetration such as food pasteurization and waste treatment. The combined development of this class of accelerators and applications, and Sandia National Laboratories, is called Quantum Manufacturing.
Optical penetration sensor for pulsed laser welding
Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.
2000-01-01
An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.
Dynamics Modelling of Biolistic Gene Guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, M.; Tao, W.; Pianetta, P.A.
2009-06-04
The gene transfer process using biolistic gene guns is a highly dynamic process. To achieve good performance, the process needs to be well understood and controlled. Unfortunately, no dynamic model is available in the open literature for analysing and controlling the process. This paper proposes such a model. Relationships of the penetration depth with the helium pressure, the penetration depth with the acceleration distance, and the penetration depth with the micro-carrier radius are presented. Simulations have also been conducted. The results agree well with experimental results in the open literature. The contribution of this paper includes a dynamic model formore » improving and manipulating performance of the biolistic gene gun.« less
Ion penetration depth in the plant cell wall
NASA Astrophysics Data System (ADS)
Yu, L. D.; Vilaithong, T.; Phanchaisri, B.; Apavatjrut, P.; Anuntalabhochai, S.; Evans, P.; Brown, I. G.
2003-05-01
This study investigates the depth of ion penetration in plant cell wall material. Based on the biological structure of the plant cell wall, a physical model is proposed which assumes that the wall is composed of randomly orientated layers of cylindrical microfibrils made from cellulose molecules of C 6H 12O 6. With this model, we have determined numerical factors for ion implantation in the plant cell wall to correct values calculated from conventional ion implantation programs. Using these correction factors, it is possible to apply common ion implantation programs to estimate the ion penetration depth in the cell for bioengineering purposes. These estimates are compared with measured data from experiments and good agreement is achieved.
NASA Astrophysics Data System (ADS)
Snezhko, A.; Prozorov, R.; Lawrie, D. D.; Giannetta, R. W.; Gauthier, J.; Renaud, J.; Fournier, P.
2003-11-01
The low temperature behavior of magnetic penetration depth provides a powerful tool for probing of order parameter pairing symmetry. In the present work the in-pain London penetration depth, λ(T), measured down to 0.4K is reported for thin films of the Pr_2-xCe_xCuO_4-δ with varying doping levels (x = 0.13, 0.15 and 0.17). Measurements were carried out using a tunnel diode oscillator with excitation fields applied both perpendicular and parallel to the conducting planes. For all systems studied we have found that superfluid density exhibits power law behavior suggestive of a d-wave pairing with impurity scattering.
High-velocity impact loading of thick GFRP blocks
NASA Astrophysics Data System (ADS)
Ernst, H.-J.; Merkel, Th.; Wolf, Th.; Hoog, K.
2003-09-01
In previous depth of penetration experiments with tungsten long rod projectiles was found that the ballistic resistance of a relatively thick-up to the penetrator length-glass fibre reinforced plastic block grows with increasing penetration depth. This penetration behaviour significantly differs from that of other inert armour materials. Until now, no significant difference between unconfined and totally confined GFRP configurations bas been found. Newest experiments with up to semi-infinite thick GFRP blocks show a change in the penetration process: For thicknesses significantly higher than the penetrator length the protective power may saturate. During the late penetration phase the shortening and deceleration of the projectile induce a change of penetration mechanism from erosion to rigid body penetration. Additionally, the projectile may break into several individually tumbling parts. Reflected tension waves and, probably, pyrolysis effects may cause increasing precursory damage. These effects together are likely to explain the reduction of the ballistic resistance increase during the late penetration phase. Based on these experimental results the published working hypothesis on the governing mechanism of the GFRP penetration behaviour had to be completed. A new approach based on a hyperbolic tangent function seems to satisfactorily describe the observed thickness dependent phenomena.
Multispectral visualization of surgical safety-margins using fluorescent marker seeds
Chin, Patrick TK; Beekman, Chantal AC; Buckle, Tessa; Josephson, Lee; van Leeuwen, Fijs WB
2012-01-01
Optical guidance provided by luminescent marker seeds may be suitable for intraoperative determination of appropriate resection margins. In phantom studies we compared the tissue penetration of several organic dyes and inorganic particles (quantum dots; QDs) after incorporation in experimental marker seeds. The tissue penetration of (near infra-) red organic dyes was much better than the penetration of dyes and QDs with an emission in the visible range. By combining 3 dyes in a single marker seed we were able to distinguish four depth ranges. The difference in tissue penetration between the dyes and QDS enabled depth estimation via a ‘traffic light’ approach. PMID:23133810
Depth of penetration of a 785nm laser for Raman spectral measurement in food powders.
USDA-ARS?s Scientific Manuscript database
Raman spectroscopy is a useful, rapid, and non-destructive method for both qualitative and quantitative evaluation of chemical composition. However it is important to measure the depth of penetration of the laser light to ensure that chemical particles at the very bottom of a sample volume are detec...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, C.; Tillman, M.E.; Kim, H.
2009-07-31
The superconducting penetration depth {lambda}(T) has been measured in RFeAsO{sub 0.9}F{sub 0.1} (R=La, Nd) single crystals (R-1111). In Nd-1111, we find an upturn in {lambda}(T) upon cooling and attribute it to the paramagnetism of the Nd ions, similar to the case of the electron-doped cuprate Nd-Ce-Cu-O. After the correction for paramagnetism, the London penetration depth variation is found to follow a power-law behavior, {Delta}{lambda}L(T) {proportional_to} T{sup 2} at low temperatures. The same T{sup 2} variation of {lambda}(T) was found in nonmagnetic La-1111 crystals. Analysis of the superfluid density and of penetration depth anisotropy over the full temperature range is consistentmore » with two-gap superconductivity. Based on this and on our previous work, we conclude that both the RFeAsO (1111) and BaFe{sub 2}As{sub 2} (122) families of pnictide superconductors exhibit unconventional two-gap superconductivity.« less
Effect of snow cover on soil frost penetration
NASA Astrophysics Data System (ADS)
Rožnovský, Jaroslav; Brzezina, Jáchym
2017-12-01
Snow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important - increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.
Schaber, Gerald G.; McCauley, John F.; Breed, Carol S.; Olhoeft, Gary R.
1986-01-01
It is found that the Shuttle Imaging Radar A (SIR-A) signal penetration and subsurface backscatter within the upper meter or so of the sediment blanket in the Eastern Sahara of southern Egypt and northern Sudan are enhanced both by radar sensor parameters and by the physical and chemical characteristics of eolian and alluvial materials. The near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include 1) favorable distribution of particle sizes, 2) extremely low moisture content and 3) reduced geometric scattering at the SIR-A frequency (1. 3 GHz). The depth of signal penetration that results in a recorded backscatter, called radar imaging depth, was documented in the field to be a maximum of 1. 5 m, or 0. 25 times the calculated skin depth, for the sediment blanket. The radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials.
Evaluation of light penetration on Navigation Pools 8 and 13 of the Upper Mississippi River
Giblin, Shawn; Hoff, Kraig; Fischer, Jim; Dukerschein, Terry
2010-01-01
The availability of light can have a dramatic affect on macrophyte and phytoplankton abundance in virtually all aquatic ecosystems. The Long Term Resource Monitoring Program and other monitoring programs often measure factors that affect light extinction (nonvolatile suspended solids, volatile suspended solids, and chlorophyll) and correlates of light extinction (turbidity and Secchi depth), but rarely do they directly measure light extinction. Data on light extinction, Secchi depth, transparency tube, turbidity, total suspended solids, and volatile suspended solids were collected during summer 2003 on Pools 8 and 13 of the Upper Mississippi River. Regressions were developed to predict light extinction based upon Secchi depth, transparency tube, turbidity, and total suspended solids. Transparency tube, Secchi depth, and turbidity all showed strong relations with light extinction and can effectively predict light extinction. Total suspended solids did not show as strong a relation to light extinction. Volatile suspended solids had a greater affect on light extinction than nonvolatile suspended solids. The data were compared to recommended criteria established for light extinction, Secchi depth, total suspended solids, and turbidity by the Upper Mississippi River Conservation Committee to sustain submersed aquatic vegetation in the Upper Mississippi River. During the study period, the average condition in Pool 8 met or exceeded all of the criteria whereas the average condition in Pool 13 failed to meet any of the criteria. This report provides river managers with an effective tool to predict light extinction based upon readily available data.
Static penetration resistance of soils
NASA Technical Reports Server (NTRS)
Durgunoglu, H. T.; Mitchell, J. K.
1973-01-01
Model test results were used to define the failure mechanism associated with the static penetration resistance of cohesionless and low-cohesion soils. Knowledge of this mechanism has permitted the development of a new analytical method for calculating the ultimate penetration resistance which explicitly accounts for penetrometer base apex angle and roughness, soil friction angle, and the ratio of penetration depth to base width. Curves relating the bearing capacity factors to the soil friction angle are presented for failure in general shear. Strength parameters and penetrometer interaction properties of a fine sand were determined and used as the basis for prediction of the penetration resistance encountered by wedge, cone, and flat-ended penetrometers of different surface roughness using the proposed analytical method. Because of the close agreement between predicted values and values measured in laboratory tests, it appears possible to deduce in-situ soil strength parameters and their variation with depth from the results of static penetration tests.
NASA Astrophysics Data System (ADS)
Enfield, Joey; McGrath, James; Daly, Susan M.; Leahy, Martin
2016-08-01
Changes within the microcirculation can provide an early indication of the onset of a plethora of ailments. Various techniques have thus been developed that enable the study of microcirculatory irregularities. Correlation mapping optical coherence tomography (cmOCT) is a recently proposed technique, which enables mapping of vasculature networks at the capillary level in a noninvasive and noncontact manner. This technique is an extension of conventional optical coherence tomography (OCT) and is therefore likewise limited in the penetration depth of ballistic photons in biological media. Optical clearing has previously been demonstrated to enhance the penetration depth and the imaging capabilities of OCT. In order to enhance the achievable maximum imaging depth, we propose the use of optical clearing in conjunction with the cmOCT technique. We demonstrate in vivo a 13% increase in OCT penetration depth by topical application of a high-concentration fructose solution, thereby enabling the visualization of vessel features at deeper depths within the tissue.
Open-Ended Coaxial Dielectric Probe Effective Penetration Depth Determination.
Meaney, Paul M; Gregory, Andrew P; Seppälä, Jan; Lahtinen, Tapani
2016-03-01
We have performed a series of experiments which demonstrate the effect of open-ended coaxial diameter on the depth of penetration. We used a two layer configuration of a liquid and movable cylindrical piece of either Teflon or acrylic. The technique accurately demonstrates the depth in a sample for which a given probe diameter provides a reasonable measure of the bulk dielectric properties for a heterogeneous volume. In addition we have developed a technique for determining the effective depth for a given probe diameter size. Using a set of simulations mimicking four 50 Ω coaxial cable diameters, we demonstrate that the penetration depth in both water and saline has a clear dependence on probe diameter but is remarkably uniform over frequency and with respect to the intervening liquid permittivity. Two different 50 Ω commercial probes were similarly tested and confirm these observations. This result has significant implications to a range of dielectric measurements, most notably in the area of tissue property studies.
Open-Ended Coaxial Dielectric Probe Effective Penetration Depth Determination
Meaney, Paul M.; Gregory, Andrew P.; Seppälä, Jan; Lahtinen, Tapani
2016-01-01
We have performed a series of experiments which demonstrate the effect of open-ended coaxial diameter on the depth of penetration. We used a two layer configuration of a liquid and movable cylindrical piece of either Teflon or acrylic. The technique accurately demonstrates the depth in a sample for which a given probe diameter provides a reasonable measure of the bulk dielectric properties for a heterogeneous volume. In addition we have developed a technique for determining the effective depth for a given probe diameter size. Using a set of simulations mimicking four 50 Ω coaxial cable diameters, we demonstrate that the penetration depth in both water and saline has a clear dependence on probe diameter but is remarkably uniform over frequency and with respect to the intervening liquid permittivity. Two different 50 Ω commercial probes were similarly tested and confirm these observations. This result has significant implications to a range of dielectric measurements, most notably in the area of tissue property studies. PMID:27346890
Tracking ocean heat uptake during the surface warming hiatus
Liu, Wei; Xie, Shang -Ping; Lu, Jian
2016-03-30
Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less
Tracking ocean heat uptake during the surface warming hiatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Xie, Shang -Ping; Lu, Jian
Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less
NASA Astrophysics Data System (ADS)
Xu, Jun; Zheng, Zheyuan; Xiao, Xiaochun; Li, Zhaoxia
2018-06-01
Non-penetrating surface flaws play a key role in the fracture process of rock-like material, and could cause localized collapse and even failure of the materials. Until now, the mechanism and the effect of surface crack propagation have remained unclear. In this paper, compression tests on gypsum (a soft rock material) are conducted to investigate crack propagation and coalescence due to non-penetrating surface flaws and their effect on the material strength. Specimens are tested under dual pre-existing surface flaws with various combinations of depth and spacing. The results show that when the pre-existing flaws are non-penetrating, the d/t ratio (flaw depth ratio, d is the pre-existing flaw cutting depth and t is the specimen thickness) and the spacing (the distance between the two flaw internal tips) have a strong influence on surface crack patterns and specimen strength. Few cracks emanate from the pre-existing flaws when the flaw depth ratio is equal to 1/3, and more cracks occur with the increase of the flaw depth ratio. When the pre-existing flaw penetrates completely through the specimen, the spacing has a small effect on the specimen strength. A larger flaw depth ratio could advance the occurrence of the peak load (PL) and result in a smaller specimen residual strength. The failure process of the specimen is divided into several stages featured by a stepped decline of the load value after PL, which is closely related to the initiation and propagation of secondary cracks. In addition, the spalling (failure of a portion of the surface caused by coalescence of cracks) can be regarded as indicating the failure of the specimen, and two possible types of spalling formation are briefly discussed.
Magnetic penetration depth in the organic superconductor κ-[BEDT-TTF]2Cu[NCS]2
NASA Astrophysics Data System (ADS)
Harshman, D. R.; Kleiman, R. N.; Haddon, R. C.; Chichester-Hicks, S. V.; Kaplan, M. L.; Rupp, L. W., Jr.; Pfiz, T.; Williams, D. Ll.; Mitzi, D. B.
1990-03-01
We report the first direct measurement of the effective magnetic penetration depth in oriented single crystals of κ-[BEDT-TTF]2Cu[NCS]2, with Tc(5 G)~=9 K. Results yield an effective in-plane value of λbceff(0)~=9800 Å (for Hext~=3 kG), and a temperature dependence consistent with conventional s-wave pairing. Comparison with the London penetration depth, λL(0) (estimated to be ~=5100 Å), indicates a tendency toward dirty-limit superconductivity, with the ratio of coherence length over mean free path of ξbc0/lbc~=2.7. From our results, it appears unnecessary to invoke any unconventional pairing schemes to explain the superconductivity in this material.
Correction Factor for Determining the London Penetration Depth from Strip Resonators
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
1995-01-01
A significant disagreement is often seen between the theoretical temperature dependent magnetic penetration depth profile and experimentally derived calculations based on stripline type resonators. This short paper shows that the disagreement can be attributed to the susceptance coupled into the resonator from the gap discontinuity as well as the feed line. When the effect is taken into account, the natural resonant frequency of the resonator is increased, and the frequency shift due to kinetic inductance can be calculated much more accurately. While it is necessary to include this effect to determine the penetration depth, it is shown that the impact on unloaded quality factor is generally negligible. The situation when the strip characteristic impedance is not matched to the generator is included.
Zhang, Hairong; Salo, Daniel; Kim, David M; Komarov, Sergey; Tai, Yuan-Chuan; Berezin, Mikhail Y
2016-12-01
Measurement of photon penetration in biological tissues is a central theme in optical imaging. A great number of endogenous tissue factors such as absorption, scattering, and anisotropy affect the path of photons in tissue, making it difficult to predict the penetration depth at different wavelengths. Traditional studies evaluating photon penetration at different wavelengths are focused on tissue spectroscopy that does not take into account the heterogeneity within the sample. This is especially critical in shortwave infrared where the individual vibration-based absorption properties of the tissue molecules are affected by nearby tissue components. We have explored the depth penetration in biological tissues from 900 to 1650 nm using Monte–Carlo simulation and a hyperspectral imaging system with Michelson spatial contrast as a metric of light penetration. Chromatic aberration-free hyperspectral images in transmission and reflection geometries were collected with a spectral resolution of 5.27 nm and a total acquisition time of 3 min. Relatively short recording time minimized artifacts from sample drying. Results from both transmission and reflection geometries consistently revealed that the highest spatial contrast in the wavelength range for deep tissue lies within 1300 to 1375 nm; however, in heavily pigmented tissue such as the liver, the range 1550 to 1600 nm is also prominent.
NASA Astrophysics Data System (ADS)
Kalousova, Klara; Schroeder, Dustin M.; Soderlund, Krista M.; Sotin, Christophe
2016-10-01
With its strikingly young surface and possibly recent endogenic activity, Europa is one of the most exciting bodies within our Solar System and a primary target for spacecraft exploration. Future missions to Europa are expected to carry ice penetrating radar instruments which are powerful tools to investigate the subsurface thermophysical structure of its ice shell.Several authors have addressed the 'penetration depth' of radar sounders at icy moons, however, the concept and calculation of a single value penetration depth is a potentially misleading simplification since it ignores the thermal and attenuation structure complexity of a realistic ice shell. Here we move beyond the concept of a single penetration depth by exploring the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's ice shell as well as for a low loss and high loss temperature-dependent attenuation model. The possibility to detect brines is also investigated.Our results indicate that: (i) for all ice shell thicknesses investigated (5-30 km), a nominal satellite-borne radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth strongly varies laterally with the deepest penetration possible through the cold downwellings, (iii) the direct detection of the ice/ocean interface might be possible for shells of up to 15 km if the radar signal travels through the cold downwelling, (iv) even if the ice/ocean interface is not detected, the penetration through most of the shell could constrain the deep shell structure through the loss of signal, and (v) for all plausible ice shells the two-way attenuation to the eutectic point is ≤30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow structure.Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. K.K. acknowledges support by the Grant Agency of the Czech Republic through project 15-14263Y.
Penetration depth of corneal cross-linking with riboflavin and UV-A (CXL) in horses and rabbits.
Gallhoefer, Nicolin S; Spiess, Bernhard M; Guscetti, Franco; Hilbe, Monika; Hartnack, Sonja; Hafezi, Farhad; Pot, Simon A
2016-07-01
CXL penetration depth is an important variable influencing clinical treatment effect and safety. The purposes of this study were to determine the penetration depth of CXL in rabbit and equine corneas in epithelium-on and epithelium-off procedures and to assess an ex vivo fluorescent biomarker staining assay for objective assessment of CXL penetration depth. CXL treatment was performed according to a standardized protocol on 21 and 17 rabbit eyes and on 12 and 10 equine eyes with and without debridement, respectively. Control corneas were treated similarly, but not exposed to CXL. Hemicorneas were stained with either phalloidin and DAPI to visualize intracellular F-actin and nuclei, or with hematoxylin and eosin. Loss of actin staining was measured and compared between groups. Epithelium-off CXL caused a median actin cytoskeleton loss with a demarcation at 274 μm in rabbits and 173 μm in horses. In non-CXL-treated controls, we observed a median actin cytoskeleton loss with a demarcation at 134 μm in rabbits and 149 μm in horses. No effect was detected in the epithelium-on procedure. CXL penetration depth, as determined by a novel ex vivo fluorescent assay, shows clear differences between species. A distinct effect was observed following epithelium-off CXL treatment in the anterior stroma of rabbits, but no different effect was observed in horses in comparison with nontreated controls. Different protocols need to be established to effectively treat equine patients with infectious corneal disease. © 2015 American College of Veterinary Ophthalmologists.
NASA Astrophysics Data System (ADS)
Yusof, M. F. M.; Ishak, M.; Ghazali, M. F.
2017-09-01
In this paper, the feasibility of using acoustic method to monitor the depth of penetration was investigated by determine the characteristic of the acquired sound throughout the pulse mode laser welding process. To achieve the aim, the sound signal was acquired during the pulsed laser welding process on the 2 mm structural carbon steel plate. During the experiment, the laser peak power and pulse width was set to be varied while welding speed was constantly at 2 mm/s. Result from the experiment revealed that the sound pressure level of the acquired sound was linearly related to the pulse energy as well as the depth of penetration for welding process using 2ms pulse width. However, as the pulse width increase, the sound pressure level show insignificant change with respect to the change in the depth of penetration when the pulse energy reaches certain values. The reported result shows that this was happen due to the occurrence of spatter which suppressed the information associated with the generation of plasma plume as the product of high pulse energy. In this work, it was demonstrated that in some condition, the acoustic method was found to be potentially suitable to be used as a medium to monitor the depth of weld on online basis. To increase the robustness of this method to be used in wider range of parameter, it was believed that some other post processing method is needed in order to extract the specific information associated with the depth of penetration from the acquired sound.
L-band InSAR Penetration Depth Experiment, North Slope Alaska
NASA Astrophysics Data System (ADS)
Muskett, Reginald
2017-04-01
Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales.
Van Uffelen, Lora J; Worcester, Peter F; Dzieciuch, Matthew A; Rudnick, Daniel L; Colosi, John A
2010-04-01
Deep acoustic shadow-zone arrivals observed in the late 1990s in the North Pacific Ocean reveal significant acoustic energy penetrating the geometric shadow. Comparisons of acoustic data obtained from vertical line arrays deployed in conjunction with 250-Hz acoustic sources at ranges of 500 and 1000 km from June to November 2004 in the North Pacific, with simulations incorporating scattering consistent with the Garrett-Munk internal-wave spectrum, are able to describe both the energy contained in and vertical extent of deep shadow-zone arrivals. Incoherent monthly averages of acoustic timefronts indicate that lower cusps associated with acoustic rays with shallow upper turning points (UTPs), where sound-speed structure is most variable and seasonally dependent, deepen from June to October as the summer thermocline develops. Surface-reflected rays, or those with near-surface UTPs, exhibit less scattering due to internal waves than in later months when the UTP deepens. Data collected in November exhibit dramatically more vertical extension than previous months. The depth to which timefronts extend is a complex combination of deterministic changes in the depths of the lower cusps as the range-average profiles evolve with seasonal change and of the amount of scattering, which depends on the mean vertical gradients at the depths of the UTPs.
MD and BCA simulations of He and H bombardment of fuzz in bcc elements
NASA Astrophysics Data System (ADS)
Klaver, T. P. C.; Zhang, S.; Nordlund, K.
2017-08-01
We present results of MD simulations of low energy He ion bombardment of low density fuzz in bcc elements. He ions can penetrate several micrometers into sparse fuzz, which allows for a sufficient He flux through it to grow the fuzz further. He kinetic energy falls off exponentially with penetration depth. A BCA code was used to carry out the same ion bombardment on the same fuzz structures as in MD simulations, but with simpler, 10 million times faster calculations. Despite the poor theoretical basis of the BCA at low ion energies, and the use of somewhat different potentials in MD and BCA calculations, the ion penetration depths predicted by BCA are only ∼12% less than those predicted by MD. The MD-BCA differences are highly systematic and trends in the results of the two methods are very similar. We have carried out more than 200 BCA calculation runs of ion bombardment of fuzz, in which parameters in the ion bombardment process were varied. For most parameters, the results show that the ion bombardment process is quite generic. The ion species (He or H), ion mass, fuzz element (W, Ta, Mo, Fe) and fuzz element lattice parameter turned out to have a modest influence on ion penetration depths at most. An off-normal angle of incidence strongly reduces the ion penetration depth. Increasing the ion energy increases the ion penetration, but the rate by which ion energy drops off at high ion energies follows the same exponential pattern as at lower energies.
NASA Astrophysics Data System (ADS)
Zhidkin, A. P.; Gennadiev, A. N.
2016-07-01
Approaches to the quantification of the vertical translocation rate of soil solid-phase material by the magnetic tracer method have been developed; the tracer penetration depth and rate have been determined, as well as the radial distribution of the tracer in chernozems (Chernozems) and dark gray forest soils (Luvisols) of Belgorod oblast under natural steppe and forest vegetation and in arable lands under agricultural use of different durations. It has been found that the penetration depth of spherical magnetic particles (SMPs) during their 150-year-occurrence in soils of a forest plot is 68 cm under forest, 58 cm on a 100-year old plowland, and only 49 cm on a 150-year-old plowland. In the chernozems of the steppe plot, the penetration depth of SMPs exceeds the studied depth of 70 cm both under natural vegetation and on the plowlands. The penetration rates of SMPs deep into the soil vary significantly among the key plots: 0.92-1.32 mm/year on the forest plot and 1.47-1.63 mm/year on the steppe plot, probably because of the more active recent turbation activity of soil animals.
NASA Astrophysics Data System (ADS)
Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.
2011-04-01
Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.
Quantitative wood–adhesive penetration with X-ray computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paris, Jesse L.; Kamke, Frederick A.
Micro X-ray computed tomography (XCT) was used to analyze the 3D adhesive penetration behavior of different wood–adhesive bondlines. Three adhesives, a phenol formaldehyde (PF), a polymeric diphenylmethane diisocyanate (pMDI), and a hybrid polyvinyl acetate (PVA), all tagged with iodine for enhanced X-ray attenuation, were used to prepare single-bondline laminates in two softwoods, Douglas-fir and loblolly pine, and one hardwood, a hybrid polar. Adhesive penetration depth was measured with two separate calculations, and results were compared with 2D fluorescent micrographs. A total of 54 XCT scans were collected, representing six replicates of each treatment type; each replicate, however, consisted of approximatelymore » 1500 individual, cross-section slices stacked along the specimen length. As these adhesives were highly modified, the presented results do not indicate typical behavior for their broader adhesive classes. Still, clear penetration differences were observed between each adhesive type, and between wood species bonded with both the PF and pMDI adhesives. Furthermore, penetration results depended on the calculation method used. Two adhesive types with noticeably different resin distributions in the cured bondline, showed relatively similar penetration depths when calculated with a traditional effective penetration equation. However, when the same data was calculated with a weighted penetration calculation, which accounts for both adhesive area and depth, the results appeared to better represent the different distributions depicted in the photomicrographs and tomograms. Additionally, individual replicate comparisons showed variation due to specimen anatomy, not easily observed or interpreted from 2D images. Finally, 3D views of segmented 3D adhesive phases offered unique, in-situ views of the cured adhesive structures. In particular, voids formed by CO 2 bubbles generated during pMDI cure were clearly visible in penetrated columns of the solidified adhesive.« less
Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh R., V.; Seyedkashi, S. M. H.
2011-01-01
Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.
Nonextensive statistics and skin depth of transverse wave in collisional plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashemzadeh, M., E-mail: hashemzade@gmail.com
Skin depth of transverse wave in a collisional plasma is studied taking into account the nonextensive electron distribution function. Considering the kinetic theory for charge particles and using the Bhatnagar-Gross-Krook collision model, a generalized transverse dielectric permittivity is obtained. The transverse dispersion relation in different frequency ranges is investigated. Obtaining the imaginary part of the wave vector from the dispersion relation, the skin depth for these frequency ranges is also achieved. Profiles of the skin depth show that by increasing the q parameter, the penetration depth decreases. In addition, the skin depth increases by increasing the electron temperature. Finally, itmore » is found that in the high frequency range and high electron temperature, the penetration depth decreases by increasing the collision frequency. In contrast, by increasing the collision frequency in a highly collisional frequency range, the skin depth of transverse wave increases.« less
Strategy of topical vaccination with nanoparticles
NASA Astrophysics Data System (ADS)
Jung, Sascha; Patzelt, Alexa; Otberg, Nina; Thiede, Gisela; Sterry, Wolfram; Lademann, Juergen
2009-03-01
Liposomes in the nanosize range have been recognized as a versatile drug delivery system of both hydrophilic and lipophilic molecules. In order to develop a liposome-based topical vaccination strategy, five different types of liposomes were tested as a putative vaccine delivery system on pig ear skin. The investigated liposomes mainly varied in size, lipid composition, and surface charge. Using hydrophilic and hydrophobic fluorescent dyes as model drugs, penetration behavior was studied by means of confocal laser scanning microscopy of intact skin and histological sections, respectively. Follicular penetration of the liposomes was measured in comparison to a standard, nonliposomal formulation at different time points. Dependent on time but independent of their different characters, the liposomes showed a significantly higher penetration depth into the hair follicles compared to the standard formulation. The standard formulation reached a relative penetration depth of 30% of the full hair follicle length after seven days, whereas amphoteric and cationic liposomes had reached ~70%. Penetration depth of negatively charged liposomes did not exceed 50% of the total follicle length. The fluorescence dyes were mainly detected in the hair follicle; only a small amount of dye was found in the upper parts of the epidermis.
Strategy of topical vaccination with nanoparticles.
Jung, Sascha; Patzelt, Alexa; Otberg, Nina; Thiede, Gisela; Sterry, Wolfram; Lademann, Juergen
2009-01-01
Liposomes in the nanosize range have been recognized as a versatile drug delivery system of both hydrophilic and lipophilic molecules. In order to develop a liposome-based topical vaccination strategy, five different types of liposomes were tested as a putative vaccine delivery system on pig ear skin. The investigated liposomes mainly varied in size, lipid composition, and surface charge. Using hydrophilic and hydrophobic fluorescent dyes as model drugs, penetration behavior was studied by means of confocal laser scanning microscopy of intact skin and histological sections, respectively. Follicular penetration of the liposomes was measured in comparison to a standard, nonliposomal formulation at different time points. Dependent on time but independent of their different characters, the liposomes showed a significantly higher penetration depth into the hair follicles compared to the standard formulation. The standard formulation reached a relative penetration depth of 30% of the full hair follicle length after seven days, whereas amphoteric and cationic liposomes had reached approximately 70%. Penetration depth of negatively charged liposomes did not exceed 50% of the total follicle length. The fluorescence dyes were mainly detected in the hair follicle; only a small amount of dye was found in the upper parts of the epidermis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, B.
A specially designed wire line retrievable continuous coring system cored its initial project wells to total depth in hard rock formations in less than half the time that would have been required by conventional coring rigs. The hybrid wire line coring systems have since been used on other wells in similar lithologies, with a total of 38,000 m (124,640 ft) of hole cored and with penetration rates averaging 2.27 m/hr (7.45 ft/hr). This paper reports that Parker Drilling Co. designed the hybrid rigs and has recently been contracted to wire line core several holes for oil and gas exploration inmore » the Congo. The first core hole has been completed to 1,490 m, and total depth was reached in 21 days. The rig is now being mobilized to a second hole in the Congo.« less
Design and simulation of betavoltaic battery using large-grain polysilicon.
Yao, Shulin; Song, Zijun; Wang, Xiang; San, Haisheng; Yu, Yuxi
2012-10-01
In this paper, we present the design and simulation of a p-n junction betavoltaic battery based on large-grain polysilicon. By the Monte Carlo simulation, the average penetration depth were obtained, according to which the optimal depletion region width was designed. The carriers transport model of large-grain polysilicon is used to determine the diffusion length of minority carrier. By optimizing the doping concentration, the maximum power conversion efficiency can be achieved to be 0.90% with a 10 mCi/cm(2) Ni-63 source radiation. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Williams, Brian E. (Inventor); Brockmeyer, Jerry (Inventor); Tuffias, Robert H. (Inventor)
2005-01-01
A composite rigid foam structure that has a skin or coating on at least one of its surfaces. The skin is formed in situ by thermal spray techniques. The skin is bonded substantially throughout the surface of the porous substrate to the peripheries of the pores. The skin on the average does not penetrate the surface of the substrate by more than the depth of about 2 to 5 pores. Thus, thermal spraying the skin onto the rigid foam produces a composite that is tightly and uniformly bonded together without unduly increasing the weight of the composite structure. Both thermal conductivity and bonding are excellent.
NASA Astrophysics Data System (ADS)
Liu, Ping; Hall-Aquitania, Moorea; Hermens, Erma; Groves, Roger M.
2017-07-01
Optical diagnostics techniques are becoming important for technical art history (TAH) as well as for heritage conservation. In recent years, optical coherence tomography (OCT) has been increasingly used as a novel technique for the inspection of artwork, revealing the stratigraphy of paintings. It has also shown to be an effective tool for vanish layer inspection. OCT is a contactless and non-destructive technique for microstructural imaging of turbid media, originally developed for medical applications. However current OCT instruments have difficulty in paint layer inspection due to the opacity of most pigments. This paper explores the potential of OCT for the investigation of paintings with coloured grounds. Depth scans were processed to determine the light penetration depth at the optical wavelength based on a 1/e light attenuation calculation. The variation in paint opacity was mapped based on the microstructural images and 3D penetration depth profiles was calculated and related back to the construction of the artwork. By determining the light penetration depth over a range of wavelengths the 3D depth perception of a painting with coloured grounds can be characterized optically.
Claerhoudt, S; Bergman, H J; Van Der Veen, H; Duchateau, L; Raes, E V; Saunders, J H
2012-11-01
Distal border synovial invaginations of the distal sesamoid bone are radiographically assessed during the selection process of horses admitted as breeding stallions or in purchase examinations. Nowadays, many moderately or some deeply penetrating proximally enlarged synovial invaginations are considered as moderate or severe radiographic findings. To measure the difference between and agreement of the morphology of distal border synovial invaginations on radiography vs. computed tomography (CT). It was hypothesised that the morphology of distal border synovial invaginations would be better evaluable on CT compared with radiography. Computed tomography scans and 3 dorsoproximal-palmarodistal oblique (DPr-PaDiO) radiographs were obtained on 50 cadaver forefeet from 25 Warmblood horses. Computed tomography was assumed to be the gold standard. The number, shape and depth of penetration of distal border synovial invaginations into the distal sesamoid bone were evaluated with both methods, and the comparison of their measurements was statistically described. A statistically significant mean difference for number of distal synovial invaginations between CT and all 3 DPr-PaDiO projections was found and was approximately equal to 2, meaning that CT permits visualisation of an average of 2 more invaginations than radiography. In none of the cases did radiography have a higher number observed than CT. A large variation in the difference of measurements for depth of penetration against their mean difference between CT and the 3 radiographic projections was seen. Radiography underestimated the depth of invaginations, and more so when these were deeper. There was no statistically significant mean difference found between the techniques for depth. A moderate to good agreement between measurements on CT and the three DPr-PaDiO projections for shape was seen, in which the D55°Pr-PaDiO projection showed the best agreement. A high specificity (90-99%) and low sensitivity (65%) for all projections for shape were found. Radiography differs considerably from CT concerning the morphology of distal navicular border synovial invaginations. For the evaluation of the number, depth and shape of distal synovial invaginations in the distal sesamoid bone, radiography shows only partially the morphology seen on CT. © 2012 EVJ Ltd.
NASA Astrophysics Data System (ADS)
Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.
2012-02-01
A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.
Explosive shaped charge penetration into tuff rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, M.G.
1988-10-01
Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented. 24 refs., 45 figs., 6 tabs.
Preliminary study of gaseous nitrogen-liquid oxygen mixing and self cleaning
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.
1985-01-01
The penetration of gaseous nitrogen into liquid oxygen at a pressure of 150 psi was determined by monitoring the composition of the evaporating liquid in a nitrogen analyzer. For pressurization times of about 1 hr the penetration depth varies between 0.0024 and 0.018 in. at an evaporation rate of about 1 gal/day. These are small compared to the penetration depth of 22.2 in. measured in the 7-inch high temperature tunnel at a pressure of 1500 psi, pressurization time of 5 min, and evaporation rate of 121 gal/day.
Topical dissolved oxygen penetrates skin: model and method.
Roe, David F; Gibbins, Bruce L; Ladizinsky, Daniel A
2010-03-01
It has been commonly perceived that skin receives its oxygen supply from the internal circulation. However, recent investigations have shown that a significant amount of oxygen may enter skin from the external overlying surface. A method has been developed for measuring the transcutaneous penetration of human skin by oxygen as described herein. This method was used to determine both the depth and magnitude of penetration of skin by topically applied oxygen. An apparatus consisting of human skin samples interposed between a topical oxygen source and a fluid filled chamber that registered changes in dissolved oxygen. Viable human skin samples of variable thicknesses with and without epidermis were used to evaluate the depth and magnitude of oxygen penetration from either topical dissolved oxygen (TDO) or topical gaseous oxygen (TGO) devices. This model effectively demonstrates transcutaneous penetration of topically applied oxygen. Topically applied dissolved oxygen penetrates through >700 microm of human skin. Topically applied oxygen penetrates better though dermis than epidermis, and TDO devices deliver oxygen more effectively than TGO devices. Copyright (c) 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ferry, M.; Meghraoui, M.; Rockwell, T. K.; Kozaci, Ö.; Akyuz, S.; Girard, J.-F.; Barka, A.
2003-04-01
The 1999 Ms 7.4 Izmit earthquake produced more than 110 km of surface rupture along the North Anatolian fault. We present here ground-penetrating radar (GPR) profiles surveyed across and parallel to the 1999 Izmit earthquake ruptures at two sites along the Izmit-Sapanca segment. Fine sandy and coarse gravels favor the penetration depth and processed radar profiles image clearly visible reflectors within the uppermost 10 m. In Köseköy, they document cumulative right-lateral offset of a stream channel by the fault. Old fluvial channel deposits also visible in trenches show a maximum 13.5 to 14 m lateral displacement. Younger channel units display 4 m of right-lateral displacement at 2.5 m depth and correlation with dated trench units yields an average slip rate of 15 mm/yr. At site 2, GPR profiles display the successive faulting of a medieval Ottoman Canal which excavation probably took place in 1591 A.D.. GPR profiles image the corresponding surface as well as numerous faults that affect it. A following trench study confirmed these results as they provide consistent results with the occurrence of three faulting events post-1591 A.D., one of which probably as large as the 1999 Izmit earthquake.
Damage Mechanics Approach to Penetration of Water-filled Surface Crevasses
NASA Astrophysics Data System (ADS)
Duddu, R.; Jimenez, S. K.; Bassis, J. N.
2017-12-01
Iceberg calving is a natural process that occurs when crevasses penetrate the entire thickness of an ice shelf or a glacier leading to the detachment (birth) of icebergs. Calving from marine-terminating glaciers and floating ice shelves accounts for nearly 50% of the mass lost from both the Greenland and Antarctic ice sheets, which can directly or indirectly contribute to sealevel rise. A widely-accepted hypothesis is that crevasses in ice form due to brittle mode I fracture under the action of tensile stresses. Existing theoretical approaches for modeling crevasse propagation based on the above hypothesis include the Nye zero stress and fracture mechanics approaches. These theoretical approaches assume idealized geometry and boundary conditions, and ignore the effects of viscous creep deformations in ice over longer time scales; however, they still produced interesting results that matched well with sparse field observations available. An alternative is to use the continuum damage mechanics approach for modeling crevasse propagation, which is more easily incorporated into numerical ice sheet models that consider realistic geometries, boundary conditions and viscous creep effects. In this presentation, we describe the damage mechanics approach to penetration of dry and water-filled surface crevasses using the principles of poromechanics and compare our results with those from existing theoretical approaches. We investigate the upper limits on crevasse penetration depth in relation to ice thickness, water depth in the surface crevasse, seawater depth at the ice terminus and ice rheology (i.e., elastic vs. viscous). Our studies on idealized glaciers show that the damage mechanics approach is consistent with the fracture mechanics approach when the seawater depth at the ice terminus is low, but is inconsistent with the theoretical approaches when the seawater depth at the ice terminus is high (i.e., near floatation). Our studies also indicate that the upper limit on surface crevasse penetration depth is minimally sensitive to ice rheology when glacier geometry changes are ignored. However, viscous flow can cause geometry changes and induce stresses (e.g., due to bending) leading to deeper crevasse penetration in numerical ice sheet models.
NASA Astrophysics Data System (ADS)
Magoba, Moses; Opuwari, Mimonitu
2017-04-01
This paper embodies a study carried out to assess the Petrophysical evaluation of upper shallow marine sandstone reservoir of 10 selected wells in the Bredasdorp basin, offshore, South Africa. The studied wells were selected randomly across the upper shallow marine formation with the purpose of conducting a regional study to assess the difference in reservoir properties across the formation. The data sets used in this study were geophysical wireline logs, Conventional core analysis and geological well completion report. The physical rock properties, for example, lithology, fluid type, and hydrocarbon bearing zone were qualitatively characterized while different parameters such as volume of clay, porosity, permeability, water saturation ,hydrocarbon saturation, storage and flow capacity were quantitatively estimated. The quantitative results were calibrated with the core data. The upper shallow marine reservoirs were penetrated at different depth ranging from shallow depth of about 2442m to 3715m. The average volume of clay, average effective porosity, average water saturation, hydrocarbon saturation and permeability range from 8.6%- 43%, 9%- 16%, 12%- 68% , 32%- 87.8% and 0.093mD -151.8mD respectively. The estimated rock properties indicate a good reservoir quality. Storage and flow capacity results presented a fair to good distribution of hydrocarbon flow.
Erosion of aluminum 6061-T6 under cavitation attack in mineral oil and water
NASA Technical Reports Server (NTRS)
Rao, B. C. S.; Buckley, D. H.
1985-01-01
Studies of the erosion of aluminum 6061-T6 under cavitation attack in distilled water, ordinary tap water and a viscous mineral oil are presented. The mean depth of penetration for the mineral oil was about 40 percent of that for water at the end of a 40 min test. The mean depth of penetration and its rate did not differ significantly for distilled and tap water. The mean depth of penetration rate for both distilled and tap water increased to a maximum and then decreased with test duration, while that for mineral oil had a maximum during the initial period. The ratio h/2a of the pit depth h to the pit diameter 2a varied from 0.04 to 0.13 in water and from 0.06 to 0.20 in mineral oil. Scanning electron microscopy indicates that the pits are initially formed over the grain boundaries and precipitates while the surface grains are deformed under cavitation attack.
NASA Astrophysics Data System (ADS)
Yang, Yu; Guo, Jianqiu; Goue, Ouloide Yannick; Kim, Jun Gyu; Raghothamachar, Balaji; Dudley, Michael; Chung, Gill; Sanchez, Edward; Manning, Ian
2018-02-01
Synchrotron x-ray topography in grazing-incidence geometry is useful for discerning defects at different depths below the crystal surface, particularly for 4H-SiC epitaxial wafers. However, the penetration depths measured from x-ray topographs are much larger than theoretical values. To interpret this discrepancy, we have simulated the topographic contrast of dislocations based on two of the most basic contrast formation mechanisms, viz. orientation and kinematical contrast. Orientation contrast considers merely displacement fields associated with dislocations, while kinematical contrast considers also diffraction volume, defined as the effective misorientation around dislocations and the rocking curve width for given diffraction vector. Ray-tracing simulation was carried out to visualize dislocation contrast for both models, taking into account photoelectric absorption of the x-ray beam inside the crystal. The results show that orientation contrast plays the key role in determining both the contrast and x-ray penetration depth for different types of dislocation.
Geohydrology of test well USW H-3, Yucca Mountain, Nye County, Nevada
Thordarson, William; Rush, F.E.; Waddell, S.J.
1985-01-01
Test well USW H-3 is one of several wells drilled in the southwestern part of the Nevada Test Site for hydraulic testing, hydrologic monitoring, and geophysical logging. The work was performed in cooperation with the U.S. Department of Energy. The rocks penetrated by the well to a total depth of 1,219 meters were volcanic tuffs of Tertiary age. The most transmissive zone in this well is in the upper part of the Tram Member of the Crater Flat Tuff that was penetrated at a depth from 809 to 841 meters; transmissivity is about 7 x 10 -1 meter squared per day. The remainder of the rocks penetrated between the depths of 841 to 1,219 meters have a transmissivity of about 4 x 10 -1 meter squared per day and are predominatly in the Tram Member of the Crater Flat Tuff and the Lithic Ridge Tuff in the depths from 841 to 1,219 meters. (USGS)
Zhang, Hairong; Salo, Daniel; Kim, David M.; Komarov, Sergey; Tai, Yuan-Chuan; Berezin, Mikhail Y.
2016-01-01
Abstract. Measurement of photon penetration in biological tissues is a central theme in optical imaging. A great number of endogenous tissue factors such as absorption, scattering, and anisotropy affect the path of photons in tissue, making it difficult to predict the penetration depth at different wavelengths. Traditional studies evaluating photon penetration at different wavelengths are focused on tissue spectroscopy that does not take into account the heterogeneity within the sample. This is especially critical in shortwave infrared where the individual vibration-based absorption properties of the tissue molecules are affected by nearby tissue components. We have explored the depth penetration in biological tissues from 900 to 1650 nm using Monte–Carlo simulation and a hyperspectral imaging system with Michelson spatial contrast as a metric of light penetration. Chromatic aberration-free hyperspectral images in transmission and reflection geometries were collected with a spectral resolution of 5.27 nm and a total acquisition time of 3 min. Relatively short recording time minimized artifacts from sample drying. Results from both transmission and reflection geometries consistently revealed that the highest spatial contrast in the wavelength range for deep tissue lies within 1300 to 1375 nm; however, in heavily pigmented tissue such as the liver, the range 1550 to 1600 nm is also prominent. PMID:27930773
L-band InSAR Penetration Depth Experiment, North Slope Alaska
NASA Astrophysics Data System (ADS)
Muskett, R. R.
2017-12-01
Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales. Ref.: Geoscience and Environment Protection, vol. 5, no. 3, p. 14-30, 2017. DOI: 10.4236/gep.2017.53002.
Shah, Syaiful Redzwan Mohd; Velander, Jacob; Mathur, Parul; Perez, Mauricio D; Asan, Noor Badariah; Kurup, Dhanesh G; Blokhuis, Taco J; Augustine, Robin
2018-02-21
In recent research, microwave sensors have been used to follow up the recovery of lower extremity trauma patients. This is done mainly by monitoring the changes of dielectric properties of lower limb tissues such as skin, fat, muscle, and bone. As part of the characterization of the microwave sensor, it is crucial to assess the signal penetration in in vivo tissues. This work presents a new approach for investigating the penetration depth of planar microwave sensors based on the Split-Ring Resonator in the in vivo context of the femoral area. This approach is based on the optimization of a 3D simulation model using the platform of CST Microwave Studio and consisting of a sensor of the considered type and a multilayered material representing the femoral area. The geometry of the layered material is built based on information from ultrasound images and includes mainly the thicknesses of skin, fat, and muscle tissues. The optimization target is the measured S 11 parameters at the sensor connector and the fitting parameters are the permittivity of each layer of the material. Four positions in the femoral area (two at distal and two at thigh) in four volunteers are considered for the in vivo study. The penetration depths are finally calculated with the help of the electric field distribution in simulations of the optimized model for each one of the 16 considered positions. The numerical results show that positions at the thigh contribute the highest penetration values of up to 17.5 mm. This finding has a high significance in planning in vitro penetration depth measurements and other tests that are going to be performed in the future.
NASA Astrophysics Data System (ADS)
Zhou, D. W.; Liu, J. S.; Lu, Y. Z.; Xu, S. H.
2017-09-01
The experiments of laser penetration welding for dual phase steel and aluminum alloy were carried out, and the effect of adding Mn or Si powder on mechanical properties and microstructure of the weld was investigated. Some defects, such as spatter, inclusion, cracks and softening in heat affected zone (HAZ), can be avoided in welding joints, and the increased penetration depth is obtained by adding Mn or Si powder. The average tensile-shear strength of Si-added joint is 3.84% higher than that of Mn-added joint, and the strength of both joints exceeds that of no-added joint. In the case of adding Mn powder, small amount of liquid Al is mixed into steel molten pool, and the Al content increases in both sides of the weld, which leads to the increased weld width in aluminum molten pool. Thus, transverse area increases in jointing steel to aluminum, which is significant for the improved tensile-shear strength of joints. As far as adding Si powder is concerned, it is not the case, the enhancement of the joint properties benefits from improvement of metallurgical reaction.
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Bulaevskii, Lev N.
2012-07-01
The working principle of magnetic force microscopy and scanning SQUID microscopy is introducing a magnetic source near a superconductor and measuring the magnetic field distribution near the superconductor, from which one can obtain the penetration depth. We investigate the magnetic field distribution near the surface of a magnetic superconductor when a magnetic source is placed close to the superconductor, which can be used to extract both the penetration depth λL and magnetic susceptibility χ by magnetic force microscopy or scanning SQUID microscopy. When the magnetic moments are parallel to the surface, one extracts λL/1-4πχ. When the moments are perpendicular to the surface, one obtains λL. By changing the orientation of the crystal, one thus is able to extract both χ and λL.
TlCaBaCuO high Tc superconducting microstrip ring resonators designed for 12 GHz
NASA Technical Reports Server (NTRS)
Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.
1993-01-01
Microwave properties of sputtered Tl-Ca-Ba-Cu-O thin films were investigated by designing, fabricating, and testing microstrip ring resonators. Ring resonators designed for 12 GHz fundamental resonance frequency, were fabricated and tested. From the unloaded Q values for the resonators, the surface resistance was calculated by separating the conductor losses from the total losses. The penetration depth was obtained from the temperature dependence of resonance frequency, assuming that the shift in resonance frequency is mainly due to the temperature dependence of penetration depth. The effective surface resistance at 12 GHz and 77 K was determined to be between 1.5 and 2.75 mOmega, almost an order lower than Cu at the same temperature and frequency. The effective penetration depth at 0 K is approximately 7000 A.
Meyer, M.T.; Fine, J.M.
1997-01-01
As part of the U.S. Geological Survey's Resource Conservation and Recovery Act, Facilities Investigations at Fort Bragg, North Carolina, selected geophysical techniques were evaluated for their usefulness as assessment tools for determining subsurface geology, delineating the areal extent of potentially contaminated landfill sites, and locating buried objects and debris of potential environmental concern. Two shallow seismic-reflection techniques (compression and shear wave) and two electromagnetic techniques (ground-penetrating radar and terrain conductivity) were evaluated at several sites at the U.S. Army Base. The electromagnetic techniques also were tested for tolerance to cultural noise, such as nearby fences, vehicles, and power lines. For the terrain conductivity tests, two instruments were used--the EM31 and EM34, which have variable depths of exploration. The shallowest reflection event was 70 feet below land surface observed in common-depth point, stacked compression-wave data from 24- and 12-fold shallow-seismic-reflection surveys. Several reflection events consistent with clay-sand interfaces between 70 and 120 feet below land surface, along with basement-saprolite surfaces, were imaged in the 24-fold, common- depth-point stacked data. 12-fold, common-depth-point stacked data set contained considerably more noise than the 24-fold, common-depth-point data, due to reduced shot-to-receiver redundancy. Coherent stacked reflection events were not observed in the 24-fold, common-depth-point stacked shear-wave data because of the partial decoupling of the shear- wave generator from the ground. At one site, ground-penetrating radar effectively delineated a shallow, 2- to 5-foot thick sand unit bounded by thin (less than 1 foot) clay layers. The radar signal was completely attenuated where the overlying and underlying clay units thickened and the sand unit thinned. The pene- tration depth of the radar signal was less than 10 feet below land surface. A slight increase in electromagnetic conductivity across shallow sampling EM31 and EM34 profiles provided corroborative evidence of the shallow, thickening clay units. Plots of raw EM31 and EM34 data provided no direct interpretable information to delineate sand and clay units in the shallow subsurface. At two sites, the ground-penetrating radar effectively delineated the lateral continuity of surficial sand units 5 to 25 feet in thickness and the tops of their underlying clay units. The effective exploration depth of the ground-penetrating radar was limited by the proximity of clay units to the subsurface and their thickness. The ground-penetrating radar delineated the areal extent and depth of cover at a previously unrecognized extension of a trench-like landfill underlying a vehicle salvage yard. Attenuation of the radar signal beneath the landfill cover and the adjacent subsurface clays made these two mediums indistinguishable by ground-penetrating radar; however, EM31 data indicated that the electrical conductivity of the landfill was higher than the subsurface material adjacent to the landfill. The EM31 and EM34 conductivity surveys defined the areal extent of a landfill whose boundaries were inaccurately mapped, and also identified the locations of an old dumpsite and waste incinerator site at another landfill. A follow-up ground-penetrating radar survey of the abandoned dumpsite showed incongruities in some of the shallow radar reflections interpreted as buried refuse dispersed throughout the landfill. The ground-penetrating radar and EM31 effectively delineated a shallow buried fuel-oil tank. Of the three electromagnetic instruments, the ground-penetrating radar with the shielded 100-megahertz antenna was the least affected by cultural noise followed, in order, by the EM31 and EM34. The combination of terrain- conductivity and ground-penetrating radar for the site assessment of the landfill provided a powerful means to identify the areal extent of the landfill, potenti
Yang, Tianxi; Zhao, Bin; Kinchla, Amanda J; Clark, John M; He, Lili
2017-05-03
Understanding pesticide behavior in plants is important for effectively applying pesticides and in reducing pesticide exposures from ingestion. This study aimed to investigate the penetration and persistence of pesticides applied on harvested and live basil leaves. Surface-enhanced Raman scattering (SERS) mapping was applied for in situ and real-time tracking of pesticides over time using gold nanoparticles as probes. The results showed that, after surface exposure of 30 min to 48 h, pesticides (10 mg/L) penetrated more rapidly and deeply into the live leaves than the harvested leaves. The systemic pesticide thiabendazole and the nonsystemic pesticide ferbam can penetrate into the live leaves with depths of 225 and 130 μm, respectively, and the harvested leaves with depths of 180 and 18 μm, respectively, after 48 h of exposure. The effects of leaf integrity and age on thiabendazole penetration were also evaluated on live basil leaves after 24 h of exposure. Thiabendazole (10 mg/L) when applied onto intact leaves penetrated deeper (170 μm) than when applied onto damaged leaves (80 μm) prepared with 20 scrapes on the top surface of the leaves. Older leaves with a wet mass of 0.204 ± 0.019 g per leaf (45 days after leaf out) allowed more rapid and deeper penetration of pesticides (depth of 165 μm) than younger leaves with a wet mass of 0.053 ± 0.007 g per leaf (15 days after leaf out, depth of 95 μm). The degradation of thiabendazole on live leaves was detected after 1 week, whereas the apparent degradation of ferbam was detected after 2 weeks. In addition, the removal of pesticides from basil was more efficient when compared with other fresh produce possibly due to the specific gland structure of basil leaves. The information obtained here provides a better understanding of the behavior and biological fate of pesticides on plants.
NASA Technical Reports Server (NTRS)
Taranik, J. V.; Slemmons, D. B.; Bell, E. J.; Borengasser, M.; Lugaski, T. P.; Vreeland, H.; Vreeland, P.; Kleiner, E.; Peterson, F. F.; Kleiforth, H.
