Science.gov

Sample records for average power femtosecond

  1. Scaling Infrared Femtosecond Optical Parametric Oscillators to High Average Powers

    NASA Astrophysics Data System (ADS)

    Petersen, Travis S.

    A demand for ultrafast, highly energetic laser sources in the infrared exists for various applications such as high-harmonic generation, waveguide inscription, and remote sensing. These applications require high repetition rates for faster processing speed and better signal-to-noise ratios. Until recently, laser pulses used in these systems were usually provided by optical parametric oscillators and amplifiers pumped by Ti:sapphire laser systems. The output power and spectral bandwidth of this pump source are fundamentally restricted due to unavoidable limitations caused by the quantum-defect heating and restricted emission spectrum of the gain medium. Advancements to Yb-based sources have provided a significant increase in average power and pulse energy available from ultrafast pumps, thereby increasing the capabilities of parametric devices. In this thesis, an ultrafast optical parametric oscillator was constructed as a test bed for investigating the scaling potential of these devices. The main goals of this study were to utilize recent technological advancements to ultrafast pump sources and test the limits for obtaining high-energy pulses with high average powers from an optical parametric oscillator. Various nonlinear crystals and parametric pumping geometries were investigated to determine how best to use the available power of a home-built pump laser and the general potential for scalability. To utilize recent developments of similar pump sources, a long cavity was designed to take advantage of the high-average-powers with scalable pulse energies. While the designing the cavity, it became apparent that the cavity length could be done easily without notable change to critical cavity parameters by using telescopic imaging relays. It was discovered that limitations to the power scalability of this system were directly linked to problems with the thermal management of the nonlinear crystal. While minor changes could have been implemented to reduce the impact of

  2. Investigation of the thermally induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems

    PubMed Central

    Fourmaux, S.; Serbanescu, C.; Lecherbourg, L.; Payeur, S.; Martin, F.; Kieffer, J. C.

    2009-01-01

    We report successful compensation of the thermally induced laser beam distortion associated with high energy 110 mJ and high average power femtosecond laser system of 11 Watts operated with vacuum compressor gratings. To enhance laser-based light source brightness requires development of laser systems with higher energy and higher average power. Managing the high thermal loading on vacuum optical components is a key issue in the implementation of this approach. To our knowledge this is the first time that such thermal induced distortions on the vacuum compressor gratings are characterized and compensated. PMID:19129886

  3. Investigation of the thermally induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems.

    PubMed

    Fourmaux, S; Serbanescu, C; Lecherbourg, L; Payeur, S; Martin, F; Kieffer, J C

    2009-01-05

    We report successful compensation of the thermally induced laser beam distortion associated with high energy 110 mJ and high average power femtosecond laser system of 11 Watts operated with vacuum compressor gratings. To enhance laser-based light source brightness requires development of laser systems with higher energy and higher average power. Managing the high thermal loading on vacuum optical components is a key issue in the implementation of this approach. To our knowledge this is the first time that such thermal induced distortions on the vacuum compressor gratings are characterized and compensated.

  4. Diode-pumped femtosecond Yb:KGd(WO(4))(2) laser with 1.1-W average power.

    PubMed

    Brunner, F; Spühler, G J; Au, J A; Krainer, L; Morier-Genoud, F; Paschotta, R; Lichtenstein, N; Weiss, S; Harder, C; Lagatsky, A A; Abdolvand, A; Kuleshov, N V; Keller, U

    2000-08-01

    We demonstrate what is to our knowledge the first mode-locked Yb:KGd(WO(4))(2) laser. Using a semiconductor saturable-absorber mirror for passive mode locking, we obtain pulses of 176-fs duration with an average power of 1.1 W and a peak power of 64 kW at a center wavelength of 1037 nm. We achieve pulses as short as 112 fs at a lower output power. The laser is based on a standard delta cavity and pumped by two high-brightness laser diodes, making the whole system very simple and compact. Tuning the laser by means of a knife-edge results in mode-locked pulses within a wavelength range from 1032 to 1054 nm. In cw operation, we achieve output powers as high as 1.3 W.

  5. Femtosecond diode-pumped Nd:glass laser with more than 1 W of average output power.

    PubMed

    Aus der Au, J; Loesel, F H; Morier-Genoud, F; Moser, M; Keller, U

    1998-02-15

    We have demonstrated 175-fs pulses with 1 W and 300-fs pulses with 1.2 W of average output power at a pulse repetition rate of 117 MHz from a Nd:phosphate (Schott LG 760) glass laser pumped by a 1-cm-wide, 20-W diode laser bar. Stable soliton mode locking was achieved by use of an intracavity semiconductor saturable absorber mirror. We obtained more than 2 W of average power without mode locking. Using cylindrical cavity mirrors, we adapted the laser mode inside the Nd:glass to the highly elliptical pump beam in both dimensions (tangential and sagittal axes) while maintaining a nearly ideal circular TEM(00) output beam with M(2) approximately 1.2 . Overpumping the laser mode in the tangential plane and efficient unidirectional heat removal in the sagittal plane using a 0.8-mm thin Nd:glass also contributed to the good output-beam quality.

  6. High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator.

    PubMed

    Gu, Chenglin; Hu, Minglie; Zhang, Limeng; Fan, Jintao; Song, Youjian; Wang, Chingyue; Reid, Derryck T

    2013-06-01

    We report on the highly efficient generation of widely tunable femtosecond pulses based on intracavity second harmonic generation (SHG) and sum frequency generation (SFG) in a MgO-doped periodically poled LiNbO(3) optical parametric oscillator (OPO), which is pumped by a Yb-doped large-mode-area photonics crystal fiber femtosecond laser. Red and near infrared from intracavity SHG and SFG and infrared signals were directly obtained from the OPO. A 2 mm β-BaB(2)O(4) is applied for Type I (oo → e) intracavity SHG and SFG, and then femtosecond laser pulses over 610 nm ~ 668 nm from SFG and 716 nm ~ 970 nm from SHG are obtained with high efficiency. In addition, the oscillator simultaneously generates signal and idler femtosecond pulses over 1450 nm ~ 2200 nm and 2250 nm ~ 4000 nm, respectively.

  7. A few hundred femtosecond FEL with a few kW average and one GW peak power for academic and industrial applications

    NASA Astrophysics Data System (ADS)

    Minehara, Eisuke J.; Hajima, Ryoichi; Sawamura, Masaru; Nagai, Ryoji; Nishimori, Nobuyuki; Kikuzawa, Nobuhiro; Sugimoto, Masayoshi; Yamauchi, Toshihiko; Hayakawa, Taketo; Shizuma, Toshiyuki

    2003-02-01

    The JAERI FEL group has successfully discovered, and realized the brand-new FEL lasing of 255fs ultrafast pulse, 6-9% high-efficiency, one gigawatt high peak power, a few kilowatts average power, and wide tenability of medium and far infrared wavelength regions at the same time. The new lasing was named to be "high-degeneracy superradianct lasing of FEL". Using the new lasing, we could realize a powerful and efficient free-electron laser(FEL) for industrial uses, for examples, pharmacy, medical, defense, shipbuilding, semiconductor industry, chemical industries, environmental sciences, space-debris, power beaming and so on. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by JAERI compact, stand-alone and zero-boil-off super-conducting rf linac with an energy-recovery geometry. Our discussions on the FEL will cover market-requirements and roadmap for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil-off cryostat concept and operational experience over these 10 years, our discovery of the new highly-efficient, high-power, and ultra-short pulse lasing mode, and the energy-recovery geometry.

  8. High average power pockels cell

    DOEpatents

    Daly, Thomas P.

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  9. High power all-polarization-maintaining photonic crystal fiber monolithic femtosecond nonlinear chirped-pulse amplifier

    NASA Astrophysics Data System (ADS)

    Lv, Zhiguo; Yang, Zhi; Li, Feng; Yang, Xiaojun; Li, Qianglong; Zhang, Xin; Wang, Yishan; Zhao, Wei

    2018-03-01

    We report on an experimental study on fully fusion spliced high power all-polarization-maintaining Yb-doped photonic crystal fiber (PCF) femtosecond nonlinear chirped-pulse amplifier (CPA), which features large values of the positive third-order dispersion (TOD) superposed from the single-mode fiber stretcher (SMFs) and grating-pair compressor. Compensation of the TOD is realized by means of self-phase modulation (SPM) induced nonlinear phase shift during amplification. Up to 9.8 W of compressed average power at 275 kHz repetition rates with 36 μJ pulse energy and 495 fs pulse width has been obtained. To the best of our knowledge, this is the highest output power generated from the strictly all-fiber nonlinear CPA amplifier in femtosecond domain, which provides a possibility for the industrialized promotion and development of the high energy femtosecond fiber laser.

  10. High-power femtosecond Raman frequency shifter.

    PubMed

    Vicario, Carlo; Shalaby, Mostafa; Konyashchenko, Aleksandr; Losev, Leonid; Hauri, Christoph P

    2016-10-15

    We report on the generation of broadband, high-energy femtosecond pulses centered at 1.28 μm by stimulated Raman scattering in a pressurized hydrogen cell. Stimulated Raman scattering is performed by two chirped and delayed pulses originating from a multi-mJ Ti:sapphire amplifier. The Stokes pulse carries record-high energy of 4.4 mJ and is recompressed down to 66 fs by a reflective grating pair. We characterized the short-wavelength mid-infrared source in view of energy stability, beam profile, and conversion efficiency at repetition rates of 100 and 10 Hz. The demonstrated high-energy frequency shifter will benefit intense THz sources based on highly nonlinear organic crystals.

  11. Highly efficient and high-power diode-pumped femtosecond Yb:LYSO laser

    NASA Astrophysics Data System (ADS)

    Tian, Wenlong; Wang, Zhaohua; Zhu, Jiangfeng; Zheng, Lihe; Xu, Jun; Wei, Zhiyi

    2017-04-01

    A diode-pumped high-power femtosecond Yb:LYSO laser with high efficiency is demonstrated. With a semiconductor saturable absorber mirror for passive mode-locking and a Gires-Tournois interferometer mirror for intracavity dispersion compensation, stable mode-locking pulses of 297 fs duration at 1042 nm were obtained. The maximum average power of 3.07 W was realized under 5.17 W absorbed pump power, corresponding to as high as 59.4% opt-opt efficiency. The single pulse energy and peak power are about 35.5 nJ and 119.5 kW, respectively.

  12. Scalability of components for kW-level average power few-cycle lasers.

    PubMed

    Hädrich, Steffen; Rothhardt, Jan; Demmler, Stefan; Tschernajew, Maxim; Hoffmann, Armin; Krebs, Manuel; Liem, Andreas; de Vries, Oliver; Plötner, Marco; Fabian, Simone; Schreiber, Thomas; Limpert, Jens; Tünnermann, Andreas

    2016-03-01

    In this paper, the average power scalability of components that can be used for intense few-cycle lasers based on nonlinear compression of modern femtosecond solid-state lasers is investigated. The key components of such a setup, namely, the gas-filled waveguides, laser windows, chirped mirrors for pulse compression and low dispersion mirrors for beam collimation, focusing, and beam steering are tested under high-average-power operation using a kilowatt cw laser. We demonstrate the long-term stable transmission of kW-level average power through a hollow capillary and a Kagome-type photonic crystal fiber. In addition, we show that sapphire substrates significantly improve the average power capability of metal-coated mirrors. Ultimately, ultrabroadband dielectric mirrors show negligible heating up to 1 kW of average power. In summary, a technology for scaling of few-cycle lasers up to 1 kW of average power and beyond is presented.

  13. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers.

    PubMed

    Wan, Peng; Yang, Lih-Mei; Liu, Jian

    2013-12-02

    Two all fiber-based laser systems are demonstrated to achieve high energy and high average power femtosecond pulsed outputs at wavelength of 1 µm. In the high energy laser system, a pulse energy of 1.05 mJ (0.85 mJ after pulse compressor) at 100 kHz repetition rate has been realized by a Yb-doped ultra large-core single-mode photonic crystal fiber (PCF) rod amplifier, seeded with a 50 µJ fiber laser. The pulse duration is 705 fs. In the high average power experiment, a large mode area (LMA) fiber has been used in the final stage amplifier, seeded with a 50 W mode locked fiber laser. The system is running at a repetition rate of 69 MHz producing 1052 W of average power before compressor. After pulse compression, a pulse duration of 800 fs was measured.

  14. High power tunable femtosecond ultraviolet laser source based on an Yb-fiber-laser pumped optical parametric oscillator.

    PubMed

    Gu, Chenglin; Hu, Minglie; Fan, Jintao; Song, Youjian; Liu, Bowen; Chai, Lu; Wang, Chingyue; Reid, Derryck T

    2015-03-09

    We report a high average power tunable 51 MHz femtosecond ultraviolet (UV) laser source based on an intra-cavity sum frequency mixing optical parametric oscillator (OPO) pumped by a fiber laser. The UV laser is generated by sum frequency generation (SFG) between the second harmonic of a mode-locked Yb-fiber laser and the signal of the OPO. A non-collinear configuration is used in the SFG to compensate the group velocity mismatch, and to increase the SFG conversion efficiency dramatically. Tunable ultraviolet pulses within the wavelength range from 385 to 400 nm have been produced with a maximum average power of 402 mW and a pulse width of 286 fs at 2 W Yb-fiber laser pump, corresponding to 20.1% near-infrared to UV conversion efficiency at 387 nm. To our knowledge, this is the first demonstration of tunable femtosecond UV pulse generation from a fiber laser pumped OPO, and is also the highest average power tunable UV femtosecond pulses from an OPO.

  15. Low power femtosecond tip-based nanofabrication with advanced control

    NASA Astrophysics Data System (ADS)

    Liu, Jiangbo; Guo, Zhixiong; Zou, Qingze

    2018-02-01

    In this paper, we propose an approach to enable the use of low power femtosecond laser in tip-based nanofabrication (TBN) without thermal damage. One major challenge in laser-assisted TBN is in maintaining precision control of the tip-surface positioning throughout the fabrication process. An advanced iterative learning control technique is exploited to overcome this challenge in achieving high-quality patterning of arbitrary shape on a metal surface. The experimental results are analyzed to understand the ablation mechanism involved. Specifically, the near-field radiation enhancement is examined via the surface-enhanced Raman scattering effect, and it was revealed the near-field enhanced plasma-mediated ablation. Moreover, silicon nitride tip is utilized to alleviate the adverse thermal damage. Experiment results including line patterns fabricated under different writing speeds and an "R" pattern are presented. The fabrication quality with regard to the line width, depth, and uniformity is characterized to demonstrate the efficacy of the proposed approach.

  16. High average power scaleable thin-disk laser

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Payne, Stephen A.; Powell, Howard; Krupke, William F.; Sutton, Steven B.

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  17. Thermal effects in an ultrafast BiB 3O 6 optical parametric oscillator at high average powers

    SciTech Connect

    Petersen, T.; Zuegel, J. D.; Bromage, J.

    2017-08-15

    An ultrafast, high-average-power, extended-cavity, femtosecond BiB 3O 6 optical parametric oscillator was constructed as a test bed for investigating the scalability of infrared parametric devices. Despite the high pulse energies achieved by this system, the reduction in slope efficiency near the maximum-available pump power prompted the investigation of thermal effects in the crystal during operation. Furthermore, the local heating effects in the crystal were used to determine the impact on both phase matching and thermal lensing to understand limitations that must be overcome to achieve microjoule-level pulse energies at high repetition rates.

  18. A power amplifier for a femtosecond terawatt Cr:forsterite laser system

    SciTech Connect

    Ovchinnikov, A V; Ashitkov, S I; Agranat, M B; Sitnikov, D S

    2008-04-30

    A three-stage power amplifier is developed for an IR terawatt femtosecond laser system generating 80-fs, 1240-nm pulses with energy of up to 90 mJ, a pulse repetition rate 10 Hz, and the intensity contrast above 10{sup 6}. The efficiencies of different schemes of multipass amplifiers are compared. It is shown that an optical scheme with plane mirrors is optimal for achieving the terawatt power level. (lasers and amplifiers)

  19. Neuroscience imaging enabled by new highly tunable and high peak power femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.

    2017-02-01

    Neuroscience applications benefit from recent developments in industrial femtosecond laser technology. New laser sources provide several megawatts of peak power at wavelength of 1040 nm, which enables simultaneous optogenetics photoactivation of tens or even hundreds of neurons using red shifted opsins. Another recent imaging trend is to move towards longer wavelengths, which would enable access to deeper layers of tissue due to lower scattering and lower absorption in the tissue. Femtosecond lasers pumping a non-collinear optical parametric amplifier (NOPA) enable the access to longer wavelengths with high peak powers. High peak powers of >10 MW at 1300 nm and 1700 nm allow effective 3-photon excitation of green and red shifted calcium indicators respectively and access to deeper, sub-cortex layers of the brain. Early results include in vivo detection of spontaneous activity in hippocampus within an intact mouse brain, where neurons express GCaMP6 activated in a 3-photon process at 1320 nm.

  20. Development of over 300-watts average power excimer laser

    NASA Astrophysics Data System (ADS)

    Hirata, Kazuhiro; Kawamura, Joichi; Katou, Hiroyuki; Sajiki, Kazuaki; Okada, Makoto

    2004-05-01

    The high power excimer laser was developed. We have supplied the 240 watts (800 mJ, 300 Hz) average power excimer laser for industrial use, mainly for TFT LCD annealing. We are going to add the 300 watts (1 J, 300 Hz) average power laser for our line-up. This 300 watts new laser is based on the 240 watts laser, but improved some points. The electrodes size is longer and the electrical power circuit is reinforcement. Laser gas recipe is changed to be good for new system. In our test, we could oscillate over 300 watts average power operation. 310 watts servo operation is able to oscillate over 40 million pulses with less than 1.0 per cent for σ output stability. 330 watts servo operation is able to oscillate over 30 million pulses with almost less than 1.0 per cent for σ output stability. Experimental and theoretical studies of various parameters influencing the laser performance will be continued with further investigations and future improvements. We have confidence that it will be possible for this laser to produce higher power with long gas life.

  1. Nonlinear femtosecond pump-probe spectroscopy using a power-encoded soliton delay line.

    PubMed

    Saint-Jalm, Sarah; Andresen, Esben Ravn; Bendahmane, Abdelkrim; Kudlinski, Alexandre; Rigneault, Hervé

    2016-01-01

    We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the difference in accumulated group delay between trajectories converts a fast power sweep into a fast delay sweep. We demonstrate the concept by performing transient absorption spectroscopy in a test sample and validate it against a conventional pump-probe setup.

  2. Thermal effects in high average power optical parametric amplifiers.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  3. Glass surface metal deposition with high-power femtosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Deng, Cheng; Bai, Shuang

    2016-12-01

    Using femtosecond fiber laser-based additive manufacturing (AM), metal powder is deposited on glass surface for the first time to change its surface reflection and diffuse its transmission beam. The challenge, due to mismatch between metal and glass on melting temperature, thermal expansion coefficient, brittleness, is resolved by controlling AM parameters such as power, scan speed, hatching, and powder thickness. Metal powder such as iron is successfully deposited and demonstrated functions such as diffusion of light and blackening effects.

  4. High power mid-IR OPCPA system pumped by a femtosecond Yb-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Rigaud, P.; Van de Walle, A.; Hanna, M.; Forget, N.; Guichard, F.; Zaouter, Y.; Guesmi, K.; Druon, F.; Georges, P.

    2017-02-01

    We describe an optical parametric chirped pulse amplifier (OPCPA) architecture built around a state of the art Yb-doped fiber femtosecond pump source delivering 300 fs 400 μ pulses at a repetition rate 125 kHz (50 W average power) and a central wavelength of 1030 nm. The short pump pulse duration compared to bulk Yb:YAG or Nd:YVO4 based systems results in a number of important advantages. First, it allows efficient seeding at 1550 nm using supercontinuum generation directly from the pump pulses in a bulk YAG crystal, resulting in extremely robust passive pump-signal synchronization. The short pump pulse duration also allows the use of millimeter to centimeter lengths of bulk materials to provide stretching and compression for the signal and idler, which minimizes the accumulation of higher-order spectral phase. Finally, the shorter pump pulse duration increases the damage peak intensity, permitting the use of shorter nonlinear crystals to perform the amplification, which increases the spectral bandwidth of the parametric process. Additional experiments are performed to sort out the phenomena that limit power scaling in MgO:PPLN crystals. The OPCPA stages are all operated in collinear geometry, allowing the use of both signal and idler without the introduction of angular chirp on the latter. These points result in the dual generation of 70 fs 23 μJ signal pulses at 1550 nm and 60 fs 10 μJ idler pulses at 3070 nm from a simple setup, with the added benefit of inherent CEP stability of the idler pulses.

  5. Design of a High Average Power Waveguide Window

    NASA Astrophysics Data System (ADS)

    Chojnacki, E.; Hays, T.; Kirchgessner, J.; Padamsee, H.; Cole, M.; Schultheiss, T.

    1997-05-01

    A study has been performed to design a waveguide vacuum window operating at 500 MHz capable of propagating >1 MW average power. This would extend current technology by about a factor of 2 in average power, made possible by advances in available ceramic size and quality. Self-matched and tuning-post-matched configurations were examined, as well as full-height and reduced-height waveguide cross sections. The two ceramics considered were aluminum oxide and beryllia oxide. Beryllia's greater thermal conductivity over alumina and its availability in large sizes with low loss tangent (<3 × 10-4) made it very attractive despite its tensile strength being lower than alumina's. The analyses to be presented comprise of obtaining satisfactory RF design using the computer code MAFIA, performing a perturbation calculation in MAFIA to obtain power deposition in the slightly lossy ceramic, feeding the power deposition data into the thermo-mechanical computer code ANSYS, then using ANSYS to determine ceramic operating temperature and mechanical stress. Another pertinent quantity obtained from MAFIA is the electric field profile throughout the window assembly. Results from numerous window configurations will be tabulated, plotted, and discussed.

  6. Optical Parametric Amplification for High Peak and Average Power

    SciTech Connect

    Jovanovic, Igor

    2001-11-26

    Optical parametric amplification is an established broadband amplification technology based on a second-order nonlinear process of difference-frequency generation (DFG). When used in chirped pulse amplification (CPA), the technology has been termed optical parametric chirped pulse amplification (OPCPA). OPCPA holds a potential for producing unprecedented levels of peak and average power in optical pulses through its scalable ultrashort pulse amplification capability and the absence of quantum defect, respectively. The theory of three-wave parametric interactions is presented, followed by a description of the numerical model developed for nanosecond pulses. Spectral, temperature and angular characteristics of OPCPA are calculated, with an estimate of pulse contrast. An OPCPA system centered at 1054 nm, based on a commercial tabletop Q-switched pump laser, was developed as the front end for a large Nd-glass petawatt-class short-pulse laser. The system does not utilize electro-optic modulators or multi-pass amplification. The obtained overall 6% efficiency is the highest to date in OPCPA that uses a tabletop commercial pump laser. The first compression of pulses amplified in highly nondegenerate OPCPA is reported, with the obtained pulse width of 60 fs. This represents the shortest pulse to date produced in OPCPA. Optical parametric amplification in {beta}-barium borate was combined with laser amplification in Ti:sapphire to produce the first hybrid CPA system, with an overall conversion efficiency of 15%. Hybrid CPA combines the benefits of high gain in OPCPA with high conversion efficiency in Ti:sapphire to allow significant simplification of future tabletop multi-terawatt sources. Preliminary modeling of average power limits in OPCPA and pump laser design are presented, and an approach based on cascaded DFG is proposed to increase the average power beyond the single-crystal limit. Angular and beam quality effects in optical parametric amplification are modeled

  7. Using Bayes Model Averaging for Wind Power Forecasts

    NASA Astrophysics Data System (ADS)

    Preede Revheim, Pål; Beyer, Hans Georg

    2014-05-01

    For operational purposes predictions of the forecasts of the lumped output of groups of wind farms spread over larger geographic areas will often be of interest. A naive approach is to make forecasts for each individual site and sum them up to get the group forecast. It is however well documented that a better choice is to use a model that also takes advantage of spatial smoothing effects. It might however be the case that some sites tends to more accurately reflect the total output of the region, either in general or for certain wind directions. It will then be of interest giving these a greater influence over the group forecast. Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles. Raftery et al. [1] show how BMA can be used for statistical post processing of forecast ensembles, producing PDFs of future weather quantities. The BMA predictive PDF of a future weather quantity is a weighted average of the ensemble members' PDFs, where the weights can be interpreted as posterior probabilities and reflect the ensemble members' contribution to overall forecasting skill over a training period. In Revheim and Beyer [2] the BMA procedure used in Sloughter, Gneiting and Raftery [3] were found to produce fairly accurate PDFs for the future mean wind speed of a group of sites from the single sites wind speeds. However, when the procedure was attempted applied to wind power it resulted in either problems with the estimation of the parameters (mainly caused by longer consecutive periods of no power production) or severe underestimation (mainly caused by problems with reflecting the power curve). In this paper the problems that arose when applying BMA to wind power forecasting is met through two strategies. First, the BMA procedure is run with a combination of single site wind speeds and single site wind power production as input. This solves the problem with longer consecutive periods where the input data

  8. 1-MHz high power femtosecond Yb-doped fiber chirped-pulse amplifier

    NASA Astrophysics Data System (ADS)

    Hu, Zhong-Qi; Yang, Pei-Long; Teng, Hao; Zhu, Jiang-Feng; Wei, Zhi-Yi

    2018-01-01

    A practical femtosecond polarization-maintaining Yb-doped fiber amplifier enabling 153 fs transform-limited pulse duration with 32 μJ pulse energy at 1 MHz repetition rate corresponding to a peak power of 0.21 GW is demonstrated. The laser system based on chirped-pulse amplification (CPA) technique is seeded by a dispersion managed, nonlinear polarization evolution (NPE) mode-locked oscillator with spectrum bandwidth of 31 nm at 1040 nm and amplified by three fiber pre-amplifying stages and a rod type fiber main amplifying stage. The laser works with beam quality of M2 of 1.3 and power stability of 0.63% (root mean square, RMS) over 24 hours will be stable sources for industrial micromachining, medical therapy and scientific research.

  9. Femtosecond Laser Eyewear Protection: Measurements and Precautions

    PubMed Central

    Stromberg, Christopher J.; Hadler, Joshua A.; Alberding, Brian G.; Heilweil, Edwin J.

    2018-01-01

    Ultrafast laser systems are becoming more widespread throughout the research and industrial communities yet eye protection for these high power, bright pulsed sources still require scrupulous characterization and testing before use. Femtosecond lasers, with pulses naturally possessing broad-bandwidth and high average power with variable repetition rate, can exhibit spectral side-bands and subtly changing center wavelengths, which may unknowingly affect eyewear safety protection. Pulse spectral characterization and power diagnostics are presented for a 80 MHz, Ti+3:Sapphire, ≈ 800 nm, ≈40 femtosecond oscillator system. Power and spectral transmission for 22 test samples are measured to determine whether they fall within manufacturer specifications. PMID:29353984

  10. Thermal effects in an ultrafast BiB3O6 optical parametric oscillator at high average powers

    SciTech Connect

    Petersen, T.; Zuegel, J. D.; Bromage, J.

    2017-08-15

    An ultrafast, high-average-power, extended-cavity, femtosecond BiB3O6 optical parametric oscillator was constructed as a test bed for investigating the scalability of infrared parametric devices. Despite the high pulse energies achieved by this system, the reduction in slope efficiency near the maximum-available pump power prompted the investigation of thermal effects in the crystal during operation. Furthermore, the local heating effects in the crystal were used to determine the impact on both phase matching and thermal lensing to understand limitations that must be overcome to achieve microjoule-level pulse energies at high repetition rates.

  11. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power.

    PubMed

    Rudin, B; Wittwer, V J; Maas, D J H C; Hoffmann, M; Sieber, O D; Barbarin, Y; Golling, M; Südmeyer, T; Keller, U

    2010-12-20

    High-power ultrafast lasers are important for numerous industrial and scientific applications. Current multi-watt systems, however, are based on relatively complex laser concepts, for example using additional intracavity elements for pulse formation. Moving towards a higher level of integration would reduce complexity, packaging, and manufacturing cost, which are important requirements for mass production. Semiconductor lasers are well established for such applications, and optically-pumped vertical external cavity surface emitting lasers (VECSELs) are most promising for higher power applications, generating the highest power in fundamental transverse mode (>20 W) to date. Ultrashort pulses have been demonstrated using passive modelocking with a semiconductor saturable absorber mirror (SESAM), achieving for example 2.1-W average power, sub-100-fs pulse duration, and 50-GHz pulse repetition rate. Previously the integration of both the gain and absorber elements into a single wafer was demonstrated with the MIXSEL (modelocked integrated external-cavity surface emitting laser) but with limited average output power (<200 mW). We have demonstrated the power scaling concept of the MIXSEL using optimized quantum dot saturable absorbers in an antiresonant structure design combined with an improved thermal management by wafer removal and mounting of the 8-µm thick MIXSEL structure directly onto a CVD-diamond heat spreader. The simple straight cavity with only two components has generated 28-ps pulses at 2.5-GHz repetition rate and an average output power of 6.4 W, which is higher than for any other modelocked semiconductor laser.

  12. Stand-off detection and classification of CBRNe using a Lidar system based on a high power femtosecond laser

    NASA Astrophysics Data System (ADS)

    Izawa, Jun; Yokozawa, Takeshi; Kurata, Takao; Yoshida, Akihiro; Mastunaga, Yasushi; Somekawa, Toshihiro; Eto, Shuzo; Manago, Naohiro; Horisawa, Hideyuki; Yamaguchi, Shigeru; Fujii, Takashi; Kuze, Hiroaki

    2014-10-01

    We propose a stand-off system that enables detection and classification of CBRNe (Chemical, Biological, Radioactive, Nuclear aerosol and explosive solids). The system is an integrated lidar using a high-power (terawatt) femtosecond laser. The detection and classification of various hazardous targets with stand-off distances from several hundred meters to a few kilometers are achieved by means of laser-induced breakdown spectroscopy (LIBS) and two-photon fluorescence (TPF) techniques. In this work, we report on the technical considerations on the system design of the present hybrid lidar system consisting of a nanosecond laser and a femtosecond laser. Also, we describe the current progress in our laboratory experiments that have demonstrated the stand-off detection and classification of various simulants. For the R and N detection scheme, cesium chloride aerosols have successfully been detected by LIBS using a high-power femtosecond laser. For the B detection scheme, TPF signals of organic aerosols such as riboflavin have clearly been recorded. In addition, a compact femtosecond laser has been employed for the LIBS classification of organic plastics employed as e-simulants.

  13. Average Power and Brightness Scaling of Diamond Raman Lasers

    DTIC Science & Technology

    2012-01-07

    approximately 1 W . This report describes investigations into order‐of‐magnitude power scaling of diamond Raman lasers. The investigations focus...on 1064 nm beam conversion of 50 W lasers in the ?external cavity? Raman cavity configuration in both pulsed and continuous wave modes of operation...For pulsed operation, output powers up to 16 W are demonstrated with 40‐50% conversion efficiency from a compact acousto‐optically Q‐

  14. High average power magnetic modulator for metal vapor lasers

    DOEpatents

    Ball, Don G.; Birx, Daniel L.; Cook, Edward G.; Miller, John L.

    1994-01-01

    A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

  15. High Average Current Electron Guns for High-Power FELs

    DTIC Science & Technology

    2009-12-09

    FELs 10 Appendix B: Thermionic Injectors 11 Appendix C: Grid Fields and Bunch Emittance 13 Appendix D: PARMELA Simulation of an IOT Gun 16...Inductive Output Tube ( IOT ) amplifiers [32-34] and can generate average currents of ~1 A, peak currents of ~ 5-10 A, cathode-anode voltages of ~ 35...of grid wires, centered at z = zG and x = ±a, ±3a, ±5a, ..., is given by <D(JC,Z) = - X n = ±l.±3. Fa(x,z) Gn(x,z) ( C3 ) where *0 = (1 / 2

  16. Development of High Average Power Lasers for the Photon Collider

    SciTech Connect

    Gronberg, Jeff; Stuart, Brent; Seryi, Andrei; /SLAC

    2012-07-05

    The laser and optics system for the photon collider seeks to minimize the required laser power by using an optical stacking cavity to recirculate the laser light. An enhancement of between 300 to 400 is desired. In order to achieve this the laser pulses which drive the cavity must precisely match the phase of the pulse circulating within the cavity. We report on simulations of the performance of a stacking cavity to various variations of the drive laser in order to specify the required tolerances of the laser system.

  17. Energy stability in a high average power FEL

    SciTech Connect

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-12-31

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples.

  18. Hydrogen triplet laser as a high average-power laser

    NASA Astrophysics Data System (ADS)

    Barr, Thomas A., Jr.; McKnight, William B.

    1993-05-01

    In 1967, Herzberg predicted the existence of the hydrogen triplet series lasers and noted that the far infrared laser ((Delta) V equals 0) transitions should produce very strong laser action. A laser in the hydrogen triplet spectrum was discovered and reported by Barr and McKnight in 1982. Dabrowski and Herzberg confirmed the spectroscopic assignments of the laser lines, and restated that there should be a strong laser on the triplet transitions. The experimental work was strictly oriented to discovering the existence of these lasers. Thus the deductions we make concerning power capability are limited by the type of data available. The experiments show that: (1) the laser is on the triplet series lines as stated above, (2) the three lines start emission within a fraction of a microsecond of one another and terminate at approximately the same time, and (3) the lines seem to be self terminating.

  19. Development of High Average Power Lasers for the Photon Collider

    SciTech Connect

    Gronberg, J; Stuart, B; Seryi, A

    2010-05-17

    The laser and optics system for the photon collider seeks to minimize the required laser power by using an optical stacking cavity to recirculate the laser light. An enhancement of between 300 to 400 is desired. In order to achieve this the laser pulses which drive the cavity must precisely match the phase of the pulse circulating within the cavity. We report on simulations of the performance of a stacking cavity to various variations of the drive laser in order to specify the required tolerances of the laser system. We look at the behavior of a simple four mirror cavity as shown in Fig. 1. As a unit input pulse is applied to the coupling mirror a pulse begins to build up in the interior of the cavity. If the drive pulses and the interior pulse arrive at the coupling mirror in phase the interior pulse will build up to a larger value. The achievable enhancement is a strong function of the reflectivity of the cavities. The best performance if attained when the reflectivities of the input coupler is matched to the internal reflectivities of the cavity. In Fig. 2 we show the build up of the internal pulse after a certain number of drive pulses, assuming the input coupler has a reflectivity of 0.996 and the interior mirrors have 0.998 reflectivity. With these parameters the cavity will reach an enhancement factor of 450. Reducing the coupler reflectivity gives a faster cavity loading rate but with a reduced enhancement of the internal pulse. The enhancement as a function of coupler reflectivity and total internal cavity reflectivity is shown in Fig. 3. The best enhancement is achieved when the coupling mirror is matched to the reflectivity of the cavity. A coupler reflectivity just below the internal cavity reflectivity minimizes the required laser power.

  20. Peak-power scaling of femtosecond Yb:Lu2O3thin-disk lasers.

    PubMed

    Graumann, I J; Diebold, A; Alfieri, C G E; Emaury, F; Deppe, B; Golling, M; Bauer, D; Sutter, D; Kränkel, C; Saraceno, C J; Phillips, C R; Keller, U

    2017-09-18

    We present a high-peak-power SESAM-modelocked thin-disk laser (TDL) based on the gain material Yb-doped lutetia (Yb:Lu 2 O 3 ), which exceeds a peak-power of 10 MW for the first time. We generate pulses as short as 534 fs with an average power of 90 W and a peak power of 10.1 MW, and in addition a peak power as high as 12.3 MW with 616-fs pulses and 82-W average power. The center lasing wavelength is 1033 nm and the pulse repetition rates are around 10 MHz. We discuss and explain the current limitations with numerical models, which show that the current peak power is limited in soliton modelocking by the interplay of the gain bandwidth and the induced absorption in the SESAM with subsequent thermal lensing effects. We use our numerical model which is validated by the current experimental results to discuss a possible road map to scale the peak power into the 100-MW regime and at the same time reduce the pulse duration further to sub-200 fs. We consider Yb:Lu 2 O 3 as currently the most promising gain material for the combination of high peak power and short pulse duration in the thin-disk-laser geometry.

  1. High-Average Power Broadband 18-Beam Klystron Circuit and Collector Designs

    DTIC Science & Technology

    2008-04-01

    APR 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE High-average Power Broadband 18-beam Klystron Circuit and...THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 20.3: High-average Power Broadband 18-beam Klystron Circuit...collector designs for a high-average power S-band multiple-beam klystron are presented. The klystron will be powered by the recently completed 41.6 A, 42

  2. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers.

    PubMed

    Alessi, David A; Rosso, Paul A; Nguyen, Hoang T; Aasen, Michael D; Britten, Jerald A; Haefner, Constantin

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. Combining this technique with low absorption multilayer dielectric gratings developed in our group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.

  3. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    SciTech Connect

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  4. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    SciTech Connect

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.; Aasen, Michael D.; Britten, Jerald A.; Haefner, Constantin

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in our group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.

  5. Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier

    SciTech Connect

    Zhao, Zhi; Sheehy, Brian; Minty, Michiko

    2017-03-29

    Here, we report on the generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier. In an Yb-doped fiber master-oscillator-power-amplifier system, 2.3-ps 704 MHz pulses are first amplified in small-core fibers and then in large-mode-area rod fibers to produce 270 W average infrared power with a high polarization extinction ratio and diffraction-limited beam quality. By carrying out frequency doubling in a lithium triborate (LBO) crystal, 180 W average green power is generated. To the best of our knowledge, this is the highest average green power achieved in fiber-based laser systems.

  6. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    SciTech Connect

    Carlin, P.W.

    1996-12-01

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases considered include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.

  7. Investigation of the reaction D(γ, n)H near the threshold by means of powerful femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Tsymbalov, I. N.; Volkov, R. V.; Eremin, N. V.; Ivanov, K. A.; Nedorezov, V. G.; Paskhalov, A. A.; Polonskij, A. L.; Savel'ev, A. B.; Sobolevskij, N. M.; Turinge, A. A.; Shulyapov, S. A.

    2017-05-01

    The possibility of studying photonuclear reactions near the threshold by means of powerful femtosecond lasers is explored by considering the example of deuteron photodisintegration. The respective experiment was performed by employing the terawatt femtosecond laser facility of the International Laser Center at Moscow State University. The radiation from this facility is characterized by a pulse energy of up to 50 mJ, a duration of 50 fs, a repetition rate of 10 Hz, and a wavelength of 805 nm. This provides a power above 1018 W/cm2. Intense relativistic-electron and photon beams of energy up to 10 MeV were obtained after the optimization of relevant experimental parameters, including the focus of the laser beam, its time structure, and the choice of target. The use of these beams made it possible to study neutron generation in heavy water, to measure the time of neutron moderation, and to determine the detection efficiency. The experimental data obtained in this way are in qualitative agreement with the results of simulations based on the GEANT-4 and LOENT code packages and indicate that it is possible to create a neutron source on the basis of the aforementioned laser. The cross section measured for deuteron photodisintegration complies with theoretical estimates available in the literature.

  8. RF Design of a High Average Beam-Power SRF Electron Source

    SciTech Connect

    Sipahi, Nihan; Biedron, Sandra; Gonin, Ivan

    2016-06-01

    There is a significant interest in developing high-average power electron sources, particularly in the area of electron sources integrated with Superconducting Radio Frequency (SRF) systems. For these systems, the electron gun and cathode parts are critical components for stable intensity and high-average powers. In this initial design study, we will present the design of a 9-cell accelerator cavity having a frequency of 1.3 GHz and the corresponding field optimization studies.

  9. Technical options for high average power free electron milimeter-wave and laser devices

    NASA Technical Reports Server (NTRS)

    Swingle, James C.

    1989-01-01

    Many of the potential space power beaming applications require the generation of directed energy beams with respectable amounts of average power (MWs). A tutorial summary is provided here on recent advances in the laboratory aimed at producing direct conversion of electrical energy to electromagnetic radiation over a wide spectral regime from microwaves to the ultraviolet.

  10. High-average-power operation of a pulsed Raman fiber amplifier at 1686 nm.

    PubMed

    Yao, Weichao; Chen, Bihui; Zhang, Jianing; Zhao, Yongguang; Chen, Hao; Shen, Deyuan

    2015-05-04

    We report on high-average-power operation of a pulsed Raman fiber amplifier at ~1686 nm which cannot be covered by rare-earth-doped fiber lasers. The Raman fiber amplifier was pumped by a home-made 1565.2 nm Q-switched Er,Yb fiber laser and worked at a repetition frequency of 184 kHz. With 0.8 km Raman fiber, 4.4 W of average output power at the 1st order Stokes wavelength of 1686.5 nm was obtained for launched pump power of 16.2 W, corresponding to an optical-to-optical conversion efficiency of 27.2%. Further increasing the pump power, high-order Stokes waves grew gradually, resulting in a total output power of 6.7 W at the 19.2 W launched pump power.

  11. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    SciTech Connect

    Alessi, D.

    2016-11-01

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new design has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to

  12. Performance and production requirements for the optical components in a high-average-power laser system

    SciTech Connect

    Chow, R.; Doss, F.W.; Taylor, J.R.; Wong, J.N.

    1999-07-02

    Optical components needed for high-average-power lasers, such as those developed for Atomic Vapor Laser Isotope Separation (AVLIS), require high levels of performance and reliability. Over the past two decades, optical component requirements for this purpose have been optimized and performance and reliability have been demonstrated. Many of the optical components that are exposed to the high power laser light affect the quality of the beam as it is transported through the system. The specifications for these optics are described including a few parameters not previously reported and some component manufacturing and testing experience. Key words: High-average-power laser, coating efficiency, absorption, optical components

  13. Time Averaged Transmitter Power and Exposure to Electromagnetic Fields from Mobile Phone Base Stations

    PubMed Central

    Bürgi, Alfred; Scanferla, Damiano; Lehmann, Hugo

    2014-01-01

    Models for exposure assessment of high frequency electromagnetic fields from mobile phone base stations need the technical data of the base stations as input. One of these parameters, the Equivalent Radiated Power (ERP), is a time-varying quantity, depending on communication traffic. In order to determine temporal averages of the exposure, corresponding averages of the ERP have to be available. These can be determined as duty factors, the ratios of the time-averaged power to the maximum output power according to the transmitter setting. We determine duty factors for UMTS from the data of 37 base stations in the Swisscom network. The UMTS base stations sample contains sites from different regions of Switzerland and also different site types (rural/suburban/urban/hotspot). Averaged over all regions and site types, a UMTS duty factor F ≈ 0.32 ± 0.08 for the 24 h-average is obtained, i.e., the average output power corresponds to about a third of the maximum power. We also give duty factors for GSM based on simple approximations and a lower limit for LTE estimated from the base load on the signalling channels. PMID:25105551

  14. High energy, high average and peak power phosphate-glass fiber amplifiers for 1micron band

    NASA Astrophysics Data System (ADS)

    Akbulut, M.; Miller, A.; Wiersma, K.; Zong, J.; Rhonehouse, D.; Nguyen, D.; Chavez-Pirson, A.

    2014-03-01

    Heavy doping of common silica gain fibers is not practical; therefore long fibers are required for efficient amplification (usually 5-10m). This is undesirable due to nonlinearities that grow with fiber length. In contrast, NP Photonics phosphate-glass based fibers can be heavily doped without any side-effects, and hence can provide very high gain in short lengths (less than 0.5m). This enables an ideal pulsed fiber amplifier for a MOPA system that maximizes the energy extraction and minimizes the nonlinearities. We demonstrate 1W average power, 200μJ energy, and >10kW peak power from a SBS-limited all-fiber MOPA system at 1550nm, and 32W average power, 90μJ energy, and 45kW peak power from a SRS and SPM limited all-fiber MOPA system at 1064 nm. These results were limited by the seed and pump sources.

  15. Average power scaling of UV excimer lasers drives flat panel display and lidar applications

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Delmdahl, Ralph F.; Paetzel, Rainer

    2012-03-01

    Average power scaling of 308nm excimer lasers has followed an evolutionary path over the last two decades driven by diverse industrial UV laser microprocessing markets. Recently, a new dual-oscillator and beam management concept for high-average power upscaling of excimer lasers has been realized, for the first time enabling as much as 1.2kW of stabilized UV-laser average output power at a UV wavelength of 308nm. The new dual-oscillator concept enables low temperature polysilicon (LTPS) fabrication to be extended to generation six glass substrates. This is essential in terms of a more economic high-volume manufacturing of flat panel displays for the soaring smartphone and tablet PC markets. Similarly, the cost-effective production of flexible displays is driven by 308nm excimer laser power scaling. Flexible displays have enormous commercial potential and can largely use the same production equipment as is used for rigid display manufacturing. Moreover, higher average output power of 308nm excimer lasers aids reducing measurement time and improving the signal-to-noise ratio in the worldwide network of high altitude Raman lidar stations. The availability of kW-class 308nm excimer lasers has the potential to take LIDAR backscattering signal strength and achievable altitude to new levels.

  16. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    SciTech Connect

    Alessi, D.

    2016-11-01

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new designmore » has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser

  17. High Average Power Diode Pumped Solid State Lasers: Power Scaling With High Spectral and Spatial Coherence

    DTIC Science & Technology

    2009-03-30

    power. The PPSLT chip was placed in a home-made mount whose temperature was controlled with a thermo- electric cooler (TEC) and monitored with a...main optical damage mechanisms need to be assessed when dealing with cw lasers, namely (1) optical surface damage arising from the high electric ...Yuen, H. P. Bae, M. A. Wistey, A. Moto , and J. S. Harris Jr., "Enhanced Luminescence in GaInNAsSb Quantum Wells Through Variation of the Arsenic and

  18. Noise characteristics of high power fiber-laser pumped femtosecond optical parametric generation.

    PubMed

    Fan, Jintao; Chen, Wei; Gu, Chenglin; Song, Youjian; Chai, Lu; Wang, Chingyue; Hu, Minglie

    2017-10-02

    We study, both numerically and experimentally, the relative intensity noise (RIN) and timing jitter characteristics of optical parametric generation (OPG) process in MgO-doped periodically poled LiNbO 3 (MgO:PPLN) pumped by fiber femtosecond laser. We directly characterize the RIN, and measure timing jitter spectral density of the OPG process based on the balanced optical cross-correlator (BOC) technique for the first time as well, which are both in a fairly good agreement with numerical simulation. Both the numerical and experimental study reveals that OPG can suffer from a smaller intensity fluctuation but a lager temporal jitter when it is driven into saturation. Furthermore, we demonstrate that with a 30 mW CW diode laser injection seeding the OPG output results in superior noise performance compared to the vacuum fluctuations seeded OPG.

  19. 2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers

    NASA Astrophysics Data System (ADS)

    Mukhin, Ivan; Voitovich, Alexandr; Palashov, Oleg; Khazanov, Efim

    2009-05-01

    A Faraday isolator with one magneto-optical element providing 31 dB isolation ratio for 330 W average power lasers was produced and investigated in an experiment. These remarkable parameters were achieved by increasing the magnetic field and using a [0 0 1] oriented TGG crystal.

  20. Image registration and averaging of low laser power two-photon fluorescence images of mouse retina

    PubMed Central

    Alexander, Nathan S.; Palczewska, Grazyna; Stremplewski, Patrycjusz; Wojtkowski, Maciej; Kern, Timothy S.; Palczewski, Krzysztof

    2016-01-01

    Two-photon fluorescence microscopy (TPM) is now being used routinely to image live cells for extended periods deep within tissues, including the retina and other structures within the eye . However, very low laser power is a requirement to obtain TPM images of the retina safely. Unfortunately, a reduction in laser power also reduces the signal-to-noise ratio of collected images, making it difficult to visualize structural details. Here, image registration and averaging methods applied to TPM images of the eye in living animals (without the need for auxiliary hardware) demonstrate the structural information obtained with laser power down to 1 mW. Image registration provided between 1.4% and 13.0% improvement in image quality compared to averaging images without registrations when using a high-fluorescence template, and between 0.2% and 12.0% when employing the average of collected images as the template. Also, a diminishing return on image quality when more images were used to obtain the averaged image is shown. This work provides a foundation for obtaining informative TPM images with laser powers of 1 mW, compared to previous levels for imaging mice ranging between 6.3 mW [PalczewskaG., Nat Med. 20, 785 (2014)24952647 SharmaR., Biomed. Opt. Express 4, 1285 (2013)24009992]. PMID:27446697

  1. Development of a high average power, CW, MM-wave FEL

    SciTech Connect

    Ramian, G.

    1995-12-31

    Important operational attributes of FELs remain to be demonstrated including high average power and single-frequency, extremely narrow-linewidth lasing. An FEL specifically designed to achieve these goals for scientific research applications is currently under construction. Its most salient feature is operation in a continuous-wave (CW) mode with an electrostatically generated, high-current, recirculating, DC electron beam.

  2. High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system.

    PubMed

    Liu, Jiang; Wang, Qian; Wang, Pu

    2012-09-24

    We report a stable highly-integrated high power picosecond thulium-doped all-fiber MOPA system without using conventional chirped pulse amplification technique. The master oscillator was passively mode-locked by a SESAM to generate average power of 15 mW at a fundamental repetition rate of 103 MHz in a short linear cavity, and a uniform narrow bandwidth FBG is employed to stabilize the passively mode-locked laser operation. Two-stage double-clad thulium-doped all-fiber amplifiers were used directly to boost average power to 20.7 W. The laser center wavelength was 1962.8 nm and the pulse width was 18 ps. The single pulse energy and peak-power after the amplication were 200 nJ and 11.2 kW respectively. To the best of our knowledge, this is the highest average power ever reported for a picosecond thulium-doped all-fiber MOPA system.

  3. Non-chain pulsed DF laser with an average power of the order of 100 W

    NASA Astrophysics Data System (ADS)

    Pan, Qikun; Xie, Jijiang; Wang, Chunrui; Shao, Chunlei; Shao, Mingzhen; Chen, Fei; Guo, Jin

    2016-07-01

    The design and performance of a closed-cycle repetitively pulsed DF laser are described. The Fitch circuit and thyratron switch are introduced to realize self-sustained volume discharge in SF6-D2 mixtures. The influences of gas parameters and charging voltage on output characteristics of non-chain pulsed DF laser are experimentally investigated. In order to improve the laser power stability over a long period of working time, zeolites with different apertures are used to scrub out the de-excitation particles produced in electric discharge. An average output power of the order of 100 W was obtained at an operating repetition rate of 50 Hz, with amplitude difference in laser pulses <8 %. And under the action of micropore alkaline zeolites, the average power fell by 20 % after the laser continuing working 100 s at repetition frequency of 50 Hz.

  4. Tomographic Analysis of Anterior and Posterior and Total Corneal Refractive Power Changes After Femtosecond Laser-Assisted Keratotomy.

    PubMed

    Löffler, Franziska; Böhm, Myriam; Herzog, Michael; Petermann, Kerstin; Kohnen, Thomas

    2017-08-01

    To analyze the effect of penetrating femtosecond laser-assisted keratotomy (pFLAK) during laser lens surgery on anterior and posterior corneal astigmatism and total corneal refractive power (TCRP) astigmatism (CA ant , CA post , CA TCRP ) measured with Scheimpflug tomography. Prospective, interventional case series. This institutional study included 27 eyes of 23 patients (aged 65 ± 8 years) with low-to-moderate CA TCRP determined with Scheimpflug tomography (Pentacam HR; Oculus, Wetzlar, Germany) after penetrating femtosecond laser-assisted keratotomy (pFLAK) and laser lens surgery. The CA ant , CA post , and CA TCRP were determined before and 1 and 3 months after surgery. Vector analysis according to the Alpins method was used to calculate surgically induced astigmatism (SIA). The mean preoperative CA ant (0.97 ± 0.30 diopter [D]) was significantly reduced to 0.63 ± 0.34 D (P < .001). SIA ant was 0.71 ± 0.37 D. The CA post showed no significant change, from preoperative 0.26 ± 0.12 D to 0.26 ± 0.10 D postoperatively (P = .625). In line with this finding, SIA post was low (0.12 ± 0.07 D). The CA TCRP showed similar results as CA ant . pFLAKs planned according to Scheimpflug-based CA TCRP result in a significant reduction of the CA ant and CA TCRP , but do not affect the posterior corneal curvature significantly, as measured by Scheimpflug tomography. Further research is required to develop a new valid nomogram for laser-assisted lens surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. New transient absorption observed in the spectrum of colloidal CdSe nanoparticles pumped with high-power femtosecond pulses

    SciTech Connect

    Burda, C.; Link, S.; Green, T.C.

