DOE Office of Scientific and Technical Information (OSTI.GOV)
Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.
Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less
Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.; ...
2016-12-26
Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentine, Anthony L.; Cox, Jonathan Albert
Methods and systems for stabilizing a resonant modulator include receiving pre-modulation and post-modulation portions of a carrier signal, determining the average power from these portions, comparing an average input power to the average output power, and operating a heater coupled to the modulator based on the comparison. One system includes a pair of input structures, one or more processing elements, a comparator, and a control element. The input structures are configured to extract pre-modulation and post-modulation portions of a carrier signal. The processing elements are configured to determine average powers from the extracted portions. The comparator is configured to comparemore » the average input power and the average output power. The control element operates a heater coupled to the modulator based on the comparison.« less
Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P.W.
Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less
Multi-Watt Average Power Nanosecond Microchip Laser and Power Scalability Estimates
NASA Technical Reports Server (NTRS)
Konoplev, Oleg A.; Vasilyev, Alexey A.; Seas, Antonios A.; Yu, Anthony W.; Li, Steven X.; Shaw, George B.; Stephen, Mark A.; Krainak, Michael A.
2011-01-01
We demonstrated up to 2 W average power, CW-pumped, passively- Q-switched, 1.5 ns monolithic MCL with single-longitudinal mode-operation. We discuss laser design issues to bring the average power to 5-1 OW and beyond.
Integrated unaligned resonant modulator tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zortman, William A.; Lentine, Anthony L.
Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, frommore » the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.« less
NASA Technical Reports Server (NTRS)
Chen, C. J.; Bhanji, A. M.; Russell, G. R.
1978-01-01
A copper laser utilizing copper bromide as a lasant and neon as the buffer gas has been operated at an average laser power of between 16 and 19.5 W for a period of 68 h. Lasing was attained at a pulsing rate of 16.7 kHz in a quartz discharge tube 2.5-cm in diameter with an electrode separation of 200 cm. The laser energy/pulse and peak power/pulse corresponding to an average power of 19.5 W are 1.2 mJ and 30 kW, respectively. The ratio of laser power at 510.6 and 578.2 nm varied from 3.9 to 1.1 corresponding to a total average laser power of 4 and 18 W, respectively. The highest wall plug and capacitor efficiency measured during 68 h of operation were 0.7 and 1.1%, respectively.
Characterization of advanced electric propulsion systems
NASA Technical Reports Server (NTRS)
Ray, P. K.
1982-01-01
Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.
Measuring radio-signal power accurately
NASA Technical Reports Server (NTRS)
Goldstein, R. M.; Newton, J. W.; Winkelstein, R. A.
1979-01-01
Absolute value of signal power in weak radio signals is determined by computer-aided measurements. Equipment operates by averaging received signal over several-minute period and comparing average value with noise level of receiver previously calibrated.
Operational frequency stability of rubidium and cesium frequency standards
NASA Technical Reports Server (NTRS)
Lavery, J. E.
1973-01-01
The frequency stabilities under operational conditions of several commercially available rubidium and cesium frequency standards were determined from experimental data for frequency averaging times from 10 to the 7th power s and are presented in table and graph form. For frequency averaging times between 10 to the 5th power and 10 to the 7th power s, the rubidium standards tested have a stability of between 10 to the minus 12th power and 5 x 10 to the minus 12th power, while the cesium standards have a stability of between 2 x 10 to the minus 13th power and 5 x 10 to the minus 13th power.
IEEE Conference Record of 1976 Twelfth Modulator Symposium, New York City, 4-5 February 1976.
1976-01-01
itches; ig Power Switches for Intermittent Operation; High Power M’ dulators for Intermittent Operation; Charging Systems; Circuit Techniques; Line Type... INTERMITTENT OPERATION Adiabatic Mode Operation Of Thyratrons For Megawatt Average Power Applications, John E. Creedon. Joseph W. McGowan. Anthon J...142 The SPS Fast Pulsed Magnet Systems. P. F Faugeras. E. Frick, C. G. Harrison, H. Kuhn
22 W average power multiterawatt femtosecond laser chain enabling 1019 W/cm2 at 100 Hz
NASA Astrophysics Data System (ADS)
Clady, R.; Azamoum, Y.; Charmasson, L.; Ferré, A.; Utéza, O.; Sentis, M.
2018-05-01
We measure the wavefront distortions of a high peak power ultrashort (23 fs) laser system under high average power load. After 6 min—100 Hz operation of the laser at full average power (> 22 W after compression), the thermally induced wavefront distortions reach a steady state and the far-field profile of the laser beam no longer changes. By means of a deformable mirror located after the vacuum compressor, we apply a static pre-compensation to correct those aberrations allowing us to demonstrate a dramatic improvement of the far-field profile at 100 Hz with the reduction of the residual wavefront distortions below λ/16 before focusing. The applied technique provides 100 Hz operation of the femtosecond laser chain with stable pulse characteristics, corresponding to peak intensity above 1019 W/cm2 and average power of 19 W on target, which enables the study of relativistic optics at high repetition rate using a moderate f-number focusing optics ( f/4.5).
Recent developments in high average power driver technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prestwich, K.R.; Buttram, M.T.; Rohwein, G.J>
1979-01-01
Inertial confinement fusion (ICF) reactors will require driver systems operating with tens to hundreds of megawatts of average power. The pulse power technology that will be required to build such drivers is in a primitive state of development. Recent developments in repetitive pulse power are discussed. A high-voltage transformer has been developed and operated at 3 MV in a single pulse experiment and is being tested at 1.5 MV, 5 kj and 10 pps. A low-loss, 1 MV, 10 kj, 10 pps Marx generator is being tested. Test results from gas-dynamic spark gaps that operate both in the 100 kVmore » and 700 kV range are reported. A 250 kV, 1.5 kA/cm/sup 2/, 30 ns electron beam diode has operated stably for 1.6 x 10/sup 5/ pulses.« less
The Power Plant Operating Data Based on Real-time Digital Filtration Technology
NASA Astrophysics Data System (ADS)
Zhao, Ning; Chen, Ya-mi; Wang, Hui-jie
2018-03-01
Real-time monitoring of the data of the thermal power plant was the basis of accurate analyzing thermal economy and accurate reconstruction of the operating state. Due to noise interference was inevitable; we need real-time monitoring data filtering to get accurate information of the units and equipment operating data of the thermal power plant. Real-time filtering algorithm couldn’t be used to correct the current data with future data. Compared with traditional filtering algorithm, there were a lot of constraints. First-order lag filtering method and weighted recursive average filtering method could be used for real-time filtering. This paper analyzes the characteristics of the two filtering methods and applications for real-time processing of the positive spin simulation data, and the thermal power plant operating data. The analysis was revealed that the weighted recursive average filtering method applied to the simulation and real-time plant data filtering achieved very good results.
Pal, Debasis; Ghosh, Aditi; Sen, Ranjan; Pal, Atasi
2016-08-10
A continuous-wave (CW) as well as quasi-continuous wave (QCW) thulium-doped all-fiber laser at 1.94 μm has been designed for targeting applications in urology. The thulium-doped active fiber with an octagonal-shaped inner cladding is pumped at 793 nm to achieve stable CW laser power of 10 W with 32% lasing efficiency (against launched pump power). The linear variation of laser power with pump offers a scope of further power scaling. A QCW operation with variation of duty cycle from 0.5% to 90%, repetition rate from 0.1 Hz to 1 kHz, and pulse width from 40 μs to 2 s has been presented. Laser power of 9.5 W in CW mode of operation and average power of 5.2 W with energy range of 10.4-104 mJ in QCW mode of operation has been employed to fragment calcium oxalate monohydrate kidney stones (size of 1.5-4 cm) having different colors and composition. Dependence of ablation threshold, ablation rate, and average fragmented particle size on the average power and energy has been studied. One minute of laser exposure results in fragmentation of a stone surface with ablation rate of 8 mg/min having minimum particle size of 6.54 μm with an average size of 20-100 μm ensuring the natural removal of fragmented parts through the urethra.
1.9 μm square-wave passively Q-witched mode-locked fiber laser.
Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Wang, Furen; Zhang, Jing; Wang, Chengbo; Jiang, Huilin
2018-05-14
We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.
NASA Astrophysics Data System (ADS)
Sakimura, Takeshi; Watanabe, Yojiro; Ando, Toshiyuki; Kameyama, Shumpei; Asaka, Kimio; Tanaka, Hisamichi; Yanagisawa, Takayuki; Hirano, Yoshihito; Inokuchi, Hamaki
2012-11-01
We have developed a 1.5-μm eye-safe wavelength high average power laser amplifier using an Er,Yb:glass planar waveguide for coherent Doppler LIDAR. Large cooling surface of the planar waveguide enabled high average power pumping for Er,Yb:glass which has low thermal fracture limit. Nonlinear effects are suppressed by the large beam size which is designed by the waveguide thickness and the beam width of the planar direction. Multi-bounce optical path configuration and high-intensity pumping provide high-gain and high-efficient operation using three-level laser material. With pulsed operation, the maximum pulse energy of 1.9 mJ was achieved at the repetition rate of 4 kHz. Output average power of the amplified signal was 7.6W with the amplified gain of more than 20dB. This amplifier is suitable for coherent Doppler LIDAR to enhance the measurable range.
NASA Technical Reports Server (NTRS)
Nagano, S. (Inventor)
1979-01-01
A module failure isolation circuit is described which senses and averages the collector current of each paralled inverter power transistor and compares the collector current of each power transistor the average collector current of all power transistors to determine when the sensed collector current of a power transistor in any one inverter falls below a predetermined ratio of the average collector current. The module associated with any transistor that fails to maintain a current level above the predetermined radio of the average collector current is then shut off. A separate circuit detects when there is no load, or a light load, to inhibit operation of the isolation circuit during no load or light load conditions.
Diode-pumped continuous-wave and passively Q-switched Nd:GdLuAG laser at 1443.9 nm
NASA Astrophysics Data System (ADS)
Wu, Qianwen; Liu, Zhaojun; Zhang, Sasa; Cong, Zhenghua; Guan, Chen; Xue, Feng; Chen, Hui; Huang, Qingjie; Xu, Xiaodong; Xu, Jun; Qin, Zengguang
2017-12-01
We investigated the 1443.9 nm laser characteristics of Nd:GdLuAG crystal. Diode-end-pumping configuration was employed under both continuous-wave (CW) and passively Q-switched operations. For CW operation, the maximum average output power was 1.36 W with a slope efficiency of 15%. By using a V3+:YAG crystal as the saturable absorber, we obtained the maximum average output power of 164 mW under Q-switched operation. The corresponding pulse energy was 29.3 μJ and pulse duration was 59 ns.
Nonimaging concentrators for diode-pumped slab lasers
NASA Astrophysics Data System (ADS)
Lacovara, Philip; Gleckman, Philip L.; Holman, Robert L.; Winston, Roland
1991-10-01
Diode-pumped slab lasers require concentrators for high-average power operation. We detail the properties of diode lasers and slab lasers which set the concentration requirements and the concentrator design methodologies that are used, and describe some concentrator designs used in high-average power slab lasers at Lincoln Laboratory.
Forces associated with pneumatic power screwdriver operation: statics and dynamics.
Lin, Jia-Hua; Radwin, Robert G; Fronczak, Frank J; Richard, Terry G
2003-10-10
The statics and dynamics of pneumatic power screwdriver operation were investigated in the context of predicting forces acting against the human operator. A static force model is described in the paper, based on tool geometry, mass, orientation in space, feed force, torque build up, and stall torque. Three common power hand tool shapes are considered, including pistol grip, right angle, and in-line. The static model estimates handle force needed to support a power nutrunner when it acts against the tightened fastener with a constant torque. A system of equations for static force and moment equilibrium conditions are established, and the resultant handle force (resolved in orthogonal directions) is calculated in matrix form. A dynamic model is formulated to describe pneumatic motor torque build-up characteristics dependent on threaded fastener joint hardness. Six pneumatic tools were tested to validate the deterministic model. The average torque prediction error was 6.6% (SD = 5.4%) and the average handle force prediction error was 6.7% (SD = 6.4%) for a medium-soft threaded fastener joint. The average torque prediction error was 5.2% (SD = 5.3%) and the average handle force prediction error was 3.6% (SD = 3.2%) for a hard threaded fastener joint. Use of these equations for estimating handle forces based on passive mechanical elements representing the human operator is also described. These models together should be useful for considering tool handle force in the selection and design of power screwdrivers, particularly for minimizing handle forces in the prevention of injuries and work related musculoskeletal disorders.
NASA Astrophysics Data System (ADS)
Nakai, S.; Yamanaka, M.; Kitagawa, Y.; Fujita, K.; Heya, M.; Mima, K.; Izawa, Y.; Nakatsuka, M.; Murakami, M.; Ueda, K.; Sasaki, T.; Mori, Y.; Kanabe, T.; Hiruma, T.; Kan, H.; Kawashima, T.
2006-06-01
The typical specifications of the laser driver for a commercial IFE power plant are (1) total energy (MJ/pulse) with a tailored 20-40 ns pulse, (2) repetition operation (˜ 10 Hz), (3) efficiency (˜ 10%) with enough robustness and low cost. The key elements of the DPSSL driver technology are under development with HALNA. The HALNA 10 (High Average-power Laser for Nuclear-fusion Application) demonstrated 10 J × 10 Hz operation and the HALNA 100 (100 J × 10 Hz) is now under construction. By using the high average power and high intensity lasers, new industrial applications are being proceeded. The collaborative process for the development of high power laser with industry and for the industrial applications is effective and essential in the development of the laser driver for IFE power plant.
Yamazoe, Shogo; Katou, Masaki; Adachi, Takashi; Kasamatsu, Tadashi
2010-03-01
We report a palm-top-size femtosecond diode-pumped mode-locked Yb(+3):KY(WO(4))(2) solid-state laser with a semiconductor saturable absorber mirror utilizing soliton mode locking for shortening the cavity to 50 mm. An average output power of 680 mW and a pulse width of 162 fs were obtained at 1045 nm with a repetition rate of 2.8 GHz, which led to a peak power of 1.5 kW. Average power fluctuations of a modularized laser source were found to be +/-10% for the free-running 3000 h operation and +/-1% for the power-controlled 2000 h operation.
A novel high-speed PLC communication modem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, K.C.; Roy, S.
1992-10-01
In this paper an innovative design for power line carrier (PLC) communication using digitally modulated signals is presented. The major contribution consists of a new signal coupler to the power line that achieves a stable transmission bandwidth of 4 KHz on distribution lines over long distances. Preliminary field tests achieved half-duplex operation at 1.2 Kbaud over a distribution power line to the 120V network and back with a symbol error rate of about 2% using less than about 10 W of average transmitted power, which is considerably superior to the present state-of-the-art PLC modems. Full-duplex operation over 120/240V intra-building wiringmore » has also been field tested at 9.6 Kbaud over distances of 3000 ft. using 1W of average transmitted power.« less
NASA Astrophysics Data System (ADS)
Jiang, Wen; Wei, Boya
2018-02-01
The theory of intuitionistic fuzzy sets (IFS) is widely used for dealing with vagueness and the Dempster-Shafer (D-S) evidence theory has a widespread use in multiple criteria decision-making problems under uncertain situation. However, there are many methods to aggregate intuitionistic fuzzy numbers (IFNs), but the aggregation operator to fuse basic probability assignment (BPA) is rare. Power average (P-A) operator, as a powerful operator, is useful and important in information fusion. Motivated by the idea of P-A power, in this paper, a new operator based on the IFS and D-S evidence theory is proposed, which is named as intuitionistic fuzzy evidential power average (IFEPA) aggregation operator. First, an IFN is converted into a BPA, and the uncertainty is measured in D-S evidence theory. Second, the difference between BPAs is measured by Jousselme distance and a satisfying support function is proposed to get the support degree between each other effectively. Then the IFEPA operator is used for aggregating the original IFN and make a more reasonable decision. The proposed method is objective and reasonable because it is completely driven by data once some parameters are required. At the same time, it is novel and interesting. Finally, an application of developed models to the 'One Belt, One road' investment decision-making problems is presented to illustrate the effectiveness and feasibility of the proposed operator.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
... measure the energy efficiency, energy use or estimated annual operating cost of a covered product over an... the June 2010 NOPR would be used to determine the average power consumption of a residential central... residential central air conditioners, the unit's average power consumption during the heating season...
Enhancing Trust in the Smart Grid by Applying a Modified Exponentially Weighted Averages Algorithm
2012-06-01
2.1 Power Production and Distribution System . . . . . . . . . . . . . . . . . . . . 14 2.2 Steam Turbine Partial or Full Load Operating Limitations... turbines used for power production are designed to operate at specific frequencies and incur stress related damage when operating at higher or lower...2.2 illustrates the operational limits of a representative steam turbine with the following characteristics as measured in Hertz (Hz) [8]: • The
Compact and efficient 2μm Tm:YAP lasers with mechanical or passive Q-switching
NASA Astrophysics Data System (ADS)
Cole, Brian; Goldberg, Lew
2017-02-01
We describe compact and efficient Q-switched diode-pumped, Tm:YAP lasers operating at 1.94μm. Laser CW and Q-switched performance is compared, using both compact mechanical as well as passive Q-switching. For passive Q-switching using a Cr:ZnS saturable absorber (unsaturated transmission of 95%), the laser produced 0.5mJ pulses with an average power of 4.4W and 6.5kW peak power, and had an optical efficiency of 30%. A resonant mirror mechanical Q-switch resulted in a 4 kHz PRF pulse train, with an optical slope efficiency of 52% and an optical-to-optical conversion efficiency of 41%. The laser generated 1.5 mJ, 45 ns FWHM, 33kW peak power pulses, and 6.2W of average output. A second mechanically Q-switched laser operating at 10 kHz PRF produced 1mJ, 35kW peak power pulses, generating 11W average power with an optical efficiency of 46%, and a beam quality of 1.4x diffraction limit.
The JLab high power ERL light source
NASA Astrophysics Data System (ADS)
Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.
2006-02-01
A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source.
Passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm
NASA Astrophysics Data System (ADS)
Waritanant, Tanant; Major, Arkady
2018-02-01
A passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm was demonstrated with an intracavity birefringent filter as the wavelength selecting element. The average output powers achieved were 2.17 W and 2.18 W with optical-to-optical efficiency of 19.6% and 19.7%, respectively. The slope efficiencies were more than 31% at both output wavelengths. The pulse durations at the highest average output power were 10.3 ps and 8.4 ps, respectively. We believe that this is the first report of mode locking of a Nd:YVO4 laser operating at 1073 nm or 1085 nm lines.
A cladding-pumped, tunable holmium doped fiber laser.
Simakov, Nikita; Hemming, Alexander; Clarkson, W Andrew; Haub, John; Carter, Adrian
2013-11-18
We present a tunable, high power cladding-pumped holmium doped fiber laser. The laser generated >15 W CW average power across a wavelength range of 2.043 - 2.171 μm, with a maximum output power of 29.7 W at 2.120 μm. The laser also produced 18.2 W when operating at 2.171 µm. To the best of our knowledge this is the highest power operation of a holmium doped laser at a wavelength >2.15 µm. We discuss the significance of background losses and fiber design for achieving efficient operation in holmium doped fibers.
Bauer, Dominik; Zawischa, Ivo; Sutter, Dirk H; Killi, Alexander; Dekorsy, Thomas
2012-04-23
We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Semaan, Georges; Meng, Yichang; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois
2016-04-01
In this communication, we demonstrate a passive mode-locked Er:Yb co-doped double-clad fiber laser using a tapered microfiber topological insulator (Bi2Se3) saturable absorber (TISA). The topological insulator is drop-casted onto the tapered fiber and optically deposited by optical tweezer effect. We use a ring laser setup including the fabricated TISA. By carefully optimizing the cavity losses and output coupling ratio, the mode-locked laser can operate in L-band with a high average output power. At a maximum pump power of 5 W, we obtain the 91st harmonic mode-locking of soliton bunches with a 3dB spectral bandwidth of 1.06nm, a repetition rate of 640.9 MHz and an average output power of 308mW. As far as we know, this is the highest output power yet reported of a mode-locked fiber laser operating with a TISA.
The trapped-particle instability in the Boeing 1kW FEL oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, L.; Blau, J.; Colson, W.B.
1995-12-31
The new design for the Boeing High Average Power Free Electron Laser will operate at 1KW average power (0.63 {mu}m) with a peak current of 132A. Simulations are used to investigate the trapped-particle instability and diffraction effects. Incorporating large desynchronism may prove to be a useful method of controlling the trapped-particle instability.
Kilohertz Pulse Repetition Frequency Slab Ti:sapphire Lasers with High Average Power (10 W)
NASA Astrophysics Data System (ADS)
Wadsworth, William J.; Coutts, David W.; Webb, Colin E.
1999-11-01
High-average-power broadband 780-nm slab Ti:sapphire lasers, pumped by a kilohertz pulse repetition frequency copper vapor laser (CVL), were demonstrated. These lasers are designed for damage-free power scaling when pumped by CVL s configured for maximum output power (of order 100 W) but with poor beam quality ( M 2 300 ). A simple Brewster-angled slab laser side pumped by a CVL produced 10-W average power (1.25-mJ pulses at 8 kHz) with 4.2-ns FWHM pulse duration at an absolute efficiency of 15% (68-W pump power). Thermal lensing in the Brewster slab laser resulted in multitransverse mode output, and pump absorption was limited to 72% by the maximum doping level for commercially available Ti:sapphire (0.25%). A slab laser with a multiply folded zigzag path was therefore designed and implemented that produced high-beam-quality (TEM 00 -mode) output when operated with cryogenic cooling and provided a longer absorption path for the pump. Excessive scattering of the Ti:sapphire beam at the crystal surfaces limited the efficiency of operation for the zigzag laser, but fluorescence diagnostic techniques, gain measurement, and modeling suggest that efficient power extraction ( 15 W TEM 00 , 23% efficiency) from this laser would be possible for crystals with an optical quality surface polish.
Magnetically operated beam dump for dumping high power beams in a neutral beamline
Dagenhart, W.K.
1984-01-27
It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.
Demirbas, Umit; Baali, Ilyes; Acar, Durmus Alp Emre; Leitenstorfer, Alfred
2015-04-06
We demonstrate continuous-wave (cw), cw frequency-doubled, cw mode-locked and Q-switched mode-locked operation of multimode diode-pumped Cr:LiCAF lasers with record average powers. Up to 2.54 W of cw output is obtained around 805 nm at an absorbed pump power of 5.5 W. Using intracavity frequency doubling with a BBO crystal, 0.9 W are generated around 402 nm, corresponding to an optical-to-optical conversion efficiency of 12%. With an intracavity birefringent tuning plate, the fundamental and frequency-doubled laser output is tuned continuously in a broad wavelength range from 745 nm to 885 nm and from 375 to 440 nm, respectively. A saturable Bragg reflector is used to initiate and sustain mode locking. In the cw mode-locked regime, the Cr:LiCAF laser produces 105-fs long pulses near 810 nm with an average power of 0.75 W. The repetition rate is 96.4 MHz, resulting in pulse energies of 7.7 nJ and peak powers of 65 kW. In Q-switched mode-locked operation, pulses with energies above 150 nJ are generated.
Experimental investigation of high power pulsed 2.8 μm Er3+-doped ZBLAN fiber lasers
NASA Astrophysics Data System (ADS)
Shen, Yanlong; Wang, Yishan; Huang, Ke; Luan, Kunpeng; Chen, Hongwei; Tao, Mengmeng; Yu, Li; Yi, Aiping; Si, Jinhai
2017-05-01
We report on the recent progress on high power pulsed 2.8 μm Er3+-doped ZBLAN fiber laser through techniques of passively and actively Q-switching in our research group. In passively Q-switched operation, a diode-cladding-pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) was demonstrated. Stable pulse train was produced at a slope efficient of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ. The maximum peak power was calculated to be 21.9 W. In actively Q-switched operation, a diode-pumped actively Q-switched Er3+-doped ZBLAN fiber laser at 2.8 μm with an optical chopper was reported. The maximum laser pulse energy of up to 130 μJ and a pulse width of 127.3 ns at a repetition rate of 10 kHz with an operating wavelength of 2.78 μm was obtained, yielding the maximum peak power of exceeding 1.1 kW.
Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.
Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J
2007-02-01
The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.
Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz
Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.
2007-01-01
The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412
Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Huang, Ke; Tao, Mengmeng; Chen, Hongwei; Yi, Aiping; Feng, Guobin; Si, Jinhai
2016-01-01
A diode-cladding pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) is demonstrated. Stable pulse train was produced at a slope efficiency of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ, from which the maximum peak power was calculated to be 21.9 W. To the best of our knowledge, the average power and the peak power are the highest in 3 μm region passively Q-switched fiber lasers. The influence of gain fiber length on the operation regime of the fiber laser has been investigated in detail. PMID:27225029
Beach, Raymond J.
1997-01-01
Wing pumping a Tm.sup.3+ doped, end pumped solid state laser generates 2 .mu.m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm.sup.3+ absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm.sup.3+ because high Tm.sup.3+ concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation.
Beach, R.J.
1997-11-18
Wing pumping a Tm{sup 3+} doped, end pumped solid state laser generates 2 {micro}m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm{sup 3+} absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm{sup 3+} because high Tm{sup 3+} concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation. 7 figs.
Method and system for modulation of gain suppression in high average power laser systems
Bayramian, Andrew James [Manteca, CA
2012-07-31
A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.