1984-01-01
The measurement capability provided by the Shuttle Imaging Radar (SIR-B) was used to determine: (1) the relationships between radar illumination geometry and depth of penetration in different climatic and physiographic environments in Nevada; and, (2) the relationships between radar illumination geometry and detection and analysis of structural features in different climatic and physiographic environments in Nevada.
NASA Astrophysics Data System (ADS)
Rodríguez-Abad, Isabel; Klysz, Gilles; Martínez-Sala, Rosa; Balayssac, Jean Paul; Mené-Aparicio, Jesús
2016-12-01
The long-term performance of concrete structures is directly tied to two factors: concrete durability and strength. When assessing the durability of concrete structures, the study of the water penetration is paramount, because almost all reactions like corrosion, alkali-silica, sulfate, etc., which produce their deterioration, require the presence of water. Ground-penetrating radar (GPR) has shown to be very sensitive to water variations. On this basis, the objective of this experimental study is, firstly, to analyze the correlation between the water penetration depth in concrete samples and the GPR wave parameters. To do this, the samples were immersed into water for different time intervals and the wave parameters were obtained from signals registered when the antenna was placed on the immersed surface of the samples. Secondly, a procedure has been developed to be able to determine, from those signals, the reliability in the detection and location of waterfront depths. The results have revealed that GPR may have an enormous potential in this field, because excellent agreements were found between the correlated variables. In addition, when comparing the waterfront depths calculated from GPR measurements and those visually registered after breaking the samples, we observed that they totally agreed when the waterfront was more than 4 cm depth.
Bolles, Jordan A; He, Jianing; Svoboda, Kathy K H; Schneiderman, Emet; Glickman, Gerald N
2013-05-01
Vibringe is a new device that allows continuous sonic irrigation of the canal system during endodontic treatment. The aim of this study was to compare the effect of different irrigation systems on sealer penetration into dentinal tubules of extracted single-rooted teeth. Fifty single-rooted human teeth were instrumented and randomly divided into 4 groups: group 1 (control), saline; group 2 (conventional irrigation), 17% EDTA followed by 6% NaOCl; group 3 (EndoActivator), same irrigants as group 2; group 4 (Vibringe), same irrigants as group 2. Obturation of all teeth was done with gutta-percha and SimpliSeal labeled with fluorescent dye. Transverse sections at 1 mm and 5 mm from the root apex were examined by using confocal laser scanning microscopy. Percentage and maximum depth of sealer penetration were measured by using NIS-Elements Br 3.0 imaging software. Groups 3 and 4 had a significantly greater percentage of the canal wall penetrated by sealer at the 5-mm level than group 1 (P < .0125), but not group 2. No other differences were found between the groups at either section level for both the percentage of sealer penetration and maximum depth. The 5-mm sections in each experimental group had a significantly higher percentage and maximum depth of sealer penetration than did the 1-mm sections (P < .0125). The use of sonic activation with either the EndoActivator or Vibringe did not significantly improve the sealer penetration when compared with conventional irrigation. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Study of motion of optimal bodies in the soil of grid method
NASA Astrophysics Data System (ADS)
Kotov, V. L.; Linnik, E. Yu
2016-11-01
The paper presents a method of calculating the optimum forms in axisymmetric numerical method based on the Godunov and models elastoplastic soil vedium Grigoryan. Solved two problems in a certain definition of generetrix rotation of the body of a given length and radius of the base, having a minimum impedance and maximum penetration depth. Numerical calculations are carried out by a modified method of local variations, which allows to significantly reduce the number of operations at different representations of generetrix. Significantly simplify the process of searching for optimal body allows the use of a quadratic model of local interaction for preliminary assessments. It is noted the qualitative similarity of the process of convergence of numerical calculations for solving the optimization problem based on local interaction model and within the of continuum mechanics. A comparison of the optimal bodies with absolutely optimal bodies possessing the minimum resistance of penetration below which is impossible to achieve under given constraints on the geometry. It is shown that the conical striker with a variable vertex angle, which equal to the angle of the solution is absolutely optimal body of minimum resistance of penetration for each value of the velocity of implementation will have a final depth of penetration is only 12% more than the traditional body absolutely optimal maximum depth penetration.
Robotic astrobiology - the need for sub-surface penetration of Mars
NASA Astrophysics Data System (ADS)
Ellery, A.; Ball, A.; Cockell, C.; Coste, P.; Dickensheets, D.; Edwards, H.; Hu, H.; Kolb, C.; Lammer, H.; Lorenz, R.; McKee, G.; Richter, L.; Winfield, A.; Welch, C.
2002-11-01
Recent interest in the astrobiological investigation of Mars has culminated in the only planned astrobiology-focussed robotic mission to Mars - the Beagle2 mission to be carried to Mars by the Mars Express spacecraft in 2003. Beagle2 will be primarily investigating the surface and near-surface environment of Mars. However, the results from the Viking Mars lander indicated that the Martian surface is saturated in peroxides and super-oxides which would rapidly degrade any organic material. Furthermore, recent models of gardening due to meteoritic impacts on the Martian surface suggest that the depth of this oxidising layer could extend to depths of 2-3m. Given that the discovery of organic fossilised residues will be the primary target for astrobiological investigation, this implies that future robotic astrobiology missions to Mars must penetrate to below these depths. The need to penetrate into the sub-surface of Mars has recently been given greater urgency with the discovery of extensive water ice-fields as little as 1m from the surface. We review the different technologies that make this penetration into the sub-surface a practical possibility on robotic missions. We further briefly present one such implementation of these technologies through the use of ground-penetrating moles - The Vanguard Mars mission proposal.
The Tubular Penetration Depth and Adaption of Four Sealers: A Scanning Electron Microscopic Study
Chen, Huan; Zhao, Xinyuan; Qiu, Yu; Xu, Dengyou
2017-01-01
Background. The tubular penetration and adaptation of the sealer are important factors for successful root canal filling. The aim of this study was to evaluate the tubular penetration depth of four different sealers in the coronal, middle, and apical third of root canals as well as the adaptation of these sealers to root canal walls. Materials and Methods. 50 single-rooted teeth were prepared in this study. Forty-eight of them were filled with different sealers (Cortisomol, iRoot SP, AH-Plus, and RealSeal SE) and respective core filling materials. Then the specimens were sectioned and scanning electron microscopy was employed to assess the tubular penetration and adaptation of the sealers. Results. Our results demonstrated that the maximum penetration was exhibited by RealSeal SE, followed by AH-Plus, iRoot SP, and Cortisomol. As regards the adaptation property to root canal walls, AH-Plus has best adaptation capacity followed by iRoot SP, RealSeal SE, and Cortisomol. Conclusion. The tubular penetration and adaptation vary with the different sealers investigated. RealSeal SE showed the most optimal tubular penetration, whereas AH-Plus presented the best adaptation to the root canal walls. PMID:29479539
High-frequency Pulse-compression Ultrasound Imaging with an Annular Array
NASA Astrophysics Data System (ADS)
Mamou, J.; Ketterling, J. A.; Silverman, R. H.
High-frequency ultrasound (HFU) allows fine-resolution imaging at the expense of limited depth-of-field (DOF) and shallow acoustic penetration depth. Coded-excitation imaging permits a significant increase in the signal-to-noise ratio (SNR) and therefore, the acoustic penetration depth. A 17-MHz, five-element annular array with a focal length of 31 mm and a total aperture of 10 mm was fabricated using a 25-μm thick piezopolymer membrane. An optimized 8-μs linear chirp spanning 6.5-32 MHz was used to excite the transducer. After data acquisition, the received signals were linearly filtered by a compression filter and synthetically focused. To compare the chirp-array imaging method with conventional impulse imaging in terms of resolution, a 25-μm wire was scanned and the -6-dB axial and lateral resolutions were computed at depths ranging from 20.5 to 40.5 mm. A tissue-mimicking phantom containing 10-μm glass beads was scanned, and backscattered signals were analyzed to evaluate SNR and penetration depth. Finally, ex-vivo ophthalmic images were formed and chirp-coded images showed features that were not visible in conventional impulse images.
NASA Astrophysics Data System (ADS)
Zeisberger, M.; Klupsch, Th.; Michalke, W.
1995-02-01
We report on a systematic mutual induction measurement of the complex AC penetration depth λ of a sputtered high-quality GdBa 2Cu 3O 7-δ film in the mixed state by a very small coil system arranged near the sample surface. The complex penetration depth λ( B, T, ω) for DC inductions B ⩽ 0.65 T (perpendicular to the film), for temperatures 36 K ⩽ T ⩽ 81 K, and for frequencies 1 kHz ⩽ ω/2 π ⩽ 500 kHz was determined from the measured signal by a novel inversion scheme. The results are consistent with theoretical predictions based upon single vortex pinning. The Labusch parameter α, the flux creep relaxation time τ, as well as the effective activation energy U are simulateneously determined.
Single-vortex pinning and penetration depth in superconducting NdFeAsO 1-xF x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jessie T.; Kim, Jeehoon; Huefner, Magdalena
2015-10-12
We use a magnetic force microscope (MFM) to investigate single vortex pinning and penetration depth in NdFeAsO 1-xF x, one of the highest-T c iron-based superconductors. In fields up to 20 Gauss, we observe a disordered vortex arrangement, implying that the pinning forces are stronger than the vortex-vortex interactions. We measure the typical force to depin a single vortex, F depin ≃ 4.5 pN, corresponding to a critical current up to J c ≃ 7×10 5 A/cm 2. As a result, our MFM measurements allow the first local and absolute determination of the superconducting in-plane penetration depth in NdFeAsO 1-xFmore » x, λ ab = 320 ± 60 nm, which is larger than previous bulk measurements.« less
NASA Astrophysics Data System (ADS)
Hatano, Y.; Yumizuru, K.; Koivuranta, S.; Likonen, J.; Hara, M.; Matsuyama, M.; Masuzaki, S.; Tokitani, M.; Asakura, N.; Isobe, K.; Hayashi, T.; Baron-Wiechec, A.; Widdowson, A.; contributors, JET
2017-12-01
Energy spectra of β-ray induced x-rays from divertor tiles used in ITER-like wall campaigns of the Joint European Torus were measured to examine tritium (T) penetration into tungsten (W) layers. The penetration depth of T evaluated from the intensity ratio of W(Lα) x-rays to W(Mα) x-rays showed clear correlation with poloidal position; the penetration depth at the upper divertor region reached several micrometers, while that at the lower divertor region was less than 500 nm. The deep penetration at the upper part was ascribed to the implantation of high energy T produced by DD fusion reactions. The poloidal distribution of total x-ray intensity indicated higher T retention in the inboard side than the outboard side of the divertor region.
NASA Astrophysics Data System (ADS)
Lunter, Dominique; Daniels, Rolf
2014-12-01
A methodology that employs confocal Raman microscopy (CRM) on ex vivo skin samples is proposed for the investigation of drug content and distribution in the skin. To this end, the influence of the penetration enhancers propylene glycol and polyoxyethylene-23-lauryl ether on the penetration and permeation of procaine as a model substance was investigated. The drug content of skin samples that had been incubated with semisolid formulations containing one of these enhancers was examined after skin segmentation. The experiments showed that propylene glycol did not affect the procaine content that was delivered to the skin, whereas polyoxyethylene-23-lauryl ether led to higher procaine contents and deeper penetration. Neither substance was found to influence the permeation rate of procaine. It is thereby shown that CRM can provide additional information on drug penetration and permeation. Furthermore, the method was found to enhance the depth from which Raman spectra can be collected and to improve the depth resolution compared to previously proposed methods.
Liu, Hsiao-Chuan; Li, Ying; Chen, Ruimin; Jung, Hayong; Shung, K Kirk
2017-04-01
Single-beam acoustic tweezers (SBATs) represent a new technology for particle and cell trapping. The advantages of SBATs are their deep penetration into tissues, reduction of tissue damage and ease of application to in vivo studies. The use of these tools for applications in drug delivery in vivo must meet the following conditions: large penetration depth, strong trapping force and tissue safety. A reasonable penetration depth for SBATs in the development of in vivo applications was established in a previous study conducted in water with zero velocity. However, capturing objects in flowing fluid can provide more meaningful results. In this study, we investigated the capability of SBATs to trap red blood cells (RBCs) and polystyrene microspheres in flowing RBC suspensions. Two different types of RBC suspension were prepared in this work: an RBC phosphate-buffered saline (PBS) suspension and an RBC plasma suspension. The results indicated that SBATs successfully trapped RBCs and polystyrene microspheres in a flowing RBC PBS suspension with an average steady velocity of 1.6 cm/s in a 2-mm-diameter polyimide. Furthermore, SBATs were found able to trap RBCs in a flowing RBC PBS suspension at speeds as high as 7.9 cm/s in a polyimide tube, which is higher than the velocity in capillaries (0.03 cm/s) and approaches the velocity in arterioles and venules. Moreover, the results also indicated that polystyrene microspheres can be trapped in an RBC plasma suspension, where aggregation is observed. This work represents a step forward in using this tool in actual in vivo experimentation. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Campbell penetration depth in Fe-based superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prommapan, Plegchart
A 'true' critical current density, j c, as opposite to commonly measured relaxed persistent (Bean) current, j B, was extracted from the Campbell penetration depth, Λ c(T,H) measured in single crystals of LiFeAs, and optimally electron-doped Ba(Fe 0.954Ni 0.046) 2As 2 (FeNi122). In LiFeAs, the effective pinning potential is nonparabolic, which follows from the magnetic field - dependent Labusch parameter α. At the equilibrium (upon field - cooling), α(H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamicmore » explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of jc(2 K) ≅ 1.22 x 10 6 A/cm 2 provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe 2As 2 based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, j c(2K) ≅ 3.3 x 10 6 A/cm 2. The magnetic-dependent feature was observed near the transition temperature in FeTe 0.53Se 0.47 and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between the magnetic penetration depth and London penetration depth in optimally hold-doped Ba 0.6K 0.4Fe 2As 2 (BaK122) and isovalent doped BaFe 2(As 0.7P 0.3) 2 (BaP122). These phenomena probably coincide with anomalous Meissner effect reported in pnicitde superconductors [Prozorov et al. (2010b)] however more studies are needed in order to clarify this.« less
Campbell penetration depth in iron-based superconductors
NASA Astrophysics Data System (ADS)
Prommapan, Plengchart
2011-12-01
A "true" critical current density, jc, as opposite to commonly measured relaxed persistent (Bean) current, jB, was extracted from the Campbell penetration depth, lambda C(T, H) measured in single crystals of LiFeAs, and optimally electron-doped Ba (Fe0.954Ni 0.046)2As2 (FeNi122). In LiFeAs, the effective pinning potential is non-parabolic, which follows from the magnetic field - dependent Labusch parameter alpha. At the equilibrium (upon field - cooling), alpha( H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamic explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of j c (2 K) ≃ 1:22 x106 A/cm² provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe2As2 based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, jc(2 K) ≃ 3.3 x 106 A/cm². The magnetic-dependent feature was observed near the transition temperature in FeTe0.53Se0.47 and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between the magnetic penetration depth and London penetration depth in optimally hold-doped Ba0.6K 0.4Fe2As2 (BaK122) and isovalent doped BaFe2(As0.7P0.3)2 (BaP122). These phenomena probably coincide with anomalous Meissner effect reported in pnictide superconductors [Prozorov et al. (2010b)] however more studies are needed in order to clarify this.
Skin pre-ablation and laser assisted microjet injection for deep tissue penetration.
Jang, Hun-Jae; Yeo, Seonggu; Yoh, Jack J
2017-04-01
For conventional needless injection, there still remain many unresolved issues such as the potential for cross-contamination, poor reliability of targeted delivery dose, and significantly painstaking procedures. As an alternative, the use of microjets generated with Er:YAG laser for delivering small doses with controlled penetration depths has been reported. In this study, a new system with two stages is evaluated for effective transdermal drug delivery. First, the skin is pre-ablated to eliminate the hard outer layer and second, laser-driven microjet penetrates the relatively weaker and freshly exposed epidermis. Each stage of operation shares a single Er:YAG laser that is suitable for skin ablation as well as for the generation of a microjet. In this study, pig skin is selected for quantification of the injection depth based on the two-stage procedure, namely pre-ablation and microjet injection. The three types of pre-ablation devised here consists of bulk ablation, fractional ablation, and fractional-rotational ablation. The number of laser pulses are 12, 18, and 24 for each ablation type. For fractional-rotational ablation, the fractional beams are rotated by 11.25° at each pulse. The drug permeation in the skin is evaluated using tissue marking dyes. The depth of penetration is quantified by a cross sectional view of the single spot injections. Multi-spot injections are also carried out to control the dose and spread of the drug. The benefits of a pre-ablation procedure prior to the actual microjet injection to the penetration is verified. The four possible combinations of injection are (a) microjet only; (b) bulk ablation and microjet injection; (c) fractional ablation and microjet injection; and (d) fractional-rotational ablation and microjet injection. Accordingly, the total depth increases with injection time for all cases. In particular, the total depth of penetration attained via fractional pre-ablation increased by 8 ∼ 11% and that of fractional-rotational pre-ablation increased by 13 ∼ 33%, when compared with the no pre-ablation or microjet only cases. A noticeable point is that the fraction-rotational pre-ablation and microjet result is comparable to the bulk ablation and microjet result of 11 ∼ 42%. The penetration depth underneath ablated stratum corneum (SC) is also measured in order to verify the pre-ablation effect. The penetration depths for each case are (a) 443 ± 104 µm; (b) 625 ± 98 µm; (c) 523 ± 95 µm; and (d) 595 ± 141 µm for microjet only, bulk ablation and microjet, fractional ablation and microjet, and fractional-rotational ablation and microjet, respectively. This is quite beneficial since any healing time associated with ablation is significantly reduced by avoiding hard-core bulk ablation. Thus the bulk pre-ablation and microjet may well be superseded by the less invasive fractiona-rotational ablation followed by the microjet injection. The density of micro-holes is 1.27 number/mm 2 for fractional ablation and 4.84 number/mm 2 for fractional-rotational ablation. The penetration depths measured underneath the ablated SC are 581 µm (fractional ablation and microjet) and 691 µm (fractional-rotational ablation and microjet). Fractional-rotational ablation increases number of micro-holes in a unit area, enabling fast reepithelialization and high drug delivery efficiency. Optimization of system parameters such as ablation time, number of ablations, and injection time will eventually ensure a macromolecule delivery technique with the potential to include vaccines, insulins, and growth hormones, all of which require deeper penetration into the skin. Lasers Surg. Med. 49:387-394, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Microplasma effect on skin scaffold for melanoma cancer treatment
NASA Astrophysics Data System (ADS)
Abdullah, Zulaika; Zaaba, S. K.; Mustaffa, M. T.; Mohamad, C. W. S. R.; Zakaria, A.
2017-03-01
An atmospheric plasma system using Helium gas was developed. The effect of helium plasma treatment on skin scaffold surface was studied by scanning electron microscopy (SEM). The changes of skin scaffold surfaces before and after helium plasma treatment was recorded. The surface of skin scaffold changed with the prolonged of helium plasma treatment time. The depth of helium plasma penetration was studied using methylene blue dye staining method. The methylene blue will detect the presence or absence of an oxygen that was induced from plasma excitation. The presence of the oxygen indicated on the depth of helium plasma penetration. Results showed plasma are able to penetrate 4mm of skin scaffold after 1200 seconds of exposure.
Depth and Motion Prediction for Earth Penetrators
1978-06-01
multiple-layer targets. For targets with accurately knowni properties , the final-depth results are accurate ihný pret AM all13 EIIW FINVS S WLT n.- U lass S...Project hAl611o2AT2?, Task A2, Work Unit, " Effectiveness of Earth Penetrators in Various Geologic Environments." Mr. R. S. Bernard conducted the... effects in the selective destruction of localized targets (airfields, factories, utilities, etc.). The effectiveness of these weapons, however, is
NASA Astrophysics Data System (ADS)
Cordaro, S. W.; Bott-Suzuki, S. C.
2017-12-01
We present an experimental analysis of the symmetry of current density in a coaxial geometry, diagnosed using a magnetic field probe array and calculations of the Fowler-Nordheim enhancement factor. Data were collected on the coaxial gap breakdown device (240 A, 25 kV, 150 ns, ˜0.1 Hz), and data from experiments using 2 different gap sizes and different penetration depths are compared over runs comprising 50 shots for each case. The magnetic field probe array quantifies the distribution of current density at three axial locations, on either sides of a vacuum breakdown, and tracks the evolution with time and space. The results show asymmetries in current density, which can be influenced by changes in the gap size and the penetration depth (of the center electrode into the outer electrode). For smaller gap sizes (400 μm), symmetric current profiles were not observed, and the change in the penetration depth changes both the symmetric behavior of the current density and the enhancement factor. For larger gaps (900 μm), current densities were typically more uniform and less influenced by the penetration depth, which is reflected in the enhancement factor values. It is possible that the change in inductance caused by the localization of current densities plays a role in the observed behavior.
Khosrawipour, Veria; Giger-Pabst, Urs; Khosrawipour, Tanja; Pour, Yousef Hedayat; Diaz-Carballo, David; Förster, Eckart; Böse-Ribeiro, Hugo; Adamietz, Irenäus Anton; Zieren, Jürgen; Fakhrian, Khashayar
2016-01-01
This study was performed to assess the impact of irradiation on the tissue penetration depth of doxorubicin delivered during Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC). Fresh post mortem swine peritoneum was cut into 10 proportional sections. Except for 2 control samples, all received irradiation with 1, 2, 7 and 14 Gy, respectively. Four samples received PIPAC 15 minutes after irradiation and 4 other after 24 hours. Doxorubicin was aerosolized in an ex-vivo PIPAC model at 12 mmHg/36°C. In-tissue doxorubicin penetration was measured using fluorescence microscopy on frozen thin sections. Doxorubicin penetration after PIPAC (15 minutes after irradiation) was 476 ± 74 µm for the control sample, 450 ± 45µm after 1 Gy (p > 0.05), 438 ± 29 µm after 2 Gy (p > 0.05), 396 ± 32 µm after 7 Gy (p = 0.005) and 284 ± 57 after 14 Gy irradiation (p < 0.001). The doxorubicin penetration after PIPAC (24 hours after irradiation) was 428 ± 77 µm for the control sample, 393 ± 41 µm after 1 Gy (p > 0.05), 379 ± 56 µm after 2 Gy (p > 0.05), 352 ± 53 µm after 7 Gy (p = 0.008) and 345 ± 53 after 14 Gy irradiation (p = 0.001). Higher (fractional) radiation dose might reduce the tissue penetration depth of doxorubicin in our ex-vivo model. However, irradiation with lower (fractional) radiation dose does not affect the tissue penetration negatively. Further studies are warranted to investigate if irradiation can be used safely as chemopotenting agent for patients with peritoneal metastases treated with PIPAC.
Enhanced chlorhexidine skin penetration with 1,8-cineole.
Casey, A L; Karpanen, T J; Conway, B R; Worthington, T; Nightingale, P; Waters, R; Elliott, T S J
2017-05-17
Chlorhexidine (CHG) penetrates poorly into skin. The purpose of this study was to compare the depth of CHG skin permeation from solutions containing either 2% (w/v) CHG and 70% (v/v) isopropyl alcohol (IPA) or 2% (w/v) CHG, 70% (v/v) IPA and 2% (v/v) 1,8-cineole. An ex-vivo study using Franz diffusion cells was carried out. Full thickness human skin was mounted onto the cells and a CHG solution, with or without 2% (v/v) 1,8-cineole was applied to the skin surface. After twenty-four hours the skin was sectioned horizontally in 100 μm slices to a depth of 2000 μm and the concentration of CHG in each section quantified using high performance liquid chromatography (HPLC). The data were analysed with repeated measures analysis of variance. The concentration of CHG in the skin on average was significantly higher (33.3% [95%, CI 1.5% - 74.9%]) when a CHG solution which contained 1,8-cineole was applied to the skin compared to a CHG solution which did not contain this terpene (P = 0.042). Enhanced delivery of CHG can be achieved in the presence of 1,8-cineole, which is the major component of eucalyptus oil. This may reduce the numbers of microorganisms located in the deeper layers of the skin which potentially could decrease the risk of surgical site infection.
Hazratwala, Kaushik; Best, Alistair; Kopplin, Matthew; Giza, Eric; Sullivan, Martin
2005-03-01
The modified Broström ligament reconstruction using anchor sutures has been performed in adults with clinical success; however, the safety parameters for the use of suture anchors in adolescent lateral ankle ligament reconstruction have not been established. To perform a radiographic analysis comparing the depth of penetration of suture anchors in adult ankle ligament reconstruction with the average distance of the physis from the tip of the fibula in adolescents. Cross-sectional study, Level of evidence, 4. Forty postoperative ankle radiographs of adult patients who had a modified Broström procedure were compared with 40 normal adolescent ankle radiographs. In the adult group, the distance of the suture anchor penetration from the distal tip of the fibula was measured; in the adolescent group, the distance of the physis from the distal tip of the fibula was measured. The mean depth of the suture anchors was 17 mm (range, 14-21 mm) from the tip of the fibula in the adult group, and the mean distance of the growth plate was 23 mm (range, 18-29 mm) in the adolescent group. Eight radiographs from the adolescent group (20%) had a physis measurement of <22 mm on the anteroposterior or mortise view. Using careful preoperative planning and intraoperative technique, it is possible to safely perform lateral ankle ligament repair in the skeletally immature patient using suture anchors.
Synthetic Coal Slag Infiltration into Varying Refractory Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Tetsuya K; Thomas, Hugh; Bennett, James P
The infiltrations of synthetic coal slag into 99%Al{sub 2}O{sub 3}, 85%Al{sub 2}O{sub 3}–15%SiO{sub 2}, and 90%Cr{sub 2}O{sub 3}–10%Al{sub 2}O{sub 3} refractories with a temperature gradient induced along the penetration direction were compared to one another. The infiltrating slag was synthesized with a composition that is representative of an average of the ash contents from U S coal feedstock. Experiments were conducted with a hot-face temperature of 1450°C in a CO/CO{sub 2} atmosphere. Minimal penetration was observed in the 90%Cr{sub 2}O{sub 3}–10%Al{sub 2}O{sub 3} material because interactions between the refractory and the slag produced a protective layer of FeCr{sub 2}O{sub 4},more » which impeded slag flow into the bulk of the refractory. After 5 h, the 99%Al{sub 2}O{sub 3} sample exhibited an average penetration of 12.7 mm whereas the 85%Al{sub 2}O{sub 3}–15%SiO{sub 2} sample showed 3.8 mm. Slag infiltrated into the 99%Al{sub 2}O{sub 3} and 85%Al{sub 2}O{sub 3}–15%SiO{sub 2} refractory systems by dissolving the respective refractories' matrix materials, which consist of fine Al{sub 2}O{sub 3} particles and an amorphous alumino-silicate phase. Due to enrichment in SiO{sub 2}, a network-former, infiltration into the 85%Al{sub 2}O{sub 3}–15%SiO{sub 2} system yielded a higher viscosity slag and hence, a shallower penetration depth. The results suggest that slag infiltration can be limited by interactions with the refractory through the formation of either a solid layer that physically impedes fluid flow or a more viscous slag that retards infiltration.« less
Computational Transport Modeling of High-Energy Neutrons Found in the Space Environment
NASA Technical Reports Server (NTRS)
Cox, Brad; Theriot, Corey A.; Rohde, Larry H.; Wu, Honglu
2012-01-01
The high charge and high energy (HZE) particle radiation environment in space interacts with spacecraft materials and the human body to create a population of neutrons encompassing a broad kinetic energy spectrum. As an HZE ion penetrates matter, there is an increasing chance of fragmentation as penetration depth increases. When an ion fragments, secondary neutrons are released with velocities up to that of the primary ion, giving some neutrons very long penetration ranges. These secondary neutrons have a high relative biological effectiveness, are difficult to effectively shield, and can cause more biological damage than the primary ions in some scenarios. Ground-based irradiation experiments that simulate the space radiation environment must account for this spectrum of neutrons. Using the Particle and Heavy Ion Transport Code System (PHITS), it is possible to simulate a neutron environment that is characteristic of that found in spaceflight. Considering neutron dosimetry, the focus lies on the broad spectrum of recoil protons that are produced in biological targets. In a biological target, dose at a certain penetration depth is primarily dependent upon recoil proton tracks. The PHITS code can be used to simulate a broad-energy neutron spectrum traversing biological targets, and it account for the recoil particle population. This project focuses on modeling a neutron beamline irradiation scenario for determining dose at increasing depth in water targets. Energy-deposition events and particle fluence can be simulated by establishing cross-sectional scoring routines at different depths in a target. This type of model is useful for correlating theoretical data with actual beamline radiobiology experiments. Other work exposed human fibroblast cells to a high-energy neutron source to study micronuclei induction in cells at increasing depth behind water shielding. Those findings provide supporting data describing dose vs. depth across a water-equivalent medium. This poster presents PHITS data suggesting an increase in dose, up to roughly 10 cm depth, followed by a continual decrease as neutrons come to a stop in the target.
High mortality of Red Sea zooplankton under ambient solar radiation.
Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M
2014-01-01
High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.
Piezoelectric control of needle-free transdermal drug delivery.
Stachowiak, Jeanne C; von Muhlen, Marcio G; Li, Thomas H; Jalilian, Laleh; Parekh, Sapun H; Fletcher, Daniel A
2007-12-04
Transdermal drug delivery occurs primarily through hypodermic needle injections, which cause pain, require a trained administrator, and may contribute to the spread of disease. With the growing number of pharmaceutical therapies requiring transdermal delivery, an effective, safe, and simple needle-free alternative is needed. We present and characterize a needle-free jet injector that employs a piezoelectric actuator to accelerate a micron-scale stream of fluid (40-130 microm diameter) to velocities sufficient for skin penetration and drug delivery (50-160 m/s). Existing jet injectors, powered by compressed springs and gases, are not widely used due to painful injections and poor reliability in skin penetration depth and dose. In contrast, our device offers electronic control of the actuator expansion rate, resulting in direct control of jet velocity and thus the potential for more precise injections. We apply a simple fluid-dynamic model to predict the device response to actuator expansion. Further, we demonstrate that injection parameters including expelled volume, jet pressure, and penetration depth in soft materials vary with actuator expansion rate, but are highly coupled. Finally, we discuss how electronically-controlled jet injectors may enable the decoupling of injection parameters such as penetration depth and dose, improving the reliability of needle-free transdermal drug delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Ryan T.
2011-01-01
The London penetration depth has been measured in various doping levels of single crystals of Ba(Fe 1-xT x) 2As 2 (T=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu) superconductors by utilizing a tunnel diode resonator (TDR) apparatus. All in-plane penetration depth measurements exhibit a power law temperature dependence of the form Δλ ab(T) = CT n, indicating the existence of low-temperature, normal state quasiparticles all the way down to the lowest measured temperature, which was typically 500 mK. Several different doping concentrations from the Ba(Fe 1-xT x) 2As 2 (T=Co,Ni) systems have been measured and the doping dependence of the power law exponent, n, is compared tomore » results from measurements of thermal conductivity and specific heat. In addition, a novel method has been developed to allow for the measurement of the zero temperature value of the in-plane penetration depth, λ ab(0), by using TDR frequency shifts. By using this technique, the doping dependence of λ ab(0) has been measured in the Ba(Fe 1-xCo x) 2As 2 series, which has allowed also for the construction of the doping-dependent superfluid phase stiffness, ρ s(T) = [λ(0)/λ(T)] 2. By studying the effects of disorder on these superconductors using heavy ion irradiation, it has been determined that the observed power law temperature dependence likely arises from pair-breaking impurity scattering contributions, which is consistent with the proposed s±-wave symmetry of the superconducting gap in the dirty scattering limit. This hypothesis is supported by the measurement of an exponential temperature dependence of the penetration depth in the intrinsically clean LiFeAs, indicative of a nodeless superconducting gap.« less
Maiden, Nicholas R; Fisk, Wesley; Wachsberger, Christian; Byard, Roger W
2015-08-01
A study was undertaken to determine whether different concentrations of ordnance gelatine, water types, temperatures and curing times would have an effect on projectile penetration of a gelatine tissue surrogate. Both Federal Bureau of Investigation (FBI) and North Atlantic Treaty Organization (NATO) specified gelatines were compared against the FBI calibration standard. 10% w/w and 20% w/w concentrations of gelatine with Bloom numbers of 250 and 285 were prepared and cured at variable temperatures (3-20°C) for 21 hours-3 weeks. Each block was shot on four occasions on the same range using steel calibre 4.5 mm BBs fired from a Daisy(®) air rifle at the required standard velocity of 180 ± 4.5 m/s, to ascertain the mean penetration depth. The results showed no significant difference in mean penetration depth using the three different water types (p > 0.05). Temperature changes and curing times did affect penetration depth. At 10°C, mean penetration depth with 20% gelatine 285 Bloom for the two water types tested was 49.7 ± 1.5 mm after 21 h curing time, whereas the same formulation at 20°C using two different water types was 79.1 ± 2.1 mm after 100 h curing time (p < 0.001). Neither of the NATO 20% concentrations of gelatine at 10°C or a 20% concentration of 285 Bloom gelatine at 10°C met the same calibration standard as the FBI recommended 10% formulation at 4°C. A 20% concentration of 285 Bloom at 20°C met the same calibration/penetration criteria as a 10% concentration of 250 Bloom at 4 °C after 100 h of curing, therefore matching the FBI calibration standard for a soft tissue simulant for wound ballistics research. These results demonstrate significant variability in simulant properties. Failure to standardise ballistic simulants may invalidate experimental results. Copyright © 2015. Published by Elsevier Ltd.
Nishiwaki, Masako; Takayama, Miho; Yajima, Hiroyoshi; Nasu, Morihiro; Park, Joel; Kong, Jian; Takakura, Nobuari
2018-01-01
To investigate the acupuncture sensations elicited by the Japanese style of acupuncture, penetrating acupuncture and skin-touch placebo needles were randomly administered at various insertion depths (5 and 10 mm for the penetrating needles and 1 and 2 mm for the placebo needles) at LI4 to 50 healthy subjects. Among the 12 acupuncture sensations in the Massachusetts General Hospital Acupuncture Sensation Scale (MASS), "heaviness" was the strongest and most frequently reported sensation with the 10 mm needles, but not with the 5 mm needles. There were no significant differences in number of sensations elicited, MASS index, range of spreading, and intensity of needle pain for 5 mm penetration versus 1 mm skin press and 10 mm penetration versus 2 mm skin press. The MASS index with 2 mm skin-touch needles was significantly larger than that with 1 mm skin-touch and 5 mm penetrating needles. The factor structures in the 12 acupuncture sensations between penetrating and skin-touch needles were different. The acupuncture sensations obtained in this study under satisfactorily performed double-blind (practitioner-patient) conditions suggest that a slight difference in insertion depth and skin press causes significant differences in quantity and quality of acupuncture sensations.
Computed tomographic imaging of stapes implants.
Warren, Frank M; Riggs, Sterling; Wiggins, Richard H
2008-08-01
Computed tomographic (CT) imaging of stapes prostheses is inaccurate. Clinical situations arise in which it would be helpful to determine the depth of penetration of a stapes prosthesis into the vestibule. The accuracy of CT imaging for this purpose has not been defined. This study was aimed to determine the accuracy of CT imaging to predict the depth of intrusion of stapes prostheses into the vestibule. The measurement of stapes prostheses by CT scan was compared with physical measurements in 8 cadaveric temporal bones. The depth of intrusion into the vestibule of the piston was underestimated in specimens with the fluoroplastic piston by a mean of 0.5 mm when compared with the measurements obtained in the temporal bones. The depth of penetration of the stainless steel implant was overestimated by 0.5 mm when compared with that in the temporal bone. The type of implant must be taken into consideration when estimating the depth of penetration into the vestibule using CT scanning because the imaging characteristics of the implanted materials differ. The position of fluoroplastic pistons cannot be accurately measured in the vestibule. Metallic implants are well visualized, and measurements exceeding 2.2 mm increase the suspicion of otolithic impingement. Special reconstructions along the length of the piston may be more accurate in estimating the position of stapes implants.
2007-02-01
causes the photon to aquire mass via the Higgs mechanism (Ryder, 2003). The London penetration depth that we observe is then just the wavelength of the...Cooper-pair density. Both the penetration depth as well as the graviton wavelength is a complex number, as required by the positive cosmological ...the cosmological constant measurement of i.10-69 kg (De Matos et al, 2005), but it is still a small number. In a recent assessment, Modanese (Modanese
A Study of Crystalline Mechanism of Penetration Sealer Materials.
Teng, Li-Wei; Huang, Ran; Chen, Jie; Cheng, An; Hsu, Hui-Mi
2014-01-14
It is quite common to dispense a topping material like crystalline penetration sealer materials (CPSM) onto the surface of a plastic substance such as concrete to extend its service life span by surface protections from outside breakthrough. The CPSM can penetrate into the existing pores or possible cracks in such a way that it may form crystals to block the potential paths which provide breakthrough for any unknown materials. This study investigated the crystalline mechanism formed in the part of concrete penetrated by the CPSM. We analyzed the chemical composites, in order to identify the mechanism of CPSM and to evaluate the penetrated depth. As shown in the results, SEM observes the acicular-structured crystals filling capillary pores for mortar substrate of the internal microstructure beneath the concrete surface; meanwhile, XRD and FT-IR showed the main hydration products of CPSM to be C-S-H gel and CaCO₃. Besides, MIP also shows CPSM with the ability to clog capillary pores of mortar substrate; thus, it reduces porosity, and appears to benefit in sealing pores or cracks. The depth of CPSM penetration capability indicated by TGA shows 0-10 mm of sealer layer beneath the concrete surface.
Inspecting cracks in foam insulation
NASA Technical Reports Server (NTRS)
Cambell, L. W.; Jung, G. K.
1979-01-01
Dye solution indicates extent of cracking by penetrating crack and showing original crack depth clearly. Solution comprised of methylene blue in denatured ethyl alcohol penetrates cracks completely and evaporates quickly and is suitable technique for usage in environmental or structural tests.
Detection of underground voids in Ohio by use of geophysical methods
Munk, Jens; Sheets, R.A.
1997-01-01
Geophysical methods are generally classified as electrical, potential field, and seismic methods. Each method type relies on contrasts of physical properties in the subsurface. Forward models based on the physical properties of air- and water-filled voids within common geologic materials indicate that several geophysical methods are technically feasible for detection of subsurface voids in Ohio, but ease of use and interpretation varies widely between the methods. Ground-penetrating radar is the most rapid and cost-effective method for collection of subsurface data in areas associated with voids under roadways. Electrical resistivity, gravity, or seismic reflection methods have applications for direct delineation of voids, but data-collection and analytical procedures are more time consuming. Electrical resistivity, electromagnetic, or magnetic methods may be useful in locating areas where conductive material, such as rail lines, are present in abandoned underground coal mines. Other electrical methods include spontaneous potential and very low frequency (VLF); these latter two methods are considered unlikely candidates for locating underground voids in Ohio. Results of ground-penetrating radar surveys at three highway sites indicate that subsurface penetration varies widely with geologic material type and amount of cultural interference. Two highway sites were chosen over abandoned underground coal mines in eastern Ohio. A third site in western Ohio was chosen in an area known to be underlain by naturally occurring voids in lime stone. Ground-penetrating radar surveys at Interstate 470, in Belmont County, Ohio, indicate subsurface penetration of less than 15 feet over a mined coal seam that was known to vary in depth from 0 to 40 feet. Although no direct observations of voids were made, anomalous areas that may be related to collapse structures above voids were indicated. Cultural interference dominated the radar records at Interstate 70, Guernsey County, Ohio, where coal was mined under the site at a depth of about 50 feet. Interference from overhead powerlines, the field vehicle, and guardrails complicated an interpretation of the radar records where the depth of penetration was estimated to be less than 5 feet. Along State Route 33, in Logan County, Ohio, bedding planes and structures possibly associated with dissolution of limestone were profiled with ground-penetrating radar. Depth of penetration was estimated to be greater than 50 feet.
Seok, Joon; Oh, Chang Taek; Kwon, Hyun Jung; Kwon, Tae Rin; Choi, Eun Ja; Choi, Sun Young; Mun, Seog Kyun; Han, Seung-Ho; Kim, Beom Joon; Kim, Myeung Nam
2016-08-01
The effectiveness of needle-free injection devices in neocollagenesis for treating extended skin planes is an area of active research. It is anticipated that needle-free injection systems will not only be used to inject vaccines or insulin, but will also greatly aid skin rejuvenation when used to inject aesthetic materials such as hyaluronic acid, botulinum toxin, and placental extracts. There has not been any specific research to date examining how materials penetrate the skin when a needle-free injection device is used. In this study, we investigated how material infiltrates the skin when it is injected into a cadaver using a needle-free device. Using a needle-free injector (INNOJECTOR™; Amore Pacific, Seoul, Korea), 0.2 ml of 5% methylene blue (MB) or latex was injected into cheeks of human cadavers. The device has a nozzle diameter of 100 µm and produces a jet with velocity of 180 m/s. This jet penetrates the skin and delivers medicine intradermally via liquid propelled by compressed gasses. Materials were injected at pressures of 6 or 8.5 bars, and the injection areas were excised after the procedure. The excised areas were observed visually and with a phototrichogram to investigate the size, infiltration depth, and shape of the hole created on the skin. A small part of the area that was excised was magnified and stained with H&E (×40) for histological examination. We characterized the shape, size, and depth of skin infiltration following injection of 5% MB or latex into cadaver cheeks using a needle-free injection device at various pressure settings. Under visual inspection, the injection at 6 bars created semi-circle-shaped hole that penetrated half the depth of the excised tissue, while injection at 8.5 bars created a cylinder-shaped hole that spanned the entire depth of the excised tissue. More specific measurements were collected using phototrichogram imaging. The shape of the injection entry point was consistently spherical regardless of the amount of pressure used. When injecting 5% MB at 6 bars, the depth of infiltration reached 2.323 mm, while that at 8.5 bars reached 8.906 mm. The area of the hole created by the 5% MB injection was 0.797 mm(2) at 6 bars and 0.242 mm(2) at 8.5 bars. Latex injections reached a depth of 3.480 mm at 6 bars and 7.558 mm at 8.5 bars, and the areas were measured at 1.043 mm(2) (6 bars) and 0.355 mm(2) (8.5 bars). Histological examination showed that the injection penetrated as deep as the superficial musculoaponeurotic system at 6 bars and the masseter muscle at 8.5 bars. When injecting material into the skin using a pneumatic needle-free injector, higher-pressure injections result in a hole with smaller area than lower-pressure injections. The depth and shape of skin penetration vary according to the amount of pressure applied. For materials of low density and viscosity, there is a greater difference in penetration depth according to the degree of pressure. Lasers Surg. Med. 48:624-628, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Influence of Wind Pressure on the Carbonation of Concrete
Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun
2015-01-01
Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth. PMID:28793462
Process parameter effects on material removal in magnetorheological finishing of borosilicate glass.
Miao, Chunlin; Lambropoulos, John C; Jacobs, Stephen D
2010-04-01
We investigate the effects of processing parameters on material removal for borosilicate glass. Data are collected on a magnetorheological finishing (MRF) spot taking machine (STM) with a standard aqueous magnetorheological (MR) fluid. Normal and shear forces are measured simultaneously, in situ, with a dynamic dual load cell. Shear stress is found to be independent of nanodiamond concentration, penetration depth, magnetic field strength, and the relative velocity between the part and the rotating MR fluid ribbon. Shear stress, determined primarily by the material mechanical properties, dominates removal in MRF. The addition of nanodiamond abrasives greatly enhances the material removal efficiency, with the removal rate saturating at a high abrasive concentration. The volumetric removal rate (VRR) increases with penetration depth but is insensitive to magnetic field strength. The VRR is strongly correlated with the relative velocity between the ribbon and the part, as expected by the Preston equation. A modified removal rate model for MRF offers a better estimation of MRF removal capability by including nanodiamond concentration and penetration depth.
NASA Astrophysics Data System (ADS)
Omolaiye, Gabriel Efomeh; Ayolabi, Elijah A.
2010-09-01
A ground penetrating radar (GPR) survey was conducted on the Lekki Peninsula, Lagos State, Nigeria. The primary target of the survey was the delineation of underground septic tanks (ST). A total of four GPR profiles were acquired on the survey site using Ramac X3M GPR equipment with a 250MHz antenna, chosen based on the depth of interest and resolution. An interpretable depth of penetration of 4.5m below the surface was achieved after processing. The method accurately delineated five underground ST. The tops of the ST were easily identified on the radargram based on the strong-amplitude anomalies, the length and the depths to the base of the ST were estimated with 99 and 73 percent confidence respectively. The continuous vertical profiles provide uninterrupted subsurface data along the lines of traverse, while the non-intrusive nature makes it an ideal tool for the accurate mapping and delineation of underground utilities.
NASA Astrophysics Data System (ADS)
Sayyed, M. I.; Elhouichet, H.
2017-01-01
The gamma ray energy absorption (EABF) and exposure buildup factors (EBF) of (100-x)TeO2-xB2O3 glass systems (where x=5, 10, 15, 20, 22.5 and 25 mol%) have been calculated in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). The five parameters (G-P) fitting method has been used to estimate both EABF and EBF values. Variations of EABF and EBF with incident photon energy and penetration depth have been studied. It was found that EABF and EBF values were higher in the intermediate energy region, for all the glass systems. Furthermore, boro-tellurite glass with 5 mol% B2O3, was found to present the lowest EABF and EBF values, hence it is superior gamma-ray shielding material. The results indicate that the boro-tellurite glasses can be used as radiation shielding materials.
Influence of Wind Pressure on the Carbonation of Concrete.
Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun
2015-07-24
Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth.
NASA Astrophysics Data System (ADS)
Gondi, P.; Donato, A.; Montanari, R.; Sili, A.
1996-10-01
This work deals with a non-destructive method for mechanical tests which is based on the indentation of materials at a constant rate by means of a cylinder with a small radius and penetrating flat surface. The load versus penetration depth curves obtained using this method have shown correspondences with those of tensile tests and have given indications about the mechanical properties on a reduced scale. In this work penetration tests have been carried out on various kinds of Cr martensitic steels (MANET-2, BATMAN and modified F82H) which are of interest for first wall and structural applications in future fusion reactors. The load versus penetration depth curves have been examined with reference to data obtained in tensile tests and to microhardness measurements. Penetration tests have been performed at various temperature (from -180 to 100°C). Conclusions, which can be drawn for the ductile to brittle transition, are discussed for MANET-2 steel. Preliminary results obtained on BATMAN and modified F82H steels are reported. The characteristics of the indenter imprints have been studied by scanning electron microscopy.
Mrozek, Randy A; Leighliter, Brad; Gold, Christopher S; Beringer, Ian R; Yu, Jian H; VanLandingham, Mark R; Moy, Paul; Foster, Mark H; Lenhart, Joseph L
2015-04-01
The fundamental material response of a viscoelastic material when impacted by a ballistic projectile has important implication for the defense, law enforcement, and medical communities particularly for the evaluation of protective systems. In this paper, we systematically vary the modulus and toughness of a synthetic polymer gel to determine their respective influence on the velocity-dependent penetration of a spherical projectile. The polymer gels were characterized using tensile, compression, and rheological testing taking special care to address the unique challenges associated with obtaining high fidelity mechanical data on highly conformal materials. The depth of penetration data was accurately described using the elastic Froude number for viscoelastic gels ranging in Young's modulus from ~60 to 630 kPa. The minimum velocity of penetration was determined to scale with the gel toughness divided by the gel modulus, a qualitative estimate for the zone of deformation size scale upon impact. We anticipate that this work will provide insight into the critical material factors that control ballistic penetration behavior in soft materials and aid in the design and development of new ballistic testing media. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Brenner, Anita C.; Barbieri, Kristine; DiMarzio, John P.; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui
2012-01-01
A primary purpose of satellite altimeter measurements is determination of the mass balances of the Greenland and Antarctic ice sheets and changes with time by measurement of changes in the surface elevations. Since the early 1990's, important measurements for this purpose have been made by radar altimeters on ERS-l and 2, Envisat, and CryoSat and a laser altimeter on ICESat. One principal factor limiting direct comparisons between radar and laser measurements is the variable penetration depth of the radar signal and the corresponding location of the effective depth of the radar-measured elevation beneath the surface, in contrast to the laser-measured surface elevation. Although the radar penetration depth varies significantly both spatially and temporally, empirical corrections have been developed to account for this effect. Another limiting factor in direct comparisons is caused by differences in the size of the laser and radar footprints and their respective horizontal locations on the surface. Nevertheless, derived changes in elevation, dHldt, and time-series of elevation, H(t), have been shown to be comparable. For comparisons at different times, corrections for elevation changes caused by variations in the rate offrrn compaction have also been developed. Comparisons between the H(t) and the average dH/dt at some specific locations, such as the Vostok region of East Antarctic, show good agreement among results from ERS-l and 2, Envisat, and ICESat. However, Greenland maps of dHidt from Envisat and ICESat for the same time periods (2003-2008) show some areas of significant differences as well as areas of good agreement. Possible causes of residual differences are investigated and described.
NASA Technical Reports Server (NTRS)
Vasilkov, Alexander; Krotkov, Nickolay; Herman, Jay; McClain, Charles; Arrigo, Kevin; Robinson, Wayne
1999-01-01
The global stratospheric ozone-layer depletion results In an increase in biologically harmful ultraviolet (UV) radiation reaching the surface and penetrating to ecologically significant depths in natural waters. Such an increase can be estimated on a global scale by combining satellite estimates of UV irradiance at the ocean surface from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument with the SeaWIFS satellite ocean-color measurements in the visible spectral region. In this paper we propose a model of seawater optical properties in the UV spectral region based on the Case I water model in the visible range. The inputs to the model are standard monthly SeaWiFS products: chlorophyll concentration and the diffuse attenuation coefficient at 490nm. Penetration of solar UV radiation to different depths in open ocean waters is calculated using the RT (radiative transfer) quasi-single scattering approximation (QSSA). The accuracy of the QSSA approximation in the water is tested using more accurate codes. The sensitivity study of the underwater UV irradiance to atmospheric and oceanic optical properties have shown that the main environmental parameters controlling the absolute levels of the UVB (280-320nm) and DNA-weighted irradiance underwater are: solar-zenith angle, cloud transmittance, water optical properties, and total ozone. Weekly maps of underwater UV irradiance and DNA-weighted exposure are calculated using monthly-mean SeaWiFS chlorophyll and diffuse attenuation coefficient products, daily SeaWiFS cloud fraction data, and the TOMS-derived surface UV irradiance daily maps. The final products include global maps of weekly-average UVB irradiance and DNA-weighted daily exposures at 3m and 10m, and depths where the UVB irradiance and DNA-weighted dose rate at local noon are equal to 10% of their surface values.
ICE MINERALOGY ACROSS AND INTO THE SURFACES OF PLUTO, TRITON, AND ERIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegler, S. C.; Grundy, W. M.; Olkin, C. B.
We present three near-infrared spectra of Pluto taken with the Infrared Telescope Facility and SpeX, an optical spectrum of Triton taken with the MMT and the Red Channel Spectrograph, and previously published spectra of Pluto, Triton, and Eris. We combine these observations with a two-phase Hapke model and gain insight into the ice mineralogy on Pluto, Triton, and Eris. Specifically, we measure the methane-nitrogen mixing ratio across and into the surfaces of these icy dwarf planets. In addition, we present a laboratory experiment that demonstrates it is essential to model methane bands in spectra of icy dwarf planets with twomore » methane phases-one highly diluted by nitrogen and the other rich in methane. For Pluto, we find bulk, hemisphere-averaged, methane abundances of 9.1% {+-} 0.5%, 7.1% {+-} 0.4%, and 8.2% {+-} 0.3% for sub-Earth longitudes of 10 Degree-Sign , 125 Degree-Sign , and 257 Degree-Sign . Application of the Wilcoxon rank sum test to our measurements finds these small differences are statistically significant. For Triton, we find bulk, hemisphere-averaged, methane abundances of 5.0% {+-} 0.1% and 5.3% {+-} 0.4% for sub-Earth longitudes of 138 Degree-Sign and 314 Degree-Sign . Application of the Wilcoxon rank sum test to our measurements finds the differences are not statistically significant. For Eris, we find a bulk, hemisphere-averaged, methane abundance of 10% {+-} 2%. Pluto, Triton, and Eris do not exhibit a trend in methane-nitrogen mixing ratio with depth into their surfaces over the few centimeter range probed by these observations. This result is contrary to the expectation that since visible light penetrates deeper into a nitrogen-rich surface than the depths from which thermal emission emerges, net radiative heating at depth would drive preferential sublimation of nitrogen leading to an increase in the methane abundance with depth.« less
Seagrass distribution and abundance in Eastern Gulf of Mexico coastal waters
NASA Astrophysics Data System (ADS)
Iverson, Richard L.; Bittaker, Henry F.
1986-05-01
The marine angiosperms Thalassia testudinum, Syringodium filiforme, and Halodule wrightii form two of the largest reported seagrass beds along the northwest and southern coasts of Florida where they cover about 3000 square km in the Big Bend area and about 5500 square km in Florida Bay, respectively. Most of the leaf biomass in the Big Bend area and outer Florida Bay was composed of Thalassia testudinum and Syringodium filiforme which were distributed throughout the beds but which were more abundant in shallow depths. A short-leaved form of Halodule wrightii grew in monotypic stands in shallow water near the inner edges of the beds, while Halophila decipiens and a longer-leaved variety of H. wrightii grew scattered throughout the beds, in monotypic stands near the outer edges of the beds, and in deeper water outside the beds. Halophila engelmanni was observed scattered at various depths throughout the seagrass beds and in monospecific patches in deep water outside the northern bed. Ruppia maritima grew primarily in brackish water around river mouths. The cross-shelf limits of the two major seagrass beds are controlled nearshore by increased water turbidity and lower salinity around river mouths and off-shore by light penetration to depths which receive 10% or more of sea surface photosynthetically active radiation. Seagrasses form large beds only along low energy reaches of the coast. The Florida Bay seagrass bed contained about twice the short-shoot density of both Thalassia testudinum and Syringodium filiforme, for data averaged over all depths, and about four times the average short-shoot density of both species in shallow water compared with the Big Bend seagrass bed. The differences in average seagrass abundance between Florida Bay and the Big Bend area may be a consequence of the effects of greater seasonal solar radiation and water temperature fluctuations experienced by plants in the northern bed, which lies at the northern distribution limit for American Tropical seagrasses.
Estimating maximum depth distribution of seagrass using underwater videography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, J.G.; Wyllie-Echeverria, S.