    1999-12-09

    The power dependence of the transient absorption spectrum of CdSe nanoparticle colloids with size distribution of 4.0 {+-} 0.4 nm diameter is studied with femtosecond pump-probe techniques. At the lowest pump laser power, the absorption bleaching (negative spectrum) characteristic of the exciton spectrum is observed with maxima at 560 and 480 nm. As the pump laser power increases, two new transient absorptions at 510 and 590 nm with unresolved fast rise (<100 fs) and long decay times ({much{underscore}gt}150 ps) are observed. The energy of each of the positive absorption is red shifted from that of the bleach bands by {approximately}120more » MeV. The origin of this shift is discussed in terms of the effect of the internal electric field of the many electron-hole pairs formed within the quantum dot at the high pump intensity, absorption from a metastable excited state or the formation of biexcitons.« less

  6. High-efficiency, high-average-power, CW Yb:YAG zigzag slab master oscillator power amplifier at room temperature.

    PubMed

    Chen, Xiaoming; Xu, Liu; Hu, Hao; Zhou, Tangjian; Sun, Yinhong; Jiang, Hao; Lei, Jun; Lv, Wenqiang; Su, Hua; Shi, Yong; Li, Mi; Wu, Yingchen; Yao, Zhenyu; Zhao, Na; Xu, Xiaoxiao; Gao, Qingsong; Wang, Xiaojun; Tang, Chun

    2016-10-17

    We demonstrate a high-efficiency, high-average-power, CW master oscillator power amplifier based on a conduction-cooled, end-pumped Yb:YAG slab architecture at room temperature (RT). Firstly, the CW amplification property is theoretically analyzed based on the kinetics model for Yb:YAG. To realize high-efficiency laser amplification extraction for RT Yb:YAG, not only intense pump but also a high-power seed laser is of great importance. Experimentally, a composite Yb:YAG crystal slab with three doped and two un-doped segments symmetrically is employed as the gain medium, which is end-pumped by two high-power, 940-nm diode lasers. A high-power, narrow-spectral-width, 1030-nm fiber seed laser then double passes the composite slab to realize efficient power amplification. For 0.8-kW seed input, maximum output power of 3.54 kW is obtained at 6.7 kW of pump power, with the optical conversion efficiency of 41% and the highest slope efficiency of 59%. To the best of our knowledge, this is the highest power and efficiency reported for Yb:YAG lasing at RT except thin-disk lasers.

  7. High-average-power frequency doubling of copper vapor lasers for materials processing

    SciTech Connect

    Molander, W.A.

    1994-12-31

    High-average-power ultraviolet (UV) radiation has a wide range of applications of interest to the ISAM program. In the electronics industry, some potential applications are deep-UV photolithography and multichip module production. A variety of polymer processing applications using UV are also under development. New isotope separation missions, such as formaldehyde photodissociation to produce carbon and oxygen isotopes for the medical industry, will require high-power, tunable UV radiation. The practical realization of these applications requires a reliable, cost-effective source of UV. The ISAM program has achieved significant progress towards this goal, demonstrating 9.0 W. at 255.3 nm by frequency doubling the greenmore » (510.6-nm) line of a copper vapor laser. This is believed to be the highest average power ever reported for harmonic generation in the UV. Frequency-doubled copper lasers will be directly applicable to some of the missions mentioned above, but the methods used here are generally applicable to high-average-power UV second-harmonic generation for a variety of sources, including solid-state lasers and dye lasers.« less

  8. Power-frequency electric fields averaged over the body surfaces of grounded humans and animals

    SciTech Connect

    Kaune, W.T.

    1981-01-01

    Calculated electric-field strengths averaged over the body surfaces of grounded humans, swine, rats, horses, and cattle exposed to vertical, uniform, power-frequency electric fields are presented. To produce the same average fields over the body surfaces of grounded animals, as that experienced by a grounded man exposed to an unperturbed vertical field of 10 kV/m, the following unperturbed fields are required: swine, 19 kV/m; rat, 37 kV/m; horse, 18 kV/m; cow, 18 kV/m.

  9. Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier.

    PubMed

    Schulz, M; Riedel, R; Willner, A; Düsterer, S; Prandolini, M J; Feldhaus, J; Faatz, B; Rossbach, J; Drescher, M; Tavella, F

    2012-02-27

    An Yb:YAG thin-disk multipass laser amplifier system was developed operating in a 10 Hz burst operation mode with 800 µs burst duration and 100 kHz intra-burst repetition rate. Methods for the suppression of parasitic amplified spontaneous emission are presented. The average output pulse energy is up to 44.5 mJ and 820 fs compressed pulse duration. The average power of 4.45 kW during the burst is the highest reported for this type of amplifier.

  10. 28W average power hydrocarbon-free rubidium diode pumped alkali laser.

    PubMed

    Zweiback, Jason; Krupke, William F

    2010-01-18

    We present experimental results for a high-power diode pumped hydrocarbon-free rubidium laser with a scalable architecture. The laser consists of a liquid cooled, copper waveguide which serves to both guide the pump light and to provide a thermally conductive surface near the gain volume to remove heat. A laser diode stack, with a linewidth narrowed to approximately 0.35 nm with volume bragg gratings, is used to pump the cell. We have achieved 24W average power output using 4 atmospheres of naturally occurring helium ((4)He) as the buffer gas and 28W using 2.8 atmospheres of (3)He.

  11. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    PubMed Central

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-01-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo. PMID:23907528

  12. Average reflected power from a one-dimensional slab of discrete scatterers

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Lang, Roger H.

    1990-01-01

    Reflection from a one-dimensional random medium of discrete scatterers is considered. The discrete scattering medium is modeled by a Poisson impulse process with concentration lambda. By employing the Markov property of the Poisson impulse process, an exact functional integro-differential equation of the Kolmogorov-Feller type is found for the average reflected power. Approximate solutions to this equation are obtained by regular perturbation and two variable expansion techniques in the limit of small lambda. The regular perturbation results is valid for small slab thicknesses, while the two-variable result is uniformly valid for any thickness. The two-variable result shows that as the slab size becomes infinite all of the incident power is reflected on the average.

  13. The use of induction linacs with nonlinear magnetic drive as high average power accelerators

    NASA Astrophysics Data System (ADS)

    Birx, D. L.; Cook, E. G.; Hawkins, S. A.; Newton, M. A.; Poor, S. E.; Reginato, L. L.; Schmidt, J. A.; Smith, M. W.

    1985-05-01

    The marriage of induction linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/m, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator is under construction at Lawrence Livermore National Laboratory (LLNL) to allow us to demonstrate some of these concepts. Progress on this project is reported here.

  14. High-index asymptotics of spherical Bessel products averaged with modulated Gaussian power laws

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2014-12-01

    Bessel integrals of type are investigated, where the kernel g( k) is a modulated Gaussian power-law distribution , and the jl ( m) are multiple derivatives of spherical Bessel functions. These integrals define the multipole moments of Gaussian random fields on the unit sphere, arising in multipole fits of temperature and polarization power spectra of the cosmic microwave background. Two methods allowing efficient numerical calculation of these integrals are presented, covering Bessel indices l in the currently accessible multipole range 0 ≤ l ≤ 104 and beyond. The first method is based on a representation of spherical Bessel functions by Lommel polynomials. Gaussian power-law averages can then be calculated in closed form as finite Hankel series of parabolic cylinder functions, which allow high-precision evaluation. The second method is asymptotic, covering the high- l regime, and is applicable to general distribution functions g( k) in the integrand; it is based on the uniform Nicholson approximation of the Bessel derivatives in conjunction with an integral representation of squared Airy functions. A numerical comparison of these two methods is performed, employing Gaussian power laws and Kummer distributions to average the Bessel products.

  15. Efficient, high repetition-rate femtosecond blue source using a compact Cr:LiSAF laser.

    PubMed

    Agate, Ben; Kemp, A; Brown, C; Sibbett, W

    2002-08-12

    We present a practical route to designing a portable femtosecond blue light source that is rugged, compact and battery-powered. An opticaloptical second-harmonic generation (SHG) efficiency of 30% is reported using a diode-pumped, femtosecond Cr:LiSAF laser requiring only ~1.2W of electrical drive. 12mW of blue average power is generated using a 3mm KNbO3 crystal in a simple, single-pass extracavity geometry. The corresponding electrical-blue efficiency of 1% is, to our knowledge, the highest reported efficiency of any femtosecond blue source. Despite conditions of large group velocity mismatch, we show that the temporally-broadened blue pulses remain well within the femtosecond regime, at ~540fs.

  16. Intensity noise reduction of a high-power nonlinear femtosecond fiber amplifier based on spectral-breathing self-similar parabolic pulse evolution

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Liu, Bowen; Song, Youjian; Hu, Minglie

    2016-04-01

    We report on a simple passive scheme to reduce the intensity noise of high-power nonlinear fiber amplifiers by use of the spectral-breathing parabolic evolution of the pulse amplification with an optimized negative initial chirp. In this way, the influences of amplified spontaneous emission (ASE) on the amplifier intensity noise can be efficiently suppressed, owing to the lower overall pulse chirp, shorter spectral broadening distance, as well as the asymptotic attractive nature of self-similar pulse amplification. Systematic characterizations of the relative intensity noise (RIN) of a free-running nonlinear Yb-doped fiber amplifier are performed over a series of initial pulse parameters. Experiments show that the measured amplifier RIN increases respect to the decreased input pulse energy, due to the increased amount of ASE noise. For pulse amplification with a proper negative initial chirp, the increase of RIN is found to be smaller than with a positive initial chirp, confirming the ASE noise tolerance of the proposed spectral-breathing parabolic amplification scheme. At the maximum output average power of 27W (25-dB amplification gain), the incorporation of an optimum negative initial chirp (-0.84 chirp parameter) leads to a considerable amplifier root-mean-square (rms) RIN reduction of ~20.5% (integrated from 10 Hz to 10 MHz Fourier frequency). The minimum amplifier rms RIN of 0.025% (integrated from 1 kHz to 5 MHz Fourier frequency) is obtained along with the transform-limited compressed pulse duration of 55fs. To our knowledge, the demonstrated intensity noise performance is the lowest RIN level measured from highpower free-running femtosecond fiber amplifiers.

  17. Crossatron switch as thyratron replacement in high repetition rate, high average power modulators

    NASA Astrophysics Data System (ADS)

    Sullivan, J. S.

    1988-06-01

    The Crossatron is a cold cathode, low pressure, gas discharge switch with opening and closing capabilities. Due to its cold cathode operation, the Crossatron may offer lifetime advantages compared to the hydrogen thyratron. Unfortunately, little information regarding Crossatron lifetime and performance in high repetition rate, high average power, pulse modulators exists. Four prototype Crossatron devices, fabricated by Hughes Aircraft, were obtained to evaluate their performance and lifetime in high repetition rate, high average power, pulse modulators that had previously been equipped with hydrogen thyratrons. The prototype Crossatrons were evaluated over a range of operating parameters. Various grid drive, keep alive power levels and triggering schemes were employed in the tests. Switch parameters such as trigger time, anode fall time, jitter, recovery time, peak di/dt, switch efficiency, and the gas pumping effect of the discharge were observed. One Crossatron prototype was also subjected to lifetime tests that accumulated tens of billions of pulses. Lifetime data will be compared to various thyratron models tested similarly.

  18. Generation of Hermite-Gaussian modes of high-power femtosecond laser radiation using binary-phase diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Larkin, A. S.; Pushkarev, D. V.; Degtyarev, S. A.; Khonina, S. N.; Savel'ev, A. B.

    2016-08-01

    We present the results of experiments on generation of Hermite-Gaussian modes up to the third order inclusive using binary-phase diffractive optical elements (DOEs) illuminated by subterawatt femtosecond laser pulses. We perform a compariosn of the mode formation using DOEs designed by the kinoform method and the fractional coding technique, when the DOEs are illuminated by both femtosecond radiation and cw laser radiation at close wavelengths.

  19. Method and system for modulation of gain suppression in high average power laser systems

    DOEpatents

    Bayramian, Andrew James [Manteca, CA

    2012-07-31

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

  20. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  1. A High-Average-Power Free Electron Laser for Microfabrication and Surface Applications

    NASA Technical Reports Server (NTRS)

    Dylla, H. F.; Benson, S.; Bisognano, J.; Bohn, C. L.; Cardman, L.; Engwall, D.; Fugitt, J.; Jordan, K.; Kehne, D.; Li, Z.; hide

    1995-01-01

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt ultraviolet (UV) (160-1000 mm) and infrared (IR) (2-25 micron) free electron laser (FEL) driven by a recirculating, energy recovering 200 MeV superconducting radio frequency (SRF) accelerator. FEL users, CEBAF's partners in the Lase Processing Consortium, including AT&T, DuPont, IBM, Northrop Grumman, 3M, and Xerox, are developing applications such as metal, ceramic, and electronic material micro-fabrication and polymer and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability, and pulse structure.

  2. The ETA-2 induction linac as a high average power FEL driver

    SciTech Connect

    Nexsen, W.E.; Atkinson, D.P.; Barrett, D.M.; Chen, Y.J.; Clark, J.C.; Griffith, L.V.; Kirbie, H.C.; Newton, M.A.; Paul, A.C.; Sampayan, S.; Throop, A.L.; Turner, W.C.

    1989-10-16

    The Experimental Test Accelerator-II (ETA-II) is the first induction linac designed specifically to FEL requirements. It primarily is intended to demonstrate induction accelerator technology for high average power, high brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high average power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 Mev energy, 2kA current, 20ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} at the wiggler with a pulse repetition frequency (PRF) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 Mev energy, 3kA current, 50ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} with a 5 kHz PRF for 0.5 sec. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements. 13 refs., 9 figs., 1 tab.

  3. Average stopping powers for electron and photon sources for radiobiological modeling and microdosimetric applications.

    PubMed

    Vassiliev, Oleg N; Kry, Stephen F; Grosshans, David R; Mohan, Radhe

    2018-03-02

    This study concerns calculation of the average electronic stopping power for photon and electron sources. It addresses two problems that have not yet been fully resolved. The first is defining the electron spectrum used for averaging in a way that is most suitable for radiobiological modeling. We define it as the spectrum of electrons entering the sensitive to radiation volume (SV) within the cell nucleus, at the moment they enter the SV. For this spectrum we derive a formula that combines linearly the fluence spectrum and the source spectrum. The latter is the distribution of initial energies of electrons produced by a source. Previous studies used either the fluence or source spectra, but not both, thereby neglecting a part of the complete spectrum. Our derived formula reduces to these two prior methods in the case of high and low energy sources, respectively. The second problem is extending electron spectra to low energies. Previous studies used an energy cut-off on the order of 1 keV. However, as we show, even for high energy sources, such as 60 Co, electrons with energies below 1 keV contribute about 30% to the dose. In this study all the spectra were calculated with Geant4-DNA code and a cut-off energy of only 11 eV. We present formulas for calculating frequency- and dose-average stopping powers, numerical results for several important electron and photon sources, and tables with all the data needed to use our formulas for arbitrary electron and photon sources producing electrons with initial energies up to  ∼1 MeV.

  4. Cloud-based design of high average power traveling wave linacs

    NASA Astrophysics Data System (ADS)

    Kutsaev, S. V.; Eidelman, Y.; Bruhwiler, D. L.; Moeller, P.; Nagler, R.; Barbe Welzel, J.

    2017-12-01

    The design of industrial high average power traveling wave linacs must accurately consider some specific effects. For example, acceleration of high current beam reduces power flow in the accelerating waveguide. Space charge may influence the stability of longitudinal or transverse beam dynamics. Accurate treatment of beam loading is central to the design of high-power TW accelerators, and it is especially difficult to model in the meter-scale region where the electrons are nonrelativistic. Currently, there are two types of available codes: tracking codes (e.g. PARMELA or ASTRA) that cannot solve self-consistent problems, and particle-in-cell codes (e.g. Magic 3D or CST Particle Studio) that can model the physics correctly but are very time-consuming and resource-demanding. Hellweg is a special tool for quick and accurate electron dynamics simulation in traveling wave accelerating structures. The underlying theory of this software is based on the differential equations of motion. The effects considered in this code include beam loading, space charge forces, and external magnetic fields. We present the current capabilities of the code, provide benchmarking results, and discuss future plans. We also describe the browser-based GUI for executing Hellweg in the cloud.

  5. Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator

    NASA Astrophysics Data System (ADS)

    Rohrbacher, Andreas; Markovic, Vesna; Pallmann, Wolfgang; Resan, Bojan

    2016-03-01

    Ti:sapphire oscillators are a proven technology to generate sub-100 fs (even sub-10 fs) pulses in the near infrared and are widely used in many high impact scientific fields. However, the need for a bulky, expensive and complex pump source, typically a frequency-doubled multi-watt neodymium or optically pumped semiconductor laser, represents the main obstacle to more widespread use. The recent development of blue diodes emitting over 1 W has opened up the possibility of directly diode-laser-pumped Ti:sapphire oscillators. Beside the lower cost and footprint, a direct diode pumping provides better reliability, higher efficiency and better pointing stability to name a few. The challenges that it poses are lower absorption of Ti:sapphire at available diode wavelengths and lower brightness compared to typical green pump lasers. For practical applications such as bio-medicine and nano-structuring, output powers in excess of 100 mW and sub-100 fs pulses are required. In this paper, we demonstrate a high average power directly blue-diode-laser-pumped Ti:sapphire oscillator without active cooling. The SESAM modelocking ensures reliable self-starting and robust operation. We will present two configurations emitting 460 mW in 82 fs pulses and 350 mW in 65 fs pulses, both operating at 92 MHz. The maximum obtained pulse energy reaches 5 nJ. A double-sided pumping scheme with two high power blue diode lasers was used for the output power scaling. The cavity design and the experimental results will be discussed in more details.

  6. Development of high average power industrial Nd:YAG laser with peak power of 10 kW class

    NASA Astrophysics Data System (ADS)

    Kim, Cheol Jung; Kim, Jeong Mook; Jung, Chin Mann; Kim, Soo Sung; Kim, Kwang Suk; Kim, Min Suk; Cho, Jae Wan; Kim, Duk Hyun

    1992-03-01

    We developed and commercialized an industrial pulsed Nd:YAG laser with peak power of 10 kW class for fine cutting and drilling applications. Several commercial models have been investigated in design and performance. We improved its quality to the level of commercial Nd:YAG laser by an endurance test for each parts of laser system. The maximum peak power and average power of our laser were 10 kW and 250 W, respectively. Moreover, the laser pulse width could be controlled from 0.5 msec to 20 msec continuously. Many optical parts were localized and lowered much in cost. Only few parts were imported and almost 90% in cost were localized. Also, to accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation in design and assembly by company researchers from the early stage. Three Nd:YAG lasers have been assembled and will be tested in industrial manufacturing process to prove the capability of developed Nd:YAG laser with potential users.

  7. Effect of TGG crystal orientation on the operation of a Faraday isolator at high average power

    NASA Astrophysics Data System (ADS)

    Khazanov, Efim A.; Andreev, Nikolay N.; Palashov, Oleg V.; Mehl, Oliver; Reitze, David H.

    2000-05-01

    The operation of various designs of a Faraday isolator with different orientation of a magneto-optical crystal is studied theoretically. It is shown that for different configuration of the isolator, different crystal orientations may be optimal. An original technique was used to measure thermo-optic constants for a terbium gallium garnet crystal which characterize the photoelastic effect. Measurements were made for different orientations of crystallographic axes: (001), (110), (111), as well as for crystals grown by different producers. The results are compared with theoretical estimation. Values of the constants are presented, allowing one to choose such crystal orientation which is optimal from the point of view of isolation at high average power.

  8. An automatic step adjustment method for average power analysis technique used in fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Ming

    2006-04-01

    An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.

  9. A reflecting Pockels cell with aperture scalable for high average power multipass amplifier systems.

    PubMed

    Zhang, Jun; Zhang, Xiongjun; Wu, Dengsheng; Tian, Xiaolin; Li, Mingzhong; Jing, Feng

    2010-06-21

    In high average power multi-pass amplifier systems, Pockels cell, used for isolating and controlling number of passes, encounters both limitation of aperture and thermo-effects. We propose and demonstrate for the first time, as far as we know, a reflecting Pockels cell (RPC) which is longitudinally excited based on KD*P utilizing matched a discharge chamber and a copper plate as electrodes. In the RPC, electro-optic crystal can be longitudinally conduction-cooled. This device, with a 40 mm x 40 mm clear aperture, can be scaled to larger, and driven by one low voltage pulse. Excellent switching efficiency, high static extinction ratio, and negligible thermo-effects have been achieved.

  10. High-peak-power femtosecond pulse compression with polarization-maintaining ytterbium-doped fiber amplification.

    PubMed

    Kennedy, R E; Rulkov, A B; Popov, S V; Taylor, J R

    2007-05-15

    We report the generation of 140 fs pulses with a peak power of up to 270 kW using a fiber pulse source based on a polarization-maintaining ytterbium-doped fiber amplifier and a semiconductor saturable absorber mirror mode-locked fiber laser seed. The seed laser pulses were amplified and chirped in the fiber amplifier and subsequently compressed in an external transmission grating pair. The use of a polarization-maintaining amplifier addresses nonlinear polarization-induced limitations to the obtainable compressed pulse duration and quality that can arise if isotropic fiber amplification is used. Numerical simulations of the system support the experimental measurements and also confirm the role of fiber dispersion in obtaining high-quality compressed pulses.

  11. Propagation and amplification of microwave radiation in a plasma channel created in gas by a high-power femtosecond UV laser pulse

    SciTech Connect

    Bogatskaya, A. V., E-mail: annabogatskaya@gmail.com; Volkova, E. A.; Popov, A. M.

    2016-02-15

    The time evolution of a nonequilibrium plasma channel created in a noble gas by a high-power femtosecond KrF laser pulse is investigated. It is shown that such a channel possesses specific electrodynamic properties and can be used as a waveguide for efficient transportation and amplification of microwave pulses. The propagation of microwave radiation in a plasma waveguide is analyzed by self-consistently solving (i) the Boltzmann kinetic equation for the electron energy distribution function at different spatial points and (ii) the wave equation in the parabolic approximation for a microwave pulse transported along the plasma channel.

  12. Femtosecond soliton source with fast and broad spectral tunability.

    PubMed

    Masip, Martin E; Rieznik, A A; König, Pablo G; Grosz, Diego F; Bragas, Andrea V; Martinez, Oscar E

    2009-03-15

    We present a complete set of measurements and numerical simulations of a femtosecond soliton source with fast and broad spectral tunability and nearly constant pulse width and average power. Solitons generated in a photonic crystal fiber, at the low-power coupling regime, can be tuned in a broad range of wavelengths, from 850 to 1200 nm using the input power as the control parameter. These solitons keep almost constant time duration (approximately 40 fs) and spectral widths (approximately 20 nm) over the entire measured spectra regardless of input power. Our numerical simulations agree well with measurements and predict a wide working wavelength range and robustness to input parameters.

  13. 2 kW average power from a pulsed Yb-doped rod-type fiber amplifier.

    PubMed

    Otto, Hans-Jürgen; Stutzki, Fabian; Modsching, Norbert; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2014-11-15

    This Letter reports on a fiber-laser system that, employing a 1 m long rod-type photonic-crystal fiber as its main-amplifier, emits a record average output power of 2 kW, by amplifying stretched ps-pulses. A further increase of the output power was only limited by the available laser-diode pump power. The energy of the pulses is 100 μJ, corresponding to MW-level peak powers extracted directly from the fiber of the main amplifier. The corresponding M2 at the maximum output power is <3, due to the onset of mode instabilities. The Letter covers the influence of this effect on the evolution of the beam quality with the output power. The numerical results show that the M2 value settles at around 3, even if the output average power is further increased.

  14. NEO-LISP: Deflecting near-earth objects using high average power, repetitively pulsed lasers

    SciTech Connect

    Phipps, C.R.; Michaelis, M.M.

    1994-10-01

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime, (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory, and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA`s) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  15. Characterization and optimization of a new high-average power laser glass

    SciTech Connect

    Bayramian, A.

    1994-04-01

    A new High-Average Power laser glass with favorable thermal-mechanical properties was recently developed by Schott Glass Technologies. We refer to this glass as APG-2, although it does not have an official designation. Fracture studies were conducted which verified the thermomechanical utility of the glass. Consequently, the glass was a promising candidate for a variety of applications such as a Kerr-lens mode-locked short-pulse laser. As a result, cavity designs and optical parameters were calculated to test this hypothesis, and characterization of the lasing properties began. The glass was lased for the first time, and laser slope efficiencies were measured at various output couplings. Laser efficiencies were observed to drop radically when the pump light duty cycle was increased from 10% to unity. When the new laser glass was compared to commercially available laser glasses LG-750 and APG-1, something appeared to be inhibiting smooth laser action. Further investigations indicated that the thermal lens in the new glass was much larger than in the other glasses making the laser resonator unstable. This thermal lens was then modeled and quantified in a separate experiment.

  16. NEO-LISP: Deflecting near-Earth objects using high average power, repetitively pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, C. R.; Michaelis, M. M.

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime; (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory; and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA's) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  17. Development of a High-Average-Power Compton Gamma Source for Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.

    2009-01-01

    Gamma- (γ-) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A γ-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition γ-source assumes placing the Compton interaction point inside a CO2 laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of γ-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO2-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO2 laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO2 laser pulses circulating inside the cavity that incorporates the Compton interaction point.

  18. All-fiber high-power monolithic femtosecond laser at 1.59 µm with 63-fs pulse width

    NASA Astrophysics Data System (ADS)

    Hekmat, M. J.; Omoomi, M.; Gholami, A.; Yazdabadi, A. Bagheri; Abdollahi, M.; Hamidnejad, E.; Ebrahimi, A.; Normohamadi, H.

    2018-01-01

    In this research, by adopting an alternative novel approach to ultra-short giant pulse generation which basically originated from difficulties with traditional employed methods, an optimized Er/Yb co-doped double-clad fiber amplifier is applied to boost output average power of single-mode output pulses to a high level of 2-W at 1.59-µm central wavelength. Output pulses of approximately 63-fs pulse width at 52-MHz repetition rate are obtained in an all-fiber monolithic laser configuration. The idea of employing parabolic pulse amplification for stretching output pulses together with high-power pulse amplification using Er/Yb co-doped active fibers for compressing and boosting output average power plays crucial role in obtaining desired results. The proposed configuration enjoys massive advantages over previously reported literature which make it well-suited for high-power precision applications such as medical surgery. Detailed dynamics of pulse stretching and compressing in active fibers with different GVD parameters are numerically and experimentally investigated.

  19. High-speed photorefractive keratectomy with femtosecond ultraviolet pulses

    NASA Astrophysics Data System (ADS)

    Danieliene, Egle; Gabryte, Egle; Vengris, Mikas; Ruksenas, Osvaldas; Gutauskas, Algimantas; Morkunas, Vaidotas; Danielius, Romualdas

    2015-05-01

    Femtosecond near-infrared lasers are widely used for a number of ophthalmic procedures, with flap cutting in the laser-assisted in situ keratomileusis (LASIK) surgery being the most frequent one. At the same time, lasers of this type, equipped with harmonic generators, have been shown to deliver enough ultraviolet (UV) power for the second stage of the LASIK procedure, the stromal ablation. However, the speed of the ablation reported so far was well below the currently accepted standards. Our purpose was to perform high-speed photorefractive keratectomy (PRK) with femtosecond UV pulses in rabbits and to evaluate its predictability, reproducibility and healing response. The laser source delivered femtosecond 206 nm pulses with a repetition rate of 50 kHz and an average power of 400 mW. Transepithelial PRK was performed using two different ablation protocols, to a total depth of 110 and 150 μm. The surface temperature was monitored during ablation; haze dynamics and histological samples were evaluated to assess outcomes of the PRK procedure. For comparison, analogous excimer ablation was performed. Increase of the ablation speed up to 1.6 s/diopter for a 6 mm optical zone using femtosecond UV pulses did not significantly impact the healing process.

  20. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    SciTech Connect

    Kimel, I.; Elias, L.R.

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  1. A Simple Instant-Estimation Method for Time-Average Quantities of Single-Phase Power and Application to Single-Phase Power Grid Connection by Inverter

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji

    This paper presents and analyzes a new simple instant-estimation method for time-average quantities such as rms-values of voltage and current, active and reactive powers, and power factor for single-phase power with the fundamental component of constant or nearly-constant frequency by measuring instantaneous values of voltage and current. According to the analyses, the method can instantly estimate time average values with accuracy of the fundamental frequency, and estimation accuracy of power factor is about two times better than that of voltage, current, and powers. The instant-estimation method is simple and can be easily applied to single-phase power control systems that are expected to control instantly and continuously power factor on a single-phase grid by inverter. Based on the proposed instant-estimation method, two-methods for such power control systems are also proposed and their usefulness is verified through simulations.

  2. Error analysis in the measurement of average power with application to switching controllers

    NASA Technical Reports Server (NTRS)

    Maisel, J. E.

    1980-01-01

    Power measurement errors due to the bandwidth of a power meter and the sampling of the input voltage and current of a power meter were investigated assuming sinusoidal excitation and periodic signals generated by a model of a simple chopper system. Errors incurred in measuring power using a microcomputer with limited data storage were also considered. The behavior of the power measurement error due to the frequency responses of first order transfer functions between the input sinusoidal voltage, input sinusoidal current, and the signal multiplier was studied. Results indicate that this power measurement error can be minimized if the frequency responses of the first order transfer functions are identical. The power error analysis was extended to include the power measurement error for a model of a simple chopper system with a power source and an ideal shunt motor acting as an electrical load for the chopper. The behavior of the power measurement error was determined as a function of the chopper's duty cycle and back EMF of the shunt motor. Results indicate that the error is large when the duty cycle or back EMF is small. Theoretical and experimental results indicate that the power measurement error due to sampling of sinusoidal voltages and currents becomes excessively large when the number of observation periods approaches one-half the size of the microcomputer data memory allocated to the storage of either the input sinusoidal voltage or current.

  3. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power.

    PubMed

    Dawson, Jay W; Messerly, Michael J; Beach, Raymond J; Shverdin, Miroslav Y; Stappaerts, Eddy A; Sridharan, Arun K; Pax, Paul H; Heebner, John E; Siders, Craig W; Barty, C P J

    2008-08-18

    We analyze the scalability of diffraction-limited fiber lasers considering thermal, non-linear, damage and pump coupling limits as well as fiber mode field diameter (MFD) restrictions. We derive new general relationships based upon practical considerations. Our analysis shows that if the fiber's MFD could be increased arbitrarily, 36 kW of power could be obtained with diffraction-limited quality from a fiber laser or amplifier. This power limit is determined by thermal and non-linear limits that combine to prevent further power scaling, irrespective of increases in mode size. However, limits to the scaling of the MFD may restrict fiber lasers to lower output powers.

  4. Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier.

    PubMed

    Russbueldt, P; Mans, T; Weitenberg, J; Hoffmann, H D; Poprawe, R

    2010-12-15

    We demonstrate a compact diode-pumped Yb:KGW femtosecond oscillator-Yb:YAG Innoslab amplifier master oscillator power amplifier (MOPA) with nearly transform-limited 636 fs pulses at 620 W average output power, 20 MHz repetition rate, and beam quality of M(x)(2) = 1.43 and M(y)(2) = 1.35. By cascading two amplifiers, we attain an average output power of 1.1 kW, a peak power of 80 MW, and a 615 fs pulse width in a single linearly polarized beam. The power-scalable MOPA is operated at room temperature, and no chirped-pulse amplification technique is used.

  5. The sigmoidal average - a powerful tool for predicting the thermal conductivity of composite ceramics

    NASA Astrophysics Data System (ADS)

    Pabst, W.; Gregorová, E.

    2012-11-01

    The sigmoidal average between the upper and lower Hashin-Shtrikman bounds is shown to be the appropriate average relation for isotropic two-phase composites consisting of geometrically equivalent grains. This average ensures that the prediction is close the upper bound for low volume fractions of the low-conductivity phase (corresponding to low-conductivity inclusions in a high-conductivity matrix) and vice versa. In the intermediate concentration range the sigmoidal average reflects the fact that the microstructure is bicontinuous and can undergo a percolation-type transition. It is shown that the sigmoidal average of the Hashin-Shtrikman bounds lies automatically within the three-point bounds (Miller bounds) for a practically important class of microstructures (symmetric-cell materials with spherical cells) and that in the infinite-phase-contrast case (porous media) it is close to the exponential relation, which has been very successful in describing the porosity dependence of properties. Theoretical predictions are compared with experimentally measured values for alumina-zirconia composites in the whole range of volume fractions, from pure alumina to pure zirconia. Even after appropriate correction for porosity, essentially all experimental data are below the sigmoidal average. The fact that some values are even below the lower Hashin-Shtrikman bound is indicative of microcracking and / or grain size (interface) effects.

  6. Alternative lattice options for energy recovery in high-average-power high-efficiency free-electron lasers

    SciTech Connect

    Piot, P.; /Northern Illinois U. /NICADD, DeKalb /Fermilab

    2009-03-01

    High-average-power free-electron lasers often rely on energy-recovering linacs. In a high-efficiency free electron laser, the main limitation to high average power stems from the fractional energy spread induced by the free-electron laser process. Managing beams with large fractional energy spread while simultaneously avoiding beam losses is extremely challenging and relies on intricate longitudinal phase space manipulations. In this paper we discuss a possible alternative technique that makes use of an emittance exchange between one of the transverse and the longitudinal phase spaces.

  7. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    SciTech Connect

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-07-31

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

  8. Experimental study of Faraday isolator for kilowatt-level average powers

    NASA Astrophysics Data System (ADS)

    Voytovich, A. V.; Zelenogorsky, V. V.; Khazanov, E. A.; Mukhin, I. B.; Palashov, O. V.; Poteomkin, A. K.; Shaykin, A. A.; Soloviev, A. A.

    2007-04-01

    Large-aperture Faraday isolators with compensation of thermally induced polarization and phase distortions of highpower laser radiation have been studied experimentally. The degree of isolation is considerably increased up to 24-26 dB at 10-750 W power for one Faraday isolator and up to 42 dB at 10-200 W power for another Faraday isolator and is limited by the quality of TGG crystals. Phase distortions are also considerably reduced.

  9. Efficient processing of CFRP with a picosecond laser with up to 1.4 kW average power

    NASA Astrophysics Data System (ADS)

    Onuseit, V.; Freitag, C.; Wiedenmann, M.; Weber, R.; Negel, J.-P.; Löscher, A.; Abdou Ahmed, M.; Graf, T.

    2015-03-01

    Laser processing of carbon fiber reinforce plastic (CFRP) is a very promising method to solve a lot of the challenges for large-volume production of lightweight constructions in automotive and airplane industries. However, the laser process is actual limited by two main issues. First the quality might be reduced due to thermal damage and second the high process energy needed for sublimation of the carbon fibers requires laser sources with high average power for productive processing. To achieve thermal damage of the CFRP of less than 10μm intensities above 108 W/cm² are needed. To reach these high intensities in the processing area ultra-short pulse laser systems are favored. Unfortunately the average power of commercially available laser systems is up to now in the range of several tens to a few hundred Watt. To sublimate the carbon fibers a large volume specific enthalpy of 85 J/mm³ is necessary. This means for example that cutting of 2 mm thick material with a kerf width of 0.2 mm with industry-typical 100 mm/sec requires several kilowatts of average power. At the IFSW a thin-disk multipass amplifier yielding a maximum average output power of 1100 W (300 kHz, 8 ps, 3.7 mJ) allowed for the first time to process CFRP at this average power and pulse energy level with picosecond pulse duration. With this unique laser system cutting of CFRP with a thickness of 2 mm an effective average cutting speed of 150 mm/sec with a thermal damage below 10μm was demonstrated.

  10. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    PubMed

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  11. High-power Femtosecond Optical Parametric Amplification at 1 kHz in BiB(3)O(6) pumped at 800 nm.

    PubMed

    Petrov, Valentin; Noack, Frank; Tzankov, Pancho; Ghotbi, Masood; Ebrahim-Zadeh, Majid; Nikolov, Ivailo; Buchvarov, Ivan

    2007-01-22

    Substantial power scaling of a travelling-wave femtosecond optical parametric amplifier, pumped near 800 nm by a 1 kHz Ti:sapphire laser amplifier, is demonstrated using monoclinic BiB(3)O(6) in a two stage scheme with continuum seeding. Total energy output (signal plus idler) exceeding 1 mJ is achieved, corresponding to an intrinsic conversion efficiency of approximately 32% for the second stage. The tunability extends from 1.1 to 2.9 microm. The high parametric gain and broad amplification bandwidth of this crystal allowed the maintenance of the pump pulse duration, leading to pulse lengths less than 140 fs, both for the signal and idler pulses, even at such high output levels.

  12. Recent Advances in High-Average-Power Gyro Oscillators for ECH and Current Drive

    NASA Astrophysics Data System (ADS)

    Felch, K.

    1999-11-01

    The ECH and current-drive requirements for magnetic fusion experiments such as Doublet III-D, ITER, LHD, JT-60, Wendelstein 7X and others have made it necessary to increase the long-pulse and CW power-handling capabilities of millimeter-wave gyro oscillators. For frequencies ranging from 84 GHz to 170 GHz, power levels of between 1-2 MW are required for pulse durations of a few seconds to full steady-state or CW operation. To address these needs, several important physics and technological advances have been or are in the process of being implemented in gyro oscillators destined for these applications. These enhancements principally involve the design of the interaction cavity, electron beam collector and output window portions of the gyro oscillator. To achieve long-pulse or CW operation at the required power levels and frequencies, highly overmoded cavities are now being used. While 28 GHz and 60 GHz, 200 kW CW gyrotrons utilized a TE02 mode in the cavity in gyrotrons that were utilized in fusion experiments in the 1980s and early 1990s, 140 GHz, 1 MW CW gyrotrons destined for future fusion experiments will employ either the TE28,7 or TE28,8 mode in the cavity. The ability to design single-mode devices that operate in such modes is due in large part to the development of time-dependent, self-consistent computer codes that are used to model the cavity interaction. The electron beam collector absorbs all of the spent electron beam power. To facilitate the design of the collector and increase the overall efficiency of the device, depressed-collector designs are now being used where the spent electron beam is de-accelerated before it reaches the collector walls, thereby resulting in lower power densities on the collector and higher overall efficiency. Finally, the ultimate limit to operating at 1-2 MW power levels for long pulses or under steady-state conditions at the required frequencies has been the power-handling capability of the output window. However, recent

  13. Does Stevens's Power Law for Brightness Extend to Perceptual Brightness Averaging?

    ERIC Educational Resources Information Center

    Bauer, Ben

    2009-01-01

    Stevens's power law ([Psi][infinity][Phi][beta]) captures the relationship between physical ([Phi]) and perceived ([Psi]) magnitude for many stimulus continua (e.g., luminance and brightness, weight and heaviness, area and size). The exponent ([beta]) indicates whether perceptual magnitude grows more slowly than physical magnitude ([beta] less…

  14. High average power scaling of optical parametric amplification through cascaded difference-frequency generators

    DOEpatents

    Jovanovic, Igor; Comaskey, Brian J.

    2004-09-14

    A first pump pulse and a signal pulse are injected into a first optical parametric amplifier. This produces a first amplified signal pulse. At least one additional pump pulse and the first amplified signal pulse are injected into at least one additional optical parametric amplifier producing an increased power coherent optical pulse.

  15. Error analysis in the measurement of average power with application to switching controllers

    NASA Technical Reports Server (NTRS)

    Maisel, J. E.

    1979-01-01

    The behavior of the power measurement error due to the frequency responses of first order transfer functions between the input sinusoidal voltage, input sinusoidal current and the signal multiplier was studied. It was concluded that this measurement error can be minimized if the frequency responses of the first order transfer functions are identical.

  16. On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz.

    PubMed

    Hashimoto, Yota; Hirata, Akimasa; Morimoto, Ryota; Aonuma, Shinta; Laakso, Ilkka; Jokela, Kari; Foster, Kenneth R

    2017-04-21

    Incident power density is used as the dosimetric quantity to specify the restrictions on human exposure to electromagnetic fields at frequencies above 3 or 10 GHz in order to prevent excessive temperature elevation at the body surface. However, international standards and guidelines have different definitions for the size of the area over which the power density should be averaged. This study reports computational evaluation of the relationship between the size of the area over which incident power density is averaged and the local peak temperature elevation in a multi-layer model simulating a human body. Three wave sources are considered in the frequency range from 3 to 300 GHz: an ideal beam, a half-wave dipole antenna, and an antenna array. 1D analysis shows that averaging area of 20 mm  ×  20 mm is a good measure to correlate with the local peak temperature elevation when the field distribution is nearly uniform in that area. The averaging area is different from recommendations in the current international standards/guidelines, and not dependent on the frequency. For a non-uniform field distribution, such as a beam with small diameter, the incident power density should be compensated by multiplying a factor that can be derived from the ratio of the effective beam area to the averaging area. The findings in the present study suggest that the relationship obtained using the 1D approximation is applicable for deriving the relationship between the incident power density and the local temperature elevation.

  17. Program THEK energy production units of average power and using thermal conversion of solar radiation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    General studies undertaken by the C.N.R.S. in the field of solar power plants have generated the problem of building energy production units in the medium range of electrical power, in the order of 100 kW. Among the possible solutions, the principle of the use of distributed heliothermal converters has been selected as being, with the current status of things, the most advantageous solution. This principle consists of obtaining the conversion of concentrated radiation into heat by using a series of heliothermal conversion modules scattered over the ground; the produced heat is collected by a heat-carrying fluid circulating inside a thermal loop leading to a device for both regulation and storage.

  18. LASER DEVICES AND ELEMENTS: Wide-aperture Faraday isolator for kilowatt average radiation powers

    NASA Astrophysics Data System (ADS)

    Voitovich, A. V.; Katin, E. V.; Mukhin, I. B.; Palashov, O. V.; Khazanov, E. A.

    2007-05-01

    A Faraday isolator with an aperture of 20 mm and compensation of thermally induced polarisation and phase distortions of laser radiation is fabricated and tested experimentally. A considerable improvement in the isolation degree over a traditional Faraday isolator is demonstrated. For radiation power up to 750 W, the isolation degree lies in the range 24-26 dB and is limited only by the quality of TGG crystals.

  19. Highly Efficient Transmitter for High Peak to Average Power Ratio (PAPR) Waveforms

    DTIC Science & Technology

    2011-01-19

    simple and complex modulation topologies which can include constant envelope, Global System for Mobile Communications (GSM), Long Term Evolution (LTE...offsets to the signal to be amplified. These techniques compensate the power amplifiers non-linearity and preserve the original intended signal...band. The Pulsar Microwave XL-l l-A will be used for this process since it is a single ended device that offers a frequency response extending

  20. High Average Power Raman Conversion in Diamond: ’Eyesafe’ Output and Fiber Laser Conversion

    DTIC Science & Technology

    2015-06-19

    power (laser diode ) pump technology have led to the development of more practical solid-state alternatives. Laser rod technologies based on rare...to 0.4 kW. A continuous wave diamond laser was demonstrated that generated 108 W at 1240 nm from a 320 W Nd:YAG pump laser. A modified design...generating 380 W was demonstrated using a 630 W Ybdoped fiber laser system. In each case the performance was unsaturated and limited by the available pump

  1. High energy, high average power solid state green or UV laser

    DOEpatents

    Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent

    2004-03-02

    A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.

  2. Compact portable 20 MHz solid-state femtosecond whitelight-laser.

    PubMed

    Hoos, F; Pricking, S; Giessen, H

    2006-10-30

    We demonstrate a new and extremely compact design for a directly diode-pumped Yb:glass laser oscillator that is used as femtosecond light source for supercontinuum generation. The laser is capable of generating femtosecond pulses of 150 fs and pulse energies up to 39 nJ at a repetition rate of 20 MHz. By using a Herriott-type multi-pass cell, 70 % of the total resonator length are folded to only 30 cm. With off-the-shelf components, our setup has a footprint of 62x23 cm(2). Using smaller mechanical components, the size can easily be further decreased. In combination with a tapered fiber, the laser forms a cheap, stable, and compact femtosecond supercontinuum source with up to 400 mW of average whitelight power.

  3. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    NASA Astrophysics Data System (ADS)

    Paramonov, V.; Philipp, S.; Rybakov, I.; Skassyrskaya, A.; Stephan, F.

    2017-05-01

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  4. High-peak-power, high-energy, high-average-power pulsed fiber laser system with versatile pulse duration and shape.

    PubMed

    Malinowski, A; Gorman, P; Codemard, C A; Ghiringhelli, F; Boyland, A J; Marshall, A; Zervas, M N; Durkin, M K

    2013-11-15

    We present a pulsed fiber laser system with average power up to 265 W, pulse energy up to 10.6 mJ, pulse duration adjustable in the range 500 ps-500 ns, repetition rate fully controllable from single-shot operation up to 1 MHz, and the ability to control peak power independently of pulse energy. The system has a compact, all-spliced construction. Such a versatile laser will have wide applications in materials processing.

  5. High average power parametric wavelength conversion at 3.31-3.48 m in MgO:PPLN.

    PubMed

    Murray, R T; Runcorn, T H; Guha, S; Taylor, J R

    2017-03-20

    We present results of high average power mid-infrared (mid-IR) generation employing synchronized nanosecond pulsed ytterbium and erbium fiber amplifier systems using periodically poled lithium niobate. We generate greater than 6 W of mid-IR radiation tunable in wavelength between 3.31-3.48 μm, at power conversion efficiencies exceeding 75%, with near diffraction limited beam quality (M2 = 1.4). Numerical modeling is used to verify the experimental results in differing pump depletion regimes.

  6. 1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses.

    PubMed

    Negel, Jan-Philipp; Voss, Andreas; Abdou Ahmed, Marwan; Bauer, Dominik; Sutter, Dirk; Killi, Alexander; Graf, Thomas

    2013-12-15

    We report on a thin-disk multipass amplifier for ultrashort laser pulses delivering an average output power of 1105 W. The amplifier was seeded by a Trumpf TruMicro5050 laser with a power of 80 W at a wavelength of 1030 nm, pulse duration of 6.5 ps, and repetition rate of 800 kHz. The energy of the amplified pulses is 1.38 mJ with a duration of 7.3 ps. The amplifier exhibits an optical efficiency of 44% and a slope efficiency of 46%. The beam quality was measured to be better than M²=1.25.

  7. Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power

    NASA Astrophysics Data System (ADS)

    Khazanov, Efim; Andreev, Nicolay; Palashov, Oleg; Poteomkin, Anatoly; Sergeev, Alexander; Mehl, Oliver; Reitze, David H.

    2002-01-01

    We present a comprehensive and systematic investigation of the fundamental physical limitations of Faraday isolation performance at high average powers that are due to thermally induced birefringence. First, the operation of various Faraday isolator designs by use of arbitrary orientation of cubic magneto-optic crystals is studied theoretically. It is shown that, for different Faraday isolator designs, different crystal orientations can optimize the isolation ratio. Second, thermo-optic and photoelastic constants for terbium gallium garnet crystals grown by different manufacturers were measured. Measurements of self-induced depolarization are made for various orientations of crystallographic axes. The measurements are in good agreement with our theoretical predictions. Based on our results, it is possible to select a crystal orientation that optimizes isolation performance at high average powers, resulting in a 5-dB enhancement over nonoptimized orientations.

  8. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    DOEpatents

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  9. Simulation of a high-average power free-electron laser oscillator

    SciTech Connect

    H.P. Freund; M. Shinn; S.V. Benson

    2007-03-01

    In this paper, we compare the 10 kW-Upgrade experiment at the Thomas Jefferson National Accelerator Facility in Newport News, VA, with numerical simulations using the medusa code. medusa is a three-dimensional FEL simulation code that is capable of treating both amplifiers and oscillators in both the steady-state and time-dependent regimes. medusa employs a Gaussian modal expansion, and treats oscillators by decomposing the modal representation at the exit of the wiggler into the vacuum Gaussian modes of the resonator and then analytically determining the propagation of these vacuum resonator modes through the resonator back to the entrance of the wiggler in synchronism with the next electron bunch. The bunch length in the experiment is of the order of 380–420 fsec FWHM. The experiment operates at a wavelength of about 1.6 microns and the wiggler is 30 periods in length; hence, the slippage time is about 160 fsec. Because of this, slippage is important, and must be included in the simulation. The observed single pass gain is 65%–75% and, given the experimental uncertainties, this is in good agreement with the simulation. Multipass simulations including the cavity detuning yield an output power of 12.4 kW, which is also in good agreement with the experiment.

  10. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  11. High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths

    SciTech Connect

    Reagan, Brendon; Berrill, Mark A; Wernsing, Keith

    2014-01-01

    Efficient excitation of dense plasma columns at 100-Hz repetition rate using a tailored pump pulse profile produced a tabletop soft-x-ray laser average power of 0.1 mW at = 13.9 nm and 20 W at = 11.9 nm from transitions of Ni-like Ag and Ni-like Sn, respectively. Lasing on several other transitions with wavelengths between 10.9 and 14.7 nm was also obtained using 0.9-J pump pulses of 5-ps duration from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Hydrodynamic and atomic plasma simulations show that the pump pulse profile, consisting of a nanosecond ramp followed by two peaks of picosecond duration,more » creates a plasma with an increased density of Ni-like ions at the time of peak temperature that results in a larger gain coefficient over a temporally and spatially enlarged space leading to a threefold increase in the soft-x-ray laser output pulse energy. The high average power of these compact soft-x-ray lasers will enable applications requiring high photon flux. These results open the path to milliwatt-average-power tabletop soft-x-ray lasers.« less

  12. The Mercury Laser System-A scaleable average-power laser for fusion and beyond

    SciTech Connect

    Ebbers, C A; Moses, E I

    2008-03-26

    Nestled in a valley between the whitecaps of the Pacific and the snowcapped crests of the Sierra Nevada, Lawrence Livermore National Laboratory (LLNL) is home to the nearly complete National Ignition Facility (NIF). The purpose of NIF is to create a miniature star-on demand. An enormous amount of laser light energy (1.8 MJ in a pulse that is 20 ns in duration) will be focused into a small gold cylinder approximately the size of a pencil eraser. Centered in the gold cylinder (or hohlraum) will be a nearly perfect sphere filled with a complex mixture of hydrogen gas isotopes that is similar to the atmosphere of our Sun. During experiments, the laser light will hit the inside of the gold cylinder, heating the metal until it emits X-rays (similar to how your electric stove coil emits visible red light when heated). The X-rays will be used to compress the hydrogen-like gas with such pressure that the gas atoms will combine or 'fuse' together, producing the next heavier element (helium) and releasing energy in the form of energetic particles. 2010 will mark the first credible attempt at this world-changing event: the achievement of fusion energy 'break-even' on Earth using NIF, the world's largest laser! NIF is anticipated to eventually perform this immense technological accomplishment once per week, with the capability of firing up to six shots per day - eliminating the need for continued underground testing of our nation's nuclear stockpile, in addition to opening up new realms of science. But what about the day after NIF achieves ignition? Although NIF will achieve fusion energy break-even and gain, the facility is not designed to harness the enormous potential of fusion for energy generation. A fusion power plant, as opposed to a world-class engineering research facility, would require that the laser deliver drive pulses nearly 100,000 times more frequently - a rate closer to 10 shots per second as opposed to several shots per day.

  13. Selective ablation of dental enamel and dentin using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lizarelli, R. F. Z.; Costa, M. M.; Carvalho-Filho, E.; Nunes, F. D.; Bagnato, V. S.

    2008-01-01

    The study of the interaction of intense laser light with matter, as well as transient response of atoms and molecules is very appropriated because of the laser energy concentration in a femtosecond optical pulses. The fundamental problem to be solved is to find tools and techniques which allow us to observe and manipulate on a femtosecond time scale the photonics events on and into the matter. Six third human extracted molars were exposed to a femtosecond Ti:Sapphire Q-switched and mode locked laser (Libra-S, Coherent, Palo Alto, CA, USA), emitting pulses with 70 fs width, radiation wavelength of 801 nm, at a constant pulse repetition rate of 1 KHz. The laser was operated at different power levels (70 to 400 mW) with constant exposition time of 10 seconds, at focused and defocused mode. Enamel and dentin surfaces were evaluated concerned ablation rate and morphological aspects under scanning electron microscopic. The results in this present experiment suggest that at the focused mode and under higher average power, enamel tissues present microcavities with higher depth and very precise edges, but, while dentin shows a larger melt-flushing, lower depth and melting and solidification aspect. In conclusion, it is possible to choose hard or soft ablation, under lower and higher average power, respectively, revealing different aspects of dental enamel and dentin, depending on the average power, fluence and distance from the focal point of the ultra-short pulse laser on the tooth surface.

  14. Optimal dynamic vibration absorber design for minimizing the band-averaged input power using the residue theorem

    NASA Astrophysics Data System (ADS)

    D`Amico, R.; Koo, K.; Claeys, C. C.; Pluymers, B.; Desmet, W.