NASA Astrophysics Data System (ADS)
Zaman, Badrus; Wardhana, Irawan Wisnu
2018-02-01
Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media). Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day) operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.
Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.
Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T
2015-11-16
We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, A.A.; Daniel, A.R.; Daniel, S.T.
1990-01-01
Parameters to evaluate the potential for using wind energy to generate electricity in Jamaica were obtained. These include the average wind power scaled to a height of 20 m at existing weather stations and temporary anemometer sites, the variation in annual and monthly wind power, and the frequency distribution of wind speed and wind energy available. Four small commercial turbines were assumed to be operating at some of the sites, and the estimated energy captured by them, the time they operated above their cut-in speed and their capacity factors were also determined. Diurnal variations of wind speed and prevailing windmore » directions are discussed and a map showing wind power at various sites was produced. Two stations with long-term averages, Manley and Morant Point, gave results which warranted further investigation. Results from some temporary stations are also encouraging. Mean wind speeds at two other sites in the Caribbean are given for comparison. A method for estimating the power exponent for scaling the wind speed from climatic data is described in Appendix 2.« less
Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy.
Charan, Kriti; Li, Bo; Wang, Mengran; Lin, Charles P; Xu, Chris
2018-05-01
Deep tissue multiphoton imaging requires high peak power to enhance signal and low average power to prevent thermal damage. Both goals can be advantageously achieved through laser repetition rate tuning instead of simply adjusting the average power. We show that the ideal repetition rate for deep two-photon imaging in the mouse brain is between 1 and 10 MHz, and we present a fiber-based source with an arbitrarily tunable repetition rate within this range. The performance of the new source is compared to a mode-locked Ti:Sapphire (Ti:S) laser for in vivo imaging of mouse brain vasculature. At 2.5 MHz, the fiber source requires 5.1 times less average power to obtain the same signal as a standard Ti:S laser operating at 80 MHz.
Low-Temperature Power Electronics Program
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Dickman, John E.; Hammoud, Ahmad; Gerber, Scott
1997-01-01
Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems.
Passively mode-locked diode-pumped Nd:YVO4 oscillator operating at an ultralow repetition rate.
Papadopoulos, D N; Forget, S; Delaigue, M; Druon, F; Balembois, F; Georges, P
2003-10-01
We demonstrate the operation of an ultralow-repetition-rate, high-peak-power, picosecond diode-pumped Nd:YVO4 passively mode-locked laser oscillator. Repetition rates lower than 1 MHz were achieved with the use of a new design for a multiple-pass cavity and a semiconductor saturable absorber. Long-term stable operation at 1.2 MHz with a pulse duration of 16.3 ps and an average output power of 470 mW, corresponding to 24-kW peak-power pulses, is reported. These are to our knowledge the lowest-repetition-rate high-peak-power pulses ever generated directly from apicosecond laser resonator without cavity dumping.
Automatic load sharing in inverter modules
NASA Technical Reports Server (NTRS)
Nagano, S.
1979-01-01
Active feedback loads transistor equally with little power loss. Circuit is suitable for balancing modular inverters in spacecraft, computer power supplies, solar-electric power generators, and electric vehicles. Current-balancing circuit senses differences between collector current for power transistor and average value of load currents for all power transistors. Principle is effective not only in fixed duty-cycle inverters but also in converters operating at variable duty cycles.
High-power highly stable passively Q-switched fiber laser based on monolayer graphene
NASA Astrophysics Data System (ADS)
Wu, Hanshuo; Song, Jiaxin; Wu, Jian; Xu, Jiangming; Xiao, Hu; Leng, Jinyong; Zhou, Pu
2018-03-01
We demonstrate a monolayer graphene-based passively Q-switched fiber laser with three-stage amplifiers that can deliver an average power of over 80 W at 1064 nm. The highest average power achieved is 84.1 W, with a pulse energy of 1.67 mJ. To the best of our knowledge this is the first report of a high-power passively Q-switched fiber laser in the 1 µm range. More importantly, the Q-switched fiber laser operated stably during a week of tests for a few hours per day, which proves the stability and practical application potential of graphene in high-power pulsed fiber lasers.
Design considerations on ultra-low-power wireless transmitters for wearable medical devices.
Manstretta, Danilo
2010-01-01
A wireless transmitter for wearable bio-sensing applications must fulfill very specialized requirements. It has been estimated that for truly wearable systems it must operate with an average power consumption of less than 140 microW. The alternatives, pitfalls, and realistic performance of robust, low power signal transmission will be addressed.
Adaptive pitch control for variable speed wind turbines
Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO
2012-05-08
An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.
10 CFR Appendix D to Subpart D of... - Classes of Actions That Normally Require EISs
Code of Federal Regulations, 2010 CFR
2010-01-01
... average megawatts or more over a 12 month period. This applies to power marketing operations and to siting... Systems D2. Siting/construction/operation/decommissioning of nuclear fuel reprocessing facilities D3. Siting/construction/operation/decommissioning of uranium enrichment facilities D4. Siting/construction...
Development and Production of a 201 MHz, 5.0 MW Peak Power Klystron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aymar, Galen; Eisen, Edward; Stockwell, Brad
2016-01-01
Communications & Power Industries LLC has designed and manufactured the VKP-8201A, a high peak power, high gain, VHF band klystron. The klystron operates at 201.25 MHz, with 5.0 MW peak output power, 34 kW average output power, and a gain of 36 dB. The klystron is designed to operate between 1.0 MW and 4.5 MW in the linear range of the transfer curve. The klystron utilizes a unique magnetic field which enables the use of a proven electron gun design with a larger electron beam requirement. Experimental and predicted performance data are compared.
926 nm laser operation in Nd:GdNbO4 crystal based on 4F3/2 → 4I9/2 transition
NASA Astrophysics Data System (ADS)
Yan, Renpeng; Li, Xudong; Yao, Wenming; Shen, Yingjie; Zhou, Zhongxiang; Peng, Fang; Zhang, Qingli; Dou, Renqing; Gao, Jing
2018-05-01
926 nm laser operation in a Nd:GdNbO4 crystal based on quasi-three-level 4F3/2 → 4I9/2 transition is reported, for the first time to our best knowledge. An average output power of 393 mW at 926 nm under 879 nm LD pumping is obtained with a slope efficiency of 33.3% and an optical-to-optical efficiency of 26.0%. The slope efficiency with respect to absorbed pump power is estimated to be 47.7%. Comparison between output characters of 926 nm laser under direct and indirect pumping is conducted. The average output power at 926 nm under 808 nm LD pumping reaches 305 mW with an optical-to-optical efficiency of 16.1%.
Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 µm
NASA Astrophysics Data System (ADS)
Wang, Li; Huang, Haitao; Shen, Deyuan; Zhang, Jian; Chen, Hao; Tang, Dingyuan
2017-04-01
We report on the highly stable self-pulsed operation of a 2.74 µm Er:Lu2O3 ceramic laser pumped by a wavelength locked narrow bandwidth 976 nm laser diode. The operating pulse repetition rate is continuously tunable from 126 kHz to 270 kHz depending on the pump power level. For 12.3 W of absorbed diode pump power, the Er:Lu2O3 ceramic laser generates 820 mW of average output power at a 270 kHz repetition rate and with a pulse duration of 183 ns. The corresponding pulse-to-pulse amplitude fluctuation is estimated to be less than 0.7%. In the continues-wave (CW) mode of operation, the laser yields over 1.3 W of output power with a slope efficiency of 11.9% with respect to the 976 nm pump power.
Licensed operating reactors: Status summary report, data as of December 31, 1995. Volume 20
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-06-01
The US Nuclear Regulatory Commission`s monthly summary of licensed nuclear power reactor data is based primarily on the operating data report submitted by licensees for each unit. This report is divided into two sections: the first contains summary highlights and the second contains data on each individual unit in commercial operation. Section 1 availability factors, capacity factors, and forced outage rates are simple arithmetic averages. Section 2 items in the cumulative column are generally as reported by the licensees and notes to the use of weighted averages and starting dates other than commercial operation are provided.
120 Hz pulse tube cryocooler for fast cooldown to 50 K
NASA Astrophysics Data System (ADS)
Vanapalli, Srinivas; Lewis, Michael; Gan, Zhihua; Radebaugh, Ray
2007-02-01
A pulse tube cryocooler operating at 120Hz with 3.5MPa average pressure achieved a no-load temperature of about 49.9K and a cooldown time to 80K of 5.5min. The net refrigeration power at 80K was 3.35W with an efficiency of 19.7% of Carnot when referred to input pressure-volume (PV or acoustic) power. Such low temperatures have not been previously achieved for operating frequencies above 100Hz. The high frequency operation leads to reduced cryocooler volume for a given refrigeration power, which is important to many applications and can enable development of microcryocoolers for microelectromechanical system applications.
NASA Astrophysics Data System (ADS)
Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott
Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.
Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy
Charan, Kriti; Li, Bo; Wang, Mengran; Lin, Charles P.; Xu, Chris
2018-01-01
Deep tissue multiphoton imaging requires high peak power to enhance signal and low average power to prevent thermal damage. Both goals can be advantageously achieved through laser repetition rate tuning instead of simply adjusting the average power. We show that the ideal repetition rate for deep two-photon imaging in the mouse brain is between 1 and 10 MHz, and we present a fiber-based source with an arbitrarily tunable repetition rate within this range. The performance of the new source is compared to a mode-locked Ti:Sapphire (Ti:S) laser for in vivo imaging of mouse brain vasculature. At 2.5 MHz, the fiber source requires 5.1 times less average power to obtain the same signal as a standard Ti:S laser operating at 80 MHz. PMID:29760989
Preliminary design of a space system operating a ground-penetrating radar
NASA Astrophysics Data System (ADS)
D'Errico, Marco; Ponte, Salvatore; Grassi, Michele; Moccia, Antonio
2005-12-01
Ground-penetrating radars (GPR) are currently used only in ground campaigns or in few airborne installations. A feasibility analysis of a space mission operating a GPR for archaeological applications is presented in this work with emphasis on spacecraft critical aspects: antenna dimension and power required for achieving adequate depth and accuracy. Sensor parametric design is performed considering two operating altitudes (250 and 500 km) and user requirements, such as minimum skin depth, vertical and horizontal resolution. A 500-km altitude, 6 a.m.-6 p.m. sun-synchronous orbit is an adequate compromise between atmospheric drag and payload transmitted average power (12 kW) to achieve a 3-m penetration depth. The satellite bus preliminary design is then performed, with focus on critical subsystems and technologies. The payload average power requirement can be kept within feasible limits (1 kW) by using NiH2 batteries to supply the radar transmitter, and with a strong reduction of the mission duty cycle ( 40km×1100km are observed per orbit). As for the electric power subsystem, a dual-voltage strategy is adopted, with the battery charge regulator supplied at 126 V and the bus loads at 50 V. The overall average power (1.9 kW), accounting for both payload and bus needs, can be supplied by a 20m2 GaAs solar panel for a three-year lifetime. Finally, the satellite mass is kept within reasonable limits (1.6 tons) using inflatable-rigidisable structure for both the payload antenna and the solar panels.
47 CFR 95.639 - Maximum transmitter power.
Code of Federal Regulations, 2012 CFR
2012-10-01
... condition of modulation, shall exceed: (1) 50 W Carrier power (average TP during one unmodulated RF cycle... output power authorized for LPRS stations is 100 mW. (f) In the MedRadio Service: (1) For transmitters..., the peak EIRP over the frequency bands of operation shall not exceed the lesser of 1 mW or 10 log B—7...
Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Martin, Adam; Polzin, Kurt; Kimberlin, Adam; Eskridge, Richard
2013-01-01
Fabricated and tested CTP IPPTs at cone angles of 20deg, 38deg, and 60deg, and performed direct single-pulse impulse bit measurements with continuous gas flow. Single pulse performance highest for 38deg angle with impulse bit of approx.1 mN-s for both argon and xenon. Estimated efficiencies low, but not unexpectedly so based on historical data trends and the direction of the force vector in the CTP. Capacitor charging system assembled to provide rapid recharging of capacitor bank, permitting repetition-rate operation. IPPT operated at repetition-rate of 5 Hz, at maximum average power of 2.5 kW, representing to our knowledge the highest average power for a repetitively-pulsed thruster. Average thrust in repetition-rate mode (at 5 kV, 75 sccm argon) was greater than simply multiplying the single-pulse impulse bit and the repetition rate.
kW picosecond thin-disk regenerative amplifier
NASA Astrophysics Data System (ADS)
Michel, Knut; Wandt, Christoph; Klingebiel, Sandro; Schultze, Marcel; Prinz, Stephan; Teisset, Catherine Y.; Stark, Sebastian; Grebing, Christian; Bessing, Robert; Herzig, Tobias; Häfner, Matthias; Budnicki, Aleksander; Sutter, Dirk; Metzger, Thomas
2018-02-01
TRUMPF Scientific Lasers provides ultrafast laser sources for the scientific community with high pulse energies and high average power. All systems are based on the industrialized TRUMPF thin-disk technology. Regenerative amplifiers systems with multi-millijoule pulses, kilohertz repetition rates and picosecond pulse durations are available. Record values of 220mJ at 1kHz could be demonstrated originally developed for pumping optical parametric amplifiers. The ultimate goal is to combine high energies, <100mJ per pulse, with average powers of several hundred watts to a kilowatt. Based on a regenerative amplifier containing two Ytterbium doped thin-disks operated at ambient temperature pulses with picosecond duration and more than 100mJ could be generated at a repetition rate of 10kHz reaching 1kW of average output power. This system is designed to operate at different repetition rates from 100kHz down to 5kHz so that even higher pulse energies can be reached. This type of ultrafast sources uncover new application fields in science. Laser based lightning rods, X-ray lasers and Compton backscatter sources are among them.
HIGH POWER BEAM DUMP AND TARGET / ACCELERATOR INTERFACE PROCEDURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blokland, Willem; Plum, Michael A; Peters, Charles C
Satisfying operational procedures and limits for the beam target interface is a critical concern for high power operation at spallation neutron sources. At the Oak Ridge Spallation Neutron Source (SNS) a number of protective measures are instituted to ensure that the beam position, beam size and peak intensity are within acceptable limits at the target and high power Ring Injection Dump (RID). The high power beam dump typically handles up to 50 100 kW of beam power and its setup is complicated by the fact that there are two separate beam components simultaneously directed to the dump. The beam onmore » target is typically in the 800-1000 kW average power level, delivered in sub- s 60 Hz pulses. Setup techniques using beam measurements to quantify the beam parameters at the target and dump will be described. However, not all the instrumentation used for the setup and initial qualification is available during high power operation. Additional techniques are used to monitor the beam during high power operation to ensure the setup conditions are maintained, and these are also described.« less
Performance of an off-grid solar home in northwestern Vermont
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawlings, L.K.
1997-12-31
In 1995 an off-grid integrated solar home was built in Middlesex, VT for Peter Clark and Gloria DeSousa. This home was included as a pilot home in the US DOE PV:BONUS program to develop factory-built integrated solar homes. The home incorporates a 1.44 KW PV system, 0.6 KW of wind turbine capacity, and very high-efficiency electrical loads. The home also features passive solar design, high-efficiency heating systems, and a greenhouse-based septic treatment system. The performance of the PV system and the wind system, and the total power usage of the household, are measured and recorded by a data acquisition system.more » The home`s electrical loads have operated very efficiently, using on average about one tenth the power used by the average American residence. The PV system has operated reliably and efficiently, providing about 97% of the power needs of the home. The wind turbines have operated efficiently, but the wind regime at the site has not been sufficient to generate more than 1% of the total power needs. The other 2% has been provided by a gasoline backup generator.« less
Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power
NASA Astrophysics Data System (ADS)
Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong
2018-03-01
We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.
Radiation beam calorimetric power measurement system
Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.
1992-01-01
A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.
Xu, Yi-Ting; Xu, Jia-Lin; Guo, Ya-Ding; Yang, Feng-Tu; Chen, Yan-Zhong; Xu, Jian; Xie, Shi-Yong; Bo, Yong; Peng, Qin-Jun; Cui, Dafu; Xu, Zu-Yan
2010-08-20
We present a compact high-efficiency and high-average-power diode-side-pumped Nd:YAG rod laser oscillator operated with a linearly polarized fundamental mode. The oscillator resonator is based on an L-shaped convex-convex cavity with an improved module and a dual-rod configuration for birefringence compensation. Under a pump power of 344 W, a linearly polarized average output power of 101.4 W at 1064 nm is obtained, which corresponds to an optical-to-optical conversion efficiency of 29.4%. The laser is operated at a repetition rate of 400 Hz with a beam quality factor of M(2)=1.14. To the best of our knowledge, this is the highest optical-to-optical efficiency for a side-pumped TEM(00) Nd:YAG rod laser oscillator with a 100-W-level output ever reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebbers, C
The primary focus this year was to operate the system with two amplifiers populated with and pumped by eight high power diode arrays. The system was operated for extended run periods which enabled average power testing of components, diagnostics, and controls. These tests were highly successful, with a demonstrated energy level of over 55 joules for 4 cumulative hours at a repetition rate of 10 Hz (average power 0.55 kW). In addition, high average power second harmonic generation was demonstrated, achieving 227 W of 523.5 nm light (22.7 J, 10 Hz, 15 ns, 30 minutes) Plans to achieve higher energymore » levels and average powers are in progress. The dual amplifier system utilizes a 4-pass optical arrangement. The Yb:S-FAP slabs were mounted in aerodynamic aluminum vane structures to allow turbulent helium gas flow across the faces. Diagnostic packages that monitored beam performance were deployed during operation. The laser experiments involved injecting a seed beam from the front end into the system and making four passes through both amplifiers. Beam performance diagnostics monitored the beam on each pass to assess system parameters such as gain and nearfield intensity profiles. This year, an active mirror and wavefront sensor were procured and demonstrated in an off-line facility. The active mirror technology can correct for low order phase distortions at user specified operating conditions (such as repetition rates different than 10 Hz) and is a complementary technology to the static phase plates used in the system for higher order distortions. A picture of the laser system with amplifier No.2 (foreground) and amplifier No.1 (background) is shown in Fig. 1.0.1.1. The control system and diagnostics were recently enhanced for faster processing and allow remote operation of the system. The growth and fabrication of the Yb:S-FAP slabs constituted another major element of our program objectives. Our goal was to produce at least fourteen 4x6 cm2 crystalline slabs. These goals were met. Nine crystal boules were successfully grown to produce 14 slabs. In addition, we have prepared the way to scale the Yb:S-FAP crystals to the next growth diameter (10-inch diameter as opposed to 7-inch diameter). An outside contract was placed with Northrop-Grumman to scaleup the Yb:S-FAP crystal size. The following sections discuss the above accomplishments in more technical detail and are followed by plans and a budget request for FY2006.« less
Plasma core power exhaust in ELMy H-Mode in JET with ITER-Like Wall
NASA Astrophysics Data System (ADS)
Guillemaut, C.; Metzger, C.; Appel, L.; Drewelow, P.; Horvath, L.; Matthews, G. F.; Szepesi, G.; Solano, E. R.; contributors, JET
2018-07-01
The mitigation of target heat load in future steady state fusion devices will require dissipation of a significant amount of power through radiation. Plasma operations relying on ELMy H-modes could be problematic since ELMs may transport substantial amounts of power to the target without significant dissipation. Therefore, estimation of the average ELM power exhaust from the plasma core is crucial to evaluate the potential limitation on the power dissipation in ELMy H-mode regime. A series of more than 50 Type-I ELMy H-mode discharges in JET with ITER-Like Wall (JET-ILW) with a wide range of conditions has been used here to compare the average ELM power to the average input power. The effect of input power, ELM frequency, plasma current, confinement and radiation on ELM power exhaust has been studied and reported in this paper. Good agreement has been found here with previous studies made in carbon machines. This work suggests that it should not be possible to dissipate more than 70%–80% of the input power in Type-I ELMy H-modes in JET-ILW which is consistent with the maximum radiative fraction found experimentally.
An averaging battery model for a lead-acid battery operating in an electric car
NASA Technical Reports Server (NTRS)
Bozek, J. M.
1979-01-01
A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.
Browns Ferry-1 single-loop operation tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, J.; Wood, R.T.; Otaduy, P.J.
1985-09-01
This report documents the results of the stability tests performed on February 9, 1985, at the Browns Ferry Nuclear Power Plant Unit 1 under single-loop operating conditions. The observed increase in neutron noise during single-loop operation is solely due to an increase in flow noise. The Browns Ferry-1 reactor has been found to be stable in all modes of operation attained during the present tests. The most unstable test plateau corresponded to minimum recirculation pump speed in single-loop operation (test BFTP3). This operating condition had the minimum flow and maximum power-to-flow ratio. The estimated decay ratio in this plateau ismore » 0.53. The decay ratio decreased as the flow was increased during single-loop operation (down to 0.34 for test plateau BFTP6). This observation implies that the core-wide reactor stability follows the same trends in single-loop as it does in two-loop operation. Finally, no local or higher mode instabilities were found in the data taken from local power range monitors. The decay ratios estimated from the local power range monitors were not significantly different from those estimated from the average power range monitors.« less
Davison, James A
2007-01-01
To compare the Legacy 20000 Advantec continuous and Infiniti hyperpulse modes (Alcon Laboratories, Fort Worth, TX) with respect to average power, machine-measured phacoemulsification time, total stopwatch real time spent within the phacoemulsification process, balanced salt solution (BSS) volume, and corneal endothelial cell density losses. A background study was done of consecutive patients operated on with the Legacy (n = 60) and Infiniti (n = 40) machines programmed with identical parameters and using the continuous mode only. A primary study of another set of consecutive cases was operated on using the Legacy (n = 87) and Infiniti (n = 94) with the same parameters, but using the hyperpulse mode during quadrant removal with the Infiniti. Measurements for each set included average power and phacoemulsification time with corneal endothelial cell densities, BSS volume, and time spent in the phacoemulsification process. Similarities were found in the background study for average power percent and average minutes of phacoemulsification time. In the primary study, similarities were found for total minutes in the phacoemulsification process, BSS usage, and ECD losses, and differences were found for average power percent (P< .001) and machine-measured phacoemulsification minutes (P< .001). The Legacy and Infiniti performed similarly in continuous mode. With the Infiniti hyperpulse mode, a total ultrasonic energy reduction of 66% was noted. The machines required the same amount of total stopwatch measured time to accomplish phacoemulsification and produced the same 5% corneal endothelial cell loss. Therefore, clinically, these two machines behave in a comparable manner relative to safety and effectiveness.
Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm
NASA Astrophysics Data System (ADS)
Guan, Chen; Liu, Zhaojun; Cong, Zhenhua; Liu, Yang; Xu, Xiaodong; Xu, Jun; Huang, Qingjie; Rao, Han; Chen, Xia; Zhang, Yanmin; Wu, Qianwen; Bai, Fen; Zhang, Sasa
2017-02-01
A diode-end-pumped passively Q-switched Nd:LuAG laser at 1442.6 nm was demonstrated with a V3+:YAG crystal as the saturable absorber. Under continuous-wave (CW) operation, the maximum output power of 1.83 W was obtained with an absorbed pumping power of 11.1 W. The corresponding optical-to-optical conversion efficiency was 16.5%. Under Q-switched operation, the maximum average output power of 424 mW was obtained at the same pumping power. The pulse duration and pulse repetition rate were 72 ns and 17.4 kHz, respectively.
76 FR 35176 - Operation of Radar Systems in the 76-77 GHz Band
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... vehicular radars decrease power when the vehicle on which the radar is mounted is stopped, or not in motion... believes that the changes in power levels and use suggested by TMC and Era will not result in any increased.... The Commission proposes to modify Sec. 15.253 of its rules to increase the average power density limit...
High power gas laser - Applications and future developments
NASA Technical Reports Server (NTRS)
Hertzberg, A.
1977-01-01
Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.
NASA Technical Reports Server (NTRS)
1977-01-01
Measured performance characteristics of the transmitter experiment package (TEP) aboard the Communications Technology Satellite for the first 90 operating days in orbit are presented. The TEP consists of a nominal 200-watt output stage tube (OST), a supporting power processing system (PPS), and a variable-conductance heat pipe system (VCHPS). The OST, a traveling-wave tube augmented with a 10-stage depressed collector, has an overall saturated average efficiency of 51.5 percent and an average saturated radiofrequency (RF) output power at center-band frequency of 240 watts. The PPS operated with a measured efficiency of 86.5 percent to 88.5 percent. The VCHPS, using three pipes to conduct heat from the PPS and the body of the OST to a 52-centimeter by 124-centimeter (20.5-in. by 48.75-in.) radiator fin, maintained by the PPS baseplate temperature below 50 C for all operating conditions. The TEP performance characteristics presented include frequency response, RF output power, efficiency, and distortions. Communications characteristics were evaluated by using both video and audio modulated signals.
Choubey, Ambar; Vishwakarma, S C; Misra, Pushkar; Jain, R K; Agrawal, D K; Arya, R; Upadhyaya, B N; Oak, S M
2013-07-01
We have developed an efficient and high average power flash lamp pumped long pulse Nd:YAG laser capable of generating 1 kW of average output power with maximum 540 J of single pulse energy and 20 kW of peak power. The laser pulse duration can be varied from 1 to 40 ms and repetition rate from 1 to 100 Hz. A compact and robust laser pump chamber and resonator was designed to achieve this high average and peak power. It was found that this laser system provides highest single pulse energy as compared to other long pulsed Nd:YAG laser systems of similar rating. A slope efficiency of 5.4% has been achieved, which is on higher side for typical lamp pumped solid-state lasers. This system will be highly useful in laser welding of materials such as aluminium and titanium. We have achieved 4 mm deep penetration welding of these metals under optimized conditions of output power, pulse energy, and pulse duration. The laser resonator was optimized to provide stable operation from single shot to 100 Hz of repetition rate. The beam quality factor was measured to be M(2) ~ 91 and pulse-to-pulse stability of ±3% for the multimode operation. The laser beam was efficiently coupled through an optical fiber of 600 μm core diameter and 0.22 numerical aperture with power transmission of 90%.