1997-06-01
The maximum depth distribution of eelgrass (Zostera marina) beds in Willapa Bay, Washington appears to be limited by light penetration which is likely related to water turbidity. Using underwater videographic techniques we estimated that the maximum depth penetration in the less turbid outer bay was -5.85 ft (MILW) and in the more turbid inner bay was only -1.59 ft (MLLW). Eelgrass beds had well defined deepwater edges and no eelgrass was observed in the deep channels of the bay. The results from this study suggest that aerial photographs taken during low tide periods are capable of recording the majority ofmore » eelgrass beds in Willapa Bay.« less
NASA Astrophysics Data System (ADS)
Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.
2015-12-01
Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a >100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key performance limitation related to nonlinear optical microscopy (NLOM) technology while providing a low-barrier-to-access alternative to Ti:sapphire sources that could help accelerate the movement of NLOM into clinical practice.
Determination of the neutralization depth of concrete under the aggressive environment influence
NASA Astrophysics Data System (ADS)
Morzhukhina, Anastasia; Nikitin, Stanislav; Akimova, Elena
2018-03-01
Aggressive environments have a significant impact on destruction of many reinforced concrete structures, such as high-rise constructions or chemical plants. For example, some high-rise constructions are equipped with a swimming pool, so they are exposed to chloride ions in the air. Penetration of aggressive chemical substances into the body of concrete contributes to acceleration of reinforced concrete structure corrosion that in turn leads to load bearing capacity loss and destruction of the building. The article considers and analyzes the main technologies for calculating penetration depth of various aggressive substances into the body of concrete. The calculation of corrosion depth was made for 50-year service life.
Liposomal flucytosine capped with gold nanoparticle formulations for improved ocular delivery
Salem, Heba F; Ahmed, Sayed M; Omar, Mahmoud M
2016-01-01
Nanoliposomes have an organized architecture that provides versatile functions. In this study, liposomes were used as an ocular carrier for nanogold capped with flucytosine antifungal drug. Gold nanoparticles were used as a contrasting agent that provides tracking of the drug to the posterior segment of the eye for treating fungal intraocular endophthalmitis. The nanoliposomes were prepared with varying molar ratios of lecithin, cholesterol, Span 60, a positive charge inducer (stearylamine), and a negative charge inducer (dicetyl phosphate). Formulation F6 (phosphatidylcholine, cholesterol, Span 60, and stearylamine at a molar ratio of 1:1:1:0.15) demonstrated the highest extent of drug released, which reached 7.043 mg/h. It had a zeta potential value of 42.5±2.12 mV and an average particle size approaching 135.1±12.0 nm. The ocular penetration of the selected nanoliposomes was evaluated in vivo using a computed tomography imaging technique. It was found that F6 had both the highest intraocular penetration depth (10.22±0.11 mm) as measured by the computed tomography and the highest antifungal efficacy when evaluated in vivo using 32 infected rabbits’ eyes. The results showed a strong correlation between the average intraocular penetration of the nanoparticles capped with flucytosine and the percentage of the eyes healed. After 4 weeks, all the infected eyes (n=8) were significantly healed (P<0.01) when treated with liposomal formulation F6. Overall, the nanoliposomes encapsulating flucytosine have been proven efficient in treating the infected rabbits’ eyes, which proves the efficiency of the nanoliposomes in delivering both the drug and the contrasting agent to the posterior segment of the eye. PMID:26834459
NASA Astrophysics Data System (ADS)
Thao, S. J.; Plattner, A.
2015-12-01
Farming in the San Joaquin Valley in central California is often impeded by a shallow rock-hard layer of consolidated soil commonly referred to as hardpan. To be able to successfully farm, this layer, if too shallow, needs to be removed either with explosives or heavy equipment. It is therefore of great value to obtain information about depth and presence of such a layer prior to agricultural operations. We tested the applicability of electrical resistivity tomography and ground penetrating radar in hardpan detection. On our test site of known hardpan depth (from trenching) and local absence (prior dynamiting to plant trees), we successfully recovered the known edge of a hardpan layer with both methods, ERT and GPR. The clay-rich soil significantly reduced the GPR penetration depth but we still managed to map the edges at a known gap where prior dynamiting had removed the hardpan. Electrical resistivity tomography with a dipole-dipole electrode configuration showed a clear conductive layer at expected depths with a clearly visible gap at the correct location. In our data analysis and representation we only used either freely available or in-house written software.
Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star
NASA Astrophysics Data System (ADS)
Pratt, J.; Baraffe, I.; Goffrey, T.; Constantino, T.; Viallet, M.; Popov, M. V.; Walder, R.; Folini, D.
2017-08-01
Context. In the interior of stars, a convectively unstable zone typically borders a zone that is stable to convection. Convective motions can penetrate the boundary between these zones, creating a layer characterized by intermittent convective mixing, and gradual erosion of the density and temperature stratification. Aims: We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. Methods: We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Results: Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we propose a new form for the diffusion coefficient that may be used for one-dimensional stellar evolution calculations in the large Péclet number regime. These results should contribute to the 321D link.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgardt, P.; Heiple, C.R.
1985-01-01
Good penetration and poor penetration steels have different responses to changes in temperature distribution on the weld pool surface. Penetration of 304 SS was varied using S and Se dopants. The weld parameter investigated was the electrode tip angle. Results of bead-on-plate GTA welds show that there is a difference in response of weld pool shape to tip angle depending on penetration: Low penetration base metal showed no dependence, intermediate penetration steel showed a small linear decrease of weld depth-to-width ratio (d/w) with tip angle, while high penetration steel showed an increase of d/w up to a maximum at aboutmore » 50/sup 0/, followed by a decrease in d/w. (DLC)« less
Pausch, Roman C.; Grote, Edmund E.; Dawson, Todd E.
2000-03-01
Accurate estimates of sapwood properties (including radial depth of functional xylem and wood water content) are critical when using the heat pulse velocity (HPV) technique to estimate tree water use. Errors in estimating the volumetric water content (V(h)) of the sapwood, especially in tree species with a large proportion of sapwood, can cause significant errors in the calculations ofsap velocity and sap flow through tree boles. Scaling to the whole-stand level greatly inflates these errors. We determined the effects of season, tree size and radial wood depth on V(h) of wood cores removed from Acer saccharum Marsh. trees throughout 3 years in upstate New York. We also determined the effects of variation in V(h) on sap velocity and sap flow calculations based on HPV data collected from sap flow gauges inserted at four depths. In addition, we compared two modifications of Hatton's weighted average technique, the zero-step and zero-average methods, for determining sap velocity and sap flow at depths beyond those penetrated by the sap flow gauges. Parameter V(h) varied significantly with time of year (DOY), tree size (S), and radial wood depth (RD), and there were significant DOY x S and DOY x RD interactions. Use of a mean whole-tree V(h) value resulted in differences ranging from -6 to +47% for both sap velocity and sap flow for individual sapwood annuli compared with use of the V(h) value determined at the specific depth where a probe was placed. Whole-tree sap flow was 7% higher when calculated on the basis of the individual V(h) value compared with the mean whole-tree V(h) value. Calculated total sap flow for a tree with a DBH of 48.8 cm was 13 and 19% less using the zero-step and the zero-average velocity techniques, respectively, than the value obtained with Hatton's weighted average technique. Smaller differences among the three methods were observed for a tree with a DBH of 24.4 cm. We conclude that, for Acer saccharum: (1) mean V(h) changes significantly during the year and can range from nearly 50% during winter and early spring, to 20% during the growing season;(2) large trees have a significantly greater V(h) than small trees; (3) overall, V(h) decreases and then increases significantly with radial wood depth, suggesting that radial water movement and storage are highly dynamic; and (4) V(h) estimates can vary greatly and influence subsequent water use calculations depending on whether an average or an individual V(h) value for a wood core is used. For large diameter trees in which sapwood comprises a large fraction of total stem cross-sectional area (where sap flow gauges cannot be inserted across the entire cross-sectional area), the zero-average modification of Hatton's weighted average method reduces the potential for large errors in whole-tree and landscape water balance estimates based on the HPV method.
NASA Technical Reports Server (NTRS)
Flat, A.; Milnes, A. G.
1978-01-01
In scanning electron microscope (SEM) injection measurements of minority carrier diffusion lengths some uncertainties of interpretation exist when the response current is nonlinear with distance. This is significant in epitaxial layers where the layer thickness is not large in relation to the diffusion length, and where there are large surface recombination velocities on the incident and contact surfaces. An image method of analysis is presented for such specimens. A method of using the results to correct the observed response in a simple convenient way is presented. The technique is illustrated with reference to measurements in epitaxial layers of GaAs. Average beam penetration depth may also be estimated from the curve shape.
Closed-system freezing of soils in linings and earth embankment dams
NASA Astrophysics Data System (ADS)
Jones, C. W.
1981-03-01
A brief review of studies of closed-system freezing (no source of water except that in voids) of compacted soil canal linings, laboratory and field test results show that under certain soil and temperature conditions, freezing decreases soil density near the surface, but increases density at depth. In two linings, the average density increased slightly during a 20-year period. Frost penetration measurements made during the 1978-79 winter on a 1,5-thick reservoir lining, on three earth dams under construction, and on the Teton Dam remnant are shown along with associated soil conditions, air freezing indexes, and insulating effects of snow and, for one dam, a loose soil cover.
Global Distribution of Net Electron Acceptance in Subseafloor Sediment
NASA Astrophysics Data System (ADS)
Fulfer, V. M.; Pockalny, R. A.; D'Hondt, S.
2017-12-01
We quantified the global distribution of net electron acceptance rates (e-/m2/year) in subseafloor sediment (>1.5 meters below seafloor [mbsf]) using (i) a modified version of the chemical-reaction-rate algorithm by Wang et al. (2008), (ii) physical properties and dissolved oxygen and sulfate data from interstitial waters of sediment cores collected by the Ocean Drilling Program, Integrated Ocean Drilling Program, International Ocean Discovery Program, and U.S. coring expeditions, and (iii) correlation of net electron acceptance rates to global oceanographic properties. Calculated net rates vary from 4.8 x 1019 e-/m2/year for slowly accumulating abyssal clay to 1.2 x 1023 e-/m2/year for regions of high sedimentation rate. Net electron acceptance rate correlates strongly with mean sedimentation rate. Where sedimentation rate is very low (e.g., 1 m/Myr), dissolved oxygen penetrates more than 70 mbsf and is the primary terminal electron acceptor. Where sedimentation rate is moderate (e.g., 3 to 60 m/Myr), dissolved sulfate penetrates as far as 700 mbsf and is the principal terminal electron acceptor. Where sedimentation rate is high (e.g., > 60 m/Myr), dissolved sulfate penetrates only meters, but is the principal terminal electron acceptor in subseafloor sediment to the depth of sulfate penetration. Because microbial metabolism continues at greater depths than the depth of sulfate penetration in fast-accumulating sediment, complete quantification of subseafloor metabolic rates will require consideration of other chemical species.
Structural analysis of lunar subsurface with Chang'E-3 lunar penetrating radar
NASA Astrophysics Data System (ADS)
Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng
2016-01-01
Geological structure of the subsurface of the Moon provides valuable information on lunar evolution. Recently, Chang'E-3 has utilized lunar penetrating radar (LPR), which is equipped on the lunar rover named as Yutu, to detect the lunar geological structure in Northern Imbrium (44.1260N, 19.5014W) for the first time. As an in situ detector, Chang'E-3 LPR has relative higher horizontal and vertical resolution and less clutter impact compared to spaceborne radars and earth-based radars. In this work, we analyze the LPR data at 500 MHz transmission frequency to obtain the shallow subsurface structure of the landing area of Chang'E-3 in Mare Imbrium. Filter method and amplitude recovery algorithms are utilized to alleviate the adverse effects of environment and system noises and compensate the amplitude losses during signal propagation. Based on the processed radar image, we observe numerous diffraction hyperbolae, which may be caused by discrete reflectors beneath the lunar surface. Hyperbolae fitting method is utilized to reverse the average dielectric constant to certain depth (ε bar). Overall, the estimated ε bar increases with the depth and ε bar could be classified into three categories. Average ε bar of each category is 2.47, 3.40 and 6.16, respectively. Because of the large gap between the values of ε bar of neighboring categories, we speculate a three-layered structure of the shallow surface of LPR exploration region. One possible geological picture of the speculated three-layered structure is presented as follows. The top layer is weathered layer of ejecta blanket with its average thickness and bound on error is 0.95±0.02 m. The second layer is the ejecta blanket of the nearby impact crater, and the corresponding average thickness is about 2.30±0.07 m, which is in good agreement with the two primary models of ejecta blanket thickness as a function of distance from the crater center. The third layer is regarded as a mixture of stones and soil. The echoes below the third layer are in the same magnitude as the noises, which may indicate that the fourth layer, if it exists, is uniform (no clear reflector) and its thickness is beyond the detection limit of LPR. Hence, we infer the fourth layer is a basalt layer.
Geology and ground-water resources of the Bristol-Plainville-Southington area, Connecticut
La Sala, A. M.
1964-01-01
The Bristol-Plainville-Southington area straddles the boundary between the New England Upland and the Connecticut Valley Lowland sections of the New England physiographic province. The western parts of Bristol are Southington lie in the New England Upland section, an area of rugged topography underlain by metamorphic rocks of Palezoic age. The eastern part of the area, to the east of a prominent scarp marking the limit of the metamorphic rocks, is in the Connecticut Valley Lowland and is underlain by sedimentary rocks and interbedded basaltic lava flows of Triassic age. The lowland is characterized for the most part by broad valleys and low intervening linear hills, but in the eastern parts of Plainville and Southington, basaltic rocks form a rugged highland. The bedrock is largely mantled by glacial deposits of Wisconsin age. On hills the glacial deposits are mainly ground moraine, and in valleys mainly stratified. The metamorphic rocks comprise the Hartland Formation, Bristol Granite Gneiss of Gregory (1906), and Prospect Gneiss. These formations contain water in fractures, principally joints occurring in regular sets. The rocks generally yield supplies of 5 to 15 gpm (gallons per minute) to drilled wells averaging about 140 feet in depth. The rocks of Triassic age in the area are the New Haven Arkose, Talcott Basalt, Shuttle Meadow Formation, Holyoke Basalt, and East Berlin Formation. The formations contain water principally in joints and other fractures and, to a lesser extent, in bedding-plane openings and pore spaces. Drilled wells penetrating these rocks generally range from 100 to 200 feet in depth and yield an average of nearly 20 gpm. The maximum yield obtained from a well in these rocks is 180 gpm. The ground moraine of Pleistocene age is composed principally of till. The deposit averages about 24 feet in thickness, and wells penetrating it average about 16 feet in depth. The ground moraine yields small supplier of water suitable for household use when tapped by shallow large-diameter wells. The stratified glacial deposits, which are as much as 300 feet thick, comprise ice-contact and proglacial deposits and deposits of generally obscure origin termed 'undifferentiated stratified deposits.' The ice-contact and undifferentiated stratified deposits, some of which underlie proglacial deposits, are coarse grained and contain gravel beds from which supplies of as much as 1,400 gpm can be obtained. The proglacial deposits are, on the whole, finer grained than the other stratified deposits, but in places they allow development of wells producing as much as 500 gpm. However, the stratified glacial deposits throughout much of the Bristol-Plainville-Southington area are fine grained and provide only small supplies.
Pre-heating mitigates composite degradation
da SILVA, Jessika Calixto; Rogério Vieira, REGES; REGE, Inara Carneiro Costa; CRUZ, Carlos Alberto dos Santos; VAZ, Luís Geraldo; ESTRELA, Carlos; de CASTRO, Fabrício Luscino Alves
2015-01-01
ABSTRACT Dental composites cured at high temperatures show improved properties and higher degrees of conversion; however, there is no information available about the effect of pre-heating on material degradation. Objectives This study evaluated the effect of pre-heating on the degradation of composites, based on the analysis of radiopacity and silver penetration using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Material and Methods Thirty specimens were fabricated using a metallic matrix (2x8 mm) and the composites Durafill VS (Heraeus Kulzer), Z-250 (3M/ESPE), and Z-350 (3M/ESPE), cured at 25°C (no pre-heating) or 60°C (pre-heating). Specimens were stored sequentially in the following solutions: 1) water for 7 days (60°C), plus 0.1 N sodium hydroxide (NaOH) for 14 days (60°C); 2) 50% silver nitrate (AgNO3) for 10 days (60°C). Specimens were radiographed at baseline and after each storage time, and the images were evaluated in gray scale. After the storage protocol, samples were analyzed using SEM/EDS to check the depth of silver penetration. Radiopacity and silver penetration data were analyzed using ANOVA and Tukey’s tests (α=5%). Results Radiopacity levels were as follows: Durafill VS
NASA Astrophysics Data System (ADS)
Arcone, S. A.
2014-12-01
Road Radar generally refers to ground-penetrating radar (GPR) surveys intended to investigate pavement construction using pulses centered above 1 GHz. In interior Alaska thick sand and gravel grading and its frozen state by late winter generally afford up to 10 m of signal penetration at lower frequencies. Consequently, this penetration potentially allows identification of pavement issues involving frost heave and thaw settlement, while the smooth surface allows assessment of GPR performance in permafrost areas under ideal survey conditions. Here I discuss profiles using pulse center frequencies from 50 to 360 MHz, recorded over sections of the Steese and Elliott Highways within and just north of Fairbanks, respectively, and of the Tok Highway near Glennallen. Construction fill is easily recognized by its stratification; where marginally present along the Elliott it is replaced by steeply dipping horizons from the underlying schist. The frost depth and water table horizons are recognized by phase attributes of the reflected pulse, as dictated by the contrasts present in dielectric permittivity, their relative depths, and their continuity. Undulating stratification in the sand and gravel fill indicates thaw settlement, as caused by the melting of buried massive ice. The Tok section reveals the top and likely the bottom of massive ice. Generally, signal penetration is greatly reduced beneath the water table and so the highest resolution, at 360 MHz, covers all horizons. There is rare evidence of a permafrost table because it is most likely masked or nearly coincident with the water table. Permafrost penetration in frozen silts is a long-standing problem for GPR, for which I discuss a possible cause related to Maxwell-Wagner dielectric relaxation losses associated with unfrozen water.
Nissan, Joseph; Rosner, Ofir; Gross, Ora; Pilo, Raphael; Lin, Shaul
2011-04-01
To evaluate the influence of different cement combinations on coronal microleakage in restored endodontically treated teeth using dye penetration. Human, noncarious single-rooted extracted premolars (n = 60) were divided into four experimental groups (each n = 15). After endodontic treatment, different combinations of cements were used to lute prefabricated posts and complete crown restorations: zinc phosphate cement applied on posts and cast crowns (Z) or on zinc phosphate cement posts and resin cement applied on cast crowns (ZR); resin cement applied on posts and zinc phosphate cement applied on cast crowns (RZ); and resin cement applied on posts and cast crowns (R). After artificial aging through thermal cycling (5°C to 55°C) for 2,000 cycles at 38 seconds for each cycle and 15 seconds of dwell time, specimens were immersed for 72 hours in basic fuchsin at 37°C. A buccolingual section was made through the vertical axis of specimens. A Toolmaker's microscope (Mitutoyo) was used to measure (um) dye penetration. The Kruskal-Wallis nonparametric test was used to determine intergroup difference. A nonparametric Mann-Whitney test compared each group regarding its maximal linear penetration depths on the mesial and distal aspects of each specimen (a = 0.05). Dye staining was evident to some degree in all specimens. Among groups Z, ZR, and RZ, no significant difference was shown in dye-penetration depths (mean penetration scores 1,518 to 1,807 um). However, dyepenetration depth was significantly lower in group R compared to the other groups (mean penetration score 1,073 um) (P < .05). Under study conditions, the cement combination offering the best coronal sealing was the one using only resin cement for both posts and crown restorations.
The physical foundation of FN = kh(3/2) for conical/pyramidal indentation loading curves.
Kaupp, G
2016-01-01
A physical deduction of the FN = kh(3/2) relation (where FN is normal force, k penetration resistance, and h penetration depth) for conical/pyramidal indentation loading curves has been achieved on the basis of elementary mathematics. The indentation process couples the productions of volume and pressure to the displaced material that often partly plasticizes due to such pressure. As the pressure/plasticizing depends on the indenter volume, it follows that FN = FNp(1/3) · FNV(2/3), where the index p stands for pressure/plasticizing and V for indentation volume. FNp does not contribute to the penetration, only FNV. The exponent 2/3 on FNV shows that while FN is experimentally applied; only FN(2/3) is responsible for the penetration depth h. Thus, FN = kh(3/2) is deduced and the physical reason is the loss of FN(1/3) for the depth. Unfortunately, this has not been considered in teaching, textbooks, and the previous deduction of numerous common mechanical parameters, when the Love/Sneddon deductions of an exponent 2 on h were accepted and applied. The various unexpected experimental verifications and applications of the correct exponent 3/2 are mentioned and cited. Undue mechanical parameters require correction not only for safety reasons. © Wiley Periodicals, Inc.
Modulated Excitation Imaging System for Intravascular Ultrasound.
Qiu, Weibao; Wang, Xingying; Chen, Yan; Fu, Qiang; Su, Min; Zhang, Lining; Xia, Jingjing; Dai, Jiyan; Zhang, Yaonan; Zheng, Hairong
2017-08-01
Advances in methodologies and tools often lead to new insights into cardiovascular diseases. Intravascular ultrasound (IVUS) is a well-established diagnostic method that provides high-resolution images of the vessel wall and atherosclerotic plaques. High-frequency (>50 MHz) ultrasound enables the spatial resolution of IVUS to approach that of optical imaging methods. However, the penetration depth decreases when using higher imaging frequencies due to the greater acoustic attenuation. An imaging method that improves the penetration depth of high-resolution IVUS would, therefore, be of major clinical importance. Modulated excitation imaging is known to allow ultrasound waves to penetrate further. This paper presents an ultrasound system specifically for modulated-excitation-based IVUS imaging. The system incorporates a high-voltage waveform generator and an image processing board that are optimized for IVUS applications. In addition, a miniaturized ultrasound transducer has been constructed using a Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 single crystal to improve the ultrasound characteristics. The results show that the proposed system was able to provide increases of 86.7% in penetration depth and 9.6 dB in the signal-to-noise ratio for 60 MHz IVUS. In vitro tissue samples were also investigated to demonstrate the performance of the system.
Transcranial magnetic stimulation: Improved coil design for deep brain investigation
NASA Astrophysics Data System (ADS)
Crowther, L. J.; Marketos, P.; Williams, P. I.; Melikhov, Y.; Jiles, D. C.; Starzewski, J. H.
2011-04-01
This paper reports on a design for a coil for transcranial magnetic stimulation. The design shows potential for improving the penetration depth of the magnetic field, allowing stimulation of subcortical structures within the brain. The magnetic and induced electric fields in the human head have been calculated with finite element electromagnetic modeling software and compared with empirical measurements. Results show that the coil design used gives improved penetration depth, but also indicates the likelihood of stimulation of additional tissue resulting from the spatial distribution of the magnetic field.
2012-04-01
ER D C/ G SL T R -1 2 -1 5 Pavement -Transportation Computer Assisted Structural Engineering (PCASE) Implementation of the Modified...Berggren (ModBerg) Equation for Computing the Frost Penetration Depth within Pavement Structures G eo te ch n ic al a n d S tr u ct u re s La b or at...April 2012 Pavement -Transportation Computer Assisted Structural Engineering (PCASE) Implementation of the Modified Berggren (ModBerg) Equation for
Light penetration structures the deep acoustic scattering layers in the global ocean.
Aksnes, Dag L; Røstad, Anders; Kaartvedt, Stein; Martinez, Udane; Duarte, Carlos M; Irigoien, Xabier
2017-05-01
The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna and contribute to the biological carbon pump through the active flux of organic carbon transported in their daily vertical migrations. They occupy depths from 200 to 1000 m at daytime and migrate to a varying degree into surface waters at nighttime. Their daytime depth, which determines the migration amplitude, varies across the global ocean in concert with water mass properties, in particular the oxygen regime, but the causal underpinning of these correlations has been unclear. We present evidence that the broad variability in the oceanic DSL daytime depth observed during the Malaspina 2010 Circumnavigation Expedition is governed by variation in light penetration. We find that the DSL depth distribution conforms to a common optical depth layer across the global ocean and that a correlation between dissolved oxygen and light penetration provides a parsimonious explanation for the association of shallow DSL distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web.
Nd-glass laser for deep-penetration welding and hardening
NASA Astrophysics Data System (ADS)
Kayukov, Serguei V.; Yaresko, Sergey I.; Mikheyev, Pavel A.
2000-04-01
Pulsed Nd-glass lasers usually have low beam quality (200 - 300 mm-mrad), and are used only for surface hardening of metals. However, high pulse energy make them feasible for deep penetration welding if their beam quality could be improved. We investigated beam properties of Nd-glass laser with unstable resonator with semitransparent output coupler (URSOC). We had found that beam divergence of the laser with URSOC was an order of magnitude smaller than that of the laser with stable resonator. The achieved beam quality (40 - 50 mm-mrad) permitted to perform deep penetration welding with the aspect ratio of approximately 8. For beam divergence of 3 mrad melt depth of 6.3 mm was achieved with the ratio of depth to pulse energy of 0.27 mm/J.
Unsteady jet in designing innovative drug delivery system
NASA Astrophysics Data System (ADS)
Wang, Cong; Mazur, Paul; Cosse, Julia; Rider, Stephanie; Gharib, Morteza
2014-11-01
Micro-needle injections, a promising pain-free drug delivery method, is constrained by its limited penetration depth. This deficiency can be overcome by implementing fast unsteady jet that can penetrate sub-dermally. The development of a faster liquid jet would increase the penetration depth and delivery volume of micro-needles. In this preliminary work, the nonlinear transient behavior of an elastic tube balloon in providing fast discharge is analyzed. A physical model that combines the Mooney Rivlin Material model and Young-Lapalce's Law was developed and used to investigate the fast discharging dynamic phenomenon. A proof of concept prototype was constructed to demonstrate the feasibility of a simple thumb-sized delivery system to generate liquid jet with desired speed in the range of 5-10 m/s. This work is supported by ZCUBE Corporation.
NASA Astrophysics Data System (ADS)
Lademann, J.; Richter, H.; Schanzer, S.; Klenk, A.; Sterry, W.; Patzelt, A.
2010-02-01
In previous in vitro investigations, it was demonstrated that caffeine is able to stimulate the hair growth. Therefore, a penetration of caffeine into the hair follicle is necessary. In the present study, in vivo laser scanning microscopy (LSM) was used to investigate the penetration and storage of a caffeine containing shampoo into the hair follicles. It was shown that a 2-min contact time of the shampoo with the skin was enough to accumulate significant parts of the shampoo in the hair follicles. A penetration of the shampoo up to a depth of approx. 200 μm could be detected, which represents the detection limit of the LSM. At this depth, the close network of the blood capillaries surrounding the hair follicles commences. Even after 24 h, the substance was still detectable in the hair follicles. This demonstrates the long-term reservoir function of the hair follicles for topically applied substances such as caffeine.
Tomographic brain imaging with nucleolar detail and automatic cell counting
NASA Astrophysics Data System (ADS)
Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schweighauser, Gabriel; Hench, Jürgen; Chicherova, Natalia; Schulz, Georg; Müller, Bert
2016-09-01
Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard X-ray phase tomography can visualise a volume of up to 43 mm3 of human post mortem or biopsy brain samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per mm2 on average. Moreover, we highlight that three-dimensional data allows for the segmentation of sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. The method suggests that automatic cell feature quantification of human tissues is feasible in phase tomograms obtained with isotropic resolution in a label-free manner.
The mechanism of erosion of metallic materials under cavitation attack
NASA Technical Reports Server (NTRS)
Rao, B. C. S.; Buckley, D. H.
1985-01-01
The mean depth of penetration rates (MDPRs) of eight polycrystalline metallic materials, Al 6061-T6, Cu, brass, phosphor bronze, Ni, Fe, Mo, and Ti-5Al-2.5Sn exposed to cavitation attack in a viscous mineral oil with a 20 kHz ultrasonic oscillator vibrating at 50 micron amplitude are reported. The titanium alloy followed by molybdenum have large incubation periods and small MDPRs. The incubation periods correlate linearly with the inverse of hardness and the average MDPRs correlate linearly with the inverse of tensile strength of materials. The linear relationships yield better statistical parameters than geometric and exponential relationships. The surface roughness and the ratio of pit depth to pit width (h/a) increase with the duration of cavitation attack. The ratio h/a varies from 0.1 to 0.8 for different materials. Recent investigations (20) using scanning electron microscopy to study deformation and pit formation features are briefly reviewed. Investigations with single crystals indicate that the geometry of pits and erosion are dependent on their orientation.
NASA Astrophysics Data System (ADS)
Zhu, Wenbin; Chao, Ju-Hung; Chen, Chang-Jiang; Shang, Annan; Lee, Yun Goo; Yin, Shizhuo; Dubinskii, Mark; Hoffman, Robert C.
2018-03-01
To overcome the depth limitation of the space-charge-controlled (SCC) potassium tantalate niobate (KTN) deflectors, we report in this paper a method of increasing the aperture of SCC-KTN deflectors by harnessing the physical mechanism of blue light photon excitation. The experimental results show that the deflection angle can be increased from 0.7 mrad without the blue light excitation to 2.5 mrad with the blue light excitation at a penetration depth of 5 mm under the same external applied voltage, which is consistent with the theoretical analysis. This represents a substantial increase in the deflection angle at a much deeper penetration depth, which can be very useful for applications such as high speed 3D printings and displays.
Bending-related faulting and mantle serpentinization at the Middle America trench.
Ranero, C R; Morgan, J Phipps; McIntosh, K; Reichert, C
2003-09-25
The dehydration of subducting oceanic crust and upper mantle has been inferred both to promote the partial melting leading to arc magmatism and to induce intraslab intermediate-depth earthquakes, at depths of 50-300 km. Yet there is still no consensus about how slab hydration occurs or where and how much chemically bound water is stored within the crust and mantle of the incoming plate. Here we document that bending-related faulting of the incoming plate at the Middle America trench creates a pervasive tectonic fabric that cuts across the crust, penetrating deep into the mantle. Faulting is active across the entire ocean trench slope, promoting hydration of the cold crust and upper mantle surrounding these deep active faults. The along-strike length and depth of penetration of these faults are also similar to the dimensions of the rupture area of intermediate-depth earthquakes.
The Cold Land Processes Experiment (CLPX-1): Analysis and Modelling of LSOS Data (IOP3 Period)
NASA Technical Reports Server (NTRS)
Tedesco, Marco; Kim, Edward J.; Cline, Don; Graf, Tobias; Koike, Toshio; Hardy, Janet; Armstrong, Richard; Brodzik, Mary
2004-01-01
Microwave brightness temperatures at 18.7,36.5, and 89 GHz collected at the Local-Scale Observation Site (LSOS) of the NASA Cold-Land Processes Field Experiment in February, 2003 (third Intensive Observation Period) were simulated using a Dense Media Radiative Transfer model (DMRT), based on the Quasi Crystalline Approximation with Coherent Potential (QCA-CP). Inputs to the model were averaged from LSOS snow pit measurements, although different averages were used for the lower frequencies vs. the highest one, due to the different penetration depths and to the stratigraphy of the snowpack. Mean snow particle radius was computed as a best-fit parameter. Results show that the model was able to reproduce satisfactorily brightness temperatures measured by the University of Tokyo s Ground Based Microwave Radiometer system (CBMR-7). The values of the best-fit snow particle radii were found to fall within the range of values obtained by averaging the field-measured mean particle sizes for the three classes of Small, Medium and Large grain sizes measured at the LSOS site.
Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; Morenzoni, E.; Fernandes, Rafael M.; Khasanov, R.
2015-01-01
The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap. PMID:26548650
Process Parameter Effects on Material Removal in Magnetorheological Finishing of Borosilicate Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, C.; Lambroopulos, J.C.; Jacobs, S.D.
2010-04-14
We investigate the effects of processing parameters on material removal for borosilicate glass. Data are collected on a magnetorheological finishing (MRF) spot taking machine (STM) with a standard aqueous magnetorheological (MR) fluid. Normal and shear forces are measured simultaneously, in situ, with a dynamic dual load cell. Shear stress is found to be independent of nanodiamond concentration, penetration depth, magnetic field strength, and the relative velocity between the part and the rotating MR fluid ribbon. Shear stress, determined primarily by the material mechanical properties, dominates removal in MRF. The addition of nanodiamond abrasives greatly enhances the material removal efficiency, withmore » the removal rate saturating at a high abrasive concentration. The volumetric removal rate (VRR) increases with penetration depth but is insensitive to magnetic field strength. The VRR is strongly correlated with the relative velocity between the ribbon and the part, as expected by the Preston equation. A modified removal rate model for MRF offers a better estimation of MRF removal capability by including nanodiamond concentration and penetration depth.« less
NASA Astrophysics Data System (ADS)
Kim, H.; Martin, C.; Gordon, R. T.; Tanatar, M. A.; Hu, J.; Qian, B.; Mao, Z. Q.; Hu, Rongwei; Petrovic, C.; Salovich, N.; Giannetta, R.; Prozorov, R.
2010-05-01
The in-plane London penetration depth, λ(T) , was measured in single crystals of the iron-chalcogenide superconductors Fe1.03(Te0.63Se0.37) and Fe1.06(Te0.88S0.14) by using a radio-frequency tunnel diode resonator. Similar to the iron-arsenides and in stark contrast to the iron-phosphides, iron-chalcogenides exhibit a nearly quadratic temperature variation of λ(T) at low temperatures. The absolute value of the penetration depth in the T→0 limit was determined for Fe1.03(Te0.63Se0.37) by using an Al coating technique, giving λ(0)≈560±20nm . The superfluid density ρs(T)=λ2(0)/λ2(T) was fitted with a self-consistent two-gap γ model. While two different gaps are needed to describe the full-range temperature variation in ρs(T) , a nonexponential low-temperature behavior requires pair-breaking scattering, and therefore an unconventional (e.g., s± or nodal) order parameter.
Guguchia, Z.; Amato, A.; Kang, J.; ...
2015-11-09
The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. Contrasting with other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba 0.65Rb 0.35Fe 2As 2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant.more » More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.« less
NASA Astrophysics Data System (ADS)
Sharaf, J. M.; Saleh, H.
2015-05-01
The shielding properties of three different construction styles, and building materials, commonly used in Jordan, were evaluated using parameters such as attenuation coefficients, equivalent atomic number, penetration depth and energy buildup factor. Geometric progression (GP) method was used to calculate gamma-ray energy buildup factors of limestone, concrete, bricks, cement plaster and air for the energy range 0.05-3 MeV, and penetration depths up to 40 mfp. It has been observed that among the examined building materials, limestone offers highest value for equivalent atomic number and linear attenuation coefficient and the lowest values for penetration depth and energy buildup factor. The obtained buildup factors were used as basic data to establish the total equivalent energy buildup factors for three different multilayer construction styles using an iterative method. The three styles were then compared in terms of fractional transmission of photons at different incident photon energies. It is concluded that, in case of any nuclear accident, large multistory buildings with five layers exterior walls, style A, could effectively attenuate radiation more than small dwellings of any construction style.
Interaction of both plasmas in CO2 laser-MAG hybrid welding of carbon steel
NASA Astrophysics Data System (ADS)
Kutsuna, Muneharu; Chen, Liang
2003-03-01
Researches and developments of laser and arc hybrid welding has been curried out since in 1978. Especially, CO2 laser and TIG hybrid welding has been studied for increasing the penetration depth and welding speed. Recently laser and MIG/MAG/Plasma hybrid welding processes have been developed and applied to industries. It was recognized as a new welding process that promote the flexibility of the process for increasing the penetration depth, welding speed and allowable joint gap and improving the quality of the welds. In the present work, CO2 Laser-MAG hybrid welding of carbon steel (SM490) was investigated to make clear the phenomenon and characteristics of hybrid welding process comparing with laser welding and MAG process. The effects of many process parameters such as welding current, arc voltage, welding speed, defocusing distance, laser-to-arc distance on penetration depth, bead shape, spatter, arc stability and plasma formation were investigated in the present work. Especially, the interaction of laser plasma and MAG arc plasma was considered by changing the laser to arc distance (=DLA).
Model of convection mass transfer in titanium alloy at low energy high current electron beam action
NASA Astrophysics Data System (ADS)
Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.; Gromov, V. E.
2017-01-01
The convection mixing model is proposed for low-energy high-current electron beam treatment of titanium alloys, pre-processed by heterogeneous plasma flows generated via explosion of carbon tape and powder TiB2. The model is based on the assumption vortices in the molten layer are formed due to the treatment by concentrated energy flows. These vortices evolve as the result of thermocapillary convection, arising because of the temperature gradient. The calculation of temperature gradient and penetration depth required solution of the heat problem with taking into account the surface evaporation. However, instead of the direct heat source the boundary conditions in phase transitions were changed in the thermal conductivity equation, assuming the evaporated material takes part in the heat exchange. The data on the penetration depth and temperature distribution are used for the thermocapillary model. The thermocapillary model embraces Navier-Stocks and convection heat transfer equations, as well as the boundary conditions with the outflow of evaporated material included. The solution of these equations by finite elements methods pointed at formation of a multi-vortices structure when electron-beam treatment and its expansion over new zones of material. As the result, strengthening particles are found at the depth exceeding manifold their penetration depth in terms of the diffusion mechanism.
Convection Cells in the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Fodor, Katherine; Mellado, Juan-Pedro
2017-04-01
In dry, shear-free convective boundary layers (CBLs), the turbulent flow of air is known to organise itself on large scales into coherent, cellular patterns, or superstructures, consisting of fast, narrow updraughts and slow, wide downdraughts which together form circulations. Superstructures act as transport mechanisms from the surface to the top of the boundary layer and vice-versa, as opposed to small-scale turbulence, which only modifies conditions locally. This suggests that a thorough investigation into superstructure properties may help us better understand transport across the atmospheric boundary layer as a whole. Whilst their existence has been noted, detailed studies into superstructures in the CBL have been scarce. By applying methods which are known to successfully isolate similar large-scale patterns in turbulent Rayleigh-Bénard convection, we can assess the efficacy of those detection techniques in the CBL. In addition, through non-dimensional analysis, we can systematically compare superstructures in various convective regimes. We use direct numerical simulation of four different cases for intercomparison: Rayleigh-Bénard convection (steady), Rayleigh-Bénard convection with an adiabatic top lid (quasi-steady), a stably-stratified CBL (quasi-steady) and a neutrally-stratified CBL (unsteady). The first two are non-penetrative and the latter two penetrative. We find that although superstructures clearly emerge from the time-mean flow in the non-penetrative cases, they become obscured by temporal averaging in the CBL. This is because a rigid lid acts to direct the flow into counter-rotating circulation cells whose axis of rotation remains stationary, whereas a boundary layer that grows in time and is able to entrain fluid from above causes the circulations to not only grow in vertical extent, but also to move horizontally and merge with neighbouring circulations. Spatial filtering is a useful comparative technique as it can be performed on boundary layers of the same depth, defined from the surface to the height at which the turbulent kinetic energy (TKE) is zero (in non-penetrative cases) or less than 10% of its maximum value (in penetrative cases). We find that with increasing filter width, the contribution of the filtered flow to the total TKE in the middle of the boundary layer decreases much more rapidly in the penetrative cases than in the non-penetrative cases. In particular, around 20-25% of the TKE at this height comes from small-scale turbulence with a length scale less than or equal to 15% of the boundary layer depth in the CBL, whereas in Rayleigh-Bénard convection, it is just 6-7%. This is consistent with visualisations, which show that entrainment creates additional small-scale mixing within the large-scale circulations in the CBL. Without entrainment, large-scale organisation predominates. Neither spatial nor temporal filtering are as successful at extracting superstructures in the penetrative cases as in the non-penetrative cases. Hence, these techniques depend not on the steadiness of the system, but rather on the presence of entrainment. We therefore intend to try other detection techniques, such as proper orthogonal decomposition, in order to make a rigorous assessment of which is most effective for isolating superstructures in all four cases.
NASA Astrophysics Data System (ADS)
Kho, Esther; de Boer, Lisanne L.; Van de Vijver, Koen K.; Sterenborg, Henricus J. C. M.; Ruers, Theo J. M.
2017-02-01
Worldwide, up to 40% of the breast conserving surgeries require additional operations due to positive resection margins. We propose to reduce this percentage by using hyperspectral imaging for resection margin assessment during surgery. Spectral hypercubes were collected from 26 freshly excised breast specimens with a pushbroom camera (900-1700nm). Computer simulations of the penetration depth in breast tissue suggest a strong variation in sampling depth ( 0.5-10 mm) over this wavelength range. This was confirmed with a breast tissue mimicking phantom study. Smaller penetration depths are observed in wavelength regions with high water and/or fat absorption. Consequently, tissue classification based on spectral analysis over the whole wavelength range becomes complicated. This is especially a problem in highly inhomogeneous human tissue. We developed a method, called derivative imaging, which allows accurate tissue analysis, without the impediment of dissimilar sampling volumes. A few assumptions were made based on previous research. First, the spectra acquired with our camera from breast tissue are mainly shaped by fat and water absorption. Second, tumor tissue contains less fat and more water than healthy tissue. Third, scattering slopes of different tissue types are assumed to be alike. In derivative imaging, the derivatives are calculated of wavelengths a few nanometers apart; ensuring similar penetration depths. The wavelength choice determines the accuracy of the method and the resolution. Preliminary results on 3 breast specimens indicate a classification accuracy of 93% when using wavelength regions characterized by water and fat absorption. The sampling depths at these regions are 1mm and 5mm.
2014-01-01
Background In total knee arthroplasty (TKA), cement penetration between 3 and 5 mm beneath the tibial tray is required to prevent loosening of the tibia component. The objective of this study was to develop and validate a reliable in vivo measuring technique using CT imaging to assess cement distribution and penetration depth in the total area underneath a tibia prosthesis. Methods We defined the radiodensity ranges for trabecular tibia bone, polymethylmethacrylate (PMMA) cement and cement-penetrated trabecular bone and measured the percentages of cement penetration at various depths after cementing two tibia prostheses onto redundant femoral heads. One prosthesis was subsequently removed to examine the influence of the metal tibia prostheses on the quality of the CT images. The percentages of cement penetration in the CT slices were compared with percentages measured with photographs of the corresponding transversal slices. Results Trabecular bone and cement-penetrated trabecular bone had no overlap in quantitative scale of radio-density. There was no significant difference in mean HU values when measuring with or without the tibia prosthesis. The percentages of measured cement-penetrated trabecular bone in the CT slices of the specimen were within the range of percentages that could be expected based on the measurements with the photographs (p = 0.04). Conclusions CT scan images provide valid results in measuring the penetration and distribution of cement into trabecular bone underneath the tibia component of a TKA. Since the proposed method does not turn metal elements into artefacts, it enables clinicians to assess the width and density of the cement mantle in vivo and to compare the results of different cementing methods in TKA. PMID:25158996
Influence of the mole penetrator on measurements of heat flow in lunar subsurface layers
NASA Astrophysics Data System (ADS)
Wawrzaszek, Roman; Drogosz, Michal; Seweryn, Karol; Banaszkiewicz, Marek; Grygorczuk, Jerzy
Measuring the thermal gradient in subsurface layers is a basic method of determination the heat flux from the interior of a planetary body to its surface. In case of the Moon, such measurements complemented with the results of theoretical analysis and modeling can significantly improve our understanding of the thermal and geological evolution of the Moon. In practice, temperature gradient measurements are performed by at least two sensors located at different depths under the surface. These sensors will be attached to a penetrator [1] or to a cable pulled behind the penetrator. In both cases the object that carries the sensors, e.g. penetrator, perturb temperature measurements. In our study we analyze a case of two thermal sensors attached to the ends of 350mm long penetrator made of a composite material. In agreement with the studies of other authors we have found that the penetrator should be placed at the depth of 2-3 meters, where periodic changes of the temperature due to variation of solar flux at the surface are significantly smaller than the error of temperature measurement. The most important result of our analysis is to show how to deconvolve the real gradient of the temperature from the measurements perturbed by the penetrator body. In this way it will be possible to more accurately determine heat flux in the lunar regolith. [1] Grygorczuk J., Seweryn K., Wawrzaszek R., Banaszkiewicz M., Insertion of a Mole Pene-trator -Experimental Results, /39th Lunar and Planetary Science Conference /League City, Texas 2008
A 40-foot static cone penetrometer
Beard, R.M.; Lee, H.J.
1982-01-01
The Navy needs a lightweight device for testing seafloor soils to sub bottom depths of 12 meters in water depths to 60 meters. To meet this need a quasistatic cone penetration device that uses water jetting to reduce friction on the cone rod has been developed. This device is called the XSP-40. The 5-ton XSP-40 stands 15 meters tall and pushes a standard 5-ton cone into the seafloor. It is remotely controlled with an electronic unit on the deck of the support vessel. All cone outputs are recorded directly as a function of penetration depth with a strip chart recorder. A full suite of gauges is provided. on the electronic unit for monitoring the XSP-40's performance during a test .. About 40 penetration tests have been performed with very good success. The XSP-40 was field tested in Norton Sound, off the west coast of Alaska. The general objective, in addition to evaluation of the device, was to gather geotechnical information on sediments that may be involved in processes potentially hazardous to offshore development. Four example penetration records are presented from gas charged sediment zones and areas near the Yukon River delta. In general it was determined that soil classification from cone data agreed well with classifications from core samples. Relative densities of the silt-sand to sandy-silt soils were usually very high. The significance of these results are discussed with respect to storm wave, liquefaction. It is concluded that the XSP-40 is a durable and reliable piece of equipment capable of achieving penetration beyond that possible when not using the water jet system.
30 CFR 250.1167 - What information must I submit with forms and for approvals?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... production Downhole commingling Reservoir reclassification Production within 500-ft of a unit or lease line... maps with penetration point and subsea depth for each well penetrating the reservoirs, highlighting...
NASA Astrophysics Data System (ADS)
Sil, Arjun; Sitharam, T. G.
2014-08-01
Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes ( M w > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity ( V s) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets ( V s profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity ( V s30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V s30 and SPT-N classified the study area as seismic site class D and E categories, indicating that the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V s and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as ` V s' is a function of SPT- N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile-quantile (Q-Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q-Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V s profiles of the study area for site response studies.
Optimal Design of Sheet Pile Wall Embedded in Clay
NASA Astrophysics Data System (ADS)
Das, Manas Ranjan; Das, Sarat Kumar
2015-09-01
Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.
Laser-welded Dissimilar Steel-aluminum Seams for Automotive Lightweight Construction
NASA Astrophysics Data System (ADS)
Schimek, M.; Springer, A.; Kaierle, S.; Kracht, D.; Wesling, V.
By reducing vehicle weight, a significant increase in fuel efficiency and consequently a reduction in CO 2 emissions can be achieved. Currently a high interest in the production of hybrid weld seams between steel and aluminum exists. Previous methods as laser brazing are possible only by using fluxes and additional materials. Laser welding can be used to join steel and aluminum without the use of additives. With a low penetration depth increases in tensile strength can be achieved. Recent results from laser welded overlap seams show that there is no compromise in strength by decreasing penetration depth in the aluminum.
NASA Technical Reports Server (NTRS)
Ishaug-Riley, S. L.; Crane, G. M.; Gurlek, A.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)
1997-01-01
Porous biodegradable poly(DL-lactic-co-glycolic acid) foams were seeded with rat marrow stromal cells and implanted into the rat mesentery to investigate in vivo bone formation at an ectopic site. Cells were seeded at a density of 6.83 x 10(5) cells/cm2 onto polymer foams having pore sizes ranging from either 150 to 300 to 710 microns and cultured for 7 days in vitro prior to implantation. The polymer/cell constructs were harvested after 1, 7, 28, or 49 days in vivo and processed for histology and gel permeation chromatography. Visual observation of hematoxylin and eosin-stained sections and von Kossa-stained sections revealed the formation of mineralized bonelike tissue in the constructs within 7 days postimplantation. Ingrowth of vascular tissue was also found adjacent to the islands of bone, supplying the necessary metabolic requirements to the newly formed tissue. Mineralization and bone tissue formation were investigated by histomorphometry. The average penetration depth of mineralized tissue in the construct ranged from 190 +/- 50 microns for foams with 500-710-microns pores to 370 +/- 160 microns for foams with 150-300-microns pores after 49 days in vivo. The mineralized bone volume per surface area and total bone volume per surface area had maximal values of 0.28 +/- 0.21 mm (500-710-microns pore size, day 28) and 0.038 +/- 0.024 mm (150-300-microns, day 28), respectively. As much as 11% of the foam volume penetrated by bone tissue was filled with mineralized tissue. No significant trends over time were observed for any of the measured values (penetration depth, bone volume/surface area, or percent mineralized bone volume). These results suggest the feasibility of bone formation by osteoblast transplantation in an orthotopic site where not only bone formation from transplanted cells but also ingrowth from adjacent bone may occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalin, B.A.; Gladkov, V.P.; Volkov, N.V.
Penetration of alien atoms (Be, Ni) into Be, Al, Zr, Si and diamond was investigated under Ar{sup +} ion bombardment of samples having thermally evaporated films of 30--50 nm. Sputtering was carried out using a wide energy spectrum beam of Ar{sup +} ions of 9.4 keV to dose D = 1 {times} 10{sup 16}--10{sup 19} ion/cm{sup 2}. Implanted atom distribution in the targets was measured by Rutherford backscattering spectrometry (RBS) of H{sup +} and He{sup +} ions with energy of 1.6 MeV as well as secondary ion mass-spectrometry (SIMS). During the bombardment, the penetration depth of Ar atoms increases withmore » dose linearly. This depth is more than 3--20 times deeper than the projected range of bombarding ions and recoil atoms. This is a deep action effect. The analysis shows that the experimental data for foreign atoms penetration depth are similar to the data calculated for atom migration through the interstitial site in a field of internal (lateral) compressive stresses created in the near-surface layer of the substrate as a result of implantation. Under these experimental conditions atom ratio r{sub i}/r{sub m} (r{sub i} -- radius of dopant, r{sub m} -- radius target of substrate) can play a principal determining role.« less
NASA Astrophysics Data System (ADS)
Chenghua, Ou; Chaochun, Li; Siyuan, Huang; Sheng, James J.; Yuan, Xu
2017-12-01
As the platform-based horizontal well production mode has been widely applied in petroleum industry, building a reliable fine reservoir structure model by using horizontal well stratigraphic correlation has become very important. Horizontal wells usually extend between the upper and bottom boundaries of the target formation, with limited penetration points. Using these limited penetration points to conduct well deviation correction means the formation depth information obtained is not accurate, which makes it hard to build a fine structure model. In order to solve this problem, a method of fine reservoir structure modeling, based on 3D visualized stratigraphic correlation among horizontal wells, is proposed. This method can increase the accuracy when estimating the depth of the penetration points, and can also effectively predict the top and bottom interfaces in the horizontal penetrating section. Moreover, this method will greatly increase not only the number of points of depth data available, but also the accuracy of these data, which achieves the goal of building a reliable fine reservoir structure model by using the stratigraphic correlation among horizontal wells. Using this method, four 3D fine structure layer models have been successfully built of a specimen shale gas field with platform-based horizontal well production mode. The shale gas field is located to the east of Sichuan Basin, China; the successful application of the method has proven its feasibility and reliability.
NASA Astrophysics Data System (ADS)
Guggenheim, James A.; Zhang, Edward Z.; Beard, Paul C.
2017-03-01
The planar Fabry-Pérot (FP) sensor provides high quality photoacoustic (PA) images but beam walk-off limits sensitivity and thus penetration depth to ≍1 cm. Planoconcave microresonator sensors eliminate beam walk-off enabling sensitivity to be increased by an order-of-magnitude whilst retaining the highly favourable frequency response and directional characteristics of the FP sensor. The first tomographic PA images obtained in a tissue-realistic phantom using the new sensors are described. These show that the microresonator sensors provide near identical image quality as the planar FP sensor but with significantly greater penetration depth (e.g. 2-3cm) due to their higher sensitivity. This offers the prospect of whole body small animal imaging and clinical imaging to depths previously unattainable using the FP planar sensor.
Osteosynthesis for clavicle fractures: How close are we to penetration of neurovascular structures?
Stillwell, A; Ioannou, C; Daniele, L; Tan, S L E
2017-02-01
Risks associated with drill plunging are well recognised in clavicle osteosynthesis. To date no studies have described plunge depth associated with clavicle osteosynthesis. To determine whether plunge depth associated with clavicle osteosynthesis is great enough to penetrate neurovascular structures and whether surgical experience reduces the risk of neurovascular injury METHOD: Cadaveric clavicles were pressed into spongy phenolic foam to allow measurement of drill bit penetration beyond the far cortex (plunge depth). 15 surgeons grouped according to experience were asked to drill a single hole in the medial, middle and lateral clavicle in 2 specimens each. Each surgeon used fully a charged standard Stryker drill with a new 2.6mm drill bit and guide. Plunge depths were measured in 0.5mm increments. Depth measurements were compared amongst groups and to previously documented distances to neurovascular structures as outlined by Robinson et al. Kruskal-Wallis test was used for overall comparison and Mann-Whitney U test was used for comparing the groups individually. Mean plunge depth across all groups was 3.4mm, (0.5-6.5), 4.0mm (1mm-8.5mm) and 4.0mm (0.5mm-15mm) in the medial, middle and lateral clavicle. Plunge depths were greater than previously documented distances to the subclavian vein at the medial clavicle on nine occasions. Plunge depths in the middle and lateral clavicle were well within the previously documented distances from neurovascular structures. There was no correlation between level of experience and median plunge depth (p=0.18). However, inexperienced surgeons plunged 1mm greater than intermediate and experienced surgeons (p=0.026). There was one significant outlier; a 15mm plunge depth by an inexperienced surgeon in the lateral clavicle. Clavicle osteosynthesis has a relatively high risk of neurovascular injury. Plunge depths through the clavicle often exceed the distance of neurovascular structures, especially in the medial clavicle. A thorough understanding of the anatomy of these neurovascular structures and methods to prevent excessive plunging is important prior to undertaking clavicle osteosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kara Tuncer, Aysun; Unal, Bayram
2014-05-01
The aim of this study was to compare the effect of the EndoVac irrigation system (SybronEndo, Orange, CA) and conventional endodontic needle irrigation on sealer penetration into dentinal tubules. Forty single-rooted, recently extracted human maxillary central incisors were randomly divided into 2 groups according to the irrigation technique used: conventional endodontic needle irrigation and EndoVac irrigation. All teeth were instrumented using the ProFile rotary system (Dentsply Maillefer, Ballaigues, Switzerland) and obturated with gutta-percha and AH Plus sealer (Dentsply DeTrey, Konstanz, Germany) labeled with fluorescent dye. Transverse sections at 1, 3, and 5 mm from the root apex were examined using confocal laser scanning microscopy. The total percentage and maximum depth of sealer penetration were then measured. Mann-Whitney test results showed that EndoVac irrigation resulted in a significantly higher percentage of sealer penetration than conventional irrigation at both the 1- and 3-mm levels (P < .05). However, no difference was found at the 5-mm level. The 5-mm sections in each group showed a significantly higher percentage and maximum depth of sealer penetration than did the 1- and 3-mm sections (P < .05). The EndoVac irrigation system significantly improved the sealer penetration at the 1- to 3-mm level over that of conventional endodontic needle irrigation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Radiological characteristics of MRI-based VIP polymer gel under carbon beam irradiation
NASA Astrophysics Data System (ADS)
Maeyama, T.; Fukunishi, N.; Ishikawa, K. L.; Furuta, T.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Fukuda, S.