    2015-03-01

    This paper deals with an efficient strategy to improve the vibro-acoustic behavior of a structure over frequency bands. Genetic Algorithms are used to identify the optimal resonance frequency and location of Dynamic Vibration Absorbers (DVAs) which minimize the band-averaged input power into a plate, leading to an indirect reduction of the radiated acoustic power and global vibration. Instead of classic numerical quadrature schemes, the residue theorem is used to evaluate the band-averaged input power. This results into a considerable reduction of computational effort, as it requires only few function evaluations at complex frequencies, regardless of the analyzed bandwidth. The structural response is simulated by using the Wave Based Method (WBM). Besides an increased convergence rate as compared to classical element-based techniques, the WBM is also free in determining the optimal position of the DVAs, not restricting it to nodal grid locations. Moreover, when point connections are taken into account, only a small part of the WB matrices needs to be recomputed at each iteration, resulting in a strong reduction of the computation time. Numerical examples illustrate the benefits and the efficiency of the proposed optimization strategy.

  15. Total-reflection active-mirror amplifier for high pulse energy and high average power by using a composite ceramic

    NASA Astrophysics Data System (ADS)

    Kawanaka, J.; Takeuchi, Y.; Furuse, H.; Nakanishi, T.; Yoshida, A.; Norimatsu, T.; Kawashima, T.; Kan, H.

    2012-04-01

    A total-reflection active-mirror (TRAM) amplifier is functionally designed by using a composite ceramic for high pulse energy and high average power. A chirped-pulse regenerative amplifier with a cryogenic TRAM has been successfully demonstrated as a feasibility study. A 3.5 mJ pulse energy is obtained at a repetition rate of 100 Hz. The corresponding energy fluence on the TRAM is as high as 1.5 J/cm2 for 0.46 ns short pulses. The M2-factor is below 1.1 and no significant beam distortion is observed.

  16. TECATE - a code for anisotropic thermoelasticity in high-average-power laser technology. Phase 1 final report

    SciTech Connect

    Gelinas, R.J.; Doss, S.K.; Carlson, N.N.

    1985-01-01

    This report describes a totally Eulerian code for anisotropic thermoelasticity (code name TECATE) which may be used in evaluations of prospective crystal media for high-average-power lasers. The present TECATE code version computes steady-state distributions of material temperatures, stresses, strains, and displacement fields in 2-D slab geometry. Numerous heat source and coolant boundary condition options are available in the TECATE code for laser design considerations. Anisotropic analogues of plane stress and plane strain evaluations can be executed for any and all crystal symmetry classes. As with all new and/or large physics codes, it is likely that some code imperfections will emerge at some point in time.

  17. Actively mode-locked Tm(3+)-doped silica fiber laser with wavelength-tunable, high average output power.

    PubMed

    Kneis, Christian; Donelan, Brenda; Berrou, Antoine; Manek-Hönninger, Inka; Robin, Thierry; Cadier, Benoît; Eichhorn, Marc; Kieleck, Christelle

    2015-04-01

    A diode-pumped, actively mode-locked high-power thulium (Tm3+)-doped double-clad silica fiber laser is demonstrated, providing an average output power in mode-locked (continuous wave) operation of 53 W (72 W) with a slope efficiency of 34% (38%). Mode-locking in the 6th-harmonic order was obtained by an acousto-optic modulator driven at 66 MHz without dispersion compensation. The shortest measured output pulse width was 200 ps. Owing to a diffraction grating as cavity end mirror, the central wavelength could be tuned from 1.95 to 2.13 μm. The measured beam quality in mode-locked and continuous wave operation has been close to the diffraction limit.

  18. High average power, diode pumped petawatt laser systems: a new generation of lasers enabling precision science and commercial applications

    NASA Astrophysics Data System (ADS)

    Haefner, C. L.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Cupal, J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; Jarboe, J.; Kasl, K.; Kim, D.; Koh, E.; Koubíková, L.; Maranville, W.; Marshall, C.; Mason, D.; Menapace, J.; Miller, P.; Mazurek, P.; Naylon, A.; Novák, J.; Peceli, D.; Rosso, P.; Schaffers, K.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Steele, R.; Stolz, C.; Suratwala, T.; Telford, S.; Thoma, J.; VanBlarcom, D.; Weiss, J.; Wegner, P.

    2017-05-01

    Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.

  19. Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers.

    PubMed

    Daniault, L; Hanna, M; Lombard, L; Zaouter, Y; Mottay, E; Goular, D; Bourdon, P; Druon, F; Georges, P

    2011-03-01

    We demonstrate coherent beam combining of two femtosecond fiber chirped-pulse amplifiers seeded by a common oscillator. Using a feedback loop based on an electro-optic phase modulator, an average power of 7.2 W before compression is obtained with a combining efficiency of 90%. The spatial and temporal qualities of the oscillator are retained, with a recombined pulse width of 325 fs. This experiment opens up a way to scale the peak/average power of ultrafast fiber sources.

  20. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  1. Design and development of a 6 MW peak, 24 kW average power S-band klystron

    SciTech Connect

    Joshi, L.M.; Meena, Rakesh; Nangru, Subhash; Kant, Deepender; Pal, Debashis; Lamba, O.S.; Jindal, Vishnu; Jangid, Sushil Kumar; Chakravarthy, D.P.; Dixit, Kavita

    2011-07-01

    A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design of collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)

  2. Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers.

    PubMed

    Boge, Robert; Horáček, Jakub; Mazůrek, Petr; Naylon, Jack A; Green, Jonathan T; Hubka, Zbyněk; Šobr, Václav; Novák, Jakub; Batysta, František; Antipenkov, Roman; Bakule, Pavel; Rus, Bedřich

    2018-02-01

    A robust and simple method is presented for ensuring constant energy and pointing of a high average power solid state laser on a target. In addition to providing long-term stability, this scheme also eliminates any drifts in energy or pointing resulting from the initial warm-up after a cold start. This is achieved using two separate feedback loops: one loop stabilizes the pointing of the beam external to the amplifier cavity and the other locks the cavity mode to have optimum overlap with the pump spot on the active medium. The key idea of the cavity mode stabilization is to monitor the overlap of the cavity mode and the gain medium with a camera and control it with an actively controlled, intra-cavity mirror. While this method is demonstrated on a thin-disk regenerative amplifier, it can also be applied to a wide variety of solid state laser amplifiers.

  3. Wavelength and Average Power Density Dependency of the Surface Modification of Root Dentin Using an MIR-FEL

    NASA Astrophysics Data System (ADS)

    Sano, Shu; Heya, Manabu; Takagi, Nobuhiko; Fukami, Yuko; Hashishin, Yuichi; Awazu, Kunio

    Surface modification of root dentin by mid-infrared (MIR) pulsed-laser irradiation is one of the candidates for a novel, non-invasive treatment to prevent root surface caries. To modify root dentin effectively and non-invasively it is essential to estimate quantitatively and qualitatively the laser parameters, such as the wavelength and the power density, required for surface modification. The key aspect is to bring about effective surface modification of root dentin while minimizing the unwanted removal of the underlying dentin. Using a tunable, MIR Free Electron Laser (FEL) in the wavelength region of 8.8-10.6 μm, we have investigated macroscopically the extent of surface modification (morphological and chemical changes) of root dentin. We have obtained experimental results related to the ablation depth, the MIR absorption spectrum, and the elemental chemical composition of the irradiated dentin. The observations showed that the surface modification of root dentin was inclined toward well-recrystallized, HAp-like material, leading to an increase in the acid resistance and dentinal tubule sealing. The laser parameters, at which efficient surface modification without enhanced ablation occurred, were estimated to be at λ= - 9.0 μm or - 9.7 μm and in the average power density region of - 10-20 W/cm2 (resulting in energy density per macropulse and peak power density regions of - 1-2 J/cm2 and - 66.7-133.3 kW/cm2). Thus, it was found that the surface modification of root dentin strongly depends on the laser conditions applied. We conclude that the optimum laser wavelengths for (1) root surface caries treatment without restorative procedure and (2) hard tissue ablation without water irrigation are around (1) λ= 9.0 μm or 9.7 μm and (2)λ= 9.0 μm in the absorption bands due to P-O stretching, respectively.

  4. Generation of femtosecond to sub-femtosecond x-ray pulses in free-electron lasers

    NASA Astrophysics Data System (ADS)

    Ding, Yuantao

    2015-05-01

    Generation of high power, femtosecond to sub-femtosecond x-ray pulses is attracting much attention within the x-ray free-electron laser (FEL) user community. At the existing FEL facilities, such as the Linac Coherent Light Source at SLAC, several methods have been developed to produce such short x-rays. Low-charge operation mode and emittance-spoiling scheme have successfully delivered short pulses for user experiments with duration less than 10 fs. A nonlinear compression mode has been recently developed and the pulse duration could be about 200 as. We will review the recent experimental progress at the LCLS for achieving few-femtosecond x-rays, and also discuss other short pulse schemes for reaching sub-femtosecond regime.

  5. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    PubMed

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  6. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    SciTech Connect

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2014-05-15

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  7. Mapping Hidden Potential Identity Elements by Computing the Average Discriminating Power of Individual tRNA Positions

    PubMed Central

    Szenes, Áron; Pál, Gábor

    2012-01-01

    The recently published discrete mathematical method, extended consensus partition (ECP), identifies nucleotide types at each position that are strictly absent from a given sequence set, while occur in other sets. These are defined as discriminating elements (DEs). In this study using the ECP approach, we mapped potential hidden identity elements that discriminate the 20 different tRNA identities. We filtered the tDNA data set for the obligatory presence of well-established tRNA features, and then separately for each identity set, the presence of already experimentally identified strictly present identity elements. The analysis was performed on the three kingdoms of life. We determined the number of DE, e.g. the number of sets discriminated by the given position, for each tRNA position of each tRNA identity set. Then, from the positional DE numbers obtained from the 380 pairwise comparisons of the 20 identity sets, we calculated the average excluding value (AEV) for each tRNA position. The AEV provides a measure on the overall discriminating power of each position. Using a statistical analysis, we show that positional AEVs correlate with the number of already identified identity elements. Positions having high AEV but lacking published identity elements predict hitherto undiscovered tRNA identity elements. PMID:22378766

  8. Experimental assessment of blade tip immersion depth from free surface on average power and thrust coefficients of marine current turbine

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Flack, Karen; Luznik, Luksa

    2014-11-01

    Results from an experimental study on the effects of marine current turbine immersion depth from the free surface are presented. Measurements are performed with a 1/25 scale (diameter D = 0.8m) two bladed horizontal axis turbine towed in the large towing tank at the U.S. Naval Academy. Thrust and torque are measured using a dynamometer, mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using a shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Two optical wave height sensors are used to measure the free surface elevation. The turbine is towed at 1.68 m/s, resulting in a 70% chord based Rec = 4 × 105. An Acoustic Doppler Velocimeter (ADV) is installed one turbine diameter upstream of the turbine rotation plane to characterize the inflow turbulence. Measurements are obtained at four relative blade tip immersion depths of z/D = 0.5, 0.4, 0.3, and 0.2 at a TSR value of 7 to identify the depth where free surface effects impact overall turbine performance. The overall average power and thrust coefficient are presented and compared to previously conducted baseline tests. The influence of wake expansion blockage on the turbine performance due to presence of the free surface at these immersion depths will also be discussed.

  9. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2014-05-01

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  10. 240 W high-average-power square-shaped nanosecond all-fiber-integrated laser with near diffraction-limited beam quality.

    PubMed

    Yu, Hailong; Tao, Rumao; Wang, Xiaolin; Zhou, Pu; Chen, Jinbao

    2014-10-01

    We report an all-fiber-integrated high-average-power square-shaped nanosecond pulse laser operating at 1068 nm based on the master oscillator power amplifier configuration. The seed source is a passively mode-locked Yb-doped fiber laser with fundamental cavity repetition rate of 1.86 MHz. Output pulses with a square shape can be tuned in pulse width from 271 ps to the nanosecond level. The average output power reaches to 9.21 W after three preamplifiers. Finally, a main amplifier is developed to boost the average output power to 240 W, and the corresponding pulse energy and peak power are ∼ 129.3 μJ and 36 kW, respectively. The efficiency of the main amplifier is ∼ 61.3%, and the beam quality represented by M(2) factors is below 1.3 and 1.2 in the X and Y directions.

  11. Nano- and femtosecond UV laser pulses to immobilize biomolecules onto surfaces with preferential orientation

    NASA Astrophysics Data System (ADS)

    Lettieri, S.; Avitabile, A.; Della Ventura, B.; Funari, R.; Ambrosio, A.; Maddalena, P.; Valadan, M.; Velotta, R.; Altucci, C.

    2014-10-01

    By relying on the photonic immobilization technique of antibodies onto surfaces, we realized portable biosensors for light molecules based on the use of quartz crystal microbalances, given the linear dependence of the method on the laser pulse intensity. Here, we compare the quality of the anchoring method when using nanosecond (260 nm, 25 mJ/pulse, 5 ns, 10 Hz rep. rate) and femtosecond (258 nm, 25 μJ/pulse, 150 fs, 10 kHz rep. rate) laser source, delivering the same energy to the sample with the same average power. As a reference, we also tethered untreated antibodies by means of the passive adsorption. The results are striking: When the antibodies are irradiated with the femtosecond pulses, the deposition on the gold plate is much more ordered than in the other two cases. The effects of UV pulses irradiation onto the antibodies are also analyzed by measuring absorption and fluorescence and suggest the occurrence of remarkable degradation when nanosecond pulses are used likely induced by a larger thermal coupling. In view of the high average power required to activate the antibodies for the achievement of the photonic immobilization technique, we conclude that femtosecond rather than nanosecond laser pulses have to be used.

  12. Progress in Cherenkov femtosecond fiber lasers

    PubMed Central

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems – broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed. PMID:27110037

  13. Flow induced by a femtosecond laser filament

    NASA Astrophysics Data System (ADS)

    Pouya, Shahram; Koochesfahani, Manoochehr

    2017-11-01

    Propagation of femtosecond pulsed lasers is of interest to a variety of applications in science and engineering. These laser sources also provide an attractive tool for molecular tagging velocimetry in air (e.g. FLEET). However, high power density of such short pulse lasers can potentially lead to flow perturbations. In this work we present PIV measurements in air around a high repetition rate (1 KHz) focused femtosecond laser beam and quantify the level of flow disturbances that it introduces in its vicinity. Results are shown for various pulse energy levels and the time scale for generation of flow disturbance. These results provide information about the measurement constraints when using femtosecond lasers in molecular tagging velocimetry. This work was supported by AFOSR Award Numbers FA9550-13-1-0034 and FA9550-15-1-0224.

  14. Femtosecond Laser Filamentation for Atmospheric Sensing

    PubMed Central

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  15. Progress in Cherenkov femtosecond fiber lasers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  16. 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate.

    PubMed

    Budriūnas, Rimantas; Stanislauskas, Tomas; Adamonis, Jonas; Aleknavičius, Aidas; Veitas, Gediminas; Gadonas, Darius; Balickas, Stanislovas; Michailovas, Andrejus; Varanavičius, Arūnas

    2017-03-06

    We present a high peak and average power optical parametric chirped pulse amplification system driven by diode-pumped Yb:KGW and Nd:YAG lasers running at 1 kHz repetition rate. The advanced architecture of the system allows us to achieve >53 W average power combined with 5.5 TW peak power, along with sub-220 mrad CEP stability and sub-9 fs pulse duration at a center wavelength around 880 nm. Broadband, background-free, passively CEP stabilized seed pulses are produced in a series of cascaded optical parametric amplifiers pumped by the Yb:KGW laser, while a diode-pumped Nd:YAG laser system provides multi-mJ pump pulses for power amplification stages. Excellent stability of output parameters over 16 hours of continuous operation is demonstrated.

  17. Femtosecond Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  18. Effect of femtosecond laser radiation on morphofunctional state of neoplasm in vitro

    NASA Astrophysics Data System (ADS)

    Gening, Tatyana; Sysoliatin, Alexey; Arslanova, Dinara; Abakumova, Tatyana; Svetukhin, Vyacheslav; Antoneeva, Inna

    2012-03-01

    The effect of femtosecond laser radiation provided by the Erbium fiber laser with the pulse duration of 10-13 s, peak and average power of 6,0+/-0,3 kW and 1,26+/-0,15 mW, respectively, wavelength λ of 1,55 μm has been studied in the experiments on rat ascitic ovarian tumor cell in vitro. Irradiation has been performed at the average intensity of 0,033+/-0.002 mW/cm2 at two expositions under femtosecond laser radiation of 600 and 900 s. The membrane topology and rigidity of the cancer cells have been estimated with the Scanning probe microscopy (SolverPro, NT-MDT, Russia). Besides, the viability and apoptosis of the cancer cells have been estimated. Free-radical processes and antioxidant enzyme activity have been studied in cancer cell lysate. Femtosecond laser irradiation was established to increases the activity of the "Lipoperoxidation - antioxidants" system in neoplasm, enhance the apoptosis, decrease the viability, and change cancer cell membrane topology and rigidity in vitro depending on the energy density of the irradiation.

  19. Femtosecond multiphoton ionization of pyrrole.

    PubMed

    Liu, Benkang; Wang, Yanqiu; Wang, Li

    2012-01-12

    The photoionization dynamics of pyrrole are investigated by using a photoelectron imaging method and a tunable femtosecond laser. Two-photon nonresonant ionization experiments in the wavelength range from 261 to 298 nm indicate that the cation and neutral ground states have similar structures. The main vibrational excitation in the cation ground state is the v(8) mode. Two-photon absorption at 406 nm projects neutral pyrrole into a mixed state comprising the 1B(2) valence and 3p Rydberg states. Ionization from this mixed state mainly results in the overtone excitation of vibrational mode v(8) and v(9) of the cation state. In the wavelength range from 336 to 364 nm, a mixed state comprising the 3d/4s Rydberg and the 4A(1) valence states are populated by the absorption of two photons through vibronic coupling. The partition ratio among these states varies with the excitation wavelength, resulting in dramatic changes in both kinetic energy distributions and angular distributions. As the laser wavelength becomes shorter, from 336 to 314 nm, higher excited states, 3B(2), 5A(1), 6A(1), 7B(1) and 4B(2), can be populated. Photoelectron angular distributions provide supplementary verification of assignments. Our experiments indicate that femtosecond multiphoton ionization and photoelectron imaging methods are powerful tools for investigating short-lived intermediated excited states, which cannot be detected in nanosecond experiments.

  20. Site-selective silicon adatom desorption using femtosecond laser pulse pairs and scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Futaba, D. N.; Morita, R.; Yamashita, M.; Tomiyama, S.; Shigekawa, H.

    2003-09-01

    We performed an experimental study of silicon adatom desorption from the Si(111)-7×7 surface using femtosecond laser pulse pair excitation with 80 fs pulse duration, 800 nm center wavelength, 300 mW average power, and a 100 MHz repetition rate. Using scanning tunneling microscopy, we directly recorded the desorption characteristics at each delay setting for each of the four adatom binding sites. The study revealed a preferential dependence between the delay time and the adatom sites within a 66.6-1000 fs delay range.

  1. Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers.

    PubMed

    Daniault, Louis; Hanna, Marc; Papadopoulos, Dimitris N; Zaouter, Yoann; Mottay, Eric; Druon, Frédéric; Georges, Patrick

    2011-10-15

    We propose and demonstrate an architecture that achieves passive coherent combination of two femtosecond fiber chirped-pulse amplifiers. The setup consists in the use of a well-balanced amplifying Sagnac interferometer. The experiment shows that the temporal, spectral, and spatial qualities of each beam are retained, with the generation of 250 fs pulses at 35 MHz repetition rate, an uncompressed average power of 10 W, and a combining efficiency of 96%. The behavior of this architecture in the presence of high accumulated nonlinear phase is investigated.

  2. The e-SCRUB Machine: an 800-kV, 500-kW average power pulsed electron beam generator for flue-gas scrubbing

    NASA Astrophysics Data System (ADS)

    Cooper, James R.; Briggs, Ray; Crewson, Walter F.; Johnson, R. D.; Ratafia-Brown, J. A.; Richardson, W. K.; Rienstra, W. W.; Ballard, Perry G.; Cukr, Jeffrey; Cassel, R. L.; Schlitt, Leland; Genuario, R. D.; Morgan, R. D.; Tripoli, G. A.

    1995-03-01

    This paper gives an overview of electron beam dry scrubbing (EBDS) to remove SOx and NOx from flue gases of coal-fired power plants. It also describes the e-SCRUB program, a program currently underway to commercialize this process with an integrated pulsed electron beam. The electron beam, together with injected water and ammonia, causes chemical reactions which convert the SOx and NOx into commercial grade agricultural fertilizer, a usable byproduct. The e-SCRUB facility is a test bed to demonstrate the feasibility and performance of a repetitive, reliable pulsed electron beam generator operating at average power levels of up to 1 MW. This facility contains the electron beam generator and all the auxiliary and support systems required by the machine, including a computer driven central experiment control system, a 100,000 SCFM flowing dry nitrogen load which simulates the characteristics of a power plant flue, and a 2 MVA dedicated electrical service to power the machine. The e-SCRUB electron beam machine is designed to produce an 800 kV pulsed electron beam with a repetition rate of 667 pps. The energy per pulse deposited into the flue gas is approximately 750 J. The pulsed power system converts the utility power input to a 667 pps, 800 kV pulse train which powers the electron gun. The functional units of the pulsed power system will be discussed in the paper, along with some preliminary experimental results.

  3. All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2  μm with mJ-level pulse energy.

    PubMed

    Wang, Xiong; Jin, Xiaoxi; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2016-03-10

    We present a high-power nanosecond-pulsed Tm-doped fiber amplifier at 1.971 μm based on a master-oscillator power amplifier (MOPA) configuration. When the repetition rate is 500 kHz and the pulse width is 63.3 ns, the average power reaches 238 W, the peak power reaches 7.06 kW, and the pulse energy is 0.477 mJ. When the pulse train's repetition rate is 300 kHz with a pulse width of 63.7 ns, the average power reaches 197 W, the peak power reaches 9.73 kW, and the pulse energy is 0.66 mJ. When the pulse train's repetition rate is 200 kHz with a pulse width of 58.2 ns, the average power reaches 150 W, the peak power reaches 12.1 kW, and the pulse energy is 0.749 mJ. The spectral linewidths of the pulse trains are 0.15, 0.14, and 0.10 nm for 500 kHz repetition rate, 300 kHz repetition rate, and 200 kHz repetition rate, respectively. To the best of our knowledge, this is the first demonstration of high-power nanosecond-pulsed MOPA at 2 μm with the maximum average power reaching 238 W, the maximum peak power reaching 12.1 kW, and the maximum pulse energy reaching 0.749 mJ.

  4. Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz.

    PubMed

    Pekarek, Selina; Klenner, Alexander; Südmeyer, Thomas; Fiebig, Christian; Paschke, Katrin; Erbert, Götz; Keller, Ursula

    2012-02-13

    We report on a diode-pumped Yb:KGW (ytterbium-doped potassium gadolinium tungstate) laser with a repetition rate of 4.8 GHz and a pulse duration of 396 fs. Stable fundamental modelocking is achieved with a semiconductor saturable absorber mirror (SESAM). The average output power of this compact diode-pumped solid state laser is 1.9 W which corresponds to a peak power of 0.9 kW and the optical-to-optical efficiency is 36%. To the best of our knowledge, this is the femtosecond DPSSL with the highest repetition rate ever reported so far.

  5. Double rod Nd: YAG laser with 180 W average output power and diffraction limited beam quality via path matched birefringence compensation

    NASA Astrophysics Data System (ADS)

    Ostermeyer, Martin; Klemz, Guido; Menzel, Ralf

    2002-06-01

    The rod geometry for high power solid state lasers has been proven to be both, reliable and reasonably inexpensive. On the other hand, setting up rod lasers with excellent beam quality implies a number of problems that have to be tackled. One of the most serious problems for isotropic crystals like Nd:YAG might be the effect of depolarization and bifocusing due to thermally induced birefringence (tib). The effect of tib can be compensated by a 90 degree(s) polarization rotation between two identical rods. However, because of the finite length of the laser rods in an optimized compensation scheme, matching the two paths in the two laser rods becomes necessary. By doing this, one wide stability region is yielded. The laser behaves like a single rod laser, and the beam path for the radial and tangential eigenmode becomes the same. Thereby, excellent beam qualities at high output powers can be achieved. Our Nd:YAG double rod system provides a maximum average output power of 180 W with a beam propagation factor of M2< 1.2. It is quasi cw diode pumped with a repetition rate of around 1 kHz and a pump pulse length of 250 microsecond(s) . The laser heads contain 3 star like arranged sets of diode bars being set up in a complementary position to each other. The maximum average pump power per laser head is 800 W.

  6. Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power

    SciTech Connect

    Yasuhara, Ryo, E-mail: yasuhara@nifs.ac.jp; Snetkov, Ilya; Starobor, Alexey

    2014-12-15

    A scalable aperture Faraday isolator for high-energy pulsed lasers with kW-level average power was demonstrated using terbium gallium garnet ceramics with water cooling and compensation of thermally induced depolarization in a magnetic field. An isolation ratio of 35 dB (depolarization ratio γ of 3.4 × 10{sup −4}) was experimentally observed at a maximum laser power of 740 W. By using this result, we estimated that this isolator maintains an isolation ratio of 30 dB for laser powers of up to 2.7 kW. Our results provide the solution for achieving optical isolation in high-energy (100 J to kJ) laser systems with a repetition rate greater than 10 Hz.

  7. Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power

    NASA Astrophysics Data System (ADS)

    Yasuhara, Ryo; Snetkov, Ilya; Starobor, Alexey; Palashov, Oleg

    2014-12-01

    A scalable aperture Faraday isolator for high-energy pulsed lasers with kW-level average power was demonstrated using terbium gallium garnet ceramics with water cooling and compensation of thermally induced depolarization in a magnetic field. An isolation ratio of 35 dB (depolarization ratio γ of 3.4 × 10-4) was experimentally observed at a maximum laser power of 740 W. By using this result, we estimated that this isolator maintains an isolation ratio of 30 dB for laser powers of up to 2.7 kW. Our results provide the solution for achieving optical isolation in high-energy (100 J to kJ) laser systems with a repetition rate greater than 10 Hz.

  8. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron-laser for plasma heating

    SciTech Connect

    Allen, S.L.; Scharlemann, E.T.

    1992-05-01

    We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end of ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations.

  9. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications

    NASA Astrophysics Data System (ADS)

    Zhu, G.; Whitehead, D.; Perrie, W.; Allegre, O. J.; Olle, V.; Li, Q.; Tang, Y.; Dawson, K.; Jin, Y.; Edwardson, S. P.; Li, L.; Dearden, G.

    2018-03-01

    Spatial light modulators (SLMs) addressed with computer generated holograms (CGHs) can create structured light fields on demand when an incident laser beam is diffracted by a phase CGH. The power handling limitations of these devices based on a liquid crystal layer has always been of some concern. With careful engineering of chip thermal management, we report the detailed optical phase and temperature response of a liquid cooled SLM exposed to picosecond laser powers up to 〈P〉  =  220 W at 1064 nm. This information is critical for determining device performance at high laser powers. SLM chip temperature rose linearly with incident laser exposure, increasing by only 5 °C at 〈P〉  =  220 W incident power, measured with a thermal imaging camera. Thermal response time with continuous exposure was 1–2 s. The optical phase response with incident power approaches 2π radians with average power up to 〈P〉  =  130 W, hence the operational limit, while above this power, liquid crystal thickness variations limit phase response to just over π radians. Modelling of the thermal and phase response with exposure is also presented, supporting experimental observations well. These remarkable performance characteristics show that liquid crystal based SLM technology is highly robust when efficiently cooled. High speed, multi-beam plasmonic surface micro-structuring at a rate R  =  8 cm2 s‑1 is achieved on polished metal surfaces at 〈P〉  =  25 W exposure while diffractive, multi-beam surface ablation with average power 〈P〉  =100 W on stainless steel is demonstrated with ablation rate of ~4 mm3 min‑1. However, above 130 W, first order diffraction efficiency drops significantly in accord with the observed operational limit. Continuous exposure for a period of 45 min at a laser power of 〈P〉  =  160 W did not result in any detectable drop in diffraction efficiency, confirmed afterwards by the

  10. Control of thermal effects in fast-switching femtosecond UV laser system

    NASA Astrophysics Data System (ADS)

    Gabryte, Egle; Sobutas, Simas; Vengris, Mikas; Danielius, Romualdas

    2015-07-01

    Femtosecond laser systems are becoming essential tools in various areas of material processing, medicine and scientific research. In order to tailor the wavelength of radiation to the absorptivity of materials being processed, UV harmonic generators are often employed. At high average powers and high repetition rates, the long warm-up time of harmonic generators, caused by UV absorption in nonlinear crystals, can be a serious obstacle for efficient and fast processing. To increase the speed and reduce the cost of technological processes, new methods are required to speed up the settling of the output power when the harmonic generators are switched on after longer idle period. We have investigated a fourth-harmonic generator of a high-repetition rate femtosecond laser and studied the properties of the output radiation in order to optimize its fast-switching capabilities. Theoretical modeling of thermal effects in the nonlinear crystal allowed us to explain temporal dependencies of temperature and output power after switching the laser on. Based on these results, we were able to optimize the trajectory of nonlinear crystal rotation following the system start-up and reduce the switching-on time from tens of seconds to 50 ms without any negative effect on the output power.

  11. The Physics of Intense Femtosecond Laser Filamentation

    NASA Astrophysics Data System (ADS)

    Chin, See Leang; Liu, Weiwei; Kosareva, Olga G.; Kandidov, Valerii P.

    When a powerful femtosecond laser pulse propagates in a transparent optical medium, be it a gas or a condensed medium, the pulse will self-focus into a series of self-foci, giving rise to the perception of a filament. This universal nonlinear propagation phenomenon is currently an interesting research topic at the forefront of applied physics and attracts more and more people into this field. In this chapter some fundamental physical concepts underlying femtosecond laser filamentation are discussed. These include slice-by-slice self-focusing, intensity clamping, self-transformation into a white light laser pulse (supercontinuum generation), background reservoir and multiple filamentation competition. Some important potential applications are also briefly mentioned.

  12. Ultrafast and low-power crystallization in Ge1Sb2Te4 and Ge1Sb4Te7 thin films using femtosecond laser pulses.

    PubMed

    Sahu, Smriti; Sharma, Rituraj; Adarsh, K V; Manivannan, Anbarasu

    2018-01-10

    Rapid and reversible switching between amorphous and crystalline phases of phase-change material promises to revolutionize the field of information processing with a wide range of applications including electronic, optoelectronics, and photonic memory devices. However, achieving faster crystallization is a key challenge. Here, we demonstrate femtosecond-driven transient inspection of ultrafast crystallization of as-deposited amorphous Ge1Sb2Te4 and Ge1Sb4Te7 thin films induced by a series of 120 fs laser pulses. The snapshots of phase transitions are correlated with the time-resolved measurements of change in the absorption of the samples. The crystallization is attributed to the reiterative excitation of an intermediate state with subcritical nuclei at a strikingly low fluence of 3.19  mJ/cm2 for Ge1Sb2Te4 and 1.59  mJ/cm2 for Ge1Sb4Te7. Furthermore, 100% volumetric crystallization of Ge1Sb4Te7 was achieved with the fluence of 4.78  mJ/cm2, and also reamorphization is seen for a continuous stimulation at the same repetition rate and fluence. A systematic confirmation of structural transformations of all samples is validated by Raman spectroscopic measurements on the spots produced by the various excitation fluences.

  13. Channeling of high-power radio waves under conditions of strong anomalous absorption in the presence of an averaged electron heating source

    NASA Astrophysics Data System (ADS)

    Vas'kov, V. V.; Ryabova, N. A.

    2010-02-01

    Strong anomalous absorption of a high-power radio wave by small-scale plasma inhomogeneities in the Earth’s ionosphere can lead to the formation of self-consistent channels (solitons) in which the wave propagates along the magnetic field, but has a soliton-like intensity distribution across the field. The structure of a cylindrical soliton as a function of the wave intensity at the soliton axis is analyzed. Averaged density perturbations leading to wave focusing were calculated using the model proposed earlier by Vas’kov and Gurevich (Geomagn. Aéron. 16, 1112 (1976)), in which an averaged electron heating source was used. It is shown that, under conditions of strong electron recombination, the radii of individual solitons do not exceed 650 m.

  14. The Diamond Window with Boron-Doped Layers for the Output of Microwave Radiation at High Peak and Average Power Levels

    NASA Astrophysics Data System (ADS)

    Ivanov, O. A.; Kuzikov, S. V.; Vikharev, A. A.; Vikharev, A. L.; Lobaev, M. A.

    2017-10-01

    We propose a novel design of the barrier window for the output of microwave radiation at high peak and average power levels. A window based on a plate of polycrystalline CVD diamond with thin (nanometer-thick) boron-doped layers with increased conductivity is considered. Such a window, which retains the low radiation loss due to the small total thickness of the conductive layers and the high thermal conductivity inherent in diamond, prevents accumulation of a static charge on its surface, on the one hand, and allows one to produce a static electric field on the surface of the doped layer, which impedes the development of a multipactor discharge, on the other hand. In this case, a high level of the power of the transmitted radiation and a large passband width are ensured by choosing the configuration of the field in the form of a traveling wave inside the window.

  15. Continuous-wave seeded mid-IR parametric system pumped by the high-average-power picosecond Yb:YAG thin-disk laser

    NASA Astrophysics Data System (ADS)

    Novák, Ondřej; Smrž, Martin; Miura, Taisuke; Turčičová, Hana; Endo, Akira; Mocek, Tomáś

    2015-05-01

    Mid-IR wavelength range offers variety of interesting applications. Down-conversion in the optical parametric devices is promising to generate high average power mid-IR beam due to inherently low thermal load of the nonlinear crystals if a powerful and high quality pump beam is available. We developed 100 kHz pump laser of 100-W level average power. The stretched pulses of Yb-fiber laser oscillator at 1030 nm wavelength are injected into the regenerative amplifier with an Yb:YAG thin-disk. Diode pumping at zero phonon line at wavelength of 969 nm significantly reduces its thermal load and increases conversion efficiency and stability. We obtained the beam with power of 80 W and 2 ps compressed pulsewidth. We are developing a watt level mid-IR picosecond light source pumped by a beam of the thin disk regenerative amplifier. Part of the beam pumps PPLN, which is seeded by a continuous wave laser diode at 1.94 μm to decrease the generation threshold and determine the amplified spectrum. The 3 W pumping gave output of 30 mW, which is by up to two orders higher compared to unseeded operation. The gain of about 107 was achieved in the PPLN in the temporal window of the pump pulse. The spectrum and beam of the generated idler pulses in the mid-IR was measured. We obtained an amplified signal from the second stage with the KTP crystal. We expect watt level mid-IR output for initial 50-W pumping. The generation of longer wavelengths is discussed.

  16. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron-laser for plasma heating

    SciTech Connect

    Allen, S.L.; Scharlemann, E.T.

    1992-05-01

    We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end ofmore » ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations.« less

  17. Performance of MgO:PPLN, KTA, and KNbO₃ for mid-wave infrared broadband parametric amplification at high average power.

    PubMed

    Baudisch, M; Hemmer, M; Pires, H; Biegert, J

    2014-10-15

    The performance of potassium niobate (KNbO₃), MgO-doped periodically poled lithium niobate (MgO:PPLN), and potassium titanyl arsenate (KTA) were experimentally compared for broadband mid-wave infrared parametric amplification at a high repetition rate. The seed pulses, with an energy of 6.5 μJ, were amplified using 410 μJ pump energy at 1064 nm to a maximum pulse energy of 28.9 μJ at 3 μm wavelength and at a 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study revealed average power-induced processes that limit the scaling of optical parametric amplification in MgO:PPLN; the pump peak intensity was limited to 3.8  GW/cm² due to nonpermanent beam reshaping, whereas in KNbO₃ an absorption-induced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4  GW/cm².

  18. An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg.

    PubMed

    Zhai, Teng; Lu, Xihong; Wang, Hanyu; Wang, Gongming; Mathis, Tyler; Liu, Tianyu; Li, Cheng; Tong, Yexiang; Li, Yat

    2015-05-13

    Electrochemical capacitors represent a new class of charge storage devices that can simultaneously achieve high energy density and high power density. Previous reports have been primarily focused on the development of high performance capacitor electrodes. Although these electrodes have achieved excellent specific capacitance based on per unit mass of active materials, the gravimetric energy densities calculated based on the weight of entire capacitor device were fairly small. This is mainly due to the large mass ratio between current collector and active material. We aimed to address this issue by a 2-fold approach of minimizing the mass of current collector and increasing the electrode performance. Here we report an electrochemical capacitor using 3D graphene hollow structure as current collector, vanadium sulfide and manganese oxide as anode and cathode materials, respectively. 3D graphene hollow structure provides a lightweight and highly conductive scaffold for deposition of pseudocapacitive materials. The device achieves an excellent active material ratio of 24%. Significantly, it delivers a remarkable energy density of 7.4 Wh/kg (based on the weight of entire device) at the average power density of 3000 W/kg. This is the highest gravimetric energy density reported for asymmetric electrochemical capacitors at such a high power density.

  19. Compact 10-GHz Nd:GdVO4 laser with 0.5-W average output power and low timing jitter.

    PubMed

    Krainer, L; Nodop, D; Spühler, G J; Lecomte, S; Golling, M; Paschotta, R; Ebling, D; Ohgoh, T; Hayakawa, T; Weingarten, K J; Keller, U

    2004-11-15

    We demonstrate a compact, diode-pumped Nd:GdVO4 laser with a repetition rate of 9.66 GHz and 0.5-W average output power. The laser is passively mode locked with a semiconductor saturable absorber mirror (SESAM), yielding 12-ps-long sech2-shaped pulses. For synchronization of the pulse train to an external reference clock, the SESAM is mounted on a piezoelectric transducer. With an electronic feedback loop of only a few kilohertz loop bandwidth we achieved a rms timing jitter of 146 fs (integrated from 10 Hz to 10 MHz). This is an upper limit because it is mostly limited by the measurement system. The laser setup with a simple linear cavity has a footprint of only 130 mm x 30 mm.

  20. Subnanosecond, mid-IR, 0.5 kHz periodically poled stoichiometric LiTaO3 optical parametric oscillator with over 1 W average power

    PubMed Central

    Chuchumishev, Danail; Gaydardzhiev, Alexander; Fiebig, Torsten; Buchvarov, Ivan

    2014-01-01

    We report a subnanosecond mid-IR tunable optical parametric oscillator based on periodically poled stoichiometric lithium tantalate (PPSLT), pumped by an amplified single frequency microchip laser at 1064 nm at a repetition rate of 0.5 kHz. Using a 20 mm long PPSLT crystal polled with three different domain periods (30.2, 30.3, and 30.4 μm) and changing the temperature of the crystal from 20°C to 265°C, we achieved wavelength tuning between 2990 and 3500 nm. The high nonlinearity of the used medium and the large aperture (3.2 mm) ensure maximum idler output energy of ~2 mJ in the whole tuning range, corresponding to 18% idler conversion efficiency and more than 1 W of average power. 270 ps idler pulse durations were obtained as a result of the 818 ps pulse duration of the pump. PMID:23988953

  1. Diode-pumped femtosecond laser oscillator with cavity dumping.

    PubMed

    Killi, A; Morgner, U; Lederer, M J; Kopf, D

    2004-06-01

    We report on a diode-pumped tunable Yb:glass femtosecond laser oscillator with electro-optic cavity dumping. Pulses with energies exceeding 400 nJ and peak powers greater than 1 MW were generated at repetition frequencies as high as 200 kHz. This laser forms a compact light source for various scientific and industrial applications such as micromachining.

  2. High average power difference-frequency generation of picosecond mid-IR pulses at 80MHz using an Yb-fiber laser pumped optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Michel, Julia; Beutler, Marcus; Rimke, Ingo; Büttner, Edlef; Farinello, Paolo; Agnesi, Antonio; Petrov, Valentin P.

    2015-02-01

    We present an efficient coherent source widely tunable in the mid-infrared spectral range consisting of a commercial picosecond Yb-fiber laser operating at 80 MHz repetition rate, a synchronously-pumped OPO (SPOPO) and differencefrequency generation (DFG) in AgGaSe2. With an average input pump power of 7.8 W at 1032 nm and at 80 MHz, the SPOPO outputs are tunable from 1380 to 1980 nm (Signal) and from 2.1 to ~4 μm (Idler) with pulse durations between 2.1 and 2.6 ps over the entire tuning range. After temporally overlapping Signal and Idler through a delay line, the two beams are spatially recombined with a dichroic mirror (reflecting for the Signal in s-polarization and transmitting for the Idler in p-polarization), and focused by a 150 mm CaF2 lens to a common focus. For DFG we employ an AR-coated 10- mm thick AgGaSe2 nonlinear crystal cut for type-I interaction at θ =52°. The generated mid-infrared picosecond pulses are continuously tunable between 5 and 18 μm with average power up to 130 mW at 6 μm and more than 1 mW at 18 μm. Their spectra and autocorrelation traces are measured up to 15 μm and 11 μm, respectively, and indicate that the input spectral bandwidth and pulse duration are maintained to a great extent in the nonlinear frequency conversion processes. The pulse duration slightly decreases from 2.1 to 1.9 ps at 6.7 μm while the spectral bandwidth supports ~1.5 ps (~10 cm-1)durations across the entire mid-infrared tuning range. For the first time narrow-band mid-infrared pulses with energy exceeding 1 nJ are generated at such high repetition rates.

  3. Femtosecond laser cataract surgery: updates on technologies and outcomes.

    PubMed

    Alió, Jorge L; Abdou, Ahmed A; Puente, Alfonso Arias; Zato, Miguel Angel; Nagy, Zoltan

    2014-06-01

    To describe femtosecond laser cataract surgery and discuss the published peer-reviewed articles to have a fair evaluation of this new technology and its comparisons to conventional phacoemulsification surgery. The technology information released in this article comes from the key individuals in each of the U.S. Food and Drug Administration-approved companies and from the available commercial information. Bibliographic research was performed in PubMed and MEDLINE for the published prospective or retrospective clinical studies. The femtosecond laser has been reported to be safe intraoperatively and postoperatively, with less cornea and macula effect than conventional phacoemulsification. The incision is integrated, stable, and aberration free. Many studies reported the high precision of the capsulotomy over manual continuous curvilinear capsulorhexis, which favors less intraocular lens tilt, higher optical quality, and more accurate premium intraocular lens centration. The lens fragmentation is effective with significant reduction of the phacoemulsification power and effective phacoemulsification time. The refractive difference between femtosecond laser and standard phacoemulsification is minimal, with no difference in corrected distance visual acuity, but the optical quality and the internal aberrations results are significantly better for femtosecond laser phacoemulsification. Femtosecond laser cataract surgery is a good addition to cataract surgery despite its few remarkable advantages among experienced phacoemulsification surgeons. Copyright 2014, SLACK Incorporated.

  4. Implications of the focal beam profile in serial femtosecond crystallography

    SciTech Connect

    Galli, Lorenzo; Chapman, Henry N.; Metcalf, Peter

    2015-05-12

    The photon density profile of an X-ray free-electron laser (XFEL) beam at the focal position is a critical parameter for serial femtosecond crystallography (SFX), but is difficult to measure because of the destructive power of the beam. A novel high intensity radiation induced phasing method (HIRIP) has been proposed as a general experimental approach for protein structure determination, but has proved to be sensitive to variations of the X-ray intensity, with uniform incident fluence desired for best performance. Here we show that experimental SFX data collected at the nano-focus chamber of the Coherent X-ray Imaging end-station at the Linac Coherentmore » Light Source using crystals with a limited size distribution suggests an average profile of the X-ray beam that has a large variation of intensity. We propose a new method to improve the quality of high fluence data for HI-RIP, by identifying and removing diffraction patterns from crystals exposed to the low intensity region of the beam. The method requires crystals of average size comparable to the width of the focal spot.« less

  5. Compact directly diode-pumped femtosecond Nd:glass chirped-pulse-amplification laser system.

    PubMed

    Horvath, C; Braun, A; Liu, H; Juhasz, T; Mourou, G

    1997-12-01

    An all-solid-state longitudinally diode-pumped Nd:glass chirped-pulse-amplification laser system producing pulses of 50-MW peak power has been developed. The diode-pumped Nd:glass regenerative amplifier produces pulses with energies as great as 56microJ at a 1-kHz repetition rate and pulse durations as short as 450 fs after compression in a compact single holographic-transmission-grating stretcher-compressor arrangement. Further, spectral gain shaping was shown to extend the bandwidth that was supported in the low-gain amplifier. To the best of our knowledge, this system provides the highest peak and average power obtained from a directly diode-pumped femtosecond laser.

  6. Femtosecond Er-doped fiber laser based on divided-pulse nonlinear amplification

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Li, Wenxue; Li, Lang; Hao, Qiang; Zhao, Jian; Zeng, Heping

    2016-02-01

    A high-power erbium-doped fiber amplifier was realized by using a spatially and temporally divided pulse amplification technique. Pulse amplification and compression were simultaneously achieved in a double-clad Er-doped fiber by controlling the pulse gain and dispersion, generating a slope efficiency of 19.2% for the divided pulse amplification. The spectrum and pulse evolutions for nonlinear amplification and compression in the double-clad gain fiber were studied both in theory and experiment. Then 680 mW near-infrared femtosecond laser pulses were obtained by using 0.45 m single-mode fiber to compress amplified pulses. Frequency doubling was further carried out with a periodically poled lithium niobate (PPLN) crystal, generating 790 nm laser pulses with 110 mW average power and 95.7 fs pulse duration.

  7. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  8. Femtosecond laser ablation of dentin

    NASA Astrophysics Data System (ADS)

    Alves, S.; Oliveira, V.; Vilar, R.

    2012-06-01

    The surface morphology, structure and composition of human dentin treated with a femtosecond infrared laser (pulse duration 500 fs, wavelength 1030 nm, fluences ranging from 1 to 3 J cm-2) was studied by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The average dentin ablation threshold under these conditions was 0.6 ± 0.2 J cm-2 and the ablation rate achieved in the range 1 to 2 µm/pulse for an average fluence of 3 J cm-2. The ablation surfaces present an irregular and rugged appearance, with no significant traces of melting, deformation, cracking or carbonization. The smear layer was entirely removed by the laser treatment. For fluences only slightly higher than the ablation threshold the morphology of the laser-treated surfaces was very similar to the dentin fracture surfaces and the dentinal tubules remained open. For higher fluences, the surface was more porous and the dentin structure was partially concealed by ablation debris and a few resolidified droplets. Independently on the laser processing parameters and laser processing method used no sub-superficial cracking was observed. The dentin constitution and chemical composition was not significantly modified by the laser treatment in the processing parameter range used. In particular, the organic matter is not preferentially removed from the surface and no traces of high temperature phosphates, such as the β-tricalcium phosphate, were observed. The achieved results are compatible with an electrostatic ablation mechanism. In conclusion, the high beam quality and short pulse duration of the ultrafast laser used should allow the accurate preparation of cavities, with negligible damage of the underlying material.

  9. Peak-to-average power ratio reduction of transmission signal of all-optical orthogonal time/frequency domain multiplexing using fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Nagashima, T.; Cincotti, G.; Murakawa, T.; Shimizu, S.; Hasegawa, M.; Hattori, K.; Okuno, M.; Mino, S.; Himeno, A.; Wada, N.; Uenohara, H.; Konishi, T.

    2017-11-01

    We examine a peak-to-average power ratio (PAPR) reduction effect in an optical fiber link using a fractional Fourier transform (FrFT). Fractional OFDM (FrOFDM) based on FrFT in place of discrete Fourier transform is a multiplexing approach that can balance the pros and cons of subcarriers in the time and frequency domains while keeping its orthogonal condition. A careful investigation of the PAPR behavior of a FrOFDM signal confirms that its PAPR can be minimized at a point where a Nyquist pulse train is formed by a time-lens effect. With emphasis on this low-PAPR characteristic of a Nyquist pulse train, the signal quality degradation owing to fiber nonlinearity can be mitigated. A 1.0-dB signal quality improvement after propagation in a dispersion-compensated fiber link is demonstrated in a simulation for a 12 × 10- Gbaud / s 16 QAM FrOFDM signal in comparison with that of a conventional OFDM.

  10. Peak-to-average power ratio reduction in orthogonal frequency division multiplexing-based visible light communication systems using a modified partial transmit sequence technique

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Deng, Honggui; Ren, Shuang; Tang, Chengying; Qian, Xuewen

    2018-01-01

    We propose an efficient partial transmit sequence technique based on genetic algorithm and peak-value optimization algorithm (GAPOA) to reduce high peak-to-average power ratio (PAPR) in visible light communication systems based on orthogonal frequency division multiplexing (VLC-OFDM). By analysis of hill-climbing algorithm's pros and cons, we propose the POA with excellent local search ability to further process the signals whose PAPR is still over the threshold after processed by genetic algorithm (GA). To verify the effectiveness of the proposed technique and algorithm, we evaluate the PAPR performance and the bit error rate (BER) performance and compare them with partial transmit sequence (PTS) technique based on GA (GA-PTS), PTS technique based on genetic and hill-climbing algorithm (GH-PTS), and PTS based on shuffled frog leaping algorithm and hill-climbing algorithm (SFLAHC-PTS). The results show that our technique and algorithm have not only better PAPR performance but also lower computational complexity and BER than GA-PTS, GH-PTS, and SFLAHC-PTS technique.

  11. Optimization of X-ray sources from a high-average-power ND:Glass laser-produced plasma for proximity lithography

    SciTech Connect

    Celliers, P.; Da Silva, L.B.; Dane, C.B.

    1996-06-01

    The concept of a laser-based proximity lithography system for electronic microcircuit production has advanced to the point where a detailed design of a prototype system capable of exposing wafers at 40 wafer levels per hr is technically feasible with high-average-power laser technology. In proximity x-ray lithography, a photoresist composed of polymethyl- methacrylate (PMMA) or similar material is exposed to x rays transmitted through a mask placed near the photoresist, a procedure which is similar to making a photographic contact print. The mask contains a pattern of opaque metal features, with line widths as small as 0.12 {mu}m, placed on a thin (1-{mu}m thick) Si membrane. During the exposure, the shadow of the mask projected onto the resist produces in the physical and chemical properties of the resist a pattern of variation with the same size and shape as the features contained in the metal mask. This pattern can be further processed to produce microscopic structures in the Si substrate. The main application envisioned for this technology is the production of electronic microcircuits with spatial features significantly smaller than currently achievable with conventional optical lithographic techniques (0.12 {micro}m vs 0.25 {micro}m). This article describes work on optimizing a laser-produced plasma x-ray source intended for microcircuit production by proximity lithography.

  12. Bragg gratings inscription in step-index PMMA optical fiber by femtosecond laser pulses at 400 nm

    NASA Astrophysics Data System (ADS)

    Hu, X.; Kinet, D.; Chah, K.; Mégret, P.; Caucheteur, C.

    2016-05-01

    In this paper, we report photo-inscription of uniform Bragg gratings in trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber. Gratings were produced at ~1575 nm by the phase mask technique with a femtosecond laser emitting at 400 nm with different average optical powers (8 mW, 13 mW and 20 mW). The grating growth dynamics in transmission were monitored during the manufacturing process, showing that the grating grows faster with higher power. Using 20 mW laser beam power, the reflectivity reaches 94 % (8 dB transmission loss) in 70 seconds. Finally, the gratings were characterized in temperature in the range 20 - 45 °C. The thermal sensitivity has been computed equal to - 86.6 pm/°C.

  13. Decreased Average Power of the Hip External Muscles as a Predictive Parameter for Lower Extremity Injury in Women: A Prospective Study.

    PubMed

    Verrelst, Ruth; Van Tiggelen, Damien; De Ridder, Roel; Witvrouw, Erik

    2017-07-14

    To prospectively identify hip strength associated risk factors contributing to the development of lower extremity (LE) injury. Data were prospectively collected on healthy female physical education students. This study was conducted in the institution of the University of Ghent. Eighty-nine female physical education students aged 19.53 ± 1.07 years. Testing included isokinetic hip strength measurements of abductors, adductors, internal rotators, and external rotators (ERs). Follow-up of the participants was assessed using a weekly online questionnaire and a 3-month retrospective control questionnaire. Lower extremity injury was diagnosed by an experienced medical doctor. Cox regression was used to identify the potential risk factors for the development of an LE injury. Thirty-four participants were diagnosed with an LE injury during follow-up. This study identified that decreased average power (AP) (P = 0.031) on concentric ER strength was found to be a significant risk factor for LE injury. No other hip strength parameters were found to be significant contributors to the development of LE injury. Decreased AP of the hip ER muscles was identified as a significant predictor for LE injury, whereas no hip abduction weakness or peak torque parameters were found to be predictive. Because controlling LE extremity movements is an important function of the hip muscles, they might be more challenged in a dynamic measure such as AP than in a point measure such as peak torque. Concentric AP of hip ER muscles can therefore be seen as an interesting factor to include in LE injury screening protocols.