Park, G L; Schäfer, A I; Richards, B S
2012-01-01
Renewable energy powered membrane systems that are directly-connected must take account of both the inherent fluctuations and the intermittency of the energy resource. In order to determine the effect of intermittent operation, a membrane system was tested with variables of (i) amplitude from 60 to 300 W and (ii) length of time with no power from 0.5 to 3 min. This was performed over one hour periods with six on/off cycles to simulate the system operating under intermittent operation for short periods of time when directly-connected to a small wind turbine. The setup used a Filmtec BW30-4040 brackish water reverse osmosis membrane with feed waters of 2,750 mg/L and 5,500 mg/L NaCl. The results showed that the membrane system produced potable water under the majority of intermittency experiments performed. There was a relatively large increase in the average salt concentration of the permeate, especially when the system was off for shorter periods of time (0.5-1 min). Longer periods of no power (1-3 min) did not have as significant an effect on the average water quality. This is important when the need for energy buffering or short term storage is considered for these systems as it shows the potential for improving the overall flux and water quality using temporary energy storage.
NASA Astrophysics Data System (ADS)
Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.
2015-09-01
Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds during actual operation should be based on both emissions factors and economic costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, S.L.; Scharlemann, E.T.
1992-05-01
We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end ofmore » ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations.« less
Power Consumption Analysis of Operating Systems for Wireless Sensor Networks
Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J.
2010-01-01
In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems—TinyOS v1.0, TinyOS v2.0, Mantis and Contiki—running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks. PMID:22219688
Power consumption analysis of operating systems for wireless sensor networks.
Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J
2010-01-01
In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems--TinyOS v1.0, TinyOS v2.0, Mantis and Contiki--running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks.
High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.
Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan
2012-04-01
We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.
Thermal effects in an ultrafast BiB 3O 6 optical parametric oscillator at high average powers
Petersen, T.; Zuegel, J. D.; Bromage, J.
2017-08-15
An ultrafast, high-average-power, extended-cavity, femtosecond BiB 3O 6 optical parametric oscillator was constructed as a test bed for investigating the scalability of infrared parametric devices. Despite the high pulse energies achieved by this system, the reduction in slope efficiency near the maximum-available pump power prompted the investigation of thermal effects in the crystal during operation. Furthermore, the local heating effects in the crystal were used to determine the impact on both phase matching and thermal lensing to understand limitations that must be overcome to achieve microjoule-level pulse energies at high repetition rates.
Thermal effects in an ultrafast BiB 3O 6 optical parametric oscillator at high average powers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, T.; Zuegel, J. D.; Bromage, J.
An ultrafast, high-average-power, extended-cavity, femtosecond BiB 3O 6 optical parametric oscillator was constructed as a test bed for investigating the scalability of infrared parametric devices. Despite the high pulse energies achieved by this system, the reduction in slope efficiency near the maximum-available pump power prompted the investigation of thermal effects in the crystal during operation. Furthermore, the local heating effects in the crystal were used to determine the impact on both phase matching and thermal lensing to understand limitations that must be overcome to achieve microjoule-level pulse energies at high repetition rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alessi, D.
Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new designmore » has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to operate at 50kW average power.« less
Energy from Landfill Gas as an Example of Circular Economy
NASA Astrophysics Data System (ADS)
Ciuła, Józef; Gaska, Krzysztof; Generowicz, Agnieszka; Hajduga, Gabriela
2018-02-01
Landfill biogas becomes an important factor in elimination of fossil fuels as a result of fast- growing use of renewable energy sources. The article presents an analysis of operation of the plant where landfill biogas was utilized for energy production. The average annually (gross) productions of electric energy and heat at the plant were 1217 MWh and 1,789 MW, respectively. The average calorific value of biogas was 17 MJ/m3, which corresponds to 4,8 kW/m3. According to the measurements and actual readings acquired during operation of a cogeneration unit, it can be stated that the CHP system has been working within its average operation limits and still has some power reserves to utilize. Therefore, the authors concluded that a landfill can be operated both as a producer and a supplier of prosumer energy.
Operational summary of an electric propulsion long term test facility
NASA Technical Reports Server (NTRS)
Trump, G. E.; James, E. L.; Bechtel, R. T.
1982-01-01
An automated test facility capable of simultaneously operating three 2.5 kW, 30-cm mercury ion thrusters and their power processors is described, along with a test program conducted for the documentation of thruster characteristics as a function of time. Facility controls are analog, with full redundancy, so that in the event of malfunction the facility automaticcally activates a backup mode and notifies an operator. Test data are recorded by a central data collection system and processed as daily averages. The facility has operated continuously for a period of 37 months, over which nine mercury ion thrusters and four power processor units accumulated a total of over 14,500 hours of thruster operating time.
A 9.61-W, b-cut Tm,Ho:YAP laser in Q-switched mode operation
NASA Astrophysics Data System (ADS)
Li, Guoxing; Yang, Xining; Zhang, Ziqiu; Zhang, Hongda; Zhang, Liang
2018-02-01
A high energy of b-cut Tm, Ho:YAlO3 laser is reported in the paper. The laser operated in acousto-optical Qswitched mode at 2.12 μm. The output average power of 9.61 W was achieved at the pulse repetition frequency of 10 kHz ,and the power of 11.6 W was acquired in continuous wave mode. Moreover, the energy per pulse of 0.961 mJ in 64.4 ns was acquired at 10 kHz with a 14.92-kW peak power.
Danev, S; Dapov, E; Pavlov, E; Nikolova, R
1992-01-01
Evaluation of the general functional status and psychosomatic complaints of 61 workers from the hydroelectric power stations is made. The following methods are used: 1. Assessment of the general functional state, by means of computer analysis of the cardiac variability, analysing the changes in the values of the following indices: average value of the cardiac intervals (X), their standard deviation (SD), coefficient of variation (CV), amplitude of the mode (AMO), index of stress (IS), index of the vegetative balance (IVB), homeostatic index (HI). The last 3 indices serve for determination of the complex evaluation of chronic fatigue and work adaptation (ChFWA). 2. Evaluation of the psychosomatic complaints, by the use of a questionnaire for the subjective psychosomatic complaints. 3. Studying the systolic and diastolic blood pressure. The average values received in workers from HPS were compared with the average values of the population of the country and with the average values of a similar working activity of a group of operators from the thermal power station HPS. In conclusion it could be noted that concerning ChFWA the received values in workers from HPS are not more unfavourable generalized values from that measured in workers, occupied with similar type of work in other industrial branches of the country. However, they are with more unfavourable data in comparison with the workers from HPS. The subjective evaluation of the operators concerning their psychic and body health status is moderately worse, both in comparison with the values of the index for the country, and in comparison with those of the operators from HPS.
Characterization of the electrical output of flat-plate photovoltaic arrays
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.
1982-01-01
The electric output of flat-plate photovoltaic arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as direct-current to alternating-current power conditioners must be able to accommodate widely varying input levels, while maintaining operation at or near the array maximum power point.The results of an extensive computer simulation study that was used to define the parameters necessary for the systematic design of array/power-conditioner interfaces are presented as normalized ratios of power-conditioner parameters to array parameters, to make the results universally applicable to a wide variety of system sizes, sites, and operating modes. The advantages of maximum power tracking and a technique for computing average annual power-conditioner efficiency are discussed.
NASA Capabilities That Could Impact Terrestrial Smart Grids of the Future
NASA Technical Reports Server (NTRS)
Beach, Raymond F.
2015-01-01
Incremental steps to steadily build, test, refine, and qualify capabilities that lead to affordable flight elements and a deep space capability. Potential Deep Space Vehicle Power system characteristics: power 10 kilowatts average; two independent power channels with multi-level cross-strapping; solar array power 24 plus kilowatts; multi-junction arrays; lithium Ion battery storage 200 plus ampere-hours; sized for deep space or low lunar orbit operation; distribution120 volts secondary (SAE AS 5698); 2 kilowatt power transfer between vehicles.
Generation of high powers from diode pumped chromium-3+ doped colquiriites
NASA Astrophysics Data System (ADS)
Eichenholz, Jason Matthew
1998-12-01
There is considerable interest in the area of laser diode pumped solid-state lasers. Diode pumped solid-state lasers (DPSSL) operating at high average power levels are attractive light sources for various applications such as materials processing, laser radar, and fundamental physics experiments. These laser systems have become more commonplace because of their efficiency, reliability, compactness, low relative cost, and long operational lifetimes. Induced thermal effects in the solid-state laser medium hinder the scaling of DPSSL's to higher average power levels. Therefore a deep insight into the thermo-mechanical properties of the solid state laser is crucial in order to ensure a laser design which is optimized for high average power operation. A comprehensive study of the factors that contribute to thermal loading of the colquiriites was performed. A three-dimensional thermal model has been created to determine the temperature rise inside the laser crystal. This new model calculates the temperature distribution by considering quantum defect, upconversion, and upper-state lifetime quenching as heating sources. The thermally induced lensing in end pumped Cr3+ doped LiSrAlF6, LiSrGaF6, LiSrCaAlF6, and LiCaAlF6 were experimentally measured. Several diode pumped colquiriite laser systems were assembled to quantitatively observe and identify thermally induced effects. Significant differences in each of the colquiriite materials were observed. These differences are explained by the differences in the thermo-mechanical and thermo-optical properties of the material and are explained by the theoretical thermal model.
Examples of mesoscale structures and short-term wind variations detected by VHF Doppler radar
NASA Technical Reports Server (NTRS)
Forbes, G. S.
1986-01-01
The first of three wind profilers planned for operation in central and western Pennsylvania began full-time, high-quality operation during July 1985. It is located about 20 km south-southeast of University Park and operates at 50 MHz. Another 50-MHz radar and a 400-MHz radar are to be installed over the next few months, to complete a mesoscale triangle with sides of 120 to 160 km. During the period since early July, a number of weather systems have passed over the wind profiler. Those accompanied by thunderstorms caused data losses either because the Department computer system lost power or because power went out at the profiler site. A backup power supply and an automatic re-start program will be added to the profiler system to minimize such future losses. Data have normally been averaged over a one-hour period, although there have been some investigations of shorter-period averaging. In each case, preliminary examinations reveal that the profiler winds are indicative of meteorological phenomena. The only occasions of bad or missing data are obtained when airplane noise is occasionally experienced and when the returned power is nearly at the noise level, at the upper few gates, where a consensus wind cannot be determined. Jets streams, clouds, and diurnal variations of winds are discussed.
47 CFR 101.1333 - Interference protection criteria.
Code of Federal Regulations, 2010 CFR
2010-10-01
... is in watts, D is in meters, and the power is relative to an isotropic radiator. The technical... for master stations operating at a maximum power shall not exceed 150 meters. Above 150 meters, the... Reduction Table Antenna height above average terrain (meters) EIRP Watts dBW ERP Watts dBW Above 305 200 23...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvec, M.D.; Rosen, V.
1995-12-31
In 1990, New York Power Authority (NYPA), was selected to provide 150 MW of electrical power to Long Island Lighting Company (LILCO), using a combined gas and steam turbine cycle. The gas turbine chosen was a Siemens V84.2 with a design ISO rating of 103 MW. NYPA, acting as an independent power producer, would build, operate and maintain the facility. The power plant would be dispatched by LILCO for a period of twenty years from the beginning of its commercial operation on May 1, 1994. The construction was completed in 20 months and the unit started commercial operation on schedule.more » The formal performance acceptance tests, conducted in June 1994, indicated a better net output power and a lower net heart rate than the guaranteed figures for operation with natural gas and light distillate as the backup fuel. Stack emissions compliance tests conducted in October 1995, successfully demonstrated NOx emissions of 9 ppmvd (15% O{sub 2}) for dry combustion of natural gas. In its first year of operation the plant achieved a rolling average equivalent availability rate (EAF) of 94.6%; NYPA`s target is 90.42% for a twenty year contract term. This article will review Siemens NOx abatement technology to obtain single digit emissions and describe the operational experience with the dry low NOx system at the Richard M. Flynn Power Plant.« less
NASA Astrophysics Data System (ADS)
Hou, Z. Y.; Wang, L. R.; Xia, M. J.; Yan, D. X.; Zhang, Q. L.; Zhang, L.; Liu, L. J.; Xu, D. G.; Zhang, D. X.; Wang, X. Y.; Li, R. K.; Chen, C. T.
2018-06-01
We demonstrate a high efficiency and high power picosecond ultraviolet source at 355 nm with stable output by sum frequency generation from a Nd:YAG laser using a type-I critically phase matched K3B6O10 Br crystal as nonlinear optical material. Conversion efficiency as high as 30.8% was achieved using a 25 ps laser at 1064 nm operated at 10 Hz. Similar work is done by using a 35 W 10 ps laser at 1064 nm as the pump source with a repetition rate of 80 MHz, and the highest average output power obtained was up to 5.3 W. In addition, the power stability of the 355 nm output power measurement shows that the standard deviation fluctuations of the average power are ±0.69% and ±0.91% at 3.0 W and 3.5 W, respectively.
NASA Astrophysics Data System (ADS)
Hardy, Luke A.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.
2018-02-01
Previous Thulium fiber laser lithotripsy (TFL) studies were limited to a peak power of 70 W (35 mJ / 500 μs), requiring operation in dusting mode with low pulse energy (35 mJ) and high pulse rate (300 Hz). In this study, a novel, compact, air-cooled, TFL capable of operating at up to 500 W peak power, 50 W average power, and 2000 Hz, was tested. The 1940-nm TFL was used with pulse duration (500 μs), average power (10 W), and fiber (270- μm-core) fixed, while pulse energy and pulse rate were changed. A total of 23 large uric acid (UA) stones and 16 large calcium oxalate monohydrate (COM) stones were each separated into 3 modes (Group 1-"Dusting"- 33mJ/300Hz; Group 2-"Fragmentation"-200mJ/50Hz; Group 3-"Dual mode"-Fragmentation then Dusting). The fiber was held manually in contact with stone on a 2-mm-mesh sieve submerged in a flowing saline bath. UA ablation rates were 2.3+/-0.8, 2.3+/-0.2, and 4.4+/-0.8 mg/s and COM ablation rates were 0.4+/-0.1, 1.0+/-0.1, and 0.9+/-0.4 mg/s, for Groups 1, 2, and 3. Dual mode provided 2x higher UA ablation rates than other modes. COM ablation threshold is 3x higher than UA, so dusting provided lower COM ablation rates than other modes. Future studies will explore higher average laser power than 10 W for rapid TFL ablation of large stones.
46 CFR 163.002-21 - Approval tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... raised and lowered under power operation until a total distance of at least 150 meters (500 feet) has... least 5 meters (16 feet). The average speed of raising the ladder or lift platform and the average lowering speed during this test must both be between 15 and 21 meters per minute (50 and 70 feet per minute...
Phan, Hoang Vu; Truong, Quang Tri; Park, Hoon Cheol
2017-04-19
This work presents a parametric study to find a proper wing configuration for achieving economical flight using unsteady blade element theory, which is based on the 3D kinematics of a flapping wing. Power loading was first considered as a performance parameter for the study. The power loadings at each wing section along the wingspan were obtained for various geometric angles of attack (AoAs) by calculating the ratios of the vertical forces generated and the power consumed by that particular wing section. The results revealed that the power loading of a negatively twisted wing could be higher than the power loading that a flat wing can have; the power loading of the negatively twisted wing was approximately 5.9% higher. Given the relatively low average geometric AoA (α A,root ≈ 44° and α A,tip ≈ 25°), the vertical force produced by the twisted wing for the highest power loading was approximately 24.4% less than that produced by the twisted wing for the strongest vertical force. Therefore, for a given wing geometry and flapping amplitude, a flapping-wing micro air vehicle required a 13.5% increase in flapping frequency to generate the same strongest cycle-average vertical force while saving about 24.3% power. However, when force 3 /power 2 and force 2 /power ratios were considered as performance indices, the twisted wings for the highest force 3 /power 2 (α A,root ≈ 43° and α A,tip ≈ 30°) and force 2 /power (α A,root ≈ 43° and α A,tip ≈ 36°) required only 6.5% and 4% increases in flapping frequency and consumed 26.2% and 25.3% less power, respectively. Thus, it is preferable to use a flapping wing operating at a high frequency using the geometric AoAs for the highest power loading, force 3 /power 2 ratio, and force 2 /power ratio over a flapping wing operating at a low frequency using a high geometric AoA with the strongest vertical force. Additionally, by considering both aerodynamic and inertial forces, this study obtained average geometric AoAs in the range of 30° to 40°, which are similar to those of a typical hovering insect's wings. Therefore, the operation of an aerodynamically uneconomical, high AoA in a hovering insect's wings during flight is explainable.
Vrijheid, M; Mann, S; Vecchia, P; Wiart, J; Taki, M; Ardoino, L; Armstrong, B K; Auvinen, A; Bédard, D; Berg-Beckhoff, G; Brown, J; Chetrit, A; Collatz-Christensen, H; Combalot, E; Cook, A; Deltour, I; Feychting, M; Giles, G G; Hepworth, S J; Hours, M; Iavarone, I; Johansen, C; Krewski, D; Kurttio, P; Lagorio, S; Lönn, S; McBride, M; Montestrucq, L; Parslow, R C; Sadetzki, S; Schüz, J; Tynes, T; Woodward, A; Cardis, E
2009-10-01
The output power of a mobile phone is directly related to its radiofrequency (RF) electromagnetic field strength, and may theoretically vary substantially in different networks and phone use circumstances due to power control technologies. To improve indices of RF exposure for epidemiological studies, we assessed determinants of mobile phone output power in a multinational study. More than 500 volunteers in 12 countries used Global System for Mobile communications software-modified phones (GSM SMPs) for approximately 1 month each. The SMPs recorded date, time, and duration of each call, and the frequency band and output power at fixed sampling intervals throughout each call. Questionnaires provided information on the typical circumstances of an individual's phone use. Linear regression models were used to analyse the influence of possible explanatory variables on the average output power and the percentage call time at maximum power for each call. Measurements of over 60,000 phone calls showed that the average output power was approximately 50% of the maximum, and that output power varied by a factor of up to 2 to 3 between study centres and network operators. Maximum power was used during a considerable proportion of call time (39% on average). Output power decreased with increasing call duration, but showed little variation in relation to reported frequency of use while in a moving vehicle or inside buildings. Higher output powers for rural compared with urban use of the SMP were observed principally in Sweden where the study covered very sparsely populated areas. Average power levels are substantially higher than the minimum levels theoretically achievable in GSM networks. Exposure indices could be improved by accounting for average power levels of different telecommunications systems. There appears to be little value in gathering information on circumstances of phone use other than use in very sparsely populated regions.
Output power distributions of terminals in a 3G mobile communication network.
Persson, Tomas; Törnevik, Christer; Larsson, Lars-Eric; Lovén, Jan
2012-05-01
The objective of this study was to examine the distribution of the output power of mobile phones and other terminals connected to a 3G network in Sweden. It is well known that 3G terminals can operate with very low output power, particularly for voice calls. Measurements of terminal output power were conducted in the Swedish TeliaSonera 3G network in November 2008 by recording network statistics. In the analysis, discrimination was made between rural, suburban, urban, and dedicated indoor networks. In addition, information about terminal output power was possible to collect separately for voice and data traffic. Information from six different Radio Network Controllers (RNCs) was collected during at least 1 week. In total, more than 800000 h of voice calls were collected and in addition to that a substantial amount of data traffic. The average terminal output power for 3G voice calls was below 1 mW for any environment including rural, urban, and dedicated indoor networks. This is <1% of the maximum available output power. For data applications the average output power was about 6-8 dB higher than for voice calls. For rural areas the output power was about 2 dB higher, on average, than in urban areas. Copyright © 2011 Wiley Periodicals, Inc.
The Army’s Operational Energy Challenge
2011-05-01
battery chargers . Solar Hybrid—a system capable of providing up to 10 kilowatts of power continuously while reducing gen- erator running time by 20...granted. Army vehicles consume unprecedented amounts of fuel for mobility and onboard power. Average fuel demand per soldier has increased from about 1... electric power. This depen- dence translates to a vulnerability as fuel and water com- pose the vast majority of resupply volume, which, in turn
Superconducting traveling wave accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farkas, Z.D.
1984-11-01
This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 10/sup 6/ in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 10/sup 3/, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRAmore » reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table.« less
High power high repetition rate diode side-pumped Q-switched Nd:YAG rod laser
NASA Astrophysics Data System (ADS)
Lebiush, E.; Lavi, R.; Tzuk, Y.; Jackel, S.; Lallouz, R.; Tsadka, S.
1998-01-01
A Q-switched diode side-pumped Nd:YAG rod laser is presented. The design is based on close coupled diodes which are mounted side by side to a laser rod cut at Brewster angle. No intra-cavity optics are needed to compensate for the induced thermal lensing of the rod. This laser produces 10 W average power with 30 ns pulse width and beam quality of 1.3 times diffraction limited at 10 kHz repetition rate. The light to light conversion efficiency is 12%. The same average power and beam quality is kept while operating the laser at repetition rates up to 50 kHz.
Unity power factor switching regulator
NASA Technical Reports Server (NTRS)
Rippel, Wally E. (Inventor)
1983-01-01
A single or multiphase boost chopper regulator operating with unity power factor, for use such as to charge a battery is comprised of a power section for converting single or multiphase line energy into recharge energy including a rectifier (10), one inductor (L.sub.1) and one chopper (Q.sub.1) for each chopper phase for presenting a load (battery) with a current output, and duty cycle control means (16) for each chopper to control the average inductor current over each period of the chopper, and a sensing and control section including means (20) for sensing at least one load parameter, means (22) for producing a current command signal as a function of said parameter, means (26) for producing a feedback signal as a function of said current command signal and the average rectifier voltage output over each period of the chopper, means (28) for sensing current through said inductor, means (18) for comparing said feedback signal with said sensed current to produce, in response to a difference, a control signal applied to the duty cycle control means, whereby the average inductor current is proportionate to the average rectifier voltage output over each period of the chopper, and instantaneous line current is thereby maintained proportionate to the instantaneous line voltage, thus achieving a unity power factor. The boost chopper is comprised of a plurality of converters connected in parallel and operated in staggered phase. For optimal harmonic suppression, the duty cycles of the switching converters are evenly spaced, and by negative coupling between pairs 180.degree. out-of-phase, peak currents through the switches can be reduced while reducing the inductor size and mass.
NASA Astrophysics Data System (ADS)
Liu, Mingliang; Lü, Zhe; Wei, Bo; Huang, Xiqiang; Zhang, Yaohui; Su, Wenhui
An annular micro-stack array consisting of four fuel cells has been fabricated and operated successfully in single-chamber conditions using a nitrogen-diluted oxygen-methane mixture as the operating gas. The single cells consist of a state-of-the-art porous NiO/Y 2O 3-stabilized ZrO 2 (YSZ) anode support, a YSZ electrolyte membrane and a modified La 0.7Sr 0.3MnO 3 (LSM) cathode. The annular configuration of the array is favorable for utilizing the heating effect. The maximum power output of the annular stack decreases with increasingCH 4/O 2 ratio. Its performance increases with increasing CH 4 flow rate and decreases with increasing N 2 flow rate. The power output of the stack is ∼380 mW at CH 4/O 2 = 1 and an N 2 flow rate of 100 sccm and the average maximum power density of each cell is ∼190 mW cm -2. The average performance of each cell in the annular micro-stack array is higher than that of an additional single cell placed next to the stack.
10 CFR Appendix D to Part 52 - Design Certification Rule for the AP1000 Design
Code of Federal Regulations, 2014 CFR
2014-01-01
... under 10 CFR 50.90. (1) Maximum fuel rod average burn-up. (2) Fuel principal design requirements. (3... Cases. (3) Design Summary of Critical Sections. (4) American Concrete Institute (ACI) 318, ACI 349... control system, except burn-up limit. (8) Motor-operated and power-operated valves. (9) Instrumentation...
10 CFR Appendix D to Part 52 - Design Certification Rule for the AP1000 Design
Code of Federal Regulations, 2012 CFR
2012-01-01
... under 10 CFR 50.90. (1) Maximum fuel rod average burn-up. (2) Fuel principal design requirements. (3... Cases. (3) Design Summary of Critical Sections. (4) American Concrete Institute (ACI) 318, ACI 349... control system, except burn-up limit. (8) Motor-operated and power-operated valves. (9) Instrumentation...
10 CFR Appendix D to Part 52 - Design Certification Rule for the AP1000 Design
Code of Federal Regulations, 2013 CFR
2013-01-01
... under 10 CFR 50.90. (1) Maximum fuel rod average burn-up. (2) Fuel principal design requirements. (3... Cases. (3) Design Summary of Critical Sections. (4) American Concrete Institute (ACI) 318, ACI 349... control system, except burn-up limit. (8) Motor-operated and power-operated valves. (9) Instrumentation...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, Heather E.; Colella, Whitney G.