2015-02-01
We study the radiological characteristics of VIP polymer gel dosimeters under carbon beam irradiation with energy of 135 and 290 AMeV. To evaluate dose response of VIP polymer gels, the transverse (or spin-spin) relaxation rate R2 of the dosimeters measured by magnetic resonance imaging (MRI) as a function of linear energy transfer (LET), rather than penetration depth, as is usually done in previous reports. LET is evaluated by use of the particle transport simulation code PHITS. Our results reveal that the dose response decreases with increasing dose-averaged LET and that the dose response-LET relation also varies with incident carbon beam energy. The latter can be explained by taking into account the contribution from fragmentation products.
Relationship between Secchi disc readings and light penetration in Lake Huron
Beeton, Alfred M.
1958-01-01
Fifty-seven paired photometer and Secchi disc measurements made at 18 stations in Saginaw Bay and Lake Huron support the view that a counter-clockwise current usually occurs in the Bay with more transparent Lake Huron water flowing in along the northwest shore and less transparent Bay water flowing out along the southeast shore. The average percentage transmission of surface light intensity, at the Secchi disc depth, was 14.7 percent. Discrepancies in the relationship of disc readings to percentage transmission of surface light are related to the condition of the sky and sea. It is suggested that these discrepancies can best be explained on the basis of the spectral sensitivity of the human eye and its response to surface glare.
How fast is the Patagonian shelf-break acidifying?
NASA Astrophysics Data System (ADS)
Orselli, Iole B. M.; Kerr, Rodrigo; Ito, Rosane G.; Tavano, Virginia M.; Mendes, Carlos Rafael B.; Garcia, Carlos A. E.
2018-02-01
Anthropogenic carbon (Cant) concentration is determined according to the TrOCA method, from carbonate system data and hydrographic parameters collected during two consecutive spring cruises (2007 and 2008) in the Argentinean Patagonian shelf-break zone between 36°S and 50°S. Cant has intruded the water column until intermediate depths, with no Cant below 1000 m, in the deeper waters (i.e., North Atlantic Deep Water and Antarctic Bottom Water) of the Northern sector of the study area (i.e., North of 38°S). The higher Cant concentration is observed in Subantarctic Shelf Water in the Southern region, whereas in the Northern sector both Tropical Water and South Atlantic Central Water are equally affected by Cant intrusion. The Antarctic Intermediate Water represents the depth-limit achieved by Cant penetration, reinforcing the role that this water mass plays as an important vehicle to transport Cant to the oceans interior. The estimated Cant average (± method precision) is 46.6 ± 5.3 μmol kg- 1, considering the full depth of the water column. The ocean acidification state (ΔpH) shows an average (± standard deviation) of - 0.11 ± 0.05, thus, indicating an annual pH reduction of - 0.0010 yr- 1 since the Industrial Revolution (c.a. 1750). The degree of aragonite saturation is lowered towards undersaturation levels of calcite. The Patagonian shelf and shelf-break zones-a strong CO2 sink region in the global ocean-are likely a key area for Cant intrusion in the southwestern South Atlantic Ocean.
A Tracer Test at the Los Alamos Canyon Weir
NASA Astrophysics Data System (ADS)
Levitt, D. G.; Stone, W. J.; Newell, D. L.; Wykoff, D. S.
2002-12-01
A low-head weir was constructed in the Los Alamos Canyon to reduce the transport of contaminant-bearing sediment caused by fire-enhanced runoff off Los Alamos National Laboratory (LANL) property towards the Rio Grande following the May 2000 Cerro Grande fire at Los Alamos, New Mexico. Fractured basalt was exposed in the channel by grading during construction of the weir, and water temporarily ponds behind the weir following periods of runoff. In order to monitor any downward transport of contaminants into fractured basalt, and potentially downward to the regional ground water, three boreholes (one vertical, one at 43 degrees, and one at 34 degrees from horizontal) were installed for environmental monitoring. The boreholes penetrate to depths ranging from approximately 9 to 82 m below the weir floor. The two angled boreholes are fitted with flexible FLUTe liners with resistance sensors to measure relative moisture content and absorbent sampling pads for contaminant and environmental tracer sampling within the vadose zone. The two angled boreholes are also monitored for relative changes in moisture content by neutron logging. The vertical borehole penetrates three perched water zones and is equipped with four screens and sampling ports. In April 2002, a tracer test was initiated with the application of a 0.2 M (16,000 ppm) solution of potassium bromide (KBr) onto the weir floor. The tracer experiment was intended to provide data on travel times through the complex hydrogeologic media of fractured basalt. A precipitation and runoff event in June 2002 resulted in approximately 0.61 m of standing water behind the weir. If the KBr and flood waters were well mixed, the concentration of KBr in the flood waters was approximately 24 ppm. Bromide was detected in the absorbent membrane in the 43 degree hole at concentrations up to 2 ppm. Resistance sensors in the 43 degree borehole detected moisture increases within 3 days at a depth of 27 m, indicating an average wetting front velocity of 8.9 m per day in the vadose zone. Increases in bromide concentrations were detected in water samples from two of the four sampling ports in the vertical well within 10 days of the precipitation event, indicating an average wetting front velocity of 5.5 m per day to the sample port at a depth of 55 m below the weir floor. Increases in bromide concentrations were detected at the bottom port of the vertical well at a depth of 78 m below the weir floor within 21 days, indicating an average wetting front velocity of 3.7 m per day. Modeling of this tracer test data will improve our understanding of: the impact of the fire on ground-water quality; the impact of the weir on ground-water quality; surface water/ground water interactions; and the hydraulic properties of the Cerros del Rio basalts underlying the eastern Pajarito Plateau.
NASA Technical Reports Server (NTRS)
Oshida, Y.; Liu, H. W.
1988-01-01
The effects of preoxidation on subsequent fatigue life were studied. Surface oxidation and grain boundary oxidation of a nickel-base superalloy (TAZ-8A) were studied at 600 to 1000 C for 10 to 1000 hours in air. Surface oxides were identified and the kinetics of surface oxidation was discussed. Grain boundary oxide penetration and morphology were studied. Pancake type grain boundary oxide penetrates deeper and its size is larger, therefore, it is more detrimental to fatigue life than cone-type grain boundary oxide. Oxide penetration depth, a (sub m), is related to oxidation temperature, T, and exposure time, t, by an empirical relation of the Arrhenius type. Effects of T and t on statistical variation of a (sub m) were analyzed according to the Weibull distribution function. Once the oxide is cracked, it serves as a fatigue crack nucleus. Statistical variation of the remaining fatigue life, after the formation of an oxide crack of a critical length, is related directly to the statistical variation of grain boundary oxide penetration depth.
Grain boundary oxidation and an analysis of the effects of pre-oxidation on subsequent fatigue life
NASA Technical Reports Server (NTRS)
Oshida, Y.; Liu, H. W.
1986-01-01
The effects of preoxidation on subsequent fatigue life were studied. Surface oxidation and grain boundary oxidation of a nickel-base superalloy (TAZ-8A) were studied at 600 to 1000 C for 10 to 1000 hours in air. Surface oxides were identified and the kinetics of surface oxidation was discussed. Grain boundary oxide penetration and morphology were studied. Pancake type grain boundary oxide penetrates deeper and its size is larger, therefore, it is more detrimental to fatigue life than cone-type grain boundary oxide. Oxide penetration depth, a (sub m), is related to oxidation temperature, T, and exposure time, t, by an empirical relation of the Arrhenius type. Effects of T and t on statistical variation of a (sub m) were analyzed according to the Weibull distribution function. Once the oxide is cracked, it serves as a fatigue crack nucleus. Statistical variation of the remaining fatigue life, after the formation of an oxide crack of a critical length, is related directly to the statistical variation of grain boundary oxide penetration depth.
Miniaturization technology for Lunar penetrator mission
NASA Astrophysics Data System (ADS)
Hayashi, T.; Saito, H.; Orii, T.; Masumoto, Y.
1993-10-01
The ISAS will launch Lunar-A in 1997 to study internal structure of the moon by seismometric measurements. A mother spacecraft which holds three penetrators will be launched by newly developed M-V rocket. Three penetrators will be released from the mother spacecraft orbiting around the moon. These penetrators make hard landing on the moon with shock of about 10,000 G and will penetrate about 1-3 m in depth into the soil. Three axis seismometer, heat flow meter, data handling subsystem, communications subsystem, power subsystem are installed in a penetrator. These penetrators will be placed at three different sites on the moon and expected to operate more than one year using super lithium primary batteries and will send data to the earth via the mother spacecraft. Weight of the penetrator is limited within 13 kg because of the rocket capability. To achieve the mission, it is absolutely necessary to develop miniaturizing technology in the size and power reduction for penetrator equipment in addition to special assembly technique to withstand extremely high-G environment.
Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 137Cs, and 239,340Pu
Fuller, C.C.; van Geen, Alexander; Baskaran, M.; Anima, R.
1999-01-01
Sediment chronologies based on radioisotope depth profiles were developed at two sites in the San Francisco Bay estuary to provide a framework for interpreting historical trends in organic compound and metal contaminant inputs. At Richardson Bay near the estuary mouth, sediments are highly mixed by biological and/or physical processes. Excess penetration ranged from 2 to more than 10 cm at eight coring sites, yielding surface sediment mixing coefficients ranging from 12 to 170 cm2/year. At the site chosen for contaminant analyses, excess activity was essentially constant over the upper 25 cm of the core with an exponential decrease below to the supported activity between 70 and 90 cm. Both and penetrated to 57-cm depth and have broad subsurface maxima between 33 and 41 cm. The best fit of the excess profile to a steady state sediment accumulation and mixing model yielded an accumulation rate of 0.825 g/cm2/year (0.89 cm/year at sediment surface), surface mixing coefficient of 71 cm2/year, and 33-cm mixed zone with a half-Gaussian depth dependence parameter of 9 cm. Simulations of and profiles using these parameters successfully predicted the maximum depth of penetration and the depth of maximum and activity. Profiles of successive 1-year hypothetical contaminant pulses were generated using this parameter set to determine the age distribution of sediments at any depth horizon. Because of mixing, sediment particles with a wide range of deposition dates occur at each depth. A sediment chronology was derived from this age distribution to assign the minimum age of deposition and a date of maximum deposition to a depth horizon. The minimum age of sediments in a given horizon is used to estimate the date of first appearance of a contaminant from its maximum depth of penetration. The date of maximum deposition is used to estimate the peak year of input for a contaminant from the depth interval with the highest concentration of that contaminant. Because of the extensive mixing, sediment-bound constituents are rapidly diluted with older material after deposition. In addition, contaminants persist in the mixed zone for many years after deposition. More than 75 years are required to bury 90% of a deposited contaminant below the mixed zone. Reconstructing contaminant inputs is limited to changes occurring on a 20-year time scale. In contrast, mixing is much lower relative to accumulation at a site in San Pablo Bay. Instead, periods of rapid deposition and/or erosion occurred as indicated by frequent sand-silt laminae in the X-radiograph. , , and excess activity all penetrated to about 120 cm. The distinct maxima in the fallout radionuclides at 105–110 cm yielded overall linear sedimentation rates of 3.9 to 4.1 cm/year, which are comparable to a rate of 4.5±1.5 cm/year derived from the excess profile.
Depth profiling of galvanoaluminium-nickel coatings on steel by UV- and VIS-LIBS
NASA Astrophysics Data System (ADS)
Nagy, T. O.; Pacher, U.; Giesriegl, A.; Weimerskirch, M. J. J.; Kautek, W.
2017-10-01
Laser-induced depth profiling was applied to the investigation of galvanised steel sheets as a typical modern multi-layer coating system for environmental corrosion protection. The samples were ablated stepwise by the use of two different wavelengths of a frequency-converted Nd:YAG-laser, 266 nm and 532 nm, with a pulse duration of τ = 4 ns at fluences ranging from F = 50 to 250 J cm-2. The emission light of the resulting plasma was analysed as a function of both penetration depth and elemental spectrum in terms of linear correlation analysis. Elemental depth profiles were calculated and compared to EDX-cross sections of the cut sample. A proven mathematical algorithm designed for the reconstruction of layer structures from distorted emission traces caused by the Gaussian ablation profile can even resolve thin intermediate layers in terms of depth and thickness. The obtained results were compared to a purely thermally controlled ablation model. Thereby light-plasma coupling is suggested to be a possible cause of deviations in the ablation behaviour of Al. The average ablation rate h as a function of fluence F for Ni ranges from 1 to 3.5 μm/pulse for λ = 266 nm as well as for λ = 532 nm. In contrast, the range of h for Al differs from 2 to 4 μm/pulse for λ = 532 nm and 4 to 8 μm/pulse for λ = 266 nm in the exact same fluence range on the exact same sample.
The Effect of Arrow Mass and Shape on Penetration into a Target
NASA Astrophysics Data System (ADS)
Shyam, S.; Gurram, A.; Madireddy, S.
2016-12-01
We conducted an archery experiment in order to quantify how aerodynamic design impacted the depth of arrow impact. Research shows that the smaller the surface area of an object, the more easily it travels through the air and the deeper it penetrates a target (Benson 2014). Momentum also affects how far and fast the arrow will go and therefore, how deep it will penetrate into the target. Therefore, a combination of an arrow with greater momentum and better aerodynamics will help the arrow fly faster and penetrate the target deeper. Mass, velocity, momentum, acceleration, force, and drag are the factors that acted on our experiment and produced its results. We hypothesized that the arrow with a thin shaft and pointed arrowhead would penetrate deepest, as opposed to both arrows with no arrowheads or arrows with thick shafts and blunt arrowheads. We tested our hypothesis by having a well-trained archer shoot different types of arrows into a target. We used arrows with shaft lengths of 7 cm and 5.3 cm, coupled with either pointed, blunt, or no arrowhead. We measured the time to target and arrow penetration (in cm) to see which style reached the target the fastest and penetrated the deepest. The results demonstrated that arrows with thin shafts and pointed arrowheads penetrated our target the deepest, followed by arrows with thick shafts and blunt arrowheads. Arrows with thin shafts and blunt arrowheads came after, and arrows with thick shafts and pointed arrowheads came last in depth of penetration. The arrows with no arrowheads either barely penetrated the target, or bounced back. We were able to conclude that the thinner the shaft and the more pointed the arrowhead, the better the arrow cuts the air. This is because, according to the principles of aerodynamics, it creates less drag since the surface area is smaller. However, mass also plays an important role in force through momentum, which also significantly affected our results.
The Flow Induced by the Coalescence of Two Initially Stationary Drops
NASA Technical Reports Server (NTRS)
Nobari, M. R.; Tryggvason, G.
1994-01-01
The coalescence of two initially stationary drops of different size is investigated by solving the unsteady, axisymmetric Navier-Stokes equations numerically, using a Front-Tracking/Finite Difference method. Initially, the drops are put next to each other and the film between them ruptured. Due to surface tension forces, the drops coalesce rapidly and the fluid from the small drop is injected into the larger one. For low nondimensional viscosity, or Ohnesorge number, little mixing takes place and the small drop fluid forms a blob near the point where the drops touched initially. For low Ohnesorge number, on the other hand, the small drop forms a jet that penetrates far into the large drop. The penetration depth also depends on the size of the drops and shows that for a given fluid of sufficiently low viscosity, there is a maximum penetration depth for intermediate size ratios.
An in vivo confocal Raman study of the delivery of trans retinol to the skin.
Pudney, Paul D A; Mélot, Mickaël; Caspers, Peter J; Van Der Pol, Andre; Puppels, Gerwin J
2007-08-01
The purpose of this study is to monitor in vivo the delivery of trans-retinol into human skin. Delivery to real systems, such as skin, can be extremely difficult to execute and is problematic to confirm and measure. So far, methods for studying the delivery of compounds through the skin are mostly ex vivo and so inherently influence the skin and may not translate directly to the in vivo situation. Raman spectroscopy is uniquely placed to be able to measure biological processes in vivo, and this paper shows that the trans-retinol penetration into the skin can successfully be measured in vivo using this technique. This study measured the volar forearm of volunteers treated with 0.3% trans-retinol in propylene glycol (PG)/ethanol and 0.3% trans-retinol in caprylic/capric acid triglyceride (MYRITOL318), an oil found in skin creams. Solutions were applied and then confocal Raman depth profiles were obtained of the stratum corneum (SC) and into the viable epidermis (VE) up to 10 hours after treatment. Remarkable differences between a penetrating and a nonpenetrating solution can clearly be observed. Treating with trans-retinol in PG/ethanol results in trans-retinol penetrating through the SC and into the VE. Its penetration was also observed to be highly correlated with the depth of penetration of the PG, which is well known as an efficient penetration enhancer. In contrast, while treating with trans-retinol in MYRITOL318, trans-retinol hardly penetrates at all. For the first time, the penetration of trans-retinol has been monitored directly after application of solutions, in vivo without skin excision. Here, the effect of two different solutions on the delivery of trans-retinol into the skin was measured very effectively in vivo by Raman spectroscopy.
A Study to Increase Weld Penetration in P91 Steel During TIG Welding by using Activating Fluxes
NASA Astrophysics Data System (ADS)
Singh, Akhilesh Kumar; Kumar, Mayank; Dey, Vidyut; Naresh Rai, Ram
2017-08-01
Activated Flux TIG (ATIG) welding is a unique joining process, invented at Paton Institute of electric welding in 1960. ATIG welding process is also known as flux zoned TIG (FZTIG). In this process, a thin layer of activating flux is applied along the line on the surface of the material where the welding is to be carries out. The ATIG process aids to increase the weld penetration in thick materials. Activating fluxes used in the literature show the use of oxides like TiO2, SiO2, Cr2O3, ZnO, CaO, Fe2O3, and MnO2 during welding of steels. In the present study, ATIG was carried out on P-91 steel. Though, Tungsten Inert Gas welding gives excellent quality welds, but the penetration obtained in such welding is still demanding. P91 steel which is ferritic steel is used in high temperature applications. As this steel is, generally, used in thick sections, fabrication of such structures with TIG welding is limited, due to its low depth of penetration. To increase the depth of penetration in P91while welding with ATIG, the role of various oxides were investigated. Apart from the oxides mentioned above, in the present study the role of B2O3, V2O5 and MgO, during ATIG welding of P91 was investigated. It was seen that, compared to TIG welding, there was phenomenal increase in weld penetration during ATIG welding. Amongst all the oxides used in this study, maximum penetration was achieved in case of B2O3. The measurements of weld penetration, bead width and heat affected zone of the weldings were carried out using an image analysis technique.
Measuring soil frost depth in forest ecosystems with ground penetrating radar
John R. Butnor; John L. Campbell; James B. Shanley; Stanley Zarnoch
2014-01-01
Soil frost depth in forest ecosystems can be variable and depends largely on early winter air temperatures and the amount and timing of snowfall. A thorough evaluation of ecological responses to seasonally frozen ground is hampered by our inability to adequately characterize the frequency, depth, duration and intensity of soil frost events. We evaluated the use of...
Lin, Qianxin; Mendelssohn, Irving A; Carney, Kenneth; Miles, Scott M; Bryner, Nelson P; Walton, William D
2005-03-15
In-situ burning of spilled oil, which receives considerable attention in marine conditions, could be an effective way to cleanup wetland oil spills. An experimental in-situ burn was conducted to study the effects of oil type, marsh type, and water depth on oil chemistry and oil removal efficiency from the water surface and sediment. In-situ burning decreased the totaltargeted alkanes and total targeted polycyclic aromatic hydrocarbons (PAHs) in the burn residues as compared to the pre-burn diesel and crude oils. Removal was even more effective for short-chain alkanes and low ring-number PAHs. Removal efficiencies for alkanes and PAHs were >98% in terms of mass balance although concentrations of some long-chain alkanes and high ring-number PAHs increased in the burn residue as compared to the pre-burn oils. Thus, in-situ burning potentially prevents floating oil from drifting into and contaminating adjacent habitats and penetrating the sediment. In addition, in-situ burning significantly removed diesel oil that had penetrated the sediment for all water depths. Furthermore, in-situ burning at a water depth 2 cm below the soil surface significantly removed crude oil that had penetrated the sediment. As a result, in-situ burning may reduce the long-term impacts of oil on benthic organisms.
NASA Astrophysics Data System (ADS)
Gudipati, M. S.; Li, I.; Lignell, A. A.
2009-12-01
Penetration of electrons through icy surfaces plays an important role in radiation processing of solar system icy bodies. However, to date, there is no quantitative data available on the penetration depths of electrons through cryogenic water-ices. Penetration of high-energy incident electrons also results in the in-situ formation of secondary low-energy electrons, such as on the surface of Europa (Herring-Captain et al., 2005; Johnson et al., 2004). Low-energy electrons can also be produced through photoionization process such as on comet surfaces, or through bombardment by solar wind on icy surfaces (Bodewits et al., 2004). Present models use the laboratory penetration data of high-energy (>10 keV) electrons through silicon as a proxy for the ice (Cooper et al., 2001), normalized by the density of the medium. So far no laboratory studies have been conducted that deal with the penetration of electrons through amorphous or crystalline ices. In order to address this issue, we adopted a new experimental strategy by using aromatic molecules as probes. To begin with, we carried out systematic studies on the penetration depths of low-energy electrons (5 eV - 2 keV) through amorphous ice films of defined thickness at cryogenic temperatures (5 - 30 K). The results of these experiments will be analyzed and their relevance to survival of organic material on solar system icy surfaces will be presented. References: Bodewits, D., et al., 2004. X-ray and Far-Ultraviolet emission from comets: Relevant charge exchange processes. Physica Scripta. 70, C17-C20. Cooper, J. F., et al., 2001. Energetic ion and electron irradiation of the icy Galilean satellites. Icarus. 149, 133-159. Herring-Captain, J., et al., 2005. Low-energy (5-250 eV) electron-stimulated desorption of H+, H2+, and H+(H2O)nfrom low-temperature water ice surfaces. Physical Review B. 72, 035431-10. Johnson, R. E., et al., Radiation Effects on the Surfaces of the Galilean Satellites. In: F. Bagenal, et al., Eds.), Jupiter - The Planet, Satellites and Magnetosphere. Cambridge University Press, 2004, pp. 485-512.
A perspective on high-frequency ultrasound for medical applications
NASA Astrophysics Data System (ADS)
Mamou, Jonathan; Aristizába, Orlando; Silverman, Ronald H.; Ketterling, Jeffrey A.
2010-01-01
High-frequency ultrasound (HFU, >15 MHz) is a rapidly developing field. HFU is currently used and investigated for ophthalmologic, dermatologic, intravascular, and small-animal imaging. HFU offers a non-invasive means to investigate tissue at the microscopic level with resolutions often better than 100 μm. However, fine resolution is only obtained over the limited depth-of-field (˜1 mm) of single-element spherically-focused transducers typically used for HFU applications. Another limitation is penetration depth because most biological tissues have large attenuation at high frequencies. In this study, two 5-element annular arrays with center frequencies of 17 and 34 MHz were fabricated and methods were developed to obtain images with increased penetration depth and depth-of-field. These methods were used in ophthalmologic and small-animal imaging studies. Improved blood sensitivity was obtained when a phantom mimicking a vitreous hemorrhage was imaged. Central-nervous systems of 12.5-day-old mouse embryos were imaged in utero and in three dimensions for the first time.
Pulsed Eddy Current Probe Design Based on Transient Circuit Analysis
NASA Astrophysics Data System (ADS)
Cadeau, Trevor J.; Krause, Thomas W.
2009-03-01
Probe design parameters affecting depth of penetration of pulsed eddy currents in multi-layer aluminum 2024-T3 were examined. Several probe designs were evaluated for their ability to detect a discontinuity at the bottom of a stack of aluminum plates. The reflection type probes, consisting of pick-up coil and encircling drive coil, were characterized based on their transient response to a square pulse excitation. Probes with longer fundamental time constants, equivalent to a lower driving frequency, generated greater depth of penetration. However, additional factors such as inductive and resistive load, and excessive coil heating were also factors that limited signal-to-noise response with increasing layer thickness.
Microwave (EPR) measurements of the penetration depth measurements of high-Tc superconductors
NASA Technical Reports Server (NTRS)
Dalal, N. S.; Rakvin, B.; Mahl, T. A.; Bhalla, A. S.; Sheng, Z. Z.
1991-01-01
The use is discussed of electron paramagnetic resonance (EPR) as a quick and easily accessible method for measuring the London penetration depth, lambda for the high T sub c superconductors. The method uses the broadening of the EPR signal, due to the emergence of the magnetic flux lattice, of a free radical adsorbed on the surface of the sample. The second moment, of the EPR signal below T sub c is fitted to the Brandt equation for a simple triangular lattice. The precision of this method compares quite favorably with those of the more standard methods such as micro sup(+)SR, neutron scattering, and magnetic susceptibility.
An EPR methodology for measuring the London penetration depth for the ceramic superconductors
NASA Technical Reports Server (NTRS)
Rakvin, B.; Mahl, T. A.; Dalal, N. S.
1990-01-01
The use is discussed of electron paramagnetic resonance (EPR) as a quick and easily accessible method for measuring the London penetration depth, lambda for the high T(sub c) superconductors. The method utilizes the broadening of the EPR signal, due to the emergence of the magnetic flux lattice, of a free radical adsorbed on the surface of the sample. The second moment, of the EPR signal below T(sub c) is fitted to the Brandt equation for a simple triangular lattice. The precision of this method compares quite favorably with those of the more standard methods such as micro sup(+)SR, Neutron scattering, and magnetic susceptibility.
NASA Astrophysics Data System (ADS)
Rahlves, M.; Varkentin, A.; Stritzel, J.; Blumenröther, E.; Mazurenka, M.; Wollweber, M.; Roth, B.
2016-03-01
Melanoma skin cancer has one of the highest mortality rates of all types of cancer if not detected at an early stage. The survival rate is highly dependent on its penetration depth, which is commonly determined by histopathology. In this work, we aim at combining optical coherence tomography and optoacoustic as a non-invasive all-optical method to measure the penetration depth of melanoma. We present our recent achievements to setup a handheld multimodal device and also results from first in vivo measurements on healthy and cancerous skin tissue, which are compared to measurements obtained by ultrasound and histopathology.
Sakowska, A; Guzek, D; Głąbska, D; Wierzbicka, A
2016-11-01
This study investigated the influence of carbon monoxide (CO) exposure time (0, 7, 14, and 21days) and concentration in gas mixture on depth of penetration and the surface color of raw and cooked striploin steaks. Seven packaging treatments were evaluated: vacuum, vacuum after 48h of exposure to 0.1%, 0.3% or 0.5% CO (mixed with 30% CO2 and 69.5-69.9% N2), and modified atmosphere packaging (MAP) containing the same gas mixtures. CO penetration depth increased as exposure times and CO concentration in gas mixtures increased (p<0.05). However, the carboxymyoglobin that formed did not always turn brown during thermal treatment. In cooked samples treated with 0.3% and 0.5% CO-MAP, a red carboxymyoglobin border was visible at the cross section, whereas other CO packaging treatments had its partial or total browning. To create a red color in raw and avoid a red boarder in cooked beef, up to 0.5% CO in vacuum packages and only 0.1% for MAP can be recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of heavy-ion irradiation on London penetration depth in overdoped Ba(Fe1-xCox)2As2
NASA Astrophysics Data System (ADS)
Murphy, J.; Tanatar, M. A.; Kim, Hyunsoo; Kwok, W.; Welp, U.; Graf, D.; Brooks, J. S.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.
2013-08-01
Irradiation with 1.4 GeV 208Pb ions was used to induce artificial disorder in single crystals of iron-arsenide superconductor Ba(Fe1-xCox)2As2 and to study its effects on the temperature-dependent London penetration depth and transport properties. A study was undertaken on overdoped single crystals with x=0.108 and x=0.127 characterized by notable modulation of the superconducting gap. Irradiation corresponding to the matching fields of Bϕ=6 T and 6.5 T with doses 2.22×1011 d/cm2 and 2.4×1011 d/cm2, respectively, suppresses the superconducting Tc by approximately 0.3 to 1 K. The variation of the low-temperature penetration depth in both pristine and irradiated samples is well described by the power law Δλ(T)=ATn. Irradiation increases the magnitude of the prefactor A and decreases the exponent n, similar to the effect of irradiation in optimally-doped samples. This finding supports universal s± pairing in Ba(Fe1-xCox)2As2 compounds for the entire Co doping range.
Hybrid Welding of 45 mm High Strength Steel Sections
NASA Astrophysics Data System (ADS)
Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F.
Thick section welding has significant importance for oil and gas industry in low temperature regions. Arc welding is usually employed providing suitable quality joints with acceptable toughness at low temperatures with very limited productivity compared to modern high power laser systems. Laser-arc hybrid welding (LAHW) can enhance the productivity by several times due to higher penetration depth from laser beam and combined advantages of both heat sources. LAHW was applied to join 45 mm high strength steel with double-sided technique and application of metal cored wire. The process was captured by high speed camera, allowing process observation in order to identify the relation of the process stability on weld imperfections and efficiency. Among the results, it was found that both arc power and presence of a gap increased penetration depth, and that higher welding speeds cause unstable processing and limits penetration depth. Over a wide range of heat inputs, the welds where found to consist of large amounts of fine-grained acicular ferrite in the upper 60-75% part of welds. At the root filler wire mixing was less and cooling faster, and thus found to have bainitic transformation. Toughness of deposited welds provided acceptable toughness at -50 °C with some scattering.
Shielding gas selection for increased weld penetration and productivity in GTA welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leinonen, J.I.
1996-12-31
The effects of hydrogen and helium additions to the argon shielding gas on GTA weld pool profiles in the case of two austenitic stainless steel sheets 3 mm thick are investigated here in detail. One of the test steels shows good weldability, with a relatively deep, narrow weld pool profile, but the other is poorly weldable, with a shallow, wide weld pool when argon shielding gas is used. Bead-on-plate test welds were produced with arc shields of argon, argon with hydrogen additions of 2 to 18.2% and argon with helium additions of 20 to 80%. The hydrogen additions increases themore » depth of weld penetration in both test steels, but productivity with respect to maximum welding speed can be improved to an accepted level only with steel sheets of good weldability in terms of a relatively high depth/width (D/W) ratio. The depth of penetration in the test steel of good weldability increased somewhat with helium additions and the D/W ratio remained unchanged, while these parameters increased markedly in the poorly weldable steel when a He-20% Ar shielding gas was used and resembled those of the more weldable steel.« less
NASA Astrophysics Data System (ADS)
Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.
2012-03-01
In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.
NASA Technical Reports Server (NTRS)
Bjorkman, M. D.; Geiger, J. D.; Wilhelm, E. E.
1987-01-01
The efforts to provide a penetration code called PEN4 version 10 is documented for calculation of projectile and target states for the impact of 2024-T3 aluminum, R sub B 90 1018 steel projectiles and icy meteoroids onto 2024-T3 aluminum plates at impact velocities from 0 to 16 km/s. PEN4 determines whether a plate is perforated by calculating the state of fragmentation of projectile and first plate. Depth of penetration into the second to n sup th plate by fragments resulting from first plate perforation is determined by multiple cratering. The results from applications are given.
Penetration of tungsten-alloy rods into composite ceramic targets: Experiments and 2-D simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Z.; Dekel, E.; Hohler, V.
1998-07-10
A series of terminal ballistics experiments, with scaled tungsten-alloy penetrators, was performed on composite targets consisting of ceramic tiles glued to thick steel backing plates. Tiles of silicon-carbide, aluminum nitride, titanium-dibroide and boron-carbide were 20-80 mm thick, and impact velocity was 1.7 km/s. 2-D numerical simulations, using the PISCES code, were performed in order to simulate these shots. It is shown that a simplified version of the Johnson-Holmquist failure model can account for the penetration depths of the rods but is not enough to capture the effect of lateral release waves on these penetrations.
NASA Astrophysics Data System (ADS)
Adams, Matthew S.; Salgaonkar, Vasant A.; Sommer, Graham; Diederich, Chris J.
2017-02-01
Endoluminal high-intensity ultrasound offers spatially-precise thermal ablation of tissues adjacent to body lumens, but is constrained in treatment volume and penetration depth by the effective aperture of integrated transducers, which are limited in size to enable delivery through anatomical passages, endoscopic instrumentation, or laparoscopic ports. This study introduced and investigated three distinct endoluminal ultrasound applicator designs that can be delivered in a compact state then deployed or expanded at the target luminal site to increase the effective therapeutic aperture. The first design incorporated an array of planar transducers which could be unfolded at specific angles of convergence between the transducers. Two alternative designs consisted of fixed transducer sources surrounded by an expandable multicompartment balloon that contained acoustic reflector and dynamically-adjustable fluid lenses compartments. Parametric studies of acoustic output were performed across device design parameters via the rectangular radiator and secondary sources methods. Biothermal models were used to simulate resulting temperature distributions in three-dimensional heterogeneous tissue models. Simulations indicate that a deployable transducer array can increase volumetric coverage and penetration depth by 80% and 20%, respectively, while permitting more conformal thermal lesion shapes based on the degree of convergence between the transducers. The applicator designs incorporating reflector and fluid lenses demonstrated enhanced focal gain and penetration depth that increased with the diameter of the expanded reflector-lens balloon. Thermal simulations of assemblies with 12 mm compact profiles and 50 mm expanded balloon diameters demonstrated generation of localized thermal lesions at depths up to 10 cm in liver tissue.
Geohydrologic data and test results from Well J-13, Nevada Test Site, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thordarson, W.
Well J-13 was drilled to a depth of 1063.1 meters by using air-hydraulic-rotary drilling equipment. The well penetrated 135.6 meters of alluvium of Quaternary and Tertiary age and 927.5 meters of tuff of Tertiary age. The Topopah Spring Member of the Paintbrush Tuff, the principal aquifer, was penetrated from depths of 207.3 to 449.6 meters; a pumping test indicated its transmissivity is 120 meters squared per day, and its hydraulic conductivity is 1.0 meters per day. Below the Topopah Spring Member, tuff units are confining beds; transmissivities range from 0.10 to 4.5 meters squared per day, and hydraulic conductivities rangemore » from 0.0026 to 0.15 meter per day. Confining beds penetrated below a depth of 719.3 meters had the smallest transmissivities (0.10 to 0.63 meter squared per day) and hydraulic conductivities (0.0026 to 0.0056 meter per day). A static water level of about 282.2 meters was measured for the various water-bearing tuff units above a depth of 645.6 meters. Below a depth of 772.7 meters, the static water level was slightly deeper, 283.3 to 283.6 meters. Ground water sampled from well J-13 is a sodium bicarbonate water containing small concentrations of calcium, magnesium, silica, and sulfate, which is a typical analysis of water from tuff. Apparent age of the ground water, derived from carbon-14 age dating, is 9900 years. 15 references, 24 figures, 13 tables.« less
NASA Astrophysics Data System (ADS)
Eto, Shuzo; Matsuo, Toyofumi; Matsumura, Takuro; Fujii, Takashi; Tanaka, Masayoshi Y.
2014-11-01
The penetration profile of chlorine in a reinforced concrete (RC) specimen was determined by laser-induced breakdown spectroscopy (LIBS). The concrete core was prepared from RC beams with cracking damage induced by bending load and salt water spraying. LIBS was performed using a specimen that was obtained by splitting the concrete core, and the line scan of laser pulses gave the two-dimensional emission intensity profiles of 100 × 80 mm2 within one hour. The two-dimensional profile of the emission intensity suggests that the presence of the crack had less effect on the emission intensity when the measurement interval was larger than the crack width. The chlorine emission spectrum was measured without using the buffer gas, which is usually used for chlorine measurement, by collinear double-pulse LIBS. The apparent diffusion coefficient, which is one of the most important parameters for chloride penetration in concrete, was estimated using the depth profile of chlorine emission intensity and Fick's law. The carbonation depth was estimated on the basis of the relationship between carbon and calcium emission intensities. When the carbon emission intensity was statistically higher than the calcium emission intensity at the measurement point, we determined that the point was carbonated. The estimation results were consistent with the spraying test results using phenolphthalein solution. These results suggest that the quantitative estimation by LIBS of carbonation depth and chloride penetration can be performed simultaneously.
Calculating maximum frost depths at Mn/ROAD : winters 1993-94, 1994-95 and 1995-96
DOT National Transportation Integrated Search
1997-03-01
This effort involved calculating maximum frost penetration depths for each of the 40 test cells at Mn/ROAD, the Minnesota Department of Transportation's pavement testing facility, for the 1993-94, 1994-95, and 1995-96 winters. The report compares res...
NASA Astrophysics Data System (ADS)
Hernández J., P.; Befani M., R.; Boschetti N., G.; Quintero C., E.; Díaz E., L.; Lado, M.; Paz-González, A.
2015-04-01
The Avellaneda District, located in northeastern of Santa Fe Province, Argentina, has an average annual rainfall of 1250 mm per year, but with a high variability in their seasonal distribution. Generally, the occurrence of precipitation in winter is low, while summer droughts are frequent. The yearly hydrological cycle shows a water deficit, given that the annual potential evapotranspiration is estimated at 1330 mm. Field crops such as soybean, corn, sunflower and cotton, which are affected by water stress during their critical growth periods, are dominant in this area. Therefore, a supplemental irrigation project has been developed in order to identify workable solutions. This project pumps water from Paraná River to provide a water supply to the target area under irrigation. A pressurized irrigation system operating on demand provides water to a network of channels, which in turn deliver water to farms. The scheduled surface of irrigation is 8800 hectares. The maximum flow rate was designed to be 8.25 m3/second. The soils have been classified as Aquic Argiudolls in areas of very gentle slopes, and Vertic Argiudolls in flat and concave reliefs; neither salinity nor excess sodium affect the soils of the study are. The objective of this study was to provide a quantitative data set to manage the irrigation project, through the determination of available water (AW), easily available water (EAw) and optimal water range (or interval) of the soil horizons. The study has been conducted in a text area of 1500 hectares in surface. Five soil profiles were sampled to determine physical properties (structure stability, effective root depth, infiltration, bulk density, penetration resistance and water holding capacity), chemical properties (pH, cation exchange capacity, base saturation, salinity, and sodium content ) and morphological characteristics of the successive horizons. Also several environmental characteristics were evaluated, including: climate, topographic conditions, relief, general and slope position, erosion, natural vegetation and agricultural crops. Indeed the computed available water (AW) content and easily available water (EAw) content values depended on bulk density, field capacity and permanent wilting point, but also they were affected by the soil penetration resistance measured to a depth of 80 cm; this parameter limits the extent of the soil volume explored by plant roots and therefore EAw content. Moreover, soil penetration resistance enables to take into account the concept of optimal water interval, which indicates how soil compaction limits the levels of easily available water that really can be extracted by the crop. The estimated values of EAw water ranged from 74 to 133 mm for the profiles studies. When including the concept of mechanical resistance to penetration to obtain the value of the optimal water interval, the above values decreased, ranging between 34 and 57 mm; this was mainly explained on the basis of the true depth of exploration by plant roots of the soil profiles. Based on the recorded values of the soil mechanical resistance to penetration, it was concluded that sunflower and corn crops will be mostly affected on their growth and root development. Subsequently, and for a maximum consumptive use of 10 mm/day, the commonly used irrigation interval of 13 days, should decrease to 6 days, if the new methodology is used i.e. if the limitations of soil depth exploration by crop roots are taken into account. This result is consistent with those from current practices under non irrigated conditions, where it has been shown that crop yields are affected by water shortage provided that an important precipitation doesn't occur among such interval.
Kuçi, Astrit; Alaçam, Tayfun; Yavaş, Ozer; Ergul-Ulger, Zeynep; Kayaoglu, Guven
2014-10-01
The aim of this study was to test the dentinal tubule penetration of AH26 (Dentsply DeTrey, Konstanz, Germany) and MTA Fillapex (Angelus, Londrina, PR, Brazil) in instrumented root canals obturated by using cold lateral compaction or warm vertical compaction techniques in either the presence or absence of the smear layer. Forty-five extracted single-rooted human mandibular premolar teeth were used. The crowns were removed, and the root canals were instrumented by using the Self-Adjusting File (ReDent-Nova, Ra'anana, Israel) with continuous sodium hypochlorite (2.6%) irrigation. Final irrigation was either with 5% EDTA or with sodium hypochlorite. The canals were dried and obturated by using rhodamine B-labeled AH26 or MTA Fillapex in combination with the cold lateral compaction or the warm vertical compaction technique. After setting, the roots were sectioned horizontally at 4-, 8-, and 12-mm distances from the apical tip. On each section, sealer penetration in the dentinal tubules was measured by using confocal laser scanning microscopy. Regardless of the usage of EDTA, MTA Fillapex, compared with AH26, was associated with greater sealer penetration when used with the cold lateral compaction technique, and, conversely, AH26, compared with MTA Fillapex, was associated with greater sealer penetration when used with the warm vertical compaction technique (P < .05). Removal of the smear layer increased the penetration depth of MTA Fillapex used with the cold lateral compaction technique (P < .05); however, it had no significant effect on the penetration depth of AH26. Greater sealer penetration could be achieved with either the MTA Fillapex-cold lateral compaction combination or with the AH26-warm vertical compaction combination. Smear layer removal was critical for the penetration of MTA Fillapex; however, the same did not hold for AH26. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Huan-Lei; Fan, Peng-Fei; Guo, Xia-Sheng; Tu, Juan; Ma, Yong; Zhang, Dong
2016-12-01
Transdermal drug delivery (TDD) can effectively bypass the first-pass effect. In this paper, ultrasound-facilitated TDD on fresh porcine skin was studied under various acoustic parameters, including frequency, amplitude, and exposure time. The delivery of yellow-green fluorescent nanoparticles and high molecular weight hyaluronic acid (HA) in the skin samples was observed by laser confocal microscopy and ultraviolet spectrometry, respectively. The results showed that, with the application of ultrasound exposures, the permeability of the skin to these markers (e.g., their penetration depth and concentration) could be raised above its passive diffusion permeability. Moreover, ultrasound-facilitated TDD was also tested with/without the presence of ultrasound contrast agents (UCAs). When the ultrasound was applied without UCAs, low ultrasound frequency will give a better drug delivery effect than high frequency, but the penetration depth was less likely to exceed 200 μm. However, with the help of the ultrasound-induced microbubble cavitation effect, both the penetration depth and concentration in the skin were significantly enhanced even more. The best ultrasound-facilitated TDD could be achieved with a drug penetration depth of over 600 μm, and the penetration concentrations of fluorescent nanoparticles and HA increased up to about 4-5 folds. In order to get better understanding of ultrasound-facilitated TDD, scanning electron microscopy was used to examine the surface morphology of skin samples, which showed that the skin structure changed greatly under the treatment of ultrasound and UCA. The present work suggests that, for TDD applications (e.g., nanoparticle drug carriers, transdermal patches and cosmetics), protocols and methods presented in this paper are potentially useful. Project partially supported by the National Natural Science Foundation of China (Grant Nos. 81127901, 81227004, 81473692, 81673995, 11374155, 11574156, 11274170, 11274176, 11474001, 11474161, 11474166, and 11674173), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011812), the Fundamental Research Funds for the Central Universities, and the National High-Tech Research and Development Program of China (Grant No. 2012AA022702).
NASA Astrophysics Data System (ADS)
Bargsten, Clayton; Hollinger, Reed; Shlyaptsev, Vyacheslav; Pukhov, Alexander; Keiss, David; Townsend, Amanda; Wang, Yong; Wang, Shoujun; Prieto, Amy; Rocca, Jorge
2014-10-01
We have demonstrated the volumetric heating of near-solid density plasmas to keV temperatures by ultra-high contrast femtosecond laser irradiation of arrays of vertically aligned nanowires with an average density up to 30% solid density. X-ray spectra show that irradiation of Ni and Au nanowire arrays with laser pulses of relativistic intensities ionizes plasma volumes several micrometers in depth to the He-like and Co-like (Au 52 +) stages respectively. The penetration depth of the heat into the nanowire array was measured monitoring He-like Co lines from irradiated arrays in which the nanowires are composed of a Co segment buried under a selected length of Ni. The measurement shows the ionization reaches He-like Co for depth of up to 5 μm within the target. This volumetric plasma heating approach creates a new laboratory plasma regime in which extreme plasma parameters can be accessed with table-top lasers. Scaling to higher laser intensities promises to create plasmas with temperatures and pressures approaching those in the center of the sun. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.
Hutchens, Thomas C; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N; Ying, Howard S; Astratov, Vasily N; Fried, Nathaniel M
2012-06-01
Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser's short optical penetration depth combined with the small spot diameters achieved with this fiber probe may provide more precise tissue removal. One-, three-, and five-microsphere chain structures were characterized, resulting in FWHM diameters of 67, 32, and 30 μm in air, respectively, with beam profiles comparable to simulations. Single Er:YAG pulses of 0.1 mJ and 75-μs duration produced ablation craters with average diameters of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one-, three-, and five-sphere structures, respectively. Microsphere chains produced spatial filtering of the multimode Er:YAG laser beam and fiber, providing spot diameters not otherwise available with conventional fiber systems. Because of the extremely shallow treatment depth, compact focused beam, and contact mode operation, this probe may have potential for use in dissecting epiretinal membranes and other ophthalmic tissues without damaging adjacent retinal tissue.
Yang, Xiuhao; Henderson, Gregg; Mao, Lixin; Evans, Ahmad
2009-08-01
A ground penetrating radar (GPR) technique was used to detect Formosan subterranean termite (Coptotermes formosanus) and red imported fire ant (Solenopsis invicta) hazards and risks (targets) in a soil levee at the London Avenue Canal in New Orleans, LA. To make this assessment, GPR signal scans were examined for features produced by termite or ant activities and potential sources of food and shelter such as nests, tree roots, and voids (tunnels). The total scanned length of the soil levee was 4,125 m. The average velocity and effective depth of the radar penetration was 0.080 m/ns and 0.61 m, respectively. Four hundred twenty-seven targets were identified. Tree roots (38), voids (31), fire ant nests (209), and metal objects (149) were detected, but no Formosan termite carton nests were identified. The lack of identified termite nests may be related to drowning events at the time to the flood. Based on the target density (TD), the two new floodwall and levee sections that were rebuilt or reinforced after they were destroyed by Hurricane Katrina in 2005 were determined to be at low potential risk from termites and ants. A merging target density (MTD) method indicated a high potential risk near one of the breached sections still remains. Foraging and nesting activity of Formosan subterranean termites and red imported fire ants may be a contributory factor to the levee failure at the London Avenue Canal.
NASA Astrophysics Data System (ADS)
Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.
2003-11-01
The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.
NASA Astrophysics Data System (ADS)
Gorczynska, Iwona; Migacz, Justin; Zawadzki, Robert J.; Sudheendran, Narendran; Jian, Yifan; Tiruveedhula, Pavan K.; Roorda, Austin; Werner, John S.
2015-07-01
We tested and compared the capability of multiple optical coherence tomography (OCT) angiography methods: phase variance, amplitude decorrelation and speckle variance, with application of the split spectrum technique, to image the choroiretinal complex of the human eye. To test the possibility of OCT imaging stability improvement we utilized a real-time tracking scanning laser ophthalmoscopy (TSLO) system combined with a swept source OCT setup. In addition, we implemented a post- processing volume averaging method for improved angiographic image quality and reduction of motion artifacts. The OCT system operated at the central wavelength of 1040nm to enable sufficient depth penetration into the choroid. Imaging was performed in the eyes of healthy volunteers and patients diagnosed with age-related macular degeneration.
Penetration analysis of projectile with inclined concrete target
NASA Astrophysics Data System (ADS)
Kim, S. B.; Kim, H. W.; Yoo, Y. H.
2015-09-01
This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.
Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool
NASA Technical Reports Server (NTRS)
Siegel, David A.; Ohlmann, J. Carter; Washburn, Libe; Bidigare, Robert R.; Nosse, Craig T.; Fields, Erik; Zhou, Yimei
1995-01-01
Recent optical, physical, and biological oceanographic observations are used to assess the magnitude and variability of the penetrating flux of solar radiation through the mixed layer of the warm water pool (WWP) of the western equatorial Pacific Ocean. Typical values for the penetrative solar flux at the climatological mean mixed layer depth for the WWP (30 m) are approx. 23 W/sq m and are a large fraction of the climatological mean net air-sea heat flux (approx. 40 W/sq m). The penetrating solar flux can vary significantly on synoptic timescales. Following a sustained westerly wind burst in situ solar fluxes were reduced in response to a near tripling of mixed layer phytoplankton pigment concentrations. This results in a reduction in the penetrative flux at depth (5.6 W/sq m at 30 m) and corresponds to a biogeochemically mediated increase in the mixed layer radiant heating rate of 0.13 C per month. These observations demonstrate a significant role of biogeochemical processes on WWP thermal climate. We speculate that this biogeochemically mediated feedback process may play an important role in enhancing the rate at which the WWP climate system returns to normal conditions following a westerly wind burst event.
Shape-Dependent Skin Penetration of Silver Nanoparticles: Does It Really Matter?
Tak, Yu Kyung; Pal, Sukdeb; Naoghare, Pravin K.; Rangasamy, Sabarinathan; Song, Joon Myong
2015-01-01
Advancements in nano-structured materials have facilitated several applications of nanoparticles (NPs). Skin penetration of NPs is a crucial factor for designing suitable topical antibacterial agents with low systemic toxicity. Available reports focus on size-dependent skin penetration of NPs, mainly through follicular pathways. Herein, for the first time, we demonstrate a proof-of-concept study that entails variations in skin permeability and diffusion coefficients, penetration rates and depth-of-penetration of differently shaped silver NPs (AgNPs) via intercellular pathways using both in vitro and in vivo models. The antimicrobial activity of AgNPs is known. Different shapes of AgNPs may exhibit diverse antimicrobial activities and skin penetration capabilities depending upon their active metallic facets. Consideration of the shape dependency of AgNPs in antimicrobial formulations could help developing an ideal topical agent with the highest efficacy and low systemic toxicity. PMID:26584777
A numerically optimized active shield for improved transcranial magnetic stimulation targeting.
Hernandez-Garcia, Luis; Hall, Timothy; Gomez, Luis; Michielssen, Eric
2010-10-01
Transcranial magnetic stimulation (TMS) devices suffer of poor targeting and penetration depth. A new approach to designing TMS coils is introduced in order to improve the focus of the stimulation region through the use of actively shielded probes. Iterative optimization techniques were used to design different active shielding coils for TMS probes. The new approach aims to increase the amount of energy deposited in a thin cylindrical region below the probe relative to the energy deposited elsewhere in the region ("sharpness"), whereas, simultaneously increase the induced electric field deep in the target region relative to the surface ("penetration"). After convergence, the resulting designs showed that there is a clear tradeoff between sharpness and penetration that can be controlled by the choice of a tuning parameter. The resulting designs were tested on a realistic human head conductivity model, taking the contribution from surface charges into account. The design of choice reduced penetration depths by 16.7%. The activated surface area was reduced by 24.1% and the volume of the activation was reduced from 42.6% by the shield. Restoring the lost penetration could be achieved by increasing the total power to the coil by 16.3%, but in that case, the stimulated volume reduction was only 13.1% and there was a slight increase in the stimulated surface area (2.9%). Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Foster, Joseph C., Jr.; Jones, S. E.; Rule, William; Toness, Odin
1999-06-01
Sub-scale experimentation is commonly used as a cost-effective means of conducting terminal ballistics research. Analytical models of the penetration process focus on calculating the depth of penetration based on target density, target strength represented by the unconfined compressive-strength (f”c), the areal density of the penetrator (W/A), and the impact velocity.1 Forrestal, et. al. have documented the mass loss from the penetrator during the penetration process and employed improved equations of motion.2 Various researchers have investigated the upper limits of rigid body penetration and identified the onset of instabilities.3 In an effort to better understand the physical processes associated with this instability, experimental techniques have been developed to capture the details of the penetrator and target and subject them to microscopic analysis.4 These results have served as motivation to explore new forms for the physics included in the penetration equation as a means of identifying the processes associated with high velocity instability. We have included target shear and nose friction in the formulation of the fundamental load function expressions.5 When the resulting equations of motion are integrated and combined with the thermodynamics indicated by microscopic analysis, methods are identified to calculated penetrator mass loss. A comparison of results with experimental data serves as an indicator of the thermodynamic state variables associated with the quasi-steady state penetrator target interface conditions. 1 Young, C. W. , “Depth Predictions for Earth Penetrating Projectiles,” Journal of Soil Mechanics and Foundations, Division of ASCE, May 1998 pp 803-817 2. M.J. Forrestal, D.J. Frew, S.J. Hanchak, amd Brar, “ Pentration of Grout and Concrete Targets with Ogive-Nose Steel Projectiles,” Inrt. J. Impact Engng. Vol 18, pp. 465-476,1996 3. Andrew J. Piekutowski, Michael J. Forrestal, Kevin L. Poormon, and Thomas L. Warren, “Penetration of 6061-T6511 Aluminum Target by Ogive-Nose Projectiles with Striking Velocities between 0.5 and 3.0 Km/s,’ Int. J. Impact Engng. Vol. 23, 1999 4. Joseph C. Foster, Jr., Frank Christopher, Leo Wilson, Dave Jerome, Odin Toness, “Observations concerning the Damage in Concrete Subjected to High Rates of Loading,” Proceedings of Plasticity ’99, Cancun Mexico, 4-14 January 1999 5. S.E. Jones, Joseph C. Foster, Jr. , and William K Rule, “Estimating Target Strength from Penetration Experiments,” (submitted for publication)
Magnetic penetration depth and flux dynamics in single-crystal Bi2Sr2CaCu2O8+δ
NASA Astrophysics Data System (ADS)
Harshman, D. R.; Kleiman, R. N.; Inui, M.; Espinosa, G. P.; Mitzi, D. B.; Kapitulnik, A.; Pfiz, T.; Williams, D. Ll.