  14. Experiment Safety Assurance Package for Mixed Oxide Fuel Irradiation in an Average Power Position (I-24) in the Advanced Test Reactor

    SciTech Connect

    J. M . Ryskamp; R. C. Howard; R. C. Pedersen; S. T. Khericha

    1998-10-01

    The Fissile Material Disposition Program Light Water Reactor Mixed Oxide Fuel Irradiation Test Project Plan details a series of test irradiations designed to investigate the use of weapons-grade plutonium in MOX fuel for light water reactors (LWR) (Cowell 1996a, Cowell 1997a, Thoms 1997a). Commercial MOX fuel has been successfully used in overseas reactors for many years; however, weapons-derived test fuel contains small amounts of gallium (about 2 parts per million). A concern exists that the gallium may migrate out of the fuel and into the clad, inducing embrittlement. For preliminary out-of-pile experiments, Wilson (1997) states that intermetallic compound formation is the principal interaction mechanism between zircaloy cladding and gallium. This interaction is very limited by the low mass of gallium, so problems are not expected with the zircaloy cladding, but an in-pile experiment is needed to confirm the out-of-pile experiments. Ryskamp (1998) provides an overview of this experiment and its documentation. The purpose of this Experiment Safety Assurance Package (ESAP) is to demonstrate the safe irradiation and handling of the mixed uranium and plutonium oxide (MOX) Fuel Average Power Test (APT) experiment as required by Advanced Test Reactor (ATR) Technical Safety Requirement (TSR) 3.9.1 (LMITCO 1998). This ESAP addresses the specific operation of the MOX Fuel APT experiment with respect to the operating envelope for irradiation established by the Upgraded Final Safety Analysis Report (UFSAR) Lockheed Martin Idaho Technologies Company (LMITCO 1997a). Experiment handling activities are discussed herein.

  15. Dual echelon femtosecond single-shot spectroscopy

    SciTech Connect

    Shin, Taeho; Wolfson, Johanna W.; Teitelbaum, Samuel W.

    2014-08-15

    We have developed a femtosecond single-shot spectroscopic technique to measure irreversible changes in condensed phase materials in real time. Crossed echelons generate a two-dimensional array of time-delayed pulses with one femtosecond probe pulse. This yields 9 ps of time-resolved data from a single laser shot, filling a gap in currently employed measurement methods. We can now monitor ultrafast irreversible dynamics in solid-state materials or other samples that cannot be flowed or replenished between laser shots, circumventing limitations of conventional pump-probe methods due to sample damage or product buildup. Despite the absence of signal-averaging in the single-shot measurement, an acceptable signal-to-noisemore » level has been achieved via background and reference calibration procedures. Pump-induced changes in relative reflectivity as small as 0.2%−0.5% are demonstrated in semimetals, with both electronic and coherent phonon dynamics revealed by the data. The optical arrangement and the space-to-time conversion and calibration procedures necessary to achieve this level of operation are described. Sources of noise and approaches for dealing with them are discussed.« less

  16. Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas

    2017-12-01

    In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.

  17. Femtosecond optomagnetism in dielectric antiferromagnets

    NASA Astrophysics Data System (ADS)

    Bossini, D.; Rasing, Th

    2017-02-01

    Optical femtosecond manipulation of magnetic order is attractive for the development of new concepts for ultrafast magnetic recording. Theoretical and experimental investigations in this research area aim at establishing a physical understanding of magnetic media in light-induced non-equilibrium states. Such a quest requires one to adjust the theory of magnetism, since the thermodynamical concepts of elementary excitations and spin alignment determined by the exchange interaction are not applicable on the femtosecond time-scale after the photo-excitation. Here we report some key milestones concerning the femtosecond optical control of spins in dielectric antiferromagnets, whose spin dynamics is by nature faster than that of ferromagnets and can be triggered even without any laser heating. The recent progress of the opto-magnetic effect in the sub-wavelength regime makes this exciting research area even more promising, in terms of both fundamental breakthroughs and technological perspectives.

  18. Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm.

    PubMed

    Negel, Jan-Philipp; Loescher, André; Voss, Andreas; Bauer, Dominik; Sutter, Dirk; Killi, Alexander; Ahmed, Marwan Abdou; Graf, Thomas

    2015-08-10

    We report on an Yb:YAG thin-disk multipass laser amplifier delivering sub-8 ps pulses at a wavelength of 1030 nm with 1420 W of average output power and 4.7 mJ of pulse energy. The amplifier is seeded by a regenerative amplifier delivering 6.5 ps pulses with 300 kHz of repetition rate and an average power of 115 W. The optical efficiency of the multipass amplifier was measured to be 48% and the beam quality factor was better than M2 = 1.4. Furthermore we report on the external second harmonic generation from 1030 nm to 515 nm using an LBO crystal leading to an output power of 820 W with 2.7 mJ of energy per pulse. This corresponds to a conversion efficiency of 70%. Additionally, 234 W of average power were obtained at the third harmonic with a wavelength of 343 nm.

  19. Microstructure of the multiple-filamentation zone formed by femtosecond laser radiation in a solid dielectric

    SciTech Connect

    Geints, Yu E; Zemlyanov, A A; Kabanov, A M; Petrov, A V; Golik, S S

    2016-02-28

    The regularities of multiple filamentation of gigawatt femtosecond laser pulses in a solid dielectric (optical glass) have been considered. The fine spatial structure of the plasma region that is formed under glass photoionisation and accompanies the formation of light filaments is analysed experimentally and by means of numerical simulation. The dependence of the number, position, and extension of individual 'generations' of plasma channels on the laser pulse energy has been investigated for the first time. It is found that the distribution of the number of plasma channels over the length of a dielectric sample has a maximum, the position of which correlates well with the position of the nonlinear focus of the light beam as a whole; at the same time, the average channel length decreases with increasing pulse power, whereas the number of successive channel 'generations', on the contrary, increases. (interaction of laser radiation with matter. laser plasma)

  20. Femtosecond laser assisted cataract surgery followed by coaxial phacoemulsification or microincisional cataract surgery: differences and advantages.

    PubMed

    Alio, Jorge L; Soria, Felipe; Abdou, Ahmed A

    2014-01-01

    This review outlines the advantages and the differences of femtosecond laser-assisted cataract surgery (FLACS) following a coaxial or microincision cataract surgery phacoemulsification in the surgical outcome and greater control of cataract surgery. FLACS offers minimal tissue damage and extreme precision during corneal incision creation, continuous circular capsulorhexis (CCC) and nuclear fragmentation. It also allows diminishing the mean average ultrasound power to emulsify the nucleus followed by a coaxial or a biaxial procedure. The impact of reduced phacoemulsification energy on the corneal endothelium is an interesting topic that is being investigated. Despite its benefits, this technology has relevant financial issues and a high learning curve. FemtoMICS appears to be surgically and statistically more efficient than the FemtoCoaxial technique and Femtoincisions prove to be stable and do not change the corneal high order aberration significantly with favorable results of the triplanar configuration.

  1. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Jiangfeng; Zhang, Lijuan; Gao, Ziye; Wang, Junli; Wang, Zhaohua; Su, Liangbi; Zheng, Lihe; Wang, Jingya; Xu, Jun; Wei, Zhiyi

    2015-03-01

    A passively mode-locked femtosecond laser based on an Nd, Y-codoped CaF2 disordered crystal was demonstrated. The Y3+-codoping in Nd : CaF2 markedly suppressed the quenching effect and improved the fluorescence quantum efficiency and emission spectra. With a fiber-coupled laser diode as the pump source, the continuous wave tuning range covering from 1042 to 1076 nm was realized, while the mode-locked operation generated 264 fs pulses with an average output power of 180 mW at a repetition rate of 85 MHz. The experimental results show that the Nd, Y-codoped CaF2 disordered crystal has potential in a new generation diode-pumped high repetition rate chirped pulse amplifier.

  2. Holographic vector-wave femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio; Hasegawa, Satoshi

    2016-03-01

    Arbitrary and variable beam shaping of femtosecond pulses by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM) have been applied to femtosecond laser processing. The holographic femtosecond laser processing has been widely used in many applications such as two-photon polymerization, optical waveguide fabrication, fabrication of volume phase gratings in polymers, and surface nanostructuring. A vector wave that has a spatial distribution of polarization states control of femtosecond pulses gives good performances for the femtosecond laser processing. In this paper, an in- system optimization of a CGH for massively-parallel femtosecond laser processing, a dynamic control of spatial spectral dispersion to improve the focal spot shape, and the holographic vector-wave femtosecond laser processing are demonstrated.

  3. Femtosecond tunable light source

    NASA Astrophysics Data System (ADS)

    Miesak, Edward Jozef

    1999-09-01

    A practical source of continuously tunable coherent visible and infrared light would have an enormous impact on science, medicine and technology. While microwave and radio transmitters offer wide tunability at the ``turn of a knob,'' the best known source of coherent optical radiation, the laser, does not possess the same versatility. Dye lasers provide some degree of tunability, but many dyes are needed to cover even the visible region. Ti:sapphire lasers are tunable only over the red to near infra-red portion of the spectrum (about 65 0 nm to about 1.1μm). This presentation documents the development of a unique pulsed light source tunable across the visible and near infrared portion of the spectrum, a femtosecond optical parametric amplifier (OPA). Much work was expended in developing the system itself. But a great deal of work was also done in developing the support equipment (hardware and software) necessary to build as well as maintain and operate an OPA. Once completed, the system characteristics were measured and documented. Initially it possessed ``personality'' which had to be understood and removed as much as possible. In addition, the pump source for this OPA, a regenerative amplifier, is unique in that it uses Cr3+:LiSGaF as the gain medium. This regen was also characterized and compared to other more standard regenerative amplifiers. System verification was done by performing a standard experiment (Z-scan) on well known samples, several of which are well characterized at specific wavelengths (1.06 μm, 0.523 μm) in the nanosecond and picosecond regimes. The results were compared against previously published results. The OPA was also compared against another very similar system which became commercially available during the time of this research. The results were helpful in analyzing the light source(s) and data acquisition systems for areas that could be improved.

  4. Monitoring femtosecond laser microscopic photothermolysis with multimodal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; McLean, David I.; Zeng, Haishan

    2016-02-01

    Photothermolysis induced by femtosecond (fs) lasers may be a promising modality in dermatology because of its advantages of high precision due to multiphoton absorption and deeper penetration due to the use of near infrared wavelengths. Although multiphoton absorption nonlinear effects are capable of precision targeting, the femtosecond laser photothermolysis could still have effects beyond the targeted area if a sufficiently high dose of laser light is used. Such unintended effects could be minimized by real time monitoring photothermolysis during the treatment. Targeted photothermolytic treatment of ex vivo mouse skin dermis was performed with tightly focused fs laser beams. Images of reflectance confocal microscopy (RCM), second harmonic generation (SHG), and two-photon fluorescence (TPF) of the mouse skins were obtained with integrated multimodal microscopy before, during, and after the laser treatment. The RCM, SHG, and TPF signal intensities of the treatment areas changed after high power femtosecond laser irradiation. The intensities of the RCM and SHG signals decreased when the tissue was damaged, while the intensity of the TPF signal increased when the photothermolysis was achieved. Moreover, the TPF signal was more susceptible to the degree of the photothermolysis than the RCM and SHG signals. The results suggested that multimodal microscopy is a potentially useful tool to monitor and assess the femtosecond laser treatment of the skin to achieve microscopic photothermolysis with high precision.

  5. Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates

    NASA Astrophysics Data System (ADS)

    Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather

    2016-09-01

    Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.

  6. Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses

    SciTech Connect

    Huang Wenyu; Qian Wei; El-Sayed, Mostafa A.

    2005-12-01

    Prismatic gold nanoparticles in the periodic monolayer arrays prepared with nanosphere lithography technique can be reshaped with femtosecond laser pulses at different powers and wavelengths. As the power density of 400 nm femtosecond laser increases, the prismatic particle tips begin to round and the overall particle shape changes from a prism to a sphere with a tripodal intermediate. The formation of the tip-rounded nanoprisms is probably due to the dewetting properties of gold on quartz surface and the low melting temperature at the tips. The formation of the tripodal nanoparticles is attributed to the inhomogeneous heating and lattice rearrangement of the as-deposited nanoparticles to a metastable state, which is more stable than the prismatic shape but less stable than the spherical shape. With 800 nm femtosecond laser irradiation, only tip-rounded nanoprisms are observed and no spherical nanoparticles are formed at the laser powers used. This is most likely due to the blueshift of the plasmon absorption band for the transformed particles, so that they cannot absorb the required energy to overcome the barrier to make the spherical shape. With 700 nm femtosecond laser irradiation, the tip-rounded and the tripodal nanoparticles are formed and few spherical particles are observed at the higher laser power density. From the results of this work, it is shown that by changing the wavelength and power density of the femtosecond laser, one can control the final shape of the particles formed from the original prismatic nanoparticles.

  7. High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber.

    PubMed

    Peng, Xiang; Mielke, Michael; Booth, Timothy

    2011-01-17

    We demonstrate high average power, high energy 1.55 μm ultra-short pulse (<1 ps) laser delivery using helium-filled and argon-filled large mode area hollow core photonic band-gap fibers and compare relevant performance parameters. The ultra-short pulse laser beam-with pulse energy higher than 7 μJ and pulse train average power larger than 0.7 W-is output from a 2 m long hollow core fiber with diffraction limited beam quality. We introduce a pulse tuning mechanism of argon-filled hollow core photonic band-gap fiber. We assess the damage threshold of the hollow core photonic band-gap fiber and propose methods to further increase pulse energy and average power handling.

  8. Radially polarized emission with 635  W of average power and 2.1  mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier.

    PubMed

    Loescher, André; Negel, Jan-Philipp; Graf, Thomas; Abdou Ahmed, Marwan

    2015-12-15

    We report on a thin-disk multipass amplifier delivering radially polarized laser pulses with an average power of 635 W and 2.1 mJ of pulse energy. To the best of our knowledge, this is the highest average output power and pulse energy reported so far for radially polarized ultrafast lasers. The amplifier is seeded by a TruMicro5050 with 115 W of average output power, 6.5 ps pulse duration, and a repetition rate of 300 kHz. A segmented half-waveplate was used for converting the linearly polarized beam into radial polarization in front of the amplifier. We present a scheme for direct amplification of such doughnut-shaped radially-polarized beams, the results obtained, and a solution to compensate for the depolarizing phase shift introduced by the tilted mirrors in the amplifier.

  9. Progress in Cr and Fe doped ZnS/Se mid-IR CW and femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Vasilyev, Sergey; Moskalev, Igor; Mirov, Mike; Smolski, Viktor; Martyshkin, Dmitry; Fedorov, Vladimir; Mirov, Sergey; Gapontsev, Valentin

    2017-05-01

    This paper summarizes recent improvements of output characteristics of polycrystalline Cr:ZnS/Se master oscillators in Kerr-Lens-Mode-Locked regime. We developed a flexible design of femtosecond polycrystalline Cr:ZnS and Cr:ZnSe lasers and amplifiers in the spectral range 2-3 μm. We obtained few-optical-cycle pulses with multi-Watt average power in very broad range of repetition rates 0.08-1.2 GHz. We also report on efficient nonlinear frequency conversion directly in the polycrystalline gain elements of ultra-fast lasers and amplifiers. In this work we also report on recent progress in spinning ring gain element technology and report to the best of our knowledge the highest output power of 9.2 W Fe:ZnSe laser operating in CW regime at 4150nm.

  10. 1.56 µm sub-microjoule femtosecond pulse delivery through low-loss microstructured revolver hollow-core fiber

    NASA Astrophysics Data System (ADS)

    Krylov, Alexander A.; Senatorov, Andrey K.; Pryamikov, Andrey D.; Kosolapov, Alexey F.; Kolyadin, Anton N.; Alagashev, Grigory K.; Gladyshev, Alexey V.; Bufetov, Igor A.

    2017-03-01

    We report for the first time, to the best of our knowledge, on ~1 MW peak power femtosecond pulse delivery through  ≈10 m-long air-filled microstructured revolver hollow-core fiber (RHCF) in the telecom spectral band near 1.56 µm wavelength. We have developed a high-power all-fiber master oscillator power amplifier source based on the novel large-mode area erbium-doped double-clad fiber with 980 nm multi-mode diode pumping that emits up to 530 nJ pulses shorter than 400 fs with 1.42 W maximum average power. These pulses have been further launched into low-loss (<30 dB km-1) RHCF with eight non-touched cylindrical capillaries-based cladding and 61 µm core size with more than 80% efficiency. Owing to low dispersion and nonlinearity of the RHCF developed, the output pulse characteristics (spectral and temporal) are close to the input ones for low and moderate pulse energies. However, we have observed significant nonlinear spectral filtering together with pulse shortening (down to 353 fs) at the maximum output average power of 0.94 W. We believe that the system developed may be highly promising for high-precision material processing and other high-energy and high-power laser applications.

  11. Harnessing the full power of the widest Chandra field: average accretion rates of black holes in SDSS galaxies through X-ray stacking

    NASA Astrophysics Data System (ADS)

    Goulding, Andy D.; Greene, Jenny E.; Hickox, Ryan C.; Alexander, David M.; Forman, William R.; Jones, Christine; Lehmer, Bret

    2017-08-01

    Galaxy-scale bars are expected to provide an effective means for driving material towards the central region in spiral galaxies, and possibly feeding supermassive black holes (BHs). I will present our latest results on a statistically-complete study of the effect of bars on average BH accretion. From a well-selected sample of over 50,000 spiral galaxies extracted from the Sloan Digital Sky Survey, we separate those sources considered to contain galaxy-scale bars from those that do not. Using the first 16 years worth of data taken by the Chandra X-ray Observatory, we identify X-ray luminous AGN and perform the widest-area X-ray stacking analysis to date on the remaining X-ray undetected sources. Through our X-ray stacking, we derive a time-averaged look at accretion for galaxies at fixed stellar mass and star formation rate, finding that the average nuclear accretion rates of galaxies with bar structures are fully consistent with those lacking bars, and robustly concluding that large-scale bars have little or no effect on the average growth of BHs in nearby (z < 0.15) galaxies over gigayear timescales.

  12. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time-pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  13. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  14. Testing of a femtosecond pulse laser in outer space

    PubMed Central

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-01-01

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future. PMID:24875665

  15. Testing of a femtosecond pulse laser in outer space.

    PubMed

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-05-30

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future.

  16. Analysis of using femtosecond laser scanning system to impurity-induced disordering of InGaAsP quantum wells

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Hua; Jeng, Jeng-Ywan; Lee, San-Liang; Pan, Yen-Ting

    2012-07-01

    This study is the first to demonstrate the selectivity quantum well intermixing process by using a femtosecond laser scanning-induced disordering technique. The advantages of the femtosecond laser are photochemical machining and the two-photon absorption mechanism. The femtosecond laser system can convert writing into the scan to create a nanostructure by adjusting the lens. The effect of power on the band gap shift during laser scanning was investigated. The band gap shift was small and unstable without the heating substrate. A wavelength shift higher than 77.3 nm for the InGaAsP MQW material was obtained at elevated temperatures.

  17. High-average-output mode-locked figure-eight all-fibre Yb master oscillator

    NASA Astrophysics Data System (ADS)

    Kobtsev, Sergey M.; Fedotov, Yuri; Ivanenko, Aleksey V.

    2015-03-01

    The present work summarises the results of studies of an all-fibre figure-eight mode-locked Yb fibre master oscillator based on non-linear amplifying loop mirror with the average output power exceeding 1 W. We show that the studied resonator configuration can generate clusters of 200-femtosecond pulses at repetition rate of 25 MHz with the cluster envelope duration of around 20 ps. We demonstrate pulse properties of two typical mode-locked generation regimes with widely different output pulse spectra and discuss specific features of pulses exiting the laser cavity via two fibre ports. We also provide analytical estimations and numerical modelling which agree well with experimental measurements.

  18. Overview of the Lucia laser program: toward 100-Joules, nanosecond-pulse, kW averaged power based on ytterbium diode-pumped solid state laser

    NASA Astrophysics Data System (ADS)

    Chanteloup, J.-C.; Yu, H.; Bourdet, G.; Dambrine, C.; Ferre, S.; Fulop, A.; Le Moal, S.; Pichot, A.; Le Touze, G.; Zhao, Z.

    2005-04-01

    We present the current status of the Lucia laser being built at the LULI laboratory, the national civil facility for intense laser matter interaction in France. This diode pumped laser will deliver a 100 Joules, 10 ns, 10 Hz pulse train from Yb:YAG using 4400 power diode laser bars. We first focus on the amplifier stage by describing the reasons for selecting our extraction architecture. Thermal issues and solutions for both laser and pumping heads are then described. Finally, we emphasize more specifically the need for long-lifetime high-laser-damage-threshold coatings and optics.

  19. Americans' Average Radiation Exposure

    SciTech Connect

    NA

    2000-08-11

    We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each year in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body.

  20. Americans' Average Radiation Exposure

    SciTech Connect

    NA

    2000-08-11

    We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each yearmore » in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body.« less

  1. Tunable femtosecond near-infrared source based on a Yb:LYSO-laser-pumped optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Wen-Long, Tian; Zhao-Hua, Wang; Jiang-Feng, Zhu; Zhi-Yi, Wei

    2016-01-01

    We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation (SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. The home-made Yb:LYSO oscillator centered at 1035 nm delivers an average power of 2 W and a pulse duration as short as 351 fs. Two MgO doped periodically poled lithium niobates (MgO:PPLN) with grating periods of 28.5-31.5 μm in steps of 0.5 μm and 19.5-21.3 μm in steps of 0.2 μm are used for the OPO and intracavity SHG, respectively. The maximum average output power of 180 mW at 798 nm was obtained and the output pulses have pulse duration of 313 fs at 792 nm if a sech2-pulse shape was assumed. In addition, tunable signal femtosecond pulses from 1428 nm to 1763 nm are also realized with the maximum average power of 355 mW at 1628 nm. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB922402), the National Key Scientific Instruments Development Program of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant Nos. 61205130 and 11174361), and the Key Deployment Project of Chinese Academy of Sciences (Grant No. KJZD-EW-L11-03).

  2. Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods

    PubMed Central

    McCamant, David W.; Kukura, Philipp; Yoon, Sangwoon; Mathies, Richard A.

    2005-01-01

    The laser, detection system, and methods that enable femtosecond broadband stimulated Raman spectroscopy (FSRS) are presented in detail. FSRS is a unique tool for obtaining high time resolution (<100 fs) vibrational spectra with an instrument response limited frequency resolution of <10 cm–1. A titanium:Sapphire-based laser system produces the three different pulses needed for FSRS: (1) A femtosecond visible actinic pump that initiates the photochemistry, (2) a narrow bandwidth picosecond Raman pump that provides the energy reservoir for amplification of the probe, and (3) a femtosecond continuum probe that is amplified at Raman resonances shifted from the Raman pump. The dependence of the stimulated Raman signal on experimental parameters is explored, demonstrating the expected exponential increase in Raman intensity with concentration, pathlength, and Raman pump power. Raman spectra collected under different electronic resonance conditions using highly fluorescent samples highlight the fluorescence rejection capabilities of FSRS. Data are also presented illustrating our ability: (i) To obtain spectra when there is a large transient absorption change by using a shifted excitation difference technique and (ii) to obtain high time resolution vibrational spectra of transient electronic states. PMID:17183413

  3. Femtosecond ytterbium-doped fiber laser mode-locked by carboxyl-functionalized graphene oxide saturable absorber

    NASA Astrophysics Data System (ADS)

    Hou, Lei; Lin, Qimeng; Wang, Yonggang; Chen, Zhendong; Sun, Jiang; Guo, Hongyu; Bai, Yang; Chen, Haowei; Lu, Baole; Bai, Jintao

    2018-01-01

    In contrast with graphene oxide (GO), carboxyl-functionalized graphene oxide (GO-COOH) is more appropriate for fabricating saturable absorbers (SAs) with high modulation depth and low nonsaturable loss because of its higher solubility in water. Here, we present a femtosecond mode-locked ytterbium-doped fiber (YDF) laser based on GO-COOH SA and a nonlinear polarization rotation effect. A mode-locked laser with a center wavelength of 1027 nm, an average output power of 53.5 mW (44.3% conversion efficiency), a fundamental repetition rate of 22 MHz, a pulse duration of 239 fs, and a signal-to-noise ratio of up to 75 dB is obtained.

  4. Periodic disruptions induced by high repetition rate femtosecond pulses on magnesium-oxide-doped lithium niobate surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Shuanggen; Kan, Hongli; Zhai, Kaili; Ma, Xiurong; Luo, Yiming; Hu, Minglie; Wang, Qingyue

    2017-02-01

    In this paper, we demonstrate the periodic disruption formation on magnesium-oxide-doped lithium niobate surfaces by a femtosecond fiber laser system with wavelength and repetition rate of 1040 nm and 52 MHz, respectively. Three main experimental conditions, laser average power, scanning speed, and orientation of sample were systematically studied. In particular, the ablation morphologies of periodic disruptions under different crystal orientations were specifically researched. The result shows that such disruptions consisting of a bamboo-like inner structure appears periodically for focusing on the surface of X-, Y- and Z-cut wafers, which are formed by a rapid quenching of the material. Meanwhile, due to the anisotropic property, the bamboo-like inner structures consist of a cavity only arise from X- and Z-cut orientation.

  5. Femtosecond laser blackening of platinum

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2008-09-01

    Using a femtosecond laser processing technique, we produce the black platinum with absorptance of about 95% over a broad wavelength range from ultraviolet to infrared. From scanning electron microscopy and energy dispersive x-ray spectroscopy studies, we find that the enhanced absorption of the black metal is due to a variety of nano- and microscale surface structures. Using a unique calorimetry technique, we perform a shot-to-shot comparison study of the metal absorption change in air and vacuum. Our study shows that the blackening process for platinum is more efficient in vacuum.

  6. Nanoflow electrospinning serial femtosecond crystallography

    PubMed Central

    Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan; Tran, Rosalie; Hattne, Johan; Alonso-Mori, Roberto; Lassalle-Kaiser, Benedikt; Glöckner, Carina; Hellmich, Julia; Schafer, Donald W.; Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W.; Sellberg, Jonas; McQueen, Trevor A.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Glatzel, Pieter; Milathianaki, Despina; White, William E.; Adams, Paul D.; Williams, Garth J.; Boutet, Sébastien; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.; Bogan, Michael J.

    2012-01-01

    An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min−1 to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min−1 and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption. PMID:23090408

  7. Industrial femtosecond lasers for machining of heat-sensitive polymers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hendricks, Frank; Bernard, Benjamin; Matylitsky, Victor V.

    2017-03-01

    Heat-sensitive materials, such as polymers, are used increasingly in various industrial sectors such as medical device manufacturing and organic electronics. Medical applications include implantable devices like stents, catheters and wires, which need to be structured and cut with minimum heat damage. Also the flat panel display market moves from LCD displays to organic LED (OLED) solutions, which utilize heat-sensitive polymer substrates. In both areas, the substrates often consist of multilayer stacks with different types of materials, such as metals, dielectric layers and polymers with different physical characteristic. The different thermal behavior and laser absorption properties of the materials used makes these stacks difficult to machine using conventional laser sources. Femtosecond lasers are an enabling technology for micromachining of these materials since it is possible to machine ultrafine structures with minimum thermal impact and very precise control over material removed. An industrial femtosecond Spirit HE laser system from Spectra-Physics with pulse duration <400 fs, pulse energies of >120 μJ and average output powers of >16 W is an ideal tool for industrial micromachining of a wide range of materials with highest quality and efficiency. The laser offers process flexibility with programmable pulse energy, repetition rate, and pulse width. In this paper, we provide an overview of machining heat-sensitive materials using Spirit HE laser. In particular, we show how the laser parameters (e.g. laser wavelength, pulse duration, applied energy and repetition rate) and the processing strategy (gas assisted single pass cut vs. multi-scan process) influence the efficiency and quality of laser processing.

  8. Multi-objective optimization of MOSFETs channel widths and supply voltage in the proposed dual edge-triggered static D flip-flop with minimum average power and delay by using fuzzy non-dominated sorting genetic algorithm-II.

    PubMed

    Keivanian, Farshid; Mehrshad, Nasser; Bijari, Abolfazl

    2016-01-01

    D Flip-Flop as a digital circuit can be used as a timing element in many sophisticated circuits. Therefore the optimum performance with the lowest power consumption and acceptable delay time will be critical issue in electronics circuits. The newly proposed Dual-Edge Triggered Static D Flip-Flop circuit layout is defined as a multi-objective optimization problem. For this, an optimum fuzzy inference system with fuzzy rules is proposed to enhance the performance and convergence of non-dominated sorting Genetic Algorithm-II by adaptive control of the exploration and exploitation parameters. By using proposed Fuzzy NSGA-II algorithm, the more optimum values for MOSFET channel widths and power supply are discovered in search space than ordinary NSGA types. What is more, the design parameters involving NMOS and PMOS channel widths and power supply voltage and the performance parameters including average power consumption and propagation delay time are linked. To do this, the required mathematical backgrounds are presented in this study. The optimum values for the design parameters of MOSFETs channel widths and power supply are discovered. Based on them the power delay product quantity (PDP) is 6.32 PJ at 125 MHz Clock Frequency, L = 0.18 µm, and T = 27 °C.

  9. Femtosecond laser ablation for microfluidics

    NASA Astrophysics Data System (ADS)

    Gomez, David; Goenaga, Igor; Lizuain, Ion; Ozaita, Milagros

    2005-05-01

    We present some applications of femtosecond laser ablation for microfluidics. A doubled Ti:sapphire femtosecond laser (λ=400 nm; pulse width, 90 fs; pulse energy up to 350 µJ pulse repetition rate, 1 kHz) is used to microstructure passive microfluidic devices (channels, reservoirs, through-holes) in polymers [polymethyl methacrylate (PMMA), polyimide (PI, Kapton)] and glass (Pyrex). These materials are selected because of their extended use in the fabrication of microfluidic chips. In all cases, channels of some tenths of micrometers are obtained with a good-quality finishing for fluid transport. In the same sense, reservoirs and holes are produced. These latter elements are fabricated in larger dimensions to combine them with channels in some presented prototypes. The well-known feature of ultrashort pulses is that no edge effects are observed because the absence of thermal effects enables a good sealing. For PMMA, polymer bonding technologies are used. For Pyrex, the well-known silicon sealing by anodic bonding is chosen. In both cases, the fabricated prototypes work properly with a good flow behavior and no leakage is observed.

  10. Sensing combustion intermediates by femtosecond filament excitation.

    PubMed

    Li, He-Long; Xu, Huai-Liang; Yang, Bo-Si; Chen, Qi-Dai; Zhang, Tao; Sun, Hong-Bo

    2013-04-15

    Simultaneous monitoring of multiple combustion intermediates using femtosecond filament-induced nonlinear spectroscopy is demonstrated. Clean fluorescence emissions from free radicals CH, CN, NH, OH, and C(2), as well as atomic C and H, are observed when a femtosecond filament is formed in the laminar ethanol/air flame on an alcohol burner. The fluorescence signals of these species are found to vary as functions of the position of interaction of the filament with the flame along the vertical axis of the central combusting flow, opening up a possibility for remote combustion diagnostic in engines by the excitation of femtosecond laser filament.

  11. Femtosecond laser surface structuring technique for making human enamel and dentin surfaces superwetting

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2013-12-01

    It is known that good wettability of enamel and dentin surfaces is a key factor in enhancing adhesion of restorative materials in dentistry. Here, we report on a femtosecond laser surface texturing approach that makes both the enamel and dentine surfaces superwetting. In contrast to the traditional chemical etching that yields random surface structures, this new approach produces engineered surface structures. The surface structure engineered and tested here is an array of femtosecond laser-produced parallel microgrooves that generates a strong capillary force. Due to the powerful capillary action, water is rapidly sucked into this engineered surface structure and spreads even on a vertical surface.

  12. Femtosecond pulses generated from a synchronously pumped chromium-doped forsterite laser

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1993-01-01

    Kerr lens mode-locking (KLM) has become a standard method to produce femtosecond pulses from tunable solid state lasers. High power inside the laser resonator propagating through the laser-medium with nonlinear index of refraction, coupled with the stability conditions of the laser modes in the resonator, result in a passive amplitude modulation which explains the mechanism for pulse shortening. Recently, chromium doped forsterite was shown to exhibit similar pulse behavior. A successful attempt to generate femtosecond pulses from a synchronously pumped chromium-doped forsterite laser with intracavity dispersion compensation is reported. Stable, transform limited pulses with duration of 105 fs were routinely generated, tunable between 1240 to 1270 nm.

  13. Enhanced efficiency of solar-driven thermoelectric generator with femtosecond laser-textured metals.

    PubMed

    Hwang, Taek Yong; Vorobyev, A Y; Guo, Chunlei

    2011-07-04

    Through femtosecond laser irradiation, we produce in this work a unique type of surface nanostructure on Al that have enhanced absorption at UV and visible but a relatively small emissivity in infrared. By integrating this laser-treated Al to a solar-driven thermoelectric generator, we show that the thermoelectric generator integrated with the femtosecond laser-treated Al foil generates a significantly higher power than the ones without. Our study shows that our technique can dramatically enhance the efficiency of solar-driven thermoelectric devices that may lead to a leap forward in solar energy harnessing.

  14. Fabrication of 3D embedded hollow structures inside polymer dielectric PMMA with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zheng, Chong; Chen, Tao; Hu, Anming; Liu, Shibing; Li, Junwei

    2016-11-01

    Recent progresses in femtosecond laser (fs) manufacturing have already proved that fs laser is a powerful tool in three dimensional internal structure fabrications. However, most studies are mainly focused on realize such structures in inorganic transparent dielectric, such as photosensitive glass and fused silica, etc. In this study, we present two methods to fabricate embedded internal 3D structures in a polymer dielectric material polymethyl methacrylate (PMMA). Both continuous hollow structure such as microfluidic channels and discrete hollow structures such as single microcavities are successfully fabricated with the help of femtosecond lasers. Among them, complicated 3D microchannel with a total length longer than 10mm and diameters around 80μm to 200μm are fabricated with a low repetition rate Ti: sapphire femtosecond laser by direct laser writing at a speed ranging from 25μm/s to 2000μm/s microcavities which function as concave microball lenses (CMBLs) and can be applied in super-wide-angle imaging are fabricated with a high repetition rate femtosecond fiber laser due to the distinct heat accumulation effect after 5s irradiation with the tightly focused fs laser beam. These new approaches proved that femtosecond laser direct writing technology has great application potential in 3D integrated devices manufacturing in the future.

  15. Plasmon-enhanced optical nonlinearity for femtosecond all-optical switching

    NASA Astrophysics Data System (ADS)

    Wang, Kuidong; Chen, Long; Zhang, Haijuan; Hsiao, Hui-Hsin; Tsai, Din Ping; Chen, Jie

    2017-10-01

    Ultrafast all-optical switching in metals can be an efficient way for high-speed active photonic devices. However, with the improvement in modulation speed, typically by reducing the optical switching pulse width from picoseconds to femtoseconds, the nonlinear optical response of the metal will decrease significantly, which hinders the realization of the sufficient modulation depth at femtosecond optical control. Here, by combining two optical nonlinear enhancement effects of surface plasmon polaritons, including their extreme sensitivity to refractive index change and their capability to induce strong localized optical fields, we have achieved an ˜50-times enhancement in the modulation depth simultaneously with a switching time of ˜75-fs. Such enhancement was found to be independent of the control intensity, which sets a basis for the future application of femtosecond switching at a minimum power.

  16. Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal.

    PubMed

    Agate, B; Rafailov, E U; Sibbett, W; Saltiel, S M; Battle, P; Fry, T; Noonan, E

    2003-10-15

    We present a simplified, potentially portable, and highly efficient blue-light source from a periodically poled KTP waveguide crystal with a compact femtosecond Cr:LiSAF laser. This light source generates 5.6 mW of blue average output power at 424 nm with 27 mW of incident fundamental in a single-pass extracavity arrangement at room temperature. The overall system efficiency of electrical power to blue light is 0.5%, and the internal second-harmonic generation conversion efficiency is as high as 37%. The slope efficiency of 5.5% pJ(-1) at low pulse energies is, to our knowledge, the highest slope efficiency yet reported for frequency conversion into the blue spectral region.

  17. Programmable femtosecond laser pulses in the ultraviolet

    SciTech Connect

    Hacker, M.; Feurer, T.; Sauerbrey, R.; Lucza, T.; Szabo, G.

    2001-06-01

    Using a combination of a zero-dispersion compressor and spectrally compensated sum-frequency generation, we have produced amplitude-modulated femtosecond pulses in the UV at 200 nm. {copyright} 2001 Optical Society of America

  18. Plasmonic hot carriers skip out in femtoseconds

    NASA Astrophysics Data System (ADS)

    Cushing, S. Â. K.

    2017-12-01

    Plasmonic antennas store energy by localizing light to nanoscale volumes. A plasmon's oscillating electrons can scatter directly into a semiconductor, transferring the captured energy in less than ten femtoseconds.

  19. PCK and Average

    ERIC Educational Resources Information Center

    Watson, Jane; Callingham, Rosemary

    2013-01-01

    This paper considers the responses of 26 teachers to items exploring their pedagogical content knowledge (PCK) about the concept of average. The items explored teachers' knowledge of average, their planning of a unit on average, and their understanding of students as learners in devising remediation for two student responses to a problem. Results…

  20. Areal Average Albedo (AREALAVEALB)

    DOE Data Explorer

    Riihimaki, Laura; Marinovici, Cristina; Kassianov, Evgueni

    2008-01-01

    he Areal Averaged Albedo VAP yields areal averaged surface spectral albedo estimates from MFRSR measurements collected under fully overcast conditions via a simple one-line equation (Barnard et al., 2008), which links cloud optical depth, normalized cloud transmittance, asymmetry parameter, and areal averaged surface albedo under fully overcast conditions.

  1. Generation of Femtosecond Electron Pulses

    SciTech Connect

    Jinamoon, V.; Kusoljariyakul, K.; Rimjaem, S.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Chumphongphan, S.; Wiedemann, H.; /SLAC, SSRL

    2005-05-09

    At the Fast Neutron Research Facility (FNRF), Chiang Mai University (Thailand), the SURIYA project has been established aiming to produce femtosecond electron pulses utilizing a combination of an S-band thermionic rf gun and a magnetic bunch compressor ({alpha}-magnet). A specially designed rf-gun has been constructed to obtain optimum beam characteristics for the best bunch compression. Simulation results show that bunch lengths as short as about 50 fs rms can be expected at the experimental station. The electron bunch lengths will be determined using autocorrelation of coherent transition radiation (TR) through a Michelson interferometer. The paper discusses beam dynamics studies, design, fabrication and cold tests of the rf-gun as well as presents the project current status and forth-coming experiments.

  2. 2 micron femtosecond fiber laser

    DOEpatents

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  3. Spatial filters for high average power lasers

    DOEpatents

    Erlandson, Alvin C

    2012-11-27

    A spatial filter includes a first filter element and a second filter element overlapping with the first filter element. The first filter element includes a first pair of cylindrical lenses separated by a first distance. Each of the first pair of cylindrical lenses has a first focal length. The first filter element also includes a first slit filter positioned between the first pair of cylindrical lenses. The second filter element includes a second pair of cylindrical lenses separated by a second distance. Each of the second pair of cylindrical lenses has a second focal length. The second filter element also includes a second slit filter positioned between the second pair of cylindrical lenses.

  4. High-Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Hole-Transporting Material

    SciTech Connect

    Jung, Jae Woong; Chueh, Chu-Chen; Jen, Alex K. -Y.

    2015-07-06

    High-performance planar heterojunction perovskite (CH3NH3PbI3) solar cell (PVSC) is demonstrated by utilizing CuSCN as a hole-transporting layer. Efficient hole-transport and hole-extraction at the CuSCN/CH3NH3PbI3 interface facilitate the PVSCs to reach 16% power conversion efficiency (PCE). In addition, excellent transparency of CuSCN enables high-performance semitransparent PVSC (10% PCE and 25% average visible transmittance) to be realized.

  5. Ensemble averaged dynamic modeling

    NASA Technical Reports Server (NTRS)

    Carati, D.; Wray, A.; Cabot, W.

    1996-01-01

    The possibility of using the information from simultaneous equivalent Large Eddy Simulations (LAS) for improving the subgrid scale modeling is investigated. An ensemble average dynamic model is proposed as an alternative to the usual spatial average versions. It is shown to be suitable independently of the existence of any homogeneity directions, and its formulation is thus universal. The ensemble average dynamic model is shown to give very encouraging results for as few as 16 simultaneous LES's.

  6. FY2002 Progress Summary Program Plan, Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers, and Complementary Technologies, for Applications in Energy and Defense

    SciTech Connect

    Bayramian, A; Bibeau, C; Beach, R; Behrendt, B; Ebbers, C; Latkowski, J; Meier, W; Payne, S; Perkins, J; Schaffers, K; Skulina, K; Ditmire, T; Kelly, J; Waxer, L; Rudi, P; Randles, M; Witter, D; Meissner, H; Merissner, O

    2001-12-13

    The High Average Power Laser Program (HAPL) is a multi-institutional, coordinated effort to develop a high-energy, repetitively pulsed laser system for Inertial Fusion Energy and other DOE and DOD applications. This program is building a laser-fusion energy base to complement the laser-fusion science developed by DOE Defense programs over the past 25 years. The primary institutions responsible for overseeing and coordinating the research activities are the Naval Research Laboratory (NRL) and LLNL. The current LLNL proposal is a companion proposal to that submitted by NRL, for which the driver development element is focused on the krypton fluoride excimer laser option. Aside from the driver development aspect, the NRL and LLNL companion proposals pursue complementary activities with the associated rep-rated laser technologies relating to target fabrication, target injection, final optics, fusion chamber, materials and power plant economics. This report requests continued funding in FY02 to support LLNL in its program to build a 1kW, 100J, diode-pumped, crystalline laser. In addition, research in high gain laser target design, fusion chamber issues and survivability of the final optic element will be pursued. These technologies are crucial to the feasibility of inertial fusion energy power plants and also have relevance in rep-rated stewardship experiments.

  7. Optoelectronic Workshops (10th). Femtosecond Time-Resolved Spectroscopy.

    DTIC Science & Technology

    1988-11-03

    Research TinlPakNC27709-2211 II 11. TITLE (&Kkm*d secwit Gaaicown) Optoelectronic Workshop X: Femtosecond Time-Resolved Spectoscopy 12. PERSONAL AUTHOR(S...femtosecond; spectoscopy 𔄃. ABSTRACT (Continue on revers N nocenory and identfy by block number) This workshop on "Femtosecond Time-Resolved Spectoscopy

  8. Femtosecond electron diffraction: making the molecular movie

    NASA Astrophysics Data System (ADS)

    Hebeisen, Christoph T.; Dwyer, Jason R.; Jordan, Robert E.; Harb, Maher; Ernstorfer, Ralph; Miller, R. J. D.

    2005-09-01

    The ability to watch atoms move in real time - to directly observe transition states - has been referred to as "making the molecular movie". Femtosecond electron diffraction is ideally suited for this purpose since it records the atomic structure of the sample with sub-Angstrom spatial resolution and femtosecond temporal resolution. Many-body simulations of ultrashort electron pulse propagation dynamics allowed the development of sources for femtosecond electron pulses with sufficient number density to perform near single shot structure determinations, a requirement for studies of irreversible processes. We have obtained atomic level views of melting of thin films of aluminum and gold under strongly driven conditions. The results are consistent with a thermally driven phase transition and the observed time scales reflect the different electron-phonon coupling constants for these metals. Recent technical advances in electron gun design have further improved the temporal resolution of femtosecond electron diffraction. New electron pulse characterization techniques use direct laser-electron interaction and electron-electron interaction to determine the temporal overlap of the pump and probe pulses as well as the time resolution of the system. These advances have made femtosecond electron diffraction capable of observing transition states in molecular systems. The camera for "making the molecular movie" is now in hand.

  9. Femtosecond lasers for microsurgery of cornea

    SciTech Connect

    Vartapetov, Sergei K; Khudyakov, D V; Lapshin, Konstantin E

    2012-03-31

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting {approx}400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 {mu}J. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceedmore » 3 {mu}m. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s{sup -1}. At a stage of preliminary tests of the system, the {Kappa}8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.« less

  10. Terahertz generation and detection using femtosecond mode-locked Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Kong, Moon Sik; Kim, Ji Su; Han, Sang-Pil; Kim, Namje; Moon, Ki Won; Park, Kyung Hyun; Jeon, Min Yong

    2016-02-01

    We successfully demonstrate a THz generation using an ytterbium (Yb)-doped mode-locked femtosecond fiber laser and a home-made low-temperature grown (LTG) InGaAs Photoconductive antenna (PCA) module for THz Time-domain spectroscopy (TDS) systems. The Yb-doped fiber ring laser consists of a pump laser diode (PLD), a wavelength division multiplexer (WDM) coupler, a single-mode fiber (SMF), a 25 cm-long highly Yb-doped fiber, two collimators, two quarter wave plates (QWPs), a half-wave plate (HWP), a 10 nm broadband band pass filter, an isolator, and a polarizing beam splitter (PBS). In order to achieve the passively mode-locked optical short pulse, the nonlinear polarization rotation (NPR) effect is used. The achieved center wavelength and the 3 dB bandwidth of the modelocked fiber laser are 1.03 μm and ~ 15.6 nm, respectively. It has 175 fs duration after pulse compression with 66.2 MHz repetition rate. The average output power of mode-locked laser has more than 275 mW. The LTG-InGaAs PCA modules are used as the emitter and receiver in order to achieve the THz radiation. The PCA modules comprise a hyper-hemispherical Si lens and a log-spiral antenna-integrated LTG-InGaAs PCA chip electronically contacted on a printed circuit board (PCB). An excitation optical average pumping and probing power were ~ 6.3 mW and 5 mW, respectively. The free-space distance between the emitter and the receiver in the THz-TDS system was 70 mm. The spectrum of the THz radiation is achieved higher than 1.5 THz.

  11. Averaging population density.

    PubMed

    Craig, J

    1984-08-01

    Population density is a commonly quoted statistic. Almost no general descriptive summary of the population of an area is complete without a density listing, table or map. As each such density statistic is an average, it is worth considering what kind of average is being used. This article analyzes this and illustrates the effect of some alternative calculations using population density data for Great Britain; the findings, however, are of general validity.

  12. High speed 3D two-photon fluorescence microscopy by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Wang, Shixin; Qin, Yifan; Guo, Meishan; Zhang, Sheng; Xia, Yuanqin

    2017-11-01

    A high speed two-photon fluorescence microscopy system based on 2D galvanometer scanning is developed, and imaging of Rhodamine B samples and labeled Caski cells is performed. Coherent Micra-5 femtosecond laser is used as the light source, which has 82 MHz frequency, 45 fs pulse width and 400 mW average power. Galvo mirrors and prism pairs are applied in order to obtain higher imaging speed and better imaging resolution respectively. To prove the ability of system, two-photon imaging of Rhodamine B samples and Caski cells labeled by Rhodamine-dyed phalloidin are performed. The results show that the system imaging speed is greatly improved from previous work. The acquisition time reaches the order of 1frame/s, which makes up imprecision of mechanical translation platform and reduces photobleaching and structure damage. By measuring FWHM of lined region of image, lateral resolution is confirmed to be 1.05μm the vertical resolution of the system can reach 3μm, which is restricted by Z-axis step motor. What's more, images of different frames are reconstructed to perform three-dimensional imaging. The ability of the phalloidin's specific binding to the cell is also verified by observing obtained two-photon image.

  13. Selected mapping based orthogonal frequency division multiplexing system (OFDM) for the reduction of peak to average power ratio (PAPR) using higher number of novel phase sequences under 32-QAM

    NASA Astrophysics Data System (ADS)

    Gupta, Prabal; Singh, Balpreet; Arora, Krishan

    2017-07-01

    The very high peak to average power ratio (PAPR) is the biggest problem faced by OFDM system which ultimately causes distortion in the transmitted data. In the literatures various techniques have been proposed for the reduction of PAPR. One of the important technique which is known as Selected Mapping (SLM) or distortion-less technique proposed by several literature for the reduction of PAPR. But SLM technique generally uses several number of randomly designed phase sequence in frequency domain so that after inverse fast Fourier transform (IFFT) when data is converted into corresponding time domain sequence it can be optimized accordingly. Henceforth, in this paper we are proposing a higher number of novel phase sequence based SLM with 32-Quadrature amplitude modulation (QAM) under various sub carriers like 32, 64, 128, 256 and 512. Probabilistic analysis with the help of complementary cumulative distribution function (CCDF) clearly depicts the remarkable performance of our proposed algorithm in comparison with conventional OFDM system.

  14. Fiber laser driven dual photonic crystal fiber femtosecond mid-infrared source tunable in the range of 4.2 to 9 μm

    NASA Astrophysics Data System (ADS)

    Yao, Yuhong; Knox, Wayne H.

    2014-02-01

    We report a fiber based approach to broadly tunable femtosecond mid-IR source based on difference frequency mixing of the outputs from dual photonic crystal fibers (PCF) pumped by a femtosecond fiber laser, which is a custom-built Yb-doped fiber chirped pulse amplifier (CPA) delivering 1.35 W, 300 fs, 40 MHz pulses centered at 1035 nm. The CPA output is split into two arms to pump two different types of PCFs for generation of the spectrally separated pulses. The shorter wavelength pulses are generated in one PCF with its single zero dispersion wavelength (ZDW) at 1040 nm. Low normal dispersion around the pumping wavelength enables spectral broadening dominated by self-phase modulation (SPM), which extends from 970 to 1092 nm with up to 340 mW of average power. The longer wavelength pulses are generated in a second PCF which has two closely spaced ZDWs around the laser wavelength. Facilitated by its special dispersion profile, the laser wavelength is converted to the normal dispersion region of the fiber, leading to the generation of the narrow-band intense Stokes pulses with 1 to 1.25 nJ of pulse energy at a conversion efficiency of ~30% from the laser pulses. By difference mixing the outputs from both PCFs in a type-II AgGaS2 crystal, mid-IR pulses tunable from 4.2 to 9 μm are readily generated with its average power ranging from 135 - 640 μW, corresponding to 3 - 16 pJ of pulse energy which is comparable to the reported fiber based mid-IR sources enabled by the solitons self-frequency shift (for example, 3 - 10 μm with 10 pJ of maximum pulse energy in [10]). The reported approach provides a power-scalable route to the generation of broadly tunable femtosecond mid-IR pulses, which we believe to be a promising solution for developing compact, economic and high performance mid-IR sources.

  15. Traveling wave deflector design for femtosecond streak camera

    NASA Astrophysics Data System (ADS)

    Pei, Chengquan; Wu, Shengli; Luo, Duan; Wen, Wenlong; Xu, Junkai; Tian, Jinshou; Zhang, Minrui; Chen, Pin; Chen, Jianzhong; Liu, Rong

    2017-05-01

    In this paper, a traveling wave deflection deflector (TWD) with a slow-wave property induced by a microstrip transmission line is proposed for femtosecond streak cameras. The pass width and dispersion properties were simulated. In addition, the dynamic temporal resolution of the femtosecond camera was simulated by CST software. The results showed that with the proposed TWD a femtosecond streak camera can achieve a dynamic temporal resolution of less than 600 fs. Experiments were done to test the femtosecond streak camera, and an 800 fs dynamic temporal resolution was obtained. Guidance is provided for optimizing a femtosecond streak camera to obtain higher temporal resolution.

  16. Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser.

    PubMed

    Leindecker, Nick; Marandi, Alireza; Byer, Robert L; Vodopyanov, Konstantin L; Jiang, Jie; Hartl, Ingmar; Fermann, Martin; Schunemann, Peter G

    2012-03-26

    We report the extension of broadband degenerate OPO operation further into mid-infrared. A femtosecond thulium fiber laser with output centered at 2050 nm synchronously pumps a 500-μm-long crystal of orientation patterned GaAs providing broadband gain centered at 4.1 µm. We observe a pump threshold of 17 mW and output bandwidth extending from 2.6 to 6.1 µm at the -30 dB level. Average output power was 37 mW. Appropriate resonator group dispersion is a key factor for achieving degenerate operation with instantaneously broad bandwidth. The output spectrum is very sensitive to absorption and dispersion introduced by molecular species inside the OPO cavity.

  17. On the Berdichevsky average

    NASA Astrophysics Data System (ADS)

    Rung-Arunwan, Tawat; Siripunvaraporn, Weerachai; Utada, Hisashi

    2016-04-01

    Through a large number of magnetotelluric (MT) observations conducted in a study area, one can obtain regional one-dimensional (1-D) features of the subsurface electrical conductivity structure simply by taking the geometric average of determinant invariants of observed impedances. This method was proposed by Berdichevsky and coworkers, which is based on the expectation that distortion effects due to near-surface electrical heterogeneities will be statistically smoothed out. A good estimation of a regional mean 1-D model is useful, especially in recent years, to be used as a priori (or a starting) model in 3-D inversion. However, the original theory was derived before the establishment of the present knowledge on galvanic distortion. This paper, therefore, reexamines the meaning of the Berdichevsky average by using the conventional formulation of galvanic distortion. A simple derivation shows that the determinant invariant of distorted impedance and its Berdichevsky average is always downward biased by the distortion parameters of shear and splitting. This means that the regional mean 1-D model obtained from the Berdichevsky average tends to be more conductive. As an alternative rotational invariant, the sum of the squared elements (ssq) invariant is found to be less affected by bias from distortion parameters; thus, we conclude that its geometric average would be more suitable for estimating the regional structure. We find that the combination of determinant and ssq invariants provides parameters useful in dealing with a set of distorted MT impedances.