2015-06-01
Pacific Northwest National Laboratory (PNNL) is working with industry to independently monitor up to 15 distinct 5 kW-electric (kWe) combined heat and power (CHP) high temperature (HT) proton exchange membrane (PEM) fuel cell systems (FCSs) installed in light commercial buildings. This research paper discusses an evaluation of the first six months of measured performance data acquired at a 1 s sampling rate from real-time monitoring equipment attached to the FCSs at building sites. Engineering performance parameters are independently evaluated. Based on an analysis of the first few months of measured operating data, FCS performance is consistent with manufacturer-stated performance. Initialmore » data indicate that the FCSs have relatively stable performance and a long-term average production of about 4.57 kWe of power. This value is consistent with, but slightly below, the manufacturer's stated rated electric power output of 5 kWe. The measured system net electric efficiency has averaged 33.7%, based on the higher heating value (HHV) of natural gas fuel. This value, also, is consistent with, but slightly below, the manufacturer's stated rated electric efficiency of 36%. The FCSs provide low-grade hot water to the building at a measured average temperature of about 48.4 degrees C, lower than the manufacturer's stated maximum hot water delivery temperature of 65 degrees C. The uptime of the systems is also evaluated. System availability can be defined as the quotient of total operating time compared to time since commissioning. The average values for system availability vary between 96.1 and 97.3%, depending on the FCS evaluated in the field. Performance at rated value for electrical efficiency (PRVeff) can be defined as the quotient of the system time operating at or above the rated electric efficiency and the time since commissioning. The PRVeff varies between 5.6% and 31.6%, depending on the FCS field unit evaluated. Performance at rated value for electrical power (PRVp) can be defined as the quotient of the system time operating at or above the rated electric power and the time since commissioning. PRVp varies between 6.5% and 16.2%. Performance at rated value for electrical efficiency and power (PRVt) can be defined as the quotient of the system time operating at or above both the rated electric efficiency and the electric power output compared to the time since commissioning. PRVt varies between 0.2% and 1.4%. Optimization to determine the manufacturer rating required to achieve PRVt greater than 80% has been performed based on the collected data. For example, for FCS Unit 130 to achieve a PRVt of 95%, it would have to be down-rated to an electrical power output of 3.2 kWe and an electrical efficiency of 29%. The use of PRV as an assessment metric for FCSs has been developed and reported for the first time in this paper. For FCS Unit 130, a maximum decline in electric power output of approximately 18% was observed over a 500 h period in Jan. 2012.« less
Nonlinear Optics Technology. Volume 1. Solid State Laser Technology. Phase 3
1991-01-12
84 Figure 5.6 Modulator diffraction efficiency as a function of peak power for several 86 RF frequencies Figure 5.7 Thermal effects in the modulator. a...far-field profile of a beam making a 87 double pass through the modulator operating with a peak power of 80 W and average power of 1.6 W. b) same...AU three shown incorporate phase conjugation to provide good beam quality. Figure 1.1a is a standard phase conjugated master oscillator power
Design Of An Electrical Flywheel For Surge Power Applications In Mobile Robots
NASA Astrophysics Data System (ADS)
Wright, David D.
1987-01-01
An energy boost system based on a flywheel has been designed to supply the surge power needs of mobile robots for operating equipment like transmitters, drills, manipulator arms, mobility augmenters, and etc. This flywheel increases the average power available from a battery, fuel cell, generator, RPG or solar array by one or more orders of magnitude for short periods. Flywheels can be charged and discharged for thousands of battery lifetimes. Flywheels can deliver more than ten times the power per unit weight of batteries. The electromechanical details of a reliable, energy efficient and (relatively) low cost flywheel are described. This flywheel is the combination of a highly efficient brushless motor and a laminated steel rotor operating in an hermetically sealed container with only electrical input and output. This design approach overcomes the inefficiencies generally associated with mechanically geared devices. Electrical round trip efficiency is 94% under optimum operating conditions.
Operations of the External Conjugate-T Matching System for the A2 ICRH Antennas at JET
NASA Astrophysics Data System (ADS)
Monakhov, I.; Graham, M.; Blackman, T.; Mayoral, M.-L.; Nightingale, M.; Sheikh, H.; Whitehurst, A.
2009-11-01
The External Conjugate-T (ECT) matching system was successfully commissioned on two A2 ICRH antennas at JET in 2009. The system allows trip-free injection of RF power into ELMy H-mode plasmas in the 32-52 MHz band without antenna phasing restrictions. The ECT demonstrates robust and predictable performance and high load-tolerance during routine operations, injecting up to 4 MW average power into H-mode plasma with Type-I ELMs. The total power coupled to ELMy plasma by all the A2 antennas using the ECT and 3dB systems has been increased to 7 MW. Antenna arcing during ELMs has been identified as a new challenge to high-power ICRH operations in H-mode plasma. The implemented Advanced Wave Amplitude Comparison System (AWACS) has proven to be an efficient protection tool for the ECT scheme.
Design considerations for Mars photovoltaic power systems
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Appelbaum, Joseph
1990-01-01
Considerations for operation of a photovoltaic power system on Mars are discussed with reference to Viking Lander data. The average solar insolation at Mars is 590 W/sq m, which is reduced yet further by atmospheric dust. Of major concern are dust storms, which have been observed to occur on local as well as on global scales, and their effect on solar array output. While atmospheric opacity may rise to values ranging from 3 to 9, depending on storm severity, there is still an appreciable large diffuse illumination, even at high opacities, so that photovoltaic operation is still possible. If the power system is to continue to generate power even on high-optical-opacity (i.e., dusty atmosphere) days, it is important that the photovoltaic system be designed to collect diffuse irradiance as well as direct. Energy storage will be required for operation during the night. Temperature and wind provide additional considerations for array design.
Operations of the External Conjugate-T Matching System for the A2 ICRH Antennas at JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monakhov, I.; Graham, M.; Blackman, T.
2009-11-26
The External Conjugate-T (ECT) matching system was successfully commissioned on two A2 ICRH antennas at JET in 2009. The system allows trip-free injection of RF power into ELMy H-mode plasmas in the 32-52 MHz band without antenna phasing restrictions. The ECT demonstrates robust and predictable performance and high load-tolerance during routine operations, injecting up to 4 MW average power into H-mode plasma with Type-I ELMs. The total power coupled to ELMy plasma by all the A2 antennas using the ECT and 3dB systems has been increased to 7 MW. Antenna arcing during ELMs has been identified as a new challengemore » to high-power ICRH operations in H-mode plasma. The implemented Advanced Wave Amplitude Comparison System (AWACS) has proven to be an efficient protection tool for the ECT scheme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yousuke
2012-02-15
We measure the ion beam current and the plasma parameters by using the pulse mode microwave operation in the first stage of a tandem type ECRIS. The time averaged extracted ion beam current in the pulse mode operation is larger than that of the cw mode operation with the same averaged microwave power. The electron density n{sub e} in the pulse mode is higher and the electron temperature T{sub e} is lower than those of the cw mode operation. These plasma parameters are considered to cause in the increase of the ion beam current and are suitable to produce molecularmore » or cluster ions.« less
Commercial mode-locked vertical external cavity surface emitting lasers
NASA Astrophysics Data System (ADS)
Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Head, C. Robin; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.
2017-02-01
In recent years, M Squared Lasers have successfully commercialized a range of mode-locked vertical external cavity surface emitting lasers (VECSELs) operating between 920-1050nm and producing picosecond-range pulses with average powers above 1W at pulse repetition frequencies (PRF) of 200MHz. These laser products offer a low-cost, easy-to-use and maintenance-free tool for the growing market of nonlinear microscopy. However, in order to present a credible alternative to ultrafast Ti-sapphire lasers, pulse durations below 200fs are required. In the last year, efforts have been directed to reduce the pulse duration of the Dragonfly laser system to below 200fs with a target average power above 1W at a PRF of 200MHz. This paper will describe and discuss the latest efforts undertaken to approach these targets in a laser system operating at 990nm. The relatively low PRF operation of Dragonfly lasers represents a challenging requirement for mode-locked VECSELs due to the very short upper state carrier lifetime, on the order of a few nanoseconds, which can lead to double pulsing behavior in longer cavities as the time between consecutive pulses is increased. Most notably, the design of the Dragonfly VECSEL cavity was considerably modified and the laser system extended with a nonlinear pulse stretcher and an additional compression stage. The improved Dragonfly laser system achieved pulse duration as short as 130fs with an average power of 0.85W.
An Efficient Power Saving Mechanism for Delay-Guaranteed Services in IEEE 802.16e
NASA Astrophysics Data System (ADS)
Park, Yunju; Hwang, Gang Uk
As the IEEE 802.16e Wireless Metropolitan Access Network (WMAN) supports the mobility of a mobile station (MS), increasing MS power efficiency has become an important issue. In this paper, we analyze the sleep-mode operation for an efficient power saving mechanism for delay-guaranteed services in the IEEE 802.16e WMAN and observe the effects of the operating parameters related to this operation. For the analysis we use the M/GI/1/K queueing system with multiple vacations, exhaustive services and setup times. In the analysis, we consider the power consumption during the wake-mode period as well as the sleep-mode period. As a performance measure for the power consumption, we propose the power consumption per unit time per effective arrival which considers the power consumption and the packet blocking probability simultaneously. In addition, since we consider delay-guaranteed services, the average packet response delay is also considered as a performance measure. Based on the performance measures, we obtain the optimal sleep-mode operation which minimizes the power consumption per unit time per effective arrival with a given delay requirement. Numerical studies are also provided to investigate the system performance and to show how to achieve our objective.
Liang, Peng; Wu, Wenlong; Wei, Jincheng; Yuan, Lulu; Xia, Xue; Huang, Xia
2011-08-01
A bioelectrochemical system (BES) can be operated in both "microbial fuel cell" (MFC) and "microbial electrolysis cell" (MEC) modes, in which power is delivered and invested respectively. To enhance the electric current production, a BES was operated in MFC mode first and a capacitor was used to collect power from the system. Then the charged capacitor discharged electrons to the system itself, switching into MEC mode. This alternate charging and discharging (ACD) mode helped the system produce 22-32% higher average current compared to an intermittent charging (IC) mode, in which the capacitor was first charged from an MFC and then discharged to a resistor, at 21.6 Ω external resistance, 3.3 F capacitance and 300 mV charging voltage. The effects of external resistance, capacitance and charging voltage on average current were studied. The average current reduced as the external resistance and charging voltage increased and was slightly affected by the capacitance. Acquisition of higher average current in the ACD mode was attributed to the shorter discharging time compared to the charging time, as well as a higher anode potential caused by discharging the capacitor. Results from circuit analysis and quantitatively calculation were consistent with the experimental observations.
Prolonged energy harvesting for ingestible devices.
Nadeau, Phillip; El-Damak, Dina; Glettig, Dean; Kong, Yong Lin; Mo, Stacy; Cleveland, Cody; Booth, Lucas; Roxhed, Niclas; Langer, Robert; Chandrakasan, Anantha P; Traverso, Giovanni
2017-01-01
Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged monitoring systems for patients. Although prior biocompatible power harvesting systems for in vivo use have demonstrated short minute-long bursts of power from the stomach, not much is known about the capacity to power electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 μW per mm 2 of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell has the capacity to provide power for prolonged periods of time to the next generation of ingestible electronic devices located in the gastrointestinal tract.
High power infrared QCLs: advances and applications
NASA Astrophysics Data System (ADS)
Patel, C. Kumar N.
2012-01-01
QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared countermeasures for protecting aircraft from MANPADS, testing of infrared countermeasures, MWIR and LWIR lasers for identify-friend-or-foe (IFF) personnel beacons, infrared target illuminators and designators and tunable QCL applications including in-situ and standoff detection of chemical warfare agents (CWAs) and explosives. The last of these applications addresses a very important and timely need for detection of improvised explosive devices (IEDs) in combat environments like Iraq and Afghanistan.
Status and test report on the LANL-Boeing APLE/HPO flying-wire beam-profile monitor. Status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilke, M.; Barlow, D.; Fortgang, C.
1994-07-01
The High-Power Oscillator (HPO) demonstration of the Average Power Laser Experiment (APLE) is a collaboration by Los Alamos National Laboratory and Boeing to demonstrate a 10 kW average power, 10 {mu}m free electron laser (FEL). As part of the collaboration, Los Alamos National Laboratory (LANL) is responsible for many of the electron beam diagnostics in the linac, transport, and laser sections. Because of the high duty factor and power of the electron beam, special diagnostics are required. This report describes the flying wire diagnostic required to monitor the beam profile during high-power, high-duty operation. The authors describe the diagnostic andmore » prototype tests on the Los Alamos APLE Prototype Experiment (APEX) FEL. They also describe the current status of the flying wires being built for APLE.« less
2017-10-01
Facility is a large-scale cascade that allows detailed flow field surveys and blade surface measurements.10–12 The facility has a continuous run ...structured grids at 2 flow conditions, cruise and takeoff, of the VSPT blade . Computations were run in parallel on a Department of Defense...RANS/LES) and Unsteady RANS Predictions of Separated Flow for a Variable-Speed Power- Turbine Blade Operating with Low Inlet Turbulence Levels
Ultrafast disk technology enables next generation micromachining laser sources
NASA Astrophysics Data System (ADS)
Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk
2013-02-01
Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues operation at 15W is an excellent choice. Currently this is the world's most powerful industrial sub-10 ps UV laser.
10 CFR Appendix D to Part 52 - Design Certification Rule for the AP1000 Design
Code of Federal Regulations, 2011 CFR
2011-01-01
... amendment under 10 CFR 50.90. (1) Maximum fuel rod average burn-up. (2) Fuel principal design requirements... Case-284. (3) Design Summary of Critical Sections. (4) American Concrete Institute (ACI) 318, ACI 349... control system, except burn-up limit. (8) Motor-operated and power-operated valves. (9) Instrumentation...
10 CFR Appendix D to Part 52 - Design Certification Rule for the AP1000 Design
Code of Federal Regulations, 2010 CFR
2010-01-01
... amendment under 10 CFR 50.90. (1) Maximum fuel rod average burn-up. (2) Fuel principal design requirements... Case-284. (3) Design Summary of Critical Sections. (4) American Concrete Institute (ACI) 318, ACI 349... control system, except burn-up limit. (8) Motor-operated and power-operated valves. (9) Instrumentation...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bibeau, C; Bayramian, A; Armstrong, P
We report on the operation of the Mercury laser with fourteen 4 x 6 cm{sup 2} Yb:S-FAP amplifier slabs pumped by eight 100 kW peak power diode arrays. The system was continuously run at 55 J and 10 Hz for several hours, (2 x 10{sup 5} cumulative shots) with over 80% of the energy in a 6 times diffraction limited spot at 1.047 um. Improved optical quality was achieved in Yb:S-FAP amplifiers with magneto-rheological finishing, a deterministic polishing method. In addition, average power frequency conversion employing YCOB was demonstrated at 50% conversion efficiency or 22.6 J at 10 Hz.
Power flattening on modified CANDLE small long life gas-cooled fast reactor
NASA Astrophysics Data System (ADS)
Monado, Fiber; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Ariani, Menik; Sekimoto, Hiroshi
2014-09-01
Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.
NASA Technical Reports Server (NTRS)
Welch, Gerand E.
2010-01-01
The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range (100% at take-off to 54% at cruise). The variable-speed power turbine, when coupled to a fixed-gear-ratio transmission, offers one approach to accomplish this speed variation. The key aero-challenges of the variable-speed power turbine are related to high work factors at cruise, where the power turbine operates at 54% of take-off speed, wide incidence variations into the vane, blade, and exit-guide-vane rows associated with the power-turbine speed change, and the impact of low aft-stage Reynolds number (transitional flow) at 28 kft cruise. Meanline and 2-D Reynolds-Averaged Navier- Stokes analyses are used to characterize the variable-speed power-turbine aerodynamic challenges and to outline a conceptual design approach that accounts for multi-point operation. Identified technical challenges associated with the aerodynamics of high work factor, incidence-tolerant blading, and low Reynolds numbers pose research needs outlined in the paper
Liu, Chao; Yao, Yong; Sun, Yun Xu; Xiao, Jun Jun; Zhao, Xin Hui
2010-10-01
A model is proposed to study the average capacity optimization in free-space optical (FSO) channels, accounting for effects of atmospheric turbulence and pointing errors. For a given transmitter laser power, it is shown that both transmitter beam divergence angle and beam waist can be tuned to maximize the average capacity. Meanwhile, their optimum values strongly depend on the jitter and operation wavelength. These results can be helpful for designing FSO communication systems.
Senoo, Y; Nishizawa, N; Sakakibara, Y; Sumimura, K; Itoga, E; Kataura, H; Itoh, K
2009-10-26
A high-energy, wavelength-tunable, all-polarization-maintaining Er-doped ultrashort fiber laser was demonstrated using a polyimide film dispersed with single-wall carbon nanotubes. A variable output coupler and wavelength filter were used in the cavity configuration, and high-power operation was demonstrated. The maximum average power was 12.6 mW and pulse energy was 585 pJ for stable single-pulse operation with an output coupling ratio as high as 98.3%. Wide wavelength-tunable operation at 1532-1562 nm was also demonstrated by controlling the wavelength filter. The RF amplitude noise characteristics were examined in terms of their dependence on output coupling ratio and oscillation wavelength.
NASA Astrophysics Data System (ADS)
Khojasteh, Malak; Kresin, Vitaly V.
2016-12-01
We describe the production of size selected manganese nanoclusters using a dc magnetron sputtering/aggregation source. Since nanoparticle production is sensitive to a range of overlapping operating parameters (in particular, the sputtering discharge power, the inert gas flow rates, and the aggregation length) we focus on a detailed map of the influence of each parameter on the average nanocluster size. In this way it is possible to identify the main contribution of each parameter to the physical processes taking place within the source. The discharge power and argon flow supply the atomic vapor, and argon also plays the crucial role in the formation of condensation nuclei via three-body collisions. However, neither the argon flow nor the discharge power have a strong effect on the average nanocluster size in the exiting beam. Here the defining role is played by the source residence time, which is governed by the helium supply and the aggregation path length. The size of mass selected nanoclusters was verified by atomic force microscopy of deposited particles.
NASA Technical Reports Server (NTRS)
Smetana, J.; Curren, A. N.
1979-01-01
The performance characteristics of the transmitter experiment package (TEP) aboard the Communications Technology Satellite (CTS) measured during its first 2 years in orbit are presented. The TEP consists of a nominal 200 watt output stage tube (OST), a supporting power processing system (PPS), and a variable conductance heat pipe system (VCHPS). The OST, a traveling wave tube augmented with a 10 stage depressed collector has an overall saturated average efficiency of 51.5 percent and an average saturated radio frequency (rf) output power at center band frequency of 240 watts. The PPS operated with a measured efficiency of 86.5 to 88.5 percent. The VCHPS, using three pipes to conduct heat from the PPS and the OST to a 52 by 124 centimeter radiator fin, maintained the PPS baseplate temperature below 50 C for all operating conditions. The TEP performance characteristics presented include frequency response, rf output power, thermal performance, and efficiency. Communications characteristics were evaluated by using both video and audio modulated signals. On four occasions, the TEP experienced temporary thermal control system malfunctions. The anomalies were terminated safely, and the problem was investigated because of the potential for TEP damage due to the signficant temperature increases. Safe TEP operating procedures were established.
Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge
NASA Astrophysics Data System (ADS)
Williamson, James M.; Trump, Darryl D.; Bletzinger, Peter; Ganguly, Biswa N.
2006-10-01
A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s-1. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ~3 × 1015 cm-3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ~8.5 × 1015 cm-3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level.
Operating experience with the southwire 30-meter high-temperature superconducting power cable
NASA Astrophysics Data System (ADS)
Stovall, J. P.; Lue, J. W.; Demko, J. A.; Fisher, P. W.; Gouge, M. J.; Hawsey, R. A.; Armstrong, J. W.; Hughey, R. L.; Lindsay, D. T.; Roden, M. L.; Sinha, U. K.; Tolbert, J. C.
2002-05-01
Southwire Company is operating a high-temperature superconducting (HTS) cable system at its corporate headquarters. The 30-m long, 3-phase cable system is powering three Southwire manufacturing plants and is rated at 12.4-kV, 1250-A, 60-Hz. Cooling is provided by a pressurized liquid nitrogen system operating at 70-80 K. The cables were energized on January 5, 2000 for on-line testing and operation and in April 2000 were placed into extended service. As of June 1, 2001, the HTS cables have provided 100% of the customer load for 8000 hours. The cryogenic system has been in continuous operation since November 1999. The HTS cable system has not been the cause of any power outages to the average 20 MW industrial load served by the cable. The cable has been exposed to short-circuit currents caused by load-side faults without damage. Based upon field measurements described herein, the cable critical current-a key performance parameter-remains the same and has not been affected by the hours of real-world operation, further proving the viability of this promising technology.
High average power magnetic modulator for metal vapor lasers
Ball, Don G.; Birx, Daniel L.; Cook, Edward G.; Miller, John L.
1994-01-01
A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.
PQScal (Power Quality Score Calculation for Distribution Systems with DER Integration)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Power Quality is of great importance to evaluate the “health” of a distribution system, especially when the distributed energy resource (DER) penetration becomes more significant. The individual components that make up power quality, such as voltage magnitude and unbalance, can be measured in simulations or in the field, however, a comprehensive method to incorporate all of these values into a single score doesn't exist. As a result, we propose a methodology to quantify the power quality health using the single number value, named as Power Quality Score (PQS). The PQS is dependent on six metrics that are developed based onmore » both components that directly impact power quality and those are often reference in the context of power quality. These six metrics are named as System Average Voltage Magnitude Violation Index (SAVMVI), System Average Voltage Fluctuation Index (SAVFI), System Average Voltage Unbalance Index (SAVUI), System Control Device Operation Index (SCDOI), System Reactive Power Demand Index (SRPDI) and System Energy Loss Index (SELI). This software tool, PQScal, is developed based on this novel PQS methodology. Besides of traditional distribution systems, PQScal can also measure the power quality for distribution systems with various DER penetrations. PQScal has been tested on two utility distribution feeders with distinct model characteristics and its effectiveness has been proved. In sum, PQScal can help utilities or other parties to measure the power quality of distribution systems with DER integration easily and effectively.« less
ICRH system performance during ITER-Like Wall operations at JET and the outlook for DT campaign
NASA Astrophysics Data System (ADS)
Monakhov, Igor; Blackman, Trevor; Dumortier, Pierre; Durodié, Frederic; Jacquet, Philippe; Lerche, Ernesto; Noble, Craig
2017-10-01
Performance of JET ICRH system since installation of the metal ITER-Like Wall (ILW) has been assessed statistically. The data demonstrate steady increase of the RF power coupled to plasmas over recent years with the maximum pulse-average and peak values exceeding respectively 6MW and 8MW in 2016. Analysis and extrapolation of power capabilities of conventional JET ICRH antennas is provided and key performance-limiting factors are discussed. The RF plant operational frequency options are presented highlighting the issues of efficient ICRH application within a foreseeable range of DT plasma scenarios.
Varanasi, Jhansi L; Sinha, Pallavi; Das, Debabrata
2017-05-01
To selectively enrich an electrogenic mixed consortium capable of utilizing dark fermentative effluents as substrates in microbial fuel cells and to further enhance the power outputs by optimization of influential anodic operational parameters. A maximum power density of 1.4 W/m 3 was obtained by an enriched mixed electrogenic consortium in microbial fuel cells using acetate as substrate. This was further increased to 5.43 W/m 3 by optimization of influential anodic parameters. By utilizing dark fermentative effluents as substrates, the maximum power densities ranged from 5.2 to 6.2 W/m 3 with an average COD removal efficiency of 75% and a columbic efficiency of 10.6%. A simple strategy is provided for selective enrichment of electrogenic bacteria that can be used in microbial fuel cells for generating power from various dark fermentative effluents.
Efficient 10 kW diode-pumped Nd:YAG rod laser
NASA Astrophysics Data System (ADS)
Akiyama, Yasuhiro; Takada, Hiroyuki; Sasaki, Mitsuo; Yuasa, Hiroshi; Nishida, Naoto
2003-03-01
As a tool for high speed and high precision material processing such as cutting and welding, we developed a rod-type all-solid-state laser with an average power of more than 10 kW, an electrical-optical efficiency of more than 20%, and a laser head volume of less than 0.05 m3. We developed a highly efficient diode pumped module, and successfully obtained electrical-optical efficiencies of 22% in CW operation and 26% in QCW operation at multi-kW output powers. We also succeeded to reduce the laser head volume, and obtained the output power of 12 kW with an efficiency of 23%, and laser head volume of 0.045 m3. We transferred the technology to SHIBAURA mechatronics corp., who started to provide the LD pumped Nd:YAG laser system with output power up to 4.5 kW. We are now continuing development for further high power laser equipment.
Rainey, R C T
2018-01-01
For tidal power barrages, a breast-shot water wheel, with a hydraulic transmission, has significant advantages over a conventional Kaplan turbine. It is better suited to combined operations with pumping that maintain the tidal range upstream of the barrage (important in reducing the environmental impact), and is much less harmful to fish. It also does not require tapered entry and exit ducts, making the barrage much smaller and lighter, so that it can conveniently be built in steel. For the case of the Severn Estuary, UK, it is shown that a barrage at Porlock would generate an annual average power of 4 GW (i.e. 35 TWh yr -1 ), maintain the existing tidal ranges upstream of it and reduce the tidal ranges downstream of it by only about 10%. The weight of steel required, in relation to the annual average power generated, compares very favourably with a recent offshore wind farm.
NASA Astrophysics Data System (ADS)
Rainey, R. C. T.