1991-11-01
The muon-spin-relaxation technique has been used to study vortex dynamics in single-phase superconducting single crystals of Bi2Sr2CaCu2O8+δ (Tc~=90 K). The data indicate motional narrowing of the internal field distribution due to vortex motion (on a time scale comparable to the muon lifetime). A field-dependent lattice transition is also observed at Tx~30 K, as evidenced by the onset of an asymmetric line shape below Tx. Narrowing arising from disordering of the vortices along [001] is also discussed with reference to its effect on the measured penetration depth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smylie, M. P.; Claus, H.; Welp, U.
2016-11-01
The low-temperature variation of the London penetration depth lambda(T) in the candidate topological superconductor NbxBi2Se3 (x = 0.25) is reported for several crystals. The measurements were carried out by means of a tunnel-diode oscillator technique in both field orientations (H-rf || c and H-rf || ab planes). All samples exhibited power-law behavior at low temperatures (Delta lambda similar to T-2) clearly indicating the presence of point nodes in the superconducting order parameter. The results presented here are consistent with a nematic odd-parity spin-triplet E-u pairing state in NbxBi2Se3.
NASA Astrophysics Data System (ADS)
Morris, Michael D.; Goodship, Allen E.; Draper, Edward R. C.; Matousek, Pavel; Towrie, Michael; Parker, Anthony W.
2004-07-01
We show that Raman spectroscopy with visible lasers, even in the deep blue is possible with time-gated Raman spectroscopy. A 4 picosec time gate allows efficient fluorescence rejection, up to 1000X, and provides almost background-free Raman spectra with low incident laser power. The technology enables spectroscopy with better than 10X higher scattering efficiency than is possible with the NIR (785 nm and 830 nm) lasers that are conventionally used. Raman photon migration is shown to allow depth penetration. We show for the first time that Kerr-gated Raman spectra of bone tissue with blue laser excitation enables both fluorescence rejection and depth penetration.
A millimeter-wave reflectometer for whole-body hydration sensing
NASA Astrophysics Data System (ADS)
Zhang, W.-D.; Brown, E. R.
2016-05-01
This paper demonstrates a non-invasive method to determine the hydration level of human skin by measuring the reflectance of W-band (75-110 GHz) and Ka-band (26-40 GHz) radiation. Ka-band provides higher hydration accuracy (<1%) and greater depth of penetration (> 1 mm), thereby allowing access to the important dermis layer of skin. W-band provides less depth of penetration but finer spatial resolution (~2 mm). Both the hydration sensing concept and experimental results are presented here. The goal is to make a human hydration sensor that is 1% accurate or better, operable by mechanically scanning, and fast enough to measure large areas of the human body in seconds.
Ayotte, Joseph D.; Dorgan, Tracy H.
1995-01-01
Geophysical investigations were done near a former waste-disposal site in Nashua, New Hampshire to determine the thickness and infer hydraulic characteristics of the glacial sediments that underlie the area. Approximately 5 miles of ground- penetrating radar (GPR) data were collected in the study area by use of dual-80 Megahertz antennas. Three distinct radar-reflection signatures were evident from the data and are interpreted to represent (1) glacial lake-bottom sediments, (2) coarse sand and gravel and (or) sandy glacial till, and (3) bedrock. The GPR signal penetrated as much as 70 feet of sediment in coarse-grained areas, but penetration depth was generally less than 40 feet in extensive areas of fine-grained deposits. Geologic features were evident in many of the profiles. Glacial-lake-bottom sediments were the most common features identified. Other features include deltas deposited in glacial Lake Nashua and lobate fans of sediment deposited subaqueously at the distal end of deltaic sediments. Cross-bedded sands were often identifiable in the deltaic sediments. Seismic-refraction data were also collected at five of the GPR data sites. In most cases, depths to the water table and to the till and (or) bedrock surface indicated by the seismic-refraction data compared favorably with depths calculated from the GPR data. Test holes were drilled at three locations to determine the true depths to radar reflectors and to determine the types of geologic material represented by the various reflectors.
NASA Technical Reports Server (NTRS)
Schaber, G. G.; Mccauley, J. F.; Breed, C. S.; Olhoeft, G. R.
1986-01-01
Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.
Dammermann, W
1979-07-17
The objections in the following comments on a recent paper by Tausch et al. (1978) are raised principally to the points that the mass of the projectile is given an importance for the penetration which is not justified, and that the inherent uncertainty of the measurement data and the scope of validity of the empirical formulas are not sufficiently taken into account. The discussion on the process of penetration and a discontinuity of the depth of penetration as a function of the velocity of the bullet is of fundamental significance, with consequences for the definition of the critical velocity.
Noble, J.E.; Bush, P.W.; Kasmarek, M.C.; Barbie, D.L.
1996-01-01
In 1989, the U.S. Geological Survey, in cooperation with the Harris-Galveston Coastal Subsidence District, began a field study to determine the depth to the water table and to estimate the rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas. The study area comprises about 2,000 square miles of outcrops of the Chicot and Evangeline aquifers in northwest Harris County, Montgomery County, and southern Walker County. Because of the scarcity of measurable water-table wells, depth to the water table below land surface was estimated using a surface geophysical technique, seismic refraction. The water table in the study area generally ranges from about 10 to 30 foot below land surface and typically is deeper in areas of relatively high land-surface altitude than in areas of relatively low land- surface altitude. The water table has demonstrated no long-term trends since ground-water development began, with the probable exception of the water table in the Katy area: There the water table is more than 75 feet deep, probably due to ground-water pumpage from deeper zones. An estimated rate of recharge in the aquifer outcrops was computed using the interface method in which environmental tritium is a ground-water tracer. The estimated average total recharge rate in the study area is 6 inches per year. This rate is an upper bound on the average recharge rate during the 37 years 1953-90 because it is based on the deepest penetration (about 80 feet) of postnuclear-testing tritium concentrations. The rate, which represents one of several components of a complex regional hydrologic budget, is considered reasonable but is not definitive because of uncertainty regarding the assumptions and parameters used in its computation.
[Morphometric anatomic study and clinical significance of lunate fossa].
Aldemir, Cengiz; Önder, Merve; Doğan, Ali; Duygun, Fatih; Oğuz, Nurettin
2015-01-01
This study aims to investigate the depth, transverse and sagittal diameters of lunate fossa which is a significant structure of the wrist in terms of reducing the risk for volar plate screws, which are administered in distal radius fractures, from penetrating into the joint. Depth, transverse and sagittal diameters of lunate fossa in 50 right and 50 left adult dried radius bones without distal tip damage were measured by using MicroscribeG2X from the MicroScribe G series. Mean lunate fossa depth: left 2.419886±0.51 mm/right 2.543052±0.78 mm, mean lunate fossa sagittal diameter: left 19.656±1.57 mm/right 18.796±1.53 mm, mean lunate fossa transverse diameter: left 11.382±0.65 mm/right 11.106±0.91 mm. There was no statistically significant difference between right and left depth values of lunate fossa (p=0.320), whereas there was statistically significant difference between right and left transverse and sagittal diameters (p=0.006, p=0.048). Measurements involving depth of lunate fossa may guide the development of new anatomic plates and decrease complications like the penetration of screw into joint whilst volar plate administrations.
Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.
NASA Astrophysics Data System (ADS)
Bozeman, Steven Paul
The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in skin depth with magnetic field and a damping of the effect of B with pressure. The flat coil geometry which launches waves more nearly parallel to B allows enhanced wave penetration at higher pressures than the standard helical coil.
Brocher, T.M.
2005-01-01
Compressional-wave (sonic) and density logs from 119 oil test wells provide knowledge of the physical properties and impedance contrasts within urban sedimentary basins in northern California, which is needed to better understand basin amplification. These wire-line logs provide estimates of sonic velocities and densities for primarily Upper Cretaceous to Pliocene clastic rocks between 0.1 - and 5.6-km depth to an average depth of 1.8 km. Regional differences in the sonic velocities and densities in these basins largely 1reflect variations in the lithology, depth of burial, porosity, and grain size of the strata, but not necessarily formation age. For example, Miocene basin filling strata west of the Calaveras Fault exhibit higher sonic velocities and densities than older but finer-grained and/or higher-porosity rocks of the Upper Cretaceous Great Valley Sequence. As another example, hard Eocene sandstones west of the San Andreas Fault have much higher impedances than Eocene strata, mainly higher-porosity sandstones and shales, located to the east of this fault, and approach those expected for Franciscan Complex basement rocks. Basement penetrations define large impedence contrasts at the sediment/basement contact along the margins of several basins, where Quaternary, Pliocene, and even Miocene deposits directly overlie Franciscan or Salinian basement rocks at depths as much as 1.7 km. In contrast, in the deepest, geographic centers of the basins, such logs exhibit only a modest impedance contrast at the sediment/basement contact at depths exceeding 2 km. Prominent (up to 1 km/sec) and thick (up to several hundred meters) velocity and density reversals in the logs refute the common assumption that velocities and densities increase monotonically with depth.
In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography
NASA Astrophysics Data System (ADS)
Enfield, Joey; O'Connell, Marie-Louise; Lawlor, Kate; Jonathan, Enock; O'Mahony, Conor; Leahy, Martin
2010-07-01
The use of microneedles as a method of circumventing the barrier properties of the stratum corneum is receiving much attention. Although skin disruption technologies and subsequent transdermal diffusion rates are being extensively studied, no accurate data on depth and closure kinetics of microneedle-induced skin pores are available, primarily due to the cumbersome techniques currently required for skin analysis. We report on the first use of optical coherence tomography technology to image microneedle penetration in real time and in vivo. We show that optical coherence tomography (OCT) can be used to painlessly measure stratum corneum and epidermis thickness, as well as microneedle penetration depth after microneedle insertion. Since OCT is a real-time, in-vivo, nondestructive technique, we also analyze skin healing characteristics and present quantitative data on micropore closure rate. Two locations (the volar forearm and dorsal aspect of the fingertip) have been assessed as suitable candidates for microneedle administration. The results illustrate the applicability of OCT analysis as a tool for microneedle-related skin characterization.
Ultrasound-facilitated transport of silver chloride (AgCl) particles in fish skin.
Frenkel, V; Kimmel, E; Iger, Y
2000-08-10
Electron-dense nano-particles in aqueous suspension were administered by immersion into the epidermis of fish using ultrasound in the therapeutic range. Enhanced permeability of the tissues to the particles was achieved by acoustic cavitation, which induced a controlled level of necrosis in the outer cell layers, and by non-cavitational exposures, which widened intercellular spaces of non-necrosed tissue in deeper regions of the epidermis. Both particle concentration and penetration depth were quantified using transmission electron microscopy. While cavitation-induced perforation was necessary for particles to penetrate into the tissues, non-cavitational exposures during immersions increased the particle flux towards the skin surface, as well as the diffusion rate of the particles within the epidermis and their depth of penetration. The technique described above may potentially be applied for non-stressful, mass-administration of substances into aquatic animals, as well as the relatively new field of ultrasound-facilitated delivery in moist epithelial tissues in humans.
Dunford, Jeffrey L; Dhirani, Al-Amin
2008-11-12
Interfaces between disordered normal materials and superconductors (S) can exhibit 'reflectionless tunnelling' (RT)-a phenomenon that arises from repeated disorder-driven elastic scattering, multiple Andreev reflections, and electron/hole interference. RT has been used to explain zero-bias conductance peaks (ZBCPs) observed using doped semiconductors and evaporated granular metal films as the disordered normal materials. Recently, in addition to ZBCPs, magnetoconductance oscillations predicted by RT theory have been observed using a novel normal disordered material: self-assembled nanoparticle films. In the present study, we find that the period of these oscillations decreases as temperature (T) increases. This suggests that the magnetic flux associated with interfering pathways increases accordingly. We propose that the increasing flux can be attributed to magnetic field penetration into S as [Formula: see text]. This model agrees remarkably well with known T dependence of penetration depth predicted by Bardeen-Cooper-Schrieffer theory. Our study shows that this additional region of flux is significant and must be considered in experimental and theoretical studies of RT.
Sourisseau, C; Maraval, P
2003-11-01
In-depth confocal Raman microspectrometry (CRM) studies through a planar interface between materials of mismatched refraction indices are known to be affected by a decrease of both the collected Raman intensity and the axial resolution as a function of the penetration depth. Following a previous model, which takes the refraction, diffraction, and spherical aberration effects into account when focusing a Gaussian incident laser beam with a high numerical aperture objective lens, a complete vectorial treatment of these phenomena is considered. It is demonstrated that off-axis refraction effects cannot be neglected and that the dimension of the confocal pinhole aperture plays a crucial role on the effective focal plane position and on the collection efficiency. We thus propose a more rigorous and complete approach to the problem, and we find a very good agreement between experimental and theoretical Raman intensity variations for a thick polyethylene sample as a function of the penetration depth. As compared with calculations where only refraction was considered, we confirm that the lengthening of the focus even for a large penetration depth is significantly reduced upon diffraction effects. As an illustrative example, the theoretical Raman responses for a thin coating of approximately 20 microns on a polymer substrate were investigated and compared to experimental results already published. Even though the interfacial region is spread over approximately 5-6 microns when using a 100x objective and a confocal pinhole of 200 microns diameter, it is definitively concluded that the apparent axial resolution is not drastically deteriorated with increasing depth and that the coating thickness may be directly estimated with a precision of approximately 1.0 micron (5%).
Geohydrology of rocks penetrated by test well USW H-4, Yucca Mountain, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, M.S. Jr.; Eshom, E.P.; Thordarson, W.
This report presents the results of hydraulic testing of rocks penetrated by USW H-4, one of several test wells drilled in the southwestern part of the Nevada Test Site, in cooperation with the US Department of Energy, for investigations related to the isolation of high-level radioactive wastes in volcanic tuffs of Tertiary age. All rocks penetrated by the test well to its total depth of 1219 meters were volcanic. Static water level was at a depth of 519 meters below land surface. Hydraulic-head measurements made at successively lower depths during drilling in this test hole indicate no noticeable head change.more » A radioactive-tracer, borehole-flow survey indicated that the two most productive zones in this borehole occurred in the upper part of the Bullfrog Member, depth interval from 721 to 731.5 meters, and in the underlying upper part of the Tram Member, depth interval from 864 to 920 meters, both in the Crater Flat Tuff. Hydraulic coefficients calculated from pumping-test data indicate that transmissivity ranged from 200 to 790 meters squared per day. The hydraulic conductivity ranged from 0.29 to 1.1 meters per day. Chemical analysis of water pumped from the saturated part of the borehole (composite sample) indicates that the water is typical of water produced from tuffaceous rocks in southern Nevada. The water is predominantly a sodium bicarbonate type with small concentrations of calcium, magnesium, and sulfate. The apparent age of this composite water sample was determined by a carbon-14 date to be 17,200 years before present. 24 refs., 10 figs., 8 tabs.« less
Mechanism of nanosecond laser drilling process of 4H-SiC for through substrate vias
NASA Astrophysics Data System (ADS)
Kim, Byunggi; Iida, Ryoichi; Doan, Duc Hong; Fushinobu, Kazuyoshi
2017-06-01
Role of optical parameters on nanosecond laser drilling of 4H-SiC was experimentally studied. Using ns pulsed Nd:YAG laser, parametric studies on effects of wavelength (1064 nm or 532 nm), beam profile (Gaussian or Bessel), and ambient condition (air or water) were conducted. The wavelengths which have large optical penetration depth were selected as wavefront has to propagate through materials to generate Bessel beam. The experimental results showed that carbonization of SiC surface accelerates thermal ablation of the materials with fluence under the lattice melting threshold. Especially, pattern of side lobes with small fluence was formed by irradiation of Bessel beam. The pattern disturbed penetration of wavefronts through materials. Implementation of water environment was not effective to suppress carbonization and had slight effect on improvement of drilling quality. For this reason, deep drilling with small entrance was not achieved using Bessel beam. Irradiation of 1064 nm Gaussian beam with large fluence led to formation of critical amount of re-solidified silicon due to the large optical penetration depth. Carbonization and silicon formation had a significant effect on unique fluence dependence of drilling depth. Absorption mechanism was studied as well to discuss effect of wavelength on processing characteristics.
Completing the Feedback Loop: The Impact of Chlorophyll Data Assimilation on the Ocean State
NASA Technical Reports Server (NTRS)
Borovikov, Anna; Keppenne, Christian; Kovach, Robin
2015-01-01
In anticipation of the integration of a full biochemical model into the next generation GMAO coupled system, an intermediate solution has been implemented to estimate the penetration depth (1Kd_PAR) of ocean radiation based on the chlorophyll concentration. The chlorophyll is modeled as a tracer with sources-sinks coming from the assimilation of MODIS chlorophyll data. Two experiments were conducted with the coupled ocean-atmosphere model. In the first, climatological values of Kpar were used. In the second, retrieved daily chlorophyll concentrations were assimilated and Kd_PAR was derived according to Morel et al (2007). No other data was assimilated to isolate the effects of the time-evolving chlorophyll field. The daily MODIS Kd_PAR product was used to validate the skill of the penetration depth estimation and the MERRA-OCEAN re-analysis was used as a benchmark to study the sensitivity of the upper ocean heat content and vertical temperature distribution to the chlorophyll input. In the experiment with daily chlorophyll data assimilation, the penetration depth was estimated more accurately, especially in the tropics. As a result, the temperature bias of the model was reduced. A notably robust albeit small (2-5 percent) improvement was found across the equatorial Pacific ocean, which is a critical region for seasonal to inter-annual prediction.
NASA Astrophysics Data System (ADS)
Kim, Jeehoon; Haberkorn, N.; Graf, M. J.; Usov, I.; Ronning, F.; Civale, L.; Nazaretski, E.; Chen, G. F.; Yu, W.; Thompson, J. D.; Movshovich, R.
2012-10-01
We report on the dramatic effect of random point defects, produced by proton irradiation, on the superfluid density ρs in superconducting Ca0.5Na0.5Fe2As2 single crystals. The magnitude of the suppression is inferred from measurements of the temperature-dependent magnetic penetration depth λ(T) using magnetic force microscopy. Our findings indicate that a radiation dose of 2×1016 cm-2 produced by 3 MeV protons results in a reduction of the superconducting critical temperature Tc by approximately 10%. In contrast, ρs(0) is suppressed by approximately 60%. This breakdown of the Abrikosov-Gorkov theory may be explained by the so-called “Swiss cheese model,” which accounts for the spatial suppression of the order parameter near point defects similar to holes in Swiss cheese. Both the slope of the upper critical field and the penetration depth λ(T/Tc)/λ(0) exhibit similar temperature dependences before and after irradiation. This may be due to a combination of the highly disordered nature of Ca0.5Na0.5Fe2As2 with large intraband and simultaneous interband scattering as well as the s±-wave nature of short coherence length superconductivity.
Effect of heavy-ion irradiation on London penetration depth in overdoped Ba(Fe 1 - x Co x ) 2 As 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, J.; Tanatar, M. A.; Kim, Hyunsoo
2013-08-01
Irradiation with 1.4 GeV 208 Pb ions was used to induce artificial disorder in single crystals of iron-arsenide superconductor Ba(Fe 1 - x Co x ) 2 As 2 and to study its effects on the temperature-dependent London penetration depth and transport properties. A study was undertaken on overdoped single crystals with x = 0.108 and x = 0.127 characterized by notable modulation of the superconducting gap. Irradiation corresponding to the matching fields of B Φ = 6 T and 6.5 T with doses 2.22 × 10 11 d /cm 2 and 2.4 × 10 11 d /cm 2 ,more » respectively, suppresses the superconducting T c by approximately 0.3 to 1 K. The variation of the low-temperature penetration depth in both pristine and irradiated samples is well described by the power law Δ λ ( T ) = A T n . Irradiation increases the magnitude of the prefactor A and decreases the exponent n , similar to the effect of irradiation in optimally-doped samples. This finding supports universal s ± pairing in Ba(Fe 1 - x Co x ) 2 As 2 compounds for the entire Co doping range.« less
NASA Astrophysics Data System (ADS)
Stopyra, Wojciech; Kurzac, Jarosław; Gruber, Konrad; Kurzynowski, Tomasz; Chlebus, Edward
2016-12-01
SLM technology allows production of a fully functional objects from metal and ceramic powders, with true density of more than 99,9%. The quality of manufactured items in SLM method affects more than 100 parameters, which can be divided into fixed and variable. Fixed parameters are those whose value before the process should be defined and maintained in an appropriate range during the process, e.g. chemical composition and morphology of the powder, oxygen level in working chamber, heating temperature of the substrate plate. In SLM technology, five parameters are variables that optimal set allows to produce parts without defects (pores, cracks) and with an acceptable speed. These parameters are: laser power, distance between points, time of exposure, distance between lines and layer thickness. To develop optimal parameters thin walls or single track experiments are performed, to select the best sets narrowed to three parameters: laser power, exposure time and distance between points. In this paper, the effect of laser power on the penetration depth and geometry of scanned single track was shown. In this experiment, titanium (grade 2) substrate plate was used and scanned by fibre laser of 1064 nm wavelength. For each track width, height and penetration depth of laser beam was measured.
Characterization of NbN films and tunnel junctions
NASA Technical Reports Server (NTRS)
Stern, J. A.; Leduc, H. G.
1991-01-01
Properties of NbN films and NbN/MgO/NbN tunnel junctions are discussed. NbN junctions are being developed for use in high-frequency, SIS quasiparticle mixers. To properly design mixer circuits, junction and film properties need to be characterized. The specific capacitance of NbN/MgO/NbN junctions has been measured as a function of the product of the normal-state resistance and the junction area (RnA), and it is found to vary by more than a factor of two (35-85 fF/sq microns) over the range of RnA measured (1000-50 ohm sq microns). This variation is important because the specific capacitance determines the RC speed of the tunnel junction at a given RnA value. The magnetic penetration depth of NbN films deposited under different conditions is also measured. The magnetic penetration depth affects the design of microstrip line used in RF tuning circuits. Control of the magnetic penetration depth is necessary to fabricate reproducible tuning circuits. Additionally, the critical current uniformity for arrays of 100 junctions has been measured. Junction uniformity will affect the design of focal-plane arrays of SIS mixers. Finally, the relevance of these measurements to the design of Josephson electronics is discussed.
Chatelain, Mathieu; Guizien, Katell
2010-03-01
A one-dimensional vertical unsteady numerical model for diffusion-consumption of dissolved oxygen (DO) above and below the sediment-water interface was developed to investigate DO profile dynamics under wind waves and sea swell (high-frequency oscillatory flows with periods ranging from 2 to 30s). We tested a new approach to modelling DO profiles that coupled an oscillatory turbulent bottom boundary layer model with a Michaelis-Menten based consumption model. The flow regime controls both the mean value and the fluctuations of the oxygen mass transfer efficiency during a wave cycle, as expressed by the non-dimensional Sherwood number defined with the maximum shear velocity (Sh). The Sherwood number was found to be non-dependent on the sediment biogeochemical activity (mu). In the laminar regime, both cycle-averaged and variance of the Sherwood number are very low (Sh <0.05, VAR(Sh)<0.1%). In the turbulent regime, the cycle-averaged Sherwood number is larger (Sh approximately 0.2). The Sherwood number also has intra-wave cycle fluctuations that increase with the wave Reynolds number (VAR(Sh) up to 30%). Our computations show that DO mass transfer efficiency under high-frequency oscillatory flows in the turbulent regime are water-side controlled by: (a) the diffusion time across the diffusive boundary layer and (b) diffusive boundary layer dynamics during a wave cycle. As a result of these two processes, when the wave period decreases, the Sh minimum increases and the Sh maximum decreases. Sh values vary little, ranging from 0.17 to 0.23. For periods up to 30s, oxygen penetration depth into the sediment did not show any intra-wave fluctuations. Values for the laminar regime are small (
Bottom Penetration at Shallow Grazing Angles II
1992-06-19
Millwater , "Wave Reflection from a Sediment Layer with Depth-Dependent Properties," J. Acoust. Soc. Am. 77, 1781- 1788 (1985). 35 8. N. P. Chotiros, ’High...Acoust. Soc. Am. 8B1 S131 (1990). 12. M. Stern, A. Bedford, and H. R. Millwater , "Wave Reflection from a Sediment Layer with Depth-Dependent
Hua, Xijin; Li, Junyan; Wang, Ling; Wilcox, Ruth; Fisher, John; Jin, Zhongmin
2015-10-01
One important loosening mechanism of the cemented total hip arthroplasty is the mechanical overload at the bone-cement interface and consequent failure of the cement fixation. Clinical studies have revealed that the outer diameter of the acetabular component is a key factor in influencing aseptic loosening of the hip arthroplasty. The aim of the present study was to investigate the influence of the cup outer diameter on the contact mechanics and cement fixation of a cemented total hip replacement (THR) with different wear penetration depths and under different cup inclination angles using finite element (FE) method. A three-dimensional FE model was developed based on a typical Charnley hip prosthesis. Two acetabular cup designs with outer diameters of 40 and 43 mm were modelled and the effect of cup outer diameter, penetration depth and cup inclination angle on the contact mechanics and cement fixation stresses in the cemented THR were studied. The results showed that for all penetration depths and cup inclination angles considered, the contact mechanics in terms of peak von Mises stress in the acetabular cup and peak contact pressure at the bearing surface for the two cup designs were similar (within 5%). However, the peak von Mises stress, the peak maximum principal stress and peak shear stress in the cement mantle at the bone-cement interface for the 43 mm diameter cup design were predicted to be lower compared to those for the 40 mm diameter cup design. The differences were predicted to be 15-19%, 15-22% and 18-20% respectively for different cup penetration depths and inclination angles, which compares to the clinical difference of aseptic loosening incidence of about 20% between the two cup designs. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Penetration Resistance of Armor Ceramics: Dimensional Analysis and Property Correlations
2015-08-01
been reported in experimental studies. Particular ceramics analyzed here are low- and high-purity alumina, aluminum nitride, boron carbide, silicon...analyzed here are low- and high-purity alumina, aluminum nitride, boron carbide, silicon carbide, and titanium diboride. Data for penetration depth...include high hardness, high elastic stiffness, high strengths (static/dynamic compressive, shear, and bending), and low density relative to armor steels
Meliga, Stefano C; Coffey, Jacob W; Crichton, Michael L; Flaim, Christopher; Veidt, Martin; Kendall, Mark A F
2017-01-15
In-depth understanding of skin elastic and rupture behavior is fundamental to enable next-generation biomedical devices to directly access areas rich in cells and biomolecules. However, the paucity of skin mechanical characterization and lack of established fracture models limits their rational design. We present an experimental and numerical study of skin mechanics during dynamic interaction with individual and arrays of micro-penetrators. Initially, micro-indentation of individual skin strata revealed hyperelastic moduli were dramatically rate-dependent, enabling extrapolation of stiffness properties at high velocity regimes (>1ms -1 ). A layered finite-element model satisfactorily predicted the penetration of micro-penetrators using characteristic fracture energies (∼10pJμm -2 ) significantly lower than previously reported (≫100pJμm -2 ). Interestingly, with our standard application conditions (∼2ms -1 , 35gpistonmass), ∼95% of the application kinetic energy was transferred to the backing support rather than the skin ∼5% (murine ear model). At higher velocities (∼10ms -1 ) strain energy accumulated in the top skin layers, initiating fracture before stress waves transmitted deformation to the backing material, increasing energy transfer efficiency to 55%. Thus, the tools developed provide guidelines to rationally engineer skin penetrators to increase depth targeting consistency and payload delivery across patients whilst minimizing penetration energy to control skin inflammation, tolerability and acceptability. The mechanics of skin penetration by dynamically-applied microscopic tips is investigated using a combined experimental-computational approach. A FE model of skin is parameterized using indentation tests and a ductile-failure implementation validated against penetration assays. The simulations shed light on skin elastic and fracture properties, and elucidate the interaction with microprojection arrays for vaccine delivery allowing rational design of next-generation devices. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Khosrawipour, Veria; Bellendorf, Alexander; Khosrawipour, Carolina; Hedayat-Pour, Yousef; Diaz-Carballo, David; Förster, Eckart; Mücke, Ralph; Kabakci, Burak; Adamietz, Irenäus Anton; Fakhrian, Khashayar
To compare the impact of single fractional with bi-fractional irradiation on the depth of doxorubicin penetration into the normal tissue after pressurized intra-peritoneal aerosol chemotherapy (PIPAC) in our ex vivo model. Fresh post mortem swine peritoneum was cut into 12 proportional sections. Two control samples were treated with PIPAC only (no irradiation), one sample on day 1, the other on day 2. Five samples were irradiated with 1, 2, 4, 7 or 14 Gy followed by PIPAC. Four samples were treated on day one with 0.5, 1, 2, 3.5 or 7 Gy and with the same radiation dose 24 h later followed by PIPAC. Doxorubicin was aerosolized in an ex vivo PIPAC model at 12 mmHg/36°C. In-tissue doxorubicin penetration was measured using fluorescence microscopy on frozen thin sections. Doxorubicin penetration (DP) after PIPAC for the control samples was 407 μm and 373 μm, respectively. DP for samples with single fraction irradiation was 396 μm after 1 Gy, 384 μm after 2 Gy, 327 μm after 4 Gy, 280 μm after 7 Gy and 243 μm after 14 Gy. DP for samples with 2 fractions of irradiation was 376 μm after 0.5+0.5 Gy, 363 μm after 1+1 Gy, 372 μm after 2+2 Gy, 341 μm after 3.5+3.5 and 301 μm after 7+7 Gy irradiation. Fractionating of the irradiation did not significantly change DP into normal tissue. Irradiation does not increase the penetration depth of doxorubicin into the normal tissue but might have a limiting impact on penetration and distribution of doxorubicin. Further studies are warranted to investigate the impact of addition of irradiation to PIPAC of tumor cells and to find out if irradiation can be used safely as chemopotenting agent for patients with peritoneal metastases treated with PIPAC. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
NASA Astrophysics Data System (ADS)
Burke, Kathleen A.; Dawes, Ryan P.; Cheema, Mehar K.; Perry, Seth; Brown, Edward
2014-02-01
Second Harmonic Generation (SHG) of collagen signals allows for the analysis of collagen structural changes throughout metastatic progression. The directionality of coherent SHG signals, measured through the ratio of the forward-propagating to backward propagating signal (F/B ratio), is affected by fibril diameter, spacing, and order versus disorder of fibril packing within a fiber. As tumors interact with their microenvironment and metastasize, it causes changes in these parameters, and concurrent changes in the F/B ratio. Specifically, the F/B ratio of breast tumors that are highly metastatic to the lymph nodes is significantly higher than those in tumors with restricted lymph node involvement. We utilized in vitro analysis of tumor cell motility through collagen gels of different microstructures, and hence different F/B ratios, to explore the relationship between collagen microstructures and metastatic capabilities of the tumor. By manipulating environmental factors of fibrillogenesis and biochemical factors of fiber composition we created methods of varying the average F/B ratio of the gel, with significant changes in fiber structure occurring as a result of alterations in incubation temperature and increasing type III collagen presence. A migration assay was performed using simultaneous SHG and fluorescent imaging to measure average penetration depth of human tumor cells into the gels of significantly different F/B ratios, with preliminary data demonstrating that cells penetrate deeper into gels of higher F/B ratio caused by lower type III collagen concentration. Determining the role of collagen structure in tumor cell motility will aid in the future prediction metastatic capabilities of a primary tumor.
Sulfide and methane production in sewer sediments.
Liu, Yiwen; Ni, Bing-Jie; Ganigué, Ramon; Werner, Ursula; Sharma, Keshab R; Yuan, Zhiguo
2015-03-01
Recent studies have demonstrated significant sulfide and methane production by sewer biofilms, particularly in rising mains. Sewer sediments in gravity sewers are also biologically active; however, their contribution to biological transformations in sewers is poorly understood at present. In this study, sediments collected from a gravity sewer were cultivated in a laboratory reactor fed with real wastewater for more than one year to obtain intact sediments. Batch test results show significant sulfide production with an average rate of 9.20 ± 0.39 g S/m(2)·d from the sediments, which is significantly higher than the areal rate of sewer biofilms. In contrast, the average methane production rate is 1.56 ± 0.14 g CH4/m(2)·d at 20 °C, which is comparable to the areal rate of sewer biofilms. These results clearly show that the contributions of sewer sediments to sulfide and methane production cannot be ignored when evaluating sewer emissions. Microsensor and pore water measurements of sulfide, sulfate and methane in the sediments, microbial profiling along the depth of the sediments and mathematical modelling reveal that sulfide production takes place near the sediment surface due to the limited penetration of sulfate. In comparison, methane production occurs in a much deeper zone below the surface likely due to the better penetration of soluble organic carbon. Modelling results illustrate the dependency of sulfide and methane productions on the bulk sulfate and soluble organic carbon concentrations can be well described with half-order kinetics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Blake, E; Campbell, S; Allen, J; Mathew, J; Helliwell, P; Curnow, A
2012-12-05
Topical protoporphyrin (PpIX)-induced photodynamic therapy (PDT) relies on the penetration of the prodrug into the skin lesion and subsequent accumulation of the photosensitizer. Methyl aminolevulinate (MAL)-PDT is an established treatment for thinner and superficial non-melanoma skin cancers (NMSCs) but for the treatment of the thicker nodular basal cell carcinoma (nBCC) enhanced penetration of the prodrug is required. This study employed a new higher pressure, oxygen pressure injection (OPI) device, at the time of Metvix® application with a view to enhancing the penetration of MAL into the tumors. Each patient had Metvix® applied to a single nBCC followed by application of a higher pressure OPI device. Following different time intervals (0, 30, 60, 120 or 180 min) the tumors were excised. The maximum depth and area of MAL penetration achieved in each lesion was measured using PpIX fluorescence microscopy. As expected, an increase in the depth of MAL-induced PpIX accumulation and area of tumor sensitized was observed over time; when the Metvix® cream was applied for 0, 30, 60, 120 and 180 min the median depth of PpIX fluorescence was 0%, 21%, 26.5%, 75.5% and 90%, respectively and the median area of tumor sensitized was 0%, 4%, 6%, 19% and 60%, respectively. As the investigation presented here did not include a control arm, the relative depths of fluorescence observed in this study were statistically compared (using the non-parametric Mann Whitney U test) with the results of our previous study where patients had Metvix® cream applied either with or without the standard pressure OPI device. When the higher pressure OPI device was employed compared to without OPI this increase was observed to be greater following 30, 120, and 180 min although overall not significantly (p=0.835). In addition, no significant difference between the higher pressure OPI device employed here and the previously investigated standard pressure OPI device was observed (p=0.403). However, when the results for both OPI devices were combined and compared to the standard treatment (no OPI employed) group, although the difference did not reach significance (p=0.531) a consistent and substantial increase in the depth of PpIX fluorescence was observed, therefore employment of an OPI device during topical MAL-PDT protocols warrants further investigation as a technique for enhancing MAL penetration. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Xin; Gan, Lu; Ma, Mingyu; Zhang, Song; Liu, Jingjing; Chen, Hongxiang; Liu, Dawei; Lu, Xinpei
2018-02-01
To improve the depth of plasma active species in the skin, it is very important to develop skin disease treatment using plasma. In this article, an air plasma source was used to work directly with the skin of a mouse. A tortuous pathway, hair follicles, electroporation and a microneedle do not aid the transdermal delivery of gaseous plasma active species, therefore these gaseous plasma active species cannot penetrate mouse skin with a thickness of ~0.75 mm. The plasma activated water (PAW) produced by the air plasma source was used to study the transdermal penetration of the aqueous plasma activated species. This aqueous plasma activated species can penetrate the skin through hair follicles, intercellular and transcellular routes. The pH of the PAW did not affect the penetration efficiency of the aqueous plasma active species.
Depth-resolved measurements with elliptically polarized reflectance spectroscopy
Bailey, Maria J.; Sokolov, Konstantin
2016-01-01
The ability of elliptical polarized reflectance spectroscopy (EPRS) to detect spectroscopic alterations in tissue mimicking phantoms and in biological tissue in situ is demonstrated. It is shown that there is a linear relationship between light penetration depth and ellipticity. This dependence is used to demonstrate the feasibility of a depth-resolved spectroscopic imaging using EPRS. The advantages and drawbacks of EPRS in evaluation of biological tissue are analyzed and discussed. PMID:27446712
Modeling studies for a Mars penetrator heat flow measurement
NASA Technical Reports Server (NTRS)
Keihm, S. J.; Langseth, M. G.
1976-01-01
There were, two different design concepts considered for the purpose of measuring heat flow as part of a Mars penetrator mission. The first of the tentative designs utilizes temperature sensors emplaced along the trailing umbilicus at regularly spaced intervals, no greater than 1m, which is thermally coupled to the adjacent regolith radiatively and possibly convectively or conductively. The second of the heat flow designs considered requires the radial deployment of two or more low thermal mass temperature sensors outward from the penetrator body over a vertical (depth) range on the order of 1m.
Chemical quality of water in abandoned zinc mines in northeastern Oklahoma and southeastern Kansas
Playton, Stephen J.; Davis, Robert Ellis; McClaflin, Roger G.
1978-01-01
Onsite measurements of pH, specific conductance, and water temperature show that water temperatures in seven mine shafts in northeastern Oklahoma and southeastern Kansas is stratified. With increasing sampling depth, specific conductance and water temperature tend to increase, and pH tends to decrease. Concentrations of dissolved solids and chemical constituents in mine-shaft water, such as total, and dissolved metals and dissolved sulfate also increase with depth. The apparently unstable condition created by cooler, denser water overlying warmer, less-dense water is offset by the greater density of the lower water strata due to higher dissolved solids content.Correlation analysis showed that several chemical constituents and properties of mine-shaft water, including dissolved solids, total hardness, and dissolved sulfate, calcium, magnesium, and lithium, are linearly related to specific conductance. None of the constituents or properties of mine-shaft water tested had a significant linear relationship to pH. However, when values of dissolved aluminum, zinc, and nickel were transformed to natural or Napierian logarithms, significant linear correlation to pH resulted. During the course of the study - September 1975 to June 1977 - the water level in a well penetrating the mine workings rose at an average rate of 1.2 feet per month. Usually, the rate of water-level rise was greater than average after periods of relatively high rainfall, and lower than average during periods of relatively low rainfall.Water in the mine shafts is unsuited for most uses without treatment. The inability of current domestic water treatment practices to remove high concentrations of toxic metals, such as cadmium and lead, precludes use of the water for a public supply.
The efficiency of ceramic-faced metal targets at high-velocity impact
NASA Astrophysics Data System (ADS)
Tolkachev, V. F.; Konyaev, A. A.; Pakhnutova, N. V.
2017-11-01
The paper represents experimental results and engineering evaluation concerning the efficiency of composite materials to be used as an additional protection during the high- velocity interaction of a tungsten rod with a target in the velocity range of 1...5 km/s. The main parameter that characterizes the high-velocity interaction of a projectile with a layered target is the penetration depth. Experimental data, numerical simulation and engineering evaluation by modified models are used to determine the penetration depth. Boron carbide, aluminum oxide, and aluminum nickelide are applied as a front surface of targets. Based on experimental data and numerical simulation, the main characteristics of ceramics are determined, which allows composite materials to be effectively used as additional elements of protection.
NASA Technical Reports Server (NTRS)
Heinen, Vernon O.; Miranda, Felix A.; Bhasin, Kul B.
1992-01-01
A power transmission measurement technique was used to determine the magnetic penetration depth (lambda) of YBa2Cu3O(7-delta) superconducting thin films on LaAlO3 within the 26.5 to 40.0 GHz frequency range, and at temperatures from 20 to 300 K. Values of lambda ranging from 1100 to 2500 A were obtained at low temperatures. The anisotropy of lambda was determined from measurements of c-axis and a-axis oriented films. An estimate of the intrinsic value of lambda of 90 +/- 30 nm was obtained from the dependence of lambda on film thickness. The advantage of this technique is that it allows lambda to be determined nondestructively.
Local Measurement of the Penetration Depth in the Pnictide Superconductor Ba(Fe_0.95 Co_0.05)_2 As_2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsushita, Y.
2010-01-11
We use magnetic force microscopy (MFM) to measure the local penetration depth {lambda} in Ba(Fe{sub 0.95}Co{sub 0.05}){sub 2}As{sub 2} single crystals and use scanning SQUID susceptometry to measure its temperature variation down to 0.4 K. We observe that superfluid density {rho}{sub s} over the full temperature range is well described by a clean two-band fully gapped model. We demonstrate that MFM can measure the important and hard-to-determine absolute value of {lambda}, as well as obtain its temperature dependence and spatial homogeneity. We find {rho}{sub s} to be uniform on the submicron scale despite the highly disordered vortex pinning.
Penetration Depth Study of Superconducting Gap Structure of 2H-NbSe2
NASA Astrophysics Data System (ADS)
Fletcher, J. D.; Carrington, A.; Diener, P.; Rodière, P.; Brison, J. P.; Prozorov, R.; Olheiser, T.; Giannetta, R. W.
2007-02-01
We report measurements of the temperature dependence of both in-plane and out-of-plane penetration depths (λa and λc, respectively) in 2H-NbSe2. Measurements were made with a radio-frequency tunnel diode oscillator circuit at temperatures down to 100 mK. Analysis of the anisotropic superfluid density shows that a reduced energy gap is located on one or more of the quasi-two-dimensional Nb Fermi surface sheets rather than on the Se sheet, in contrast with some previous reports. This result suggests that the gap structure is not simply related to the weak electron-phonon coupling on the Se sheet and is therefore important for microscopic models of anisotropic superconductivity in this compound.
Phase-based Bragg intragrating distributed strain sensor
NASA Astrophysics Data System (ADS)
Huang, S.; Ohn, M. M.; Measures, R. M.
1996-03-01
A strain-distribution sensing technique based on the measurement of the phase spectrum of the reflected light from a fiber-optic Bragg grating is described. When a grating is subject to a strain gradient, the grating will experience a chirp and therefore the resonant wavelength will vary along the grating, causing wavelength-dependent penetration depth. Because the group delay for each wavelength component is related to its penetration depth and the resonant wavelength is determined by strain, a measured phase spectrum can then indicate the local strain as a function of location within the grating. This phase-based Bragg grating sensing technique offers a powerful new means for studying some important effects over a few millimeters or centimeters in smart structures.
NASA Technical Reports Server (NTRS)
Ossandon, J. G.; Thompson, J. R.; Sun, Yang Ren; Christen, D. K.; Chakoumakos, B. C.
1995-01-01
Magnetization studies of polycrystalline Bi(1.8)Pb(0.3)Sr2Ca2Cu3O10 superconductor, prior to and after neutron irradiation, showed an increase in J(sub c) due to irradiation damage. Analysis of the equilibrium magnetization revealed significant increases in other more fundamental properties. In particular, the London penetration depth increased by approximately 15 percent following irradiation with 8 x 10(exp 16) neutrons/sq cm. Corresponding changes were observed in the upper critical magnetic field H(sub c2). However, the most fundamental thermodynamic property, the superconductive condensation energy F(sub c), was unaffected by the moderate level of neutron-induced damage.
NASA Astrophysics Data System (ADS)
Raut, S. D.; Awasarmol, V. V.; Shaikh, S. F.; Ghule, B. G.; Ekar, S. U.; Mane, R. S.; Pawar, P. P.
2018-04-01
The gamma ray energy absorption and exposure buildup factors (EABF and EBF) were calculated for ferrites such as cobalt ferrite (CoFe2O4), zinc ferrite (ZnFe2O4), nickel ferrite (NiFe2O4) and magnesium ferrite (MgFe2O4) using five parametric geometric progression (G-P fitting) formula in the energy range 0.015-15.00 MeV up to the penetration depth 40 mean free path (mfp). The obtained data of absorption and exposure buildup factors have been studied as a function of incident photon energy and penetration depth. The obtained EABF and EBF data are useful for radiation dosimetry and radiation therapy.
Johanna D. Landsberg; Richard E. Miller; Harry W. Anderson; Jeffrey S. Tepp
2003-01-01
Bulk density and soil resistance to penetration were measured in ten, 3- to 11-ha operational units in overstocked, mixed-conifer stands in northeast Washington. Resistance was measured with a recording penetrometer to the 33-cm depth (13 in) at 10 stations on each of 8 to 17, 30.5-m-long, randomly located transects in each unit. Subsequently, different combinations of...
The effect of aircraft speed on the penetration of sonic boom noise into a flat ocean
NASA Technical Reports Server (NTRS)
Sparrow, Victor W.
1994-01-01
As U.S. aircraft manufacturers now have focused their HSCT efforts on overwater supersonic flight, a great deal more must be known about sonic booms propagating overwater and interacting with the ocean. For example, it is thought that atmospheric turbulence effects are often much less severe over water than over land. Another important aspect of the overwater flight problems is the penetration of the sonic boom noise into the ocean, where there could be an environmental impact on sea life. This talk will present a brief review on the penetration of sonic boom noise into a large body of water with a flat surface. It has been determined recently that faster supersonic speeds imply greater penetration of sonic boom noise into the ocean. The new theory is derived from the original Sawyers paper and from the knowledge that for level flight a boom's duration is proportional to the quantity M/(M(exp 2)-1)(exp 3/8) where M is the Mach number. It is found that for depths of 10 m or less, the peak SPL varies less than 6 dB over a wide range of M. For greater depths, 100 m for example, increased Mach numbers may increase the SPL by 15 dB or more.
Drilling, sampling, and sample-handling system for China's asteroid exploration mission
NASA Astrophysics Data System (ADS)
Zhang, Tao; Zhang, Wenming; Wang, Kang; Gao, Sheng; Hou, Liang; Ji, Jianghui; Ding, Xilun
2017-08-01
Asteroid exploration has a significant importance in promoting our understanding of the solar system and the origin of life on Earth. A unique opportunity to study near-Earth asteroid 99942 Apophis will occur in 2029 because it will be at its perigee. In the current work, a drilling, sampling, and sample-handling system (DSSHS) is proposed to penetrate the asteroid regolith, collect regolith samples at different depths, and distribute the samples to different scientific instruments for in situ analysis. In this system, a rotary-drilling method is employed for the penetration, and an inner sampling tube is utilized to collect and discharge the regolith samples. The sampling tube can deliver samples up to a maximum volume of 84 mm3 at a maximum penetration depth of 300 mm to 17 different ovens. To activate the release of volatile substances, the samples will be heated up to a temperature of 600 °C by the ovens, and these substances will be analyzed by scientific instruments such as a mass spectrometer, an isotopic analyzer, and micro-cameras, among other instruments. The DSSHS is capable of penetrating rocks with a hardness value of six, and it can be used for China's asteroid exploration mission in the foreseeable future.
Internal Waves, South China Sea
NASA Technical Reports Server (NTRS)
1983-01-01
Subsurface ocean currents, frequently referred to as internal waves, are frequently seen from space under the right lighting conditions when depth penetration can be achieved. These internal waves observed in the South China Sea off the SE coast of the island of Hainan (18.5N, 110.5E) visibly demonstrate turbidity in the ocean's depths at the confluence of conflicting currents.
The relation of mechanical properties of wood and nosebar pressure in the production of veneer
Charles W. McMillin
1958-01-01
Observations of checking frequency, depth of check penetration, veneer thickness, and surface quality were made at 20 machining conditions. An inverse relationship between depth of check and frequency of checking was established. The effect of cutting temperature was demonstrated, and strength in compression perpendicular to the grain, tension perpendicular to the...
Synergistic Use of Spacecraft Telecom Links for Collection of Planetary Radar Science Data
NASA Astrophysics Data System (ADS)
Asmar, S.; Bell, D. J.; Chahat, N. E.; Decrossas, E.; Dobreva, T.; Duncan, C.; Ellliot, H.; Jin, C.; Lazio, J.; Miller, J.; Preston, R.
2017-12-01
On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. Example spacecraft radar instruments are the 90 MHz CONSERT radar used to probe the interior of Comet 67P/Churyumov-Gerasimenko to a depth of 760m, the 20 MHz SHARAD instrument used to investigate Mars subsurface ice features from Mars orbit at depths of 300 to 3000 meters and the upcoming RIMFAX 150 MHz to 1200 MHz ground penetrating radar that will ride on the Mars 2020 rover investigating to a depth of 10m below the rover. In all of these applications, the radar frequency and signal structures were chosen to match science goals of desired depth of penetration and spatial resolution combined with the expected subsurface materials and structures below the surface. Recently, JPL investigators have proposed a new radar science paradigm, synergistic use of the telecom hardware and telecom links to collect bistatic or monostatic radar signatures. All JPL spacecraft employ telecom hardware that operates at UHF (400 MHz and 900 MHz), X-band (8 GHz) or Ka-band (32 GHz). Using existing open-loop record functions in these radios, the telecom hardware can be used to capture opportunistic radar signatures from telecom signals penetrating the surface and reflecting off of subsurface structures. This paper reports on telecom strategies, radar science applications and recent laboratory and field tests to demonstrate the effectiveness of telecom link based radar data collection.
Penetration of Chlorhexidine into Human Skin ▿
Karpanen, T. J.; Worthington, T.; Conway, B. R.; Hilton, A. C.; Elliott, T. S. J.; Lambert, P. A.
2008-01-01
This study evaluated a model of skin permeation to determine the depth of delivery of chlorhexidine into full-thickness excised human skin following topical application of 2% (wt/vol) aqueous chlorhexidine digluconate. Skin permeation studies were performed on full-thickness human skin using Franz diffusion cells with exposure to chlorhexidine for 2 min, 30 min, and 24 h. The concentration of chlorhexidine extracted from skin sections was determined to a depth of 1,500 μm following serial sectioning of the skin using a microtome and analysis by high-performance liquid chromatography. Poor penetration of chlorhexidine into skin following 2-min and 30-min exposures to chlorhexidine was observed (0.157 ± 0.047 and 0.077 ± 0.015 μg/mg tissue within the top 100 μm), and levels of chlorhexidine were minimal at deeper skin depths (less than 0.002 μg/mg tissue below 300 μm). After 24 h of exposure, there was more chlorhexidine within the upper 100-μm sections (7.88 ± 1.37 μg/mg tissue); however, the levels remained low (less than 1 μg/mg tissue) at depths below 300 μm. There was no detectable penetration through the full-thickness skin. The model presented in this study can be used to assess the permeation of antiseptic agents through various layers of skin in vitro. Aqueous chlorhexidine demonstrated poor permeation into the deeper layers of the skin, which may restrict the efficacy of skin antisepsis with this agent. This study lays the foundation for further research in adopting alternative strategies for enhanced skin antisepsis in clinical practice. PMID:18676882
NASA Astrophysics Data System (ADS)
Skala, Melissa C.; Crow, Matthew J.; Wax, Adam; Izatt, Joseph A.
2009-02-01
Molecular imaging is a powerful tool for investigating disease processes and potential therapies in both in vivo and in vitro systems. However, high resolution molecular imaging has been limited to relatively shallow penetration depths that can be accessed with microscopy. Optical coherence tomography (OCT) is an optical analogue to ultrasound with relatively good penetration depth (1-2 mm) and resolution (~1-10 μm). We have developed and characterized photothermal OCT as a molecular contrast mechanism that allows for high resolution molecular imaging at deeper penetration depths than microscopy. Our photothermal system consists of an amplitude-modulated heating beam that spatially overlaps with the focused spot of the sample arm of a spectral-domain OCT microscope. Validation experiments in tissue-like phantoms containing gold nanospheres that absorb at 532 nm revealed a sensitivity of 14 parts per million nanospheres (weight/weight) in a tissue-like environment. The nanospheres were then conjugated to anti-EGFR, and molecular targeting was confirmed in cells that over-express EGFR (MDA-MB-468) and cells that express low levels of EGFR (MDA-MB-435). Molecular imaging in three-dimensional tissue constructs was confirmed with a significantly lower photothermal signal (p<0.0001) from the constructs composed of cells that express low levels of EGFR compared to the over-expressing cell constructs (300% signal increase). This technique could potentially augment confocal and multiphoton microscopy as a method for deep-tissue, depth-resolved molecular imaging with relatively high resolution and target sensitivity, without photobleaching or cytotoxicity.
NASA Astrophysics Data System (ADS)
Deutsch, Ariel N.; Head, James W.; Chabot, Nancy L.; Neumann, Gregory A.
2018-05-01
Radar-bright deposits at the poles of Mercury are located in permanently shadowed regions, which provide thermally stable environments for hosting and retaining water ice on the surface or in the near subsurface for geologic timescales. While the areal distribution of these radar-bright deposits is well characterized, their thickness, and thus their total mass and volume, remain poorly constrained. Here we derive thickness estimates for selected water-ice deposits using small, simple craters visible within the permanently shadowed, radar-bright deposits. We examine two endmember scenarios: in Case I, these craters predate the emplacement of the ice, and in Case II, these craters postdate the emplacement of the ice. In Case I, we find the difference between estimated depths of the original unfilled craters and the measured depths of the craters to find the estimated infill of material. The average estimated infilled material for 9 craters assumed to be overlain with water ice is ∼ 41-14+30 m, where 1-σ standard error of the mean is reported as uncertainty. Reported uncertainties are for statistical errors only. Additional systematic uncertainty may stem from georeferencing the images and topographic datasets, from the radial accuracy of the altimeter measurements, or from assumptions in our models including (1) ice is flat in the bowl-shaped crater and (2) there is negligible ice at the crater rims. In Case II, we derive crater excavation depths to investigate the thickness of the ice layer that may have been penetrated by the impact. While the absence of excavated regolith associated with the small craters observed suggests that impacts generally do not penetrate through the ice deposit, the spatial resolution and complex illumination geometry of images may limit the observations. Therefore, it is not possible to conclude whether the small craters in this study penetrate through the ice deposit, and thus Case II does not provide a constraint on the ice thickness. For Mercury's polar deposits, we argue that Case I of the small craters predating the emplacement of the ice deposits is more likely, given other geologic evidence that suggests that these ice deposits are relatively young. Using the ice thickness estimates from Case I to calculate the total amount of water ice currently contained in Mercury's polar deposits results in a value of ∼1014-1015 kg. This is equivalent to ∼100-1000 km3 ice in volume. This volume of water ice is consistent with delivery via micrometeorite bombardment, Jupiter-family comets, or potentially a single impactor.
Penetration of ASM 981 in canine skin: a comparative study.