  18. Femtosecond MeV Electron Energy-Loss Spectroscopy

    SciTech Connect

    Li, R. K.; Wang, X. J.

    2017-11-09

    Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. Here in this article, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the “referencebeam technique” relaxes the energy stability requirement of the rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving subelectron- volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.

  19. Femtosecond MeV Electron Energy-Loss Spectroscopy

    DOE PAGES

    Li, R. K.; Wang, X. J.

    2017-11-09

    Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. Here in this article, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the “referencebeam technique” relaxes the energy stability requirement of themore » rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving subelectron- volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.« less

  20. Femtosecond XUV transient absorption spectroscopy of small organic molecules

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Chatterley, Adam S.; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2015-05-01

    High-order harmonic generation has evolved as a powerful method for the generation of femtosecond XUV pulses with table-top laser systems. Femtosecond XUV transient absorption spectroscopy is an emerging application of these novel light sources for the investigation of molecular dynamics. Recording time-dependent XUV induced core-to-valence transitions traces a molecular response to an initial perturbation with IR, VIS or UV laser pulses from the perspective of distinct atomic sites. Preliminary results for sulfur and selenium containing organic molecules, such as thiophene (C4H4S) and selenophene(C4H4Se), are presented. While molecular orbital dynamics in thiophene will be monitored at the sulfur 2p edge around 165 eV, experiments at the Se 3d (57 eV) and Se 3p (163 eV) edges of selenophene will provide insight about the impact of specific inner-shell transitions within the same atom on the spectroscopic fingerprint of similar dynamics. The method's element-specificity and sensitivity to local valance electronic structures will be exploited to monitor the photo-induced opening of the aromatic rings at the S-C and Se-C bonds, thereby shining new light on the primary steps of photochemical reaction pathways in organic compounds.

  1. Femtosecond MeV Electron Energy-Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, R. K.; Wang, X. J.

    2017-11-01

    Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. In this paper, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the "reference-beam technique" relaxes the energy stability requirement of the rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving sub-electron-volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.

  2. Laser-Induced Damage with Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  3. Femtosecond laser controlled wettability of solid surfaces.

    PubMed

    Yong, Jiale; Chen, Feng; Yang, Qing; Hou, Xun

    2015-12-14

    Femtosecond laser microfabrication is emerging as a hot tool for controlling the wettability of solid surfaces. This paper introduces four typical aspects of femtosecond laser induced special wettability: superhydrophobicity, underwater superoleophobicity, anisotropic wettability, and smart wettability. The static properties are characterized by the contact angle measurement, while the dynamic features are investigated by the sliding behavior of a liquid droplet. Using different materials and machining methods results in different rough microstructures, patterns, and even chemistry on the solid substrates. So, various beautiful wettabilities can be realized because wettability is mainly dependent on the surface topography and chemical composition. The distinctions of the underlying formation mechanism of these wettabilities are also described in detail.

  4. April 25, 2003, FY2003 Progress Summary and FY2002 Program Plan, Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers,and Complementary Technologies, for Applications in Energy and Defense

    SciTech Connect

    Meier, W; Bibeau, C

    2005-10-25

    The High Average Power Laser Program (HAPL) is a multi-institutional, synergistic effort to develop inertial fusion energy (IFE). This program is building a physics and technology base to complement the laser-fusion science being pursued by DOE Defense programs in support of Stockpile Stewardship. The primary institutions responsible for overseeing and coordinating the research activities are the Naval Research Laboratory (NRL) and Lawrence Livermore National Laboratory (LLNL). The current LLNL proposal is a companion document to the one submitted by NRL, for which the driver development element is focused on the krypton fluoride excimer laser option. The NRL and LLNL proposals also jointly pursue complementary activities with the associated rep-rated laser technologies relating to target fabrication, target injection, final optics, fusion chamber, target physics, materials and power plant economics. This proposal requests continued funding in FY03 to support LLNL in its program to build a 1 kW, 100 J, diode-pumped, crystalline laser, as well as research into high gain fusion target design, fusion chamber issues, and survivability of the final optic element. These technologies are crucial to the feasibility of inertial fusion energy power plants and also have relevance in rep-rated stewardship experiments. The HAPL Program pursues technologies needed for laser-driven IFE. System level considerations indicate that a rep-rated laser technology will be needed, operating at 5-10 Hz. Since a total energy of {approx}2 MJ will ultimately be required to achieve suitable target gain with direct drive targets, the architecture must be scaleable. The Mercury Laser is intended to offer such an architecture. Mercury is a solid state laser that incorporates diodes, crystals and gas cooling technologies.

  5. [Femtosecond pulsed laser ablation of dental hard tissues with numerical control: a roughness and morphology study].

    PubMed

    Sun, Yu-chun; Vorobyev, Anatoliy; Liu, Jing; Guo, Chunlei; Lü, Pei-jun

    2012-08-01

    To establish the femtosecond laser experimental platform in vitro for numerical controlled cavity preparation, and to evaluate the roughness quantitatively and observe the microscopic morphology of the cutting surface. Enamel and dentin planes were prepared on human third molars. A universal motion controller was used to control the samples to do rectangle wave motion perpendicular to the incident direction of the laser at focus. The surface roughness was observed with confocal laser scanning microscope. Precise ablation of the dental hard tissues can be achieved with the established femtosecond laser numerical control platform. For enamel, the surface roughness of the cavity inside laser scanning line was 7.173 µm at the bottom and 2.675 µm on the wall of the cavity. The surface roughness of the cavity between laser scanning lines was 13.667 µm at the bottom and 33.927 µm on the wall. For dentin, the surface roughness of the cavity bottom was 51.182 µm and 25.629 µm for the wall. Scanning electron microscope images showed no micro-cracks or carbonization on enamel, while carbonization, cracks and a small amount of crystalline particles were observed on dentin. Precise tooth preparation can be achieved with femtosecond laser numerical control flatform. The surface roughness of cavity wall was less than that of the bottom and can meet the clinical needs. Suitable femtosecond laser output power should be set for different cutting objects, otherwise it may result in tissue damages.

  6. Average Revisited in Context

    ERIC Educational Resources Information Center

    Watson, Jane; Chick, Helen

    2012-01-01

    This paper analyses the responses of 247 middle school students to items requiring the concept of average in three different contexts: a city's weather reported in maximum daily temperature, the number of children in a family, and the price of houses. The mixed but overall disappointing performance on the six items in the three contexts indicates…

  7. Averaging of TNTC counts.

    PubMed Central

    Haas, C N; Heller, B

    1988-01-01

    When plate count methods are used for microbial enumeration, if too-numerous-to-count results occur, they are commonly discarded. In this paper, a method for consideration of such results in computation of an average microbial density is developed, and its use is illustrated by example. PMID:3178211

  8. Determining average yarding distance.

    Treesearch

    Roger H. Twito; Charles N. Mann

    1979-01-01

    Emphasis on environmental and esthetic quality in timber harvesting has brought about increased use of complex boundaries of cutting units and a consequent need for a rapid and accurate method of determining the average yarding distance and area of these units. These values, needed for evaluation of road and landing locations in planning timber harvests, are easily and...

  9. Covariant approximation averaging

    NASA Astrophysics Data System (ADS)

    Shintani, Eigo; Arthur, Rudy; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph

    2015-06-01

    We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in Nf=2 +1 lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo calculations over conventional methods for the same cost.

  10. Femtosecond laser generated gold nanoparticles and their plasmonic properties

    SciTech Connect

    Das, Rupali Navas, M. P.; Soni, R. K.

    2016-05-06

    The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions were investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.

  11. Femtosecond laser generated gold nanoparticles and their plasmonic properties

    SciTech Connect

    Das, Rupali, E-mail: phz148121@iitd.ac.in; Navas, M. P.; Soni, R. K.

    2016-05-06

    The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions weremore » investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.« less

  12. Fabrication of silver nanostructures using femtosecond laser-induced photoreduction

    NASA Astrophysics Data System (ADS)

    Barton, Peter; Mukherjee, Sanjoy; Prabha, Jithin; Boudouris, Bryan W.; Pan, Liang; Xu, Xianfan

    2017-12-01

    Silver nanostructures were fabricated by femtosecond laser-induced reduction of silver ions and the impact of solution chemistry on the fabricated structures was evaluated. By investigating the exact photochemistry of the nanofabrication solutions, which contained varying amounts of diamine silver ions, trisodium citrate, and n-lauroylsarcosine sodium, and optimizing the laser processing parameters, we fabricated two-dimensional silver pads with surface roughness values of 7 nm and stable 2.5-dimensional shell structures with heights up to 10 μm and aspect ratios of 20 in a ready manner. Moreover, thermal annealing of these structures afforded materials where the average resistivity value was only a factor of 4 greater than that of bulk silver. In this way, the work presented here provides for a methodology that can be used for laser direct fabrication of metal nanostructures for applications in plasmonics and micro- and nano-electronics.

  13. Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing

    NASA Astrophysics Data System (ADS)

    Peng, Ya-Pei; Zou, Xiao; Bai, Zhengyuan; Leng, Yuxin; Jiang, Benxue; Jiang, Xiongwei; Zhang, Long

    2015-12-01

    The operation of a mid-infrared laser at 2244 nm in a Cr:ZnS polycrystalline channel waveguide fabricated using direct femtosecond laser writing with a helical movement technique is demonstrated. A maximum power output of 78 mW and an optical-to-optical slope efficiency of 8.6% are achieved. The compact waveguide structure with 2 mm length was obtained through direct femtosecond laser writing, which was moved on a helical trajectory along the laser medium axis and parallel to the writing direction.

  14. Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing

    PubMed Central

    Peng, Ya-Pei; Zou, Xiao; Bai, Zhengyuan; Leng, Yuxin; Jiang, Benxue; Jiang, Xiongwei; Zhang, Long

    2015-01-01

    The operation of a mid-infrared laser at 2244 nm in a Cr:ZnS polycrystalline channel waveguide fabricated using direct femtosecond laser writing with a helical movement technique is demonstrated. A maximum power output of 78 mW and an optical-to-optical slope efficiency of 8.6% are achieved. The compact waveguide structure with 2 mm length was obtained through direct femtosecond laser writing, which was moved on a helical trajectory along the laser medium axis and parallel to the writing direction. PMID:26692268

  15. Multi-modal label-free imaging based on a femtosecond fiber laser

    PubMed Central

    Xie, Ruxin; Su, Jue; Rentchler, Eric C.; Zhang, Ziyan; Johnson, Carey K.; Shi, Honglian; Hui, Rongqing

    2014-01-01

    We demonstrate multi-mode microscopy based on a single femtosecond fiber laser. Coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS) and photothermal images can be obtained simultaneously with this simplified setup. Distributions of lipid and hemoglobin in sliced mouse brain samples and blood cells are imaged. The dependency of signal amplitude on the pump power and pump modulation frequency is characterized, which allows to isolate the impact from different contributions. PMID:25071972

  16. Impact of spectral phase mismatch on femtosecond coherent beam combining systems.

    PubMed

    Daniault, L; Hanna, M; Lombard, L; Zaouter, Y; Mottay, E; Goular, D; Bourdon, P; Druon, F; Georges, P

    2012-02-15

    We experimentally investigate the impact of spectral phase mismatch on the coherent beam combining of two femtosecond fiber chirped-pulse amplifiers. By measuring the differential spectral phase, both linear and nonlinear contributions are identified. An accumulated nonlinear phase as high as 6 rad has been measured, for which a combination efficiency of 91% can be obtained by symmetrizing the pump and injection powers. This also allows us to quantitatively separate the spatial and temporal contributions of the nonperfect combining efficiency.

  17. Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator.

    PubMed

    Minoshima, K; Kowalevicz, A M; Hartl, I; Ippen, E P; Fujimoto, J G

    2001-10-01

    Single-mode X couplers and three-dimensional waveguides are fabricated in transparent glasses by use of an unamplified femtosecond laser generating energies of up to 100 nJ. Changing fabrication parameters such as power and scanning speed permits creation of waveguides with a wide range of structures and refractive-index difference. Optical coherence tomography shows large refractive-index changes of up to ~10(-2) in the waveguides; these changes are consistent with guided mode analysis.

  18. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery.

    PubMed

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J F

    2014-09-01

    Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuriesin the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential useof laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ = 2.94 μm), titanium:sapphire femtosecond laser system (λ = 1700 nm), and Nd:glass femtosecond laser (λ = 1053 nm). Bovine samples were ablated at fluences of 8 to 18 J∕cm2 with the erbium:YAG laser, at a power of 300 ± 15 mW with the titanium:sapphire femtosecond system, and at an energy of 3 μJ∕pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18 J∕cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates.

  19. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery

    PubMed Central

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    Abstract. Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuries in the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential use of laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ=2.94  μm), titanium:sapphire femtosecond laser system (λ=1700  nm), and Nd:glass femtosecond laser (λ=1053  nm). Bovine samples were ablated at fluences of 8 to 18  J/cm2 with the erbium:YAG laser, at a power of 300±15  mW with the titanium:sapphire femtosecond system, and at an energy of 3  μJ/pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18  J/cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates. PMID:25200394

  20. Theoretical modeling and experiments on a DBR waveguide laser fabricated by the femtosecond laser direct-write technique.

    PubMed

    Duan, Yuwen; McKay, Aaron; Jovanovic, Nemanja; Ams, Martin; Marshall, Graham D; Steel, M J; Withford, Michael J

    2013-07-29

    We present a model for a Yb-doped distributed Bragg reflector (DBR) waveguide laser fabricated in phosphate glass using the femtosecond laser direct-write technique. The model gives emphasis to transverse integrals to investigate the energy distribution in a homogenously doped glass, which is an important feature of femtosecond laser inscribed waveguide lasers (WGLs). The model was validated with experiments comparing a DBR WGL and a fiber laser, and then used to study the influence of distributed rare earth dopants on the performance of such lasers. Approximately 15% of the pump power was absorbed by the doped "cladding" in the femtosecond laser inscribed Yb doped WGL case with the length of 9.8 mm. Finally, we used the model to determine the parameters that optimize the laser output such as the waveguide length, output coupler reflectivity and refractive index contrast.

  1. Multiterawatt femtosecond laser system with kilohertz pulse repetition rate

    SciTech Connect

    Petrov, V V; Pestryakov, E V; Laptev, A V; Petrov, V A; Kuptsov, G V; Trunov, V I; Frolov, S A

    2014-05-30

    The basic principles, layout and components are presented for a multiterawatt femtosecond laser system with a kilohertz pulse repetition rate f, based on their parametric amplification and laser amplification of picosecond radiation that pumps the stages of the parametric amplifier. The results of calculations for a step-by-step increase in the output power from the LBO crystal parametric amplifier channel up to the multiterawatt level are presented. By using the developed components in the pump channel of the laser system, the parameters of the regenerative amplifier with the output energy ∼1 mJ at the wavelength 1030 nm and with f = 1 kHz are experimentally studied. The optical scheme of the diode-pumped multipass cryogenic Yb:Y{sub 2}O{sub 3} laser ceramic amplifier is developed and its characteristics are determined that provide the output energy within the range 0.25 – 0.35 J. (lasers)

  2. Femtosecond laser near-field ablation from gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Plech, Anton; Kotaidis, Vassilios; Lorenc, Maciej; Boneberg, Johannes

    2006-01-01

    Short-pulse laser ablation is promising owing to the low threshold for material removal from surfaces. In the laser-ablation process, solid material transforms into a volatile phase initiated by a rapid deposition of energy. Explosive boiling can be one of the mechanisms in which matter is heated close to the critical point. Other pathways of non-thermal excitation will be present for very short laser pulses. Here we observe a different channel of ablation from gold nanoparticles, which takes place below the particle melting point. This process is induced by the optical near-field, a subwavelength field enhancement close to curved surfaces, in particular. Using picosecond X-ray scattering, we can track the temporal and energetic structural dynamics during material ejection from the nanoparticles. This effect will limit any high-power laser manipulation of nanostructured surfaces, such as surface-enhanced Raman measurements or plasmonics with femtosecond pulses.

  3. Diode-pumped Yb:GSO femtosecond laser.

    PubMed

    Li, Wenxue; Hao, Qiang; Zhai, Hui; Zeng, Heping; Lu, Wei; Zhao, Guangjun; Zheng, Lihe; Su, Liangbi; Xu, Jun

    2007-03-05

    Compact femtosecond laser operation of Yb:Gd(2)SiO(5) (Yb:GSO) crystal was demonstrated under high-brightness diode-end-pumping. A semiconductor saturable absorption mirror was used to start passive mode-locking. Stable mode-locking could be realized near the emission bands around 1031, 1048, and 1088 nm, respectively. The mode-locked Yb:GSO laser could be tuned from one stable mode-locking band to another with adjustable pulse durations in the range 1~100 ps by slightly aligning laser cavity to allow laser oscillations at different central wavelengths. A pair of SF10 prisms was inserted into the laser cavity to compensate for the group velocity dispersion. The mode-locked pulses centered at 1031 nm were compressed to 343 fs under a typical operation situation with a maximum output power of 396 mW.

  4. A broadband and compact femtosecond delay compensator with birefringent crystals

    NASA Astrophysics Data System (ADS)

    Cao, Yue; Liu, Xinyi; Liu, Wei-Tao

    2017-03-01

    The accurate control of time delay is key to many applications of ultrafast femtosecond lasers, while it often requires high precision optomechanics and specialized optics that may limit the tunability. Here we report a compact, broadband, and low-cost design for the accurate delay control using birefringent crystals. As a demonstration, we used it to synchronize input beams for a difference frequency generation (DFG) stage pumped by a commercial 60 fs optical parametric amplifier (OPA). The DFG power can be boosted up to ~160% in a wide range of 2.8-14 µm, without causing appreciable narrowing of the pulse bandwidth. Our design can be readily incorporated into existing ultrafast laser systems to improve the performance, or for accurate delay control between ultrafast laser pulses.

  5. Separation of distinct photoexcitation species in femtosecond transient absorption microscopy

    SciTech Connect

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; Doughty, Benjamin; Yang, Bing

    2016-02-03

    Femtosecond transient absorption microscopy is a novel chemical imaging capability with simultaneous high spatial and temporal resolution. Although several powerful data analysis approaches have been developed and successfully applied to separate distinct chemical species in such images, the application of such analysis to distinguish different photoexcited species is rare. In this paper, we demonstrate a combined approach based on phasor and linear decomposition analysis on a microscopic level that allows us to separate the contributions of both the excitons and free charge carriers in the observed transient absorption response of a composite organometallic lead halide perovskite film. We found spatial regions where the transient absorption response was predominately a result of excitons and others where it was predominately due to charge carriers, and regions consisting of signals from both contributors. Lastly, quantitative decomposition of the transient absorption response curves further enabled us to reveal the relative contribution of each photoexcitation to the measured response at spatially resolved locations in the film.

  6. X-ray laser-induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene.

    PubMed

    Abbey, Brian; Dilanian, Ruben A; Darmanin, Connie; Ryan, Rebecca A; Putkunz, Corey T; Martin, Andrew V; Wood, David; Streltsov, Victor; Jones, Michael W M; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G; Nugent, Keith A; Quiney, Harry M

    2016-09-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration.

  7. X-ray laser–induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene

    PubMed Central

    Abbey, Brian; Dilanian, Ruben A.; Darmanin, Connie; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Wood, David; Streltsov, Victor; Jones, Michael W. M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M. Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.

    2016-01-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076

  8. Average is Over

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2018-02-01

    The popular perception of statistical distributions is depicted by the iconic bell curve which comprises of a massive bulk of 'middle-class' values, and two thin tails - one of small left-wing values, and one of large right-wing values. The shape of the bell curve is unimodal, and its peak represents both the mode and the mean. Thomas Friedman, the famous New York Times columnist, recently asserted that we have entered a human era in which "Average is Over" . In this paper we present mathematical models for the phenomenon that Friedman highlighted. While the models are derived via different modeling approaches, they share a common foundation. Inherent tipping points cause the models to phase-shift from a 'normal' bell-shape statistical behavior to an 'anomalous' statistical behavior: the unimodal shape changes to an unbounded monotone shape, the mode vanishes, and the mean diverges. Hence: (i) there is an explosion of small values; (ii) large values become super-large; (iii) 'middle-class' values are wiped out, leaving an infinite rift between the small and the super large values; and (iv) "Average is Over" indeed.

  9. Optical trapping with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Devi, Anita; Dhamija, Shaina; De, Arijit K.

    2017-08-01

    Laser trapping of 100nm diameter polystyrene bead under high repetition rate ultrafast pulsed excitation is studied theoretically as well as experimentally. In our theoretical analysis, we explore the role of optical Kerr effect at 50mW average power under pulsed excitation. In our experiment, we use a CMOS camera to record two-photon fluorescence signal from the trapped particle which decays with time due to photo-bleaching.

  10. Effect of corneal collagen crosslinking on femtosecond laser channel creation for intrastromal corneal ring segment implantation in keratoconus.

    PubMed

    El-Raggal, Tamer M

    2011-04-01

    To evaluate the effect of collagen crosslinking (CXL) on femtosecond laser channel creation for intrastromal corneal ring segments (ICRS) in keratoconic eyes. Magrabi Eye Hospital, Cairo, Egypt. Comparative case series. Eyes with grade II or III keratoconus were treated by CXL. After 6 months, channel creation was performed using an IntraLase FS-60 femtosecond laser. The eyes were randomly divided into 3 groups. The default femtosecond machine power setting was 1.5 mJ in Group 1, 1.6 mJ in Group 2, and 1.7 mJ in Group 3. A control group included virgin noncrosslinked keratoconic eyes in which the default power setting was 1.5 mJ. The degree of difficulty of ICRS insertion was judged subjectively. The degree of postoperative corneal haze was recorded. Fifteen eyes of 11 patients had CXL. Each group, including the control, comprised 5 eyes. After CXL, intracorneal channel creation using the 1.5 mJ default femtosecond power setting was incomplete and mechanical dissection was required to complete the channel. When the power setting was increased to 1.6 mJ or 1.7 mJ, channel creation could be completed; however, this increased the corneal reaction (haze) postoperatively. The corneal haze resolved in all eyes within 6 weeks, and there were no further complications. Femtosecond laser channel creation can be performed after CXL; however, the laser power must be modified. Results show channel dissection and ICRS implantation should be performed before or concurrent with CXL. The author has no financial or proprietary interest in any material or method mentioned. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. High current table-top setup for femtosecond gas electron diffraction

    DOE PAGES

    Zandi, Omid; Wilkin, Kyle J.; Xiong, Yanwei; ...

    2017-05-08

    Here, we have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges are the Coulomb force that leads to broadening of the electron pulses and the temporal blurring that results from the velocity mismatch between the laser and electron pulses as they traverse the sample. We also present here a device that uses pulse compression tomore » overcome the Coulomb broadening and deliver femtosecond electron pulses on a gas target. The velocity mismatch can be compensated using laser pulses with a tilted intensity front to excite the sample. The temporal resolution of the setup was determined with a streak camera to be better than 400 fs for pulses with up to half a million electrons and a kinetic energy of 90 keV. Finally, the high charge per pulse, combined with a repetition rate of 5 kHz, results in an average beam current that is between one and two orders of magnitude higher than previously demonstrated.« less

  12. High current table-top setup for femtosecond gas electron diffraction

    PubMed Central

    Zandi, Omid; Wilkin, Kyle J.; Xiong, Yanwei; Centurion, Martin

    2017-01-01

    We have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges are the Coulomb force that leads to broadening of the electron pulses and the temporal blurring that results from the velocity mismatch between the laser and electron pulses as they traverse the sample. We present here a device that uses pulse compression to overcome the Coulomb broadening and deliver femtosecond electron pulses on a gas target. The velocity mismatch can be compensated using laser pulses with a tilted intensity front to excite the sample. The temporal resolution of the setup was determined with a streak camera to be better than 400 fs for pulses with up to half a million electrons and a kinetic energy of 90 keV. The high charge per pulse, combined with a repetition rate of 5 kHz, results in an average beam current that is between one and two orders of magnitude higher than previously demonstrated. PMID:28529963

  13. High current table-top setup for femtosecond gas electron diffraction

    SciTech Connect

    Zandi, Omid; Wilkin, Kyle J.; Xiong, Yanwei; Centurion, Martin

    2017-05-08

    Here, we have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges are the Coulomb force that leads to broadening of the electron pulses and the temporal blurring that results from the velocity mismatch between the laser and electron pulses as they traverse the sample. We also present here a device that uses pulse compression to overcome the Coulomb broadening and deliver femtosecond electron pulses on a gas target. The velocity mismatch can be compensated using laser pulses with a tilted intensity front to excite the sample. The temporal resolution of the setup was determined with a streak camera to be better than 400 fs for pulses with up to half a million electrons and a kinetic energy of 90 keV. Finally, the high charge per pulse, combined with a repetition rate of 5 kHz, results in an average beam current that is between one and two orders of magnitude higher than previously demonstrated.

  14. Femtosecond Laser-Assisted Intraocular Lens Fragmentation: Low Energy Transection.

    PubMed

    Anisimova, Natalia S; Malyugin, Boris E; Arbisser, Lisa B; Sobolev, Nikolay P; Kirtaev, Roman V; Nazirov, Alvi A; Popov, Ilya A

    2017-09-01

    To describe a case of femtosecond laser-assisted hydrophobic intraocular lens transection. Case report. Femtosecond laser-assisted transection of a one-piece acrylic hydrophobic intraocular lens for explantation via a small surgical incision was successfully performed with low energy parameters. This case illustrates a novel and effective clinical application of the femtosecond laser. [J Refract Surg. 2017;33(9):646-648.]. Copyright 2017, SLACK Incorporated.

  15. Averaging shifted histograms

    NASA Astrophysics Data System (ADS)

    Chamayou, J. M. F.

    1980-12-01

    A method which consists in shifting different histograms of the same spectrum and then taking their average is presented in order to smooth the data and to increase the localization accuracy and separation of the peaks. The statistical properties of this method are investigated. The average of two histograms with shifted bin limits is studied. It is shown that for histograms with random bin limits, distributed according to F i(x)= limit∫-∞xƒ i(ξ, μ i, σ) dξ ; where the standard deviation σ is very small compared to the difference of the means ( μi+1 - μi) for ll i the zero order approximation to the variance of this histogram is given by: limitvar∽(H)= limit∑i=0m(A i+1-a i) 2F i+1(x)(1-F i+1(x)) , where a i= {1}/{x i=1-x i}limit∫x ix i+1g(ξ) dξ and g is an unknown function fitted by the histogram. Formula (∗) gives also the relation: v ãr ( {(H 1 + H 2) }/{2}) = {1}/{4}( v ãr (H 1(x)) + v ãr (H 2(x)) , when H1 and H2 have stochastically independent bin limits. When the histogram H is considered as a spline function S of order one it is shown that for the minimization criterion with respect to the coefficient of the spline: M 1= minlimit∫x 1x m+1 (g(x) - S 1(x)) 2dx , the following result holds: M a ⩽ 12(M 1 + M 2) , where S a(x) = 12(S 1(x) + S 2(x)) . If the number of shifted histograms tends to infinity, then S ∞(x) = [Γ(x + h) + Γ(x - h) - 2Γ(x)]/h 2, where Γ(x) = limit∫-∞xlimit∫-∞ηg(ξ) dξ dη , and h is a constant bin size. Then M ∞ ≈ {h 4}/{144}limit∫x 1x m+1 g″ 2(x) Dx . Extensions to two-dimensional histograms and to higher order (empirical distributions) are presented.

  16. Nanoparticles and nanotubes induced by femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Eliezer, S.; Eliaz, N.; Grossman, E.; Fisher, D.; Gouzman, I.; Henis, Z.; Pecker, S.; Horovitz, Y.; Fraenkel, M.; Maman, S.; Ezersky, V.; Eliezer, D.

    2005-01-01

    In this paper, we suggest the creation of a nanoparticles and nanotubes by using the interaction of a femtosecond laser with a solid target in a vacuum. A simple model is used to predict the optimal target and the laser parameters for the production of efficient nanoparticles. At the Soreq laboratory, experiments are performed with aluminium and carbon targets using a femtosecond laser. The irradiated targets are composed of either a thin layer of aluminium or of carbon, deposited on a transparent heat-insulating glass substrate. The nanoparticle debris is collected on a silicone wafer for X-ray diffraction (XRD), for scanning electron microscopy (SEM), and for atomic force microscopy (AFM). For transmission electron microscopy (TEM), the debris is caught on a copper grid covered on one side with a carbon membrane. Our experiments confirm the creation of crystal nanoparticles for aluminium and nanotubes for carbon experiments.

  17. Femtosecond Laser Interaction with Energetic Materials

    SciTech Connect

    Roos, E; Benterou, J; Lee, R; Roeske, F; Stuart, B

    2002-03-25

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  18. Vibration assisted femtosecond laser machining on metal

    NASA Astrophysics Data System (ADS)

    Park, Jung-Kyu; Yoon, Ji-Wook; Cho, Sung-Hak

    2012-06-01

    We demonstrate a novel approach to improve laser machining quality on metals by vibrating the optical objective lens with a frequency (of 500 Hz) and various displacements (0-16.5 μm) during a femtosecond laser machining process. The laser used in this experiment is an amplified Ti:sapphire fs laser system that generates 100 fs pulses having an energy of 3.5 mJ/pulse with a 5 kHz repetition rate at a central wavelength of 790 nm. It is found that both the wall surface finish of the machined structures and the aspect ratio obtained using the frequency vibration assisted laser machining are improved, compared to those derived via laser machining without vibration assistance. This is the first report of low frequency vibration of an optical objective lens in the femtosecond laser machining process being exploited to obtain significantly improved surface roughness of machined side walls and increased aspect ratios.

  19. Holographic capture of femtosecond pulse propagation

    SciTech Connect

    Centurion, Martin; Pu Ye; Psaltis, Demetri

    2006-09-15

    We have implemented a holographic system to study the propagation of femtosecond laser pulses with high temporal (150 fs) and spatial resolutions (4 {mu}m). The phase information in the holograms allows us to reconstruct both positive and negative index changes due to the Kerr nonlinearity (positive) and plasma formation (negative), and to reconstruct three-dimensional structure. Dramatic differences were observed in the interaction of focused femtosecond pulses with air, water, and carbon disulfide. The air becomes ionized in the focal region, while in water long plasma filaments appear before the light reaches a tight focus. In contrast, in carbon disulfide themore » optical beam breaks up into multiple filaments but no plasma is measured. We explain these different propagation regimes in terms of the different nonlinear material properties.« less

  20. Femtosecond laser application in biotechnology and medicine

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten

    2004-10-01

    Near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses of low sub-nanojoule and nJ pulse energies in combination with focusing optics of high numerical aperture can be used as versatile multiphoton tools in nanobiotechnology and nano/micro-medicine. Novel diagnostic applications include gene imaging by multiphoton multicolor FISH (MM-FISH) and high-resolution multiphoton tomography of skin as well as tissue engineered cardiovascular structures based on two-photon autofluorescence excitation and second harmonic generation (SHG) of endogenous biomolecules. Using high-intense (1011 - 1012 W/cm2) 80 MHz femtosecond laser beams, non-invasive targeted transfection of mammalian cells with DNA can be realized by creation of highly localized membrane perforations. Nanosurgery can be performed by optical knocking out of intracellular and intratissue structures. Potential applications include gene and cancer therapy, eye and brain surgery as well as optical engineering of single DNA molecules as key elements in bionanotechnology.

  1. Use of the Femtosecond Lasers in Ophthalmology

    NASA Astrophysics Data System (ADS)

    Roszkowska, Anna M.; Urso, Mario; Signorino, Alberto; Aragona, Pasquale

    2018-01-01

    Femtosecond laser (FSL) is an infrared laser with a wavelength of 1053 nm. FS laser works producing photodisruption or photoionization of the optically transparent tissue such as cornea. Currently FS lasers have a wide range of applications in ophthalmic surgery. They are used above all in corneal surgery in refractive procedures and keratoplasty, and recently in cataract surgery. The use of the FSL in corneal refractive surgery includes LASIK flap creation, astigmatic keratotomy, Femtosecond Lenticule Extraction (FLEx), Small Incision Lenticule Extraction (SMILE) and channels creation for implantation of the intrastromal corneal rings. As to the corneal grafting, the FS lasers are used in laser-assisted anterior and posterior lamellar keratoplasty and customized trephination in the penetrating keratoplasty. FS Laser Assisted Cataract Surgery (FLACS) includes capsulorrhexis and nuclear fragmentation that enhance safety and efficacy of the procedure.

  2. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan; Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zeng, Shaoqun; Luo, Qingming

    2010-05-01

    Astrocytes have been identified to actively contribute to brain functions through Ca2+ signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca2+) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca2+ signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca2+ wave throughout the network with reduced speed is induced, and intracellular Ca2+ oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P2Y receptors. Different patterns of Ca2+ elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca2+ signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca2+ signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.

  3. Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers.

    PubMed

    Harada, Takaaki; Spence, Stephanie; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Ploeger, Rebecca; Shugar, Aaron N; Hamm, James F; Dani, Keshav M; Dani, Anya R

    2017-01-26

    Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects.

  4. Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers

    PubMed Central

    Harada, Takaaki; Spence, Stephanie; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Ploeger, Rebecca; Shugar, Aaron N.; Hamm, James F.; Dani, Keshav M.; Dani, Anya R.

    2017-01-01

    Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects. PMID:28772468

  5. Thermal Analysis of Gold Nanorods Heated with Femtosecond Laser Pulses

    PubMed Central

    Ekici, O.; Harrison, R. K.; Durr, N. J.; Eversole, D. S.; Lee, M.; Ben-Yakar, A.

    2011-01-01

    We present an axisymmetric computational model to study the heating processes of gold nanoparticles, specifically nanorods, in aqueous medium by femtosecond laser pulses. We use a two-temperature model for the particle, a heat diffusion equation for the surrounding water to describe the heat transfer processes occurring in the system, and a thermal interface conductance to describe the coupling efficiency at the particle/water interface. We investigate the characteristic time scales of various fundamental processes, including lattice heating and thermal equilibration at the particle/surroundings interface, the effects of multiple laser pulses, and the influence of nanorod orientation relative to the beam polarization on energy absorption. Our results indicate that the thermal equilibration at the particle/water interface takes approximately 500 ps, while the electron-lattice coupling is achieved at approximately 50 ps when a 48×14 nm gold nanorod is heated to a maximum temperature of 1270 K with the application of a laser pulse having 4.70 J/m2 average fluence. Irradiation by multiple pulses arriving at 12.5 ns time intervals (80 MHz repetition rate) causes a temperature increase of no more than 3 degrees during the first few pulses with no substantial changes during the subsequent pulses. We also analyze the degree of the nanorods’ heating as a function of their orientation with respect to the polarization of the incident light. Lastly, it is shown that the temperature change of a nanorod can be modeled using its volume equivalent sphere for femtosecond laser heating within 5–15% accuracy. PMID:21799542

  6. Three dimensional (3D) parallel processing holographic lithography using femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Fauzi, Anas; Kim, Sung-Jin; Jung, Jong-Rae; Jeon, Seok-Hee; Kim, Nam

    2013-03-01

    Holographic three dimensional (3D) parallel lithography using femtosecond laser pulse were demonstrated in this paper. A computer generated hologram (CGH) that calculated using kinoform algorithm with optimal rotation angle (ORA) method were used in order to increase the uniformity of the diffraction peaks so that the resolution of the 3D image also improved. The use of femtosecond pulse duration of a Ti:sapphire laser improved the holograms resolution due to larger peak powers that generate larger photonics concentrations at the beam focus and improve single-shot processing. A digital instrument nanoscope was used to verify the result and scanning electron microscopy (SEM) will be used to observe the detail result.

  7. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    PubMed

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  8. Ca2+ waves across gaps in non-excitable cells induced by femtosecond laser exposure

    NASA Astrophysics Data System (ADS)

    He, Hao; Wang, Shaoyang; Li, Xun; Li, Shiyang; Hu, Minglie; Cao, Youjia; Wang, Ching-Yue

    2012-04-01

    Calcium is a second messenger in all cells for various cellular processes. It was found in astrocytes and neurons that femtosecond laser stimulation could induce Ca2+ wave propagation. In this work, a femtosecond laser with a power above a certain threshold was focused on single HeLa/HEK293T cells for Ca2+ mobilization. Several types of Ca2+ oscillation patterns were found in neighboring cells. The Ca2+ wave propagated very fast across 40-μm gaps in the Ca2+-free medium mediated by the adenosine-triphosphate released from cells. This approach could provide a clean methodology to investigate the Ca2+ dynamics in non-excitable cells.

  9. Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique

    NASA Astrophysics Data System (ADS)

    Kononenko, Vitali V.; Vlasov, Igor I.; Gololobov, Viktor M.; Kononenko, Taras V.; Semenov, Timur A.; Khomich, Andrej A.; Shershulin, Vladimir A.; Krivobok, Vladimir S.; Konov, Vitaly I.

    2017-08-01

    A strategy for nitrogen-vacancy (NV) center production in diamond under its irradiation by 266-nm femtosecond laser pulses is suggested: NV centers can be effectively and controllably created in the regime of nanoablation of a diamond surface. The NV concentration was found to increase logarithmically with the laser pulse number in the nanoablation regime, which is realized at a laser fluence of <0.6 J/cm2, whereas the NV formation rate was proportional to the sixth power of laser fluence. These dependencies could be explained by the photolytic mechanism of vacancy formation on the diamond surface and their subsequent laser-stimulated diffusion in the bulk. The femtosecond laser nanoablation of the diamond surface was demonstrated to be a promising tool to produce the requisite number of vacancies near the diamond surface and, hence, to manage the formation of NV complexes.

  10. Lipidic phase membrane protein serial femtosecond crystallography

    PubMed Central

    Johansson, Linda C; Arnlund, David; White, Thomas A; Katona, Gergely; DePonte, Daniel P; Weierstall, Uwe; Doak, R Bruce; Shoeman, Robert L; Lomb, Lukas; Malmerberg, Erik; Davidsson, Jan; Nass, Karol; Liang, Mengning; Andreasson, Jakob; Aquila, Andrew; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Bozek, John D; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Robert; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S; Kassemeyer, Stephan; Kimmel, Nils; Kirian, Richard A; Maia, Filipe R N C; Marchesini, Stefano; Martin, Andrew V; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, M Marvin; Sierra, Raymond G; Soltau, Heike; Starodub, Dmitri; Stellato, Francesco; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wahlgren, Weixiao Y; Wang, Xiaoyu; Weidenspointner, Georg; Wunderer, Cornelia; Fromme, Petra; Chapman, Henry N; Spence, John C H; Neutze, Richard

    2012-01-01

    X-ray free electron laser (X-feL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-feL beam using a sponge phase micro-jet. PMID:22286383

  11. Lipidic phase membrane protein serial femtosecond crystallography.

    PubMed

    Johansson, Linda C; Arnlund, David; White, Thomas A; Katona, Gergely; Deponte, Daniel P; Weierstall, Uwe; Doak, R Bruce; Shoeman, Robert L; Lomb, Lukas; Malmerberg, Erik; Davidsson, Jan; Nass, Karol; Liang, Mengning; Andreasson, Jakob; Aquila, Andrew; Bajt, Saša; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Bozek, John D; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Robert; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S; Kassemeyer, Stephan; Kimmel, Nils; Kirian, Richard A; Maia, Filipe R N C; Marchesini, Stefano; Martin, Andrew V; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, M Marvin; Sierra, Raymond G; Soltau, Heike; Starodub, Dmitri; Stellato, Francesco; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wahlgren, Weixiao Y; Wang, Xiaoyu; Weidenspointner, Georg; Wunderer, Cornelia; Fromme, Petra; Chapman, Henry N; Spence, John C H; Neutze, Richard

    2012-01-29

    X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.

  12. Femtosecond LASIK retreatment using side cutting only.

    PubMed

    Coskunseven, Efekan; Kymionis, George D; Grentzelos, Michael A; Portaliou, Dimitra M; Kolli, Sai; Jankov, Mirko R

    2012-01-01

    To present visual and refractive outcomes in 11 eyes that underwent femtosecond LASIK and subsequent retreatment with flap lifting using only side cutting. Seven patients (11 eyes) with a mean age of 30.55±5.42 years (range: 24 to 39 years) underwent retreatment 18.18±5.41 months (range: 12 to 26 months) after primary LASIK treatment with side cutting only using a femtosecond laser for the correction of residual refractive error. Mean follow-up after retreatment was 7.72±1.48 months (range: 6 to 10 months). No intra- or postoperative complications were found after LASIK retreatment. Uncorrected distance visual acuity (UDVA) improved in all patients. Mean UDVA improved from 0.54±0.12 (decimal scale) (range: 0.4 to 0.7) preoperatively to 0.99±0.03 (range: 0.9 to 1.0) after retreatment. No patient lost lines of corrected distance visual acuity. Retreatment using a femtosecond laser to create only a side cut is an effective modality to treat residual refractive errors in postoperative LASIK patients. Copyright 2012, SLACK Incorporated.

  13. Hemifusion of cells using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Katchinskiy, Nir; Godbout, Roseline; Goez, Helly R.; Elezzabi, Abdulhakem Y.

    2015-03-01

    Attachment of single cells via hemifusion of cellular membranes using femtosecond laser pulses is reported in this manuscript. This is a method to attach single cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength delivered from a Ti:Sapphire laser is described. A fluorescent dye, Calcein AM, was used to verify that the cell's cytoplasm did not migrate from a dyed cell to a non-dyed cell, in order to ascertain that the cells did not go through cell-fusion process. An optical tweezer was used in order to assess the mechanical integrity of the attached joint membranes. Hemifusion of cellular membranes was successful without initiating full cell fusion. Attachment efficiency of 95% was achieved, while the cells' viability was preserved. The attachment was performed via the delivery of one to two trains of sub-10 femtosecond laser pulses lasting 15 milliseconds each. An ultrafast reversible destabilization of the phospholipid molecules in the cellular membranes was induced due to a laser-induced ionization process. The inner phospholipid cell membrane remained intact during the attachment procedure, and cells' cytoplasm remained isolated from the surrounding medium. The unbounded inner phospholipid molecules bonded to the nearest free phospholipid molecule, forming a joint cellular membrane at the connection point. The cellular membrane hemifusion technique can potentially provide a platform for the creation of engineered tissue and cell cultures.

  14. Multi-gigahertz, femtosecond Airy beam optical parametric oscillator pumped at 78 MHz.

    PubMed

    Aadhi, A; Sharma, Varun; Chaitanya, N Apurv; Samanta, G K

    2017-03-06

    We report a high power ultrafast Airy beam source producing femtosecond pulses at multi-gigahertz (GHz) repetition rate (RR). Based on intra-cavity cubic phase modulation of an optical parametric oscillator (OPO) designed in high harmonic cavity configuration synchronous to a femtosecond Yb-fiber laser operating at 78 MHz, we have produced ultrafast 2D Airy beam at multi-GHz repetition rate through the fractional increment in the cavity length. While small (<1 mm) crystals are used in femtosecond OPOs to take the advantage of broad phase-matching bandwidth, here, we have exploited the extended phase-matching bandwidth of a 50-mm long Magnesium-oxide doped periodically poled LiNbO 3 (MgO:PPLN) crystal for efficient generation of ultrafast Airy beam and broadband mid-IR radiation. Pumping the MgO:PPLN crystal of grating period, Λ = 30 μm and crystal temperature, T = 100 °C using a 5-W femtosecond laser centred at 1064 nm, we have produced Airy beam radiation of 684 mW in ~639 fs (transform limited) pulses at 1525 nm at a RR of ~2.5 GHz. Additionally, the source produces broadband idler radiation with maximum power of 510 mW and 94 nm bandwidth at 3548 nm in Gaussian beam profile. Using an indirect method (change in cavity length) we estimate maximum RR of the Airy beam source to be ~100 GHz.

  15. Multi-gigahertz, femtosecond Airy beam optical parametric oscillator pumped at 78 MHz

    PubMed Central

    Aadhi, A.; Sharma, Varun; Chaitanya, N. Apurv; Samanta, G. K.

    2017-01-01

    We report a high power ultrafast Airy beam source producing femtosecond pulses at multi-gigahertz (GHz) repetition rate (RR). Based on intra-cavity cubic phase modulation of an optical parametric oscillator (OPO) designed in high harmonic cavity configuration synchronous to a femtosecond Yb-fiber laser operating at 78 MHz, we have produced ultrafast 2D Airy beam at multi-GHz repetition rate through the fractional increment in the cavity length. While small (<1 mm) crystals are used in femtosecond OPOs to take the advantage of broad phase-matching bandwidth, here, we have exploited the extended phase-matching bandwidth of a 50-mm long Magnesium-oxide doped periodically poled LiNbO3 (MgO:PPLN) crystal for efficient generation of ultrafast Airy beam and broadband mid-IR radiation. Pumping the MgO:PPLN crystal of grating period, Λ = 30 μm and crystal temperature, T = 100 °C using a 5-W femtosecond laser centred at 1064 nm, we have produced Airy beam radiation of 684 mW in ~639 fs (transform limited) pulses at 1525 nm at a RR of ~2.5 GHz. Additionally, the source produces broadband idler radiation with maximum power of 510 mW and 94 nm bandwidth at 3548 nm in Gaussian beam profile. Using an indirect method (change in cavity length) we estimate maximum RR of the Airy beam source to be ~100 GHz. PMID:28262823

  16. Multi-gigahertz, femtosecond Airy beam optical parametric oscillator pumped at 78 MHz

    NASA Astrophysics Data System (ADS)

    Aadhi, A.; Sharma, Varun; Chaitanya, N. Apurv; Samanta, G. K.

    2017-03-01

    We report a high power ultrafast Airy beam source producing femtosecond pulses at multi-gigahertz (GHz) repetition rate (RR). Based on intra-cavity cubic phase modulation of an optical parametric oscillator (OPO) designed in high harmonic cavity configuration synchronous to a femtosecond Yb-fiber laser operating at 78 MHz, we have produced ultrafast 2D Airy beam at multi-GHz repetition rate through the fractional increment in the cavity length. While small (<1 mm) crystals are used in femtosecond OPOs to take the advantage of broad phase-matching bandwidth, here, we have exploited the extended phase-matching bandwidth of a 50-mm long Magnesium-oxide doped periodically poled LiNbO3 (MgO:PPLN) crystal for efficient generation of ultrafast Airy beam and broadband mid-IR radiation. Pumping the MgO:PPLN crystal of grating period, Λ = 30 μm and crystal temperature, T = 100 °C using a 5-W femtosecond laser centred at 1064 nm, we have produced Airy beam radiation of 684 mW in ~639 fs (transform limited) pulses at 1525 nm at a RR of ~2.5 GHz. Additionally, the source produces broadband idler radiation with maximum power of 510 mW and 94 nm bandwidth at 3548 nm in Gaussian beam profile. Using an indirect method (change in cavity length) we estimate maximum RR of the Airy beam source to be ~100 GHz.

  17. Comparison of the anterior capsulotomy edge created by manual capsulorhexis and 2 femtosecond laser platforms: Scanning electron microscopy study.

    PubMed

    Al Harthi, Khaled; Al Shahwan, Sami; Al Towerki, Abdulelah; Banerjee, P Pat; Behrens, Ashley; Edward, Deepak P

    2014-12-01

    To compare the scanning electron microscopy (SEM) features of the anterior capsule edge created by continuous curvilinear capsulorhexis (CCC) and femtosecond laser-assisted capsulotomy using angular second moment and contrast. King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia. Prospective comparative series. Anterior capsule specimens following CCC (n = 10) or femtosecond laser-assisted capsulotomy using 2 platforms (Lensx, n = 9, and Victus, n = 10) were studied by SEM. Irregularity of the capsule edge was quantified using 2 parameters (angular second moment and contrast) using ImageJ software. The clinical features and laser parameters were correlated with angular second moment and contrast. By SEM, the femtosecond laser-assisted capsulotomy edge surfaces created by both lasers showed marked irregularity compared with the smooth edge of the CCC. The angular second moment and contrast measures for both lasers differed significantly from those obtained for CCC (P<.001). There was no between-laser difference in angular second moment and contrast measures. The angular second moment showed only a weak negative correlation with increasing laser power, whereas contrast showed a weak positive correlation with increasing power. Both laser platforms created an irregular capsulotomy edge. The angular second moment and contrast quantified capsule edge irregularities for further comparisons. These measures could be used to quantify efforts to reduce capsule-edge irregularity from femtosecond laser-lens capsule interaction. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Femtosecond transient absorption dynamics of close-packed gold nanocrystal monolayer arrays.

    SciTech Connect

    Eah, S.-K.; Jaeger, H. M.; Scherer, N. F.

    2004-03-11

    Femtosecond transient absorption spectroscopy is used to investigate hot electron dynamics of close-packed 6 nm gold nanocrystal monolayers. Morphology changes of the monolayer caused by the laser pump pulse are monitored by transmission electron microscopy. At low pump power, the monolayer maintains its structural integrity. Hot electrons induced by the pump pulse decay through electron-phonon (e-ph) coupling inside the nanocrystals with a decay constant that is similar to the value for bulk films. At high pump power, irreversible particle aggregation and sintering occur in the nanocrystal monolayer, which cause damping and peak shifting of the transient bleach signal.

  19. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ding, Li

    has been observed in or around the laser-induced refractive index modification regions. These results support the notion that femtosecond laser micro-processing method may be an excellent means of altering the refraction or higher order aberration content of corneal tissue without cell death and short-term tissue damage, and has been named as Intra-tissue Refractive Index Shaping (IRIS). The femtosecond laser micro-processing workstation has also been employed for laser transfection of single defined cells. Some preliminary results suggest that this method can be used to trace individual cells and record their biological and morphological evolution, which is quite promising in many biomedical applications especially in immunology science. In conclusion, high repetition rate femtosecond laser micro-processing has been employed to fabricate microstructures in ophthalmological hydrogels and ocular tissues. Its unique three-dimensional capability over transparent materials and biological media makes it a powerful tool and will greatly impact the future of laser material-processing.

  20. Normal dispersion femtosecond fiber optical parametric oscillator.

    PubMed

    Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N

    2013-09-15

    We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60  mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3  ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.

  1. A Comparison of Hybrid Reynolds Averaged Navier Stokes/Large Eddy Simulation (RANS/LES) and Unsteady RANS Predictions of Separated Flow for a Variable Speed Power Turbine Blade Operating with Low Inlet Turbulence Levels

    DTIC Science & Technology

    2017-10-01

    RANS/LES) and Unsteady RANS Predictions of Separated Flow for a Variable-Speed Power - Turbine Blade Operating with Low Inlet Turbulence Levels...Stokes/Large-Eddy Simulation (RANS/LES) and Unsteady RANS Predictions of Separated Flow for a Variable-Speed Power - Turbine Blade Operating with...Large-Eddy Simulation (RANS/LES) and Unsteady RANS Predictions of Separated Flow for a Variable-Speed Power -Turbine Blade Operating with Low Inlet

  2. Surface ablation of inorganic transparent materials using 70W femtosecond pulses at 1MHz (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mishchik, Konstantin; Gaudfrin, Kevin; Audouard, Eric F.; Mottay, Eric P.; Lopez, John

    2017-03-01

    Nowadays processing of transparent materials, such as glass, quartz, sapphire and others, is a subject of high interest for worldwide industry since these materials are widely used for mass markets such as consumer electronics, flat display panels manufacturing, optoelectronics or watchmaking industry. The key issue is to combine high throughput, low residual stress and good processing quality in order to avoid chipping and any post-processing step such as grinding or polishing. Complimentary to non-ablative techniques used for zero-kerf glass cutting, surface ablation of such materials is interesting for engraving, grooving as well as full ablation cutting. Indeed this technique enables to process complex parts including via or blind, open or closed, straight or small radius of curvature patterns. We report on surface ablation experiments on transparent materials using a high average power (70W) and high repetition rate (1 MHz) femtosecond laser. These experiments have been done at 1030nm and 515nm on different inorganic transparent materials, such as regular and strengthened glass, borosilicate glass or sapphire, in order to underline their different ablation behavior. Despite the heat accumulation that occurs above 100 kHz we have reached a good compromise between throughput and processing quality. The effects of fluence, pulse-to-pulse overlap and number of passes are discussed in terms of etch rate, ablation efficiency, optimum fluence, maximum achievable depth, micro cracks formation and residual stresses. These experimental results will be also compared with numerical calculations obtained owing to a simple engineering model based on the two-temperature description of the ultrafast ablation.