2018-01-01
For tidal power barrages, a breast-shot water wheel, with a hydraulic transmission, has significant advantages over a conventional Kaplan turbine. It is better suited to combined operations with pumping that maintain the tidal range upstream of the barrage (important in reducing the environmental impact), and is much less harmful to fish. It also does not require tapered entry and exit ducts, making the barrage much smaller and lighter, so that it can conveniently be built in steel. For the case of the Severn Estuary, UK, it is shown that a barrage at Porlock would generate an annual average power of 4 GW (i.e. 35 TWh yr-1), maintain the existing tidal ranges upstream of it and reduce the tidal ranges downstream of it by only about 10%. The weight of steel required, in relation to the annual average power generated, compares very favourably with a recent offshore wind farm.
NASA Astrophysics Data System (ADS)
1982-02-01
Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.
OPERATIONAL CHARACTERISTICS OF THE ARMOUR FISSION GAS GAMMA FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrell, C.W.; McElroy, W.N.
1958-10-31
As the reactor power level is changed frequently, the radiation levels in the gamma facility fluctuate. Data are presented to show the power dependency of the gamma dose rate and the manner of growth and decay. Additional data show the dependercy of the equilibrium gamma activity on the foel temperature and total system pressure. The final phase of the work is directed toward determining an average gamma energy by attenuation measurements with various thicknesses of several materials. The neutrou flux associated with the gas phase activity is determined by foil measurement. From the measurements of dose rate and average gammamore » energy, calculations to determine the number of curies of gas phase decay gamma activity per watt of reactor power are presented. (auth)« less
Developments In Electronic Speckle Pattern Interferometry For Automotive Vibration Analysis.
NASA Astrophysics Data System (ADS)
Davies, Jeremy C.; Buckberry, Clive H.; Jones, Julian D. C.; Pannell, Chris N.
1989-01-01
The incorporation of monomode fibre optics into an argon ion powered Electronic Speckle Pattern Interferometer (ESPI) is reported. The system, consisting of an optics assembly linked to the laser and a CCD camera transceiver, flexibly connected by 40m of monomode fibre optic cable to the optics, has been used to analyse the modal behaviour of structures up to 5m X 3m X 2m in size. Phase modulation of the reference beam in order to operate in a heterodyne mode has been implemented using a piezo-electric crystal operating on the monomode fibre. A new mode of operation - sequential time-average subtraction - and the results of a new processing algorithm are also reported. Their implementation enables speckle free, time-average vibration maps to be generated in real-time on large, unstable structures. Example results for a four cylinder power unit, a vehicle body shell component and an engine oil pan are included. In all cases the analysis was conducted in a general workshop environment without the need for vibration isolation facilities.
Advances in high power linearly polarized fiber laser and its application
NASA Astrophysics Data System (ADS)
Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin
2017-10-01
Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.
Development of miniature, high frequency pulse tube cryocoolers
NASA Astrophysics Data System (ADS)
Radebaugh, Ray; Garaway, Isaac; Veprik, Alexander M.
2010-04-01
Because acoustic power density is proportional to frequency, the size of pulse tube cryocoolers for a given refrigeration power can be reduced by operating them at higher frequencies. A frequency of about 60 Hz had been considered the maximum frequency that could be used while maintaining high efficiency. Recently, we have shown through modeling that by decreasing the volume and hydraulic diameter of the regenerator and increasing the average pressure, it is possible to maintain high efficiency even for frequencies of several hundred hertz. Subsequent experimental results have demonstrated high efficiencies for frequencies of 100 to 140 Hz. The very high power density achieved at higher pressures and higher frequencies leads to very short cooldown times and very compact devices. The use of even higher frequencies requires the development of special compressors designed for such conditions and the development of regenerator matrices with hydraulic diameters less than about 30 Μm. To demonstrate the advantages of higher frequency operation, we discuss here the development of a miniature pulse tube cryocooler designed to operate at 80 K with a frequency of 150 Hz and an average pressure of 5.0 MPa. The regenerator diameter and length are 4.4 mm and 27 mm, respectively. The lowest temperature achieved to date has been 97 K, but a net refrigeration power of 530 mW was achieved at 120 K. Acoustic mismatches with existing compressors significantly limit the efficiency, but necessary modifications to improve the acoustic impedance match between the compressor and the cold head are discussed briefly.
Licensed operating reactors: Status summary report data as of December 31, 1991. Volume 16
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-03-01
The Nuclear Regulatory Commission`s annual summary of licensed nuclear power reactor data is based primarily on the report of operating data submitted by licensees for each unit for the month of December because that report contains data for the month of December, the year to date (in this case calendar year 1991) and cumulative data, usually from the date of commercial operation. The data is not independently verified, but various computer checks are made. The report is divided into two sections. The first contains summary highlights and the second contains data on each individual unit in commercial operation. Section 1more » capacity and availability factors are simple arithmetic averages. Section 2 items in the cumulative column are generally as reported by the licensee and notes as to the use of weighted averages and starting dates other than commercial operation are provided.« less
Licensed operating reactors. Status summary report data as of 12-31-94: Volume 19
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The Nuclear Regulatory Commission`s annual summary of licensed nuclear power reactor data is based primarily on the report of operating data submitted by licensees for each unit for the month of December because that report contains data for the month of December, the year to date (in this case calendar year 1994) and cumulative data, usually from the date of commercial operation. The data is not independently verified, but various computer checks are made. The report is divided into two sections. The first contains summary highlights and the second contains data on each individual unit in commercial operation. Section 1more » capacity and availability factors are simple arithmetic averages. Section 2 items in the cumulative column are generally as reported by the licensee and notes as to the use of weighted averages and starting dates other than commercial operation are provided.« less
Thermoelectric energy harvesting from diurnal heat flow in the upper soil layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whalen, Scott A.; Dykhuizen, Ronald C.
2012-09-26
We built and tested a subterranean thermoelectric power source that converts diurnal heat flow through the upper soil layer into electricity. This paper describes the operation, design, and performance of the device. Key features of the power source include the use of bismuth-telluride thermopiles optimized for small ΔT and aerogel insulation to minimize thermal losses. The device weighs 0.24 kg and was designed with a flat form factor measuring 12 × 12 × 1.7 cm to facilitate modularity, packing, and assembly into larger arrays. One full year of field testing was performed between June 2009 and May 2010 in Albuquerque,more » New Mexico where the device generated an average power output of 1.1 mW. The season with the highest performance was spring (March–May) while the season of lowest performance was winter (November–January). During May 2010, the device generated an average power of 1.5 mW and a peak power of 9.8 mW at 9.3 V. Ten years of continuous operation at 1.1 mW would yield an energy density and specific energy of 1384 W h/L and 1430 W h/kg respectively, which is competitive with chemical batteries and is orders of magnitude greater than published subterranean and ambient thermoelectric harvesters. Numerical simulations show that performance is sensitive to the thermal properties of the soil and environmental conditions. This class of energy harvester may provide an option for supplemental power, or possibly primary power, for low power remote sensing applications.« less
MoS2-based passively Q-switched diode-pumped Nd:YAG laser at 946 nm
NASA Astrophysics Data System (ADS)
Lin, Haifeng; Zhu, Wenzhang.; Xiong, Feibing; Cai, Lie
2017-06-01
We demonstrate a passively Q-switched Nd: YAG quasi-three-level laser operating at 946 nm using MoS2 as saturable absorber. A maximum average output power of 210 mW is achieved at an absorbed pump power of 6.67 W with a slope efficiency of about 5.8%. The shortest pulse width and maximum pulse repetition frequency are measured to be 280 ns and 609 kHz, respectively. The maximum pulse energy and maximum pulse peak power are therefore estimated to be about 0.35 μJ and 1.23 W, respectively. This work represents the first MoS2-based Q-switched laser operating at 0.9 μm spectral region.
Fully automated 1.5 MHz FDML laser with more than 100mW output power at 1310 nm
NASA Astrophysics Data System (ADS)
Wieser, Wolfgang; Klein, Thomas; Draxinger, Wolfgang; Huber, Robert
2015-07-01
While FDML lasers with MHz sweep speeds have been presented five years ago, these devices have required manual control for startup and operation. Here, we present a fully self-starting and continuously regulated FDML laser with a sweep rate of 1.5 MHz. The laser operates over a sweep range of 115 nm centered at 1315 nm, and provides very high average output power of more than 100 mW. We characterize the laser performance, roll-off, coherence length and investigate the wavelength and phase stability of the laser output under changing environmental conditions. The high output power allows optical coherence tomography (OCT) imaging with an OCT sensitivity of 108 dB at 1.5 MHz.
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Zhang, Cheng; Zu, Yuqian; Fan, Xiuwei; Liu, Jie; Guo, Xinsheng; Qian, Xiaobo; Su, Liangbi
2018-04-01
Laser operations in the continuous-wave as well as in the pulsed regime of a 4 at.% Tm3+:CaF2 crystal are reported. For the continuous-wave operation, a maximum average output power of 1.15 W was achieved, and the corresponding slope efficiency was more than 64%. A continuous tuning range of about 160 nm from 1877-2036 nm was achieved using a birefringent filter. Using Argentum nanorods as a saturable absorber, the significant pulsed operation of a passively Q-switched Tm3+:CaF2 laser was observed at 1935.4 nm for the first time, to the best of our knowledge. A maximum output power of 385 mW with 41.4 µJ pulse energy was obtained under an absorbed pump power of 2.04 W. The present results indicate that the Tm3+:CaF2 lasers could be promising laser sources to operate in the eye-safe spectral region.
NASA Astrophysics Data System (ADS)
Jiang, D. P.; Zou, Y. Q.; Su, L. B.; Tang, H. L.; Wu, F.; Zheng, L. H.; Li, H. J.; Xu, J.
2011-05-01
Co2+-doped Mg0.4Al2.4O4 single crystal up to varnothing28×40 mm3 was successfully grown by the Czochralski method. By using this crystal as saturable absorber, we have demonstrated a diode-end-pumped passively Q-switched Er:glass microchip laser operating at 1535 nm for the first time to the best of our knowledge. The dependences of average output power, repetition rate and pulse energy on the incident pump power were investigated. In the passive Q-switching regime, a maximum average output power of 22.12 mW was obtained at the incident pump power of 410 mW. The narrowest pulse width, the largest pulse energy and the highest peak power were obtained to be about 3.5 ns, 4.8 μJ, and 1.37 kW, respectively.
Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants
NASA Astrophysics Data System (ADS)
Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo
2016-10-01
The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.
Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D
2016-07-25
A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.
SImbol Materials Lithium Extraction Operating Data From Elmore and Featherstone Geothermal Plants
Stephen Harrison
2015-07-08
The data provided in this upload is summary data from its Demonstration Plant operation at the geothermal power production plants in the Imperial Valley. The data provided is averaged data for the Elmore Plant and the Featherstone Plant. Included is both temperature and analytical data (ICP_OES). Provide is the feed to the Simbol Process, post brine treatment and post lithium extraction.
Bulk shielding facility quarterly report, October, November, and December 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurt, III, S. S.; Lance, E. D.; Thomas, J. R.
1977-08-01
The BSR operated at an average power level of 1,836 kw for 78.01 percent of the time during October, November, and December. Water-quality control in both the reactor primary and secondary cooling systems was satisfactory. The PCA was used in training programs and was operated on two occasions when the University of Kentucky students actively participated in training laboratories.
A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen E.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.;
2013-01-01
Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test).1 Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Binary and ternary carbide fuels may have the potential for providing even higher specific impulses.
A sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications
Mercier, Patrick P.; Bandyopadhyay, Saurav; Lysaght, Andrew C.; Stankovic, Konstantina M.; Chandrakasan, Anantha P.
2015-01-01
This paper presents the design of a narrowband transmitter and antenna system that achieves an average power consumption of 78 pW when operating at a duty-cycled data rate of 1 bps. Fabricated in a 0.18 µm CMOS process, the transmitter employs a direct-RF power oscillator topology where a loop antenna acts as a both a radiative and resonant element. The low-complexity single-stage architecture, in combination with aggressive power gating techniques and sizing optimizations, limited the standby power of the transmitter to only 39.7 pW at 0.8 V. Supporting both OOK and FSK modulations at 2.4 GHz, the transmitter consumed as low as 38 pJ/bit at an active-mode data rate of 5 Mbps. The loop antenna and integrated diodes were also used as part of a wireless power transfer receiver in order to kick-start the system power supply during energy harvesting operation. PMID:26246641
Optimal Coordinated EV Charging with Reactive Power Support in Constrained Distribution Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudyal, Sumit; Ceylan, Oğuzhan; Bhattarai, Bishnu P.
Electric vehicle (EV) charging/discharging can take place in any P-Q quadrants, which means EVs could support reactive power to the grid while charging the battery. In controlled charging schemes, distribution system operator (DSO) coordinates with the charging of EV fleets to ensure grid’s operating constraints are not violated. In fact, this refers to DSO setting upper bounds on power limits for EV charging. In this work, we demonstrate that if EVs inject reactive power into the grid while charging, DSO could issue higher upper bounds on the active power limits for the EVs for the same set of grid constraints.more » We demonstrate the concept in an 33-node test feeder with 1,500 EVs. Case studies show that in constrained distribution grids in coordinated charging, average costs of EV charging could be reduced if the charging takes place in the fourth P-Q quadrant compared to charging with unity power factor.« less
Initial guidelines and estimates for a power system with inertial (flywheel) energy storage
NASA Technical Reports Server (NTRS)
Slifer, L. W., Jr.
1980-01-01
The starting point for the assessment of a spacecraft power system utilizing inertial (flywheel) energy storage. Both general and specific guidelines are defined for the assessment of a modular flywheel system, operationally similar to but with significantly greater capability than the multimission modular spacecraft (MMS) power system. Goals for the flywheel system are defined in terms of efficiently train estimates and mass estimates for the system components. The inertial storage power system uses a 5 kw-hr flywheel storage component at 50 percent depth of discharge (DOD). It is capable of supporting an average load of 3 kw, including a peak load of 7.5 kw for 10 percent of the duty cycle, in low earth orbit operation. The specific power goal for the system is 10 w/kg, consisting of a 56w/kg (end of life) solar array, a 21.7 w-hr/kg (at 50 percent DOD) flywheel, and 43 w/kg power processing (conditioning, control and distribution).
PAVE PAWS Early Warning Radar Operation Cape Cod Air Force Station, MA. Record of Decision
2009-06-01
Electrical and Electronics Engineers (IEEE) C95.1-1999. Accordingly, the highest measurement was obtained directly in front of the feedhorn (i.e...waveform characterization of the Cape Cod AFS Pave PAWS radar. The data acquired during the Phase IV survey indicated that the electric fields produced...level observed among the ambient sites. During this survey, peak/average power density measurements and peak/average electric field measurements
Performance of one hundred watt HVM LPP-EUV source
NASA Astrophysics Data System (ADS)
Mizoguchi, Hakaru; Nakarai, Hiroaki; Abe, Tamotsu; Nowak, Krzysztof M.; Kawasuji, Yasufumi; Tanaka, Hiroshi; Watanabe, Yukio; Hori, Tsukasa; Kodama, Takeshi; Shiraishi, Yutaka; Yanagida, Tatsuya; Soumagne, Georg; Yamada, Tsuyoshi; Yamazaki, Taku; Okazaki, Shinji; Saitou, Takashi
2015-03-01
We have been developing CO2-Sn-LPP EUV light source which is the most promising solution as the 13.5nm high power light source for HVM EUVL. Unique and original technologies such as: combination of pulsed CO2 laser and Sn droplets, dual wavelength laser pulses shooting, and mitigation with magnetic field, have been developed in Gigaphoton Inc. The theoretical and experimental data have clearly showed the advantage of our proposed strategy. Based on these data we are developing first practical source for HVM - "GL200E". This data means 250W EUV power will be able to realize around 20kW level pulsed CO2 laser. We have reported engineering data from our recent test such around 43W average clean power, CE=2.0%, with 100kHz operation and other data 19). We have already finished preparation of higher average power CO2 laser more than 20kW at output power cooperate with Mitsubishi Electric Corporation 14). Recently we achieved 92W with 50kHz, 50% duty cycle operation 20). We have reported component technology progress of EUV light source system. We report promising experimental data and result of simulation of magnetic mitigation system in Proto #1 system. We demonstrated several data with Proto #2 system: (1) emission data of 140W in burst under 70kHz 50% duty cycle during 10 minutes. (2) emission data of 118W in burst under 60kHz 70% duty cycle during 10 minutes. (3) emission data of 42W in burst under 20kHz 50% duty cycle (10000pls/0.5ms OFF) during 3 hours (110Mpls). Also we report construction of Pilot #1 system. Final target is week level operation with 250W EUV power with CE=4%, more than 27kW CO2 laser power by the end of Q2 of 2015.
Optimization of passively mode-locked Nd:GdVO4 laser with the selectable pulse duration 15-70 ps
NASA Astrophysics Data System (ADS)
Frank, Milan; Jelínek, Michal; Vyhlídal, David; Kubeček, Václav
2016-12-01
In this paper the optimization of a continuously diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively mode-locked using semiconductor saturable absorber mirror is presented. In the previous results the Nd:GdVO4 laser system generating 30 ps pulses with the average output power of 6.9 W at the repetition rate of 200 MHz at the wavelength of 1063 nm was reported. Now we are demonstrating up to three times increase of peak power due to the optimization of mode-matching in the laser resonator. Depending on the oscillator configuration we obtained the stable continuously mode-locked operation with pulses having selectable duration from 15 ps to 70 ps with the average output power of 7 W and the repetition rate of 150 MHz.
Generation of 1-J bursts with picosecond pulses from Perla B thin-disk laser system
NASA Astrophysics Data System (ADS)
Chyla, Michal; Nagisetty, Siva S.; Severova, Patricie; Zhou, Huang; Smrz, Martin; Endo, Akira; Mocek, Tomas
2018-02-01
In many fields of modern physics and industrial applications high-average power pulsed diode-pumped solid-state lasers are essential. Scaling of these lasers towards higher pulse energies is often limited by the onset of thermal effects which are determined by the average power. In this paper we would like to propose a way of increasing the pulse energies by operating the PERLA B laser system in 100 Hz burst mode with 1 ms burst duration and intra-burst repetition rate of 10 kHz. The CPA-based system incorporates fiber front-end, regenerative amplifier and the multipass amplifier followed by the booster amplifier and <2ps compressor.
CW and femtosecond operation of a diode-pumped Yb:BaY(2)F(8) laser.
Galzerano, G; Coluccelli, N; Gatti, D; Di Lieto, A; Tonelli, M; Laporta, P
2010-03-15
We report for the first time on laser action of a diode-pumped Yb:BaY(2)F(8) crystal. Both CW and femtosecond operations have been demonstrated at room-temperature conditions. A maximum output power of 0.56 W, a slope efficiency of 34%, and a tunability range from 1013 to 1067 nm have been obtained in CW regime. Transform-limited pulse trains with a minimum duration of 275 fs, an average power of 40 mW, and a repetition rate of 83 MHz have been achieved in a passive mode-locked regime using a semiconductor saturable absorber mirror.
Efficient Q-switched operation in 1.64 μm Er:YAG tapered rod laser
NASA Astrophysics Data System (ADS)
Polyakov, Vadim M.; Vitkin, Vladimir V.; Krylov, Alexandr A.; Uskov, Alexander V.; Mak, Andrey A.
2017-02-01
We model output characteristics of the 1645 nm 8 mJ 10 ns 100 Hz Q-switched Er:YAG DPSSL. The laser is end pumped at a wavelength of 1532 nm. Fiber-coupled diode laser module was 10 nm FWHM, 12 W CW, 200 μm, NA 0.22. Various tapering of the active rod has been considered for 1 mm diameter, 20 mm long and 0.5% Er doping. We discuss the heat deposition process, the energy storage efficiency and the average power limitations for Q-switched regime of generation and amplification, and find the system scalable for the high power operation.
NASA Astrophysics Data System (ADS)
Zheleznov, D. S.; Voitovich, A. V.; Mukhin, I. B.; Palashov, O. V.; Khazanov, E. A.
2006-04-01
It is shown experimentally that cooling of a Faraday isolator to liquid nitrogen temperature considerably suppresses the thermally induced depolarisation and reduces the thermal lens. This leads to an increase in the maximum average laser radiation power passing through the isolator by a factor of more than thirty for the same degree of isolation. It is shown that for the same level of cooling, conventional Faraday isolators can operate for powers up to 10 kW, while isolators with compensation of depolarisation and thermal lens can operate up to 100 kW.
Efficient 2-μm Tm:YAP Q-switched and CW lasers
NASA Astrophysics Data System (ADS)
Hays, A. D.; Cole, Brian; King, Vernon; Goldberg, Lew
2018-02-01
Highly efficient, diode pumped Tm:YAP lasers generating emission in the 1.85-1.94 μm range are demonstrated and characterized. Laser optical efficiencies of 51% and 45%, and electrical efficiencies of 31% and 25% are achieved under CW and Q-switched operation, respectively. Laser performance was characterized for maximum average powers up to 20W with various cavity configurations, all using an intra-cavity lens to compensate for thermal lensing in the Tm:YAP crystal. Q-switched lasers incorportating a Cr:ZnS saturable absorber (SA), resonant mechanical mirror scanner, or acousto-optic modulator were characterized. To enable higher average output powers, measurements of the thermal lens were conducted for the Tm:YAP crystal as a function of pump power and were compared to values predicted by a finiteelement- analysis (FEA) thermal-optical model of the Tm:YAP crystal. A resonator model is developed to incorporate this calculated thermal lens and its effect on laser performance. This paper will address approaches for improving the performance of Tm:YAP lasers, and means for achieving increased average output powers while maintaining high optical efficiency for both SA and mechanical Q-switching.
Mass modeling for electrically powered space-based Yb:YAG lasers
NASA Astrophysics Data System (ADS)
Fitzgerald, Kevin F.; Leshner, Richard B.; Winsor, Harry V.
2000-05-01
An estimate for the mass of a nominal high-energy laser system envisioned for space applications is presented. The approach features a diode pumped solid state Yb:YAG laser. The laser specifications are10 MW average output power, and periods of up to 100 seconds continuous, full-power operation without refueling. The system is powered by lithium ion batteries, which are recharged by a solar array. The power requirements for this system dominate over any fixed structural features, so the critical issues in scaling a DPSSL to high power are made transparent. When based on currently available space qualified batteries, the design mass is about 500 metric tons. Therefore, innovations are required before high power electrical lasers will be serious contenders for use in space systems. The necessary innovations must improve the rate at which lithium ion batteries can output power. Masses for systems based on batteries that should be available in the near future are presented. This analysis also finds that heating of the solid state lasing material, cooling of the diode pump lasers and duty cycle are critical issues. Features dominating the thermal control requirements are the heat capacity of garnet, the operational temperature range of the system, and the required cooling time between periods of full operation. The duty cycle is a critical factor in determining both the mass of the diode array needed, and the mass of the power supply system.
NASA Astrophysics Data System (ADS)
Wang, Chaoen; Chang, Lung-Hai; Chang, Mei-Hsia; Chen, Ling-Jhen; Chung, Fu-Tsai; Lin, Ming-Chyuan; Liu, Zong-Kai; Lo, Chih-Hung; Tsai, Chi-Lin; Yeh, Meng-Shu; Yu, Tsung-Chi
2017-11-01
Excitation of multipacting, enhanced by gas condensation on cold surfaces of the high power input coupler in a SRF module poses the highest challenge for reliable SRF operation under high average RF power. This could prevent the light source SRF module from being operated with a desired high beam current. Off-line long-term reliability tests have been conducted for the newly constructed 500-MHz SRF KEKB type modules at an accelerating RF voltage of 1.6-MV to enable prediction of their operational reliability in the 3-GeV Taiwan Photon Source (TPS), since prediction from mere production performance by conventional horizontal test is presently unreliable. As expected, operational difficulties resulting from multipacting, enhanced by gas condensation, have been identified in the course of long-term reliability test. Our present hypothesis is that gas condensation can be slowed down by preserving the vacuum pressure at the power coupler close to that reached just after its cool down to liquid helium temperatures. This is achievable by reduction of the power coupler out-gassing rate through comprehensive warm aging. Its feasibility and effectiveness has been experimentally verified in a second long term reliability test. Our success opens the possibility to operate the SRF module free of multipacting trouble and opens a new direction to improve the operational performance of next generation SRF modules in light sources with high beam currents.
Application of the aeroacoustic analogy to a shrouded, subsonic, radial fan
NASA Astrophysics Data System (ADS)
Buccieri, Bryan M.; Richards, Christopher M.
2016-12-01
A study was conducted to investigate the predictive capability of computational aeroacoustics with respect to a shrouded, subsonic, radial fan. A three dimensional unsteady fluid dynamics simulation was conducted to produce aerodynamic data used as the acoustic source for an aeroacoustics simulation. Two acoustic models were developed: one modeling the forces on the rotating fan blades as a set of rotating dipoles located at the center of mass of each fan blade and one modeling the forces on the stationary fan shroud as a field of distributed stationary dipoles. Predicted acoustic response was compared to experimental data measured at two operating speeds using three different outlet restrictions. The blade source model predicted overall far field sound power levels within 5 dB averaged over the six different operating conditions while the shroud model predicted overall far field sound power levels within 7 dB averaged over the same conditions. Doubling the density of the computational fluids mesh and using a scale adaptive simulation turbulence model increased broadband noise accuracy. However, computation time doubled and the accuracy of the overall sound power level prediction improved by only 1 dB.