Gutzwiller, Meret E Ricklin; Reist, Martin; Persohn, Elke; Peel, John E; Roosje, Petra J
2006-01-01
ASM 981 has been developed for topical treatment of inflammatory skin diseases. It specifically inhibits the production and release of pro-inflammatory cytokines. We measured the skin penetration of ASM 981 in canine skin and compared penetration in living and frozen skin. To make penetration of ASM 981 visible in dog skin, tritium labelled ASM 981 was applied to a living dog and to defrosted skin of the same dog. Using qualitative autoradiography the radioactive molecules were detected in the lumen of the hair follicles until the infundibulum, around the superficial parts of the hair follicles and into a depth of the dermis of 200 to 500 microm. Activity could not be found in deeper parts of the hair follicles, the dermis or in the sebaceous glands. Penetration of ASM 981 is low in canine skin and is only equally spread in the upper third of the dermis 24 hours after application. Penetration in frozen skin takes even longer than in living canine skin but shows the same distribution.
NASA Astrophysics Data System (ADS)
Baran, Utku; Li, Yuandong; Wang, Ruikang K.
2015-03-01
Arteriolo-arteriolar anastomosis's role in regulating blood perfusion through penetrating arterioles during stroke is yet to be discovered. We apply ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate vessel diameter and red blood cell velocity changes in large number of pial and penetrating arterioles in relation with arteriolo-arteriolar anastomosis (AAA) during and after focal stroke. Thanks to the high sensitivity of UHS-OMAG, we were able to image pial microvasculature up to capillary level through a cranial window (9 mm2), and DOMAG provided clear image of penetrating arterioles up to 500μm depth. Results showed that penetrating arterioles close to a strong AAA connection dilate whereas penetrating arterioles constrict significantly in weaker AAA regions. These results suggest that AAA plays a major role in active regulation of the pial arterioles, and weaker AAA connections lead to poor blood perfusion to penumbra through penetrating arterioles.
Sunlight penetration through the Martian polar caps: Effects on the thermal and frost budgets
NASA Technical Reports Server (NTRS)
Lindner, Bernhard Lee
1992-01-01
An energy balance model of the seasonal polar caps on Mars is modified to include penetration of solar radiation into and through the ice. Penetration of solar radiation has no effect on subsurface temperature or total frost sublimation if seasonal ice overlies a dust surface. An effect is noted for seasonal ice which overlies the residual polar caps. For the case of an exposed water-ice residual polar cap, the temperature at depth is calculated to be up to several degrees warmer and the calculated lifetime of seasonal CO2 frost is slightly lower when penetration of sunlight is properly treated in the model. For the case of a residual polar cap which is perennially covered by CO2 frost, the calculated lifetime of seasonal CO2 frost is very slightly increased as a result of sunlight penetration through the ice. Hence, penetration of sunlight into the ice helps to stabilize the observed dichotomy in the residual polar caps on Mars, although it is a small effect.
Sunlight penetration through the Martian polar caps - Effects on the thermal and frost budgets
NASA Technical Reports Server (NTRS)
Lindner, Bernhard L.
1992-01-01
An energy balance model of the seasonal polar caps on Mars is modified to include penetration of solar radiation into and through the ice. Penetration of solar radiation has no effect on subsurface temperature or total frost sublimation if seasonal ice overlies a dust surface. An effect is noted for seasonal ice which overlies the residual polar caps. For the case of an exposed water-ice residual polar cap, the temperature at depth is calculated to be up to several degrees warmer, and the calculated lifetime of seasonal CO2 frost is slightly lower when penetration of sunlight is properly treated in the model. For the case of a residual polar cap which is perennially covered by CO2 frost, the calculated lifetime of seasonal CO2 frost is very slightly increased as a result of sunlight penetration through the ice. Hence, penetration of sunlight into the ice helps to stabilize the observed dichotomy in the residual polar caps on Mars, although it is a small effect.
NASA Astrophysics Data System (ADS)
Cooper, C.; Nayegandhi, A.; Faux, R.
2013-12-01
Small-footprint, green wavelength airborne LiDAR systems can provide seamless topography across the land-water interface at very high spatial resolution. These data have the potential to improve floodplain modeling, fisheries habitat assessments, stream restoration efforts, and other applications by continuously mapping shallow water depths that are difficult or impossible to measure using traditional ground-based or water-borne survey techniques. WSI (Corvallis, Oregon) in collaboration with Dewberry, (Tampa, Florida) and Riegl (Orlando, Florida), deployed the Riegl VQ-820-G hydrographic airborne laser scanner to map riverine and lacustrine environments from Oregon to Minnesota. Discussion will focus on the ability to accurately map depth and underwater structure, as well as riparian vegetation and terrain under different conditions. Results indicate that depth penetration varies with both water (i.e. clarity and surface conditions) and bottom conditions (i.e. substrate, depth, and landform). Depth penetration was typically limited to 1 Secchi depth or less across selected project areas. As an example, the green LiDAR system effectively mapped 83% of a shallow water river system, the Sandy River, with typical depths ranging from 0-2.5 meters. WSI will show quantitative comparisons of Green LiDAR surveys against more traditional methods such as rod or sonar surveys. WSI will also discuss advantages and limitations of Green LiDAR surveys for bathymetric modeling including survey accuracy, density, and efficiency along with data processing challenges not inherent with traditional NIR LiDAR processing.
HMO market penetration and hospital cost inflation in California.
Robinson, J C
1991-11-20
OBJECTIVE--Health maintenance organizations (HMOs) have stimulated price competition in California hospital markets since 1983, when the state legislature eliminated barriers to selective contracting by conventional health insurance plans. This study measures the impact of HMO-induced price competition on the rate of inflation in average cost per admission for 298 private, non-HMO hospitals between 1982 and 1988. DATA--HMO market penetration was calculated using discharge abstract data on insurance coverage, ZIP code of residence, and hospital of choice for 3.35 million patients in 1983 and 3.41 million patients in 1988. Data on hospital characteristics were obtained from the American Hospital Association and other sources. -HMO coverage grew from an average of 8.3% of all admissions in local hospital markets in 1983 to 17.0% of all admissions in 1988. The average rate of growth in costs per admission between 1982 and 1988 was 9.4% lower in markets with relatively high HMO penetration compared with markets with relatively low HMO penetration (95% confidence interval, 5.2 to 13.8). Cost savings for these 298 hospitals are estimated at $1.04 billion for 1988. CONCLUSION--Price competition between HMOs and conventional health insurers can significantly reduce hospital cost inflation if legislative barriers to selective contracting are removed. The impact of competition in California was modest, however, when evaluated in terms of the 74.5% average rate of California hospital cost inflation during these years.
Tidal disruption of inclined or eccentric binaries by massive black holes
NASA Astrophysics Data System (ADS)
Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em
2018-07-01
Binary stars that are on close orbits around massive black holes (MBHs) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such an MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented towards the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20 per cent when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation, and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by an MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.
Tidal Disruption of Inclined or Eccentric Binaries by Massive Black Holes
NASA Astrophysics Data System (ADS)
Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em
2018-04-01
Binary stars that are on close orbits around massive black holes (MBH) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such a MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented toward the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20% when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by a MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.
Penetration of fast projectiles into resistant media: From macroscopic to subatomic projectiles
NASA Astrophysics Data System (ADS)
Gaite, José
2017-09-01
The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton's inertial quadratic force, namely, F ∼v 2 - β, where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape.
Franzen, Lutz; Anderski, Juliane; Windbergs, Maike
2015-09-01
For rational development and evaluation of dermal drug delivery, the knowledge of rate and extent of substance penetration into the human skin is essential. However, current analytical procedures are destructive, labor intense and lack a defined spatial resolution. In this context, confocal Raman microscopy bares the potential to overcome current limitations in drug depth profiling. Confocal Raman microscopy already proved its suitability for the acquisition of qualitative penetration profiles, but a comprehensive investigation regarding its suitability for quantitative measurements inside the human skin is still missing. In this work, we present a systematic validation study to deploy confocal Raman microscopy for quantitative drug depth profiling in human skin. After we validated our Raman microscopic setup, we successfully established an experimental procedure that allows correlating the Raman signal of a model drug with its controlled concentration in human skin. To overcome current drawbacks in drug depth profiling, we evaluated different modes of peak correlation for quantitative Raman measurements and offer a suitable operating procedure for quantitative drug depth profiling in human skin. In conclusion, we successfully demonstrate the potential of confocal Raman microscopy for quantitative drug depth profiling in human skin as valuable alternative to destructive state-of-the-art techniques. Copyright © 2015 Elsevier B.V. All rights reserved.
,
1990-01-01
Site 766 is located at the base of the steep western margin of the Exmouth Plateau. The oldest sediment penetrated at Site 766, in Section 123-766A-49R-4 at 66 cm (466.7 mbsf), is uppermost Valanginian sandstone and siltstone, alternating with inclined basaltic intrusions (see "Igneous Rock Lithostratigraphy" section, this chapter). The uppermost sediment/basalt interface occurs in Section 123-766A-48R-6 at 129 cm (460.6 mbsf) At least 300 m (approximately 65%) of the sediments penetrated accumulated during the Lower Cretaceous, compared with less than 150 m thereafter. At Site 765, on the Argo Abyssal Plain, the Lower Cretaceous also is slightly more than 300 m thick. However, approximately 65% of the total sediment column at this site accumulated after the Lower Cretaceous, primarily during the Neogene. The sedimentation history, based on the age and present depth of basement(?) and time-depth relationship for oceanic crust, suggests that Site 766 began at a depth of about 800 m. However, the presence of shallow marine components in the oldest lithologic unit, if not redeposited, suggests that initial depths were shallower. Site 766 appears to have remained above or near the carbonate compensation depth (CCD) throughout its history, whereas Site 765 may have started near the CCD, but remained below it throughout most of its history.
Hypervelocity penetration against mechanical properties of target materials
NASA Astrophysics Data System (ADS)
Kamarudin, Khairul Hasni; Abdullah, Mohamad Faizal; Zaidi, Ahmad Mujahid Ahmad; Nor, Norazman M.; Ismail, Ariffin; Yusof, Mohammed Alias; Hilmi, Ahmad Humaizi
2018-02-01
This paper study the mechanical properties behavior of metal plates against hypervelocity penetration caused by shaped charge. Five different materials were used as target specimen fabricated from welded stacks of material plates, namely Rolled Homogeneous Armor (RHA), Hardox-500, mild steel, aluminum and brass. Specimens had undergone an initial monolithic test consist of tensile tests and microstructure observations, followed by series of hydrodynamics penetration blast tests using shape charge mechanism. Results from blast test shows that the least penetrated specimen is RHA (58mm) followed by Hardox-500 (92 mm), mild steel (110 mm), Brass (155 mm) and aluminum 238 mm). Comparing these with the specimen yield strength from the tensile test results shows that Hardox-500 has higher yield strength (Sy) followed by RHA, mild steel, brass and aluminum, which are 1370 MPa, 1320 MPa, 280,221 respectively, which are not inversely proportional to the penetration. However, the ultimate tensile strength (Sut) where the RHA were the highest followed by Hardox-500, mild steel, brass and aluminum, were inversely proportional with the depth of penetration. The penetration results also show consistence relation with energy absorption.
Regolith stratigraphy at the Chang'E-3 landing site as seen by lunar penetrating radar
NASA Astrophysics Data System (ADS)
Fa, Wenzhe; Zhu, Meng-Hua; Liu, Tiantian; Plescia, Jeffrey B.
2015-12-01
The Chang'E-3 lunar penetrating radar (LPR) observations at 500 MHz reveal four major stratigraphic zones from the surface to a depth of ~20 m along the survey line: a layered reworked zone (<1 m), an ejecta layer (~2-6 m), a paleoregolith layer (~4-11 m), and the underlying mare basalts. The reworked zone has two to five distinct layers and consists of surface regolith. The paleoregolith buried by the ejecta from a 500 m crater is relatively homogenous and contains only a few rocks. Population of buried rocks increases with depth to ~2 m at first, and then decreases with depth, representing a balance between initial deposition of the ejecta and later turnover of the regolith. Combining with the surface age, the LPR observations indicate a mean accumulation rate of about 5-10 m/Gyr for the surface regolith, which is at least 4-8 times larger than previous estimation.
NASA Astrophysics Data System (ADS)
Genina, E. A.; Dolotov, L. E.; Bashkatov, A. N.; Tuchin, V. V.
2016-06-01
We study several regimes of fractional laser microablation using a pulsed Er : YAG laser for producing microchannels of different depth and incisions that allow transcutaneous delivery of particles of different size, namely, Al2O3 (27 μm), ZrO2 (smaller than 5 μm) and TiO2 (smaller than 100 nm). The shock wave regime was used both for enhancing the penetration of particles into the ablation zones and as an independent method of particle delivery into the skin. Based on optical coherence tomography we assessed the coherent depth of particle detection in the skin in 2 hours, 3 days and 10 days after the administration. The maximal localisation depth (up to 450 μm) was obtained for TiO2 nanoparticles in the regime of incisions with enhancement of particle penetration by pulses of a multiple-beam hydrodynamic shock wave. The results of the study can be useful for developing new methods of transcutaneous delivery of micro- and nanocarriers of medicinal preparations.
Nontrivial Nature and Penetration Depth of Topological Surface States in SmB6 Thin Films
NASA Astrophysics Data System (ADS)
Liu, Tao; Li, Yufan; Gu, Lei; Ding, Junjia; Chang, Houchen; Janantha, P. A. Praveen; Kalinikos, Boris; Novosad, Valentyn; Hoffmann, Axel; Wu, Ruqian; Chien, C. L.; Wu, Mingzhong
2018-05-01
The nontrivial feature and penetration depth of the topological surface states (TSS) in SmB6 were studied via spin pumping. The experiments used SmB6 thin films grown on the bulk magnetic insulator Y3Fe5O12 (YIG). Upon the excitation of magnetization precession in the YIG, a spin current is generated in the SmB6 that produces, via spin-orbit coupling, a lateral electrical voltage in the film. This spin-pumping voltage signal becomes considerably stronger as the temperature decreases from 150 to 10 K, and such an enhancement most likely originates from the spin-momentum locking of the TSS and may thereby serve as evidence for the nontrivial nature of the TSS. The voltage data also show a unique film thickness dependence that suggests a TSS depth of ˜32 nm . The spin-pumping results are supported by transport measurements and analyses using a tight binding model.
Hutchens, Thomas C.; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N.; Ying, Howard S.; Astratov, Vasily N.
2012-01-01
Abstract. Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser’s short optical penetration depth combined with the small spot diameters achieved with this fiber probe may provide more precise tissue removal. One-, three-, and five-microsphere chain structures were characterized, resulting in FWHM diameters of 67, 32, and 30 μm in air, respectively, with beam profiles comparable to simulations. Single Er:YAG pulses of 0.1 mJ and 75-μs duration produced ablation craters with average diameters of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one-, three-, and five-sphere structures, respectively. Microsphere chains produced spatial filtering of the multimode Er:YAG laser beam and fiber, providing spot diameters not otherwise available with conventional fiber systems. Because of the extremely shallow treatment depth, compact focused beam, and contact mode operation, this probe may have potential for use in dissecting epiretinal membranes and other ophthalmic tissues without damaging adjacent retinal tissue. PMID:22734790
Development of Mackintosh Probe Extractor
NASA Astrophysics Data System (ADS)
Rahman, Noor Khazanah A.; Kaamin, Masiri; Suwandi, Amir Khan; Sahat, Suhaila; Jahaya Kesot, Mohd
2016-11-01
Dynamic probing is a continuous soil investigation technique, which is one of the simplest soil penetration test. It basically consist of repeatedly driving a metal tipped probe into the ground using a drop weight of fixed mass and travel. Testing was carried out continuously from ground level to the final penetration depth. Once the soil investigation work done, it is difficult to pull out the probe rod from the ground, due to strong soil structure grip against probe cone and prevent the probe rod out from the ground. Thus, in this case, a tool named Extracting Probe was created to assist in the process of retracting the probe rod from the ground. In addition, Extracting Probe also can reduce the time to extract the probe rod from the ground compare with the conventional method. At the same time, it also can reduce manpower cost because only one worker involve to handle this tool compare with conventional method used two or more workers. From experiment that have been done we found that the time difference between conventional tools and extracting probe is significant, average time difference is 155 minutes. In addition the extracting probe can reduce manpower usage, and also labour cost for operating the tool. With all these advantages makes this tool has the potential to be marketed.
Suprathermal electron penetration into the inner magnetosphere of Saturn
NASA Astrophysics Data System (ADS)
Thomsen, M. F.; Coates, A. J.; Roussos, E.; Wilson, R. J.; Hansen, K. C.; Lewis, G. R.
2016-06-01
For most Cassini passes through the inner magnetosphere of Saturn, the hot electron population (> few hundred eVs) largely disappears inside of some cutoff L shell. Anode-and-actuation-angle averages of hot electron fluxes observed by the Cassini Electron Spectrometer are binned into 0.1 Rs bins in dipole L to explore the properties of this cutoff distance. The cutoff L shell is quite variable from pass to pass (on timescales as short as 10-20 h). At energies of 5797 eV, 2054 eV, and 728 eV, 90% of the inner boundary values lie between L ~ 4.7 and 8.4, with a median near L = 6.2, consistent with the range of L values over which discrete interchange injections have been observed, thus strengthening the case that the interchange process is responsible for delivering the bulk of the hot electrons seen in the inner magnetosphere. The occurrence distribution of the inner boundary is more sharply peaked on the nightside than at other local times. There is no apparent dependence of the depth of penetration on large-scale solar wind properties. It appears likely that internal processes (magnetic stress on mass-loaded flux tubes) are dominating the injection of hot electrons into the inner magnetosphere.
Potential of coded excitation in medical ultrasound imaging.
Misaridis, T X; Gammelmark, K; Jørgensen, C H; Lindberg, N; Thomsen, A H; Pedersen, M H; Jensen, J A
2000-03-01
Improvement in signal-to-noise ratio (SNR) and/or penetration depth can be achieved in medical ultrasound by using long coded waveforms, in a similar manner as in radars or sonars. However, the time-bandwidth product (TB) improvement, and thereby SNR improvement is considerably lower in medical ultrasound, due to the lower available bandwidth. There is still space for about 20 dB improvement in the SNR, which will yield a penetration depth up to 20 cm at 5 MHz [M. O'Donnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 39(3) (1992) 341]. The limited TB additionally yields unacceptably high range sidelobes. However, the frequency weighting from the ultrasonic transducer's bandwidth, although suboptimal, can be beneficial in sidelobe reduction. The purpose of this study is an experimental evaluation of the above considerations in a coded excitation ultrasound system. A coded excitation system based on a modified commercial scanner is presented. A predistorted FM signal is proposed in order to keep the resulting range sidelobes at acceptably low levels. The effect of the transducer is taken into account in the design of the compression filter. Intensity levels have been considered and simulations on the expected improvement in SNR are also presented. Images of a wire phantom and clinical images have been taken with the coded system. The images show a significant improvement in penetration depth and they preserve both axial resolution and contrast.
Doping-dependent anisotropic superconducting gap in Na1-δ(Fe1-xCox)As from London penetration depth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Kyuil; Tanatar, Makariy A.; Spyrison, Nicholas
2012-07-30
The London penetration depth was measured in single crystals of self-doped Na1-δFeAs (from under doping to optimal doping, Tc from 14 to 27 K) and electron-doped Na(Fe1-xCox)As with x ranging from undoped, x=0, to overdoped, x=0.1. In all samples, the low-temperature variation of the penetration depth exhibits a power-law dependence, Δλ(T)=ATn, with the exponent that varies in a domelike fashion from n˜1.1 in the underdoped, reaching a maximum of n˜1.9 in the optimally doped, and decreasing again to n˜1.3 on the overdoped side. While the anisotropy of the gap structure follows a universal domelike evolution, the exponent at optimal doping,more » n˜1.9, is lower than in other charge-doped Fe-based superconductors (FeSCs). The full-temperature range superfluid density, ρs(T)=λ(0)/λ(T)2, at optimal doping is also distinctly different from other charge-doped FeSCs but is similar to isovalently substituted BaFe2(As1-xPx)2, believed to be a nodal pnictide at optimal doping. These results suggest that the superconducting gap in Na(Fe1-xCox)As is highly anisotropic even at optimal doping.« less
Effects of injection pressure variation on mixing in a cold supersonic combustor with kerosene fuel
NASA Astrophysics Data System (ADS)
Liu, Wei-Lai; Zhu, Lin; Qi, Yin-Yin; Ge, Jia-Ru; Luo, Feng; Zou, Hao-Ran; Wei, Min; Jen, Tien-Chien
2017-10-01
Spray jet in cold kerosene-fueled supersonic flow has been characterized under different injection pressures to assess the effects of the pressure variation on the mixing between incident shock wave and transverse cavity injection. Based on the real scramjet combustor, a detailed computational fluid dynamics model is developed. The injection pressures are specified as 0.5, 1.0, 2.0, 3.0 and 4.0 MPa, respectively, with the other constant operation parameters (such as the injection diameter, angle and velocity). A three dimensional Couple Level Set & Volume of Fluids approach incorporating an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical simulations primarily concentrate on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with/without evaporation. Validation has been implemented by comparing the calculated against the measured in literature with good qualitative agreement. Results show that the penetration depth, span-wise angle and expansion area of the transverse cavity jet are all increased with the injection pressure. However, when the injection pressure is further increased, the value in either penetration depth or expansion area increases appreciably. This study demonstrates the feasibility and effectiveness of the combination of Couple Level Set & Volume of Fluids approach and an improved Kelvin-Helmholtz & Rayleigh-Taylor model, in turn providing insights into scramjet design improvement.
NASA Astrophysics Data System (ADS)
Tosti, Fabio; Benedetto, Andrea; Bianchini Ciampoli, Luca; Adabi, Saba; Pajewski, Lara
2015-04-01
The great flexibility of ground-penetrating radar has led to consider worldwide this instrument as an effective and efficient geophysical tool in several fields of application. As far as pavement engineering is concerned, ground-penetrating radar is employed in a wide range of applications, including physical and geometrical evaluation of road pavements. Conversely, the mechanical characterization of pavements is generally inferred through traditional (e.g., plate bearing test method) or advanced non-destructive techniques (e.g., falling weight deflectometer). Nevertheless, measurements performed using these methods, inevitably turn out to be both much more time-consuming and low-significant whether compared with ground-penetrating radar's potentials. In such a framework, a mechanical evaluation directly coming from electromagnetic inspections could represent a real breakthrough in the field of road assets management. With this purpose, a ground-penetrating radar system with 600 MHz and 1600 MHz center frequencies of investigation and ground-coupled antennas was employed to survey a 4m×30m flexible pavement test site. The test area was marked by a regular grid mesh of 836 nodes, respectively spaced by a distance of 0.40 m alongside the horizontal and vertical axes. At each node, the elastic modulus was measured using a light falling weight deflectometer. Data processing has provided to reconstruct a 3-D matrix of amplitudes for the surveyed area, considering a depth of around 300 mm, in accord to the influence domain of the light falling weight deflectometer. On the other hand, deflectometric data were employed for both calibration and validation of a semi-empirical model by relating the amplitude of signal reflections through the media along fixed depths within the depth domain considered, and the Young's modulus of the pavement at the evaluated point. This statistically-based model is aimed at continuously taking into account alongside the depth of investigation, of both the different strength provision of each layer composing the hot mix asphalt pavement structure, and of the attenuation occurring to electromagnetic waves during their in-depth propagation. Promising results are achieved by matching modelled and measured elastic modulus data. This continuous statistically-based model enables to consider the whole set of information related to each single depth, in order to provide a more comprehensive prediction of the strength and deformation behavior of such a complex multi-layered medium. Amongst some further developments to be tackled in the near future, a model improvement could be reached through laboratory activities under controlled conditions and by adopting several frequency bandwidths suited for purposes. In addition, the perspective to compare electromagnetic data with mechanical measurements retrieved continuously, i.e., by means of specifically equipped lorries, could pave the way to considerable enhancements in this field of research. Acknowledgements - This work has benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".
NASA Astrophysics Data System (ADS)
Green, M. A.; Aller, R. C.; Cochran, J. K.; Lee, C.; Aller, J. Y.
Biogenic particle reworking ( 234Th, Chl- a), chloropigment distributions, and pore-water irrigation rates (Br - tracer) were examined in the continental shelf-break/upper-slope region off the North Carolina, Cape Hatteras coastline. Sediment cores were obtained along three primary east-west transects (water depth ˜75-800 m; 36°20'N, 35°50'N, 35°25'N), at additional shallow stations along 35°40'N, and at slope stations within a region of complex topography known as the Manteo Lease Block. Samples were collected during August 1994, July 1996, and August 1996, and were recovered using two shipboard techniques (Haps Corer and Box Corer) as well as by the deep submersible, Johnson Sea-Link. Natural and experimental tracer distributions demonstrate that with few exceptions surface deposits throughout this region are rapidly reworked and irrigated by abundant infaunal benthos. Excess 234Th ( t1/2=24.1 days) was present at all stations, with surface activities (0-0.5 cm) ranging from ˜2 to 62 dpm cm -3 (5-54 dpm g -1), average inventories of ˜28±21 (median˜24) dpm cm -2, and typical penetration depths of 5-7 cm. Steady-state particle mixing coefficients ( Db) estimated using excess 234Th ranged from ˜1 to 200 cm 2 yr -1. Although the highest mixing intensities were found between ˜300 and 500 m water depths, rates were locally variable, and there was little or no evidence for any consistent attenuation with bathymetric depth in either 234Th inventories or mixing intensity. Estimates of Db made using Chl- a distributions are similar to those estimated using 234Th, ranging from ˜36 to 110 cm 2 yr -1. Added Br - tracer penetrated >7 cm in ˜24 h periods in shipboard-incubated sediment cores, representing rates ranging from 1.5 to 38X molecular diffusion (mean=13.1±13.0; median ˜11X). Sedimentary Chl- a and phaeophytin- a distributions below the photic zone are indicative of high input of fresh planktonic debris and rapid remineralization. These inputs presumably fuel the abundant benthic fauna, which rework sediments on the Hatteras slope at some of the highest mixing rates yet reported.
NASA Astrophysics Data System (ADS)
Yu, D.; Wang, M.; Liu, Q.
2015-09-01
A reference man is a theoretical individual that represents the average anatomical structure and physiological and metabolic features of a specific group of people and has been widely used in radiation safety research. With the help of an advantage in deformation, the present work proposed a Chinese reference man adult-male polygon-mesh surface phantom based on the Visible Chinese Human segment image dataset by surface rendering and deforming. To investigate the influence of physique on electromagnetic dosimetry in humans, a series of human phantoms with 10th, 50th and 90th body mass index and body circumference percentile physiques for Chinese adult males were further constructed by deforming the Chinese reference man surface phantom. All the surface phantoms were then voxelized to perform electromagnetic field simulation in a frequency range of 20 MHz to 3 GHz using the finite-difference time-domain method and evaluate the whole-body average and organ average specific absorption rate and the ratios of absorbed energy in skin, fat and muscle to the whole body. The results indicate thinner physique leads to higher WBSAR and the volume of subcutaneous fat, the penetration depth of the electromagnetic field in tissues and standing-wave occurrence may be the influence factors of physique on electromagnetic dosimetry.
Smrkovski, O A; Koo, Y; Kazemi, R; Lembcke, L M; Fathy, A; Liu, Q; Phillips, J C
2013-03-01
Performance and clinical characteristics of a novel hyperthermia antenna operating at 434 MHz were evaluated for the adjuvant treatment of locally advanced superficial tumours in cats, dogs and horses. Electromagnetic simulations were performed to determine electric field characteristics and compared to simulations for a flat microwave antenna with similar dimensions. Simulation results show a reduced skin surface and backfield irradiation and improved directional irradiation (at broadside) compared to a flat antenna. Radiated power and penetration is notably increased with a penetration depth of 4.59 cm compared to 2.74 cm for the flat antenna. Clinical use of the antenna was then evaluated in six animals with locoregionally advanced solid tumours receiving adjuvant chemotherapy. During clinical applications, therapeutic temperatures were achieved at depths ≥4 cm. Objective responses were seen in all patients; tissue toxicity in one case limited further therapy. This antenna provides compact, efficient, focused and deep-penetrating clinical hyperthermia for the treatment of solid tumours in veterinary patients. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Zhao, Q. L.; Si, J. L.; Guo, Z. Y.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Li, X. Y.; Guo, X.; Zhong, H. Q.; Li, L. Q.
2011-01-01
We report our pilot results on quantification of glucose (G) diffusion permeability in human normal esophagus and ESCC tissues in vitro by using OCT technique. The permeability coefficient of 40% aqueous solution of G was found to be (1.74±0.04)×10-5 cm/s in normal esophagus and (2.45±0.06)×10-5 cm/s in ESCC tissues. The results from this study indicate that ESCC tissues had a higher permeability coefficient compared to normal esophageal tissues, and the light penetration depths gradually increase with the increase of applied topically with G time for the normal esophageal and ESCC tissues. The results indicate that the permeability coefficient of G in cancer tissues was 1.41-fold than that in normal tissues, and the light penetration depth for the ESCC tissues is significantly smaller than that of normal esophagus tissues in the same time range. These results demonstrate that the optical clearing of normal and cancer esophagus tissues are improved after application of G.
METHOD AND APPARATUS FOR EARTH PENETRATION
Adams, W.M.
1963-12-24
A nuclear reactor apparatus for penetrating into the earth's crust is described. The apparatus comprises a cylindrical nuclear core operating at a temperature that is higher than the melting temperature of rock. A high-density ballast member is coupled to the nuclear core such that the overall density of the core-ballast assembly is greater than the density of molten rock. The nuclear core is thermally insulated so that its heat output is constrained to flow axially, with radial heat flow being minimized. In operation, the apparatus is placed in contact with the earth's crust at the point desired to be penetrated. The heat output of the reactor melts the underlying rock, and the apparatus sinks through the resulting magma. The fuel loading of the reactor core determines the ultimate depth of crust penetration. (AEC)
Forty-five degree backscattering-mode nonlinear absorption imaging in turbid media.
Cui, Liping; Knox, Wayne H
2010-01-01
Two-color nonlinear absorption imaging has been previously demonstrated with endogenous contrast of hemoglobin and melanin in turbid media using transmission-mode detection and a dual-laser technology approach. For clinical applications, it would be generally preferable to use backscattering mode detection and a simpler single-laser technology. We demonstrate that imaging in backscattering mode in turbid media using nonlinear absorption can be obtained with as little as 1-mW average power per beam with a single laser source. Images have been achieved with a detector receiving backscattered light at a 45-deg angle relative to the incoming beams' direction. We obtain images of capillary tube phantoms with resolution as high as 20 microm and penetration depth up to 0.9 mm for a 300-microm tube at SNR approximately 1 in calibrated scattering solutions. Simulation results of the backscattering and detection process using nonimaging optics are demonstrated. A Monte Carlo-based method shows that the nonlinear signal drops exponentially as the depth increases, which agrees well with our experimental results. Simulation also shows that with our current detection method, only 2% of the signal is typically collected with a 5-mm-radius detector.
Mustafa, Farhad Hamad; Jaafar, Mohamad Suhimi; Ismail, Asaad Hamid; Mutter, Kussay Nugamesh
2014-01-01
Introduction: To improve laser hair removal (LHR) for dark skin, the fluence rate reaching the hair follicle in LHR is important. This paper presents the results of a comparative study examining the function of wavelength on dark skin types using 755 nm alexandrite and 810 nm diode lasers. Methods: The structure of the skin was created using a realistic skin model by the Advanced Systems Analysis Program. Result: In this study, the alexandrite laser (755 nm) and diode laser (810 nm) beam–skin tissue interactions were simulated. The simulation results for both lasers differed. The transmission ratio of the diode laser to the dark skin dermis was approximately 4% more than that of the alexandrite laser for the same skin type. For the diode laser at skin depth z = 0.67 mm, the average transmission ratios of both samples were 36% and 27.5%, but those for the alexandrite laser at the same skin depth were 32% and 25%. Conclusion: Both lasers were suitable in LHR for dark skin types, but the diode laser was better than the alexandrite laser because the former could penetrate deeper into the dermis layer. PMID:25653820
Mustafa, Farhad Hamad; Jaafar, Mohamad Suhimi; Ismail, Asaad Hamid; Mutter, Kussay Nugamesh
2014-01-01
To improve laser hair removal (LHR) for dark skin, the fluence rate reaching the hair follicle in LHR is important. This paper presents the results of a comparative study examining the function of wavelength on dark skin types using 755 nm alexandrite and 810 nm diode lasers. The structure of the skin was created using a realistic skin model by the Advanced Systems Analysis Program. In this study, the alexandrite laser (755 nm) and diode laser (810 nm) beam-skin tissue interactions were simulated. The simulation results for both lasers differed. The transmission ratio of the diode laser to the dark skin dermis was approximately 4% more than that of the alexandrite laser for the same skin type. For the diode laser at skin depth z = 0.67 mm, the average transmission ratios of both samples were 36% and 27.5%, but those for the alexandrite laser at the same skin depth were 32% and 25%. Both lasers were suitable in LHR for dark skin types, but the diode laser was better than the alexandrite laser because the former could penetrate deeper into the dermis layer.
High Spectral Resolution Lidar Data
Eloranta, Ed
2004-12-01
The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.
NASA Astrophysics Data System (ADS)
Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.
2016-02-01
We report on a direct comparison between Ti:Sapphire and Yb fiber lasers for depth-resolved label-free multimodal imaging of human skin. We found that the penetration depth achieved with the Yb laser was 80% greater than for the Ti:Sapphire. Third harmonic generation (THG) imaging with Yb laser excitation provides additional information about skin structure. Our results indicate the potential of fiber-based laser systems for moving into clinical use.
NASA Astrophysics Data System (ADS)
Normani, S. D.; Sykes, J. F.; Jensen, M. R.
2009-04-01
A high resolution sub-regional scale (84 km2) density-dependent, fracture zone network groundwater flow model with hydromechanical coupling and pseudo-permafrost, was developed from a larger 5734 km2 regional scale groundwater flow model of a Canadian Shield setting in fractured crystalline rock. The objective of the work is to illustrate aspects of regional and sub-regional groundwater flow that are relevant to the long-term performance of a hypothetical nuclear fuel repository. The discrete fracture dual continuum numerical model FRAC3DVS-OPG was used for all simulations. A discrete fracture zone network model delineated from surface features was superimposed onto an 789887 element flow domain mesh. Orthogonal fracture faces (between adjacent finite element grid blocks) were used to best represent the irregular discrete fracture zone network. The crystalline rock between these structural discontinuities was assigned properties characteristic of those reported for the Canadian Shield at the Underground Research Laboratory at Pinawa, Manitoba. Interconnectivity of permeable fracture features is an important pathway for the possibly relatively rapid migration of average water particles and subsequent reduction in residence times. The multiple 121000 year North American continental scale paleoclimate simulations are provided by W.R. Peltier using the University of Toronto Glacial Systems Model (UofT GSM). Values of ice sheet normal stress, and proglacial lake depth from the UofT GSM are applied to the sub-regional model as surface boundary conditions, using a freshwater head equivalent to the normal stress imposed by the ice sheet at its base. Permafrost depth is applied as a permeability reduction to both three-dimensional grid blocks and fractures that lie within the time varying permafrost zone. Two different paleoclimate simulations are applied to the sub-regional model to investigate the effect on the depth of glacial meltwater migration into the subsurface. In addition, different conceptualizations of fracture permeability with depth, and various hydromechanical loading efficiencies are used to investigate glacial meltwater penetration. The importance of density dependent flow, due to pore waters deep in the Canadian Shield with densities of up to 1200 kg/m3 and total dissolved solids concentrations in excess of 300 g/L, is also illustrated. Performance measures used in the assessment include depth of glacial meltwater penetration using a tracer, and mean life expectancy. Consistent with the findings from isotope and geochemical assessments, the analyses support the conclusion that for the discrete fracture zone and matrix properties simulated in this study, glacial meltwaters would not likely impact a deep geologic repository in a crystalline rock setting.
Faddegon, Bruce A.; Shin, Jungwook; Castenada, Carlos M.; Ramos-Méndez, José; Daftari, Inder K.
2015-01-01
Purpose: To measure depth dose curves for a 67.5 ± 0.1 MeV proton beam for benchmarking and validation of Monte Carlo simulation. Methods: Depth dose curves were measured in 2 beam lines. Protons in the raw beam line traversed a Ta scattering foil, 0.1016 or 0.381 mm thick, a secondary emission monitor comprised of thin Al foils, and a thin Kapton exit window. The beam energy and peak width and the composition and density of material traversed by the beam were known with sufficient accuracy to permit benchmark quality measurements. Diodes for charged particle dosimetry from two different manufacturers were used to scan the depth dose curves with 0.003 mm depth reproducibility in a water tank placed 300 mm from the exit window. Depth in water was determined with an uncertainty of 0.15 mm, including the uncertainty in the water equivalent depth of the sensitive volume of the detector. Parallel-plate chambers were used to verify the accuracy of the shape of the Bragg peak and the peak-to-plateau ratio measured with the diodes. The uncertainty in the measured peak-to-plateau ratio was 4%. Depth dose curves were also measured with a diode for a Bragg curve and treatment beam spread out Bragg peak (SOBP) on the beam line used for eye treatment. The measurements were compared to Monte Carlo simulation done with geant4 using topas. Results: The 80% dose at the distal side of the Bragg peak for the thinner foil was at 37.47 ± 0.11 mm (average of measurement with diodes from two different manufacturers), compared to the simulated value of 37.20 mm. The 80% dose for the thicker foil was at 35.08 ± 0.15 mm, compared to the simulated value of 34.90 mm. The measured peak-to-plateau ratio was within one standard deviation experimental uncertainty of the simulated result for the thinnest foil and two standard deviations for the thickest foil. It was necessary to include the collimation in the simulation, which had a more pronounced effect on the peak-to-plateau ratio for the thicker foil. The treatment beam, being unfocussed, had a broader Bragg peak than the raw beam. A 1.3 ± 0.1 MeV FWHM peak width in the energy distribution was used in the simulation to match the Bragg peak width. An additional 1.3–2.24 mm of water in the water column was required over the nominal values to match the measured depth penetration. Conclusions: The proton Bragg curve measured for the 0.1016 mm thick Ta foil provided the most accurate benchmark, having a low contribution of proton scatter from upstream of the water tank. The accuracy was 0.15% in measured beam energy and 0.3% in measured depth penetration at the Bragg peak. The depth of the distal edge of the Bragg peak in the simulation fell short of measurement, suggesting that the mean ionization potential of water is 2–5 eV higher than the 78 eV used in the stopping power calculation for the simulation. The eye treatment beam line depth dose curves provide validation of Monte Carlo simulation of a Bragg curve and SOBP with 4%/2 mm accuracy. PMID:26133619
Evaluation of a pneumatic Martian soil sampler concept
NASA Technical Reports Server (NTRS)
Schaefer, John L.; Neathery, James K.; Stencel, John M.
1994-01-01
The pneumatic soil sampler concept was successfully demonstrated by penetrating a Martian simulant soil to a depth of 2 meters. Working gas pressure, composition, and pulsing were evaluated with the objective of minimizing gas usage. Also, the probe penetration force was investigated with the objective of minimizing probe weight. Gas and probe penetration force, while not yet optimized, are within the range which make the soil sampler concept feasible. While the tests described in this report did not answer all the questions and address all the variables associated with pneumatic soil sampling, valuable data experience and knowledge were gained which can be used to further develop the concept.
Du, Mingde; Xu, Xianchen; Yang, Long; Guo, Yichuan; Guan, Shouliang; Shi, Jidong; Wang, Jinfen; Fang, Ying
2018-05-15
Subdural surface and penetrating depth probes are widely applied to record neural activities from the cortical surface and intracortical locations of the brain, respectively. Simultaneous surface and depth neural activity recording is essential to understand the linkage between the two modalities. Here, we develop flexible dual-modality neural probes based on graphene transistors. The neural probes exhibit stable electrical performance even under 90° bending because of the excellent mechanical properties of graphene, and thus allow multi-site recording from the subdural surface of rat cortex. In addition, finite element analysis was carried out to investigate the mechanical interactions between probe and cortex tissue during intracortical implantation. Based on the simulation results, a sharp tip angle of π/6 was chosen to facilitate tissue penetration of the neural probes. Accordingly, the graphene transistor-based dual-modality neural probes have been successfully applied for simultaneous surface and depth recording of epileptiform activity of rat brain in vivo. Our results show that graphene transistor-based dual-modality neural probes can serve as a facile and versatile tool to study tempo-spatial patterns of neural activities. Copyright © 2018 Elsevier B.V. All rights reserved.
Depth-dependent resistance of granular media to vertical penetration.
Brzinski, T A; Mayor, P; Durian, D J
2013-10-18
We measure the quasistatic friction force acting on intruders moving downwards into a granular medium. By utilizing different intruder geometries, we demonstrate that the force acts locally normal to the intruder surface. By altering the hydrostatic loading of grain contacts by a sub-fluidizing airflow through the bed, we demonstrate that the relevant frictional contacts are loaded by gravity rather than by the motion of the intruder itself. Lastly, by measuring the final penetration depth versus airspeed and using an earlier result for inertial drag, we demonstrate that the same quasistatic friction force acts during impact. Altogether this force is set by a friction coefficient, hydrostatic pressure, projectile size and shape, and a dimensionless proportionality constant. The latter is the same in nearly all experiments, and is surprisingly greater than one.
Probing the superconducting gap symmetry of α - PdBi 2 : A penetration depth study
Mitra, S.; Okawa, K.; Kunniniyil Sudheesh, S.; ...
2017-04-27
Inmore » this paper, we report measurements of the in-plane London penetration depth λ in single crystals of the α - PdBi 2 superconductor—the α-phase counterpart of the putative topological superconductor β - PdBi 2 , down to 0.35 K using a high-resolution tunnel-diode-based technique. Both λ and superfluid density ρ s exhibit an exponential behavior for T ≤ 0.35T c, with Δ(0) /k BT c ~ 2.0, ΔC/γT c ~ 2.0, and λ(0) ~ 140 nm, showing that α - PdBi 2 is a moderately coupling, fully gapped superconductor. Finally, the values of Δ(0) and ΔC/γT c are consistent with each other via strong-coupling corrections.« less
Probing the superconducting gap symmetry of α - PdBi 2 : A penetration depth study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, S.; Okawa, K.; Kunniniyil Sudheesh, S.
Inmore » this paper, we report measurements of the in-plane London penetration depth λ in single crystals of the α - PdBi 2 superconductor—the α-phase counterpart of the putative topological superconductor β - PdBi 2 , down to 0.35 K using a high-resolution tunnel-diode-based technique. Both λ and superfluid density ρ s exhibit an exponential behavior for T ≤ 0.35T c, with Δ(0) /k BT c ~ 2.0, ΔC/γT c ~ 2.0, and λ(0) ~ 140 nm, showing that α - PdBi 2 is a moderately coupling, fully gapped superconductor. Finally, the values of Δ(0) and ΔC/γT c are consistent with each other via strong-coupling corrections.« less
Critical fields and vortex pinning in overdoped Ba 0.2 K 0.8 Fe 2 As 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, B.; Leroux, M.; Wang, Y. L.
2015-05-19
We determine the upper and lower critical fields, the penetration depth and the vortex pinning characteristics of single crystals of overdoped Ba 0.2K 0.8Fe 2As 2 with T c ~ 10 K. We find that bulk vortex pinning is weak and vortex dynamics to be dominated by the geometrical surface barrier. The temperature dependence of the lower critical field, H c1, displays a distinctive upturn at low temperatures, which is suggestive of two distinct superconducting gaps. Furthermore, the penetration depth, λ, varies linearly with temperature below 4 K indicative of line nodes in the superconducting gap. As a result, thesemore » observations can be well described in a model based on a multi-band nodal superconducting gap.« less
Estimation of the Friction Coefficient of a Nanostructured Composite Coating
NASA Astrophysics Data System (ADS)
Shil'ko, S. V.; Chernous, D. A.; Ryabchenko, T. V.; Hat'ko, V. V.
2017-11-01
The frictional-mechanical properties of a thin polymer-ceramic coating obtained by gas-phase impregnation of nanoporous anodic alumina with a fluoropolymer (octafluorocyclobutane) have been investigated. The coefficient of sliding friction of the coating is predicted based on an analysis of contact deformation within the framework of the Winkler elastic foundation hypothesis and a three-phase micromechanical model. It is shown that an acceptable prediction accuracy can be obtained considering the uniaxial strain state of the coating. It was found that, on impregnation by the method of plasmachemical treatment, the relative depth of penetration of the polymer increased almost in proportion to the processing time. The rate and maximum possible depth of penetration of the polymer into nanoscale pores grew with increasing porosity of the alumina substrate.
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Oberbeck, V. R.; Bunch, T. E.; Reynolds, R. T.; Canning, T. N.; Jackson, R. W.
1976-01-01
The feasibility of employing penetrators for exploring Mars was examined. Eight areas of interest for key scientific experiments were identified. These include: seismic activity, imaging, geochemistry, water measurement, heatflow, meteorology, magnetometry, and biochemistry. In seven of the eight potential experiment categories this year's progress included: conceptual design, instrument fabrication, instrument performance evaluation, and shock loading of important components. Most of the components survived deceleration testing with negligible performance changes. Components intended to be placed inside the penetrator forebody were tested up to 3,500 g and components intended to be placed on the afterbody were tested up to 21,000 g. A field test program was conducted using tentative Mars penetrator mission constraints. Drop tests were performed at two selected terrestrial analog sites to determine the range of penetration depths for anticipated common Martian materials. Minimum penetration occurred in basalt at Amboy, California. Three full-scale penetrators penetrated 0.4 to 0.9 m into the basalt after passing through 0.3 to 0.5 m of alluvial overburden. Maximum penetration occurred in unconsolidated sediments at McCook, Nebraska. Two full-scale penetrators penetrated 2.5 to 8.5 m of sediment. Impact occurred in two kinds of sediment: loess and layered clay. Deceleration g loads of nominally 2,000 for the forebody and 20,000 for the afterbody did not present serious design problems for potential experiments. Penetrators have successfully impacted into terrestrial analogs of the probable extremes of potential Martian sites.
NASA Astrophysics Data System (ADS)
Obayashi, M.; Fukao, Y.; Yoshimitsu, J.
2015-12-01
A great shock occurred at an unusual depth of 678 km far away from the well-defined Wadati-Benioff zone of the Izu-Bonin arc (Fig.1). To the north of this region the slab is stagnant above the 660 km discontinuity and to the south it penetrates the discontinuity (Fig.2). Thus, the slab in this region can be viewed as in a transitional state from the stagnant to penetrating slab. Here, the steeply dipping part of the slab bends sharply to horizontal and the great shock happened at the lowest corner of this bending. The CMT indicates a pure normal faulting with the trench-normal near horizontal tensional axis and the near vertical compressional axis (Fig.1). We suggest that this mechanism reflects a transitional state of slab deformation from the bending-dominant mode to the penetration-dominant mode. The mechanism is consistent with either of these two two modes. We show that the mechanism is also consistent with the resultant stress field generated by many deep shocks occurring along the Wadati-Benioff zone. The calculated stress field changes rapidly along a trench-normal profile at a depth of 680 km and becomes similar to that generated by the great shock at points near the hypocenter (Fig.3). Thus, the stress field due to the Wadati-Benioff zone earthquakes works to enhance the occurrence of deep shocks of the type of the 2015 great shock, which represents slab deformation associated with the transition from stagnant to penetrating slab.
Indentation of a free-falling lance penetrometer into a poroelastic seabed
NASA Astrophysics Data System (ADS)
Elsworth, Derek; Lee, Dae Sung
2005-02-01
A solution is developed for the build-up, steady and post-arrest dissipative pore fluid pressure fields that develop around a blunt penetrometer that self-embeds from freefall into the seabed. Arrest from freefall considers deceleration under undrained conditions in a purely cohesive soil, with constant shear strength with depth. The resulting decelerating velocity field is controlled by soil strength, geometric bearing capacity factors, and inertial components. At low impact velocities the embedment process is controlled by soil strength, and at high velocities by inertia. With the deceleration defined, a solution is evaluated for a point normal dislocation penetrating in a poroelastic medium with a prescribed decelerating velocity. Dynamic steady pressures, PD, develop relative to the penetrating tip geometry with their distribution conditioned by the non-dimensional penetration rate, UD, incorporating impacting penetration rate, consolidation coefficient and penetrometer radius, and the non-dimensional strength, ND, additionally incorporating undrained shear strength of the sediment. Pore pressures develop to a steady peak magnitude at the penetrometer tip, and drop as PD=1/xD with distance xD behind the tip and along the shaft. Peak induced pressure magnitudes may be correlated with sediment permeabilities, post-arrest dissipation rates may be correlated with consolidation coefficients, and depths of penetration may be correlated with shear strengths. Together, these records enable strength and transport parameters to be recovered from lance penetrometer data. Penetrometer data recorded off La Palma in the Canary Islands (J. Volcanol. Geotherm. Res. 2000; 101:253) are used to recover permeabilities and consolidation coefficients from peak pressure and dissipation response, respectively. Copyright
NASA Astrophysics Data System (ADS)
Seyfried, Daniel; Schoebel, Joerg
2015-07-01
In scientific research pulsed radars often employ a digital oscilloscope as sampling unit. The sensitivity of an oscilloscope is determined in general by means of the number of digits of its analog-to-digital converter and the selected full scale vertical setting, i.e., the maximal voltage range displayed. Furthermore oversampling or averaging of the input signal may increase the effective number of digits, hence the sensitivity. Especially for Ground Penetrating Radar applications high sensitivity of the radar system is demanded since reflection amplitudes of buried objects are strongly attenuated in ground. Hence, in order to achieve high detection capability this parameter is one of the most crucial ones. In this paper we analyze the detection capability of our pulsed radar system utilizing a Rohde & Schwarz RTO 1024 oscilloscope as sampling unit for Ground Penetrating Radar applications, such as detection of pipes and cables in the ground. Also effects of averaging and low-noise amplification of the received signal prior to sampling are investigated by means of an appropriate laboratory setup. To underline our findings we then present real-world radar measurements performed on our GPR test site, where we have buried pipes and cables of different types and materials in different depths. The results illustrate the requirement for proper choice of the settings of the oscilloscope for optimal data recording. However, as we show, displaying both strong signal contributions due to e.g., antenna cross-talk and direct ground bounce reflection as well as weak reflections from objects buried deeper in ground requires opposing trends for the oscilloscope's settings. We therefore present our Radargram Fusion Approach. By means of this approach multiple radargrams recorded in parallel, each with an individual optimized setting for a certain type of contribution, can be fused in an appropriate way in order to finally achieve a single radargram which displays all contributions occurring originally at different strengths in an equalized and normalized way by means of appropriate digital signal post-processing.
Isaac, Marney E; Anglaaere, Luke C N
2013-01-01
Tree root distribution and activity are determinants of belowground competition. However, studying root response to environmental and management conditions remains logistically challenging. Methodologically, nondestructive in situ tree root ecology analysis has lagged. In this study, we tested a nondestructive approach to determine tree coarse root architecture and function of a perennial tree crop, Theobroma cacao L., at two edaphically contrasting sites (sandstone and phyllite–granite derived soils) in Ghana, West Africa. We detected coarse root vertical distribution using ground-penetrating radar and root activity via soil water acquisition using isotopic matching of δ18O plant and soil signatures. Coarse roots were detected to a depth of 50 cm, however, intraspecifc coarse root vertical distribution was modified by edaphic conditions. Soil δ18O isotopic signature declined with depth, providing conditions for plant–soil δ18O isotopic matching. This pattern held only under sandstone conditions where water acquisition zones were identifiably narrow in the 10–20 cm depth but broader under phyllite–granite conditions, presumably due to resource patchiness. Detected coarse root count by depth and measured fine root density were strongly correlated as were detected coarse root count and identified water acquisition zones, thus validating root detection capability of ground-penetrating radar, but exclusively on sandstone soils. This approach was able to characterize trends between intraspecific root architecture and edaphic-dependent resource availability, however, limited by site conditions. This study successfully demonstrates a new approach for in situ root studies that moves beyond invasive point sampling to nondestructive detection of root architecture and function. We discuss the transfer of such an approach to answer root ecology questions in various tree-based landscapes. PMID:23762519
Penetration of Streptococcus sobrinus and Streptococcus sanguinis into dental enamel.