  3. Femtosecond laser pulses for chemical-free embryonic and mesenchymal stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience; Dholakia, Kishan; Gunn-Moore, Frank

    2011-10-01

    Owing to their self renewal and pluripotency properties, stem cells can efficiently advance current therapies in tissue regeneration and/or engineering. Under appropriate culture conditions in vitro, pluripotent stem cells can be primed to differentiate into any cell type some examples including neural, cardiac and blood cells. However, there still remains a pressing necessity to answer the biological questions concerning how stem cell renewal and how differentiation programs are operated and regulated at the genetic level. In stem cell research, an urgent requirement on experimental procedures allowing non-invasive, marker-free observation of growth, proliferation and stability of living stem cells under physiological conditions exists. Femtosecond (fs) laser pulses have been reported to non-invasively deliver exogenous materials, including foreign genetic species into both multipotent and pluripotent stem cells successfully. Through this multi-photon facilitated technique, directly administering fs laser pulses onto the cell plasma membrane induces transient submicrometer holes, thereby promoting cytosolic uptake of the surrounding extracellular matter. To display a chemical-free cell transfection procedure that utilises micro-litre scale volumes of reagents, we report for the first time on 70 % transfection efficiency in ES-E14TG2a cells using the enhanced green fluorescing protein (EGFP) DNA plasmid. We also show how varying the average power output during optical transfection influences cell viability, proliferation and cytotoxicity in embryonic stem cells. The impact of utilizing objective lenses of different numerical aperture (NA) on the optical transfection efficiency in ES-E14TG2a cells is presented. Finally, we report on embryonic and mesenchymal stem cell differentiation. The produced specialized cell types could thereafter be characterized and used for cell based therapies.

  4. Dissociating Averageness and Attractiveness: Attractive Faces Are Not Always Average

    ERIC Educational Resources Information Center

    DeBruine, Lisa M.; Jones, Benedict C.; Unger, Layla; Little, Anthony C.; Feinberg, David R.

    2007-01-01

    Although the averageness hypothesis of facial attractiveness proposes that the attractiveness of faces is mostly a consequence of their averageness, 1 study has shown that caricaturing highly attractive faces makes them mathematically less average but more attractive. Here the authors systematically test the averageness hypothesis in 5 experiments…

  5. Femtosecond laser ablation of transparent microphotonic devices and computer-generated holograms.

    PubMed

    Alqurashi, Tawfiq; Montelongo, Yunuen; Penchev, Pavel; Yetisen, Ali K; Dimov, Stefan; Butt, Haider

    2017-09-21

    Femtosecond laser ablation allows direct patterning of engineering materials in industrial settings without requiring multistage processes such as photolithography or electron beam lithography. However, femtosecond lasers have not been widely used to construct volumetric microphotonic devices and holograms with high reliability and cost efficiency. Here, a direct femtosecond laser writing process is developed to rapidly produce transmission 1D/2D gratings, Fresnel Zone Plate lenses, and computer-generated holograms. The optical properties including light transmission, angle-dependent resolution, and light polarization effects for the microphotonic devices have been characterized. Varying the depth of the microgratings from 400 nm to 1.5 μm allowed the control over their transmission intensity profile. The optical properties of the 1D/2D gratings were validated through a geometrical theory of diffraction model involving 2D phase modulation. The produced Fresnel lenses had transmission efficiency of ∼60% at normal incidence and they preserved the polarization of incident light. The computer-generated holograms had an average transmission efficiency of 35% over the visible spectrum. These microphotonic devices had wettability resistance of contact angle ranging from 44° to 125°. These devices can be used in a variety of applications including wavelength-selective filters, dynamic displays, fiber optics, and biomedical devices.

  6. 18 CFR 301.7 - Average System Cost methodology functionalization.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Average System Cost methodology functionalization. 301.7 Section 301.7 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE...

  7. Autocorrelation measurement of femtosecond laser pulses based on two-photon absorption in GaP photodiode

    SciTech Connect

    Chong, E. Z.; Watson, T. F.; Festy, F.

    2014-08-11

    Semiconductor materials which exhibit two-photon absorption characteristic within a spectral region of interest can be useful in building an ultra-compact interferometric autocorrelator. In this paper, we report on the evidence of a nonlinear absorption process in GaP photodiodes which was exploited to measure the temporal profile of femtosecond Ti:sapphire laser pulses with a tunable peak wavelength above 680 nm. The two-photon mediated conductivity measurements were performed at an average laser power of less than a few tenths of milliwatts. Its suitability as a single detector in a broadband autocorrelator setup was assessed by investigating the nonlinear spectral sensitivity bandwidth of a GaP photodiode. The highly favourable nonlinear response was found to cover the entire tuning range of our Ti:sapphire laser and can potentially be extended to wavelengths below 680 nm. We also demonstrated the flexibility of GaP in determining the optimum compensation value of the group delay dispersion required to restore the positively chirped pulses inherent in our experimental optical system to the shortest pulse width possible. With the rise in the popularity of nonlinear microscopy, the broad two-photon response of GaP and the simplicity of this technique can provide an alternative way of measuring the excitation laser pulse duration at the focal point of any microscopy systems.

  8. Using femtosecond lasers to modify sizes of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    da Silva Cordeiro, Thiago; Almeida de Matos, Ricardo; Silva, Flávia Rodrigues de Oliveira; Vieira, Nilson D.; Courrol, Lilia C.; Samad, Ricardo E.

    2016-04-01

    Metallic nanoparticles are important on several scientific, medical and industrial areas. The control of nanoparticles characteristics has fundamental importance to increase the efficiency on the processes and applications in which they are employed. The metallic nanoparticles present specific surface plasmon resonances (SPR). These resonances are related with the collective oscillations of the electrons presents on the metallic nanoparticle. The SPR is determined by the potential defined by the nanoparticle size and geometry. There are several methods of producing gold nanoparticles, including the use of toxic chemical polymers. We already reported the use of natural polymers, as for example, the agar-agar, to produce metallic nanoparticles under xenon lamp irradiation. This technique is characterized as a "green" synthesis because the natural polymers are inoffensive to the environment. We report a technique to produce metallic nanoparticles and change its geometrical and dimensional characteristics using a femtosecond laser. The 1 ml initial solution was irradiate using a laser beam with 380 mW, 1 kHz and 40 nm of bandwidth centered at 800 nm. The setup uses an Acousto-optic modulator, Dazzler, to change the pulses spectral profiles by introduction of several orders of phase, resulting in different temporal energy distributions. The use of Dazzler has the objective of change the gold nanoparticles average size by the changing of temporal energy distributions of the laser pulses incident in the sample. After the laser irradiation, the gold nanoparticles average diameter were less than 15 nm.

  9. Femtosecond lasers in ophthalmology: clinical applications in anterior segment surgery

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Nagy, Zoltan; Sarayba, Melvin; Kurtz, Ronald M.

    2010-02-01

    The human eye is a favored target for laser surgery due to its accessibility via the optically transparent ocular tissue. Femtosecond lasers with confined tissue effects and minimized collateral tissue damage are primary candidates for high precision intraocular surgery. The advent of compact diode-pumped femtosecond lasers, coupled with computer controlled beam delivery devices, enabled the development of high precision femtosecond laser for ophthalmic surgery. In this article, anterior segment femtosecond laser applications currently in clinical practice and investigation are reviewed. Corneal procedures evolved first and remain dominant due to easy targeting referenced from a contact surface, such as applanation lenses placed on the eye. Adding a high precision imaging technique, such as optical coherence tomography (OCT), can enable accurate targeting of tissue beyond the cornea, such as the crystalline lens. Initial clinical results of femtosecond laser cataract surgery are discussed in detail in the latter portion part of the article.

  10. Ultrafast Charge Transfer in Nickel Phthalocyanine Probed by Femtosecond Raman-Induced Kerr Effect Spectroscopy

    PubMed Central

    2015-01-01

    The recently developed technique of femtosecond stimulated Raman spectroscopy, and its variant, femtosecond Raman-induced Kerr effect spectroscopy (FRIKES), offer access to ultrafast excited-state dynamics via structurally specific vibrational spectra. We have used FRIKES to study the photoexcitation dynamics of nickel(II) phthalocyanine with eight butoxy substituents, NiPc(OBu)8. NiPc(OBu)8 is reported to have a relatively long-lived ligand-to-metal charge-transfer (LMCT) state, an essential characteristic for efficient electron transfer in photocatalysis. Following photoexcitation, vibrational transitions in the FRIKES spectra, assignable to phthalocyanine ring modes, evolve on the femtosecond to picosecond time scales. Correlation of ring core size with the frequency of the ν10 (asymmetric C–N stretching) mode confirms the identity of the LMCT state, which has a ∼500 ps lifetime, as well as that of a precursor d-d excited state. An even earlier (∼0.2 ps) transient is observed and tentatively assigned to a higher-lying Jahn–Teller-active LMCT state. This study illustrates the power of FRIKES spectroscopy in elucidating ultrafast molecular dynamics. PMID:24841906

  11. Femtosecond pulsed laser ablation to enhance drug delivery across the skin.

    PubMed

    Garvie-Cook, Hazel; Stone, James M; Yu, Fei; Guy, Richard H; Gordeev, Sergey N

    2016-01-01

    Laser poration of the skin locally removes its outermost, barrier layer, and thereby provides a route for the diffusion of topically applied drugs. Ideally, no thermal damage would surround the pores created in the skin, as tissue coagulation would be expected to limit drug diffusion. Here, a femtosecond pulsed fiber laser is used to porate mammalian skin ex vivo. This first application of a hollow core negative curvature fiber (HC-NCF) to convey a femtosecond pulsed, visible laser beam results in reproducible skin poration. The effect of applying ink to the skin surface, prior to ultra-short pulsed ablation, has been examined and Raman spectroscopy reveals that the least, collateral thermal damage occurs in inked skin. Pre-application of ink reduces the laser power threshold for poration, an effect attributed to the initiation of plasma formation by thermionic electron emission from the dye in the ink. Poration under these conditions significantly increases the percutaneous permeation of caffeine in vitro. Dye-enhanced, plasma-mediated ablation of the skin is therefore a potentially advantageous approach to enhance topical/transdermal drug absorption. The combination of a fiber laser and a HC-NCF, capable of emitting and delivering femtosecond pulsed, visible light, may permit a compact poration device to be developed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tunable, high-repetition-rate, dual-signal-wavelength femtosecond optical parametric oscillator based on BiB3O6

    NASA Astrophysics Data System (ADS)

    Meng, Xianghao; Wang, Zhaohua; Tian, Wenlong; Fang, Shaobo; Wei, Zhiyi

    2018-01-01

    We have demonstrated a high-repetition-rate tunable femtosecond dual-signal-wavelength optical parametric oscillator (OPO) based on BiB3O6 (BiBO) crystal, synchronously pumped by a frequency-doubled mode-locked Yb:KGW laser. The cavity is simple since no dispersion compensators are used in the cavity. The wavelength range of dual-signal is widely tunable from 710 to 1000 nm. Tuning is accomplished by rotating phase-matching angle of BiBO, and optimizing cavity length and output coupler. Using a 3.75 W pump laser, the maximum average dual-signal output power is 760 mW at 707 and 750 nm, leading to a conversion efficiency of 20.3% not taking into account the idler power. Our experimental results show a non-critical phase-matching configuration pumped by a high peak power laser source. The operation of the dual-signal benefits from the balance of phase matching and group velocity mismatching between the two signals.

  13. Comparative analysis of the performance of two different platforms for femtosecond laser-assisted cataract surgery.

    PubMed

    Rivera, Robert P; Hoopes, Phillip C; Linn, Steven H; Hoopes, Phillip C

    2016-01-01

    To analyze and compare the intraoperative and postoperative outcomes of cataract surgery performed with two different femtosecond laser platforms. Randomized controlled prospective intraindividual comparative study including 90 eyes of 45 patients aged between 61 and 86 years. All eyes underwent bilateral cataract surgery assisted with femtosecond laser technology. Eyes were randomized to one of two different femtosecond laser platforms: Catalys Precision system (Abbott Medical Optics Inc., Santa Ana, CA, USA) (Catalys group), and LenSx system (Alcon-LenSx Inc., Aliso Viejo, CA, USA) (LenSx group). Several intraoperative parameters and changes in corrected distance visual acuity and corneal endothelial density were evaluated and compared. The LenSx group showed a significantly higher cumulative dissipated energy and phacoemulsification power needed compared to the Catalys group ( P ≤0.043). Likewise, a longer patient interface preparation time, more severe perception of pressure by patient, and more cases of subconjunctival hemorrhage were found in the LenSx group ( P ≤0.014). A complete capsulotomy was achieved in more cases in the Catalys group compared to the LenSx group ( P =0.002). Regarding corneal incisions, no statistically significant differences were found between groups ( P ≥0.071). The same occurred for postoperative corrected distance visual acuity ( P ≥0.48), endothelial cell density changes ( P ≥0.14), and the incidence of corneal edema or flare ( P ≥0.399). Cataract surgery with the two evaluated femtosecond laser platforms is a safe procedure, with reduced phaco time and energy, and preservation of corneal endothelium integrity. However, both systems differ in the performance of capsulotomy and the procedure of docking, with an advantage of the Catalys over the LenSx system.

  14. Beam Characterizations at Femtosecond Electron Beam Facility

    SciTech Connect

    Rimjaem, S.; Jinamoon, V.; Kangrang, M.; Kusoljariyakul, K.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Wiedemann, H.; /SLAC

    2006-03-17

    The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond (fs) electron bunches. Theses short bunches are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet (a-magnet) serving as a magnetic bunch compressor, and a SLAC-type linear accelerator (linac). The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed in this paper.

  15. Femtosecond laser studies of ultrafast intramolecular processes

    SciTech Connect

    Hayden, C.

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  16. Colorizing metals with femtosecond laser pulses

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2008-01-28

    For centuries, it had been the dream of alchemists to turn inexpensive metals into gold. Certainly, it is not enough from an alchemist's point of view to transfer only the appearance of a metal to gold. However, the possibility of rendering a certain metal to a completely different color without coating can be very interesting in its own right. In this work, we demonstrate a femtosecond laser processing technique that allows us to create a variety of colors on a metal that ultimately leads us to control its optical properties from UV to terahertz.

  17. Creation of optical vortices in femtosecond pulses.

    PubMed

    Mariyenko, I; Strohaber, J; Uiterwaal, Cornelis

    2005-09-19

    We experimentally created a femtosecond optical vortex using a pair of computer-synthesized holographic gratings arranged in a 2f - 2f optical setup. We present measurements showing that the resulting donut mode is free of spatial chirp, and support this finding with an analysis of the optical wave propagation through our system based on the Kirchhoff-Fresnel diffraction integral. An interferogram confirms that our ultrashort vortex has topological charge 1, and a conservative experimental estimation of its duration is 280 fs. We used 25-fs radiation pulses (bandwidth approximately 40 nm) produced by a Ti:sapphire laser oscillator.

  18. Producing ORMOSIL scaffolds by femtosecond laser polymerization

    NASA Astrophysics Data System (ADS)

    Matei, A.; Zamfirescu, M.; Radu, C.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Radu, M.; Dinescu, M.

    2012-07-01

    Structures with different geometries and sizes were built via direct femtosecond laser writing, starting from new organic/inorganic hybrid monomers based on hybrid methacrylate containing triethoxysilane, in addition to urethane and urea groups. Multifunctional oligomer of urethane dimethacrylate type was chosen as comonomer in polymerization experiments because dimethacrylates give rise to the formation of a polymer network, having a number of favorable properties including biocompatibility and surface nanostructuring. Free standing polymeric structures were designed and created in order to be tested in fibroblast cells culture. Investigations of the cellular adhesion, proliferation, and viability of L929 mouse fibroblasts on free-standing laser processed scaffolds were performed for different scaffold designs.

  19. Sub-surface damage in indium phosphide caused by micromachining of grooves with femtosecond and nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Borowiec, A.; Couillard, M.; Botton, G. A.; Haugen, H. K.

    2004-12-01

    Grooves laser-micromachined in InP using 130 fs and 8 ns pulses with fluences ≈2 and 0.7 J/cm2 are investigated by cross-sectional transmission electron microscopy. At the fluence of 2 J/cm2, irradiation with both femtosecond and nanosecond laser pulses yield substantial resolidified layers with a maximum thickness of ≈0.5 μm. In contrast, at the fluence of 0.7 J/cm2, irradiation with nanosecond pulses leads to a layer of similar thickness, while femtosecond irradiation produces laser induced periodic surface structures with minimal resolidified material. For both fluences, femtosecond pulses generate substantial densities of defects extending over a few microns in depth, while nanosecond laser irradiation leads to no observable damage beneath the resolidified layer. The high peak power density and the stress confinement obtained from femtosecond pulses, along with incubation effects, are identified as the major factors leading the observed plastic deformations.

  20. Influences of Flap Shape and Hinge Angle on Opaque Bubble Layer Formation in Femtosecond Laser-Assisted LASIK Surgery.

    PubMed

    Lin, Hung-Yuan; Fang, Yi-Ting; Chuang, Ya-Jung; Yu, Han-Chieh; Pu, Christy; Chou, Yiing-Jenq; Chien, Chih-Yi; Lin, Pi-Jung; Schallhorn, Steven C; Sun, Chi-Chin

    2017-03-01

    To evaluate the effects of different flap shapes and hinge angles on opaque bubble layer (OBL) formation using a femtosecond laser for flap creation in LASIK surgery. This retrospective study evaluated 138 eyes of 73 patients who underwent femtosecond laser-assisted LASIK with a 150-kHz IntraLase femtosecond laser (Abbott Medical Optics, Inc., Santa Ana, CA) for myopic astigmatism and compared differences between different flap shapes and hinge angles on OBL formation. The surgical procedures were videotaped, and the patterns and sizes of the OBLs seen during surgery were analyzed. Preoperative and postoperative data including patient demographics, refractive status, keratometry, central corneal thickness, and intraoperative data (flap size and pocket parameters) were recorded. The eyes were divided into four groups based on the corneal flap shape (elliptical versus round) and hinge angle (50° versus 60°). The preoperative demographic data, mean spherical errors, cylindrical power, and central corneal thickness were not significantly different among the groups. Of the 138 eyes, 107 (77%) developed an OBL covering a mean area of 13.8% ± 12.6% in each case. This area was significantly smaller in the elliptical flap with 60° hinge angle group (P < .05). An oval-shaped flap with a larger hinge angle tended to result in less OBL formation in femtosecond laser-assisted LASIK. [J Refract Surg. 2017;33(3):178-182.]. Copyright 2017, SLACK Incorporated.

  1. Femtosecond pulse delivery through multi-core fibers for imaging and ablation

    NASA Astrophysics Data System (ADS)

    Kakkava, Eirini; Stasio, Nicolino; Conkey, Donald B.; Moser, Christophe; Psaltis, Demetri

    2017-08-01

    The need for ultrathin fiber-based devices that can deliver light to confined places in order to perform imaging and/or laser ablation of a desired target has been a research area of significant interest. The current endoscopic devices are based on distal optics and scanning mechanisms to focus and scan the light in the end of the fiber. The distal components are limiting factors for decreasing the size of the device. However, using wavefront shaping techniques, lensless focusing and scanning of a laser focus spot through the fiber can be achieved, enabling a smaller endoscopic tool. In our case, a high power focus spot is created by wavefront shaping of the light through a multicore fiber (MCF), providing the possibility of two-photon fluorescence (TPF) imaging. Femtosecond laser ablation through the endoscopic device can be also a powerful tool for a range of applications. Therefore, we investigate limitations in the maximum peak power that can be delivered through the MCF due to nonlinear effects induced in the fiber cores in the ablation peak power regime. After characterizing the capabilities of our system, we demonstrate that femtosecond pulsed laser ablation can be performed through the MCF.

  2. Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films

    SciTech Connect

    Chase, T.; Trigo, M.; Reid, A. H.; Dürr, H. A.; Li, R.; Vecchione, T.; Shen, X.; Weathersby, S.; Coffee, R.; Hartmann, N.; Wang, X. J.; Reis, D. A.

    2016-01-25

    We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.

  3. Formation of microspheres under the action of femtosecond laser radiation on titanium samples in hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kochuev, D. A.; Khorkov, K. S.; Ivashchenko, A. V.; Prokoshev, V. G.; Arakelian, S. M.

    2018-01-01

    This work describes the original method of laser synthesis of microspheres which contain titanium carbide. The formation of microspheres is carried out by the action of femtosecond laser radiation on the surface of titanium in the reaction medium – the ultimate hydrocarbon. The resulting microspheres have a high surface smoothness, a narrow particle size distribution, an average size of 1-3 μm. They can be used in applications of additive engineering, powder metallurgy as the main raw material, or as an alloying additive.

  4. Femtosecond-laser assisted cell reprogramming

    NASA Astrophysics Data System (ADS)

    Breunig, Hans Georg; Uchugonova, Aisada; Batista, Ana; König, Karsten

    2017-02-01

    Femtosecond-laser pulses can assist to transfect cells by creating transient holes in the cell membrane, thus making them temporarily permeable for extraneous genetic material. This procedure offers the advantage of being completely "virus free" since no viruses are used for the delivery and integration of gene factors into the host genome and, thereby, avoiding serious side effects which so far prevent clinical application. Unfortunately, focusing of the laser radiation onto individual cell membranes is quite elaborate and time consuming. Regarding these obstacles, we briefly review two optical setups for fast, efficient and high throughput laser-assisted cell transfection based on femtosecond laser pulse excitation. The first setup aims at assisting the transfection of adherent cells. It comprises of a modified laser-scanning microscope with beamshaping optics as well as home-made software to automate the detection, targeting and laser-irradiation process. The second setup aims at laser-assisted transfection of non-adherent cells in suspension which move in a continuous flow through the laser focus region. The setup allows to address a large number of cells, however, with much lower transfection efficiency than the individual-cell targeting approach.

  5. Attomicroscopy: from femtosecond to attosecond electron microscopy

    NASA Astrophysics Data System (ADS)

    Hassan, Mohammed Th

    2018-02-01

    In the last decade, the development of ultrafast electron diffraction (UED) and microscopy (UEM) have enabled the imaging of atomic motion in real time and space. These pivotal table-top tools opened the door for a vast range of applications in different areas of science spanning chemistry, physics, materials science, and biology. We first discuss the basic principles and recent advancements, including some of the important applications, of both UED and UEM. Then, we discuss the recent advances in the field that have enhanced the spatial and temporal resolutions, where the latter, is however, still limited to a few hundreds of femtoseconds, preventing the imaging of ultrafast dynamics of matter lasting few tens of femtoseconds. Then, we present our new optical gating approach for generating an isolated 30 fs electron pulse with sufficient intensity to attain a temporal resolution on the same time scale. This achievement allows, for the first time, imaging the electron dynamics of matter. Finally, we demonstrate the feasibility of the optical gating approach to generate an isolated attosecond electron pulse, utilizing our recently demonstrated optical attosecond laser pulse, which paves the way for establishing the field of ‘Attomicroscopy’, ultimately enabling us to image the electron motion in action.

  6. Theory of femtosecond stimulated Raman spectroscopy

    PubMed Central

    Lee, Soo-Y.; Zhang, Donghui; McCamant, David W.; Kukura, Philipp; Mathies, Richard A.

    2005-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique that produces high-resolution (time-resolved) vibrational spectra from either the ground or excited electronic states of molecules, free from background fluorescence. FSRS uses simultaneously a narrow bandwidth ∼1 – 3 ps Raman pump pulse with a continuum ∼30– 50 fs Stokes probe pulse to produce sharp Raman gains, at positions corresponding to vibrational transitions in the sample, riding on top of the continuum Stokes probe spectrum. When FSRS is preceded by a femtosecond actinic pump pulse that initiates the photochemistry of interest, time-resolved Raman spectroscopy can be carried out. We present two theoretical approaches to FSRS: one is based on a coupling of Raman pump and probe light waves with the vibrations in the medium, and another is a quantum-mechanical description. The latter approach is used to discuss the conditions of applicability and limitations of the coupled-wave description. Extension of the quantum-mechanical description to the case where the Raman pump beam is on resonance with an excited electronic state, as well as when FSRS is used to probe a nonstationary vibrational wave packet prepared by an actinic pump pulse, is also discussed. PMID:15303930

  7. Femtosecond mega-electron-volt electron microdiffraction

    DOE PAGES

    Shen, X.; Li, R. K.; Lundstrom, U.; ...

    2017-09-01

    To understand and control the basic functions of physical, chemical and biological processes from micron to nano-meter scale, an instrument capable of visualizing transient structural changes of inhomogeneous materials with atomic spatial and temporal resolutions, is required. One such technique is femtosecond electron microdiffraction, in which a short electron pulse with femtosecond-scale duration is focused into a micron-scale spot and used to obtain diffraction images to resolve ultrafast structural dynamics over a localized crystalline domain. In this letter, we report the experimental demonstration of time-resolved mega-electron-volt electron microdiffraction which achieves a 5 μm root-mean-square (rms) beam size on the samplemore » and a 110 fs rms temporal resolution. Using pulses of 10k electrons at 4.2 MeV energy with a normalized emittance 3 nm-rad, we obtained high quality diffraction from a single 10 μm paraffin ( C 44 H 90) crystal. The phonon softening mode in optical-pumped polycrystalline Bi was also time-resolved, demonstrating the temporal resolution limits of the instrument. In conclusion, this new characterization capability will open many research opportunities in material and biological sciences.« less

  8. Femtosecond mega-electron-volt electron microdiffraction

    SciTech Connect

    Shen, X.; Li, R. K.; Lundstrom, U.; Lane, T. J.; Reid, A. H.; Weathersby, S. P.; Wang, X. J.

    2017-09-01

    To understand and control the basic functions of physical, chemical and biological processes from micron to nano-meter scale, an instrument capable of visualizing transient structural changes of inhomogeneous materials with atomic spatial and temporal resolutions, is required. One such technique is femtosecond electron microdiffraction, in which a short electron pulse with femtosecond-scale duration is focused into a micron-scale spot and used to obtain diffraction images to resolve ultrafast structural dynamics over a localized crystalline domain. In this letter, we report the experimental demonstration of time-resolved mega-electron-volt electron microdiffraction which achieves a 5 μm root-mean-square (rms) beam size on the sample and a 110 fs rms temporal resolution. Using pulses of 10k electrons at 4.2 MeV energy with a normalized emittance 3 nm-rad, we obtained high quality diffraction from a single 10 μm paraffin (C44H90) crystal. The phonon softening mode in optical-pumped polycrystalline Bi was also time-resolved, demonstrating the temporal resolution limits of the instrument. In conclusion, this new characterization capability will open many research opportunities in material and biological sciences.

  9. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  10. Species-Independent Femtosecond Localized Electric Field Measurement

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Goldberg, Benjamin M.; O'Byrne, Sean; Miles, Richard B.

    2017-02-01

    We present an optical measurement method using a femtosecond laser for nonintrusive measurements of electric field strength and orientation in virtually any gas or gas mixture via second-harmonic generation. This simple method takes advantage of the asymmetry in polarizability induced by an applied electric field, which enables the otherwise forbidden second-harmonic generation in any centrosymmetric or homogeneous media. The use of a femtosecond laser source permits high intensities without avalanche breakdown and leads to the measurement of electric field strength down to approximately 100 V / cm in air with submillimeter spatial resolution governed by the confocal parameter and femtosecond temporal resolution governed by the laser-pulse duration.

  11. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography

    SciTech Connect

    Nakane, Takanori; Song, Changyong; POSTECH, Pohang 790-784

    2015-11-27

    Sulfur SAD phasing facilitates the structure determination of diverse native proteins using femtosecond X-rays from free-electron lasers via serial femtosecond crystallography. Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.

  12. Metal surface structuring with spatiotemporally focused femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Tan, Yuanxin; Chu, Wei; Lin, Jintian; Fang, Zhiwei; Liao, Yang; Cheng, Ya

    2018-01-01

    Femtosecond laser micromachining provides high precision and less thermal diffusion in surface structuring as a result of the ultrashort duration and ultrahigh peak intensity of the femtosecond laser pulses. To increase the throughput of surface patterning, the focal spot size can be expanded with loose focusing, which, however, could lead to nonlinear self-focusing of the pulses when the pulses propagate in air. We solve the problem by use of spatiotemporally focused femtosecond laser pulses for ablation of metal surfaces, which gives rise to improved surface quality as compared with that obtained with the conventional focusing scheme.

  13. Alternatives to the Moving Average

    Treesearch

    Paul C. van Deusen

    2001-01-01

    There are many possible estimators that could be used with annual inventory data. The 5-year moving average has been selected as a default estimator to provide initial results for states having available annual inventory data. User objectives for these estimates are discussed. The characteristics of a moving average are outlined. It is shown that moving average...

  14. Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing.

    PubMed

    Ren, Yingying; Dong, Ningning; Macdonald, John; Chen, Feng; Zhang, Huaijin; Kar, Ajoy K

    2012-01-30

    Buried channel waveguides in Nd:LuVO<4 were fabricated by femtosecond laser writing with the double-line technique. The photoluminescence properties of the bulk materials were found to be well preserved within the waveguide core region. Continuous-wave laser oscillation at 1066.4 nm was observed from the waveguide under ~809 nm optical excitation, with the absorbed pump power at threshold and laser slope efficiency of 98 mW and 14%, respectively.

  15. Advances in high power linearly polarized fiber laser and its application

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin

    2017-10-01

    Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.

  16. XCAN — A coherent amplification network of femtosecond fiber chirped-pulse amplifiers

    NASA Astrophysics Data System (ADS)

    Daniault, L.; Bellanger, S.; Le Dortz, J.; Bourderionnet, J.; Lallier, É.; Larat, C.; Antier-Murgey, M.; Chanteloup, J.-C.; Brignon, A.; Simon-Boisson, C.; Mourou, G.

    2015-10-01

    The XCAN collaboration program between the Ecole Polytechnique and Thales aims at developing a laser system based on the coherent combination of several tens of laser beams produced through a network of amplifying optical fibers [1]. As a first step this project aspires to demonstrate the scalability of a combining architecture in the femtosecond regime providing high peak power with high repetition rate and high efficiency. The initial system will include 61 individual phased beams aimed to provide 10 mJ, 350 fs pulses at 50 kHz.

  17. Femtosecond Transient Absorption Spectroscopy on the Light-Adaptation of Living Plants

    NASA Astrophysics Data System (ADS)

    Müller, M. G.; Jahns, P.; Holzwarth, A. R.

    2013-03-01

    The photoprotection reaction of the photosynthetic system under excessive sun light has been resolved for the first time by femtosecond absorption spectroscopy from the visible to near-infrared in intact leaves of Arabidopsis thaliana. The light-adaptation process was measured and a prominent non-photochemical quenching (npq) behavior located in photosystem II was observed. Among the various npq quenching mechanisms which have been discussed so far the most likely is the formation of chlorophyll-chlorophyll charge-transfer states which create a powerful energy dissipation pathway for the quenching.

  18. Compact diode-pumped all-solid-state femtosecond Cr(4+):YAG laser.

    PubMed

    Ishida, Y; Naganuma, K

    1996-01-01

    We have developed a compact, all-solid-state self-mode-locked Cr(4+):YAG laser. The laser is pumped by a cw laser-diode-pumped Nd:YVO(4) laser and produces highly stable femtosecond pulses near 1.50 microm. Measurements of noise power spectra for frequencies below 10 kHz show that the diode-pumped laser system greatly improves the output energy fluctuation and pulse timing jitter compared with a laser system that uses a conventional arc-lamp-pumped cw Nd:YAG laser.

  19. Characterization of femtosecond-laser-induced periodic structures on SiC substrates

    NASA Astrophysics Data System (ADS)

    Miyagawa, Reina; Ohno, Yutaka; Deura, Momoko; Yonenaga, Ichiro; Eryu, Osamu

    2018-02-01

    We investigated the crystalline state of femtosecond-laser-induced periodic structures using a transmission electron microscope (TEM). The core of the 200-nm-pitch periodic nanostructures on SiC retained a high crystalline quality continued from the SiC substrate, where the crystal orientation was aligned with that of the SiC substrate. These results suggest that the periodic nanostructures were formed by periodic etching and not by rearrangement. At high laser power, microstructures with sizes larger than 2 µm were formed on the periodic nanostructures. The microstructures were amorphous and extended from the amorphous SiC layer that covered the periodic nanostructures.

  20. Effects on Organic Photovoltaics Using Femtosecond-Laser-Treated Indium Tin Oxides.

    PubMed

    Chen, Mei-Hsin; Tseng, Ya-Hsin; Chao, Yi-Ping; Tseng, Sheng-Yang; Lin, Zong-Rong; Chu, Hui-Hsin; Chang, Jan-Kai; Luo, Chih-Wei

    2016-09-28

    The effects of femtosecond-laser-induced periodic surface structures (LIPSS) on an indium tin oxide (ITO) surface applied to an organic photovoltaic (OPV) system were investigated. The modifications of ITO induced by LIPPS in OPV devices result in more than 14% increase in power conversion efficiency (PCE) and short-circuit current density relative to those of the standard device. The basic mechanisms for the enhanced short-circuit current density are attributed to better light harvesting, increased scattering effects, and more efficient charge collection between the ITO and photoactive layers. Results show that higher PCEs would be achieved by laser-pulse-treated electrodes.

  1. Mechanisms of graphene exfoliation under the action of femtosecond laser radiation in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Khorkov, K. S.; Kochuev, D. A.; Ilin, V. A.; Chkalov, R. V.; Prokoshev, V. G.; Arakelian, S. M.

    2018-01-01

    The processes of graphene structures formation under the action of the femtosecond laser radiation on carbon samples in liquid nitrogen are discussed. Mechanisms of graphene sheets exfoliation are proposed depending on the power density of the laser radiation: in the first case, the separation occurs due to the volumetric expansion during heating the region occupied by nitrogen molecules; at a laser radiation energy exceeding the ablation threshold, the surface of graphite begins to breakdown in the region of the action, followed by separation into graphene layers.

  2. Ultrafast properties of femtosecond-laser-ablated GaAs and its application to terahertz optoelectronics.

    PubMed

    Madéo, Julien; Margiolakis, Athanasios; Zhao, Zhen-Yu; Hale, Peter J; Man, Michael K L; Zhao, Quan-Zhong; Peng, Wei; Shi, Wang-Zhou; Dani, Keshav M

    2015-07-15

    We report on the first terahertz (THz) emitter based on femtosecond-laser-ablated gallium arsenide (GaAs), demonstrating a 65% enhancement in THz emission at high optical power compared to the nonablated device. Counter-intuitively, the ablated device shows significantly lower photocurrent and carrier mobility. We understand this behavior in terms of n-doping, shorter carrier lifetime, and enhanced photoabsorption arising from the ablation process. Our results show that laser ablation allows for efficient and cost-effective optoelectronic THz devices via the manipulation of fundamental properties of materials.

  3. Ultrafast postprocessing of yttrium aluminum garnet ceramics via femtosecond pulse laser irradiation

    NASA Astrophysics Data System (ADS)

    Steere, Daniel W.; Tumurugoti, Priyatham; Sundaram, Shanmugavelayutham K.

    2017-03-01

    We studied rapid densification and homogenization of sintered yttrium aluminum garnet (YAG) ceramics via sintering followed by femtosecond pulse laser (800 nm) irradiation. We formed localized, high-density microstructures within a YAG ceramic matrix. The laser irradiated regions were characterized using scanning electron microscopy, elemental mapping, and x-ray diffraction. Our results show that phase separation of YAG into YAlO3 and Al2O3 can be obtained in situ within stoichiometric YAG. With an optimum laser power and processing conditions, this process can be used for producing dense YAG ceramics.

  4. Reflection of a probe pulse and thermal emission of electrons produced by an aluminum film heated by a femtosecond laser pulse

    SciTech Connect

    Bezhanov, S. G.; Ionin, A. A.; Kanavin, A. P.

    2015-06-15

    It is shown that an experimental decrease in the reflection of a probe femtosecond pulse from an aluminum film heated by a higher-power femtosecond pulse can be quantitatively described taking into account the inhomogeneous distribution of the laser pulse field in the film and the evolution of the electron and lattice temperature during absorption of the heating inhomogeneous field. Analysis of the electron temperature evolution on the heated film surface combined with modern concepts about the influence of a surface volume charge on thermal emission gave the relation between the amount of emitted electrons and experimental data on the heatingmore » of the aluminum film by the femtosecond pulse.« less

  5. Intrastromal corneal reshaping using a high-intensity femtosecond laser: A novel method of vision correction

    NASA Astrophysics Data System (ADS)

    Han, Taehee

    A new technology to perform a minimally invasive cornea reshaping procedure has been developed. This can eliminate the incidence of the flap-related complications of the conventional eye refractive procedures by multiphoton processes using a very high-intensity (I ≥ 1013 W/cm 2), but low energy (Ep ˜ 100-200 microJ) femtosecond laser pulses. Due to much lower energy than that of the nanosecond laser pulses for the thermal photoablation, the multiphoton processes cause almost no collateral damage by heat and shock wave generation. In this method, a series of femtosecond laser pulses is used to create very narrow (< 30 microm) and sufficiently long (≥ 2.5 mm) micro-channels in the cornea. The micro-channels are oriented almost perpendicular to the eye's optical axis. Once the micro-channel reaches a desired length, another series of femtosecond pulses with higher intensity is efficiently delivered through the micro-channel to the endpoint where a certain amount of the stromal tissue is disintegrated by the multiphoton processes. The disintegrated fragments are ejected out of the cornea via the same micro-channel, allowing the corneal surface to collapse, and changing its refractive power. This new corneal reshaping method obviates any process of damaging the corneal surface layer, while retaining the advantages of the conventional refractive procedures such as Laser in situ keratomileusis (LASIK) and Photorefractive keratectomy (PRK). In order to demonstrate the flapless cornea reshaping procedure, we have conducted ex-vivo experiments on fresh porcine eyes. The reshaped corneas were evaluated by using optical coherence tomography (OCT). The test results have shown that this flapless intrastromal procedure can reshape the cornea as intended with almost no surface damage. We have also performed a series of experiments to demonstrate the multiphoton processes in the corneal tissue by very high-intensity femtosecond laser pulses. Through the optical emission

  6. Separation of distinct photoexcitation species in femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...

    2016-02-03

    Femtosecond transient absorption microscopy is a novel chemical imaging capability with simultaneous high spatial and temporal resolution. Although several powerful data analysis approaches have been developed and successfully applied to separate distinct chemical species in such images, the application of such analysis to distinguish different photoexcited species is rare. In this paper, we demonstrate a combined approach based on phasor and linear decomposition analysis on a microscopic level that allows us to separate the contributions of both the excitons and free charge carriers in the observed transient absorption response of a composite organometallic lead halide perovskite film. We found spatialmore » regions where the transient absorption response was predominately a result of excitons and others where it was predominately due to charge carriers, and regions consisting of signals from both contributors. Lastly, quantitative decomposition of the transient absorption response curves further enabled us to reveal the relative contribution of each photoexcitation to the measured response at spatially resolved locations in the film.« less

  7. Multiterawatt femtosecond laser system with kilohertz pulse repetition rate

    SciTech Connect

    Petrov, V V; Pestryakov, E V; Laptev, A V

    2014-05-30

    The basic principles, layout and components are presented for a multiterawatt femtosecond laser system with a kilohertz pulse repetition rate f, based on their parametric amplification and laser amplification of picosecond radiation that pumps the stages of the parametric amplifier. The results of calculations for a step-by-step increase in the output power from the LBO crystal parametric amplifier channel up to the multiterawatt level are presented. By using the developed components in the pump channel of the laser system, the parameters of the regenerative amplifier with the output energy ∼1 mJ at the wavelength 1030 nm and with f =more » 1 kHz are experimentally studied. The optical scheme of the diode-pumped multipass cryogenic Yb:Y{sub 2}O{sub 3} laser ceramic amplifier is developed and its characteristics are determined that provide the output energy within the range 0.25 – 0.35 J. (lasers)« less

  8. Material removal effect of microchannel processing by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zhang, Pan; Chen, Lei; Chen, Jianxiong; Tu, Yiliu

    2017-11-01

    Material processing using ultra-short-pulse laser is widely used in the field of micromachining, especially for the precision processing of hard and brittle materials. This paper reports a theoretical and experimental study of the ablation characteristics of a silicon wafer under micromachining using a femtosecond laser. The ablation morphology of the silicon wafer surface is surveyed by a detection test with an optical microscope. First, according to the relationship between the diameter of the ablation holes and the incident laser power, the ablation threshold of the silicon wafer is found to be 0.227 J/cm2. Second, the influence of various laser parameters on the size of the ablation microstructure is studied and the ablation morphology is analyzed. Furthermore, a mathematical model is proposed that can calculate the ablation depth per time for a given laser fluence and scanning velocity. Finally, a microchannel milling test is carried out on the micromachining center. The effectiveness and accuracy of the proposed models are verified by comparing the estimated depth to the actual measured results.

  9. Femtosecond laser microstructuring for polymeric lab-on-chips.

    PubMed

    Eaton, Shane M; De Marco, Carmela; Martinez-Vazquez, Rebeca; Ramponi, Roberta; Turri, Stefano; Cerullo, Giulio; Osellame, Roberto

    2012-08-01

    This paper provides an overview of femtosecond laser microfabrication in polymeric materials, with emphasis on lab-on-chip applications. Due to the nonlinear interaction of femtosecond laser pulses with polymers, laser-induced modifications are localized to the focal volume, enabling high resolution patterning in 3D. Femtosecond laser microfabrication offers unmatched versatility in fabricating surface microchannels and diffractive optics by means of laser ablation, buried optical waveguides and micro-optics through refractive index modification and complex 3D microstructures in photoresists by two-photon polymerization. Femtosecond laser microfabrication technology opens the door to fabricating integrated lab-on-chip devices with a single tool. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Water splitting by infrared femtosecond laser excitation of surface plasmon

    NASA Astrophysics Data System (ADS)

    Klett, Charles; Mirica, Jean-Philippe; Hergott, Jean-François; Lepetit, Fabien; Renault, Jean-Philippe

    2013-02-01

    Gold nanoparticles supported on soda-lime glass exhibit a photochemical water splitting activity under infrared femtosecond laser excitation. Both H2 and hydroxyl radicals productions were characterized. The hydroxyl radicals production mechanism was identified by comparison with three prototypal mechanisms, photoionization of organic compound in the UV, VUV dissociation of water and water gamma radiolysis. The mechanisms involved in the case of laser femtosecond seem to be water ionization events occurring at distance from the gold particles.

  11. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  12. Femtosecond laser induced breakdown for combustion diagnostics

    SciTech Connect

    Kotzagianni, M.; Couris, S.

    2012-06-25

    The focused beam of a 100 fs, 800 nm laser is used to induce a spark in some laminar premixed air-methane flames operating with variable fuel content (equivalence ratio). The analysis of the light escaping from the plasma revealed that the Balmer hydrogen lines, H{sub {alpha}} and H{sub {beta}}, and some molecular origin emissions were the most prominent spectral features, while the CN ({Beta}{sup 2}{Sigma}{sup +}-{Chi}{sup 2}{Sigma}{sup +}) band intensity was found to depend linearly with methane content, suggesting that femtosecond laser induced breakdown spectroscopy can be a useful tool for the in-situ determination and local mapping of fuel content in hydrocarbon-air combustible mixtures.

  13. Femtosecond fiber laser welding of dissimilar metals.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  14. German national femtosecond technology project (FST)

    NASA Astrophysics Data System (ADS)

    Dausinger, Friedrich

    2002-06-01

    The German federal government started the funding of a national project intended to exploit the potential of femtosecond technology. In a forgoing competition five research consortia had been successful and have started now together with an adjoin research consortium their investigations in the following fields: (i) micro-machining of technical materials for microstructuring and drilling, (ii) medical therapy in: ophthalmology, dentistry, neurology and ear surgery, (iii) metrology, (iv) laser safety, (v) x- ray generation. Lasers, systems and technologies required in these potential fields of applications will be investigated. The program aims at industrial success and is dominated by industrial partners, therefore. The more fundamental research is done in university institutes and research centers.

  15. Femtosecond Lasers in Ophthalmology: Surgery and Imaging

    NASA Astrophysics Data System (ADS)

    Bille, J. F.

    Ophthalmology has traditionally been the field with prevalent laser applications in medicine. The human eye is one of the most accessible human organs and its transparency for visible and near-infrared light allows optical techniques for diagnosis and treatment of almost any ocular structure. Laser vision correction (LVC) was introduced in the late 1980s. Today, the procedural ease, success rate, and lack of disturbing side-effects in laser assisted in-situ keratomileusis (LASIK) have made it the most frequently performed refractive surgical procedure (keratomileusis(greek): cornea-flap-cutting). Recently, it has been demonstrated that specific aspects of LVC can take advantage of unique light-matter interaction processes that occur with femtosecond laser pulses.

  16. Femtosecond Laser-Assisted Corneal Small Incision Allogenic Intrastromal Lenticule Implantation in Monkeys: A Pilot Study.

    PubMed

    Liu, Rui; Zhao, Jing; Xu, Ye; Li, Meiyan; Niu, Lingling; Liu, Huiying; Sun, Ling; Chu, Renyuan; Zhou, Xingtao

    2015-06-01

    Lenticule implantation can be used to correct vision problems. However, it is significantly restrained by the sources of autologous lenticules. The aim of the present study was to investigate the feasibility and effects of femtosecond laser-assisted corneal small incision allogenic intrastromal lenticule implantation (AILI) in monkeys. Six healthy adult monkeys were included in this study. Femtosecond lenticule extraction (-4.0 diopter [D] correction, 5.0-mm optical zone) was performed in one eye of two monkeys and both eyes of one monkey. Each extracted refractive lenticule was allogenically transplanted into a femtosecond laser-created corneal stromal pocket in one eye of the other two monkeys and one monkey's both eyes. Pre- and postoperative (1 or 3 days, 1 month, and 6 months) slit lamp microscopy, corneal topography, anterior segment optical coherence tomography, and in vivo confocal microscopy were performed. Corneal edema occurred in the early postoperative days with a large number of hyperreflective particles around the borders. Corneal tissue edema gradually decreased. Nerve fiber regeneration could be detected in the lenticule layer at 6 months. Overall, 3.27 ± 1.2 D corneal power was increased at 6 months, accounting for 82% of the intended correction. At the same time point, corneal stroma was 69 ± 11 μm thicker than preoperative ones and was roughly equal to the maximum thickness of implanted lenticules. No significant complications were observed. The AILI technique seems to be feasible and safe for increasing corneal stromal thickness and changing corneal refractive power, which may provide a useful method for treatment of keratoectasia, presbyopia, and hyperopia.

  17. Broadband supercontinuum generation with femtosecond pulse width in erbium-doped fiber laser (EDFL)

    NASA Astrophysics Data System (ADS)

    Rifin, S. N. M.; Zulkifli, M. Z.; Hassan, S. N. M.; Munajat, Y.; Ahmad, H.

    2016-11-01

    We demonstrate two flat plateaus and the low-noise spectrum of supercontinuum generation (SCG) in a highly nonlinear fiber (HNLF), injected by an amplified picosecond pulse seed of a carbon nanotube-based passively mode locked erbium-doped fiber laser. A broad spectrum of width approximately 1090 nm spanning the range 1130-2220 nm is obtained and the pulse width is compressed to the shorter duration of 70 fs. Variations of the injected peak power up to 33.78 kW into the HNLF are compared and the broad spectrum SCG profiles slightly expand for each of the injected peak powers. This straightforward configuration of SCG offers low output power and ultra-narrow femtosecond pulse width. The results facilitate the development of all fiber time-domain spectroscopy systems based on the photoconductive antenna technique.

  18. The Average of Rates and the Average Rate.

    ERIC Educational Resources Information Center

    Lindstrom, Peter

    1988-01-01

    Defines arithmetic, harmonic, and weighted harmonic means, and discusses their properties. Describes the application of these properties in problems involving fuel economy estimates and average rates of motion. Gives example problems and solutions. (CW)

  19. Characterization of nanosecond, femtosecond and dual pulse laser energy deposition in air for flow control and diagnostic applications

    NASA Astrophysics Data System (ADS)

    Limbach, Christopher M.

    The non-resonant heating of gases by laser irradiation and plasma formation has been under investigation since the development of 100 megawatt peak power, Q-switched, nanosecond pulse duration lasers and the commensurate discovery of laser air sparks. More recently, advances in mode-locking and chirped pulse amplification have led to commercially available 100 gigawatt peak power, femtosecond pulse duration lasers with a rapidly increasing number of applications including remote sensing, laser spectroscopy, aerodynamic flow control, and molecular tagging velocimetry and thermometry diagnostics. This work investigates local energy deposition and gas heating produced by focused, non-resonant, nanosecond and femtosecond laser pulses in the context of flow control and laser diagnostic applications. Three types of pulse configurations were examined: single nanosecond pulses, single femtosecond pulses and a dual pulse approach whereby a femtosecond pre-ionizing pulse is followed by a nanosecond pulse. For each pulse configuration, optical and laser diagnostic techniques were applied in order to qualitatively and quantitatively measure the plasmadynamic and hydrodynamic processes accompanying laser energy deposition. Time resolved imaging of optical emission from the plasma and excited species was used to qualitatively examine the morphology and decay of the excited gas. Additionally, Thomson scattering and Rayleigh scattering diagnostics were applied towards measurements of electron temperature, electron density, gas temperature and gas density. Gas heating by nanosecond and dual pulse laser plasmas was found to be considerably more intense than femtosecond plasmas, irrespective of pressure, while the dual pulse approach provided substantially more controllability than nanosecond pulses alone. In comparison, measurements of femtosecond laser heating showed a strong and nonlinearly dependence on focusing strength. With comparable pulse energy, measurements of maximum

  20. Average entropy of a subsystem from its average Tsallis entropy.

    PubMed

    Malacarne, L C; Mendes, R S; Lenzi, E K

    2002-04-01

    In the non-extensive Tsallis scenario, Page's conjecture for the average entropy of a subsystem [Phys. Rev. Lett. 71, 1291 (1993)] as well as its demonstration are generalized, i.e., when a pure quantum system, whose Hilbert space dimension is mn, is considered, the average Tsallis entropy of an m-dimensional subsystem is obtained. This demonstration is expected to be useful to study systems where the usual entropy does not give satisfactory results.

  1. Analysis of Femtosecond Timing Noise and Stability in Microwave Components

    SciTech Connect

    Whalen, Michael R.; /Stevens Tech. /SLAC

    2011-06-22

    To probe chemical dynamics, X-ray pump-probe experiments trigger a change in a sample with an optical laser pulse, followed by an X-ray probe. At the Linac Coherent Light Source, LCLS, timing differences between the optical pulse and x-ray probe have been observed with an accuracy as low as 50 femtoseconds. This sets a lower bound on the number of frames one can arrange over a time scale to recreate a 'movie' of the chemical reaction. The timing system is based on phase measurements from signals corresponding to the two laser pulses; these measurements are done by using a double-balanced mixer for detection. To increase the accuracy of the system, this paper studies parameters affecting phase detection systems based on mixers, such as signal input power, noise levels, temperature drift, and the effect these parameters have on components such as the mixers, splitters, amplifiers, and phase shifters. Noise data taken with a spectrum analyzer show that splitters based on ferrite cores perform with less noise than strip-line splitters. The data also shows that noise in specific mixers does not correspond with the changes in sensitivity per input power level. Temperature drift is seen to exist on a scale between 1 and 27 fs/{sup o}C for all of the components tested. Results show that any components using more metallic conductor tend to exhibit more noise as well as more temperature drift. The scale of these effects is large enough that specific care should be given when choosing components and designing the housing of high precision microwave mixing systems for use in detection systems such as the LCLS. With these improvements, the timing accuracy can be improved to lower than currently possible.

  2. Femtosecond OPO based on MgO:PPLN synchronously pumped by a 532 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Cao, Jianjun; Shen, Dongyi; Zheng, Yuanlin; Feng, Yaming; Kong, Yan; Wan, Wenjie

    2017-05-01

    With the rapid progress in fiber technologies, femtosecond fiber lasers, which are compact, cost-effective and stable, have been developed and are commercially available. Studies of optical parametric oscillators (OPOs) pumped by this type of laser are demanding. Here we report a femtosecond optical parametric oscillator (OPO) at 79.6 MHz repetition rate based on MgO-doped periodically poled LiNbO3 (MgO:PPLN), synchronously pumped by the integrated second harmonic radiation of a femtosecond fiber laser at 532 nm. The signal delivered by the single resonant OPO is continuously tunable from 757 to 797 nm by tuning the crystal temperature in a poling period of 7.7 μ \\text{m} . The output signal shows good beam quality in TEM00 mode profile with pulse duration of 206 fs at 771 nm. Maximum output signal power of 71 mW is obtained for a pump power of 763 mW and a low pumping threshold of 210 mW is measured. Moreover, grating tuning and cavity length tuning of the signal wavelength are also investigated.

  3. Numerical simulation of femtosecond pulsed laser ablation of copper for oblique angle of incidence through two-temperature model

    NASA Astrophysics Data System (ADS)

    Dasallas, Lean L.; Garcia, Wilson O.