Adverse design of defibrillators: turning off the machine when trying to shock.
Høyer, Christian S; Christensen, Erika F; Eika, Berit
2008-11-01
A recent publication demonstrated the possibility of erroneous operation of 2 widely used monitor-defibrillators and observed that the design of user interfaces might contribute to error during operation. During an ambulance simulation training exercise for 72 junior internal medicine physicians that called for defibrillation in the management of cardiac arrest, we observed that in 5 of 192 defibrillation attempts by the physicians, the monitor-defibrillator was inadvertently powered off. When the device is inadvertently powered off, recognition and subsequent steps to defibrillate delayed defibrillation an average of 24 seconds (range 14 to 32 seconds). Our analysis of the controls of this monitor-defibrillator found that the device could be powered off even if fully charged and ready to shock. Redesign of the equipment might prevent this inadvertent event.
Fu, S G; Ouyang, X Y; Liu, X J
2015-10-10
A passively Q-switched Nd:YAG/Cr4+:YAG microchip laser operating at 1112 nm is demonstrated. Under a pump power of 5.5 W, a maximum average output power of 623 mW was obtained with T=6% output coupler, corresponding to an optical-to-optical conversion efficiency of 11.3% and a slope efficiency of 19.5%. The minimum pulse width was 2.8 ns, the pulse energy and peak power were 39.3 μJ and 14 kW, respectively. Additionally, based on the 1112 nm laser, a 230 mW 556 nm green-yellow laser was achieved within an LBO crystal.
1979-06-11
has been conducted into the use of diamond as a TWT helix support material to increase the average output power capability of broadband high frequency...unifilar helix is the one TWT circuit capable of broadband operation with good efficiency, methods to increase jT its power dissipation capability are of...BIBLIOGRAPHY IRa D> AE .,L,-,# ACot .,i n iv 4 I IPT-5413 LIST OF ILLUSTRATIONS Figure No. Title 1 Temperature Differences in a PPM Focused Helix TWT
Frequency doubled high-power disk lasers in pulsed and continuous-wave operation
NASA Astrophysics Data System (ADS)
Weiler, Sascha; Hangst, Alexander; Stolzenburg, Christian; Zawischa, Ivo; Sutter, Dirk; Killi, Alexander; Kalfhues, Steffen; Kriegshaeuser, Uwe; Holzer, Marco; Havrilla, David
2012-03-01
The disk laser with multi-kW output power in infrared cw operation is widely used in today's manufacturing, primarily in the automotive industry. The disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency and high reliability with low investment and operating costs. Additionally, the disk laser is ideally suited for frequency conversion due to its polarized output with negligible depolarization losses. Laser light in the green spectral range (~515 nm) can be created with a nonlinear crystal. Pulsed disk lasers with green output of well above 50 W (extracavity doubling) in the ps regime and several hundreds of Watts in the ns regime with intracavity doubling are already commercially available whereas intracavity doubled disk lasers in continuous wave operation with greater than 250 W output are in test phase. In both operating modes (pulsed and cw) the frequency doubled disk laser offers advantages in existing and new applications. Copper welding for example is said to show much higher process reliability with green laser light due to its higher absorption in comparison to the infrared. This improvement has the potential to be very beneficial for the automotive industry's move to electrical vehicles which requires reliable high-volume welding of copper as a major task for electro motors, batteries, etc.
Ex post power economic analysis of record of decision operational restrictions at Glen Canyon Dam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veselka, T. D.; Poch, L. A.; Palmer, C. S.
On October 9, 1996, Bruce Babbitt, then-Secretary of the U.S. Department of the Interior signed the Record of Decision (ROD) on operating criteria for the Glen Canyon Dam (GCD). Criteria selected were based on the Modified Low Fluctuating Flow (MLFF) Alternative as described in the Operation of Glen Canyon Dam, Colorado River Storage Project, Arizona, Final Environmental Impact Statement (EIS) (Reclamation 1995). These restrictions reduced the operating flexibility of the hydroelectric power plant and therefore its economic value. The EIS provided impact information to support the ROD, including an analysis of operating criteria alternatives on power system economics. This exmore » post study reevaluates ROD power economic impacts and compares these results to the economic analysis performed prior (ex ante) to the ROD for the MLFF Alternative. On the basis of the methodology used in the ex ante analysis, anticipated annual economic impacts of the ROD were estimated to range from approximately $15.1 million to $44.2 million in terms of 1991 dollars ($1991). This ex post analysis incorporates historical events that took place between 1997 and 2005, including the evolution of power markets in the Western Electricity Coordinating Council as reflected in market prices for capacity and energy. Prompted by ROD operational restrictions, this analysis also incorporates a decision made by the Western Area Power Administration to modify commitments that it made to its customers. Simulated operations of GCD were based on the premise that hourly production patterns would maximize the economic value of the hydropower resource. On the basis of this assumption, it was estimated that economic impacts were on average $26.3 million in $1991, or $39 million in $2009.« less
NASA Astrophysics Data System (ADS)
Tender, Leonard M.; Gray, Sam A.; Groveman, Ethan; Lowy, Daniel A.; Kauffman, Peter; Melhado, Julio; Tyce, Robert C.; Flynn, Darren; Petrecca, Rose; Dobarro, Joe
2008-05-01
Here we describe the first demonstration of a microbial fuel cell (MFC) as a practical alternative to batteries for a low-power consuming application. The specific application reported is a meteorological buoy (ca. 18-mW average consumption) that measures air temperature, pressure, relative humidity, and water temperature, and that is configured for real-time line-of-sight RF telemetry of data. The specific type of MFC utilized in this demonstration is the benthic microbial fuel cell (BMFC). The BMFC operates on the bottom of marine environments, where it oxidizes organic matter residing in oxygen depleted sediment with oxygen in overlying water. It is maintenance free, does not deplete (i.e., will run indefinitely), and is sufficiently powerful to operate a wide range of low-power marine-deployed scientific instruments normally powered by batteries. Two prototype BMFCs used to power the buoy are described. The first was deployed in the Potomac River in Washington, DC, USA. It had a mass of 230 kg, a volume of 1.3 m3, and sustained 24 mW (energy equivalent of ca. 16 alkaline D-cells per year at 25 °C). Although not practical due to high cost and extensive in-water manipulation required to deploy, it established the precedence that a fully functional scientific instrument could derive all of its power from a BMFC. It also provided valuable lessons for developing a second, more practical BMFC that was subsequently used to power the buoy in a salt marsh near Tuckerton, NJ, USA. The second version BMFC has a mass of 16 kg, a volume of 0.03 m3, sustains ca. 36 mW (energy equivalent of ca. 26 alkaline D-cells per year at 25 °C), and can be deployed by a single person from a small craft with minimum or no in-water manipulation. This BMFC is being further developed to reduce cost and enable greater power output by electrically connecting multiple units in parallel. Use of this BMFC powering the meteorological buoy highlights the potential impact of BMFCs to enable long term (persistent) operation of durable low-power marine instruments (up to 100 mW average power consumption) far longer than practical by batteries.
NASA Astrophysics Data System (ADS)
Dong, Jun; He, Yu; Zhou, Xiao; Bai, Shengchuang
2016-03-01
Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun Dong; Yu He; Xiao Zhou
2016-03-31
Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peakmore » power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)« less
Power Allocation Based on Data Classification in Wireless Sensor Networks
Wang, Houlian; Zhou, Gongbo
2017-01-01
Limited node energy in wireless sensor networks is a crucial factor which affects the monitoring of equipment operation and working conditions in coal mines. In addition, due to heterogeneous nodes and different data acquisition rates, the number of arriving packets in a queue network can differ, which may lead to some queue lengths reaching the maximum value earlier compared with others. In order to tackle these two problems, an optimal power allocation strategy based on classified data is proposed in this paper. Arriving data is classified into dissimilar classes depending on the number of arriving packets. The problem is formulated as a Lyapunov drift optimization with the objective of minimizing the weight sum of average power consumption and average data class. As a result, a suboptimal distributed algorithm without any knowledge of system statistics is presented. The simulations, conducted in the perfect channel state information (CSI) case and the imperfect CSI case, reveal that the utility can be pushed arbitrarily close to optimal by increasing the parameter V, but with a corresponding growth in the average delay, and that other tunable parameters W and the classification method in the interior of utility function can trade power optimality for increased average data class. The above results show that data in a high class has priorities to be processed than data in a low class, and energy consumption can be minimized in this resource allocation strategy. PMID:28498346
Performance Assessment of Flashed Steam Geothermal Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alt, Theodore E.
1980-12-01
Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor ismore » the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.« less
High power industrial picosecond laser from IR to UV
NASA Astrophysics Data System (ADS)
Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François
2013-02-01
Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.
A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; George, Jeffrey A.
2013-01-01
Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test). Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Excellent results have also been obtained by Russia. Ternary carbide fuels developed in Russia may have the potential for providing even higher specific impulses.
Choi, Tayoung; Ganapathy, Sriram; Jung, Jaehak; Savage, David R.; Lakshmanan, Balasubramanian; Vecasey, Pamela M.
2013-04-16
A system and method for detecting a low performing cell in a fuel cell stack using measured cell voltages. The method includes determining that the fuel cell stack is running, the stack coolant temperature is above a certain temperature and the stack current density is within a relatively low power range. The method further includes calculating the average cell voltage, and determining whether the difference between the average cell voltage and the minimum cell voltage is greater than a predetermined threshold. If the difference between the average cell voltage and the minimum cell voltage is greater than the predetermined threshold and the minimum cell voltage is less than another predetermined threshold, then the method increments a low performing cell timer. A ratio of the low performing cell timer and a system run timer is calculated to identify a low performing cell.
Novel pulsed switched power supply for a fast field cycling NMR spectrometer.
Sousa, D M; Fernandes, P A L; Marques, G D; Ribeiro, A C; Sebastião, P J
2004-01-01
In this paper, we outline the operating principles of a pulsed switched power supply for a fast field-cycling nuclear magnetic resonance spectrometer. The power supply uses a variant of a four-quadrant chopper with a duty cycle that defines the average output current. With this topology only two semiconductors are necessary to drive hundreds of amperes with an output power of several kilowatts. The output current ripple has a well-defined shape that can be reduced to acceptable values by a careful design of the semiconductors' controlling circuits and drivers. A power supply prototype was tested with a home build air-core magnet operating with fields between 0 and 0.21 T. The system is computer controlled using pulse generator and data acquisition PC cards, and specific user-friendly home-developed software. A comparative proton relaxometry study in two well-known liquid crystal compounds 5CB and MBBA was performed to check the reproducibility of the T1 measurements.
Space Station Freedom electric power system availability study
NASA Technical Reports Server (NTRS)
Turnquist, Scott R.
1990-01-01
The results are detailed of follow-on availability analyses performed on the Space Station Freedom electric power system (EPS). The scope includes analyses of several EPS design variations, these are: the 4-photovoltaic (PV) module baseline EPS design, a 6-PV module EPS design, and a 3-solar dynamic module EPS design which included a 10 kW PV module. The analyses performed included: determining the discrete power levels that the EPS will operate at upon various component failures and the availability of each of these operating states; ranking EPS components by the relative contribution each component type gives to the power availability of the EPS; determining the availability impacts of including structural and long-life EPS components in the availability models used in the analyses; determining optimum sparing strategies, for storing space EPS components on-orbit, to maintain high average-power-capability with low lift-mass requirements; and analyses to determine the sensitivity of EPS-availability to uncertainties in the component reliability and maintainability data used.
Hanslík, Eduard; Ivanovová, Diana; Juranová, Eva; Simonek, Pavel; Jedináková-Krízová, Vĕra
2009-02-01
The paper summarizes impacts of the Temelín Nuclear Power Plant (NPP) on the Vltava and Labe River basins. The study is based on the results of long-term monitoring carried out before the plant operation (1989-2000), and subsequently during the plant operation (2001-2005). In the first period, the main objective was to determine background radionuclide levels remaining in the environment after global fallout and due to the Chernobyl accident. A decrease in the concentrations of (90)Sr, (134)Cs and (137)Cs, which was observed before the plant operation, continued also during the subsequent period. Apart from tritium, the results of the observation did not indicate any impacts of the plant on the concentrations of activation and fission products in the hydrosphere. The annual average tritium concentrations in the Vltava River were in agreement with predicted values. The maximum annual average tritium concentration (13.5 Bq L(-1)) was observed in 2004 downstream from the wastewater discharge in the Vltava River at Solenice. Estimated radiation doses for adults due to intakes of river water as drinking water contaminated by tritium are below 0.1 microSv y(-1).
NASA Astrophysics Data System (ADS)
Abramov, E. Y.; Sopov, V. I.
2017-10-01
In a given research using the example of traction network area with high asymmetry of power supply parameters, the sequence of comparative assessment of power losses in DC traction network with parallel and traditional separated operating modes of traction substation feeders was shown. Experimental measurements were carried out under these modes of operation. The calculation data results based on statistic processing showed the power losses decrease in contact network and the increase in feeders. The changes proved to be critical ones and this demonstrates the significance of potential effects when converting traction network areas into parallel feeder operation. An analytical method of calculation the average power losses for different feed schemes of the traction network was developed. On its basis, the dependences of the relative losses were obtained by varying the difference in feeder voltages. The calculation results showed unreasonableness transition to a two-sided feed scheme for the considered traction network area. A larger reduction in the total power loss can be obtained with a smaller difference of the feeders’ resistance and / or a more symmetrical sectioning scheme of contact network.
NASA Astrophysics Data System (ADS)
Seneviratne, Sashieka
With the growth of smart phones, the demand for more broadband, data centric technologies are being driven higher. As mobile operators worldwide plan and deploy 4th generation (4G) networks such as LTE to support the relentless growth in mobile data demand, the need for strategically positioned pico-sized cellular base stations known as 'pico-cells' are gaining traction. In addition to having to design a transceiver in a much compact footprint, pico-cells must still face the technical challenges presented by the new 4G systems, such as reduced power consumptions and linear amplification of the signals. The RF power amplifier (PA) that amplifies the output signals of 4G pico-cell systems face challenges to minimize size, achieve high average efficiencies and broader bandwidths while maintaining linearity and operating at higher frequencies. 4G standards as LTE use non-constant envelope modulation techniques with high peak to average ratios. Power amplifiers implemented in such applications are forced to operate at a backed off region from saturation. Therefore, in order to reduce power consumption, a design of a high efficiency PA that can maintain the efficiency for a wider range of radio frequency signals is required. The primary focus of this thesis is to enhance the efficiency of a compact RF amplifier suitable for a 4G pico-cell base station. For this aim, an integrated two way Doherty amplifier design in a compact 10mm x 11.5mm2 monolithic microwave integrated circuit using GaN device technology is presented. Using non-linear GaN HFETs models, the design achieves high effi-ciencies of over 50% at both back-off and peak power regions without compromising on the stringent linearity requirements of 4G LTE standards. This demonstrates a 17% increase in power added efficiency at 6 dB back off from peak power compared to conventional Class AB amplifier performance. Performance optimization techniques to select between high efficiency and high linearity operation are also presented. Overall, this thesis demonstrates the feasibility of an integrated HFET Doherty amplifier for LTE band 7 which entails the frequencies from 2.62-2.69GHz. The realization of the layout and various issues related to the PA design is discussed and attempted to be solved.
Pan, Huapu; Assefa, Solomon; Green, William M J; Kuchta, Daniel M; Schow, Clint L; Rylyakov, Alexander V; Lee, Benjamin G; Baks, Christian W; Shank, Steven M; Vlasov, Yurii A
2012-07-30
The performance of a receiver based on a CMOS amplifier circuit designed with 90nm ground rules wire-bonded to a waveguide germanium photodetector is characterized at data rates up to 40Gbps. Both chips were fabricated through the IBM Silicon CMOS Integrated Nanophotonics process on specialty photonics-enabled SOI wafers. At the data rate of 28Gbps which is relevant to the new generation of optical interconnects, a sensitivity of -7.3dBm average optical power is demonstrated with 3.4pJ/bit power-efficiency and 0.6UI horizontal eye opening at a bit-error-rate of 10(-12). The receiver operates error-free (bit-error-rate < 10(-12)) up to 40Gbps with optimized power supply settings demonstrating an energy efficiency of 1.4pJ/bit and 4pJ/bit at data rates of 32Gbps and 40Gbps, respectively, with an average optical power of -0.8dBm.
Taming instabilities in power grid networks by decentralized control
NASA Astrophysics Data System (ADS)
Schäfer, B.; Grabow, C.; Auer, S.; Kurths, J.; Witthaut, D.; Timme, M.
2016-05-01
Renewables will soon dominate energy production in our electric power system. And yet, how to integrate renewable energy into the grid and the market is still a subject of major debate. Decentral Smart Grid Control (DSGC) was recently proposed as a robust and decentralized approach to balance supply and demand and to guarantee a grid operation that is both economically and dynamically feasible. Here, we analyze the impact of network topology by assessing the stability of essential network motifs using both linear stability analysis and basin volume for delay systems. Our results indicate that if frequency measurements are averaged over sufficiently large time intervals, DSGC enhances the stability of extended power grid systems. We further investigate whether DSGC supports centralized and/or decentralized power production and find it to be applicable to both. However, our results on cycle-like systems suggest that DSGC favors systems with decentralized production. Here, lower line capacities and lower averaging times are required compared to those with centralized production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, J.; Nguyen, D.C.; Sheffield, R.L.
1996-10-01
We present the results of theoretical and simulation studies of the design and performance of a new F type of FEL oscillator. This device, known by the acronym RAFEL for Regenerative Amplifier Free-Electron Laser, will be constructed in the space presently occupied by the AFEL (Advanced FEL) at Los Alamos, and will be driven by an upgraded (to higher average power) version of the present AFEL linac. In order to achieve a long-time-averaged optical output power of {approximately} 1 kW using an electron beam with an average power of {approximately} 20 kW, a rather high extraction efficiency {eta} {approximately} 5%more » is required. We have designed a 2-m-long undulator to attain this goal: the first meter is untapered and provides high gain while the second meter is linearly-tapered in magnetic field amplitude to provide high extraction efficiency in the standard K-M-R manner. Two-plane focusing and linear polarization of the undulator are assumed. Electron-beam properties from PARMEIA simulations of the AFEL accelerator were used in the design. A large saturated gain, {approximately} 500, requires a very small optical feedback to keep the device operating at steady-state. However, the large gain leads to distorted optical modes which require two- and three-dimensional simulations to adequately treat diffraction effects. This FEL will be driven by 17 MeV electrons and will operate in the 16 {mu}m spectral region.« less
Baudisch, M; Hemmer, M; Pires, H; Biegert, J
2014-10-15
The performance of potassium niobate (KNbO₃), MgO-doped periodically poled lithium niobate (MgO:PPLN), and potassium titanyl arsenate (KTA) were experimentally compared for broadband mid-wave infrared parametric amplification at a high repetition rate. The seed pulses, with an energy of 6.5 μJ, were amplified using 410 μJ pump energy at 1064 nm to a maximum pulse energy of 28.9 μJ at 3 μm wavelength and at a 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study revealed average power-induced processes that limit the scaling of optical parametric amplification in MgO:PPLN; the pump peak intensity was limited to 3.8 GW/cm² due to nonpermanent beam reshaping, whereas in KNbO₃ an absorption-induced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4 GW/cm².
Real-time identification of residential appliance events based on power monitoring
NASA Astrophysics Data System (ADS)
Yang, Zhao; Zhu, Zhicheng; Wei, Zhiqiang; Yin, Bo; Wang, Xiuwei
2018-03-01
Energy monitoring for specific home appliances has been regarded as the pre-requisite for reducing residential energy consumption. To enhance the accuracy of identifying operation status of household appliances and to keep pace with the development of smart power grid, this paper puts forward the integration of electric current and power data on the basis of existing algorithm. If average power difference of several adjacent cycles varies from the baseline and goes beyond the pre-assigned threshold value, the event will be flagged. Based on MATLAB platform and domestic appliances simulations, the results of tested data and verified algorithm indicate that the power method has accomplished desired results of appliance identification.
NASA Astrophysics Data System (ADS)
Kaida, Yukiko; Murakami, Toshiyuki
A wheelchair is an important apparatus of mobility for people with disability. Power-assist motion in an electric wheelchair is to expand the operator's field of activities. This paper describes force sensorless detection of human input torque. Reaction torque estimation observer calculates the total disturbance torque first. Then, the human input torque is extracted from the estimated disturbance. In power-assist motion, assist torque is synthesized according to the product of assist gain and the average torque of the right and left input torque. Finally, the proposed method is verified through the experiments of power-assist motion.
The K{sub a}-band 10-kW continuous wave gyrotron with wide-band fast frequency sweep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glyavin, M.; Luchinin, A.; Morozkin, M.
2012-07-15
The dual-frequency gyrotron with fast 2% frequency sweep at about 28 GHz is designed to power an electron cyclotron resonance ion source (ECRIS). Operation with an output power of up to 10 kW in CW mode and efficiency of 20% was demonstrated at both frequencies. Frequency manipulation has a characteristic time of about 1 ms and is based on magnetic field variation with an additional low-power coil. Fast frequency sweep will supposedly increase the ion current and the average ion charge of ECRIS. The possibility of 100% power modulation is demonstrated using the same control method.
NASA Astrophysics Data System (ADS)
Li, Xinlong; Reber, Melanie A. R.; Corder, Christopher; Chen, Yuning; Zhao, Peng; Allison, Thomas K.
2016-09-01
We present a detailed description of the design, construction, and performance of high-power ultrafast Yb:fiber laser frequency combs in operation in our laboratory. We discuss two such laser systems: an 87 MHz, 9 W, 85 fs laser operating at 1060 nm and an 87 MHz, 80 W, 155 fs laser operating at 1035 nm. Both are constructed using low-cost, commercially available components, and can be assembled using only basic tools for cleaving and splicing single-mode fibers. We describe practical methods for achieving and characterizing low-noise single-pulse operation and long-term stability from Yb:fiber oscillators based on nonlinear polarization evolution. Stabilization of the combs using a variety of transducers, including a new method for tuning the carrier-envelope offset frequency, is discussed. High average power is achieved through chirped-pulse amplification in simple fiber amplifiers based on double-clad photonic crystal fibers. We describe the use of these combs in several applications, including ultrasensitive femtosecond time-resolved spectroscopy and cavity-enhanced high-order harmonic generation.
Possibilities and limitations of wind energy utilisation
NASA Astrophysics Data System (ADS)
Feustel, J.
1981-10-01
The existing wind resource, the most favorable locations, applications, and designs of windpowered generators are reviewed, along with descriptions of current and historic wind turbines and lines of research. Coastal regions, plains, hill summits, and mountains with funneling regions are noted to have the highest annual wind averages, with energy densities exceeding the annual solar insolation at average wind speeds of 5-7.9 m/sec. Applications for utility-grade power production, for irrigation, for mechanical heat production, and for pumped storage in water towers or reservoirs are mentioned, as well as electrical power production in remote areas and for hydrogen production by electrolysis. Power coefficients are discussed, with attention given to the German Growian 3 MW machine. It is shown that the least economically sound wind turbines, the machines with outputs below 100 kW, can vie with diesel plant economics in a good wind regime if the wind turbine operates for 15 yr.
Zarya Energy Balance Analysis: The Effect of Spacecraft Shadowing on Solar Array Performance
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Kolosov, Vladimir
1999-01-01
The first element of the International Space Station (ISS). Zarya, was funded by NASA and built by the Russian aerospace company Khrunichev State Research and Production Space Center (KhSC). NASA Glenn Research Center (GRC) and KhSC collaborated in performing analytical predictions of the on-orbit electrical performance of Zarya's solar arrays. GRC assessed the pointing characteristics of and shadow patterns on Zarya's solar arrays to determine the average solar energy incident on the arrays. KHSC used the incident energy results to determine Zarya's electrical power generation capability and orbit-average power balance. The power balance analysis was performed over a range of solar beta angles and vehicle operational conditions. This analysis enabled identification of problems that could impact the power balance for specific flights during ISS assembly and was also used as the primary means of verifying that Zarya complied with electrical power requirements. Analytical results are presented for select stages in the ISS assembly sequence along with a discussion of the impact of shadowing on the electrical performance of Zarya's solar arrays.
Bulk Shielding Facility quarterly report, April, May and June 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbett, B.L.; Lance, E.D.
1984-12-01
The BSR operated at an average power level of 1310 kW for 3.8% of the time during April, May, and June. Water-quality control in both the reactor primary and secondary cooling systems was satisfactory. The PCA was used in training startups and was operated on five occasions for the NBS and HEDL recheck of a previous experiment run on the LWR pressure vessel surveillance dosimetry improvement program.
Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running
Uchida, Thomas K.; Hicks, Jennifer L.; Dembia, Christopher L.; Delp, Scott L.
2016-01-01
Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2–5 m/s with tendon force–strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2–3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail. PMID:26930416
Programmable random interval generator
NASA Technical Reports Server (NTRS)
Lindsey, R. S., Jr.
1973-01-01
Random pulse generator can supply constant-amplitude randomly distributed pulses with average rate ranging from a few counts per second to more than one million counts per second. Generator requires no high-voltage power supply or any special thermal cooling apparatus. Device is uniquely versatile and provides wide dynamic range of operation.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-21
... potential for harmful interference to adjacent Wireless Communications Service (WCS) spectrum users by...) average equivalent isotropically radiated power (EIRP) to facilitate the flexible deployment of SDARS... qualifications of SDARS applicants or licensees to operate a station, transfer or assign a license, and to...