Kneist, Susanne; Nietzsche, Sandor; Küpper, Harald; Raser, Gerhard; Willershausen, Brita; Callaway, Angelika
2015-10-01
The aim of this pilot study was to assess the difference in virulence of acidogenic and aciduric oral streptococci in an in vitro caries model using their penetration depths into dental enamel. 30 caries-free extracted molars from 11- to 16-year-olds were cleaned ultrasonically for 1 min with de-ionized water and, after air-drying, embedded in epoxy resin. After 8-h of setting at room temperature, the specimens were ground on the buccal side with SiC-paper 1200 (particle size 13-16 μm). Enamel was removed in circular areas sized 3 mm in diameter; the mean depth of removed enamel was 230 ± 60 μm. 15 specimens each were incubated anaerobically under standardized conditions with 24 h-cultures of Streptococcus sanguinis 9S or Streptococcus sobrinus OMZ 176 in Balmelli broth at 37 ± 2 °C; the pH-values of the broths were measured at the beginning and end of each incubation cycle. After 2, 4, 6, 8, and 10 weeks 3 teeth each were fixed in 2.5% glutaraldehyde in cacodylate buffer for 24 h, washed 3× and dehydrated 30-60min by sequential washes through a series of 30-100% graded ethanol. The teeth were cut in half longitudinally; afterward, two slits were made to obtain fracture surfaces in the infected area. After critical-point-drying the fragments were gold-sputtered and viewed in a scanning electron microscope at magnifications of ×20-20,000. After 10 weeks of incubation, penetration of S. sanguinis of 11.13 ± 24.04 μm below the break edges into the enamel was observed. The invasion of S. sobrinus reached depths of 87.53 ± 76.34 μm. The difference was statistically significant (paired t test: p = 0.033). The experimental penetration depths emphasize the importance of S. sanguinis versus S. sobrinus in the context of the extended ecological plaque hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Smith, Lachlan J; Elliott, Dawn M
2011-05-01
Cross bridges are radial structures within the highly organized lamellar structure of the annulus fibrosus of the intervertebral disc that connect two or more non-consecutive lamellae. Their origin and function are unknown. During fetal development, blood vessels penetrate deep within the AF and recede during postnatal growth. We hypothesized that cross bridges are the pathways left by these receding blood vessels. Initially, the presence of cross bridges was confirmed in cadaveric human discs aged 25 and 53 years. Next, L1-L2 intervertebral discs (n=4) from sheep ranging in age from 75 days fetal gestation to adult were processed for paraffin histology. Mid-sagittal sections were immunostained for endothelial cell marker PECAM-1. The anterior and posterior AF were imaged using differential interference contrast microscopy, and the following parameters were quantified: total number of distinct lamellae, total number of cross bridges, percentage of cross bridges staining positive for PECAM-1, cross bridge penetration depth (% total lamellae), and PECAM-1 positive cross bridge penetration depth. Cross bridges were first observed at 100 days fetal gestation. The overall number peaked in neonates then remained relatively unchanged. The percentage of PECAM-1 positive cross bridges declined progressively from almost 100% at 100 days gestation to less than 10% in adults. Cross bridge penetration depth peaked in neonates then remained unchanged at subsequent ages. Depth of PECAM-1 positive cross bridges decreased progressively after birth. Findings were similar for both the anterior and posterior. The AF lamellar architecture is established early in development. It later becomes disrupted as a consequence of vascularization. Blood vessels then recede, perhaps due to increasing mechanical stresses in the surrounding matrix. In this study we present evidence that the pathways left by receding blood vessels remain as lamellar cross bridges. It is unclear whether the presence of cross bridges in the aging and degenerating intervertebral disc would be advantageous or detrimental, and this question should be addressed by future studies. Copyright © 2011 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
A numerically optimized active shield for improved TMS targeting
Hernandez-Garcia, Luis; Hall, Timothy; Gomez, Luis; Michielssen, Eric
2010-01-01
Transcranial magnetic stimulation (TMS) devices suffer of poor targeting and penetration depth. A new approach to designing TMS coils is introduced in order to improve the focus of the stimulation region through the use of actively shielded probes. Iterative optimization techniques were used to design different active shielding coils for TMS probes. The new approach aims to increase the amount of energy deposited in a thin cylindrical region below the probe relative to the energy deposited elsewhere in the region (“sharpness”), while simultaneously increase the induced electric field deep in the target region relative to the surface (“penetration”). After convergence, the resulting designs showed that there is a clear tradeoff between sharpness and penetration that can be controlled by the choice of a tuning parameter. The resulting designs were tested on a realistic human head conductivity model, taking the contribution from surface charges into account. The design of choice reduced penetration depths by 16.7%. The activated surface area was reduced by 24.1 % and the volume of the activation was reduced from 42.6% by the shield. Restoring the lost penetration could be achieved by increasing the total power to the coil by 16.3%, but in that case, the stimulated volume reduction was only 13.1% and there was a slight increase in the stimulated surface area (2.9 %) PMID:20965451
Wolf, Martin; Halper, Maria; Pribyl, Raffaela; Baurecht, Dieter; Valenta, Claudia
2017-03-15
The spatial distribution of exogenous substances in the stratum corneum (SC) could have an influence on their skin irritation potential. In this study it was possible to monitor the distribution of phospholipids with their phosphatidylcholine scaffold on porcine ear skin by combining tape stripping and in vitro ATR-FTIR spectroscopy. Significant vibrational modes in the spectra could be successfully assigned to the functional groups of the molecules. Thus it was possible to track the phospholipids without the need of their deuterated form by calculating difference spectra from the treated - untreated skin samples. The correlation between four characteristic bands (R 2 ≥0.9909) revealed the excellent suitability of this semi-quantitative method for deep profiling analysis. The penetration capabilities of aqueous suspensions of the different phospholipid compositions as well as two monoacyl-phosphatidylcholine based liposome formulations were investigated using this method. Nevertheless, differences in the distribution of the investigated phospholipid species, having different amounts of monoacyl-phosphatidylcholine, could not be found. It could be clearly shown that the deepest skin penetration was seen in the irritating anionic SDS (sodium dodecyl sulfate) out of the aqueous solution. The aqueous suspensions based on different phospholipid surfactants showed the same range of penetration depth (10-15% of SC), whereas the smallest skin penetration depth was observed after the application of liposomal formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Geohydrology of Test Well USW H-3, Yucca Mountain, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thordarson, W.; Rush, F.E.; Waddell, S.J.
Test well USW H-3 is one of several test wells drilled in the southwestern part of the Nevada Test Site in cooperation with the US Department of Energy for investigations related to the isolation of high-level radioactive wastes. All rocks penetrated by the well to a total depth of 1219 meters are volcanic tuff of Tertiary age. The composite hydraulic head in the zone 751 to 1219 meters was 733 meters above sea level, and at a depth below land surface of 751 meters. Below a depth of 1190 meters, the hydraulic head was 754 meters above sea level ormore » higher, suggesting an upward component of groundwater flow at the site. The most transmissive part of the saturated zone is in the upper part of the Tram Member of the Crater Flat Tuff in the depth interval from 809 to 841 meters, with an apparent transmissivity of about 7 x 10{sup -1} meter squared per day. The remainder of the penetrated rocks in the saturated zone, 841 to 1219 meters, has an apparent transmissivity of about 4 x 10{sup -1} meter squared per day. The most transmissive part of the lower depth interval is in the bedded tuff and Lithic Ridge Tuff, in the depth interval from 1108 to 1120 meters. The apparent hydraulic conductivity of the rocks in the lower depth interval from 841 to 1219 meters commonly ranges from about 10{sup -1} to 10{sup -4} meter per day. 32 references, 20 figures, 4 tables.« less
Breakdown assisted by a novel electron drift injection in the J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Wang, Nengchao; Jin, Hai; Zhuang, Ge; Ding, Yonghua; Pan, Yuan; Cen, Yishun; Chen, Zhipeng; Huang, Hai; Liu, Dequan; Rao, Bo; Zhang, Ming; Zou, Bichen
2014-07-01
A novel electron drift injection (EDI) system aiming to improve breakdown behavior has been designed and constructed on the Joint Texas EXperiment Tokamak Tokamak. Electrons emitted by the system undergo the E×B drift, ∇B drift and curvature drift in sequence in order to traverse the confining magnetic field. A local electrostatic well, generated by a concave-shaped plate biased more negative than the cathode, is introduced to interrupt the emitted electrons moving along the magnetic field line (in the parallel direction) in an attempt to bring an enhancement of the injection efficiency and depth. A series of experiments have demonstrated the feasibility of this method, and a penetration distance deeper than 9.5 cm is achieved. Notable breakdown improvements, including the reduction of breakdown delay and average loop voltage, are observed for discharges assisted by EDI. The lower limit of successfully ionized pressure is expanded.
Collision-spike sputtering of Au nanoparticles
Sandoval, Luis; Urbassek, Herbert M.
2015-08-06
Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For the particular case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31 % of the impact energy remains in the nanoparticles after impact; themore » remainder is transported away by the transmitted projectile and the ejecta. As a result, the sputter yield of supported nanoparticles is estimated to be around 80 % of that of free nanoparticles due to the suppression of forward sputtering.« less
Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ya'akobovitz, A.; Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben-Gurion University, Beer-Sheva; Bedewy, M.
2015-02-02
Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we findmore » that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.« less
Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests
NASA Astrophysics Data System (ADS)
Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.
2015-02-01
Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.
Partial liquid-penetration inside a deep trench by film flowing over it
NASA Astrophysics Data System (ADS)
Nguyen, Phuc-Khanh; Dimakopoulos, Yiannis; Tsamopoulos, John
2014-11-01
Liquid film flow along substrates featuring a deep trench may not wet the trench floor, but create a second gas-liquid interface inside the trench. The liquid penetration inside the trench depends on the location and shape of this inner interface. The penetration increases by decreasing the two three-phase contact lines between the inner interface and the two side-walls or the flow rate and depends on the liquid properties. This partial-penetration is studied by employing the Galerkin / finite element method to solve the two-dimensional steady-state Navier-Stokes equations in a physical domain that is adaptively remeshed. Multiple branches of steady solutions connected via turning points are revealed by pseudo arc-length continuation. Flow hysteresis may occur in a certain range of liquid penetration depth, when the interaction of the two interfaces changes qualitatively. This induces an abrupt jump of penetration distance and deformation amplitude of the outer interface. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.
NASA Astrophysics Data System (ADS)
Bargo, Paulo R.; Jacques, Steven L.
2001-07-01
The FDA has approved PDT using Photofrin for certain esophageal and lung cancers, specifying an approved prescription of administered drug (mg/kg body weight) and administered light (J/linear cm of cylindrical fiber). This paper describes our development of a multi-optical fiber catheter for endoscopic use which documents the drug accumulated in the target tissues and the light penetration into the target tissues. The catheter uses reflectance to specify the light penetration depth and uses reflectance- corrected fluorescence to document drug accumulation. The goal is to document the variation in drug and light received by patients who are administered the FDA-approved prescription.
High-resolution scanning Hall probe microscopy
NASA Astrophysics Data System (ADS)
Hallen, Hans D.; Hess, H. F.; Chang, A. M.; Pfeiffer, Loren N.; West, Kenneth W.; Mitzi, David B.
1993-06-01
A high resolution scanning Hall probe microscope is used to spatially resolve vortices in high temperature superconducting Bi2Sr2CaCu2O8+(delta) crystals. We observe a partially ordered vortex lattice at several different applied magnetic fields and temperatures. At higher temperatures, a limited amount of vortex re-arrangement is observed, but most vortices remain fixed for periods long compared to the imaging time of several hours even at temperatures as high as 75 degree(s)K (the superconducting transition temperature for these crystals is approximately 84 degree(s)K). A measure of these local magnetic penetration depth can be obtained from a fit to the surface field of several neighboring vortices, and has been measured as a function of temperature. In particular, we have measured the zero temperature penetration depth and found it to be 275 +/- 40 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checco, A.; Hofmann, T.; DiMasi, E.
The details of air nanobubble trapping at the interface between water and a nanostructured hydrophobic silicon surface are investigated using X-ray scattering and contact angle measurements. Large-area silicon surfaces containing hexagonally packed, 20 nm wide hydrophobic cavities provide ideal model surfaces for studying the morphology of air nanobubbles trapped inside cavities and its dependence on the cavity depth. Transmission small-angle X-ray scattering measurements show stable trapping of air inside the cavities with a partial water penetration of 5-10 nm into the pores, independent of their large depth variation. This behavior is explained by consideration of capillary effects and the cavitymore » geometry. For parabolic cavities, the liquid can reach a thermodynamically stable configuration - a nearly planar nanobubble meniscus - by partially penetrating into the pores. This microscopic information correlates very well with the macroscopic surface wetting behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Sean W.; Matthews, David J.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu
2014-07-01
Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al{sub 2}O{sub 3} using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al{sub 2}O{sub 3} penetrated more than 1500 μm into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radius versus depth from the aerogel surface agrees well with simulations of precursor penetration depth in modeled aerogel structures. Thermogravimetric analysis shows that Al{sub 2}O{sub 3} coated CNC aerogel nanocomposites do not show significant thermal degradation below 295 °C as compared with 175 °C for uncoatedmore » CNC aerogels, an improvement of over 100 °C.« less
Biochemical and physical factors affecting discoloration characteristics of 19 bovine muscles.
McKenna, D R; Mies, P D; Baird, B E; Pfeiffer, K D; Ellebracht, J W; Savell, J W
2005-08-01
Steaks from muscles (n=19 from nine beef carcasses) were evaluated over the course of retail display (0-, 1-, 2-, 3-, 4- or 5-d) for objective measures of discoloration (metmyoglobin, oxymyoglobin, L*-, a*-, and b*-values), reducing ability (metmyoglobin reductase activity (MRA), resistance to induced metmyoglobin formation (RIMF), and nitric oxide metmyoglobin reducing ability (NORA)), oxygen consumption rate (OCR), oxygen penetration depth, myoglobin content, oxidative rancidity, and pH. Muscles were grouped according to objective color measures of discoloration. M. longissimus lumborum, M. longissimus thoracis, M. semitendinosus, and M. tensor fasciae latae were grouped as "high" color stability muscles, M. semimembranosus, M. rectus femoris, and M. vastus lateralis were grouped as "moderate" color stability muscles, M. trapezius, M. gluteus medius, and M. latissimus dorsi were grouped as "intermediate" color stability muscles, M. triceps brachi - long head, M. biceps femoris, M. pectoralis profundus, M. adductor, M. triceps brachi - lateral head, and M. serratus ventralis were grouped as "low" color stability muscles, and M. supraspinatus, M. infraspinatus, and M. psoas major were grouped as "very low" color stability muscles. Generally, muscles of high color stability had high RIMF, nitric oxide reducing ability, and oxygen penetration depth and possessed low OCRs, myoglobin content, and oxidative rancidity. In contrast, muscles of low color stability had high MRA, OCRs, myoglobin content, and oxidative rancidity and low RIMF, NORA, and oxygen penetration depth. Data indicate that discoloration differences between muscles are related to the amount of reducing activity relative to the OCR.
Sanapala, Krishna K; Hewaparakrama, Kapila; Kang, Kyung A
2011-01-01
Magnetic nanoparticle mediated low heat hyperthermia (42~45( o )C) via alternating electromagnetic (AEM) energy is a promising, cancer specific and minimally-invasive cancer therapy. Iron oxide particles frequently used for this therapy are non-toxic and already used as a contrast agent for magnetic resonance imaging. One important issue in the hyperthermia is applying an appropriate amount of energy to the tumor at various sizes and depths, with a minimal damage to normal tissue. For the therapy to be desirable, the AEM energy applicator needs to be non-invasive and user-friendly. To better understand the effect of the probe on the magnetic field distribution, computer simulation was performed for the field distribution by probes with various configurations. In a solenoid-type probe, the field is mainly inside the probe and, therefore, is difficult to use on body. A pancake-shaped probe is easy to use but the field penetration is shallow and, thus, may better serve surface tumor treatment. A sandwich probe, composed of two pancake probes, has a penetration depth deeper than a pancake probe. The results also showed that the spacing between two adjacent coils and the number of coil turns are very important for controlling the field penetration depth and strength. Experiments were also performed to study the effects of the size and concentration of iron oxide nanoparticles on heating. Among the tested particle sizes of 10~50 nm, 30 nm particles showed the best heating for the same mass.
Characterization of scintillator crystals for usage as prompt gamma monitors in particle therapy
NASA Astrophysics Data System (ADS)
Roemer, K.; Pausch, G.; Bemmerer, D.; Berthel, M.; Dreyer, A.; Golnik, C.; Hueso-González, F.; Kormoll, T.; Petzoldt, J.; Rohling, H.; Thirolf, P.; Wagner, A.; Wagner, L.; Weinberger, D.; Fiedler, F.
2015-10-01
Particle therapy in oncology is advantageous compared to classical radiotherapy due to its well-defined penetration depth. In the so-called Bragg peak, the highest dose is deposited; the tissue behind the cancerous area is not exposed. Different factors influence the range of the particle and thus the target area, e.g. organ motion, mispositioning of the patient or anatomical changes. In order to avoid over-exposure of healthy tissue and under-dosage of cancerous regions, the penetration depth of the particle has to be monitored, preferably already during the ongoing therapy session. The verification of the ion range can be performed using prompt gamma emissions, which are produced by interactions between projectile and tissue, and originate from the same location and time of the nuclear reaction. The prompt gamma emission profile and the clinically relevant penetration depth are correlated. Various imaging concepts based on the detection of prompt gamma rays are currently discussed: collimated systems with counting detectors, Compton cameras with (at least) two detector planes, or the prompt gamma timing method, utilizing the particle time-of-flight within the body. For each concept, the detection system must meet special requirements regarding energy, time, and spatial resolution. Nonetheless, the prerequisites remain the same: the gamma energy region (2 to 10 MeV), high counting rates and the stability in strong background radiation fields. The aim of this work is the comparison of different scintillation crystals regarding energy and time resolution for optimized prompt gamma detection.
High-temperature thermal treatment of the uterus
NASA Astrophysics Data System (ADS)
Ryan, Thomas P.; Xiao, Jia Hua; Chung, Juh Yun
2003-06-01
More than 200,000 hysterectomies are performed annually in the US due to abnormal uterine bleeding from excessive menstrual flow. A minimally invasive procedure has been developed using thermal treatment combined with pressure to the endometrial lining of the uterus. Results from a 3-D finite element model will be shown, as well as experimental data. Good correlation was seen between simulations and experiments. The study found similar results then temperatures were increased and times for treatment were shortened.More than 200,000 hysterectomies are performed annually in the US due to abnormal uterine bleeding from excessive menstrual flow. A minimally invasive procedure has been developed using a balloon-based thermal treatment combined with pressure to the endometrial lining of the uterus. A 3D finite element model was set up to simulate the balloon ablation device in the human uterus as used in over 150,000 patients to date. Several additional simulations were made at higher temperatures to seek alternative combinations with higher temperature and shorter time intervals for the same depth of penetration, or deeper penetration at longer times and elevated temperatures. A temperature range of 87 to 150°C was explored. The Bioheat Equation was used in the simulations to predict temperature distributions in tissue. The Damage Integral was also used to characterize the location at depth of irreversible damage in the uterus. Treatment safety issues were also analyzed as the simulations showed the depth of penetration into the myometrium, towards the serosa.
Stable isotope evidence for the Bottom Convective Layer homogeneity in the Black Sea
2014-01-01
The Black Sea is the largest euxinic basin on the Earth. The anoxic zone consists of the upper part water mass stratified by density, and the lower water mass homogenized relative to density (depth >1750 m), named the Bottom Convective Layer. To assess homogeneity and possible exchange of matter across the upper and lower boundaries of the Bottom Convective Layer, new data on stable isotope composition of S, O and H were obtained. Samples were collected in August 2008 and March 2009 from two stations located in the eastern central part of the Black Sea. Distribution of δ18O and δD values of water for the entire water column did not vary seasonally. Appreciable differences were marked for δD value variation in the picnocline area (water depth 200-400 m) and in the BCL 5 m above the bottom that might be caused by penetration of intrusions with elevated portion of shelf modified Mediterranean Water. Observed linear relationship between δ18O (or δD) and salinity indicates that mixing water and salt occurs at the same time, and the deep water of the Black Sea has two end members: the high-salinity Mediterranean seawater and freshwater input. In the Bottom Convective Layer, the average δ34S (H2S) was -40.6 ± 0.5‰ and did not vary seasonally. At the bottom (depth > 2000 m), 34S depletion down to –41.0‰ was observed. Our δ34S (SO4) data are by 2-3‰ higher than those measured previously for the Bottom Convective Layer. Sulfate from the aerobic zone with δ34S (SO4) = +21‰ corresponds to ocean water sulfate and that has not been subjected to sulfate reduction. Average δ34S (SO4) values for depths > 1250 m were found to be +23.0 ± 0.2‰ (1σ). Sulfur isotope composition of sulfate does not change in the Bottom Convective Layer and on its upper and lower boundaries, and does not depend on the season of observation. PMID:24739078
NASA Astrophysics Data System (ADS)
Turner, D. L.; Fennell, J. F.; Blake, J. B.; Claudepierre, S. G.; Clemmons, J. H.; Jaynes, A. N.; Leonard, T.; Baker, D. N.; Cohen, I. J.; Gkioulidou, M.; Ukhorskiy, A. Y.; Mauk, B. H.; Gabrielse, C.; Angelopoulos, V.; Strangeway, R. J.; Kletzing, C. A.; Le Contel, O.; Spence, H. E.; Torbert, R. B.; Burch, J. L.; Reeves, G. D.
2017-11-01
This study examines multipoint observations during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes on 7 April 2016 in which a series of energetic particle injections occurred. With complementary data from Time History of Events and Macroscale Interactions during Substorms, Geotail, and Los Alamos National Laboratory spacecraft in geosynchronous orbit (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (maximum AE <300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex series of at least six different electron injections was observed throughout the system. Intriguingly, only one corresponding ion injection was clearly observed. All ion and electron injections were observed at <600 keV only. MMS reveals detailed substructure within the largest electron injection. A relationship between injected electrons with energy <60 keV and enhanced whistler mode chorus wave activity is also established from Van Allen Probes and MMS. Drift mapping using a simplified magnetic field model provides estimates of the dispersionless injection boundary locations as a function of universal time, magnetic local time, and L shell. The analysis reveals that at least five electron injections, which were localized in magnetic local time, preceded a larger injection of both electrons and ions across nearly the entire nightside of the magnetosphere near geosynchronous orbit. The larger ion and electron injection did not penetrate to L < 6.6, but several of the smaller electron injections penetrated to L < 6.6. Due to the discrepancy between the number, penetration depth, and complexity of electron versus ion injections, this event presents challenges to the current conceptual models of energetic particle injections.
Wounding potential of 4.4-mm (.173) caliber steel ball projectiles.
Kamphausen, Thomas; Janßen, Katharina; Banaschak, Sibylle; Rothschild, Markus Alexander
2018-03-06
From time to time, severe or fatal injuries caused by small caliber air rifle projectiles are seen. In forensic sciences, the theoretical wounding potential of these weapons and projectiles is widely known. Usually, shots against the skull were reported and, in these cases, penetrating the eyes or thin bone layers of the temporal region. Amongst a huge number of different projectiles available for air guns, sub-caliber 4.4-mm (.173) caliber steel ball projectiles were used in an unusual suicide case. This case led to fundamental questions concerning wound ballistics. An 82-year-old man shot once against his right temporal region and twice into his mouth with a 4.5-mm (.177) caliber air rifle. Because of the exceptionally deep penetration of the base of the skull and the use of spherical-shaped sub-caliber air rifle projectiles, terminal ballistic features were analyzed and compared to results published in forensic literature. Test shots using the same weapon and similar projectiles were fired into ballistic gelatin to measure and calculate basic wound ballistic variables of cal. 4.4-mm (.173) steel balls. In comparison, further test shots with cal. 4.5-mm (.177) steel balls BB (ball bearing), flat-headed and pointed air rifle pellets ("diabolos") were carried out. The theoretical penetration depth in solid bone was calculated with 36.4 mm, and test shots in gelatin from hard contact produced an on-average wound track of 120 mm underlining the potential wounding effect. Furthermore, spherical projectiles could roll back and forth within the barrel, and an air cushion between projectile and breechblock can reduce muzzle velocity by more than half, explaining the retained missile in the temporal region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Drew L.; Fennell, J. F.; Blake, J. B.
Here, this study examines multipoint observations during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes on 7 April 2016 in which a series of energetic particle injections occurred. With complementary data from Time History of Events and Macroscale Interactions during Substorms, Geotail, and Los Alamos National Laboratory spacecraft in geosynchronous orbit (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (maximum AE <300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex series of at least sixmore » different electron injections was observed throughout the system. Intriguingly, only one corresponding ion injection was clearly observed. All ion and electron injections were observed at <600 keV only. MMS reveals detailed substructure within the largest electron injection. A relationship between injected electrons with energy <60 keV and enhanced whistler mode chorus wave activity is also established from Van Allen Probes and MMS. Drift mapping using a simplified magnetic field model provides estimates of the dispersionless injection boundary locations as a function of universal time, magnetic local time, and L shell. The analysis reveals that at least five electron injections, which were localized in magnetic local time, preceded a larger injection of both electrons and ions across nearly the entire nightside of the magnetosphere near geosynchronous orbit. The larger ion and electron injection did not penetrate to L < 6.6, but several of the smaller electron injections penetrated to L < 6.6. Due to the discrepancy between the number, penetration depth, and complexity of electron versus ion injections, this event presents challenges to the current conceptual models of energetic particle injections.« less
Turner, Drew L.; Fennell, J. F.; Blake, J. B.; ...
2017-09-25
Here, this study examines multipoint observations during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes on 7 April 2016 in which a series of energetic particle injections occurred. With complementary data from Time History of Events and Macroscale Interactions during Substorms, Geotail, and Los Alamos National Laboratory spacecraft in geosynchronous orbit (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (maximum AE <300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex series of at least sixmore » different electron injections was observed throughout the system. Intriguingly, only one corresponding ion injection was clearly observed. All ion and electron injections were observed at <600 keV only. MMS reveals detailed substructure within the largest electron injection. A relationship between injected electrons with energy <60 keV and enhanced whistler mode chorus wave activity is also established from Van Allen Probes and MMS. Drift mapping using a simplified magnetic field model provides estimates of the dispersionless injection boundary locations as a function of universal time, magnetic local time, and L shell. The analysis reveals that at least five electron injections, which were localized in magnetic local time, preceded a larger injection of both electrons and ions across nearly the entire nightside of the magnetosphere near geosynchronous orbit. The larger ion and electron injection did not penetrate to L < 6.6, but several of the smaller electron injections penetrated to L < 6.6. Due to the discrepancy between the number, penetration depth, and complexity of electron versus ion injections, this event presents challenges to the current conceptual models of energetic particle injections.« less
2015-05-01
Horiguchi and Miller, 1983; McCauley et al., 2002) that extended to a maximum depth of 90 m as influenced by the geothermal gradient and determined by... geothermal energy flux were applied to the model boundaries (Figure 5.4.1). The ground surface at 0 m depth consisted of an idealized lake bottom with...deeper saturated zone and the geothermal gradient from below the penetration depth of the annual temperature envelope. The initial condition for
Ultra-hard AlMgB14 coatings fabricated by RF magnetron sputtering from a stoichiometric target
NASA Astrophysics Data System (ADS)
Grishin, A. M.; Khartsev, S. I.; Böhlmark, J.; Ahlgren, M.
2015-01-01
For the first time hard aluminum magnesium boride films were fabricated by RF magnetron sputtering from a single stoichiometric ceramic AlMgB14 target. Optimized processing conditions (substrate temperature, target sputtering power and target-to-substrate distance) enable fabrication of stoichiometric in-depth compositionally homogeneous films with the peak values of nanohardness 88 GPa and Young's modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 and 275 GPa at 200 nm depth in 2 μm thick film.
Orbital SAR and Ground-Penetrating Radar for Mars: Complementary Tools in the Search for Water
NASA Technical Reports Server (NTRS)
Campbell, B. A.; Grant, J. A.
2000-01-01
The physical structure and compositional variability of the upper martian crust is poorly understood. Optical and infrared measurements probe at most the top few cm of the surface layer and indicate the presence of layered volcanics and sediments, but it is likely that permafrost, hydrothermal deposits, and transient liquid water pockets occur at depths of meters to kilometers within the crust. An orbital synthetic aperture radar (SAR) can provide constraints on surface roughness, the depth of fine-grained aeolian or volcanic deposits, and the presence of strongly absorbing near-surface deposits such as carbonates. This information is crucial to the successful landing and operation of any rover designed to search for subsurface water. A rover-based ground-penetrating radar (GPR) can reveal layering in the upper crust, the presence of erosional or other subsurface horizons, depth to a permafrost layer, and direct detection of near-surface transient liquid water. We detail here the radar design parameters likely to provide the best information for Mars, based on experience with SAR and GPR in analogous terrestrial or planetary environments.
Geohydrology of rocks penetrated by test well USW H-4, Yucca Mountain, Nye County, Nevada
Whitfield, M.S.; Eshom, E.P.; Thordarson, William; Schaefer, D.H.
1985-01-01
Test well USW H-4 is one of several wells drilled in the southwestern part of the Nevada Test Site for hydraulic testing, hydrologic monitoring, and geophysical logging. The work was performed in cooperation with the U.S. Department of Energy. The rocks penetrated by the well to a total depth of 1,219 m were volcanic tuffs of Tertiary age. Hydraulic coefficients calculated from pumping test data indicate that transmissivity ranged from 200 to 790 sq m/day. A radioactive tracer, borehole flow survey indicated that the two most productive zones during this borehole flow survey occurred in the upper part of the Bullfrog Member of the Crater Flat Tuff, depth interval from 721 to 731.5m, and in the underlying part of the Tram Member, depth interval from 864 to 920m. The water is predominantly a sodium biocarbonate type with small concentrations of calcium, magnesium, and sulfate. The apparent age of this composite water sample was determined by carbon-14 date of 17,200 years before present. (USGS)
1975-06-01
MECHANISM : ALUMINOSILICATE ORGANIC INTERACTION IN SALINE WATERS, A.C.S. Tom M 21 (1969-1970) to be published in Advances in Chemistry Series. 5...recovery mechanisms . Detailed information on various devices is given in Sittig3 and by EPA. (1) WEIR DEVICES Weir devices depend on gravity to... mechanical eguipments. The selection depends on the depth of oil penetration: 1. For oil penetration of up to 1 inch, combined use of road graders and
A comparison study of different RF shields for an 8-element transceive small animal array at 9.4T.
Jin, Jin; Li, Yu; Liu, Feng; Weber, Ewald; Crozier, Stuart
2011-01-01
In this study, three types of radio-frequency shields are studied and compared in the context of ultra-high field small-animal magnetic resonance imaging. It has been demonstrated that the coil penetration depth and mutual coupling between the coils depend heavily on the type of shield employed. The results were used to guide the design of a 9.4T 8-element transceive small animal array, which provides high overall coil penetration.
Imaging calcium carbonate distribution in human sweat pore in vivo using nonlinear microscopy
NASA Astrophysics Data System (ADS)
Chen, Xueqin; Gasecka, Alicja; Formanek, Florian; Galey, Jean-Baptiste; Rigneault, Hervé
2015-03-01
Nonlinear microscopies, including two-photon excited autofluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS), were used to study individual human sweat pore morphology and topically applied antiperspirant salt penetration inside sweat pore, in vivo on human palms. Sweat pore inner morphology in vivo was imaged up to the depth of 100 μm by TPEF microscopy. The 3D penetration and distribution of "in situ calcium carbonate" (isCC), an antiperspirant salt model, was investigated using CARS microscopy.
Verification of Sulfate Attack Penetration Rates for Saltstone Disposal Unit Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G. P.
Recent Special Analysis modeling of Saltstone Disposal Units consider sulfate attack on concrete and utilize degradation rates estimated from Cementitious Barriers Partnership software simulations. This study provides an independent verification of those simulation results using an alternative analysis method and an independent characterization data source. The sulfate penetration depths estimated herein are similar to the best-estimate values in SRNL-STI-2013-00118 Rev. 2 and well below the nominal values subsequently used to define Saltstone Special Analysis base cases.
Investigation of rf power absorption in the plasma of helicon ion source.
Mordyk, S; Alexenko, O; Miroshnichenko, V; Storizhko, V; Stepanov, K; Olshansky, V
2008-02-01
The simulations of the spatial distribution of rf power absorbed in a helicon ion source reveal a correlation between the depth of penetration of rf power into the plasma and the tilt angle of lines of force of the outer magnetic field. The deeper field penetration and greater power absorption were observed at large tilt angles of the field line to the plasma surface. The evaluations as to the possibility of excitation of helicon waves in compact rf ion sources were performed.
Transition of Corner Cracks at Holes into Through-The-Thickness Cracks
1983-12-01
upon an imaginary crack depth, which is arrived at by allowing the flaw to continually grow in the same elliptical shape it had when it penetrated the...approximately 0.75, and then they deteriorate rapidly . This value of 0.75 agrees with the value selected as the start of the transition region along the bore of...a corner crack emanating from a hole as it grows until it reaches final fracture. However, in a region near where the corner crack penetrates the back
NASA Astrophysics Data System (ADS)
Bechtold, Michel; Schlaffer, Stefan
2015-04-01
The Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT collected C-Band microwave backscatter data from 2005 to 2012. Backscatter in the C-Band depends to a large degree on the roughness and the moisture status of vegetation and soil surface with a penetration depth of ca. 3 cm. In wetlands with stable high water levels, the annual soil surface moisture dynamics are very distinct compared to the surrounding areas, which allows the monitoring of such environments with ASAR data (Reschke et al. 2012). Also in drained peatlands, moisture status of vegetation and soil surface strongly depends on water table depth due to high hydraulic conductivities of many peat soils in the low suction range (Dettmann et al. 2014). We hypothesize that this allows the characterization of water table depths with ASAR data. Here we analyze whether ASAR data can be used for the spatial and temporal estimation of water table depths in different peatlands (natural, near-natural, agriculturally-used and rewetted). Mapping and monitoring of water table depths is of crucial importance, e.g. for upscaling greenhouse gas emissions and evaluating the success of peatland rewetting projects. Here, ASAR data is analyzed with a new map of water table depths for the organic soils in Germany (Bechtold et al. 2014) as well as with a comprehensive data set of monitored peatland water levels from 1100 dip wells and 54 peatlands. ASAR time series from the years 2005-2012 with irregular temporal sampling intervals of 3-14 days were processed. Areas covered by snow were masked. Primary results about the accuracy of spatial estimates show significant correlations between long-term backscatter statistics and spatially-averaged water table depths extracted from the map at the resolution of the ASAR data. Backscatter also correlates with long-term averages of point-scale water table depth data of the monitoring wells. For the latter, correlation is highest between the dry reference backscatter values and summer mean water table depth. Using the boosted regression tree model of Bechtold et al., we evaluate whether the ASAR data can improve prediction accuracy and/or replace parts of ancillary data that is often not available in other countries. In the temporal domain primary results often show a better dependency between backscatter and water table depths compared to the spatial domain. For a variety of vegetation covers the temporal monitoring potential of ASAR data is evaluated at the level of annual water table depth statistics. Bechtold, M., Tiemeyer, B., Laggner, A., Leppelt, T., Frahm, E., and Belting, S., 2014. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling, Hydrol. Earth Syst. Sci., 18, 3319-3339. Dettmann, U., Bechtold, M., Frahm, E., Tiemeyer, B., 2014. On the applicability of unimodal and bimodal van Genuchten-Mualem based models to peat and other organic soils under evaporation conditions. Journal of Hydrology, 515, 103-115. Reschke, J., Bartsch, A., Schlaffer, S., Schepaschenko, D., 2012. Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes. Remote Sens. 4, 2923-2943.
Quantification of nanowire penetration into living cells
NASA Astrophysics Data System (ADS)
Xu, Alexander M.; Aalipour, Amin; Leal-Ortiz, Sergio; Mekhdjian, Armen H.; Xie, Xi; Dunn, Alexander R.; Garner, Craig C.; Melosh, Nicholas A.
2014-04-01
High-aspect ratio nanostructures such as nanowires and nanotubes are a powerful new tool for accessing the cell interior for delivery and sensing. Controlling and optimizing cellular access is a critical challenge for this new technology, yet even the most basic aspect of this process, whether these structures directly penetrate the cell membrane, is still unknown. Here we report the first quantification of hollow nanowires—nanostraws—that directly penetrate the membrane by observing dynamic ion delivery from each 100-nm diameter nanostraw. We discover that penetration is a rare event: 7.1±2.7% of the nanostraws penetrate the cell to provide cytosolic access for an extended period for an average of 10.7±5.8 penetrations per cell. Using time-resolved delivery, the kinetics of the first penetration event are shown to be adhesion dependent and coincident with recruitment of focal adhesion-associated proteins. These measurements provide a quantitative basis for understanding nanowire-cell interactions, and a means for rapidly assessing membrane penetration.
Lunter, Dominique Jasmin
2016-01-01
The aim of the study was to elucidate the effect of sample preparation and microscope configuration on the results of confocal Raman microspectroscopic evaluation of the penetration of a pharmaceutical active into the skin (depth profiling). Pig ear skin and a hydrophilic formulation containing procaine HCl were used as a model system. The formulation was either left on the skin during the measurement, or was wiped off or washed off prior to the analysis. The microscope configuration was varied with respect to objectives and pinholes used. Sample preparation and microscope configuration had a tremendous effect on the results of depth profiling. Regarding sample preparation, the best results could be observed when the formulation was washed off the skin prior to the analysis. Concerning microscope configuration, the use of a 40 × 0.6 numerical aperture (NA) objective in combination with a 25-µm pinhole or a 100 × 1.25 NA objective in combination with a 50-µm pinhole was found to be advantageous. Complete removal of the sample from the skin before the analysis was found to be crucial. A thorough analysis of the suitability of the chosen microscope configuration should be performed before acquiring concentration depth profiles. © 2016 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Bencic, Timothy J..; Allison, Stephen W.; Beshears, David L.
2003-01-01
Thermographic phosphors have been previously demonstrated to provide effective non-contact, emissivity-independent surface temperature measurements. Because of the translucent nature of thermal barrier coatings (TBCs), thermographic phosphor-based temperature measurements can be extended beyond the surface to provide depth-selective temperature measurements by incorporating the thermographic phosphor layer at the depth where the temperature measurement is desired. In this paper, thermographic phosphor (Y2O3:Eu) fluorescence decay time measurements are demonstrated to provide through-the-coating thickness temperature readings up to 1100 C with the phosphor layer residing beneath a 100 micron thick TBC (plasma-sprayed 8wt% yttria-stabilized zirconia). With an appropriately chosen excitation wavelength and detection configuration, it is shown that sufficient phosphor emission is generated to provide effective temperature measurements, despite the attenuation of both the excitation and emission intensities by the overlying TBC. This depth-penetrating temperature measurement capability should prove particularly useful for TBC diagnostics where a large thermal gradient is typically present across the TBC thickness. The fluorescence decay from the Y2O3:Eu layer exhibited both an initial short-term exponential rise and a longer-term exponential decay. The rise time constant was demonstrated to provide better temperature indication below 500 C while the decay time constant was a better indicator at higher temperatures.
Confocal Imaging of the Embryonic Heart: How Deep?
NASA Astrophysics Data System (ADS)
Miller, Christine E.; Thompson, Robert P.; Bigelow, Michael R.; Gittinger, George; Trusk, Thomas C.; Sedmera, David
2005-06-01
Confocal microscopy allows for optical sectioning of tissues, thus obviating the need for physical sectioning and subsequent registration to obtain a three-dimensional representation of tissue architecture. However, practicalities such as tissue opacity, light penetration, and detector sensitivity have usually limited the available depth of imaging to 200 [mu]m. With the emergence of newer, more powerful systems, we attempted to push these limits to those dictated by the working distance of the objective. We used whole-mount immunohistochemical staining followed by clearing with benzyl alcohol-benzyl benzoate (BABB) to visualize three-dimensional myocardial architecture. Confocal imaging of entire chick embryonic hearts up to a depth of 1.5 mm with voxel dimensions of 3 [mu]m was achieved with a 10× dry objective. For the purpose of screening for congenital heart defects, we used endocardial painting with fluorescently labeled poly-L-lysine and imaged BABB-cleared hearts with a 5× objective up to a depth of 2 mm. Two-photon imaging of whole-mount specimens stained with Hoechst nuclear dye produced clear images all the way through stage 29 hearts without significant signal attenuation. Thus, currently available systems allow confocal imaging of fixed samples to previously unattainable depths, the current limiting factors being objective working distance, antibody penetration, specimen autofluorescence, and incomplete clearing.
Development of a red diode laser system for photodynamic therapy
NASA Astrophysics Data System (ADS)
Halkiotis, Konstantinos N.; Yova, Dido M.; Uzunoglou, Nikolaos K.; Papastergiou, Georgios; Matakias, Sotiris; Koukouvinos, Ilias
1998-07-01
The effectiveness of photodynamic treatment modality has been proven experimentally for a large variety of tumors, during the last years. This therapy utilizes the combined action of light and photosensitizing drug. Until now, a disadvantage of PDT has be the low tissue penetration of light, at the wavelengths of most commonly available lasers, for clinical studies. The red wavelength offers the advantage of increased penetration depth in tissue, in addition several new wavelength offers the advantage of increased penetration depth in tissue, in addition several new photosensitizers present absorption band at the region 630nm to 690nm. The development of high power red diode laser system for photodynamic therapy, has provided a cost effective alternative to existing lasers for use in PDT. This paper will describe the system design, development and performance of a diode laser system, connected with a fiber optic facility, to be used for PDT. The system was based on a high power semiconductor diode laser emitting at 655nm. The laser output power was approximately 60mW at the output of a 62.5/125/900 micron fiber optic probe. FUll technical details and optical performance characteristics of the system will be discussed in this paper.
Ground Penetrating Radar Survey at Yoros Fortesss,Istanbul
NASA Astrophysics Data System (ADS)
Kucukdemirci, M.; Yalçın, A. B.
2016-12-01
Geophysical methods are effective tool to detect the archaeological remains and materials, which were hidden under the ground. One of the most frequently used methods for archaeological prospection is Ground Penetrating Radar (GPR). This paper illustrates the small scale GPR survey to determine the buried archaeological features around the Yoros Fortress, located on shores of the Bosporus strait in Istanbul, during the archaeological excavations. The survey was carried out with a GSSI SIR 3000 system, using 400 Mhz center frequency bistatic antenna with the configuration of 16 bits dynamic range and 512 samples per scan. The data were collected along parallel profiles with an interval of 0.50 meters with zigzag profile configuration on the survey grids. The GPR data were processed by GPR-Slice V.7 (Ground Penetrating Radar Imaging Software). As a result, in the first shallow depths, some scattered anomalies were detected. These can be related to a small portion of archaeological ruins close to the surface. In the deeper levels, the geometry of the anomalies related to the possible archaeological ruins, looks clearer. Two horizontal and parallel anomalies were detected, with the direction NS in the depth of 1.45 meters, possibly related to the ancient channels.
Skucha-Nowak, Małgorzata; Machorowska-Pieniążek, Agnieszka; Tanasiewicz, Marta
2016-01-01
The aim of the infiltration technique is to penetrate demineralized enamel with a low viscosity resin. Icon® (DMG) is the first ever and so far the only dental infiltrant. Bacteriostaticity is one of the properties that should be inherent in dental infiltrants, but Icon lacks this feature. The aim of the preliminary study was to properly choose a dye which would allow us to assess the penetrating abilities of our own, experimental preparation with features of a dental infiltrant with bacteriostatic properties and to compare using an optical microscope the depth of infiltration of the designed experimental preparation with the infiltrant available on the market. The preparation is supposed to infiltrate decalcified human enamel and be assessed with an optical microscope. Eosin, neutral fuchsine and methylene blue were added to experimental preparation with dental infiltrant features and to Icon® (DMG) in order to assess the depth of penetration of the experimental solution into the decalcified layers of enamel. The experimental solution mixes well with eosin, neutral fuchsine, and methylene blue. During the preliminary study, the authors concluded that the experimental solution mixes well with methylene blue, neutral fuchsine, and eosin. An addition of eosin to a preparation which infiltrates inner, demineralized enamel layers, facilitates the assessment of such a preparation with an optical microscope. A designed experimental solution with the main ingredients, i.e., 2-hydroxyethyl methacrylate (HEMA) and tetraethylene glycol dimethacrylate (TEGDMA) with a ratio of 75% to 25% penetrates the demineralized (decalcified) inner parts of the enamel and polymerizes when exposed to light. In order to assess the infiltration of the experimental solution into the demineralized enamel layers, it is required to improve the measurement techniques that utilize optical microscopy.
Scheele, Christian; Pietschmann, Matthias F; Schröder, Christian; Grupp, Thomas; Holderied, Melanie; Jansson, Volmar; Müller, Peter E
2017-03-01
Unicompartmental total knee arthroplasty (UKA) is a well-established treatment option for unicondylar osteoarthritis, and generally leads to better functional results than tricompartimental total knee arthroplasty (TKA). However, revision rates of UKAs are reported as being higher; a major reason for this is aseptic loosening of the tibial component due to implant-cement-bone interface fatigue. The objective of this study was to determine the effects of trabecular bone preparation, prior to implantation of tibial UKAs, on morphological and biomechanical outcomes in a cadaver study. Cemented UKAs were performed in 18 human cadaver knees after the bone bed was cleaned using pulsed lavage (Group A), conventional brush (Group B) or no cleaning at all (Group C, control). Morphologic cement penetration and primary stability were measured. The area proportion under the tibial component without visible cement penetration was significantly higher in Group C (21.9%, SD 11.9) than in both Group A (7.1%, SD 5.8), and Group B (6.5%, SD 4.2) (P=0.007). The overall cement penetration depth did not differ between groups. However, in the posterior part, cement penetration depth was significantly higher in Group B (1.9mm, SD 0.3) than in both Group A (1.3mm, SD 0.3) and Group C (1.4mm, SD 0.3) (P=0.015). The mode of preparation did not show a substantial effect on primary stability tested under dynamic compression-shear test conditions (P=0.910). Bone preparation significantly enhances cement interdigitation. The application of a brush shows similar results compared with the application of pulsed lavage. Copyright © 2016 Elsevier B.V. All rights reserved.
Benfeldt, E; Serup, J
1999-09-01
The penetration of topically applied drugs is altered in diseased or barrier-damaged skin. We used microdialysis in the dermis to measure salicylic acid (SA) penetration in hairless rats following application to normal (unmodified) skin (n = 11) or skin with perturbed barrier function from (1) tape-stripping (n = 5), (2) sodium lauryl sulphate (SLS) 2% for 24 h (n = 3) or (3) delipidization by acetone (n = 4). Prior to the experiment, transepidermal water loss (TEWL) and erythema were measured. Two microdialysis probes were inserted into the dermis on the side of the trunk and 5% SA in ethanol was applied in a chamber overlying the probes. Microdialysis sampling was continued for 4 h, followed by measurements of probe depth by ultrasound scanning. SA was detectable in all samples and rapidly increasing up to 130 min. Microdialysates collected between 80 and 200 min showed mean SA concentrations of 3 microg/ml in unmodified and acetone-treated skin, whereas mean SA concentrations were 280 microg/ml in SLS-pretreated skin and 530 microg/ml in tape-stripped skin (P < 0.001). The penetration of SA correlated with barrier perturbation measured by TEWL (P < 0.001) and erythema (P < 0.001). A correlation between dermal probe depth and SA concentration was found in unmodified skin (P = 0.04). Microdialysis sampling in anatomical regions remote from the dosed site excluded the possibility that SA levels measured were due to systemic absorption. Microdialysis sampling of cutaneous penetration was highly reproducible. Impaired barrier function, caused by irritant dermatitis or tape stripping, resulted in an 80- to 170-fold increase in the drug level in the dermis. This dramatic increase in drug penetration could be relevant to humans, in particular to topical treatment of skin diseases and to occupational toxicology.
Transdermal delivery of biomacromolecules using lipid-like nanoparticles
NASA Astrophysics Data System (ADS)
Bello, Evelyn A.
The transdermal delivery of biomacromolecules, including proteins and nucleic acids, is challenging, owing to their large size and the penetration-resistant nature of the stratum corneum. Thus, an urgent need exists for the development of transdermal delivery methodologies. This research focuses on the use of cationic lipid-like nanoparticles (lipidoids) for the transdermal delivery of proteins, and establishes an in vitro model for the study. The lipidoids used were first combinatorially designed and synthesized; afterwards, they were employed for protein encapsulation in a vesicular system. A skin penetration study demonstrated that lipidoids enhance penetration depth in a pig skin model, overcoming the barrier that the stratum corneum presents. This research has successfully identified active lipidoids capable of efficiently penetrating the skin; therefore, loading proteins into lipidoid nanoparticles will facilitate the transdermal delivery of proteins. Membrane diffusion experiments were used to confirm the results. This research has confirmed that lipidoids are a suitable material for transdermal protein delivery enhancement.
Benchmarking the SPHINX and CTH shock physics codes for three problems in ballistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, L.T.; Hertel, E.; Schwalbe, L.
1998-02-01
The CTH Eulerian hydrocode, and the SPHINX smooth particle hydrodynamics (SPH) code were used to model a shock tube, two long rod penetrations into semi-infinite steel targets, and a long rod penetration into a spaced plate array. The results were then compared to experimental data. Both SPHINX and CTH modeled the one-dimensional shock tube problem well. Both codes did a reasonable job in modeling the outcome of the axisymmetric rod impact problem. Neither code correctly reproduced the depth of penetration in both experiments. In the 3-D problem, both codes reasonably replicated the penetration of the rod through the first plate.more » After this, however, the predictions of both codes began to diverge from the results seen in the experiment. In terms of computer resources, the run times are problem dependent, and are discussed in the text.« less
Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus
Lai, Samuel K.; Suk, Jung Soo; Pace, Amanda; Wang, Ying-Ying; Yang, Ming; Mert, Olcay; Chen, Jeane; Kim, Jean; Hanes, Justin
2011-01-01
No effective therapies currently exist for chronic rhinosinusitis (CRS), a persistent inflammatory condition characterized by the accumulation of highly viscoelastic mucus (CRSM) in the sinuses. Nanoparticle therapeutics offer promise for localized therapies for CRS, but must penetrate CRSM in order to avoid washout during sinus cleansing and to reach underlying epithelial cells. Prior research has not established whether nanoparticles can penetrate the tenacious CRSM barrier, or instead become trapped. Here, we first measured the diffusion rates of polystyrene nanoparticles and the same nanoparticles modified with muco-inert polyethylene glycol (PEG) coatings in fresh, minimally perturbed CRSM collected during endoscopic sinus surgery from CRS patients with and without nasal polyp. We found that uncoated polystyrene particles, previously shown to be mucoadhesive, were immobilized in all CRSM samples tested. In contrast, densely PEGylated particles as large as 200 nm were able to readily penetrate all CRSM samples from patients with CRS alone, and nearly half of CRSM samples from patients with nasal polyp. Based on the mobility of different sized PEGylated particles, we estimate the average pore size of fresh CRSM to be at least 150 ± 50 nm. Guided by these studies, we formulated mucus-penetrating particles (MPP) composed of PLGA and Pluronics, two materials with a long history of safety and use in humans. We showed that biodegradable MPP are capable of rapidly penetrating CRSM at average speeds up to only 20-fold slower than their theoretical speeds in water. Our findings strongly support the development of mucus-penetrating nanomedicines for the treatment of CRS. PMID:21665271
Röschmann, P
1987-01-01
This study presents experimental results about the effective depth of penetration and about the radiofrequency (rf) power absorption in humans as a function of frequency. The frequency range investigated covers 10 up to 220 MHz. For the main part, the results were derived from bench measurements of the quality factor Q, and of the resonance frequency shift due to the loading of the coil. Different types of head-, body-, and surface coils were investigated loaded with volunteers or metallic phantoms. For spin-echo imaging at 2 T (85 MHz), the local specific absorption rate (SAR) was found to be approximately equal to 0.05 W/kg using a pi pulse of 1-ms duration and pulse repetition time TR = 1 s. Measurements of the quality factor Q as a function of frequency show that the SAR depends upon the frequency f according to approximately f2.15. The effective depth of rf penetration as derived drops from 17 cm at 85 MHz to 7 cm at 220 MHz. Head imaging with B1 penetrating from practically all sides into the object should be possible up to 220 MHz (5 T) with SAR values staying within the local limit of 2 W/kg as set by the FDA. Whole-body imaging of large subjects as well as surface coil imaging is depth limited above 100-MHz frequency. Perturbation methods are applied in order to separate the total rf power deposition in the patient into dielectric and magnetic contributions. The observed effects due to interactions of rf magnetic fields with biological tissue contradict predictions based on homogeneous tissue models. A refined tissue model with regions of high electrical conductivity, subdivided by quasi-insulating adipose layers, provides a rationale for a better understanding of the underlying processes. At frequencies below 100 MHz, the rf power deposition in patients is apparently more evenly distributed over the exposed body volume than currently assumed.
The concept of a marine Free-fall CPT systems revisited
NASA Astrophysics Data System (ADS)
Kopf, A.; Stegmann, S.
2005-12-01
Cone Penetration Tests (CPT) are a widely used method for the geotechnical in situ characterisation of sediments in onshore settings. In the course of enhanced use of the continental shelf and slope by humans impact, the need for time- and cost-efficient solutions in the marine realm is emerging. In order to avoid the challenges of lowering heavy gear to the seafloor for the penetration tests, free drop devices have been developed since the 1970s, however, the use of the majority of them was discontinued owing to technical difficulties in measurement and data interpretation caused by the impact. Based on those experiences, two different free-fall CPT lances were designed for the in situ measurement of strength (tip resistance, sleeve friction), pore pressure and temperature. In addition, deceleration and tilt are monitored for vertical profiling of the penetrated sediment column. Both CPT systems rely on an industry 15 cm2 piezocone with the sensors at the tip and a pressure housing containing a microprocessor at the top. The lightweight (40-100 kg), shallow water (200 m depth) lance works completely autonomous with a volatile memory and battery package, and can be deployed from any platform, even without a winch. The sturdier, deeper water (2500 m depth) system uses both power and telemetry for data transmission from the research vessel. The length and weight of either system can be varied according to the sediment stiffness and hence allow variable penetration depth (usually less than 5 m). Initial use of the CPT systems attests their efficiency and reliability in the measurement of sediment physical properties. While most of the data are collected within the first seconds of the CPT experiments, long term (pore pressure dissipation tests have also been successfully carried out for durations in excess of 6 hours. In a variety of estuarine and marine settings, our studies served objectives such as the assessment of slope stability, navigability of harbours/estuaries, consultancy for cable laying and trenching, or ground-truthing of geophysical data.
Corneal delivery of besifloxacin using rapidly dissolving polymeric microneedles.
Bhatnagar, Shubhmita; Saju, Amala; Cheerla, Krishna Deepthi; Gade, Sudeep Kumar; Garg, Prashant; Venuganti, Venkata Vamsi Krishna
2018-06-01
Penetration of antibiotics into and through the cornea is a major limiting factor in the treatment of ocular infections. Several strategies are in vogue to overcome this limitation such as use of fortified drops, gels, and subconjunctival injections. Here, we present the fabrication of rapidly dissolving polymeric microneedle array to effectively deliver besifloxacin through the cornea. Microneedles were prepared using polyvinyl alcohol and polyvinyl pyrrolidone by the micromolding technique. The model fluoroquinolone antibiotic, besifloxacin, was loaded in 36 microneedles arranged in a 6 × 6 array format within a 1 cm 2 area. The average height and base width of microneedles was 961 ± 27 and 366 ± 16 μm, respectively. Each microneedle array contained 103.4 ± 8.5 μg of besifloxacin. Cryosectioning and confocal microscopy of excised human cornea revealed that microneedles penetrated to a depth of up to 200 μm. Microneedles were found to completely dissolve in the cornea within 5 min. Application of microneedles for 5 min significantly (p < 0.05) improved the besifloxacin deposition and permeation through the cornea compared with free besifloxacin solution. Similarly, besifloxacin-loaded microneedles showed greater antibacterial activity in Staphylococcus aureus-infected cornea in comparison to free besifloxacin solution. Taken together, rapidly dissolving microneedles can be developed to effectively deliver besifloxacin to treat bacterial infections in the cornea and eye.
Prospects for in vivo blood velocimetry using acoustic resolution photoacoustic Doppler
NASA Astrophysics Data System (ADS)
Brunker, J.; Beard, P.