    2018-01-01

    We propose a numerical model to describe laser ablation of a copper target by a femtosecond laser pulse at an oblique angle of incidence. The model is based on the two temperature model and improved to include laser fluence, laser spot size, and dynamic changes in reflectivity of the target. Numerical results show that the electron and lattice temperatures decrease with the angle of incidence. The dependency of the maximum temperature with angle of incidence follow a cosine power law. The threshold laser fluence, ablation depth and crater size depend on the polarization and angle of the incident laser beam. Our model is supported by the experimental results reported by other group working in femtosecond pulsed laser ablation.

  4. Lagrangian averaging with geodesic mean

    NASA Astrophysics Data System (ADS)

    Oliver, Marcel

    2017-11-01

    This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler-α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.

  5. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    NASA Astrophysics Data System (ADS)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  6. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    SciTech Connect

    Yan, Wei; He, Hao, E-mail: haohe@tju.edu.cn; Wang, Yintao

    2014-02-24

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the verymore » beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.« less

  7. Multi variable control of filamentation of femtosecond laser pulses propagating in air

    NASA Astrophysics Data System (ADS)

    Papeer, J.; Botton, M.; Gordon, D.; Sprangle, P.; Fibich, G.; Herzig Sheinfux, H.; Zigler, A.; Henis, Z.

    2015-05-01

    A comprehensive approach for control of filamentation and generation of a high density conductive channel during femtosecond intense laser pulse propagation in air is being reviewed. Imposing astigmatism on the beam with a tilted lens allows obtaining a single stable filament out of a high power pulse (orders of magnitude higher than the critical power), which would otherwise generate random multiple filamentation pattern. The collapse distance of filaments is controlled with a double lens setup. Once the filament is stabilized, a substantially extended lifetime of the high density plasma channel generated in its wake is experimentally demonstrated using combination of femtosecond and nanosecond laser pulses. Free electron density above 1015 cm-3 in the formed plasma filament is measured to sustain for over 30 ns. This high density plasma lifetime prolongation of more than one order of magnitude is achieved by properly timed irradiation of the filament with a relatively low intensity nanosecond laser pulse, in comparison to a filament without such irradiation. The experimental results are in good agreement with our theoretical model that follows the evolution of the temperature and density of various molecules, atoms and ion species. The results point to the possibility of generating substantially long time duration, stable high density plasma filaments in air.

  8. The JLab high power ERL light source

    SciTech Connect

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  9. Turbine Engine Flowpath Averaging Techniques

    DTIC Science & Technology

    1980-10-01

    u~%x AEDC- TMR- 8 I-G 1 • R. P TURBINE ENGINE FLOWPATH AVERAGING TECHNIQUES T. W. Skiles ARO, Inc. October 1980 Final Report for Period...COVERED 00-01-1980 to 00-10-1980 4. TITLE AND SUBTITLE Turbine Engine Flowpath Averaging Techniques 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...property for gas turbine engines were investigated. The investigation consisted of a literature review and review of turbine engine current flowpath

  10. Silver nanoprisms/silicone hybrid rubber materials and their optical limiting property to femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang

    2017-08-01

    Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.

  11. High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Ding, Huimin; Coulas, David; Grobnic, Dan; Lu, Ping; Mihailov, Stephen J.; Duchesne, Marc A.; Hughes, Robin W.; McCalden, David J.; Burchat, Ryan; Yandon, Robert

    2016-03-01

    Femtosecond pulse duration infrared laser (fs-IR) written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme environment sensing. Harsh environments are inherent to the advanced power plant technologies under development to reduce greenhouse gas emissions. The performance of new power systems are currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring the temperature distribution within a fluidized bed combustor. Results include: calibration data to ~ 1100 °C, discussion of deployment strategies, contrast with thermocouple data, and comments on reliability.

  12. Fabrication of low loss waveguide using fundamental light of Yb-based femtosecond laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Imai, Ryo; Konishi, Kuniaki; Yumoto, Junji; Gonokami, Makoto K.

    2017-03-01

    Laser direct writing of optical devices and circuits is attracted attention because of its ability of three-dimensional fabrication without any mask[1]. Recently, Yb-fiber or solid-state laser has been commonly used for fabrication in addition to traditional Ti:S laser. However, it is reported that waveguide cannot be fabricated in fused silica by using the fundamental light from Yb-based femtosecond laser[2]. Some groups reported on waveguide fabrication by using second-harmonic beam of such lasers[3], but wavelength conversion using nonlinear process has drawbacks such as destabilization of laser power and beam deformation by walk off. In this study, we investigated fabrication of low-loss waveguide in fused silica by using the fundamental beam (1030nm) from an Yb solid-state femtosecond laser with a pulse duration of 250 fs. The NA of focusing objective lens was 0.42. The fabricated waveguide was made to have a circular cross-section by shaping laser beam with a slit[4]. We fixed repetition rate to 150 kHz, and identified appropriate scan speed and pulse energy for fabrication of low loss waveguide. Waveguide fabricated with appropriate condition had a propagation loss of 0.2 dB/cm, and this is the first report on optical waveguides in a fused silica fabricated by femto-second laser pulses at a wavelength of 1030nm. [1]K. M. Davis, et. al., Opt. Lett 21, 1729(1996) [2]J. Canning, et. al., Opt. Mater. Express 1, 998(2011) [3]L. Shah, et. al., Opt. Express 13, 1999(2005) [4]M. Ams, et. al., Opt. Express 13, 5676(2005)

  13. Ionization and dissociation dynamics of vinyl bromide probed by femtosecond extreme ultraviolet transient absorption spectroscopy.

    PubMed

    Lin, Ming-Fu; Neumark, Daniel M; Gessner, Oliver; Leone, Stephen R

    2014-02-14

    Strong-field induced ionization and dissociation dynamics of vinyl bromide, CH2=CHBr, are probed using femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy. Strong-field ionization is initiated with an intense femtosecond, near infrared (NIR, 775 nm) laser field. Femtosecond XUV pulses covering the photon energy range of 50-72 eV probe the subsequent dynamics by measuring the time-dependent spectroscopic features associated with transitions of the Br (3d) inner-shell electrons to vacancies in molecular and atomic valence orbitals. Spectral signatures are observed for the depletion of neutral C2H3Br, the formation of C2H3Br(+) ions in their ground (X̃) and first excited (Ã) states, the production of C2H3Br(++) ions, and the appearance of neutral Br ((2)P3/2) atoms by dissociative ionization. The formation of free Br ((2)P3/2) atoms occurs on a timescale of 330 ± 150 fs. The ionic à state exhibits a time-dependent XUV absorption energy shift of ∼0.4 eV within the time window of the atomic Br formation. The yield of Br atoms correlates with the yield of parent ions in the à state as a function of NIR peak intensity. The observations suggest that a fraction of vibrationally excited C2H3Br(+) (Ã) ions undergoes intramolecular vibrational energy redistribution followed by the C-Br bond dissociation. The C2H3Br(+) (X̃) products and the majority of the C2H3Br(++) ions are relatively stable due to a deeper potential well and a high dissociation barrier, respectively. The results offer powerful new insights about orbital-specific electronic processes in high field ionization, coupled vibrational relaxation and dissociation dynamics, and the correlation of valence hole-state location and dissociation in polyatomic molecules, all probed simultaneously by ultrafast table-top XUV spectroscopy.

  14. Femtosecond laser posterior lamellar keratoplasty: a laboratory model.

    PubMed

    Sarayba, Melvin A; Juhasz, Tibor; Chuck, Roy S; Ignacio, Teresa S; Nguyen, Thao B; Sweet, Paula; Kurtz, Ronald M

    2005-04-01

    To evaluate feasibility of femtosecond laser application in posterior lamellar keratoplasty. To evaluate the laser's effectiveness through opaque corneas, anterior corneal caps were resected from opaque corneas induced with 80% acetone solution. To evaluate the femtosecond laser posterior lamellar keratoplasty surgical procedure, human corneoscleral rims were mounted on an artificial anterior chamber. After corneal pachymetry, the femtosecond laser was used to create a 6-mm-diameter, 200-microm-thick endostromal lenticule. Access to the lenticule was provided by a small perilimbal surface opening, also created by the laser. The lenticule was removed using a pair of corneal forceps. A donor lenticule of similar dimensions was created, its endothelial surface coated with viscoelastic, inserted, and positioned on the recipient bed. Two sutures were placed to seal the small surface opening. The femtosecond laser produced an effective and smooth dissection through opaque corneas even at deeper settings. Graft transplantation was fairly simple and effective. Femtosecond laser posterior lamellar keratoplasty is a procedure that may provide an alternative to penetrating keratoplasty or the technically challenging manual posterior lamellar keratoplasty.

  15. Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass

    PubMed Central

    He, Fei; Liao, Yang; Lin, Jintian; Song, Jiangxin; Qiao, Lingling; Cheng, Ya; Sugioka, Koji

    2014-01-01

    Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent advancements in femtosecond laser processing of glass for a variety of microfluidic sensor applications. These include 3D integration of micro-/nanofluidic, optofluidic, electrofluidic, surface-enhanced Raman-scattering devices, in addition to fabrication of devices for microfluidic bioassays and lab-on-fiber sensors. This paper describes the unique characteristics of femtosecond laser processing and the basic concepts involved in femtosecond laser direct writing. Advanced spatiotemporal beam shaping methods are also discussed. Typical examples of microfluidic sensors fabricated using femtosecond lasers are then highlighted, and their applications in chemical and biological sensing are described. Finally, a summary of the technology is given and the outlook for further developments in this field is considered. PMID:25330047

  16. Femtosecond laser lenticule transplantation in rabbit cornea: experimental study.

    PubMed

    Liu, Huiying; Zhu, Wenqing; Jiang, Alice C; Sprecher, Alicia J; Zhou, Xingtao

    2012-12-01

    To evaluate the feasibility of femtosecond laser-induced lenticule transplantation in the rabbit cornea and to observe the relative histologic characteristics of corneal tissue and nerve repair after transplantation. Eight healthy, purebred, New Zealand white rabbits underwent femtosecond laser small-incision lenticule extraction (SMILE) surgery in the right eye. Lenticules were inserted into a femtosecond laser-created corneal stromal pocket in the left eye, which was defined as femtosecond laser corneal lenticule transplantation. Postoperative observation and examination were completed to evaluate the surgery. In the early postoperative period, inflammation of the cornea was noted, tissue around the lenticule was edematous, and cells were activated. Tissue edema remained at postoperative day 10. By 1 month, edema had resolved, activated cells gradually became quiescent, and nerve fiber regeneration was observed. By 3 months, the lenticule integrated into the recipient cornea, extracellular matrix gradually cleared, and thicker nerve fibers were noted. By 6 months postoperative, morphology and distribution of the corneal stromal fibers were close to normal, and the number of nerve fibers was reduced. Femtosecond laser corneal lenticule transplantation in rabbits is feasible, as the lenticule was shown to thrive and integrate with the recipient stroma. Nerve regeneration begins after 1 month. Copyright 2012, SLACK Incorporated.

  17. Chirped femtosecond pulse scattering by spherical particles

    NASA Astrophysics Data System (ADS)

    Kim, Dal-Woo; Xiao, Gang-Yao; Lee, Tong-Nyong

    1996-05-01

    Generalized Lorentz-Mie formulas are used to study the scattering characteristics when a chirped femtosecond pulse illuminates a spherical particle. For a linear chirped Gaussian pulse with the envelope function g( tau ) = exp[- pi (1 + ib) tau 2], dimensionless parameter b is defined as a chirp. The calculation illustrated that even for pulses with a constant carrier wavelength ( lambda 0 = 0.5 mu m) and pulse-filling coefficient (l0 = 1.98), the efficiencies for extinction and scattering differ very much between the carrier wave and the different chirped pulses. The slowly varying background of the extinction and the scattering curves is damped by the chirp. When the pulse is deeply chirped, the maxima and minima of the background curves reduce to the point where they disappear, and the efficiency curves illustrate a steplike dependence on the sphere size. Another feature is that the only on the amount of chirp (|b|), regardless of upchirp (b greater than 0) or downchirp (b less than 0).

  18. Blackening of metals using femtosecond fiber laser.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-01-10

    This study presents an unprecedented high throughput processing for super-blackening and superhydrophobic/hydrophilic surface on both planar and nonplanar metals surfaces. By using a high pulse repetition rate femtosecond (fs) fiber laser, a light trapping microstructure and nanostructure is generated to absorb light from UV, visible to long-wave infrared spectral region. Different types of surface structures are produced with varying laser scanning conditions (scanning speed and pitch). The modified surface morphologies are characterized using scanning electron microscope and the blackening effect is investigated through spectral measurements. Spectral measurements show that the reflectance of the processed materials decreases sharply in a wide wavelength range and the decrease occurs at different rates for different scanning pitches and speeds. Above 98% absorption over the entire visible wavelength region and above 95% absorption over the near-infrared, middle-wave infrared and long-wave infrared regions range has been demonstrated for the surface structures, and the absorption for specific wavelengths can go above 99%. Furthermore, the processing efficiency of this fs fiber laser blackening technique is 1 order of magnitude higher than that of solid-state fs laser and 4 times higher than that of picosecond (ps) laser. Further increasing of the throughput is expected by using higher repetition and higher scanning speed. This technology offers the great potential in applications such as constructing sensitive detectors and sensors, solar energy absorber, and biomedicine.

  19. Realization of phonon laser with femtosecond technology

    NASA Astrophysics Data System (ADS)

    Sun, Chi-Kuang; Huang, Yue-Kai; Chern, Gia-Wei

    2002-06-01

    One of the most desirable properties of phonon system is sound amplification by stimulated emission of phonon radiation, coined as SASER or called phonon laser or acoustic laser, which is the acoustic counterpart of LASER. Phonon stimulated emission, or sound amplification, has been previously observed fro several occasions in extremely low temperatures, however a lasing behavior of the phonon oscillators has never been established. It is also desirable to build a phonon laser operating at room temperature. Here we present an optically pumped nano-sized phonon laser with an output acoustic wavelength of 9.3 nm, operating at room temperature. The nano phonon laser is composed by InGaN/GaN multiple-quantum-wells (MQWs). By using femtosecond ultraviolet pulses as pumping sources, coherent acoustic phonon amplification with large acoustic gain was observed. When the induced acoustic gain is higher than the acoustic loss due to its traveling nature, a clear laser-like threshold behavior was observed, which resembles a pulsed optical laser. This demonstration will open a new way toward nano-ultrasonics.

  20. Formation of conductive copper lines by femtosecond laser irradiation of copper nitride film on plastic substrates

    SciTech Connect

    Xu, Xiaodong; Yuan, Ningyi, E-mail: nyyuan@cczu.edu.cn; Center for Low-Dimensional Materials, Micro-Nano Devices and Systems, Changzhou University, Changzhou 213164, Jiangsu

    2015-05-15

    In this paper, we report a simple method to form conductive copper lines by scanning a single-beam femtosecond pulse laser on a plastic substrate covered with copper nitride (Cu{sub 3}N) film. The Cu{sub 3}N films were prepared by DC magnetron sputtering in the presence of an Ar + N{sub 2} atmosphere at 100 °C. The influence of the laser power and scanning speed on the formed copper line width, surface features, and morphology was analyzed by means of optical microscopy, X-ray diffraction, non-contact 3D profilometer, and scanning electron microscopy. The experimental results demonstrate that low laser power and low scanningmore » speed favor the formation of uniform and flat Cu lines. After process optimization, copper lines with a width less than 5 μm were obtained, which provides an attractive application prospect in the field of flexible electronic devices.« less

  1. Intensity Dependent Femtosecond Dynamics in a PBDTTPD-Based Solar Cell Material.

    PubMed

    Paraecattil, Arun Aby; Beaupré, Serge; Leclerc, Mario; Moser, Jacques-E; Banerji, Natalie

    2012-10-18

    PBDTTPD is a conjugated polymer with high power conversion efficiency if used in organic solar cells together with fullerene derivatives. We have investigated for the first time the excited state dynamics of pristine PBDTTPD thin film as well as the ultrafast evolution of charge carriers in PBDTTPD:PCBM bulk heterojunction blend using femtosecond transient absorption spectroscopy. In the latter, charges appear within the time resolution of the experiment (<100 fs), but clean spectral signatures allowed to directly follow slower ∼1 ps charge separation. Only the slower quenching component competes with exciton-exciton and exciton-charge annihilation, leading to a reduced yield of charge carriers at high laser fluence. Our excellent measuring sensitivity made it possible to reduce pump power to a point where annihilation is quasi suppressed. In this case >80% of charges survive after 1 ns; the rest recombines (most probably geminately) on the 200 ps time scale.

  2. Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Khazaeinezhad, Reza; Hosseinzadeh Kassani, Sahar; Paulson, Bjorn; Jeong, Hwanseong; Gwak, Jiyoon; Rotermund, Fabian; Yeom, Dong-Il; Oh, Kyunghwan

    2017-01-01

    A new extraordinary application of deoxyribonucleic acid (DNA) thin-solid-film was experimentally explored in the field of ultrafast nonlinear photonics. Optical transmission was investigated in both linear and nonlinear regimes for two types of DNA thin-solid-films made from DNA in aqueous solution and DNA-cetyltrimethylammonium chloride (CTMA) in an organic solvent. Z-scan measurements revealed a high third-order nonlinearity with n2 exceeding 10-9 at a wavelength of 1570 nm, for a nonlinarity about five orders of magnitude larger than that of silica. We also demonstrated ultrafast saturable absorption (SA) with a modulation depth of 0.43%. DNA thin solid films were successfully deposited on a side-polished optical fiber, providing an efficient evanescent wave interaction. We built an organic-inorganic hybrid all-fiber ring laser using DNA film as an ultrafast SA and using Erbium-doped fiber as an efficient optical gain medium. Stable transform-limited femtosecond soliton pulses were generated with full width half maxima of 417 fs for DNA and 323 fs for DNA-CTMA thin-solid-film SAs. The average output power was 4.20 mW for DNA and 5.46 mW for DNA-CTMA. Detailed conditions for DNA solid film preparation, dispersion control in the laser cavity and subsequent characteristics of soliton pulses are discussed, to confirm unique nonlinear optical applications of DNA thin-solid-film.

  3. "Ultrathin" DSAEK tissue prepared with a low-pulse energy, high-frequency femtosecond laser.

    PubMed

    Phillips, Paul M; Phillips, Louis J; Saad, Hisham A; Terry, Mark A; Stolz, Donna B; Stoeger, Christopher; Franks, Jonathan; Davis-Boozer, David

    2013-01-01

    To evaluate the endothelial cell survival and stromal bed quality when creating deep stromal cuts with a low-pulse energy, high-frequency femtosecond laser to produce "ultrathin" tissue for Descemet stripping automated endothelial keratoplasty. Seventeen corneas were used for this study. Five corneas were cut with the laser at a depth of 420 to 500 μm to produce a tissue thickness of approximately ≤70 μm. Five corneas served as an uncut comparison group. Vital dye staining and computer digitized planimetry analysis were performed on these corneas. The 7 remaining corneas were cut for scanning electron microscopy evaluation. The mean central posterior stromal thickness of cut corneas was 60.6 μm (range, 43-72 μm). Endothelial cell damage in cut and comparison corneas was 3.92% ± 2.22% (range, 1.71%-6.51%) and 4.15% ± 2.64% (range, 1.21%-7.01%), respectively (P = 0.887). Low-magnification (×12) scanning electron microscopy revealed a somewhat irregular-appearing surface with concentric rings peripherally. Qualitative grading of higher magnification (×50) central images resulted in an average score of 2.56 (between smooth and rough). Ultrathin tissue for Descemet stripping automated endothelial keratoplasty can be safely prepared with minimal endothelial cell damage using a low-pulse energy, high-frequency femtosecond laser; however, the resulting stromal surface quality may not be optimal with this technique.

  4. Averaging inhomogeneous cosmologies - a dialogue.

    NASA Astrophysics Data System (ADS)

    Buchert, T.

    The averaging problem for inhomogeneous cosmologies is discussed in the form of a disputation between two cosmologists, one of them (RED) advocating the standard model, the other (GREEN) advancing some arguments against it. Technical explanations of these arguments as well as the conclusions of this debate are given by BLUE.

  5. Averaging inhomogenous cosmologies - a dialogue

    NASA Astrophysics Data System (ADS)

    Buchert, T.

    The averaging problem for inhomogeneous cosmologies is discussed in the form of a disputation between two cosmologists, one of them (RED) advocating the standard model, the other (GREEN) advancing some arguments against it. Technical explanations of these arguments as well as the conclusions of this debate are given by BLUE.

  6. Polyhedral Painting with Group Averaging

    ERIC Educational Resources Information Center

    Farris, Frank A.; Tsao, Ryan

    2016-01-01

    The technique of "group-averaging" produces colorings of a sphere that have the symmetries of various polyhedra. The concepts are accessible at the undergraduate level, without being well-known in typical courses on algebra or geometry. The material makes an excellent discovery project, especially for students with some background in…

  7. Averaged Electroencephalic Audiometry in Infants

    ERIC Educational Resources Information Center

    Lentz, William E.; McCandless, Geary A.

    1971-01-01

    Normal, preterm, and high-risk infants were tested at 1, 3, 6, and 12 months of age using averaged electroencephalic audiometry (AEA) to determine the usefulness of AEA as a measurement technique for assessing auditory acuity in infants, and to delineate some of the procedural and technical problems often encountered. (KW)

  8. Photochemical reduction of graphene oxide (GO) by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Muttaqin; Nakamura, Takahiro; Sato, Shunichi

    2016-03-01

    In this study, we demonstrated a facile method for the reduction of graphene oxide (GO) by applying femtosecond laser pulse irradiation in aqueous colloidal solution. Utilization of femtosecond (fs) laser pulse irradiation enabled us to control GO reduction by adjusting laser fluence and irradiation time. The formation of reduced graphene oxide (rGO) was induced by solvated electrons generated through laser irradiation of colloidal GO solution, which was confirmed by means of UV-visible and Raman spectroscopy, XPS and XRD. By applying an optimum femtosecond laser condition, the interplanar spacing between carbon layers decreased significantly from 9.81 Å to 3.52Å indicating the effective removal of oxygen-containing groups from the basal plane of GO. Furthermore, the sheet resistivity of the fabricated rGO in disk form was 1,200 times lower than GO.

  9. Evidence of femtosecond-laser pulse induced cell membrane nanosurgery

    NASA Astrophysics Data System (ADS)

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y.

    2017-02-01

    The mechanism of femtosecond laser nanosurgical attachment is investigated in the following article. Using sub-10 femtosecond laser pulses with 800 nm central wavelength were used to attach retinoblastoma cells. During the attachment process the cell membrane phospholipid bilayers hemifuse into one shared phospholipid bilayer, at the location of attachment. Transmission electron microscopy was used in order to verify the above hypothesis. Based on the imaging results, it was concluded that the two cell membrane coalesce to form one single shared membrane. The technique of cell-cell attachment via femtosecond laser pulses could potentially serve as a platform for precise cell membrane manipulation. Manipulation of the cellular membrane is valuable for studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.

  10. Average Annual Rainfall Over the Globe

    NASA Astrophysics Data System (ADS)

    Agrawal, D. C.

    2013-12-01

    The atmospheric recycling of water is a very important phenomenon on the globe because it not only refreshes the water but it also redistributes it over land and oceans/rivers/lakes throughout the globe. This is made possible by the solar energy intercepted by the Earth. The half of the globe facing the Sun, on the average, intercepts 1.74×1017 J of solar radiation per second and it is divided over various channels as given in Table 1. It keeps our planet warm and maintains its average temperature2 of 288 K with the help of the atmosphere in such a way that life can survive. It also recycles the water in the oceans/rivers/ lakes by initial evaporation and subsequent precipitation; the average annual rainfall over the globe is around one meter. According to M. King Hubbert the amount of solar power going into the evaporation and precipitation channel is 4.0×1016 W. Students can verify the value of average annual rainfall over the globe by utilizing this part of solar energy. This activity is described in the next section.

  11. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser

    PubMed Central

    Huang, Lin; Mills, Arthur K.; Zhao, Yuan; Jones, David J.; Tang, Shuo

    2016-01-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633

  12. Regenerative amplification of femtosecond pulses: Design and construction of a sub-100fs, {mu}J laser system

    SciTech Connect

    Schumacher, A.B. |

    1996-10-01

    Femtosecond lasers are a powerful tool for a wealth of applications in physics, chemistry and biology. In most cases, however, their use is fundamentally restricted to a rather narrow spectral range. This thesis deals with the construction and characterization of a femtosecond light source for spectroscopic applications which overcomes that restriction. It is demonstrated how the output of a continuously pumped Ti:sapphire femtosecond oscillator is amplified to the {mu}J level, while the pulse duration remains below 100fs. A combination of continuous pumping, acousto-optic switching and Ti:Al{sub 2}O{sub 3} as a gain medium allows amplification at high repetition rates. By focusing the high energy pulses into a sapphire crystal, a broad-band continuum can be generated, extended in wavelengths over several hundred nanometers. To accomplish amplification of three orders of magnitude while maintaining the pulse length, a regenerative multipass amplifier system was built. The thesis describes theoretical design, realization and characterization of the system. Theoretical calculations and preliminary measurements were carried out and allow a critical evaluation of the final performance.

  13. Regenerative Amplification of Femtosecond Pulses: Design andConstruction of a sub-100fs, muon J Laser System

    SciTech Connect

    Schumacher, Andreas B.

    1996-10-01

    Femtosecond lasers are a powerful tool for a wealth of applications in physics, chemistry and biology. In most cases, however, their use is fundamentally restricted to a rather narrow spectral range. This thesis deals with the construction and characterization of a femtosecond light source for spectroscopic applications which overcomes that restriction. It is demonstrated how the output of a continuously pumped Ti:sapphire femtosecond oscillator is amplified to the μJ level,while the pulse duration remains below 100 fs. A combination of continuous pumping, acousto-optic switching and Ti:Al2O3 as a gain medium allows amplification at high repetition rates. By focusing the high energy pulses into a sapphire crystal, a broad-band continuum can be generated, extended in wavelengths over several hundred nanometers. To accomplish amplification of three orders of magnitude while maintaining the pulse length, a regenerative multipass amplifier system was built. The thesis describes theoretical design, realization and characterization of the system. Theoretical calculations and preliminary measurements were carried out and allow a critical evaluation of the final performance.

  14. Femtosecond laser three-dimensional micro- and nanofabrication

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Cheng, Ya

    2014-12-01

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper

  15. Fragmentation of Neutral Amino Acids and Small Peptides by Intense, Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Duffy, Martin J.; Kelly, Orla; Calvert, Christopher R.; King, Raymond B.; Belshaw, Louise; Kelly, Thomas J.; Costello, John T.; Timson, David J.; Bryan, William A.; Kierspel, Thomas; Turcu, I. C. Edmond; Cacho, Cephise M.; Springate, Emma; Williams, Ian D.; Greenwood, Jason B.

    2013-09-01

    High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.

  16. Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses.

    PubMed

    Uchugonova, Aisada; Lessel, Matthias; Nietzsche, Sander; Zeitz, Christian; Jacobs, Karin; Lemke, Cornelius; König, Karsten

    2012-10-01

    ABSTRACT. Laser-assisted surgery based on multiphoton absorption of near-infrared laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. In this paper we describe usage of an ultrashort femtosecond laser scanning microscope for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770  nm/830  nm) and an in situ pulse duration at the target ranging from 12 fs up to 3 ps was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery of cells and cellular organelles.

  17. Spatially and temporally resolved diagnostics of dense sprays using gated, femtosecond, digital holography

    NASA Astrophysics Data System (ADS)

    Trolinger, James D.; Dioumaev, Andrei K.; Ziaee, Ali; Minniti, Marco; Dunn-Rankin, Derek

    2017-08-01

    This paper describes research that demonstrated gated, femtosecond, digital holography, enabling 3D microscopic viewing inside dense, almost opaque sprays, and providing a new and powerful diagnostics capability for viewing fuel atomization processes never seen before. The method works by exploiting the extremely short coherence and pulse length (approximately 30 micrometers in this implementation) provided by a femtosecond laser combined with digital holography to eliminate multiple and wide angle scattered light from particles surrounding the injection region, which normally obscures the image of interest. Photons that follow a path that differs in length by more than 30 micrometers from a straight path through the field to the sensor do not contribute to the holographic recording of photons that travel in a near straight path (ballistic and "snake" photons). To further enhance the method, off-axis digital holography was incorporated to enhance signal to noise ratio and image processing capability in reconstructed images by separating the conjugate images, which overlap and interfere in conventional in-line holography. This also enables digital holographic interferometry. Fundamental relationships and limitations were also examined. The project is a continuing collaboration between MetroLaser and the University of California, Irvine.

  18. Measurements of the concentration of organic solutions by femtosecond time-resolved ERE-CARS

    NASA Astrophysics Data System (ADS)

    He, Ping; Wang, Ming; Wang, HuiLi; Fan, RongWei; Chen, DeYing; Yu, Xin; Wang, JiaLing; Jiang, YuGang

    2012-10-01

    A variant of all-resonant CARS named electronic-resonant enhancement CARS (ERE-CARS) is applied to measure the methanol-water solution concentration at room temperature. The measurements are performed using the ERE-CARS signal of the Raman vibrations near the C—H stretching modes (at 2835 and 2942 cm-1) in methanol. By changing the timing ( t>0) of the laser pulses of this non-degenerate four wave mixing technique, the concentration information based on the vibrational dynamics of the C—H bonds can be successfully detected as the frequency-spread dephasing rate during the first few hundred fs in the ERE-CARS signal with high sensitivity and accuracy. Femtosecond time-resolved ERE-CARS technique is applied to the concentration analysis of a mixture of the organic solution. This investigation indicates that femtosecond time-resolved ERE-CARS technique might be a powerful tool for real-time detection for solution concentration of different liquids.

  19. Label-free pathology by spectrally sliced femtosecond stimulated Raman scattering (SRS) microscopy

    PubMed Central

    Berry, Kyla; Chen, Yikai; Figueroa, Benjamin; Fu, Dan

    2017-01-01

    Optical “virtual biopsy” is an attractive way to improve disease diagnosis and surgical guidance. Many optical microscopy techniques have been developed to provide diagnostic information without the need for tissue sectioning or staining. Among these techniques, label-free chemical imaging is the most desirable. Recently, it has been shown that narrowband, picosecond stimulated Raman scattering (SRS) can achieve comparable morphological contrast to hematoxylin and eosin staining (H&E staining), the ‘gold standard’ of pathology. However, to translate the technique from the bench to the bedside, optimal laser sources and parameters have yet to be identified. Here we describe an improvement to the narrowband SRS microscopy techniques for label-free tissue imaging. Through spectral slicing of broadband, femtosecond pulses, we are able to maintain the same protein/lipid contrast as narrowband SRS while achieving a higher signal-to-noise ratio (SNR). Our method draws upon the benefits of femtosecond pulses (e.g. higher peak power) while preserving those of picosecond pulses (e.g. adequate spectral resolution). We demonstrate this achievement through protein/lipid signal and contrast quantification of mouse brain tissue as a function of bandwidth, and comparison with numerical simulations. Further method validation is provided through imaging of additional mouse tissues: liver, kidney, and skin. PMID:28562695

  20. Apparatus for laser-assisted electron scattering in femtosecond intense laser fields.

    PubMed

    Kanya, Reika; Morimoto, Yuya; Yamanouchi, Kaoru

    2011-12-01

    An apparatus for observation of laser-assisted electron scattering (LAES) in femtosecond intense laser fields was developed. The unique apparatus has three essential components, i.e., a photocathode-type ultrashort pulsed-electron gun, a toroidal-type electron energy analyzer enabling simultaneous detection of energy and angular distributions of scattered electrons with high efficiency, and a high repetition-rate data acquisition system combined with a high power 5 kHz Ti:sapphire laser system. These advantages make extremely weak femtosecond-LAES signals distinguishable from the huge elastic scattering signals. A precise method for securing a spatial overlap between three beams, that is, an atomic beam, an electron beam, and a laser beam, and synchronization between the electron and laser pulses is described. As a demonstration of this apparatus, an electron energy spectrum of the LAES signals with 1.4 × 10(12) W/cm(2), 795 nm, 50 fs laser pulses was observed, and the detection limit and further improvements of the apparatus are examined.

  1. Ultrafast probe using femtosecond electron pulses: real-time probing plasma dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Zhou, Jun; Li, Junjie; Correa, Alfredo A.; Ping, Yuan; Ogitsu, Tadashi; Chen, Jie; Cao, Jianming

    2015-08-01

    In recent years, femtosecond electron pulses have emerged as a powerful tool to probe ultrafast dynamics in matter. They have been used in ultrafast diffraction and imaging to reveal the atomic-detail structural dynamics in real time, covering a wide range of applications in physics, materials science, chemistry and biology. In this study, we report direct and real-time measurements of the ejected-charge dynamics surrounding laser-produced warm dense matter using femtosecond electron pulses. Our study reveals a two-step dynamical process of ejected electrons: an initial emission and accumulation of electrons outside the pumped surface followed by the formation of escaping hemispherical clouds of electrons into the vacuum at an isotropic and nearly constant velocity. Based on these observations, we also developed a model of the escaping charge distribution that not only reproduces the main features of the observed charge expansion dynamics but also allows us to extract the number of ejected electrons remaining in the cloud. The perspective of the field is also reviewed.

  2. Multi-color femtosecond source for simultaneous excitation of multiple fluorescent proteins in two-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Liu, Tzu-Ming; Wu, Juwell; Horton, Nicholas G.; Lin, Charles P.; Xu, Chris

    2013-02-01

    Simultaneous imaging of cells expressing multiple fluorescent proteins (FPs) is of particular interest in applications such as mapping neural circuits, tracking multiple immune cell populations, etc. To visualize both in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissues, two-photon fluorescence microscopy (2PM) is a powerful tool that has found wide applications. However, simultaneous imaging of multiple FPs with 2PM is greatly hampered by the lack of proper ultrafast lasers offering multi-color femtosecond pulses, each targeting the two-photon absorption peak of a different FP. Here we demonstrate simultaneous two-photon fluorescence excitation of RFP, YFP, and CFP in human melanoma cells engineered to express a "rainbow" pallet of colors, using a novel fiber-based source with energetic, three-color femtosecond pulses. The three-color pulses, centered at 775 nm, 864 nm and 950 nm, are obtained through second harmonic generation of the 1550 nm pump laser and SHG of the solitons at 1728 nm and 1900 nm generated through soliton self-frequency shift (SSFS) of the pump laser in a large-mode-area (LMA) fiber. The resulting wavelengths are well matched to the two-photon absorption peaks of the three FPs for efficient excitation. Our results demonstrate that multi-color femtosecond pulse generation using SSFS and a turn-key, fiber-based femtosecond laser can fulfill the requirements for simultaneous imaging of multiple FPs in 2PM, opening new opportunities for a wide range of biological applications where non-invasive, high-resolution imaging of multiple fluorescent indicators is required.

  3. Femtosecond Synchronization of Laser Systems for the LCLS

    SciTech Connect

    Byrd, John; Doolittle, Lawrence; Huang, Gang; Staples, John; Wilcox, Russell; Arthur, John; Frisch, Josef; White, William; /SLAC

    2012-08-24

    The scientific potential of femtosecond x-ray pulses at linac-driven free-electron lasers such as the Linac Coherent Light Source is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. An optical timing system based on stabilized fiber links has been developed for the LCLS to provide this synchronization. Preliminary results show synchronization of the installed stabilized links at the sub-20-femtosecond level. We present details of the implementation at LCLS and potential for future development.

  4. Optical waveguide writing with a diode-pumped femtosecond oscillator.

    PubMed

    Osellame, Roberto; Chiodo, Nicola; della Valle, Giuseppe; Taccheo, Stefano; Ramponi, Roberta; Cerullo, Giulio; Killi, Alexander; Morgner, Uwe; Lederer, Max; Kopf, Daniel

    2004-08-15

    Optical waveguide writing is demonstrated by means of a diode-pumped cavity-dumped Yb:glass femtosecond laser oscillator with a pulse energy of 270 nJ at a 166-kHz repetition rate. Waveguides realized on an Er:Yb-doped phosphate glass are almost perfectly mode matched to standard single-mode fibers at 1.55 microm and show a 1.2-dB net gain in a standard telecommunications amplifier setup. Waveguide writing with a compact femtosecond laser oscillator is an important step toward introducing this technique into an industrial context.

  5. NOTE: Ultrasonic vibration-assisted femtosecond laser machining of microholes

    NASA Astrophysics Data System (ADS)

    Zheng, H. Y.; Huang, H.

    2007-08-01

    In this note, we describe a novel approach to improving laser hole drilling quality by exciting the work material with a high frequency ultrasonic vibrator during a femtosecond laser drilling process. It is found that both the aspect ratio (depth over diameter) and the wall surface finish of the microholes fabricated using the ultrasonic vibration (US) assisted laser drilling are improved, compared to those laser machined without US assistance. This is because the introduction of US into the femtosecond laser drilling process reduced the resolidified and redeposited particles on the wall surfaces.

  6. A photon accelerator -- Large blueshifting of femtosecond pulses in semiconductors

    SciTech Connect

    Berezhiani, V.I.; Mahajan, S.M.; Murusidze, I.G.

    1997-04-01

    The availability of relatively high intensity (I > 10{sup 9}Wcm{sup {minus}2}) [but moderate ({approximately} nJ) total energy], femtosecond laser pulses with wavelengths ranging from the ultraviolet to the mid-infrared has opened the doors for a serious investigation of the nonlinear optical properties of matter on ultrashort time scales in a new parameter regime. Even small intensity-dependent nonlinearities can begin to play a major role in the overall electrodynamics, and in determining the fate of the propagating pulse. It is shown that a femtosecond pulse propagating near a two-photon transition in a semiconductor waveguide can undergo a large blueshift.

  7. Ion exchange in glass using femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Kanehira, Shingo; Miura, Kiyotaka; Hirao, Kazuyuki

    2008-07-01

    We explain the occurrence of ion exchange and an index profile around the focal point inside a commercial crown glass formed by femtosecond laser irradiation. The index profile in the photoinduced area has a ring-shaped pattern, which indicates that local densification occurred in the glass. An irregular surface reflecting the density distribution is formed around the focal point by dry etching process using a focused ion beam. By the irradiation of femtosecond laser pulses, the effect of ion exchange between the focal point and the surrounding area is also observed in the area in which local densification occurred.

  8. Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers.

    PubMed

    Le Dortz, J; Heilmann, A; Antier, M; Bourderionnet, J; Larat, C; Fsaifes, I; Daniault, L; Bellanger, S; Simon Boisson, C; Chanteloup, J-C; Lallier, E; Brignon, A

    2017-05-15

    Coherent beam combining in the femtosecond regime of a record number of 19 fibers is demonstrated. The interferometric phase measurement technique, particularly well suited to phase-lock a very large number of fibers, is successfully demonstrated in the femtosecond regime. A servo loop is implemented to control piezoelectric fiber stretchers for both phase and delay variation compensation. The residual phase errors are below λ/60  rms. Nearly 50% of the total energy is contained in the far-field central lobe. After compression, we obtain a combined pulse width of 300 fs identical to the master oscillator pulse width.

  9. On femtosecond laser shock peening of stainless steel AISI 316

    NASA Astrophysics Data System (ADS)

    Hoppius, Jan S.; Kukreja, Lalit M.; Knyazeva, Marina; Pöhl, Fabian; Walther, Frank; Ostendorf, Andreas; Gurevich, Evgeny L.

    2018-03-01

    In this paper we report on the competition in metal surface hardening between the femtosecond shock peening on the one hand, and formation of laser-induced periodic surface structures (LIPSS) and surface oxidation on the other hand. Peening of the stainless steel AISI 316 due to shock loading induced by femtosecond laser ablation was successfully demonstrated. However, for some range of processing parameters, surface erosion due to LIPSS and oxidation seems to dominate over the peening effect. Strategies to increase the peening efficiency are discussed.

  10. Averaging of quantum dynamical semigroups

    NASA Astrophysics Data System (ADS)

    Sakbaev, V. Zh.

    2010-09-01

    In the framework of the elliptic regularization method, the Cauchy problem for the Schrödinger equation with discontinuous degenerating coefficients is associated with a sequence of regularized Cauchy problems and the corresponding regularized dynamical semigroups. We study a divergent sequence of quantum dynamical semigroups as a random process with values in the space of quantum states defined on a measurable space of regularization parameters with a finitely additive measure. The mathematical expectation of the considered processes determined by the Pettis integral defines a family of averaged dynamical transformations. We investigate the semigroup property and the injectivity and surjectivity of the averaged transformations. We establish the possibility of defining the process by its mathematical expectation at two different instants and propose a procedure for approximating an unknown initial state by solutions of a finite set of variational problems on compact sets.

  11. Average trajectory of returning walks

    NASA Astrophysics Data System (ADS)

    Colaiori, Francesca; Baldassarri, Andrea; Castellano, Claudio

    2004-04-01

    We compute the average shape of trajectories of some one-dimensional stochastic processes x(t) in the (t,x) plane during an excursion, i.e., between two successive returns to a reference value, finding that it obeys a scaling form. For uncorrelated random walks the average shape is semicircular, independent from the single increments distribution, as long as it is symmetric. Such universality extends to biased random walks and Levy flights, with the exception of a particular class of biased Levy flights. Adding a linear damping term destroys scaling and leads asymptotically to flat excursions. The introduction of short and long ranged noise correlations induces nontrivial asymmetric shapes, which are studied numerically.

  12. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers.

    PubMed

    Shi, Haosen; Song, Youjian; Liang, Fei; Xu, Liming; Hu, Minglie; Wang, Chingyue

    2015-06-01

    The cross correlation between a pair of femtosecond lasers with slightly different repetition rates enables high precision, high update rate time-of-flight (TOF) distance measurements against multiple targets. Here, we investigate the obtainable ranging precision set by the timing jitter from femtosecond lasers. An analytical model governing dual femtosecond laser TOF distance measurement in the presence of pulse train timing jitter is built at first. A numerical study is conducted by involving typical timing jitter sources in femtosecond lasers in the following. Finally, the analytical and numerical models are verified by a TOF ranging experiment using a pair of free running femtosecond Er-fiber lasers. The timing jitter of the lasers is also characterized by an attosecond resolution balanced optical cross correlation method. The comparison between experiment and numerical model shows that the quantum-limited timing jitter of femtosecond lasers sets a fundamental limit on the performance of dual femtosecond laser TOF distance measurements.

  13. Nanospallation induced by a femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Agranat, M. B.; Anisimov, S. I.; Ashitkov, S. I.; Zhakhovskii, V. V.; Inogamov, N. A.; Nishihara, K.; Petrov, Yu. V.

    2008-01-01

    In the present work phenomena are considered related to the interaction of ultra-short laser pulses, τ L~0.1 ps, with metallic targets. The absorption of laser pulse results in formation of thin layer of hot electrons strongly superheated (T e>>T i) relative to the ion temperature, T i. Initial thickness of the layer d heat is small, d heat~δ, where δ~10 nm is the skin layer thickness. Subsequent developments include the following stages: (1) Propagation of electron thermal wave which expands the hot layer d heat; (2) Cooling of electrons due to energy transfer to cold ions; (3) Onset of hydrodynamic motion that constitutes the rarefaction wave with positive pressure; (4) Further expansion of target material leading to the appearance of negative pressure; and (5) Long separation process which begins with nucleation of voids and goes on to the total separation of spallation plate. The thickness of the plate is ~10 nm (we call it nanospallation). Theoretical model involves two-temperature hydrodynamic equations with semiempirical EOS for a metal, electron heat conduction and electron-ion energy exchange. The decay of metastable strongly stretched matter is described by molecular dynamics (MD) simulation with extremely large number of atoms. The experimental setup includes femtosecond chromium-forsterite laser operating in the pump-probe regime. The experiments are performed with gold target. Measured ablation threshold for gold is 1.35 J/cm2 of incident pump light at inclination 45°, p-polarization. Calorimeter measurements give for the absorbed fluence F abs=0.3F inc, therefore the threshold value of F abs is 0.4 J/cm2.

  14. High average power laser using a transverse flowing liquid host

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2003-07-29

    A laser includes an optical cavity. A diode laser pumping device is located within the optical cavity. An aprotic lasing liquid containing neodymium rare earth ions fills the optical cavity. A circulation system that provides a closed loop for circulating the aprotic lasing liquid into and out of the optical cavity includes a pump and a heat exchanger.

  15. Ensemble averaging of acoustic data

    NASA Technical Reports Server (NTRS)

    Stefanski, P. K.

    1982-01-01

    A computer program called Ensemble Averaging of Acoustic Data is documented. The program samples analog data, analyzes the data, and displays them in the time and frequency domains. Hard copies of the displays are the program's output. The documentation includes a description of the program and detailed user instructions for the program. This software was developed for use on the Ames 40- by 80-Foot Wind Tunnel's Dynamic Analysis System consisting of a PDP-11/45 computer, two RK05 disk drives, a tektronix 611 keyboard/display terminal, and FPE-4 Fourier Processing Element, and an analog-to-digital converter.

  16. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    SciTech Connect

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; Zhidkov, A.; Pikuz, T. A.; Nishiuchi, M.; Pikuz, S. A.; Skobelev, I. Yu.; Abdallah, J.; Sakaki, H.; Sagisaka, A.; Pirozhkov, A. S.; Ogura, K.; Fukuda, Y.; Kanasaki, M.; Hasegawa, N.; Nishikino, M.; Kando, M.; Watanabe, Y.; Kawachi, T.; Masuda, S.; Hosokai, T.; Kodama, R.; Kondo, K.

    2015-09-02

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 1021 W/cm2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~1017 W/cm2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. As a result, femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems.

  17. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    PubMed Central

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; Zhidkov, A.; Pikuz, T. A.; Nishiuchi, M.; Pikuz, S. A.; Skobelev, I. Yu.; Abdallah, J.; Sakaki, H.; Sagisaka, A.; Pirozhkov, A. S.; Ogura, K.; Fukuda, Y.; Kanasaki, M.; Hasegawa, N.; Nishikino, M.; Kando, M.; Watanabe, Y.; Kawachi, T.; Masuda, S.; Hosokai, T.; Kodama, R.; Kondo, K.

    2015-01-01

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 1021  W/cm2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~1017  W/cm2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. Femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems. PMID:26330230

  18. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    DOE PAGES

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; ...

    2015-09-02

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 10 21 W/cm 2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E 4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery,more » changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~10 17 W/cm 2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. As a result, femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems.« less

  19. Terrestrial kilometric radiation: 3-average spectral properties

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Alexander, J. K.

    1976-01-01

    A study is presented of the average spectral properties of terrestrial kilometric radiation (TKR) derived from observations made by radio astronomy experiments onboard the IMP-6 and RAE-2 spacecraft. As viewed from near the equatorial plane, TKR is most intense and most often observed in the 21-24 hr local time zone and is rarely seen in the 09-12 hr zone. The peak flux density usually occurs near 240 kHz, but there is evidence that the peak occurs at a somewhat lower frequency on the dayside. The frequency of the peak in the average flux spectrum varies inversely with increasing substorm activity as inferred from the auroral electrojet index (AE) from a maximum near 300 kHz during very quiet times to a minimum below 200 kHz during very disturbed times. The absolute flux levels in the 100-600 kHz TKR band increase significantly with increasing AE. The average power associated with a particular source region seems to decrease rapidly with increasing source altitude.

  20. 18 CFR 301.7 - Average System Cost methodology functionalization.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Average System Cost methodology functionalization. 301.7 Section 301.7 Conservation of Power and Water Resources FEDERAL ENERGY... specifically that a Utility may perform a direct analysis on the Account, with the exception of conservation...

  1. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces

    SciTech Connect

    Zhang, Haisu; Tzortzakis, Stelios, E-mail: stzortz@iesl.forth.gr; Materials Science and Technology Department, University of Crete, 71003 Heraklion

    2016-05-23

    We demonstrate a reliable authentication method by femtosecond laser filament induced scattering surfaces. The stochastic nonlinear laser fabrication nature results in unique authentication robust properties. This work provides a simple and viable solution for practical applications in product authentication, while also opens the way for incorporating such elements in transparent media and coupling those in integrated optical circuits.

  2. Femtosecond laser induced nanostructuring of aluminum films of variable thickness

    NASA Astrophysics Data System (ADS)

    Bezhanov, S. G.; Danilov, P. A.; Ionin, A. A.; Kiseleva, I. V.; Kudryashov, S. I.; Uryupin, S. A.; Zayarnyi, D. A.

    2018-01-01

    We present the results of a comparative study of thresholds for nanostructuring of films of different thickness by single-shot femtosecond laser exposure of aluminum films. The two-temperature model is applied to describe nanohole formation and the corresponding threshold dependence on the film thickness.

  3. Femtosecond lasers as novel tool in dental surgery

    NASA Astrophysics Data System (ADS)

    Serbin, J.; Bauer, T.; Fallnich, C.; Kasenbacher, A.; Arnold, W. H.

    2002-09-01

    There is a proven potential of femtosecond lasers for medical applications like cornea shaping [1], ear surgery or dental surgery [2]. Minimal invasive treatment of carious tissue has become an increasingly important aspect in modern dentistry. State of the art methods like grinding using turbine-driven drills or ablation by Er:YAG lasers [3] generate mechanical and thermal stress, thus generating micro cracks of several tens of microns in the enamel [4]. These cracks are starting points for new carious attacks and have to be avoided for long term success of the dental treatment. By using femtosecond lasers (1 fs=10 -15 s) for ablating dental tissue, these drawbacks can be overcome. We have demonstrated that femtosecond laser ablation offers a tool for crack-free generation of cavities in dental tissue. Furthermore, spectral analysis of the laser induced plasma has been used to indicate carious oral tissue. Our latest results on femtosecond laser dentistry will be presented, demonstrating the great potential of this kind of laser technology in medicine.

  4. Femtosecond writing of depressed cladding waveguides in strongly cumulative regime

    NASA Astrophysics Data System (ADS)

    Bukharin, Mikhail A.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2015-05-01

    We proposed a novel approach for direct femtosecond inscription of waveguides. It consisted in formation of cladding with reduced refractive index in fused silica. Depressed cladding was based on peripheral regions of individually written neighbored tracks, which should be inscribed in strongly cumulative regime. It was shown, that due to shot time interval between femtosecond laser pulses and relatively slow thermal diffusion, the exposed focal region surrounds by significantly wide cladding with reduced refracted index. Based on proposed approach we demonstrated depressed cladding waveguide inscription in fused silica using emission directly from commercially available femtosecond oscillator without correcting optical systems and second harmonic generation. It was shown, that the new approach provides formation of easily adjustable single mode waveguides with desired mode field diameter. Such depressed cladding waveguides exploit both advantages of fused silica material and depressed cladding geometry. We also verified our suggestion by experiment and inscribed depressed cladding waveguides with two different mode field diameters at similar femtosecond pulse characteristics. The obtained structures provided low propagation losses and good coupling with Gaussian mode. The waveguides supported propagation of both polarizations with nearly identical characteristics. Obtained experimental results were in good agreement with numerical simulation.

  5. Molecular vibrational dynamics in PMMA studied by femtosecond CARS

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Sheng; Zhou, Boyang; Fan, Rongwei; Chen, Deying; Zhang, Zhonghua; Xia, Yuanqin

    2014-11-01

    The ultrafast molecular vibrational dynamics in PMMA sheets is studied by femtosecond time-resolved coherent anti-Stokes Raman spectroscopy at room temperature. The C-H stretch modes at 2870 cm-1 and 3008 cm-1 in PMMA sheets are excited and detected. The coherence relaxation times and beat wavenumbers of the Raman modes are obtained.

  6. Multipass non-collinear optical parametric amplifier for femtosecond pulses.

    PubMed

    Stepanenko, Yuriy; Radzewicz, Czesław

    2006-01-23

    We demonstrate a successful recompression of 4.5 mJ, 30 fs femtosecond pulses from a Ti:Sapphire oscillator amplified in a ring multi-pass optical parametric chirped pulse amplifier using beta-barium borate crystal pumped by a commercial frequency doubled Nd:YAG laser. Pulses with duration close to the Fourier transform limit were obtained.

  7. Safety evaluation of femtosecond lentotomy on the porcine lens by optical measurement with 50-femtosecond laser pulses.