Demonstration of a high repetition rate capillary discharge waveguide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonsalves, A. J., E-mail: ajgonsalves@lbl.gov; Pieronek, C.; Daniels, J.
2016-01-21
A hydrogen-filled capillary discharge waveguide operating at kHz repetition rates is presented for parameters relevant to laser plasma acceleration (LPA). The discharge current pulse was optimized for erosion mitigation with laser guiding experiments and MHD simulation. Heat flow simulations and measurements showed modest temperature rise at the capillary wall due to the average heat load at kHz repetition rates with water-cooled capillaries, which is promising for applications of LPAs such as high average power radiation sources.
Short-term load forecasting of power system
NASA Astrophysics Data System (ADS)
Xu, Xiaobin
2017-05-01
In order to ensure the scientific nature of optimization about power system, it is necessary to improve the load forecasting accuracy. Power system load forecasting is based on accurate statistical data and survey data, starting from the history and current situation of electricity consumption, with a scientific method to predict the future development trend of power load and change the law of science. Short-term load forecasting is the basis of power system operation and analysis, which is of great significance to unit combination, economic dispatch and safety check. Therefore, the load forecasting of the power system is explained in detail in this paper. First, we use the data from 2012 to 2014 to establish the partial least squares model to regression analysis the relationship between daily maximum load, daily minimum load, daily average load and each meteorological factor, and select the highest peak by observing the regression coefficient histogram Day maximum temperature, daily minimum temperature and daily average temperature as the meteorological factors to improve the accuracy of load forecasting indicators. Secondly, in the case of uncertain climate impact, we use the time series model to predict the load data for 2015, respectively, the 2009-2014 load data were sorted out, through the previous six years of the data to forecast the data for this time in 2015. The criterion for the accuracy of the prediction is the average of the standard deviations for the prediction results and average load for the previous six years. Finally, considering the climate effect, we use the BP neural network model to predict the data in 2015, and optimize the forecast results on the basis of the time series model.
Power electronics for low power arcjets
NASA Technical Reports Server (NTRS)
Hamley, John A.; Hill, Gerald M.
1991-01-01
In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.
NASA Technical Reports Server (NTRS)
Hammel, R. L. (Editor); Smith, A. G. (Editor)
1974-01-01
As a part of the task of performing preliminary engineering analysis of modular payload subelement/host vehicle interfaces, a subsystem interface analysis was performed to establish the integrity of the modular approach to the equipment design and integration. Salient areas that were selected for analysis were power and power conditioning, heat rejection and electromagnetic capability (EMC). The equipment and load profiles for twelve representative experiments were identified. Two of the twelve experiments were chosen as being representative of the group and have been described in greater detail to illustrate the evaluations used in the analysis. The shuttle orbiter will provide electrical power from its three fuel cells in support of the orbiter and the Spacelab operations. One of the three shuttle orbiter fuel cells will be dedicated to the Spacelab electrical power requirements during normal shuttle operation. This power supplies the Spacelab subsystems and the excess will be available to the payload. The current Spacelab sybsystem requirements result in a payload allocation of 4.0 to 4.8 kW average (24 hour/day) and 9.0 kW peak for 15 minutes.
A vibration powered wireless mote on the Forth Road Bridge
NASA Astrophysics Data System (ADS)
Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A.
2015-12-01
The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm3, was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent.
NASA Astrophysics Data System (ADS)
Engin, Doruk; Mathason, Brian; Stephen, Mark; Yu, Anthony; Cao, He; Fouron, Jean-Luc; Storm, Mark
2016-03-01
A cladding-pumped, LMA ErYb fiber-based, amplifier is presented for use in a LIDAR transmitter for remote sensing of atmospheric CO2 from space. The amplifier is optimized for high peak power, high efficiency, and narrow linewidth operation at 1572.3nm. Using highly reliable COTS components, the amplifier achieves 0.5kW peak power (440uJ pulse energy), 3.3W average power with transform limited (TL) linewidth and M2<1.3. The power amplifier supports a 30% increase in pulse energy when linewidth is increased to 100MHz. A preliminary conductively cooled laser optical module (LOM) concept has size 9x10x1.25 in (113 in3) and estimated weight of 7.2lb (3.2 kg). Energy scaling with pulse width up to 645uJ, 1.5usec is demonstrated. A novel doubleclad ErYb LMA fiber (30/250um) with high pump absorption (6 dB/m at 915nm) was designed, fabricated, and characterized for power scaling. The upgraded power amplifier achieves 0.8kW peak power (720uJ pulse energy) 5.4W average power with TL linewidth and M2<1.5.
Wu, Chun-Chang; Chuang, Wen-Yu; Wu, Ching-Da; Su, Yu-Cheng; Huang, Yung-Yang; Huang, Yang-Jing; Peng, Sheng-Yu; Yu, Shih-An; Lin, Chih-Ting; Lu, Shey-Shi
2017-01-01
A self-sustained multi-sensor platform for indoor environmental monitoring is proposed in this paper. To reduce the cost and power consumption of the sensing platform, in the developed platform, organic materials of PEDOT:PSS and PEDOT:PSS/EB-PANI are used as the sensing films for humidity and CO2 detection, respectively. Different from traditional gas sensors, these organic sensing films can operate at room temperature without heating processes or infrared transceivers so that the power consumption of the developed humidity and the CO2 sensors can be as low as 10 μW and 5 μW, respectively. To cooperate with these low-power sensors, a Complementary Metal-Oxide-Semiconductor (CMOS) system-on-chip (SoC) is designed to amplify and to read out multiple sensor signals with low power consumption. The developed SoC includes an analog-front-end interface circuit (AFE), an analog-to-digital convertor (ADC), a digital controller and a power management unit (PMU). Scheduled by the digital controller, the sensing circuits are power gated with a small duty-cycle to reduce the average power consumption to 3.2 μW. The designed PMU converts the power scavenged from a dye sensitized solar cell (DSSC) module into required supply voltages for SoC circuits operation under typical indoor illuminance conditions. To our knowledge, this is the first multiple environmental parameters (Temperature/CO2/Humidity) sensing platform that demonstrates a true self-powering functionality for long-term operations. PMID:28353680
Wu, Chun-Chang; Chuang, Wen-Yu; Wu, Ching-Da; Su, Yu-Cheng; Huang, Yung-Yang; Huang, Yang-Jing; Peng, Sheng-Yu; Yu, Shih-An; Lin, Chih-Ting; Lu, Shey-Shi
2017-03-29
A self-sustained multi-sensor platform for indoor environmental monitoring is proposed in this paper. To reduce the cost and power consumption of the sensing platform, in the developed platform, organic materials of PEDOT:PSS and PEDOT:PSS/EB-PANI are used as the sensing films for humidity and CO₂ detection, respectively. Different from traditional gas sensors, these organic sensing films can operate at room temperature without heating processes or infrared transceivers so that the power consumption of the developed humidity and the CO₂ sensors can be as low as 10 μW and 5 μW, respectively. To cooperate with these low-power sensors, a Complementary Metal-Oxide-Semiconductor (CMOS) system-on-chip (SoC) is designed to amplify and to read out multiple sensor signals with low power consumption. The developed SoC includes an analog-front-end interface circuit (AFE), an analog-to-digital convertor (ADC), a digital controller and a power management unit (PMU). Scheduled by the digital controller, the sensing circuits are power gated with a small duty-cycle to reduce the average power consumption to 3.2 μW. The designed PMU converts the power scavenged from a dye sensitized solar cell (DSSC) module into required supply voltages for SoC circuits operation under typical indoor illuminance conditions. To our knowledge, this is the first multiple environmental parameters (Temperature/CO₂/Humidity) sensing platform that demonstrates a true self-powering functionality for long-term operations.
Nitrogen dioxide exposures inside ice skating rinks.
Brauer, M; Spengler, J D
1994-01-01
OBJECTIVES. The common operation of fuel-powered resurfacing equipment in enclosed ice skating rinks has the potential for producing high concentrations of carbon monoxide and nitrogen dioxide. Exposures to these gaseous combustion products may adversely affect the health of those inside the rink. Little information is available on pollutant concentrations under normal operating conditions. METHODS. One-week average nitrogen dioxide concentrations in 70 northeastern US rinks were measured with passive samplers during normal winter season conditions. RESULTS. The median nitrogen dioxide level inside rinks was 180 ppb, more than 10 times higher than the median outdoor concentration. One-week average nitrogen dioxide concentrations above 1000 ppb were measured in 10% of the rinks. CONCLUSIONS. Considering that short-term peak concentrations were likely to have reached two to five times the measured 1-week averages, our results suggest that nitrogen dioxide levels were well above short-term air quality guidelines and constitute a public health concern of considerable magnitude. PMID:8129060
A study of operational cycle of terminal distributed power supply based on Big-data
NASA Astrophysics Data System (ADS)
Nie, Erbao; Liu, Zhoubin; He, Jinhong; Li, Chao
2018-01-01
In China, the distributed power supply industry enjoys a rapid development trend. For the users’ side of the distributed power mode of operation, there are various types. This paper, take rural as an example, mainly studies the all round life cycle operation mode of rural distributed solar power plant, including the feasibility study plan and investment suggestion of the initial construction of the rural power station, and the operation and maintenance in the middle period. China’s vast rural areas, areas per capita is large, average households have independent housing and courtyards, available building area is no problem. Compared with the urban areas, the return rate of investment is low, the investment options is rare, the collective is strong, the risk tolerance is weak and so on. Aiming at the characteristics of the rural areas in the above rural areas, three kinds of investment schemes of rural distributed photovoltaic power plants are put forward, and their concrete implementation plans are analyzed in detail. Especially the second option, for the farmers to consider the risk of investment, given their principal security, which greatly reduces the farmers into the power plant loss of funds risk. At the same time, according to the respective risk of farmers, given the corresponding investment advice. Rural income is generally low, the expected benefits of distributed photovoltaic power plant can significantly improve the income of farmers, improve the quality of life of farmers, coupled with the strong rural collective farmers, rural distributed photovoltaic power plants will mushroom, which On China’s photovoltaic construction and even the supply of clean energy is of great significance, so as to truly benefit the national energy strategy and rural construction.
DOE/NREL supported wind energy activities in Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drouilhet, S.
1997-12-01
This paper describes three wind energy projects implemented in Alaska. The first, a sustainable technology energy partnerships (STEP) wind energy deployment project in Kotzebue will install 6 AOC 15/50 wind turbines and connect to the existing village diesel grid, consisting of approximately 1 MW average load. It seeks to develop solutions to the problems of arctic wind energy installations (transport, foundations, erection, operation, and maintenance), to establish a wind turbine test site, and to establish the Kotzebue Electric Association as a training and deployment center for wind/diesel technology in rural Alaska. The second project, a large village medium-penetration wind/diesel system,more » also in Kotzebue, will install a 1-2 MW windfarm, which will supplement the AOC turbines of the STEP project. The program will investigate the impact of medium penetration wind energy on power quality and system stability. The third project, the Alaska high-penetration wind/diesel village power pilot project in Wales will install a high penetration (80-100%) wind/diesel system in a remote Alaskan village. The system will include about 180 kW installed wind capacity, meeting an average village load of about 60 kW. This program will provide a model for high penetration wind retrofits to village diesel power systems and build the capability in Alaska to operate, maintain, and replicate wind/diesel technology. The program will also address problems of: effective use of excess wind energy; reliable diesel-off operation; and the role of energy storage.« less
NASA Astrophysics Data System (ADS)
Vatsa, Dinesh Kumar; Singh, Sukhbir
2017-06-01
Farm power and equipment role was established in agriculture beyond doubt for sustainable development but hill farming is still facing shortage of farm power and matching equipment for timely and precisely operations. A study was carried out on performance evaluation of different light weight power tillers/weeders designated as P1, P2, P3 and P4 under dry and wet land conditions to meet out the demand of farm power for mechanizing hill agriculture, particularly under small and irregular shaped terraces having high vertical intervals where it is difficult to operate commercially available power tillers. Four power tillers in the horse power range of 3.0-7.0 hp manufactured and marketed by Indian firms were tested in silty-clay-loam soil at the HPKV farm, Palampur, India. The results showed that the depth of operation was less than 80 mm with P1, P2 as well as P3 power tiller after two passes of rotary at soil moisture content of 16.4% whereas, it was 102 mm with P4. The average effective field capacity was 0.055, 0.051, 0.042 and 0.060 ha/h under dry land conditions with P1, P2, P3 and P4, respectively whereas in wetland condition the capacity was 0.042, 0.038 and 0.05 with P1, P2, and P4, respectively. P3 power tiller could not be possible to test under wet land conditions due to less ground clearance of the engine. The cost of repair and maintenance was observed to be very high in case of P1, P2 and P3 power tillers due to the occurrence of frequent breakdowns. It was construed from the study that the power tillers up to 5 hp are not suitable for seed-bed preparation but it could be used as weeder for interculture operations in wide row spaced crops. However, P4 power tiller performed better than other models under different conditions. There was saving of 50-66% in time and 66-75% cost of operation observed with different makes of power tillers as compared to bullock ploughing.
Vacuum quantum stress tensor fluctuations: A diagonalization approach
NASA Astrophysics Data System (ADS)
Schiappacasse, Enrico D.; Fewster, Christopher J.; Ford, L. H.
2018-01-01
Large vacuum fluctuations of a quantum stress tensor can be described by the asymptotic behavior of its probability distribution. Here we focus on stress tensor operators which have been averaged with a sampling function in time. The Minkowski vacuum state is not an eigenstate of the time-averaged operator, but can be expanded in terms of its eigenstates. We calculate the probability distribution and the cumulative probability distribution for obtaining a given value in a measurement of the time-averaged operator taken in the vacuum state. In these calculations, we study a specific operator that contributes to the stress-energy tensor of a massless scalar field in Minkowski spacetime, namely, the normal ordered square of the time derivative of the field. We analyze the rate of decrease of the tail of the probability distribution for different temporal sampling functions, such as compactly supported functions and the Lorentzian function. We find that the tails decrease relatively slowly, as exponentials of fractional powers, in agreement with previous work using the moments of the distribution. Our results lend additional support to the conclusion that large vacuum stress tensor fluctuations are more probable than large thermal fluctuations, and may have observable effects.
NASA Astrophysics Data System (ADS)
Casperson, Andrew L.; Barton, Robert A.; Scott, Nicholas J.; Fried, Nathaniel M.
2008-02-01
Direct studies comparing different lasers for treatment of BPH are lacking. This preliminary study compares continuous-wave (CW) vs. pulsed prostate tissue vaporization for the Thulium fiber laser and Holmium:YAG laser, both operating near the 1940 nm water absorption peak in tissue. A 50-W Thulium fiber laser (λ= 1908 nm) delivered CW laser radiation through a 600-μm silica fiber in non-contact mode with a 5-mm-diameter spot at the tissue surface. A Holmium:YAG laser (λ= 2120 nm) operated with an energy of 2 J, pulse rate of 25 Hz, and average power of 50 W, and delivered pulsed laser radiation through a 600-μm silica fiber with a 5-mm-diameter laser spot to achieve similar irradiances at the tissue surface. Tissue vaporization was performed in air with the prostate kept hydrated in saline. Tissue vaporization efficiency of both lasers was compared (n = 10 canine prostates for each laser group). Mean vaporization efficiency measured 5.30 +/- 0.48 kJ/g vs. 4.13 +/- 0.46 kJ/g for Thulium fiber and Holmium lasers (P < 0.05). Tissue vaporization rates measured 0.57 +/- 0.05 g/min vs. 0.73 +/- 0.07 g/min (P < 0.05). The Holmium:YAG laser vaporizes prostate tissue at a higher rate than the Thulium fiber laser, for the same average power delivered to the tissue. Both the Thulium fiber laser and Holmium:YAG lasers are capable of vaporizing prostate tissue at a rate > 1 g/min if operated at the high powers (100-W) typically used in the clinic.
Simulation and performance of brushless dc motor actuators
NASA Astrophysics Data System (ADS)
Gerba, A., Jr.
1985-12-01
The simulation model for a Brushless D.C. Motor and the associated commutation power conditioner transistor model are presented. The necessary conditions for maximum power output while operating at steady-state speed and sinusoidally distributed air-gap flux are developed. Comparison of simulated model with the measured performance of a typical motor are done both on time response waveforms and on average performance characteristics. These preliminary results indicate good agreement. Plans for model improvement and testing of a motor-driven positioning device for model evaluation are outlined.
1989-08-01
installation of amp-hour meters. 3. Evaluation of th6 low temperature performanceof Willard DH-5 pure lead batteries. b. Evaluation of the low...was abnormallyI low. This is seen in Table 7 which compares the solar radiation data received during this three year period with the 30 year averages...operational hour. This can be compared with a requirement for powering the microwave repeaters of about 2Ah/hour assuming a system voltage of 15V
Mid-IR lasers based on transition metal and rare-earth ion doped crystals
NASA Astrophysics Data System (ADS)
Mirov, S.; Fedorov, V.; Martyshkin, D.; Moskalev, I.; Mirov, M.; Vasilyev, S.
2015-05-01
We report a novel design of CW Cr2+:ZnS/ZnSe laser systems and demonstrate record output powers of 27.5 W at 2.45 μm and 13.9 W at 2.94 μm with slope efficiencies of 63.7% and 37.4%, respectively. Power scaling of ultra-fast Cr2+:ZnS/ZnSe Kerr mode-locked lasers beyond 2 W level, as well as the shortest pulse duration of 29 fs, are also reported. New development of Fe:ZnSe laser with average output power > 35 W at 4.1 μm output wavelength and 100 Hz pulse repetition rate (PRR) was achieved in a nonselective cavity. With intracavity prim selector, wavelength tunability of 3.88-4.17 μm was obtained with maximum average output power of 23 W. We also report new results on Tm-fiber pumped passively and actively Q-switched Ho:YAG laser systems. High peak power actively Q-switched Ho:YAG laser demonstrates stable operation with pulse energy > 50 mJ, 12 ns pulse duration, and 100-1000 Hz PRR which correspondents to more than 4 MW peak power. The actively Q-switched Ho:YAG laser system optimized for high repetition rate delivers 40 W average output power at 10-100 kHz PRR. The Ho:YAG laser with passive Q-switcher demonstrates constant 5 mJ output energy from 200 Hz to 2.23 kHz PRR with optical slope efficiency with respect to Tm-fiber laser of ~43%.
NASA Astrophysics Data System (ADS)
Petr, Rodney; Bykanov, Alexander; Freshman, Jay; Reilly, Dennis; Mangano, Joseph; Roche, Maureen; Dickenson, Jason; Burte, Mitchell; Heaton, John
2004-08-01
A high average power dense plasma focus (DPF), x-ray point source has been used to produce ˜70 nm line features in AlGaAs-based monolithic millimeter-wave integrated circuits (MMICs). The DPF source has produced up to 12 J per pulse of x-ray energy into 4π steradians at ˜1 keV effective wavelength in ˜2 Torr neon at pulse repetition rates up to 60 Hz, with an effective x-ray yield efficiency of ˜0.8%. Plasma temperature and electron concentration are estimated from the x-ray spectrum to be ˜170 eV and ˜5.1019 cm-3, respectively. The x-ray point source utilizes solid-state pulse power technology to extend the operating lifetime of electrodes and insulators in the DPF discharge. By eliminating current reversals in the DPF head, an anode electrode has demonstrated a lifetime of more than 5 million shots. The x-ray point source has also been operated continuously for 8 h run times at 27 Hz average pulse recurrent frequency. Measurements of shock waves produced by the plasma discharge indicate that overpressure pulses must be attenuated before a collimator can be integrated with the DPF point source.
Comparative study of Nd:KGW lasers pumped at 808 nm and 877 nm
NASA Astrophysics Data System (ADS)
Huang, Ke; Ge, Wen-Qi; Zhao, Tian-Zhuo; He, Jian-Guo; Feng, Chen-Yong; Fan, Zhong-Wei
2015-10-01
The laser performance and thermal analysis of Nd:KGW laser continuously pumped by 808 nm and 877 nm are comparatively investigated. Output power of 670 mW and 1587 mW, with nearly TEM00 mode, are achieved respectively at 808 nm pump and 877 nm pump. Meanwhile, a high-power passively Q-switched Nd:KGW/Cr4+:YAG laser pumped at 877 nm is demonstrated. An average output power of 1495 mW is obtained at pump power of 5.22 W while the laser is operating at repetition of 53.17 kHz. We demonstrate that 877 nm diode laser is a more potential pump source for Nd:KGW lasers.
Low-power wireless medical sensor platform.
Dolgov, Arseny B; Zane, Regan
2006-01-01
Long-term, low duty cycle monitoring of patients with a variety of disabilities or health concerns is often required. In this paper, we discuss the design considerations and implementation of an ultra-low power wireless medical sensor platform, suitable for a wide range of medical and sports applications. A hardware demonstration prototype based on readily available components is presented with sensors for 3-axis acceleration, temperature and galvanic skin response. Detailed power measurements and operation results are shown, demonstrating a sensor life span of more than 10 years on a single 200 mAh lithium watch battery using low current standby techniques with an average power of less than 5 muW and a 10 second sample interval.
Operational trends in the temperature of a high-pressure microwave powered sulfur lamp
NASA Astrophysics Data System (ADS)
Johnston, C. W.; Jonkers, J.; van der Mullen, J. J. A. M.
2002-10-01
Temperatures have been measured in a high-pressure microwave sulfur lamp using sulfur atomic lines found in the spectrum at 867, 921 and 1045 nm. The absolute intensities were determined for 3, 5 and 7 bar lamps at several input powers, ranging from 400 to 600 W. On average, temperatures are found to be 4.1+/-0.15 kK and increase slightly with increasing pressure and input power. These values and trends agree well with our simulations. However, the power trend is reversed to that demonstrated by the model, which might be an indication that the skin-depth model for the electric field may be incomplete.
Albach, Daniel; Chanteloup, Jean-Christophe
2015-01-12
A comprehensive experimental benchmarking of Yb(3+):YAG crystalline and co-sintered ceramic disks of similar thickness and doping level is presented in the context of high average power laser amplifier operation. Comparison is performed considering gain, depolarization and wave front deformation quantitative measurements and analysis.
40 CFR 60.102a - Emissions limitations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... precipitator: (i) The 3-hour rolling average total power and secondary current to the entire system must not... provided in paragraph (f)(3), each owner or operator of an affected sulfur recovery plant shall comply with... plant with a capacity greater than 20 long tons per day (LTD): (i) For a sulfur recovery plant with an...
40 CFR 60.102a - Emissions limitations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... precipitator: (i) The 3-hour rolling average total power and secondary current to the entire system must not... provided in paragraph (f)(3), each owner or operator of an affected sulfur recovery plant shall comply with... plant with a capacity greater than 20 long tons per day (LTD): (i) For a sulfur recovery plant with an...
40 CFR 60.102a - Emissions limitations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... precipitator: (i) The 3-hour rolling average total power and secondary current to the entire system must not... provided in paragraph (f)(3), each owner or operator of an affected sulfur recovery plant shall comply with... plant with a capacity greater than 20 long tons per day (LTD): (i) For a sulfur recovery plant with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
... limit the potential for harmful interference to adjacent Wireless Communications Service (WCS) spectrum... (kW) average equivalent isotropically radiated power (EIRP) to facilitate the flexible deployment of... and legal qualifications of SDARS applicants or licensees to operate a station, transfer or assign a...
40 CFR 60.266 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... effluent gas from exhaust stream “i”, dscm/hr (dscf/hr). P=average furnace power input, MW. K=conversion....8, the owner or operator shall not allow gaseous diluents to be added to the effluent gas stream after the fabric in an open pressurized fabric filter collector unless the total gas volume flow from...
NASA Astrophysics Data System (ADS)
Yu, H. L.; Ma, P. F.; Tao, R. M.; Wang, X. L.; Zhou, P.; Chen, J. B.
2015-06-01
The characteristics of mode-locked noise-like pulses generated from a passively mode-locked fiber oscillator are experimentally investigated. By carefully adjusting the two polarization controllers, stable mode-locked noise-like pulse emission with a high radio frequency signal/noise ratio of >55 dB is successfully achieved, ensuring the safety and possibility of high power amplification. To investigate the amplification characteristics of such pulses, one all-fiber master oscillator power amplifier (MOPA) is built to boost the power and energy of such pulses. Amplified noise-like pulses with average output power of 423 W, repetition rate of 18.71 MHz, pulse energy of 22.61 μJ, pulse duration of 72.1 ps and peak power of 314 kW are obtained. Near diffraction-limited beam is also demonstrated with M2 factor measured at full power operation of ~1.2 in the X and Y directions. The polarization extinction ratio at output power of 183 W is measured to be ~13 dB. To the best of our knowledge, this is the first demonstration of high-power amplification of noise-like pulses and the highest peak power ever reported in all-fiber picosecond MOPAs. The temporal self-compression process of such pulses and high peak power when amplified make it an ideal pump source for generation of high-power supercontinuum. Other potential applications, such as material processing and optical coherent tomography, could also be foreseen.