2016-03-01
Acoustic resolution photoacoustic Doppler flowmetry (AR-PAF) is a technique that has the potential to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Previous work has shown the potential of the technique using blood-mimicking phantoms, but it has proved difficult to make accurate measurements in blood, and thus in vivo application has not yet been possible. One explanation for this difficulty is that whole blood is insufficiently heterogeneous. Through experimental measurements in red blood cell suspensions of different concentrations, as well as in whole blood, we provide new insight and evidence that refutes this assertion. We show that the velocity measurement accuracy is influenced by bandlimiting not only due to the detector frequency response, but also due to spatial averaging of absorbers within the detector field-of-view. In addition, there is a detrimental effect of limited light penetration, but this can be mitigated by selecting less attenuated wavelengths of light, and also by employing range-gating signal processing. By careful choice of these parameters as well as the detector centre frequency, bandwidth and field-of-view, it is possible to make AR-PAF measurements in whole blood using transducers with bandwidths in the tens of MHz range. These findings have profound implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions.
Histological Validity and Clinical Evidence for Use of Fractional Lasers for Acne Scars
Sardana, Kabir; Garg, Vijay K; Arora, Pooja; Khurana, Nita
2012-01-01
Though fractional lasers are widely used for acne scars, very little clinical or histological data based on the objective clinical assessment or the depth of penetration of lasers on in vivo facial tissue are available. The depth probably is the most important aspect that predicts the improvement in acne scars but the studies on histology have little uniformity in terms of substrate (tissue) used, processing and stains used. The variability of the laser setting (dose, pulses and density) makes comparison of the studies difficult. It is easier to compare the end results, histological depth and clinical results. We analysed all the published clinical and histological studies on fractional lasers in acne scars and analysed the data, both clinical and histological, by statistical software to decipher their significance. On statistical analysis, the depth was found to be variable with the 1550-nm lasers achieving a depth of 679 μm versus 10,600 nm (895 μm) and 2940 nm (837 μm) lasers. The mean depth of penetration (in μm) in relation to the energy used, in millijoules (mj), varies depending on the laser studied. This was statistically found to be 12.9–28.5 for Er:glass, 3–54.38 for Er:YAG and 6.28–53.66 for CO2. The subjective clinical improvement was a modest 46%. The lack of objective evaluation of clinical improvement and scar-specific assessment with the lack of appropriate in vivo studies is a case for combining conventional modalities like subcision, punch excision and needling with fractional lasers to achieve optimal results. PMID:23060702
Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, I.
2009-04-01
This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.
NASA Astrophysics Data System (ADS)
Rey, Isabel; Martínez, Julián; Cortada, Unai; Hildago, Mª Carmen
2017-04-01
Slope movements are one of the natural hazards that most affect linear projects, becoming an important waste of money and time for building companies. Thus, studies to identify the processes that provoke these movements, as well as to characterise the landslides are necessary. For this purpose, geophysical prospecting techniques as Ground Penetrating Radar (GPR) and Electrical Resistivity Imaging (ERI) could become useful. However, the effectiveness of these techniques in slope movement characterisation is affected by many factors, like soil humidity, grain size or failure plane depth. Therefore, studies that determine the usefulness of these techniques in different kind of soils and slope movements are required. In this study, GPR and ERI techniques efficiency for the analysis of slope movements in Upper Miocene expansive marls was evaluated. In particular, two landslides in an old regional road in the province of Jaen (Spain) were studied. A total of 53 GPR profiles were made, 31 with a 250 MHz frequency antenna and 22 with an 800 MHz frequency antenna. Marl facies rapidly attenuated the signal of the electromagnetic waves, which means that this technique only provided information of the first two meters of the subsoil. In spite of this low depth of penetration, it is necessary to point out the precision and detail undertaken. Thus, both GPR antennas gave information of the thicknesses and quality-continuity of the different soil layers. In addition, several restoration phases of the linear work were detected. Therefore, this technique was useful to detect the current state and history of the structure, even though it could not detect the shear surface of the slope movement. On the other hand, two profiles of electrical tomography were made, one in each studied sector. The profiles were configured with a total length of 189 m, with 64 electrodes and a spacing of 3 m. This allowed investigating up to 35 m depth. This penetration capability enabled to detect the depth of the shear surfaces and therefore the minimum depth at which the possible piles should be placed in the design of the restoration structures. Thus, this method was more effective than the GPR for the detection of slope surfaces in uniform expansive marls. Nevertheless, the GPR was efficient for the analysis of the previous restoration phases, which was helpful to determine any relation between them and the causes that provoked the slope movements.
Bhatnagar, Sunali; Kwan, James J; Shah, Apurva R; Coussios, Constantin-C; Carlisle, Robert C
2016-09-28
Inertial cavitation mediated by ultrasound has been previously shown to enable skin permeabilisation for transdermal drug and vaccine delivery, by sequentially applying the ultrasound then the therapeutic in liquid form on the skin surface. Using a novel hydrogel dosage form, we demonstrate that the use of sub-micron gas-stabilising polymeric nanoparticles (nanocups) to sustain and promote cavitation activity during simultaneous application of both drug and vaccine results in a significant enhancement of both the dose and penetration of a model vaccine, Ovalbumin (OVA), to depths of 500μm into porcine skin. The nanocups themselves exceeded the penetration depth of the vaccine (up to 700μm) due to their small size and capacity to 'self-propel'. In vivo murine studies indicated that nanocup-assisted ultrasound transdermal vaccination achieved significantly (p<0.05) higher delivery doses without visible skin damage compared to the use of a chemical penetration enhancer. Transdermal OVA doses of up to 1μg were achieved in a single 90-second treatment, which was sufficient to trigger an antigen-specific immune response. Furthermore, ultrasound-assisted vaccine delivery in the presence of nanocups demonstrated substantially higher specific anti-OVA IgG antibody levels compared to other transdermal methods. Further optimisation can lead to a viable, safe and non-invasive delivery platform for vaccines with potential use in a primary care setting or personalized self-vaccination at home. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Investigation of concrete sealer products to extend concrete pavement life : phase 1.
DOT National Transportation Integrated Search
2011-12-01
Five surface applied concrete sealer treatments were evaluated in the laboratory for water vapor transmission, saltwater absorption, alkali resistance, depth of penetration, UV exposure and cyclic saltwater ponding, chloride content, and freeze-thaw ...
NASA Astrophysics Data System (ADS)
Sun, Tianyi; Guo, Chuanfei; Kempa, Krzysztof; Ren, Zhifeng
2014-03-01
A Fabry-Perot reflection filter, consisting of semi-transparent metal and dielectric layers on opaque metals, is featured by selective absorption determined by the phase difference of waves from the two interfaces. In such systems, semi-transparency is usually realized by layers of reflective metals thinner than the penetration depth of the light. Here we present a filter cavity with entry windows not made of traditional thin layers, but of aperiodic metallic random nanomeshes thicker than the penetration depth, fabricated by grain boundary lithography. It is shown that due to the deteriorated phase caused by the interface between the random nanomesh and the dielectric layer, the width and location of the resonances can be tuned by metallic coverage. Further experiments show that this phenomenon can be used in designing aperiodic plasmonic metamaterial structures for visible and infrared applications.
Monitoring of tissue modification with optical coherence tomography
NASA Astrophysics Data System (ADS)
Zhang, Wei; Luo, Qingming; Yao, Lei; Cheng, Haiying; Zeng, Shaoqun
2002-04-01
An experimental monitoring of tissue modification of in vitro and in vivo rabbit dura mater with administration of osmotical agents, 40% glucose solution and glycerol, using optical coherence tomography was presented. The preliminary results of experimental study of influence of osmotical liquids (glucose solutions, glycerol) of rabbit dura mater were reported. The significant decreasing of the light from surface and increasing of the light from the deep of dura mater under action of osmotical solutions and the increasing of OCT imaging depth were demonstrated. Experiments showed that administration of osmolytes to dura mater allowed for effective and temporary control of its optical characteristics, which made dura mater more transparent, increased the ability of light penetrating the tissue, and consequently improved the optical imaging depth. It is a significant study, which can improve penetration of optical imaging of cerebral function and acquire more information of the deep brain tissue.
Bolduc, F.; Afton, A.D.
2004-01-01
We studied relationships among sediment variables (carbon content, C:N, hardness, oxygen penetration, silt-clay fraction), hydrologic variables (dissolved oxygen, salinity, temperature, transparency, water depth), sizes and biomass of common invertebrate classes, and densities of 15 common waterbird species in ponds of impounded freshwater, oligohaline, mesohaline, and unimpounded mesohaline marshes during winters 1997-98 to 1999-2000 on Rockefeller State Wildlife Refuge, Louisiana, USA. Canonical correspondence analysis and forward selection was used to analyze the above variables. Water depth and oxygen penetration were the variables that best segregated habitat characteristics that resulted in maximum densities of common waterbird species. Most common waterbird species were associated with specific marsh types, except Green-winged Teal (Anas crecca) and Northern Shoveler (Anas clypeata). We concluded that hydrologic manipulation of marsh ponds is the best way to manage habitats for these birds, if the hydrology can be controlled adequately.
Models for selecting GMA Welding Parameters for Improving Mechanical Properties of Weld Joints
NASA Astrophysics Data System (ADS)
Srinivasa Rao, P.; Ramachandran, Pragash; Jebaraj, S.
2016-02-01
During the process of Gas Metal Arc (GMAW) welding, the weld joints mechanical properties are influenced by the welding parameters such as welding current and arc voltage. These parameters directly will influence the quality of the weld in terms of mechanical properties. Even small variation in any of the cited parameters may have an important effect on depth of penetration and on joint strength. In this study, S45C Constructional Steel is taken as the base metal to be tested using the parameters wire feed rate, voltage and type of shielding gas. Physical properties considered in the present study are tensile strength and hardness. The testing of weld specimen is carried out as per ASTM Standards. Mathematical models to predict the tensile strength and depth of penetration of weld joint have been developed by regression analysis using the experimental results.
Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Ndiaye, C.; Zerrad, M.; Lereu, A. L.; Roche, R.; Dumas, Ph.; Lemarchand, F.; Amra, C.
2013-09-01
Dielectric optical thin films, as opposed to metallic, have been very sparsely explored as good candidates for absorption-based optical field enhancement. In such materials, the low imaginary part of the refractive index implies that absorption processes are usually not predominant. This leads to dielectric-based optical resonances mainly via waveguiding modes. We show here that when properly designed, a multi-layered dielectric thin films stack can give rise to optical resonances linked to total absorption. We report here, on such dielectric stack designed to possess a theoretical optical field enhancement above 1000. Using photon scanning tunneling microscopy, we experimentally evaluate the resulting field enhancement of the stack as well as the associated penetration depth. We thus demonstrate the capability of multi-dielectric stacks in generating giant optical field with tunable penetration depth (down to few dozens of nm).
NASA Technical Reports Server (NTRS)
Lockwood, H. E.
1973-01-01
Nine film-filter combinations have been tested for effectiveness in recording water subsurface detail when exposed from an aerial platform over a typical water body. An experimental 2-layer positive color film, a 2-layer (minus blue layer) film, a normal 3-layer color film, a panchromatic black-and-white film, and an infrared film with selected filters were tested. Results have been tabulated to show the relative capability of each film-filter combination for: (1) image contrast in shallow water (0 to 5 feet); (2) image contrast at medium depth (5 to 10 feet); (3) image contrast in deep water (10 feet plus); (4) water penetration; maximum depth where detail was discriminated; (5) image color (the spectral range of the image); (6) vegetation visible above a water background; (7) specular reflections visible from the water surface; and (8) visual compatibility; ease of discriminating image detail. Recommendations for future recording over water bodies are included.
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Kaur, Ramanpreet; Singh, Tejbir; Singh, Sukhpal
2018-05-01
The gamma ray buildup factors of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concrete in the composition of (0.6 cement + x Bi2O3+ (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) has been calculated by using Geometrical Progression formula in the energy region of 0.015-15 MeV as well as up to a penetration depth of 40 mean free paths, and have been studied as a function of incident photon energy. From the obtained results it is found that the fixed penetration depth values of buildup factor are very large in the medium energy region and in the low and high energy regions are low. The investigation was carried out to explore the advantages of the Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concrete in different radiation shielding applications.
Wulferding, Dirk; Yang, Ilkyu; Yang, Jinho; ...
2015-07-31
We present a local probe study of the magnetic superconductor ErNi 2B 2C, using magnetic force microscopy at sub-Kelvin temperatures. ErNi 2B 2C is an ideal system to explore the effects of concomitant superconductivity and ferromagnetism. At 500 mK, far below the transition to a weakly ferromagnetic state, we directly observe a structured magnetic background on the micrometer scale. We determine spatially resolved absolute values of the magnetic penetration depth λ and study its temperature dependence as the system undergoes magnetic phase transitions from paramagnetic to antiferromagnetic, and to weak ferromagnetic, all within the superconducting regime. We estimate the absolutemore » pinning force of Abrikosov vortices, which shows a position dependence and temperature dependence as well, and discuss the possibility of the purported spontaneous vortex formation.« less
Zhao, Ming; Zhang, Han; Li, Yu; Ashok, Amit; Liang, Rongguang; Zhou, Weibin; Peng, Leilei
2014-01-01
In vivo fluorescent cellular imaging of deep internal organs is highly challenging, because the excitation needs to penetrate through strong scattering tissue and the emission signal is degraded significantly by photon diffusion induced by tissue-scattering. We report that by combining two-photon Bessel light-sheet microscopy with nonlinear structured illumination microscopy (SIM), live samples up to 600 microns wide can be imaged by light-sheet microscopy with 500 microns penetration depth, and diffused background in deep tissue light-sheet imaging can be reduced to obtain clear images at cellular resolution in depth beyond 200 microns. We demonstrate in vivo two-color imaging of pronephric glomeruli and vasculature of zebrafish kidney, whose cellular structures located at the center of the fish body are revealed in high clarity by two-color two-photon Bessel light-sheet SIM. PMID:24876996
Archimedes' law explains penetration of solids into granular media.
Kang, Wenting; Feng, Yajie; Liu, Caishan; Blumenfeld, Raphael
2018-03-16
Understanding the response of granular matter to intrusion of solid objects is key to modelling many aspects of behaviour of granular matter, including plastic flow. Here we report a general model for such a quasistatic process. Using a range of experiments, we first show that the relation between the penetration depth and the force resisting it, transiently nonlinear and then linear, is scalable to a universal form. We show that the gradient of the steady-state part, K ϕ , depends only on the medium's internal friction angle, ϕ, and that it is nonlinear in μ = tan ϕ, in contrast to an existing conjecture. We further show that the intrusion of any convex solid shape satisfies a modified Archimedes' law and use this to: relate the zero-depth intercept of the linear part to K ϕ and the intruder's cross-section; explain the curve's nonlinear part in terms of the stagnant zone's development.
NASA Astrophysics Data System (ADS)
Remaud, L.; Doan, M. L.; Pezard, P. A.; Celerier, B. P.; Townend, J.; Sutherland, R.; Toy, V.
2015-12-01
The DFDP-2B borehole drilled at Whataroa, New Zealand, provides a first-hand rare opportunity to investigate the damage pattern next to a major active fault. It was drilled along more than 893 m (820 m TVD) within hanging-wall protomylonites and mylonites. The interval between 264 m and 886 m (measured depth) was intensively investigated by wireline logging. Notably, electrical laterolog data were recorded over almost 3 km of cumulative logs, providing a homogeneous, uniformly sampled recording of the electrical properties of the borehole wall. The laterolog tool measures resistivity with two different electrode configurations, and hence achieves two different depths of penetration. Numerical simulations of the tool's response show that the true resistivity of the rock is close to the deep resistivity measurement, which in DFDP-2 varies between 300 Ω.m and 700 Ω.m. The shallow resistivity is about 75% of this value, as it is more sensitive to the presence of conductive borehole fluid. However, the large borehole diameter (averaging 8.5 inch = or 21.59 cm) only partially explains this value. The strong anisotropy suggested by laboratory measurements on outcrop samples also contributes to the separation between deep and shallow resistivity. The shallow and deep resistivities exhibit many significant drops that are coincident with the presence of fractures detected in borehole televiewer data. More than 700 electrical anomalies have been manually picked. The major ones are correlated with attenuation of the sonic data and sometimes with anomalies in fluid conductivity (temperature and conductivity). Their frequency gradually increases with depth, reaching a plateau below 700 m. This increase with depth may be related to closer proximity to the Alpine Fault.
A model of the CO2 exchanges between biosphere and atmosphere in the tundra
NASA Technical Reports Server (NTRS)
Labgaa, Rachid R.; Gautier, Catherine
1992-01-01
A physical model of the soil thermal regime in a permafrost terrain has been developed and validated with soil temperature measurements at Barrow, Alaska. The model calculates daily soil temperatures as a function of depth and average moisture contents of the organic and mineral layers using a set of five climatic variables, i.e., air temperature, precipitation, cloudiness, wind speed, and relative humidity. The model is not only designed to study the impact of climate change on the soil temperature and moisture regime, but also to provide the input to a decomposition and net primary production model. In this context, it is well known that CO2 exchanges between the terrestrial biosphere and the atmosphere are driven by soil temperature through decomposition of soil organic matter and root respiration. However, in tundra ecosystems, net CO2 exchange is extremely sensitive to soil moisture content; therefore it is necessary to predict variations in soil moisture in order to assess the impact of climate change on carbon fluxes. To this end, the present model includes the representation of the soil moisture response to changes in climatic conditions. The results presented in the foregoing demonstrate that large errors in soil temperature and permafrost depth estimates arise from neglecting the dependence of the soil thermal regime on soil moisture contents. Permafrost terrain is an example of a situation where soil moisture and temperature are particularly interrelated: drainage conditions improve when the depth of the permafrost increases; a decrease in soil moisture content leads to a decrease in the latent heat required for the phase transition so that the heat penetrates faster and deeper, and the maximum depth of thaw increases; and as excepted, soil thermal coefficients increase with moisture.
Al-Nazhan, Saad; Al-Sulaiman, Alaa; Al-Rasheed, Fellwa; Alnajjar, Fatimah; Al-Abdulwahab, Bander; Al-Badah, Abdulhakeem
2014-11-01
This in vitro study aimed to investigate the ability of Candida albicans (C. albicans) and Enterococcus faecalis (E. faecalis) to penetrate dentinal tubules of instrumented and retreated root canal surface of split human teeth. Sixty intact extracted human single-rooted teeth were divided into 4 groups, negative control, positive control without canal instrumentation, instrumented, and retreated. Root canals in the instrumented group were enlarged with endodontic instruments, while root canals in the retreated group were enlarged, filled, and then removed the canal filling materials. The teeth were split longitudinally after canal preparation in 3 groups except the negative control group. The teeth were inoculated with both microorganisms separately and in combination. Teeth specimens were examined by scanning electron microscopy (SEM), and the depth of penetration into the dentinal tubules was assessed using the SMILE view software (JEOL Ltd). Penetration of C. albicans and E. faecalis into the dentinal tubules was observed in all 3 groups, although penetration was partially restricted by dentin debris of tubules in the instrumented group and remnants of canal filling materials in the retreated group. In all 3 groups, E. faecalis penetrated deeper into the dentinal tubules by way of cell division than C. albicans which built colonies and penetrated by means of hyphae. Microorganisms can easily penetrate dentinal tubules of root canals with different appearance based on the microorganism size and status of dentinal tubules.
NASA Astrophysics Data System (ADS)
Hogan, B.; Stone, W.; Bramall, N. E.; Siegel, V.; Lelievre, S.; Rothhammer, B.; Richmond, K.; Flesher, C.
2016-12-01
Subsurface exploration of icy ocean worlds requires an efficient method of penetrating ice to significant depths under extreme environment conditions. Searching for extant life dictates descent to a depth which is habitable or where biomarkers can survive and allow detection. It's anticipated that several meters to 10s of meters of shielding is required to prevent cosmic background radiation and other energetic particles from destroying biomarker evidence. We have devised, developed and demonstrated an entirely novel ice penetrating technology utilizing laser light carried by an optical fiber tether and emitted from a probe's optical nose cone and radiated directly into the volume of ice preceding the penetrator. We have termed it a "Direct Laser Penetrator" or DLP. We present design details, modeling, and test data from preliminary proof-of-concept experiments conducted at Stone Aerospace with results exceeding expectations and achieving the fastest reported thermal probe descent rate to date (> 12 m / hr). DLP has critical benefits over conventional "hot point" melt probes, which must generate large temperature gradients to force heat by conduction through the nose cone, and layers of ice and water. Additionally, hot point melt probes tested under vacuum have shown extreme difficulty initiating penetration, as virtually no thermal contact exists between the probe nose and rough ice surface. The ice simply sublimates and any transferred heat is quickly dissipated due to the low power density and extreme cold. DLP requires NO thermal contact between the probe nose and the ice surface since the laser energy is radiated directly into the volume (vs. surface) of ice preceding the penetrator. A proposed key element of the DLP is the fiber optic tether, coupled with a dedicated sensor fiber, enables "optical access" to the subsurface environment by a lander's shared or DLP dedicated on-board instruments (Raman / Fluorescence / fiber / UV / VIS / NIR spectroscopy, etc). These sensors can search for extant life by detecting biomarkers as well as characterizing the radiation / light environment for subsurface habitability. The combination of a laser penetrator w/ integrated fiber coupled instruments could be an important tool for an icy ocean worlds lander. (Supported by NASA funded SAS projects VALKYRIE and SPINDLE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: llm@ispms.tsc.ru; Meisner, L. L., E-mail: girs@ispms.tsc.ru
The structure of the surface and near-surface layers of single crystals of NiTi, differently oriented relative to the direction of ion beam treatment was investigated. The role of the crystallographic orientation in formation of structure of surface layers after ion-plasma alloying was revealed. It was found that the orientation effects of selective sputtering and channeling determine the thickness of the oxide and amorphous layers, the depth of penetration of ions and impurities, the distribution of Ni with depth.
Bolenz, Christian; Trojan, Lutz; Gabriel, Ute; Honeck, Patrick; Wendt-Nordahl, Gunnar; Schaaf, Axel; Alken, Peter; Michel, Maurice Stephan
2008-10-01
To evaluate cellular uptake and urothelial penetration of oligodeoxynucleotides (ODNs) in transitional cell carcinoma (TCC) cell lines and in a porcine ex vivo model, respectively. A panel of human TCC cell lines (RT 112, HT 1197 and UM-UC3) were exposed tofluorescein-labeled ODNs. Transfection rates were assessed byfluorescence microscopy and fluorescence-activated cell sorting (FACS). Intravesical treatment with ODNs was performed in a porcine ex vivo model. Urothelial penetration was evaluated using fluorescence microscopy of cryosections. Treatment with ODNs provided transfection rates of at least 96.8% of TCC cells, irrespective of use of a transfection agent. Effective urothelial penetration by ODNs was detected when compared with controls (p = 0.0325). The addition of a liposomal transfection agent significantly increased the penetration depth, allowing affection of deep urothelial cell layers (p = 0.0082). High transfection rates of ODNs can be achieved in TCC cells. Urothelial penetration of ODNs was observed down to the deepest cell layers when a transfection agent is added, suggesting a high potential for complementing the chemoresection effects on residual tumor areas during intravesical therapy of non-muscle-invasive TCC.
Unsteady penetration of a target by a liquid jet
Uth, Tobias; Deshpande, Vikram S.
2013-01-01
It is widely acknowledged that ceramic armor experiences an unsteady penetration response: an impacting projectile may erode on the surface of a ceramic target without substantial penetration for a significant amount of time and then suddenly start to penetrate the target. Although known for more than four decades, this phenomenon, commonly referred to as dwell, remains largely unexplained. Here, we use scaled analog experiments with a low-speed water jet and a soft, translucent target material to investigate dwell. The transient target response, in terms of depth of penetration and impact force, is captured using a high-speed camera in combination with a piezoelectric force sensor. We observe the phenomenon of dwell using a soft (noncracking) target material. The results show that the penetration rate increases when the flow of the impacting water jet is reversed due to the deformation of the jet–target interface––this reversal is also associated with an increase in the force exerted by the jet on the target. Creep penetration experiments with a constant indentation force did not show an increase in the penetration rate, confirming that flow reversal is the cause of the unsteady penetration rate. Our results suggest that dwell can occur in a ductile noncracking target due to flow reversal. This phenomenon of flow reversal is rather widespread and present in a wide range of impact situations, including water-jet cutting, needleless injection, and deposit removal via a fluid jet. PMID:24277818
Isaacson, Dylan; Aghili, Roxana; Wongwittavas, Non; Garcia, Maurice
2017-11-01
In our practice we have encountered 4 female-to-male transgender patients seeking neophallus revision surgery for girth precluding penetrative vaginal or anal intercourse. Despite this, there is little evidence available to guide transitioning patients in neophallus sizing. In this work we examined the dimensions of bestselling realistic dildos, presuming that the most popular dimensions would reflect population preferences for penetrative toys and phalluses. To determine a maximal upper limit for girth compatible with penetrative intercourse based on measurements of bestselling realistic dildos and published erect penile dimensions. We collected measurements for "realistic dildos" designated as bestsellers for the top 5 Alexa.com-rated online adult retailers in the United States and for Amazon.com. We compared these with measurements of dildos available at Good Vibrations in San Francisco and with studies of erect natal dimensions. We compared all data with measurements of 4 index patients whose neophallus girth prevented penetrative intercourse. Length and circumference of overall bestselling and largest bestselling realistic dildos as reported on top websites and measured by investigators. The average insertive length of the compiled dildos (16.7 ± 1.6 cm) was 1 SD longer than natal functional erect penile length as reported in the literature (15.7 ± 2.6 cm); however, their average circumference (12.7 ± 0.8 cm) mirrored natal erect penile girth (12.3 ± 1.3). The average girth of vendors' top 3 largest-girth dildos was 15.1 ± 0.9 cm, 2 SD wider than natal erect penile girth. Index patients had an average length of 16.3 ± 3.2 cm and an average girth of 17.6 ± 1.3 cm. Index patient girth was 4 to 5 SD wider than the average natal erect girth. Based on our data, we suggest that a surgically created neophallus should have a girth no wider than 15.1 cm after implantation of an inflatable penile prosthesis. This corresponds to 2 SD wider than the average natal man's erect girth. Strengths include in-person measurements of patients whose girth prevented penetrative intercourse, the large number of dildos assessed, and correlations with in-person measurements. Limitations include the inability to account for the pliability of different materials, whether dildos were used for vaginal and/or anal insertion, the limited sample of 4 transmen for in-person measurement, and the absence of implanted inflatable penile prostheses in index neophalluses. Neophallus girth wider than 15.1 cm could lead to difficulty in penetrative intercourse for many individuals. A conservative recommendation for neophallus girth is 13 to 14 cm, or 0.5 to 1.5 SD wider than natal erect penile girth. Isaacson D, Aghili R, Wongwittavas N, Garcia M. How Big is Too Big? The Girth of Bestselling Insertive Sex Toys to Guide Maximal Neophallus Dimensions. J Sex Med 2017;14:1455-1461. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Vassallo, Maurizio; Festa, Gaetano; Bobbio, Antonella; Serra, Marcello
2016-06-01
We extracted the Green's functions from cross correlation of ambient noise recorded at broadband stations located across the Apennine belt, Southern Italy. Continuous records at 26 seismic stations acquired for 3 years were analyzed. We found the emergence of surface waves in the whole range of the investigated distances (10-140 km) with energy confined in the frequency band 0.04-0.09 Hz. This phase reproduces Rayleigh waves generated by earthquakes in the same frequency range. Arrival time of Rayleigh waves was picked at all the couples of stations to obtain the average group velocity along the path connecting the two stations. The picks were inverted in separated frequency bands to get group velocity maps then used to obtain an S wave velocity model. Penetration depth of the model ranges between 12 and 25 km, depending on the velocity values and on the depth of the interfaces, here associated to strong velocity gradients. We found a low-velocity anomaly in the region bounded by the two main faults that generated the 1980, M 6.9 Irpinia earthquake. A second anomaly was retrieved in the southeast part of the region and can be ascribed to a reminiscence of the Adria slab under the Apennine Chain.
The distribution of particulate material on Mars
NASA Technical Reports Server (NTRS)
Christensen, Philip R.
1991-01-01
The surface materials on Mars were extensively studied using a variety of spacecraft and Earth-based remote sensing observations. These measurements include: (1) diurnal thermal measurements, used to determine average particle size, rock abundance, and the presence of crusts; (2) radar observations, used to estimate the surface slope distributions, wavelength scale roughness, and density; (3) radio emission observations, used to estimate subsurface density; (4) broadband albedo measurements, used to study the time variation of surface brightness and dust deposition and removal; and (5) color observations, used to infer composition, mixing, and the presence of crusts. Remote sensing observations generally require some degree of modeling to interpret, making them more difficult to interpret than direct observations from the surface. They do, however, provide a means for examining the surface properties over the entire planet and a means of sampling varying depths within the regolith. Albedo and color observations only indicate the properties of the upper-most few microns, but are very sensitive to thin, sometimes emphemeral dust coatings. Thermal observations sample the upper skin depth, generally 2 to 10 cm. Rock abundance measurements give an indirect indication of surface mantling, where the absence of rocks suggests mantles of several meters. Finally, radar and radio emission data can penetrate several meters into the surface, providing an estimate of subsurface density and roughness.
Long-term ecological effects of exposure to uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, W.C.; Miera, F.R. Jr.
1976-03-01
The consequences of releasing natural and depleted uranium to terrestrial ecosystems during development and testing of depleted uranium munitions were investigated. At Eglin Air Force Base, Florida, soil at various distances from armor plate target butts struck by depleted uranium penetrators was sampled. The upper 5 cm of soil at the target bases contained an average of 800 ppM of depleted uranium, about 30 times as much as soil at 5- to 10-cm depth, indicating some vertical movement of depleted uranium. Samples collected beyond about 20 m from the targets showed near-background natural uranium levels, about 1.3 +- 0.3 ..mu..g/gmore » or ppM. Two explosives-testing areas at the Los Alamos Scientific Laboratory (LASL) were selected because of their use history. E-F Site soil averaged 2400 ppM of uranium in the upper 5 cm and 1600 ppM at 5-10 cm. Lower Slobovia Site soil from two subplots averaged about 2.5 and 0.6 percent of the E-F Site concentrations. Important uranium concentration differences with depth and distance from detonation points were ascribed to the different explosive tests conducted in each area. E-F Site vegetation samples contained about 320 ppM of uranium in November 1974 and about 125 ppM in June 1975. Small mammals trapped in the study areas in November contained a maximum of 210 ppM of uranium in the gastrointestinal tract contents, 24 ppM in the pelt, and 4 ppM in the remaining carcass. In June, maximum concentrations were 110, 50, and 2 ppM in similar samples and 6 ppM in lungs. These data emphasized the importance of resuspension of respirable particles in the upper few millimeters of soil as a contamination mechanism for several components of the LASL ecosystem.« less
Improving NIR snow pit stratigraphy observations by introducing a controlled NIR light source
NASA Astrophysics Data System (ADS)
Dean, J.; Marshall, H.; Rutter, N.; Karlson, A.
2013-12-01
Near-infrared (NIR) photography in a prepared snow pit measures mm-/grain-scale variations in snow structure, as reflectivity is strongly dependent on microstructure and grain size at the NIR wavelengths. We explore using a controlled NIR light source to maximize signal to noise ratio and provide uniform incident, diffuse light on the snow pit wall. NIR light fired from the flash is diffused across and reflected by an umbrella onto the snow pit; the lens filter transmits NIR light onto the spectrum-modified sensor of the DSLR camera. Lenses are designed to refract visible light properly, not NIR light, so there must be a correction applied for the subsequent NIR bright spot. To avoid interpolation and debayering algorithms automatically performed by programs like Adobe's Photoshop on the images, the raw data are analyzed directly in MATLAB. NIR image data show a doubling of the amount of light collected in the same time for flash over ambient lighting. Transitions across layer boundaries in the flash-lit image are detailed by higher camera intensity values than ambient-lit images. Curves plotted using median intensity at each depth, normalized to the average profile intensity, show a separation between flash- and ambient-lit images in the upper 10-15 cm; the ambient-lit image curve asymptotically approaches the level of the flash-lit image curve below 15cm. We hypothesize that the difference is caused by additional ambient light penetrating the upper 10-15 cm of the snowpack from above and transmitting through the wall of the snow pit. This indicates that combining NIR ambient and flash photography could be a powerful technique for studying penetration depth of radiation as a function of microstructure and grain size. The NIR flash images do not increase the relative contrast at layer boundaries; however, the flash more than doubles the amount of recorded light and controls layer noise as well as layer boundary transition noise.
Englhard, Anna S; Betz, Tom; Volgger, Veronika; Lankenau, Eva; Ledderose, Georg J; Stepp, Herbert; Homann, Christian; Betz, Christian S
2017-07-01
Endoscopic examination followed by tissue biopsy is the gold standard in the evaluation of lesions of the upper aerodigestive tract. However, it can be difficult to distinguish between healthy mucosa, dysplasia, and invasive carcinoma. Optical coherence tomography (OCT) is a non-invasive technique which acquires high-resolution, cross-sectional images of tissue in vivo. Integrated into a surgical microscope, it allows the intraoperative evaluation of lesions simultaneously with microscopic visualization. In a prospective case series, we evaluated the use of OCT integrated into a surgical microscope during microlaryngoscopy to help differentiating various laryngeal pathologies. 33 patients with laryngeal pathologies were examined with an OCT- microscope (OPMedT iOCT-camera, HS Hi-R 1000G-microscope, Haag-Streit Surgical GmbH, Wedel, Germany) during microlaryngoscopy. The suspected intraoperative diagnoses were compared to the histopathological reports of subsequent tissue biopsies. Hands-free non-contact OCT revealed high-resolution images of the larynx with a varying penetration depth of up to 1.2 mm and an average of 0.6 mm. Picture quality was variable. OCT showed disorders of horizontal tissue layering in dysplasias with a disruption of the basement membrane in carcinomas. When comparing the suspected diagnosis during OCT-supported microlaryngoscopy with histology, 79% of the laryngeal lesions could be correctly identified. Premalignant lesions were difficult to diagnose and falsely classified as carcinoma. OCT integrated into a surgical microscope seems to be a promising adjunct tool to discriminate pathologies of the upper aerodigestive tract intraoperatively. However, picture quality and penetration depth were variable. Although premalignant lesions were difficult to diagnose, the system proved overall helpful for the intraoperative discrimination of benign and malignant tumors. Further studies will be necessary to define its value in the future. Lasers Surg. Med. 49:490-497, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Phase Sensitiveness to Soil Moisture in Controlled Anechoic Chamber: Measurements and First Results
NASA Astrophysics Data System (ADS)
Ben Khadhra, K.; Nolan, M.; Hounam, D.; Boerner, T.
2005-12-01
To date many radar methods and models have been reported for the estimation of soil moisture, such as the Oh-model or the Dubois model. Those models, which use only the magnitude of the backscattered signal, show results with 5 to 10 % accuracy. In the last two decades SAR Interferometry (InSAR) and differential InSAR (DInSAR), which uses the phase of the backscattered signal, has been shown to be a useful tool for the creation of Digital Elevation Models (DEMs), and temporal changes due to earthquakes, subsidence, and other ground motions. Nolan (2003) also suggested the possibility to use DINSAR penetration depth as a proxy to estimate the soil moisture. The principal is based on the relationship between the penetration depth and the permittivity, which varies as a function of soil moisture. In this paper we will present new interferometric X-band laboratory measurements, which have been carried out in the Bistatic Measurement Facility at the DLR Oberpfaffenhofen, Microwaves and Radar Institute in Germany. The bistatic geometry enables us to have interferometric pairs with different baseline and different soil moistures controlled by a TDR (Time Domain Reflectivity) system. After calibration of the measuring system using a large metal plate, the sensitivity of phase and reflectivity with regard to moisture variation and therefore the penetration depth was evaluated. The effect of the surface roughness has been also reported. Current results demonstrate a non-linear relationship between the signal phase and the soil moisture, as expected, confirming the possibility of using DInSAR to measure variations in soil moisture.
Effective implementation of GPR for condition assessment and monitoring - Phase 2.
DOT National Transportation Integrated Search
2016-10-01
The Maryland Department of Transportation State Highway Administration (SHA) is currently using Ground : Penetrating Radar (GPR) for assessing the condition of bridge decks (such as surface condition, rebar cover depth : and location, and deck thickn...
NASA Astrophysics Data System (ADS)
Loudon, J. C.; Yazdi, S.; Kasama, T.; Zhigadlo, N. D.; Karpinski, J.
2015-02-01
We demonstrate that images of flux vortices in a superconductor taken with a transmission electron microscope can be used to measure the penetration depth and coherence length in all directions at the same temperature and magnetic field. This is particularly useful for MgB 2, where these quantities vary with the applied magnetic field and values are difficult to obtain at low field or in the c direction. We obtained images of flux vortices from a MgB 2 single crystal cut in the a c plane by focused ion beam milling and tilted to 45∘ with respect to the electron beam about the crystallographic a axis. A new method was developed to simulate these images that accounted for vortices with a nonzero core in a thin, anisotropic superconductor and a simplex algorithm was used to make a quantitative comparison between the images and simulations to measure the penetration depths and coherence lengths. This gave penetration depths Λa b=100 ±35 nm and Λc=120 ±15 nm at 10.8 K in a field of 4.8 mT. The large error in Λa b is a consequence of tilting the sample about a and had it been tilted about c , the errors on Λa b and Λc would be reversed. Thus obtaining the most precise values requires taking images of the flux lattice with the sample tilted in more than one direction. In a previous paper [J. C. Loudon et al., Phys. Rev. B 87, 144515 (2013), 10.1103/PhysRevB.87.144515], we obtained a more precise value for Λa b using a sample cut in the a b plane. Using this value gives Λa b=107 ±8 nm, Λc=120 ±15 nm, ξa b=39 ±11 nm, and ξc=35 ±10 nm, which agree well with measurements made using other techniques. The experiment required two days to conduct and does not require large-scale facilities. It was performed on a very small sample, 30 ×15 μ m and 200-nm thick, so this method could prove useful for superconductors where only small single crystals are available, as is the case for some iron-based superconductors.
NASA Astrophysics Data System (ADS)
Grace, M.; Butler, K. E.; Peter, S.; Yamazaki, G.; Haralampides, K.
2016-12-01
The Mactaquac Hydroelectric Generating Station, located on the Saint John River in New Brunswick, Canada, is approaching the end of its life due to deterioration of the concrete structures. As part of an aquatic ecosystem study, designed to support a decision on the future of the dam, sediment in the headpond, extending 80 km upriver, is being examined. The focus of this sub-study lies in (i) mapping the thickness of sediments that have accumulated since inundation in 1968, and (ii) imaging the deeper glacial and post-glacial stratigraphy. Acoustic sub-bottom profiling surveys were completed during 2014 and 2015. An initial 3.5 kHz chirp sonar survey proved ineffective, lacking in both resolution and depth of the penetration. A follow-up survey employing a boomer-based "Seistec" sediment profiler provided better results, resolving sediment layers as thin as 12 cm, and yielding coherent reflections from the deeper Quaternary sediments. Post-inundation sediments in the lowermost 25 km of the headpond, between the dam and Bear Island, are interpreted to average 26 cm in thickness with the thickest deposits (up to 65 cm) in deep water areas overlying the pre-inundation riverbed west of Snowshoe Island, and south and east of Bear Island. A recent coring program confirmed the presence of silty sediment and showed good correlation with the Seistec thickness estimates. In the 15 km stretch upriver of Bear Island to Nackawic, the presence of gas in the uppermost sediments severely limits sub-bottom penetration and our ability to interpret sediment thicknesses. Profiles acquired in the uppermost 40 km reach of the headpond, extending to Woodstock, show a strong, positive water bottom reflection and little to no sub-bottom penetration, indicating the absence of soft post-inundation sediment. Deeper reflections observed within 5 km of the dam reveal a buried channel cut into glacial till, extending up to 20 m below the water bottom. Channel fill includes a finely laminated unit interpreted to be glaciolacustrine clay-silt and a possible esker - similar to stratigraphy found 20 - 30 km downriver at Fredericton. Future plans include a small scale survey in late summer, 2016 to evaluate the suitability of waterborne ground penetrating radar (GPR) profiling as an alternative to acoustic profiling in areas of gas-charged sediment.
Uncertainty assessment method for the Cs-137 fallout inventory and penetration depth.
Papadakos, G N; Karangelos, D J; Petropoulos, N P; Anagnostakis, M J; Hinis, E P; Simopoulos, S E
2017-05-01
Within the presented study, soil samples were collected in year 2007 at 20 different locations of the Greek terrain, both from the surface and also from depths down to 26 cm. Sampling locations were selected primarily from areas where high levels of 137 Cs deposition after the Chernobyl accident had already been identified by the Nuclear Engineering Laboratory of the National Technical University of Athens during and after the year of 1986. At one location of relatively higher deposition, soil core samples were collected following a 60 m by 60 m Cartesian grid with a 20 m node-to-node distance. Single or pair core samples were also collected from the remaining 19 locations. Sample measurements and analysis were used to estimate 137 Cs inventory and the corresponding depth migration, twenty years after the deposition on Greek terrain. Based on these data, the uncertainty components of the whole sampling-to-results procedure were investigated. A cause-and-effect assessment process was used to apply the law of error propagation and demonstrate that the dominating significant component of the combined uncertainty is that due to the spatial variability of the contemporary (2007) 137 Cs inventory. A secondary, yet also significant component was identified to be the activity measurement process itself. Other less-significant uncertainty parameters were sampling methods, the variation in the soil field density with depth and the preparation of samples for measurement. The sampling grid experiment allowed for the quantitative evaluation of the uncertainty due to spatial variability, also by the assistance of the semivariance analysis. Denser, optimized grid could return more accurate values for this component but with a significantly elevated laboratory cost, in terms of both, human and material resources. Using the hereby collected data and for the case of a single core soil sampling using a well-defined sampling methodology quality assurance, the uncertainty component due to spatial variability was evaluated to about 19% for the 137 Cs inventory and up to 34% for the 137 Cs penetration depth. Based on the presented results and also on related literature, it is argued that such high uncertainties should be anticipated for single core samplings conducted using similar methodology and employed as 137 Cs inventory and penetration depth estimators. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.
2012-01-01
Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature increase during the heating. By stopping during the excavation, it is possible to measure thermal conductivities at different depths. The gas jets are turned off when the penetrating cone reaches the target depth. Then, the stem pushes the needle sensor into the undisturbed soil at the bottom of the hole and carries out a thermal conductivity measurement. When the measurement is complete, the system resumes excavation. RTDs, placed along the stem at short (approx 30 cm) intervals, will monitor long-term temperature stability of the subsurface. Temperature in the shallow subsurface would fluctuate with the diurnal, annual, and precession cycles of the Moon. These thermal waves penetrate to different depths into the regolith. Longterm monitoring of the subsurface temperature would allow us to accurately delineate these cyclic signals and separate them from the signal associated with the outward flow of the Moon s endogenic heat. Further, temperature toward bottom of the 3-m hole should be fairly stable after the heat generated during the excavation dissipates into the surrounding soil. The geothermal gradient may be determined reliably from temperature measurements at the RTDs near the bottom. In order to minimize the heat conduction along the stem from affecting the geothermal gradient measurements, we plan to use low-conductive materials for the stem and develop a mechanism to achieve close coupling between the RTDs and the wall of the excavated hole.
The Influence of Snowmobile Trails on Coyote Movements during Winter in High-Elevation Landscapes
Gese, Eric M.; Dowd, Jennifer L. B.; Aubry, Lise M.
2013-01-01
Competition between sympatric carnivores has long been of interest to ecologists. Increased understanding of these interactions can be useful for conservation planning. Increased snowmobile traffic on public lands and in habitats used by Canada lynx (Lynx canadensis) remains controversial due to the concern of coyote (Canis latrans) use of snowmobile trails and potential competition with lynx. Determining the variables influencing coyote use of snowmobile trails has been a priority for managers attempting to conserve lynx and their critical habitat. During 2 winters in northwest Wyoming, we backtracked coyotes for 265 km to determine how varying snow characteristics influenced coyote movements; 278 km of random backtracking was conducted simultaneously for comparison. Despite deep snow (>1 m deep), radio-collared coyotes persisted at high elevations (>2,500 m) year-round. All coyotes used snowmobile trails for some portion of their travel. Coyotes used snowmobile trails for 35% of their travel distance (random: 13%) for a mean distance of 149 m (random: 59 m). Coyote use of snowmobile trails increased as snow depth and penetrability off trails increased. Essentially, snow characteristics were most influential on how much time coyotes spent on snowmobile trails. In the early months of winter, snow depth was low, yet the snow column remained dry and the coyotes traveled off trails. As winter progressed and snow depth increased and snow penetrability increased, coyotes spent more travel distance on snowmobile trails. As spring approached, the snow depth remained high but penetrability decreased, hence coyotes traveled less on snowmobile trails because the snow column off trail was more supportive. Additionally, coyotes traveled closer to snowmobile trails than randomly expected and selected shallower snow when traveling off trails. Coyotes also preferred using snowmobile trails to access ungulate kills. Snow compaction from winter recreation influenced coyote movements within an area containing lynx and designated lynx habitat. PMID:24367565
The influence of snowmobile trails on coyote movements during winter in high-elevation landscapes.
Gese, Eric M; Dowd, Jennifer L B; Aubry, Lise M
2013-01-01
Competition between sympatric carnivores has long been of interest to ecologists. Increased understanding of these interactions can be useful for conservation planning. Increased snowmobile traffic on public lands and in habitats used by Canada lynx (Lynx canadensis) remains controversial due to the concern of coyote (Canis latrans) use of snowmobile trails and potential competition with lynx. Determining the variables influencing coyote use of snowmobile trails has been a priority for managers attempting to conserve lynx and their critical habitat. During 2 winters in northwest Wyoming, we backtracked coyotes for 265 km to determine how varying snow characteristics influenced coyote movements; 278 km of random backtracking was conducted simultaneously for comparison. Despite deep snow (>1 m deep), radio-collared coyotes persisted at high elevations (>2,500 m) year-round. All coyotes used snowmobile trails for some portion of their travel. Coyotes used snowmobile trails for 35% of their travel distance (random: 13%) for a mean distance of 149 m (random: 59 m). Coyote use of snowmobile trails increased as snow depth and penetrability off trails increased. Essentially, snow characteristics were most influential on how much time coyotes spent on snowmobile trails. In the early months of winter, snow depth was low, yet the snow column remained dry and the coyotes traveled off trails. As winter progressed and snow depth increased and snow penetrability increased, coyotes spent more travel distance on snowmobile trails. As spring approached, the snow depth remained high but penetrability decreased, hence coyotes traveled less on snowmobile trails because the snow column off trail was more supportive. Additionally, coyotes traveled closer to snowmobile trails than randomly expected and selected shallower snow when traveling off trails. Coyotes also preferred using snowmobile trails to access ungulate kills. Snow compaction from winter recreation influenced coyote movements within an area containing lynx and designated lynx habitat.
Maddox, Michael; Pareek, Gyan; Al Ekish, Shadi; Thavaseelan, Simone; Mehta, Akanksha; Mangray, Shamlal; Haleblian, George
2012-10-01
While the power needed to initiate bipolar vaporization is higher than conventional monopolar resection, the energy needed to maintain bipolar vaporization is significantly lower and may result in less thermal tissue injury. This may have implications for hemostasis, scarring, and perioperative morbidity. The objective of this study is to assess histopathologic changes in prostatic tissue after bipolar transurethral vaporization of the prostate. Male patients older than 40 years with a diagnosis of benign prostatic hyperplasia (BPH) who elected to undergo bipolar transurethral vaporization of the prostate were included in this study. Patients were excluded if they had a previous transurethral resection of the prostate (TURP) or prostate radiation therapy. An Olympus button vaporization electrode was used to vaporize prostate tissue. A loop electrode was then used to obtain a deep resection specimen. The vaporized and loop resection surfaces were inked and sent for pathologic analysis to determine the presence of gross histologic changes and the depth of penetration of the bipolar vaporization current. A total of 12 men underwent bipolar TURP at standard settings of 290 W cutting and 145 W coagulation current. Mean patient age was 70±10.2 years (range 56-88 years). Mean surgical time was 48.7±20.2 minutes (range 30-89 min). Mean depth of thermal injury was 2.4±0.84 mm (range 0.3-3.5 mm). Histopathologic evaluation demonstrated thermal injury in all specimens, but no gross char was encountered. In bipolar systems, resection takes place at much lower peak voltages and temperatures compared with monopolar systems. Theoretically, this leads to less collateral thermal damage and tissue char. Our tissue study illustrates that the button vaporization electrode achieves a much larger depth of penetration than previous studies of bipolar TURP. This may be because thermal injury represents a gradual continuum of histologic changes.
Self-Disclosure Among Bloggers: Re-Examination of Social Penetration Theory
Wang, Cheng-Chung
2012-01-01
Abstract Based on Social Penetration theory, this study explores the topics that bloggers disclose on their blogs, and in the real world. A total of 1,027 Taiwanese bloggers participated in this online survey, which revealed that bloggers self-disclosed nine topics (attitude, body, money, work, feelings, personal, interests, experiences, and unclassified). Further, we examined the depth and width of what bloggers self-disclosed to three target audiences (online audience, best friend, and parents), confirming that their disclosure is significantly different for each of these target audiences. Bloggers seemingly express themselves to their best friends the most, followed by parents and online audiences, both in depth and in width. The “wedge model,” proposed by Altman and Taylor (1973), has been extended to online relationships in this study. In comparison to male bloggers, female bloggers seemed to disclose more to their best friends and parents in their daily lives; however, no significant difference was observed in their disclosure to online audiences. Younger bloggers (<20 years old) seemed to disclose a wider range of topics; however, there was no significant difference in the depth of their disclosure on their blogs. Discussions of these results are also presented. PMID:22489546
Kwon, In Ho; Bae, Youin; Yeo, Un-Cheol; Lee, Jin Yong; Kwon, Hyuck Hoon; Choi, Young Hee; Park, Gyeong-Hun
2018-02-01
The histologic responses to varied parameters of 1,927-nm fractional thulium fiber laser treatment have not yet been sufficiently elucidated. This study sought to evaluate histologic changes immediately after 1,927-nm fractional thulium fiber laser session at various parameters. The dorsal skin of Yucatan mini-pig was treated with 1,927-nm fractional thulium fiber laser at varied parameters, with or without skin drying. The immediate histologic changes were evaluated to determine the effects of varying laser parameters on the width and the depth of treated zones. The increase in the level of pulse energy widened the area of epidermal changes in the low power level, but increased the dermal penetration depth in the high power level. As the pulse energy level increased, the increase in the power level under the given pulse energy level more evidently made dermal penetration deeper and the treatment area smaller. Skin drying did not show significant effects on epidermal changes, but evidently increased the depth of dermal denaturation under both high and low levels of pulse energy. These results may provide important information to establish treatment parameters of the 1,927-nm fractional thulium fiber laser for various skin conditions.
Design, Fabrication and Characterization of A Bi-Frequency Co-Linear Array
Wang, Zhuochen; Li, Sibo; Czernuszewicz, Tomasz J; Gallippi, Caterina M.; Liu, Ruibin; Geng, Xuecang
2016-01-01
Ultrasound imaging with high resolution and large penetration depth has been increasingly adopted in medical diagnosis, surgery guidance, and treatment assessment. Conventional ultrasound works at a particular frequency, with a −6 dB fractional bandwidth of ~70 %, limiting the imaging resolution or depth of field. In this paper, a bi-frequency co-linear array with resonant frequencies of 8 MHz and 20 MHz was investigated to meet the requirements of resolution and penetration depth for a broad range of ultrasound imaging applications. Specifically, a 32-element bi-frequency co-linear array was designed and fabricated, followed by element characterization and real-time sectorial scan (S-scan) phantom imaging using a Verasonics system. The bi-frequency co-linear array was tested in four different modes by switching between low and high frequencies on transmit and receive. The four modes included the following: (1) transmit low, receive low, (2) transmit low, receive high, (3) transmit high, receive low, (4) transmit high, receive high. After testing, the axial and lateral resolutions of all modes were calculated and compared. The results of this study suggest that bi-frequency co-linear arrays are potential aids for wideband fundamental imaging and harmonic/sub-harmonic imaging. PMID:26661069
Laser biostimulation therapy planning supported by imaging
NASA Astrophysics Data System (ADS)
Mester, Adam R.
2018-04-01
Ultrasonography and MR imaging can help to identify the area and depth of different lesions, like injury, overuse, inflammation, degenerative diseases. The appropriate power density, sufficient dose and direction of the laser treatment can be optimally estimated. If required minimum 5 mW photon density and required optimal energy dose: 2-4 Joule/cm2 wouldn't arrive into the depth of the target volume - additional techniques can help: slight compression of soft tissues can decrease the tissue thickness or multiple laser diodes can be used. In case of multiple diode clusters light scattering results deeper penetration. Another method to increase the penetration depth is a second pulsation (in kHz range) of laser light. (So called continuous wave laser itself has inherent THz pulsation by temporal coherence). Third solution of higher light intensity in the target volume is the multi-gate technique: from different angles the same joint can be reached based on imaging findings. Recent developments is ultrasonography: elastosonography and tissue harmonic imaging with contrast material offer optimal therapy planning. While MRI is too expensive modality for laser planning images can be optimally used if a diagnostic MRI already was done. Usual DICOM images offer "postprocessing" measurements in mm range.
Nadeau, Kyle P; Rice, Tyler B; Durkin, Anthony J; Tromberg, Bruce J
2015-11-01
We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI.
Nadeau, Kyle P.; Rice, Tyler B.; Durkin, Anthony J.; Tromberg, Bruce J.
2015-01-01
Abstract. We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI. PMID:26524682
Self-disclosure among bloggers: re-examination of social penetration theory.
Tang, Jih-Hsin; Wang, Cheng-Chung
2012-05-01
Based on Social Penetration theory, this study explores the topics that bloggers disclose on their blogs, and in the real world. A total of 1,027 Taiwanese bloggers participated in this online survey, which revealed that bloggers self-disclosed nine topics (attitude, body, money, work, feelings, personal, interests, experiences, and unclassified). Further, we examined the depth and width of what bloggers self-disclosed to three target audiences (online audience, best friend, and parents), confirming that their disclosure is significantly different for each of these target audiences. Bloggers seemingly express themselves to their best friends the most, followed by parents and online audiences, both in depth and in width. The "wedge model," proposed by Altman and Taylor (1973), has been extended to online relationships in this study. In comparison to male bloggers, female bloggers seemed to disclose more to their best friends and parents in their daily lives; however, no significant difference was observed in their disclosure to online audiences. Younger bloggers (<20 years old) seemed to disclose a wider range of topics; however, there was no significant difference in the depth of their disclosure on their blogs. Discussions of these results are also presented.
Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process
NASA Astrophysics Data System (ADS)
Ahmadi, E.; Ebrahimi, A. R.
2015-02-01
The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.