    PubMed

    Zhang, Jiaying; Wang, Rui; Chen, Bing; Ye, Peng; Zhang, Wei; Zhao, Hongyou; Zhen, Jie; Huang, Yifei; Wei, Zhiyi; Gu, Ying

    2013-09-01

    The optimized parameters of femtosecond (fs) lentotomy, an innovative strategy for presbyopia, have been further discussed regarding the safety of the procedure for eyeballs. This article's aim was to prove the safety and feasibility of the fs lentotomy procedure with 50-fs laser pulses. This was an experimental study in which the safety of fs lentotomy by optical measurement was tested. The experiment was performed on 49 porcine crystalline lenses by 50-fs laser pulses at a central wavelength of 800 nm and scanning focusing optics with a numerical aperture (NA) of 0.125. The input pulse energy was in the range of 0.35 μJ to 0.65 μJ. The transmitted energy throughout the eyeball was measured through a hole in the back wall of the eyeball by a power meter. The transmittance and peak power density (PPD) on the cornea, lens, and retina were illustrated. The laser cutting quality of 50-fs laser pulses on the crystalline lens were assessed, and the theoretical safety of such a procedure for the cornea, lens, and retina was evaluated. A sharp cut without noticeable large bubbles was obtained with 0.35 μJ pulse energy under the optical system for which the NA was 0.125. The transmittance of the whole eyeball was measured to be 69% to 75% under 0.35 μJ to 0.65 μJ incident laser energy. The threshold of PPD for photodisruption on the crystalline lens, retina, and cornea was measured to be in the magnitude of 10(13)  W/cm(2) , 10(8)  W/cm(2) , and 10(9)  W/cm(2) , respectively. The cutting quality in this experiment implied the feasibility of the 50-fs laser in fs lentotomy; the pulse energy for fs lentotomy descended from microjoules to hundreds of nanojoules, and the PPD on the cornea and retina during the procedure decreased further, both of which illustrated the safety of such an optical design and the parameters during fs lentotomy for the eyeball. Copyright © 2013 Wiley Periodicals, Inc.

  8. Flexible time domain averaging technique

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Lin, Jing; Lei, Yaguo; Wang, Xiufeng

    2013-09-01

    Time domain averaging(TDA) is essentially a comb filter, it cannot extract the specified harmonics which may be caused by some faults, such as gear eccentric. Meanwhile, TDA always suffers from period cutting error(PCE) to different extent. Several improved TDA methods have been proposed, however they cannot completely eliminate the waveform reconstruction error caused by PCE. In order to overcome the shortcomings of conventional methods, a flexible time domain averaging(FTDA) technique is established, which adapts to the analyzed signal through adjusting each harmonic of the comb filter. In this technique, the explicit form of FTDA is first constructed by frequency domain sampling. Subsequently, chirp Z-transform(CZT) is employed in the algorithm of FTDA, which can improve the calculating efficiency significantly. Since the signal is reconstructed in the continuous time domain, there is no PCE in the FTDA. To validate the effectiveness of FTDA in the signal de-noising, interpolation and harmonic reconstruction, a simulated multi-components periodic signal that corrupted by noise is processed by FTDA. The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively. Moreover, it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones. Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear, respectively. It is shown that the FTDA can identify the direction and severity of the eccentricity gear, and further enhances the amplitudes of impulses by 35%. The proposed technique not only solves the problem of PCE, but also provides a useful tool for the fault symptom extraction of rotating machinery.

  9. AMPERE AVERAGE CURRENT PHOTOINJECTOR AND ENERGY RECOVERY LINAC.

    SciTech Connect

    BEN-ZVI,I.; BURRILL,A.; CALAGA,R.; ET AL.

    2004-08-17

    High-power Free-Electron Lasers were made possible by advances in superconducting linac operated in an energy-recovery mode. In order to get to much higher power levels, say a fraction of a megawatt average power, many technological barriers are yet to be broken. We describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun employing a new secondary-emission multiplying cathode, an accelerator cavity, both capable of producing of the order of one ampere average current and plans for an ERL based on these units.

  10. Combustor deployments of femtosecond laser written fiber Bragg grating arrays for temperature measurements surpassing 1000°C

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Ding, Huimin; Coulas, David; Mihailov, Stephen J.; Duchesne, Marc A.; Hughes, Robin W.; McCalden, David J.; Burchat, Ryan; Yandon, Robert; Yun, Sangsig; Ramachandran, Nanthan; Charbonneau, Michel

    2017-05-01

    Femtosecond Infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent to advanced power plant technologies and gas turbine engines, under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper reviews our fabrication and deployment of hundreds of fs-IR written FBGs, for monitoring temperature gradients of an oxy-fuel fluidized bed combustor and an aerospace gas turbine combustor simulator.

  11. Efficient 1 kHz femtosecond optical parametric amplification in BiB(3)O(6) pumped at 800 nm.

    PubMed

    Ghotbi, Masood; Ebrahim-Zadeh, Majid; Petrov, Valentin; Tzankov, Pancho; Noack, Frank

    2006-10-30

    We demonstrate efficient operation of a tunable femtosecond optical parametric amplifier based on BiB(3)O(6) pumped at 800 nm by a 1 kHz Ti:sapphire regenerative amplifier. The idler wavelength coverage extends to beyond 3 mum and the pulse duration at this wavelength is of the order of 110 fs. This new nonlinear borate crystal offers exceptionally high nonlinearity, making it a very promising candidate for power scaling of such frequency converters in the near-IR.

  12. Femtosecond laser inscription of optical circuits in the cladding of optical fibers

    NASA Astrophysics Data System (ADS)

    Grenier, Jason R.

    The aim of this dissertation was to address the question of whether the cladding of single-mode fibers (SMFs) could be modified to enable optical fibers to serve as a more integrated, highly functional platform for optical circuit devices that can efficiently interconnect with the pre-existing fiber core waveguide. The approach adopted in this dissertation was to employ femtosecond laser direct writing (FLDW), an inherently 3D fabrication technique that harnesses non-linear laser-material interactions to modify the fused silica fiber cladding. A fiber mounting and alignment technique was developed along with oil-immersion focusing to address the strong aberrations caused by the cylindrical fiber shape. The development of real-time device monitoring during the FLDW was instrumental to overcome the acute coupling sensitivity to laser alignment errors of +/-1 ?m positional uncertainty, and thereby opened a new practical direction for the precise fabrication of optical devices inside optical fibers. These powerful and flexible laser fabrication and characterization techniques were successfully employed to optimize optical waveguiding devices positioned within the core and cladding of optical fibers. X-, S-Bend, and directional couplers were developed to enable efficient coupling between the laser-formed cladding devices and the pre-existing core waveguide, enabling up to 62% power transfer over bandwidths up to 300 nm at telecommunication wavelengths. Precise alignment of femtosecond laser modification tracks were positioned inside or near the core waveguide of SMFs was further shown to enable a flexible reshaping of the optical properties to create multimode guiding sections arbitrarily along the fiber length. This core waveguide modification facilitated the precise formation of multimode interferometers along the core waveguide to precisely tailor the modal profiles, and control the spectral and polarization response. In-fiber multimode interference (MMI) splitters

  13. Separating pairing from quantum phase coherence dynamics above the superconducting transition by femtosecond spectroscopy

    PubMed Central

    Madan, I.; Kurosawa, T.; Toda, Y.; Oda, M.; Mertelj, T.; Kusar, P.; Mihailovic, D.

    2014-01-01

    In classical superconductors an energy gap and phase coherence appear simultaneously with pairing at the transition to the superconducting state. In high-temperature superconductors, the possibility that pairing and phase coherence are distinct and independent processes has led to intense experimental search of their separate manifestations. Using femtosecond spectroscopy methods we now show that it is possible to clearly separate fluctuation dynamics of the superconducting pairing amplitude from the phase relaxation above the critical transition temperature. Empirically establishing a close correspondence between the superfluid density measured by THz spectroscopy and superconducting optical pump-probe response over a wide region of temperature, we find that in differently doped Bi2Sr2CaCu2O8+δ crystals the pairing gap amplitude monotonically extends well beyond Tc, while the phase coherence shows a pronounced power-law divergence as T → Tc, thus showing that phase coherence and gap formation are distinct processes which occur on different timescales. PMID:25014162

  14. Femtosecond precision measurement of laser-rf phase jitter in a photocathode rf gun

    NASA Astrophysics Data System (ADS)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao

    2017-03-01

    We report on the measurement of the laser-rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser-rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser-rf phase jitter in the gun through measurement of the beam-rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  15. Optical exploration of micro/nanoscale irregularities created on metallic surfaces by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Ahmadi Rashtabadi, H.; Mollabashi, M.; Razi, S.

    2017-06-01

    In this paper, we suggest a direct method based on light scattering and Beckmann formulation for the coarse surface RMS roughness and correlation length measurements. Metallic steel samples irradiated under controlled interaction conditions with ultrafast femtosecond laser system are selected as the random rough surfaces for investigation. Stabilized low-intensity He-Ne laser and an appropriate power meter are selected as the main elements of the experimental measurement probe. The light source and detector are located symmetrically around the surface normal and the reflected light is collected to be used in Beckmann formulation. In this regard, the dependency of the surface scattering to the illumination angle is also investigated. Atomic Force Microscopy and Scanning Electron Microscopy are utilized as standard common methods to extract the surface features and check the reliability of the theoretical approach.

  16. Fabrication of the asymmetric double-sided concave microlens arrays by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Yang, Qing; Bian, Hao; Chen, Feng

    2017-02-01

    In the last decades, fabrication of microlens array in materials with high-damage threshold has attracted increasing interest, especially in the application of high-power laser. In this paper, we propose an advanced strategy to efficiently fabricate microlens array on the surface of glass using a single-pulsed femtosecond laser wet etch process, which is a combination of high-speed laser scanning and the subsequent chemical etch with HF solution. Based on this method, double-sided microlens array, non-regular arrays consisting of close-packed concave microlens array on one side and regular concave MLA on the other side, were fabricated on the 1cm*1cm glass. Especially over one million microlenses could be acquired within an hour, exhibiting great superiority in practical application. Moreover, the optical properties of the asymmetric double-sided MLA were experimentally characterized, and the experimental results reveal the good light homogenization performance.

  17. Surface Wettability Modification of Cyclic Olefin Polymer by Direct Femtosecond Laser Irradiation

    PubMed Central

    Wang, Bing; Wang, Xincai; Zheng, Hongyu; Lam, Yee Cheong

    2015-01-01

    The effect of laser irradiation on surface wettability of cyclic olefin polymer (COP) was investigated. Under different laser parameters, a superhydrophilic or a superhydrophobic COP surface with a water contact angle (WCA) of almost 0° or 163°, respectively, could be achieved by direct femtosecond laser irradiation. The laser power deposition rate (PDR) was found to be a key factor on the wettability of the laser-treated COP surface. The surface roughness and surface chemistry of the laser-irradiated samples were characterized by surface profilometer and X-ray photoelectron spectroscopy, respectively; they were found to be responsible for the changes of the laser-induced surface wettability. The mechanisms involved in the laser surface wettability modification process were discussed. PMID:28347074

  18. Separating pairing from quantum phase coherence dynamics above the superconducting transition by femtosecond spectroscopy.

    PubMed

    Madan, I; Kurosawa, T; Toda, Y; Oda, M; Mertelj, T; Kusar, P; Mihailovic, D

    2014-07-11

    In classical superconductors an energy gap and phase coherence appear simultaneously with pairing at the transition to the superconducting state. In high-temperature superconductors, the possibility that pairing and phase coherence are distinct and independent processes has led to intense experimental search of their separate manifestations. Using femtosecond spectroscopy methods we now show that it is possible to clearly separate fluctuation dynamics of the superconducting pairing amplitude from the phase relaxation above the critical transition temperature. Empirically establishing a close correspondence between the superfluid density measured by THz spectroscopy and superconducting optical pump-probe response over a wide region of temperature, we find that in differently doped Bi(2)Sr(2)CaCu(2)O(8+δ) crystals the pairing gap amplitude monotonically extends well beyond Tc, while the phase coherence shows a pronounced power-law divergence as T → T(c), thus showing that phase coherence and gap formation are distinct processes which occur on different timescales.

  19. Multistep Ionization of Argon Clusters in Intense Femtosecond Extreme Ultraviolet Pulses

    SciTech Connect

    Bostedt, C.; Thomas, H.; Hoener, M.

    2008-04-04

    The interaction of intense extreme ultraviolet femtosecond laser pulses ({lambda}=32.8 nm) from the FLASH free electron laser (FEL) with clusters has been investigated by means of photoelectron spectroscopy and modeled by Monte Carlo simulations. For laser intensities up to 5x10{sup 13} W/cm{sup 2}, we find that the cluster ionization process is a sequence of direct electron emission events in a developing Coulomb field. A nanoplasma is formed only at the highest investigated power densities where ionization is frustrated due to the deep cluster potential. In contrast with earlier studies in the IR and vacuum ultraviolet spectral regime, we find nomore » evidence for electron emission from plasma heating processes.« less

  20. Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator

    PubMed Central

    Adany, Peter; Price, E. Shane; Johnson, Carey K.; Zhang, Run; Hui, Rongqing

    2009-01-01

    A voltage-controlled birefringent cell based on ceramic PMN-PT material is used to enable fast intensity modulation of femtosecond laser pulses in the 800 nm wavelength window. The birefringent cell based on a PMN-PT compound has comparatively high electro-optic response, allowing for a short interaction length of 3 mm and thus very small size, low attenuation of 0.16 dB, and negligible broadening for 100 fs optical pulses. As an application example, agile wavelength tuning of optical pulses is demonstrated using the soliton self-frequency shift in a photonic crystal fiber. By dynamically controlling the optical power into the fiber, this system switches the wavelength of 100 fs pulses from 900 nm to beyond 1120 nm with less than 5 μs time. In addition, a feedback system stabilizes the wavelength drift against external conditions resulting in high wavelength stability. PMID:19334907

  1. Submicrojoule femtosecond erbium-doped fibre laser for the generation of dispersive waves at submicron wavelengths

    SciTech Connect

    Kotov, L V; Koptev, M Yu; Anashkina, E A

    2014-05-30

    We have demonstrated a femtosecond erbium-doped fibre laser system built in the master oscillator/power amplifier (MOPA) approach. The final amplifier stage utilises a specially designed large mode area active fibre cladding-pumped by multimode laser diodes. The system is capable of generating submicrojoule pulses at a wavelength near 1.6 μm. We have obtained 530-fs pulses with an energy of 400 nJ. The output of the system can be converted to wavelengths shorter than 1 μm through the generation of dispersive waves in passive nonlinear fibre. We have obtained ultra-short 7-nJ pulses with a spectral width of ∼100 nm and a centremore » wavelength of 0.9 μm, which can be used as a seed signal in parametric amplifiers in designing petawatt laser systems. (lasers)« less

  2. Quantitative detection of oxygen in reduced graphene oxide by femtosecond laser-induced breakdown spectroscopy.

    PubMed

    Yang, Bo; Jiang, Lan; Wang, Sumei; Wang, Peng; Yang, Fan; Lu, Yongfeng

    2018-02-10

    This paper proposes a simple, direct, and fast method for the quantitative detection of oxygen in reduced graphene oxide (r-GO) by femtosecond laser-induced breakdown spectroscopy (fs-LIBS). First, GO was reduced by continuous-wave (CW) laser beams with different powers; subsequently, the oxygen content in the r-GO was detected through the intensity of oxygen obtained by fs-LIBS. The fit of the observed data and errors by LIBS was compared with the results of x-ray photoelectron spectroscopy (XPS), and the fs-LIBS results correlate well with the XPS results; it indicated that fs-LIBS can realize quantitative analysis of the GO-reduction degree. The method provides a convenient and time-efficient way for detecting the reduction degree of r-GO and can extend the applications of r-GO with different reduction degrees.

  3. Femtosecond laser-induced ionization/dissociation tandem mass spectrometry (fsLID-MS/MS) of deprotonated phosphopeptide anions.

    PubMed

    Smith, Scott A; Kalcic, Christine L; Cui, Li; Reid, Gavin E

    2013-12-30

    Radical-directed dissociation techniques provide structural information which is complementary to that from conventional collision-induced dissociation (CID). The analysis of phosphopeptide anions is warranted due to their relatively acidic character. As femtosecond laser-induced ionization/dissociation tandem mass spectrometry (fsLID-MS/MS) is uniquely initiated by field ionization, an investigation is warranted to determine whether fsLID may provide novel analytical utility for phosphopeptide anions. Twenty-three synthetic deprotonated phosphopeptide anions were introduced into a three-dimensional quadrupole ion trap mass spectrometer via electrospray ionization. The ion trap was interfaced with a near-IR (802 nm) ultrashort-pulsed (35 fs FWHM) ultrahigh-powered (peak power ~10(14)  W/cm(2)) laser system. Performance comparisons are made with other techniques applied to phosphopeptide anion analysis, including CID, electron detachment dissociation (EDD), negative electron transfer dissociation (NETD), activated electron photodetachment dissociation (activated-EPD), and ultraviolet photodissociation (UVPD). FsLID-MS/MS of multiply deprotonated phosphopeptide anions provides sequence information via phosphorylation-intact a/x ions in addition to other sequence ions, satellite ions, and side-chain losses. Novel fragmentation processes include selective c-ion formation N-terminal to Ser/Thr and a phosphorylation-specific correlation between xn -98 ion abundances and phosphorylation at the n(th) residue. Sequencing-quality data required about 30 s of signal averaging. fsLID-MS/MS of singly deprotonated phosphopeptides did not yield product anions with stable trajectories, despite significant depletion of the precursor. Multiply deprotonated phosphopeptide anions were sequenced via negative-mode fsLID-MS/MS, with phosphosite localization facilitated by a/x ion series in addition to diagnostic x(n)-98 ions. fsLID-MS/MS is qualitatively competitive with other

  4. XCAN project : coherent beam combining of large number fibers in femtosecond regime (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Antier, Marie; Le Dortz, Jeremy; Bourderionnet, Jerome; Larat, Christian; Lallier, Eric; Daniault, Louis; Fsaifes, Ihsan; Heilmann, Anke; Bellanger, Severine; Simon-Boisson, Christophe; Chanteloup, Jean-Christophe; Brignon, Arnaud

    2016-10-01

    The XCAN project, which is a three years project and began in 2015, carried out by Thales and the Ecole Polytechnique aims at developing a laser system based on the coherent combination of laser beams produced through a network of amplifying optical fibers. This technique provides an attractive mean of reaching simultaneously the high peak and high average powers required for various industrial, scientific and defense applications. The architecture has to be compatible with very large number of fibers (1000-10000). The goal of XCAN is to overcome all the key scientific and technological barriers to the design and development of an experimental laser demonstrator. The coherent addition of multiple individual phased beams is aimed to provide tens of Gigawatt peak power at 50 kHz repetition rate. Coherent beam combining (CBC) of fiber amplifiers involves a master oscillator which is split into N fiber channels and then amplified through series of polarization maintaining fiber pre-amplifiers and amplifiers. In the so-called tiled aperture configuration, the N fibers are arranged in an array and collimated in the near field of the laser output. The N beamlets then interfere constructively in the far field, and give a bright central lobe. CBC techniques with active phase locking involve phase mismatch detection, calculation of the correction and phase compensation of each amplifier by means of phase modulators. Interferometric phase measurement has proven to be particularly well suited to phase-lock a very large number of fibers in continuous regime. A small fraction of the N beamlets is imaged onto a camera. The beamlets interfere separately with a reference beam. The phase mismatch of each beam is then calculated from the interferences' position. In this presentation, we demonstrate the phase locking of 19 fibers in femtosecond pulse regime with this technique. In our first experiment, a master oscillator generates pulses of 300 fs (chirped at 200 ps). The beam is

  5. Self-phase modulation of femtosecond pulses in hollow photonic-crystal fibres

    SciTech Connect

    Konorov, Stanislav O; Zheltikov, Aleksei M; Sidorov-Biryukov, D A; Bugar, I; Chorvat, D J; Beloglazov, V I; Skibina, N B; Shcherbakov, Andrei V; Chorvat, D; Mel'nikov, L A

    2004-01-31

    Self-phase modulation of femtosecond laser pulses in hollow-core photonic-crystal fibres is experimentally studied. Photonic-crystal fibres allowing single-mode waveguide regimes of nonlinear-optical interactions to be implemented with maximum transmission for 800-nm femtosecond pulses are designed and fabricated. A radical enhancement of self-phase modulation is demonstrated for submicrojoule femtosecond pulses of Ti:sapphire-laser radiation propagating through hollow photonic-crystal fibres. (optical fibres)

  6. Laser-driven powerful kHz hard x-ray source

    NASA Astrophysics Data System (ADS)

    Li, Minghua; Huang, Kai; Chen, Liming; Yan, Wenchao; Tao, Mengze; Zhao, Jiarui; Ma, Yong; Li, Yifei; Zhang, Jie

    2017-08-01

    A powerful hard x-ray source based on laser plasma interaction is developed. By introducing the kHz, 800 nm pulses onto a rotating molybdenum (Mo) disk target, intense Mo Kα x-rays are emitted with suppressed bremsstrahlung background. Results obtained with different laser intensities suggest that the dominant absorption mechanism responsible for the high conversion efficiency is vacuum heating (VH). The high degree of spatial coherence is verified. With the high average flux and a source size comparable to the laser focus spot, absorption contrast imaging and phase contrast imaging are carried out to test the imaging capability of the source. Not only useful for imaging application, this compact x-ray source is also holding great potential for ultrafast x-ray diffraction (XRD) due to the intrinsic merits such as femtosecond pulse duration and natural synchronization with the driving laser pulses.

  7. Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yang, Linghui; Guo, Yin; Lin, Jiarui; Cui, Pengfei; Zhu, Jigui

    2018-02-01

    An interferometer technique based on temporal coherence function of femtosecond pulses is demonstrated for practical distance measurement. Here, the pulse-to-pulse alignment is analyzed for large delay distance measurement. Firstly, a temporal coherence function model between two femtosecond pulses is developed in the time domain for the dispersive unbalanced Michelson interferometer. Then, according to this model, the fringes analysis and the envelope extraction process are discussed. Meanwhile, optimization methods of pulse-to-pulse alignment for practical long distance measurement are presented. The order of the curve fitting and the selection of points for envelope extraction are analyzed. Furthermore, an averaging method based on the symmetry of the coherence function is demonstrated. Finally, the performance of the proposed methods is evaluated in the absolute distance measurement of 20 μ m with path length difference of 9 m. The improvement of standard deviation in experimental results shows that these approaches have the potential for practical distance measurement.

  8. Average spectral efficiency analysis of FSO links over turbulence channel with adaptive transmissions and aperture averaging

    NASA Astrophysics Data System (ADS)

    Aarthi, G.; Ramachandra Reddy, G.

    2018-03-01

    In our paper, the impact of adaptive transmission schemes: (i) optimal rate adaptation (ORA) and (ii) channel inversion with fixed rate (CIFR) on the average spectral efficiency (ASE) are explored for free-space optical (FSO) communications with On-Off Keying (OOK), Polarization shift keying (POLSK), and Coherent optical wireless communication (Coherent OWC) systems under different turbulence regimes. Further to enhance the ASE we have incorporated aperture averaging effects along with the above adaptive schemes. The results indicate that ORA adaptation scheme has the advantage of improving the ASE performance compared with CIFR under moderate and strong turbulence regime. The coherent OWC system with ORA excels the other modulation schemes and could achieve ASE performance of 49.8 bits/s/Hz at the average transmitted optical power of 6 dBm under strong turbulence. By adding aperture averaging effect we could achieve an ASE of 50.5 bits/s/Hz under the same conditions. This makes ORA with Coherent OWC modulation as a favorable candidate for improving the ASE of the FSO communication system.

  9. Optimal estimation of the diffusion coefficient from non-averaged and averaged noisy magnitude data.

    PubMed

    Kristoffersen, Anders

    2007-08-01

    The magnitude operation changes the signal distribution in MRI images from Gaussian to Rician. This introduces a bias that must be taken into account when estimating the apparent diffusion coefficient. Several estimators are known in the literature. In the present paper, two novel schemes are proposed. Both are based on simple least squares fitting of the measured signal, either to the median (MD) or to the maximum probability (MP) value of the Probability Density Function (PDF). Fitting to the mean (MN) or a high signal-to-noise ratio approximation to the mean (HS) is also possible. Special attention is paid to the case of averaged magnitude images. The PDF, which cannot be expressed in closed form, is analyzed numerically. A scheme for performing maximum likelihood (ML) estimation from averaged magnitude images is proposed. The performance of several estimators is evaluated by Monte Carlo (MC) simulations. We focus on typical clinical situations, where the number of acquisitions is limited. For non-averaged data the optimal choice is found to be MP or HS, whereas uncorrected schemes and the power image (PI) method should be avoided. For averaged data MD and ML perform equally well, whereas uncorrected schemes and HS are inadequate. MD provides easier implementation and higher computational efficiency than ML. Unbiased estimation of the diffusion coefficient allows high resolution diffusion tensor imaging (DTI) and may therefore help solving the problem of crossing fibers encountered in white matter tractography.

  10. Optimal estimation of the diffusion coefficient from non-averaged and averaged noisy magnitude data

    NASA Astrophysics Data System (ADS)

    Kristoffersen, Anders

    2007-08-01

    The magnitude operation changes the signal distribution in MRI images from Gaussian to Rician. This introduces a bias that must be taken into account when estimating the apparent diffusion coefficient. Several estimators are known in the literature. In the present paper, two novel schemes are proposed. Both are based on simple least squares fitting of the measured signal, either to the median (MD) or to the maximum probability (MP) value of the Probability Density Function (PDF). Fitting to the mean (MN) or a high signal-to-noise ratio approximation to the mean (HS) is also possible. Special attention is paid to the case of averaged magnitude images. The PDF, which cannot be expressed in closed form, is analyzed numerically. A scheme for performing maximum likelihood (ML) estimation from averaged magnitude images is proposed. The performance of several estimators is evaluated by Monte Carlo (MC) simulations. We focus on typical clinical situations, where the number of acquisitions is limited. For non-averaged data the optimal choice is found to be MP or HS, whereas uncorrected schemes and the power image (PI) method should be avoided. For averaged data MD and ML perform equally well, whereas uncorrected schemes and HS are inadequate. MD provides easier implementation and higher computational efficiency than ML. Unbiased estimation of the diffusion coefficient allows high resolution diffusion tensor imaging (DTI) and may therefore help solving the problem of crossing fibers encountered in white matter tractography.

  11. Comparison of Manual, Femtosecond Laser, and Precision Pulse Capsulotomy Edge Tear Strength in Paired Human Cadaver Eyes.

    PubMed

    Thompson, Vance M; Berdahl, John P; Solano, Joel M; Chang, David F

    2016-02-01

    To compare the anterior lens capsulotomy edge tear strength created by manual continuous curvilinear capsulorhexis (CCC), femtosecond laser capsulotomy (FSLC), and a new automated precision pulse capsulotomy (PPC) device. A 3-arm study in paired human cadaver eyes. A total of 44 eye specimens from 22 donors in the United States. Capsulotomy was performed in all eye specimens using manual CCC, a femtosecond laser (LenSx, Alcon, Fort Worth, TX), or an automated PPC device (Zepto, Mynosys Inc., Fremont, CA). The first study arm consisted of 8 pairs of eyes in which 1 eye received PPC and the fellow eye received FSLC. The second study arm consisted of 8 pairs of eyes, with 1 eye receiving PPC and the fellow eye receiving manual CCC. The third study arm consisted of 6 pairs of eyes, with 1 eye receiving a manual CCC and the fellow eye receiving FSLC. After phacoemulsification, 2 capsulotomy edge retractors attached to force transducers were used to stretch the capsulotomy edge of each eye and to measure the resisting force until the capsulotomy edge was torn. Capsulotomy edge tear strength in millinewtons. The PPC edge tear strength was greater than that of FSLC for all 8 pairs of eyes by an average factor of 3.1-fold (PPC mean 73.3±24.9 mN vs. femtosecond laser mean 26.1±6.8 mN; P = 0.012, Wilcoxon matched-pairs, signed-ranks test). The PPC tear strength was greater than that of manual CCC for all 8 pairs of eyes by an average factor of 4.1-fold (PPC mean 95±35.2 mN vs. manual CCC mean 29.1±23.1 mN; P = 0.012, Wilcoxon matched-pairs signed-ranks test). There was no significant difference in the tear strength of capsulotomies produced by manual CCC (mean 21.3±4.9 mN) and FSLC (mean 24.5±11.4 mN) (P = 0.75, Wilcoxon matched-pairs signed-ranks test). The strength of the PPC capsulotomy edge was significantly stronger than that produced by femtosecond laser or manual CCC. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights

  12. Opaque bubble layer incidence in Femtosecond laser-assisted LASIK: comparison among different flap design parameters.

    PubMed

    Mastropasqua, Leonardo; Calienno, Roberta; Lanzini, Manuela; Salgari, Niccolò; De Vecchi, Sergio; Mastropasqua, Rodolfo; Nubile, Mario

    2017-06-01

    The purpose of this study was to evaluate the incidence of opaque bubble layer (OBL) in femtosecond laser-assisted in situ keratomileusis (LASIK) flaps created with the support of Visumax Carl Zeiss femtosecond laser, planned with different flap diameters (7.90, 8.0, and 8.20 mm) and the same laser energy and power settings. Incidence of intraoperative OBL in flaps of consecutive 108 patients (216 eyes) subjected to bilateral femtosecond-assisted LASIK was considered. Flap creation was performed with the same laser design parameters (spot distance and energy offset) and different presetting diameters of 7.90 mm (72 eyes, group 1), 8 mm (72 eyes, group 2), and 8.20 mm (72 eyes, group 3). The incidence of OBL was considered and its extension was reported measuring involvement of different four corneal flap quadrants in which was theoretically divided the entire flap area; based on these data, OBL presence was classified as none (no evidence of OBL), minimal (minimal presence in not more that one quadrants corneal flap), mild (OBL presence in almost two or three quadrants without tendency to invade central cornea), and moderate (OBL presence in almost three quadrants with tendency to invade central cornea). In group 1, the incidence of OBL was of 23.6 % (17 eyes) with a mild/moderate presence; in group 2, incidence was 20.8 % (15 eyes) with mild presence. Group 3 presented a reduced OBL incidence (4.1 %, 3 eye) with a minimal presence. No statistically significant difference was found between group 1 and 2 (p = 0.8414).We found statistically significant differences between group 1 and group 3 (p = 0.0012) and between groups 2 and 3 (p = 0.0044). A significant reduction and extension of OBL incidence were evident when LASIK flap settings diameter was increased, and flap edge was closer to the contact glass border; this is probably consequent to a more effective gas dispersion outside of corneal flap.

  13. Probing adsorbate-substrate coupling: The isotope effect in femtosecond laser-induced desorption

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel Patrick

    The coupling between adsorbed molecules and a substrate constitutes one of the most fundamental interactions in surface science. In this thesis, we present investigations of the nature of adsorbate-substrate energy flow in the model system of O2/Pd(111). Our studies have been conducted using excitation of the system by femtosecond laser pulses. Such radiation provides a distinctive tool to examine adsorbate-substrate coupling by producing substrate excitation in which the electronic and lattice degrees of freedom, each separately in approximate internal thermal equilibrium, can be driven significantly out of equilibrium with one another. One can thus induce high substrate electronic temperatures with a cold lattice, which facilitates the study of non-adiabatic coupling of substrate electronic excitation to adsorbate nuclear motion. Particular attention has been focused on a comparative investigation of the behavior of the two oxygen isotopes 16O2 and 18O2. It is found that the lighter isotope of oxygen desorbs under femtosecond laser excitation with a probability of 1.8 +/- 0.3 times higher than the heavier species. This large isotope effect implies that the desorption process occurs with the adsorbate system significantly out of thermal equilibrium with both the electronic and lattice degrees of freedom of the substrate. A pronounced isotope effect is indeed a hallmark of the nonthermal processes associated with the conventional photochemistry that occurs for lower laser excitation powers. Despite this qualitative agreement with the behavior expected for a conventional photochemistry, the measurements reported here cannot be reconciled with the standard models of such photochemical processes. To understand the isotope results, along with other previous findings for femtosecond laser-induced processes, one turns to a quasi-equilibrium model that treats the distinct degrees of freedom as internally thermalized, while allowing their temperatures to couple over a

  14. Fabrication of microchannels in fused silica using femtosecond Bessel beams

    SciTech Connect

    Yashunin, D. A.; Malkov, Yu. A.; Mochalov, L. A.; Stepanov, A. N.

    2015-09-07

    Extended birefringent waveguiding microchannels up to 15 mm long were created inside fused silica by single-pulse irradiation with femtosecond Bessel beams. The birefringent refractive index change of 2–4 × 10{sup −4} is attributed to residual mechanical stress. The microchannels were chemically etched in KOH solution to produce 15 mm long microcapillaries with smooth walls and a high aspect ratio of 1:250. Bessel beams provide higher speed of material processing compared to conventional multipulse femtosecond laser micromachining techniques and permit simple control of the optical axis direction of the birefringent waveguides, which is important for practical applications [Corrielli et al., “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014)].

  15. Time-Resolved Femtosecond Laser Desorption from Alkali Halide Crystals.

    SciTech Connect

    Joly, Alan G.; Hess, Wayne P.; Beck, Kenneth M.; Claude R. Phipps

    2004-10-15

    The positive ion yield as a function of delay between ultraviolet femtosecond pulse pairs for four alkali halide single crystals has been measured. Two-pulse correlation allows direct observation of solid state and surface dynamics on an ultrafast timescale. The ion yield from 265nm irradiated NaBr, KC1, KBr, and K1 depends critically on the time delay between the two sub-threshold pulses. Following irradiation of single crystal NaBr and KC1, the positive ion desorption yield displays three distinct features; a coherence peak, followed by rise, and decay features. In contrast, the yield of K+ from KBr displays only the coherence peak and picosecond decay features while the yield from K1 shows only the coherence feature. The data suggest that although the nanosecond ion desorption mechanism may be dominated by defect photoabsorption, significant electron-hole pair production may contribute to the desorption mechanism following femtosecond excitation.

  16. Time-resolved femtosecond laser desorption from alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Joly, Alan G.; Hess, Wayne P.; Beck, Kenneth M.

    2004-09-01

    The positive ion yield as a function of delay between ultraviolet femtosecond pulse pairs for four alkali halide single crystals has been measured. Two-pulse correlation allows direct observation of solid state and surface dynamics on an ultrafast timescale. The ion yield from 265 nm irradiated NaBr, KCl, KBr, and KI depends critically on the time delay between the two sub-threshold pulses. Following irradiation of single crystal NaBr and KCl, the positive ion desorption yield displays three distinct features; a coherence peak, followed by rise, and decay features. In contrast, the yield of K+ from KBr displays only the coherence peak and picosecond decay features while the yield from KI shows only the coherence feature. The data suggest that although the nanosecond ion desorption mechanism may be dominated by defect photoabsorption, significant electron-hole pair production may contribute to the desorption mechanism following femtosecond excitation.

  17. Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass

    NASA Astrophysics Data System (ADS)

    Rudolph, P.; Bonse, J.; Krüger, J.; Kautek, W.

    Laser ablation with femtosecond pulses (130 fs, wavelength 800 nm, repetition rate 2 Hz) was compared with nanosecond-pulse ablation (10 ns, wavelength 266 nm, repetition rate 2.5 Hz) of bariumalumoborosilicate glass in air using the direct focusing technique. Different ablation thresholds and heat-affected zones were observed. The lateral and vertical machining precision was evaluated. Single nanosecond laser pulses in the far UV resulted in a bubble or a circular hole in the centre of the illuminated spot, depending on the applied fluence. The ablation behaviour in the case of near-IR femtosecond pulses contrasted to this. Bubble formation was not detected. It needed repeated pulses at the same spot to modify the surface until material removal could be observed (incubation). Cavity dimensions of less than the beam diameter were achieved in this case.

  18. In vivo manipulation of biological systems with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Nishimura, Nozomi; Schaffer, Chris B.; Kleinfeld, David

    2006-05-01

    Femtosecond laser pulses have the unique ability to deposit energy into a microscopic volume in the bulk of a material that is transparent to the laser wavelength without affecting the surface of the material. Here we review the use of this capability to disrupt specifically targeted structures in live cells and animals with the goal of elucidating function and modeling disease states. Particular attention will be paid to recent work that uses femtosecond laser disruption to injure cerebral blood vessels that lie below the brain surface in a live, anesthetized rat. By varying the degree of injury, the vessel can be made to leak blood plasma, to rupture, or to clot. This technique thus provides a versatile model of cerebrovascular disorders such as small-scale stroke.

  19. Direct femtosecond laser waveguide writing inside zinc phosphate glass.

    PubMed

    Fletcher, Luke B; Witcher, Jon J; Troy, Neil; Reis, Signo T; Brow, Richard K; Krol, Denise M

    2011-04-25

    We report the relationship between the initial glass composition and the resulting microstructural changes after direct femtosecond laser waveguide writing with a 1 kHz repetition rate Ti:sapphire laser system. A zinc polyphosphate glass composition with an oxygen to phosphorus ratio of 3.25 has demonstrated positive refractive index changes induced inside the focal volume of a focusing microscope objective for laser pulse energies that can achieve intensities above the modification threshold. The permanent photo-induced changes can be used for direct fabrication of optical waveguides using single scan writing techniques. Changes to the localized glass network structure that produce positive changes in the refractive index of zinc phosphate glasses upon femtosecond laser irradiation have been studied using scanning confocal micro-Raman and fluorescence spectroscopy.

  20. Optical synchronization system for femtosecond X-ray sources

    DOEpatents

    Wilcox, Russell B [El Cerrito, CA; Holzwarth, Ronald [Munich, DE

    2011-12-13

    Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  1. Intraband and interband absorption of femtosecond laser pulses in copper

    NASA Astrophysics Data System (ADS)

    Fisher, D.; Fraenkel, M.; Zinamon, Z.; Henis, Z.; Moshe, E.; Horovitz, Y.; Luzon, E.; Maman, S.; Eliezer, S.

    2005-09-01

    We investigated the optical properties of pure copper irradiated by a femtosecond laser pulse. Self-absorption of 50-fs laser pulses at 800 nm and 400 nm wavelengths (below and above the interband absorption threshold, respectively) is studied for peak laser intensities up to 1015 W/cm2. Theoretical description of laser interaction with copper target is developed, solving numerically the energy balance equations for electron and ion subsystems together with Maxwell equations for laser radiation field inside the target. The theory accounts for both intraband and interband absorption mechanisms. We treated in detail the changes in electron structure and distribution function with an increase in electron temperature, as well as the ensuing changes in thermodynamic properties, collision frequencies, optical and transport coefficients. Experimental work on self-absorption of femtosecond laser pulses in copper targets at 800 nm and 400 nm wavelengths is ongoing. Results for 800 nm wavelength are reported. Theory and experiment are in good agreement.

  2. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    PubMed

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.

  3. Surface treatment of CFRP composites using femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Oliveira, V.; Sharma, S. P.; de Moura, M. F. S. F.; Moreira, R. D. F.; Vilar, R.

    2017-07-01

    In the present work, we investigate the surface treatment of carbon fiber-reinforced polymer (CFRP) composites by laser ablation with femtosecond laser radiation. For this purpose, unidirectional carbon fiber-reinforced epoxy matrix composites were treated with femtosecond laser pulses of 1024 nm wavelength and 550 fs duration. Laser tracks were inscribed on the material surface using pulse energies and scanning speeds in the range 0.1-0.5 mJ and 0.1-5 mm/s, respectively. The morphology of the laser treated surfaces was investigated by field emission scanning electron microscopy. We show that, by using the appropriate processing parameters, a selective removal of the epoxy resin can be achieved, leaving the carbon fibers exposed. In addition, sub-micron laser induced periodic surface structures (LIPSS) are created on the carbon fibers surface, which may be potentially beneficial for the improvement of the fiber to matrix adhesion in adhesive bonds between CFRP parts.

  4. [Malyugin ring for intraoperative miosis in femtosecond laser phacovitrectomy].

    PubMed

    Moya Romero, J O; Ochoa Máynez, G A; Cantero Vergara, M A; Gómez Cortes, C A

    2015-09-01

    To evaluate the usefulness of the Malyugin ring in poor pupil dilation during phacoemulsification assisted with femtosecond laser with 23 gauge pars plana vitrectomy. A 57-year-old female with cataract and vitreous hemorrhage, and poor pupil dilation (5.5mm). The phacoemulsification assisted with femtosecond laser, using Malyugin ring after capsulorrhexis, followed by pars plana vitrectomy, and removing at the end without complications. A successfull intraoperative pupil dilation was achieved without complications, with a final BCVA of 20/40. The Malyugin ring is an effective alternative in cases with poor pupil dilation in femtophacovitrectomy, preserving the anatomical and functional integrity. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  5. Rapid microfabrication of transparent materials using filamented femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Butkus, S.; Gaižauskas, E.; Paipulas, D.; Viburys, Ž.; Kaškelyė, D.; Barkauskas, M.; Alesenkov, A.; Sirutkaitis, V.

    2014-01-01

    Microfabrication of transparent materials using femtosecond laser pulses has showed good potential towards industrial application. Maintaining pulse energies exceeding the critical self-focusing threshold by more than 100-fold produced filaments that were used for micromachining purposes. This article demonstrates two different micromachining techniques using femtosecond filaments generated in different transparent media (water and glass). The stated micromachining techniques are cutting and welding of transparent samples. In addition, cutting and drilling experiments were backed by theoretical modelling giving a deeper insight into the whole process. We demonstrate cut-out holes in soda-lime glass having thickness up to 1 mm and aspect ratios close to 20, moreover, the fabrication time is of the order of tens of seconds, in addition, grooves and holes were fabricated in hardened 1.1 mm thick glass (Corning Gorilla glass). Glass welding was made possible and welded samples were achieved after several seconds of laser fabrication.

  6. Beam wandering of femtosecond laser filament in air.

    PubMed

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-05

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc.

  7. Bilateral macular injury caused by a femtosecond laser.

    PubMed

    de Juan-Marcos, L; Cañete-Campos, C; Cruz-González, F; López-Corral, A; Hernández-Galilea, E

    2014-11-01

    We describe the case of a 35-year-old man who arrived in the Emergency Department with bilateral macular injury caused by accidental exposure to an industrial femtosecond laser. Workers operating industrial lasers must protect their eyes properly when handling these devices. Otherwise, retina damage may occur which usually is recoverable. However, sometimes this damage causes permanent visual loss. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  8. Oil-free hyaluronic acid matrix for serial femtosecond crystallography

    NASA Astrophysics Data System (ADS)

    Sugahara, Michihiro; Song, Changyong; Suzuki, Mamoru; Masuda, Tetsuya; Inoue, Shigeyuki; Nakane, Takanori; Yumoto, Fumiaki; Nango, Eriko; Tanaka, Rie; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Numata, Keiji; Iwata, So

    2016-04-01

    The grease matrix was originally introduced as a microcrystal-carrier for serial femtosecond crystallography and has been expanded to applications for various types of proteins, including membrane proteins. However, the grease-based matrix has limited application for oil-sensitive proteins. Here we introduce a grease-free, water-based hyaluronic acid matrix. Applications for proteinase K and lysozyme proteins were able to produce electron density maps at 2.3-Å resolution.

  9. Environmentally-stable all-normal-dispersion femtosecond fiber laser

    PubMed Central

    Chong, Andy; Renninger, William H.; Wise, Frank W.

    2011-01-01

    We demonstrate a mode-locked all-normal-dispersion ytterbium-doped fiber laser constructed with polarization-maintaining fibers. Spectral filtering of a chirped pulse in the cavity, along with a semiconductor saturable absorber, produce self-starting femtosecond mode-locked operation with large normal dispersion. Environmentally-stable generation of 2 nJ and 300-fs pulses is achieved. PMID:18483515

  10. Femtosecond laser-assisted lamellar keratoplasty: early results.

    PubMed

    Mosca, Luigi; Fasciani, Romina; Tamburelli, Ciro; Buzzonetti, Luca; Guccione, Laura; Mandarà, Erika; Balestrazzi, Emilio

    2008-07-01

    To evaluate the outcomes and safety of lamellar keratoplasty (LK) assisted by a femtosecond laser. Twenty-one eyes of 21 patients affected by different corneal pathologies (5 posttraumatic corneal scar, 3 postkeratitis corneal leucoma, and 13 keratoconus) underwent LK procedures by using a femtosecond laser. The mean thinnest corneal thickness, evaluated with ultrasound corneal pachymetry and with confocal microscopy, was 434.19 +/- 62.60 (SD) microm (range, 333-548 microm). Mean preoperative uncorrected visual acuity was 0.09 +/- 0.28 SD and mean preoperative best spectacle-corrected visual acuity was 0.28 +/- 0.15 SD. A femtosecond laser was used to perform corneal cuts on both donor and recipient corneas. The donor corneal lamella diameters were 0.20-mm larger and thicker than the recipient to restore a physiologic corneal thickness and shape: mean donor diameter was 8.34 +/- 0.28 mm (range, 8.2-8.7 mm) and mean thickness was 352 +/- 40.27 microm (range, 220-400 microm). Mean follow-up was 20.86 +/- 5.76 months (range, 12-30 months). Early postoperative evaluation showed a clear graft in all cases. A normal corneal pattern topography and a physiologic thickness (mean corneal pachymetry, 542.48 +/- 33.20 microm) and transparency were restored. Twelve months after surgery, the mean postoperative uncorrected visual acuity was 0.45 +/- 0.34 SD, and the mean best spectacle-corrected visual acuity was 0.63 +/- 0.16 SD. Although the numbers in our study are small, our early results indicate that femtosecond laser-assisted lamellar keratoplasty shows promise as a safe and effective surgical choice in the treatment of various corneal pathologies.

  11. Molecular vibrational dynamics in ethanol studied by femtosecond CARS

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Sheng; Zhang, Zhibin; Dong, Zhiwei; Chen, Deying; Zhang, Zhonghua; Xia, Yuanqin

    2015-01-01

    Femtosecond time-resolved coherent anti-Stokes Raman spectroscopy (CARS) is utilized to study the ultrafast vibrational dynamics in ethanol at room temperature. The beat wavenumbers between Raman modes of Csbnd H stretch modes (from 2800 cm-1 to 3000 cm-1) in ethanol are excited and detected by varying wavelengths of the laser pulses and detection window. The coherence relaxation times of the Csbnd H stretch mode in ethanol are measured.

  12. Femtosecond laser surface patterning of steel and titanium alloy

    NASA Astrophysics Data System (ADS)

    Milovanović, D. S.; Gaković, B.; Radu, C.; Zamfirescu, M.; Radak, B.; Petrović, S.; Rogić Miladinović, Z.; Mihailescu, I. N.

    2014-09-01

    In this work, we present the results obtained by femtosecond laser processing of AISI D2 steel and the widely applicable titanium-based alloy, Ti6Al4V. Patterning the materials’ surfaces was done by a Ti:sapphire system at 775 nm wavelength and 200 fs pulse duration, while varying the output pulse energies and the scanning speed. The formation of laser-induced periodical surface structures were found for both materials.

  13. High precision patterning of ITO using femtosecond laser annealing process

    NASA Astrophysics Data System (ADS)

    Cheng, Chung-Wei; Lin, Cen-Ying

    2014-09-01

    High precision patterning of crystalline indium tin oxide (c-ITO) patterns on amorphous ITO (a-ITO) thin films by femtosecond laser-induced crystallization with a Gaussian beam profile followed by chemical etching is demonstrated. In the proposed approach, the a-ITO thin film is selectively transformed into a c-ITO structure via a low heat affect zone and the well-defined thresholds (ablation and crystallization) supplied by the femtosecond laser pulse. The experimental results show that by careful control of the laser fluence above the crystallization threshold, c-ITO patterns with controllable line widths and ridge-free characteristics can be accomplished. By careful control of the laser fluence above the ablation threshold, fast fabrication of the two parallel sub-micro c-ITO line patterns using a single femtosecond laser beam and single scanning path can be achieved. Along-length sub-micro c-ITO line pattern is fabricated, and the feasibility of fabricating c-ITO patterns is confirmed, which are expected to be used in micro-electronics devices.

  14. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    SciTech Connect

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael

    2014-10-06

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundredsmore » of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.« less

  15. Formation of aggregated nanoparticle spheres through femtosecond laser surface processing

    NASA Astrophysics Data System (ADS)

    Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.

    2017-10-01

    A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.

  16. Disclosing dark mode of femtosecond plasmon with photoemission electron microscopy

    NASA Astrophysics Data System (ADS)

    Ji, Boyu; Wang, Qian; Song, Xiaowei; Tao, Haiyan; Dou, Yinping; Gao, Xun; Hao, Zuoqiang; Lin, Jingquan

    2017-10-01

    The plasmonics dark mode of metal nanorings has potential in the field of e.g. sensing and surface-enhanced Raman spectroscopy (SERS). Most of the investigations on the plasmonics dark mode in a nanoring have been on far-field spectroscopy or near field simulations so far. In this paper, the near-field distribution of the femtosecond dark mode plasmon on an individual gold nanoring is mapped non-invasively using photoemission electron microscopy (PEEM). The experimental results show that strong electron emission distributions in the PEEM images under different polarization directions and wavelengths of femtosecond light are in qualitative agreement with the pattern of quadruple plasmon mode calculated using finite-difference time-domain simulation. In the meantime, it is found that there is a discrepancy in hot spot distribution between the observed PEEM image and the simulated photoelectron emission pattern, which is attributed to some possible factors, such as band structure near the Fermi level of the nanoring material and the temporal profile of femtosecond laser pulse. Real-space near-field imaging of the plasmonics dark mode provides a fundamental understanding of the near field and paves the way for further advancing the applications of dark mode in the field of e.g. sensing and SERS.

  17. 18 CFR 301.5 - Changes in Average System Cost methodology.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Changes in Average System Cost methodology. 301.5 Section 301.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE...

  18. Visible-range hybrid femtosecond systems based on a XeF(C-A) amplifier: state of the art and prospects

    SciTech Connect

    Alekseev, S V; Aristov, A I; Grudtsyn, Ya V; Ivanov, N G; Koval'chuk, B M; Losev, B F; Mamaev, S B; Mesyats, Gennadii A; Mikheev, L D; Panchenko, Yu N; Polivin, A V; Stepanov, S G; Ratakhin, N A; Yalovoi, V I; Yastremskii, Arkadii G

    2013-03-31

    Results of experimental and theoretical investigations of the hybrid (solid state/gas) visible-range femtosecond systems THL-100 (IHCE SB RAS) and THL-30 (P.N. Lebedev Physics Institute) based on a Ti : sapphire front end and a photochemical XeF(C-A) amplifier are reported. The front end generates 50-fs optical pulses with the second-harmonic (475 nm) energy of up to 5 mJ. The active medium of the amplifier is produced in a mixture XeF{sub 2} - N{sub 2} subjected to VUV radiation of xenon excited by an electron beam. The computer model is developed for calculating parameters of the XeF(C - A) amplifier, which is in a good agreement with experiments. In the THL-100 system with the 25-cm output aperture of the XeF(C-A) amplifier, a record visible-range femtosecond radiation peak power of 14 GW was obtained in a 50-fs pulse with the time contrast of above 10{sup 8}. The measured power of an amplified spontaneous emission of the XeF(C-A) amplifier in the angle of 0.2 mrad was 32 W. The result obtained testifies that the hybrid approach to the development of ultrahigh-power systems provides a high time contrast of radiation (greater than 10{sup 12} for the projected peak power of 100 TW). In the THL-30 system, prospects for shortening an amplified femtosecond pulse are studied and it is experimentally shown that by compensating a third-order dispersion in a hybrid system one can obtain pulses with duration of at least 27 fs with a recompression of amplified pulses in bulk glass. Also, a new phenomenon was observed of spectrum broadening and self-compression of negatively chirped femtosecond pulses in the visible range under a nonlinear interaction of wide-aperture beams with fused silica. This result opens prospects for development of the new methods of selfcompression for femtosecond pulses that are lacking physical limitations on pulse energy and realisation of self-compression of amplified pulses in the output window of the XeF(C-A) amplifier. (extreme light fields

  19. On thermophysical effects on the surface of functional nanostructured materials obtained with the application of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Babenko, D. D.; Dmitriev, A. S.; Makarov, P. G.; Mikhailova, I. A.

    2017-11-01

    In recent years, a great scientific and practical interest is caused by functional energy surfaces, modified for certain technological problems. The urgency of the work is to develop promising technologies for thermal and nuclear power engineering, methods for converting solar energy, cooling low-current and high-current electronics devices, energy storage and transport systems on the basis of studying and developing new ways of creating and modifying the functional surfaces of heat exchange and other devices. Modified functional surfaces must have a number of new mechanical and thermophysical properties, including mechanical strength, a new surface morphology for controlling the processes of wetting and spreading working fluids on them, and have high efficiency from the viewpoint of thermohydrodynamic processes of flow and heat and mass transfer of working fluids to them. Among the various ways of modifying surfaces, recently, the method of surface exposure to femtosecond laser pulses (FLI) has become widespread. The technology of femtosecond laser surface treatment (FLPO) of solid materials has shown high efficiency, reliability, high productivity and a huge variety of modification methods. The paper presents new results on the study of thermophysical phenomena - the wetting and spreading of drops of various liquids, the study of the hysteresis of the contact angle, the study of evaporation and boiling processes on functional energy surfaces modified by femtosecond laser pulses. It is shown that in the majority of cases the presence of regular or stochastic nanostructures on the surface leads to a very strong change in the basic properties of the surface, which makes it possible to use such a technology to quickly and efficiently modify and obtain functional energy surfaces for certain predetermined purposes.

  20. 40 CFR 91.1304 - Averaging.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Averaging. 91.1304 Section 91.1304... Averaging. (a) A manufacturer may use averaging across engine families to demonstrate a zero or positive credit balance for a model year. Positive credits to be used in averaging may be obtained from credits...