Performance of 100-W HVM LPP-EUV source
NASA Astrophysics Data System (ADS)
Mizoguchi, Hakaru; Nakarai, Hiroaki; Abe, Tamotsu; Nowak, Krzysztof M.; Kawasuji, Yasufumi; Tanaka, Hiroshi; Watanabe, Yukio; Hori, Tsukasa; Kodama, Takeshi; Shiraishi, Yutaka; Yanagida, Tatsuya; Soumagne, Georg; Yamada, Tsuyoshi; Yamazaki, Taku; Okazaki, Shinji; Saitou, Takashi
2015-08-01
At Gigaphoton Inc., we have developed unique and original technologies for a carbon dioxide laser-produced tin plasma extreme ultraviolet (CO2-Sn-LPP EUV) light source, which is the most promising solution for high-power high-volume manufacturing (HVM) EUV lithography at 13.5 nm. Our unique technologies include the combination of a pulsed CO2 laser with Sn droplets, the application of dual-wavelength laser pulses for Sn droplet conditioning, and subsequent EUV generation and magnetic field mitigation. Theoretical and experimental data have clearly shown the advantage of our proposed strategy. Currently, we are developing the first HVM light source, `GL200E'. This HVM light source will provide 250-W EUV power based on a 20-kW level pulsed CO2 laser. The preparation of a high average-power CO2 laser (more than 20 kW output power) has been completed in cooperation with Mitsubishi Electric Corporation. Recently, we achieved 140 W at 50 kHz and 50% duty cycle operation as well as 2 h of operation at 100 W of power level. Further improvements are ongoing. We will report the latest status and the challenge to reach stable system operation of more than 100 W at about 4% conversion efficiency with 20-μm droplets and magnetic mitigation.
Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path
NASA Technical Reports Server (NTRS)
Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.
2003-01-01
We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.
Malikopoulos, Andreas
2015-01-01
The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.more » Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.« less
NASA Astrophysics Data System (ADS)
Shcherba, V. E.; Grigoriev, A. V.; Averyanov, G. S.; Surikov, V. I.; Vedruchenko, V. P.; Galdin, N. S.; Trukhanova, D. A.
2017-08-01
The article analyzes the impact of the connecting liquid pipe length and diameter on consumables and power characteristics of the piston hybrid power machine with gas suction capacity. The following operating characteristics of the machine were constructed and analyzed: the average height of the liquid column in the jacket space; instantaneous velocity and height of the liquid column in the jacket space; the relative height of the liquid column in the jacket space; volumetric efficiency; indicator isothermal efficiency; flowrate in the pump section; relative pressure losses during suction; relative flowrate. The dependence of the instantaneous pressure in the work space and the suction space of the compressor section on the rotation angle of the crankshaft is determined for different values of the length and diameter of the connecting pipeline.
A diode-pumped Tm:CaYAlO4 laser at 1851 nm
NASA Astrophysics Data System (ADS)
Lan, Jinglong; Guan, Xiaofeng; Xu, Bin; Moncorgé, Richard; Xu, Huiying; Cai, Zhiping
2017-07-01
Laser emission at ~1850 nm is of great interest for neural stimulation applications. In this letter, we report on the diode-pumped continuous-wave (CW) and Q-switched (QS) laser operation of Tm:CaYAlO4 at 1851 nm, for the first time to our knowledge. In the CW regime, a maximum output power up to 0.62 W is obtained with a laser slope efficiency of about 18.0%. Using a Cr:ZnSe saturable absorber, QS laser operation is achieved with a maximum average output power of 0.25 W, the narrowest pulse width of 107 ns and the highest repetition rate of 5.85 kHz. The corresponding pulse peak power and pulse energy are about 388 W and 42.8 µJ, respectively. In this Q-switched mode, wavelength tuning is also realized over about 3 nm by slightly tilting the saturable absorber.
Helical screw expander evaluation project
NASA Technical Reports Server (NTRS)
Mckay, R.
1982-01-01
A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.
Reduction of air pollutant concentrations in an indoor ice-skating rink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.; Yanagisawa, Yukio; Spengler, J.D.
1994-01-01
High carbon monoxide and nitrogen dioxide concentrations were measured in an indoor ice-skating rink with fuel-powered ice-resurfacing equipment. In 22% to 33% of the measurements over 90-min segments, CO concentrations exceeded 20 [mu]L/L as a 90-min average in the absence of rink ventilation. Average NO[sub 2] concentrations over 14 h were higher than 600 nL/L. Reduction of air pollutant concentrations in the ice-skating rink is necessary to prevent air-pollutant-exposure-related health incidents. Various methods for reducing air pollutants in an ice-skating rink were evaluated by simultaneously measuring CO and NO[sub 2] concentrations. Single pollution reduction attempts, such as extension of themore » exhaust pipe, reduction in the number of resurfacer operations, or use of an air recirculation system, did not significantly reduce air pollutant concentrations in the rink. Full operation of the mechanical ventilation system combined with reduced resurfacer operation was required to keep the air pollutant levels in the skating rink below the recommended guidelines. This investigation showed that management of clean air quality in an ice-skating rink is practically difficult as long as fuel-powered resurfacing equipment is used. 16 refs., 3 figs., 5 tabs.« less
Low flows and water temperature risks to Asian coal power plants in a warming world
NASA Astrophysics Data System (ADS)
Wang, Y.; Byers, E.; Parkinson, S.; Wanders, N.; Wada, Y.; Bielicki, J. M.
2017-12-01
Thermoelectric power generation requires cooling, normally provided by wet cooling systems. The withdrawal and discharge of cooling water are subject to regulation. Therefore, operation of power plants may be vulnerable to changes in streamflow and rises in water temperatures. In Asia, about 489 GW of coal-fired power plants are currently under construction, permitted, or announced. Using a comprehensive dataset of these planned coal power plants (PCPPs) and cooling water use models, we investigated whether electricity generation at these power plants will be limited by streamflow and water temperature. Daily streamflow and water temperature time series are from the high-resolution (0.08ox0.08o) runs of the PCRGLOBWB hydrological model, driven by downscaled meteorological forcing from five global climate models. We compared three climate change scenarios (1.5oC, 2oC, and 3oC warming in global mean temperature) and three cooling system choice scenarios (freshwater once-through, freshwater cooling tower, and "business-as-usual" - where a PCPP uses the same cooling system as the nearest existing coal power plant). The potential available capacity of the PCPPs increase slightly from the 1.5oC to the 2oC and 3oC warming scenario due to increase in streamflow. The once-through cooling scenario results in virtually zero available capacity at the PCPPs. The other two cooling scenarios result in about 20% of the planned capacity being unavailable under all warming scenarios. Hotspots of the most water-limited PCPPs are in Pakistan, northwestern India, northwestern and north-central China, and northern Vietnam, where most of the PCPPs will face 30% to 90% unavailable nameplate capacity on annual average. Since coal power plants cannot operate effectively when the capacity factor falls below a minimum load level (about 20% to 50%), the actual limitation on generation capacity would be larger. In general, the PCPPs that will have the highest limitation on annual average capacity will also have the most frequent and longest periods of interrupted operation. These results suggest that to ensure security of energy supply and avoid over-withdrawing water resources, the water-limited PCPPs should implement adaptation measures such as dry-cooling, combined heat- and power, or using recycled wastewater.
NASA Astrophysics Data System (ADS)
Ohsawa, Takashi; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo
2014-01-01
Array operation currents in spin-transfer-torque magnetic random access memories (STT-MRAMs) that use four differential pair type magnetic tunnel junction (MTJ)-based memory cells (4T2MTJ, two 6T2MTJs and 8T2MTJ) are simulated and compared with that in SRAM. With L3 cache applications in mind, it is assumed that the memories are composed of 32 Mbyte capacity to be accessed in 64 byte in parallel. All the STT-MRAMs except for the 8T2MTJ one are designed with 32 bit fine-grained power gating scheme applied to eliminate static currents in the memory cells that are not accessed. The 8T2MTJ STT-MRAM, the cell’s design concept being not suitable for the fine-grained power gating, loads and saves 32 Mbyte data in 64 Mbyte unit per 1 Mbit sub-array in 2 × 103 cycles. It is shown that the array operation current of the 4T2MTJ STT-MRAM is 70 mA averaged in 15 ns write cycles at Vdd = 0.9 V. This is the smallest among the STT-MRAMs, about the half of the low standby power (LSTP) SRAM whose array operation current is totally dominated by the cells’ subthreshold leakage.
Half-Watt average power femtosecond source spanning 3-8 µm based on subharmonic generation in GaAs
NASA Astrophysics Data System (ADS)
Smolski, Viktor; Vasilyev, Sergey; Moskalev, Igor; Mirov, Mike; Ru, Qitian; Muraviev, Andrey; Schunemann, Peter; Mirov, Sergey; Gapontsev, Valentin; Vodopyanov, Konstantin
2018-06-01
Frequency combs with a wide instantaneous spectral span covering the 3-20 µm molecular fingerprint region are highly desirable for broadband and high-resolution frequency comb spectroscopy, trace molecular detection, and remote sensing. We demonstrate a novel approach for generating high-average-power middle-infrared (MIR) output suitable for producing frequency combs with an instantaneous spectral coverage close to 1.5 octaves. Our method is based on utilizing a highly-efficient and compact Kerr-lens mode-locked Cr2+:ZnS laser operating at 2.35-µm central wavelength with 6-W average power, 77-fs pulse duration, and high 0.9-GHz repetition rate; to pump a degenerate (subharmonic) optical parametric oscillator (OPO) based on a quasi-phase-matched GaAs crystal. Such subharmonic OPO is a nearly ideal frequency converter capable of extending the benefits of frequency combs based on well-established mode-locked pump lasers to the MIR region through rigorous, phase- and frequency-locked down conversion. We report a 0.5-W output in the form of an ultra-broadband spectrum spanning 3-8 µm measured at 50-dB level.
NASA Astrophysics Data System (ADS)
Gradoboev, A. V.; Orlova, K. N.; Simonova, A. V.
2018-05-01
The paper presents the research results of watt and volt characteristics of LEDs based upon AlGaInP heterostructures with multiple quantum wells in the active region. The research is completed for LEDs (emission wavelengths 624 nm and 590 nm) under irradiation by fast neutron and gamma-quanta in passive powering mode. Watt-voltage characteristics in the average and high electron injection areas are described as a power function of the operating voltage. It has been revealed that the LEDs transition from average electron injection area to high electron injection area occurs by overcoming the transition area. It disappears as it get closer to the limit result of the irradiation LEDs that is low electron injection mode in the entire supply voltage range. It has been established that the gamma radiation facilitates initial defects restructuring only 42% compared to 100% when irradiation is performed by fast neutrons. Ratio between measured on the boundary between low and average electron injection areas current value and the contribution magnitude of the first stage LEDs emissive power reducing is established. It is allows to predict LEDs resistance to irradiation by fast neutrons and gamma rays.
Ablation dynamics - from absorption to heat accumulation/ultra-fast laser matter interaction
NASA Astrophysics Data System (ADS)
Kramer, Thorsten; Remund, Stefan; Jäggi, Beat; Schmid, Marc; Neuenschwander, Beat
2018-05-01
Ultra-short laser radiation is used in manifold industrial applications today. Although state-of-the-art laser sources are providing an average power of 10-100 W with repetition rates of up to several megahertz, most applications do not benefit from it. On the one hand, the processing speed is limited to some hundred millimeters per second by the dynamics of mechanical axes or galvanometric scanners. On the other hand, high repetition rates require consideration of new physical effects such as heat accumulation and shielding that might reduce the process efficiency. For ablation processes, process efficiency can be expressed by the specific removal rate, ablated volume per time, and average power. The analysis of the specific removal rate for different laser parameters, like average power, repetition rate or pulse duration, and process parameters, like scanning speed or material, can be used to find the best operation point for microprocessing applications. Analytical models and molecular dynamics simulations based on the so-called two-temperature model reveal the causes for the appearance of limiting physical effects. The findings of models and simulations can be used to take advantage and optimize processing strategies.
NASA Astrophysics Data System (ADS)
Mahoney, Leonard Joseph
A planar radio-frequency (rf) inductively-coupled plasma (ICP) source is used to produce fluorocarbon discharges (CF_4/Ar) to fluorinate the surface of high-density polyethylene (HDPE). Using this system, concurrent studies of discharge characteristics, permeation properties of treated polymers and polymer surface characteristics are conducted to advance the use of plasma-fluorinated polymer surfaces as a barrier layer for automotive applications. Langmuir probes are used to determine spatial distribution of charged-particle and space-potential characteristics in Ar and CF_4/Ar discharges and to show the influence of the spatial distribution of the heating regions and the reactor boundaries on the discharge uniformity. Langmuir probes are also used to identify rf anisotropic drift motion of electrons in the heating regions of the source and transient high-energy electron features in pulsed discharges. These latter features allow pulsed ICP sources to be operated at low time-averaged powers that are necessary to treat thermally sensitive polymers. Fourier Transform Infrared (FITR) spectroscopy is used to measure the dissociation of fluorocarbon gases and to explore differences between pulsed- and continuous -power operation. Dissociation levels of CF_4 (50-85%) using pulsed-power operation are as high as that for continuous operation, even though the net time -averaged power is far less with pulsed operation. The result suggests that pulsed fluorocarbon discharges possess high concentrations of chemically-active species needed for rapid surface fluorination. A gravimetric permeation cup method is used to measure the permeation rate of test fuels through HDPE membranes, and electron spectroscopy for chemical analysis (ESCA) studies are performed to determine the stoichiometry and thickness of the barrier layer. From these studies we find that a 50-70 A thick, polar, fluoro-hydrocarbon over layer reduces the permeation of isooctane/toluene/methanol mixtures by a factor of 4. To increase the permeation resistance for automotive applications, this result points towards the deposition of a 1000 A thick fluoro-hydrocarbon barrier coating with stoichiometry and bond structures similar to the CF_4/Ar treated HDPE.
Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG
Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping
2016-01-01
Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaustad, K.L.; De Steese, J.G.
A computer program was developed to analyze the viability of integrating superconducting magnetic energy storage (SMES) with proposed wind farm scenarios at a site near Browning, Montana. The program simulated an hour-by-hour account of the charge/discharge history of a SMES unit for a representative wind-speed year. Effects of power output, storage capacity, and power conditioning capability on SMES performance characteristics were analyzed on a seasonal, diurnal, and hourly basis. The SMES unit was assumed to be charged during periods when power output of the wind resource exceeded its average value. Energy was discharged from the SMES unit into the gridmore » during periods of low wind speed to compensate for below-average output of the wind resource. The option of using SMES to provide power continuity for a wind farm supplemented by combustion turbines was also investigated. Levelizing the annual output of large wind energy systems operating in the Blackfeet area of Montana was found to require a storage capacity too large to be economically viable. However, it appears that intermediate-sized SMES economically levelize the wind energy output on a seasonal basis.« less
Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems
NASA Astrophysics Data System (ADS)
Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki
Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.
Turbulent transport measurements with a laser Doppler velocimeter.
NASA Technical Reports Server (NTRS)
Edwards, R. V.; Angus, J. C.; Dunning, J. W., Jr.
1972-01-01
The power spectrum of phototube current from a laser Doppler velocimeter operating in the heterodyne mode has been computed. The spectral width and shape predicted by the theory are in agreement with experiment. For normal operating parameters the time-average spectrum contains information only for times shorter than the Lagrangian-integral time scale of the turbulence. To examine the long-time behavior, one must use either extremely small scattering angles, much-longer-wavelength radiation, or a different mode of signal analysis, e.g., FM detection.
Operational experience with intermediate flat-plate photovoltaic systems
NASA Astrophysics Data System (ADS)
Risser, V. V.; Zwibel, H. S.
Operating features, data acquisition, and fault isolation and maintenance procedures at 20 kWp and 100 kWp photovoltaic (PV) installations in Texas and New Mexico are discussed. Weather and system performance are sensed each minute, averages are calculated for each ten readings, and data is stored on magnetic tape. A total of 84 parameters, including 64 string currents, are recorded at the 20 kWp array and 84 parameters, with 42 string currents, are traced in New Mexico. The 20 kW array is coupled to a 197 MW utility power plant, which determines the voltage of the array. It produced 12 MWh in one yr of operation, functioning at 24 pct overall efficiency. The 100 kWp system is coupled to a 60 kW power conditioning unit and feeds a shopping center, producing 8 pct of the annual load with a cap factor of 25 pct and 192 MWh of dc current produced in one year. It was found that under normal conditions washing the panels is not economically justified in terms of the small power lost if washing does not occur. It is concluded that the PV arrays can be successfully used in an automated operation mode.
NASA Astrophysics Data System (ADS)
Ma, Yitao; Miura, Sadahiko; Honjo, Hiroaki; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo
2017-04-01
A high-density nonvolatile associative memory (NV-AM) based on spin transfer torque magnetoresistive random access memory (STT-MRAM), which achieves highly concurrent and ultralow-power nearest neighbor search with full adaptivity of the template data format, has been proposed and fabricated using the 90 nm CMOS/70 nm perpendicular-magnetic-tunnel-junction hybrid process. A truly compact current-mode circuitry is developed to realize flexibly controllable and high-parallel similarity evaluation, which makes the NV-AM adaptable to any dimensionality and component-bit of template data. A compact dual-stage time-domain minimum searching circuit is also developed, which can freely extend the system for more template data by connecting multiple NM-AM cores without additional circuits for integrated processing. Both the embedded STT-MRAM module and the computing circuit modules in this NV-AM chip are synchronously power-gated to completely eliminate standby power and maximally reduce operation power by only activating the currently accessed circuit blocks. The operations of a prototype chip at 40 MHz are demonstrated by measurement. The average operation power is only 130 µW, and the circuit density is less than 11 µm2/bit. Compared with the latest conventional works in both volatile and nonvolatile approaches, more than 31.3% circuit area reductions and 99.2% power improvements are achieved, respectively. Further power performance analyses are discussed, which verify the special superiority of the proposed NV-AM in low-power and large-memory-based VLSIs.
Power Management Integrated Circuit for Indoor Photovoltaic Energy Harvesting System
NASA Astrophysics Data System (ADS)
Jain, Vipul
In today's world, power dissipation is a main concern for battery operated mobile devices. Key design decisions are being governed by power rather than area/delay because power requirements are growing more stringent every year. Hence, a hybrid power management system is proposed, which uses both a solar panel to harvest energy from indoor lighting and a battery to power the load. The system tracks the maximum power point of the solar panel and regulates the battery and microcontroller output load voltages through the use of an on-chip switched-capacitor DC-DC converter. System performance is verified through simulation at the 180nm technology node and is made to be integrated on-chip with 0.25 second startup time, 79% efficiency, --8/+14% ripple on the load, an average 1micro A of quiescent current (3.7micro W of power) and total on-chip area of 1.8mm2 .
Development of a solid electrolyte carbon dioxide and water reduction system for oxygen recovery
NASA Technical Reports Server (NTRS)
Elikan, L.; Morris, J. P.; Wu, C. K.
1972-01-01
A 1/4-man solid electrolyte oxygen regeneration system, consisting of an electrolyzer, a carbon deposition reactor, and palladium membranes for separating hydrogen, was operated continuously in a 180-day test. Oxygen recovery from the carbon dioxide-water feed was 95%. One percent of the oxygen was lost to vacuum with the hydrogen off-gas. In a space cabin, the remaining 4% would have been recycled to the cabin and recovered. None of the electrolysis cells used in the 180-day test failed. Electrolysis power rose 20% during the test; the average power was 283.5 watts/man. Crew time was limited to 18 min/day of which 12 min/day was used for removing carbon. The success achieved in operating the system can be attributed to an extensive component development program, which is described. Stability of operation, ease of control, and flexibility in feed composition were demonstrated by the life test.
Design, fabrication, and testing of the BNL radio frequency quadrupole accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, H.; Clifford, T.; Giordano, S.
1984-01-01
The Brookhaven National Laboratory polarized H/sup -/ injection program for the AGS utilizes a Radio Frequency Quadrupole Accelerator for acceleration between the polarized source and the Alvarez Linac. Although operation has commenced with a few ..mu.. amperes of H/sup -/ beam, it is anticipated that future polarized H/sup -/ sources will have a considerably improved output. The RFQ will operate at 201.25 MHz and will be capable of handling a beam current of 0.02 amperes with a duty cycle of 0.25%. The resulting low average power has allowed novel solutions to the problems of vane alignment, rf current contacts, andmore » removal of heat from the vanes. The design philosophy, details of cavity fabrication, and vane machining will be discussed. Results of low and high power rf testing will be presented together with the initial results of operations in the polarized H/sup -/ beam line.« less
NASA Astrophysics Data System (ADS)
Zhu, G.; Whitehead, D.; Perrie, W.; Allegre, O. J.; Olle, V.; Li, Q.; Tang, Y.; Dawson, K.; Jin, Y.; Edwardson, S. P.; Li, L.; Dearden, G.
2018-03-01
Spatial light modulators (SLMs) addressed with computer generated holograms (CGHs) can create structured light fields on demand when an incident laser beam is diffracted by a phase CGH. The power handling limitations of these devices based on a liquid crystal layer has always been of some concern. With careful engineering of chip thermal management, we report the detailed optical phase and temperature response of a liquid cooled SLM exposed to picosecond laser powers up to 〈P〉 = 220 W at 1064 nm. This information is critical for determining device performance at high laser powers. SLM chip temperature rose linearly with incident laser exposure, increasing by only 5 °C at 〈P〉 = 220 W incident power, measured with a thermal imaging camera. Thermal response time with continuous exposure was 1-2 s. The optical phase response with incident power approaches 2π radians with average power up to 〈P〉 = 130 W, hence the operational limit, while above this power, liquid crystal thickness variations limit phase response to just over π radians. Modelling of the thermal and phase response with exposure is also presented, supporting experimental observations well. These remarkable performance characteristics show that liquid crystal based SLM technology is highly robust when efficiently cooled. High speed, multi-beam plasmonic surface micro-structuring at a rate R = 8 cm2 s-1 is achieved on polished metal surfaces at 〈P〉 = 25 W exposure while diffractive, multi-beam surface ablation with average power 〈P〉 =100 W on stainless steel is demonstrated with ablation rate of ~4 mm3 min-1. However, above 130 W, first order diffraction efficiency drops significantly in accord with the observed operational limit. Continuous exposure for a period of 45 min at a laser power of 〈P〉 = 160 W did not result in any detectable drop in diffraction efficiency, confirmed afterwards by the efficient parallel beam processing at 〈P〉 = 100 W. Hence, no permanent changes in SLM phase response characteristics have been detected. This research work will help to accelerate the use of liquid crystal spatial light modulators for both scientific and ultra high throughput laser-materials micro-structuring applications.
NASA Astrophysics Data System (ADS)
Rodin, Aleksej M.; Grishin, Mikhail; Michailovas, Andrejus
2016-01-01
We report results of design and optimization of high average output power picosecond and nanosecond laser operating at 1342 nm wavelength. Developed for selective micromachining, this DPSS laser is comprised of master oscillator, regenerative amplifier and output pulse control module. Passively mode-locked by means of semiconductor saturable absorber mirror and pumped with 808 nm wavelength Nd:YVO4 master oscillator emits 12.5 ps pulses at repetition rate of 55 MHz with average output power of ∼100 mW. The four-pass confocal delay line forms a longest part of the oscillator cavity in order to suppress thermo-mechanical misalignment. Picked from the train seed pulses were injected to the cavity of regenerative amplifier based on composite Nd:YVO4 crystal with diffusion-bonded segments of multiple Nd doping concentration end-pumped at 880 nm wavelength. Laser produces pulses of ∼13 ps duration at 300 kHz repetition rate with average output power of 11 W and nearly diffraction limited beam quality of M2∼1.03. Attained high peak power ∼2.8 MW facilitates conversion to the 2nd, 3rd and 6th harmonics at 671 nm, 447 nm and 224 nm wavelengths with 80%, 50% and 15% efficiency respectively. Without seeding the regenerative amplifier transforms to electro-optically cavity-dumped Q-switched laser providing 10 ns output pulses at high repetition rates with beam propagation factor of M2∼1.06.
Energy gain calculations in Penning fusion systems using a bounce-averaged Fokker-Planck model
NASA Astrophysics Data System (ADS)
Chacón, L.; Miley, G. H.; Barnes, D. C.; Knoll, D. A.
2000-11-01
In spherical Penning fusion devices, a spherical cloud of electrons, confined in a Penning-like trap, creates the ion-confining electrostatic well. Fusion energy gains for these systems have been calculated in optimistic conditions (i.e., spherically uniform electrostatic well, no collisional ion-electron interactions, single ion species) using a bounce-averaged Fokker-Planck (BAFP) model. Results show that steady-state distributions in which the Maxwellian ion population is dominant correspond to lowest ion recirculation powers (and hence highest fusion energy gains). It is also shown that realistic parabolic-like wells result in better energy gains than square wells, particularly at large well depths (>100 kV). Operating regimes with fusion power to ion input power ratios (Q-value) >100 have been identified. The effect of electron losses on the Q-value has been addressed heuristically using a semianalytic model, indicating that large Q-values are still possible provided that electron particle losses are kept small and well depths are large.
NASA Astrophysics Data System (ADS)
Kushina, Mark E.; Heberle, Geoff; Hope, Michael; Hall, David; Bethel, Michael; Calmes, Lonnie K.
2003-06-01
The ALMDS (Airborne Laser Mine Detection System) has been developed utilizing a solid-state laser operating at 532nm for naval mine detection. The laser system is integrated into a pod that mounts externally on a helicopter. This laser, along with other receiver systems, enables detailed underwater bathymetry. CEO designs and manufactures the laser portion of this system. Arete Associates integrates the laser system into the complete LIDAR package that utilizes sophisticated streak tube detection technology. Northrop Grumman is responsible for final pod integration. The laser sub-system is comprised of two separate parts: the LTU (Laser Transmitter Unit) and the LEU (Laser Electronics Unit). The LTU and LEU are undergoing MIL-STD-810 testing for vibration, shock, temperature storage and operation extremes, as well as MIL-STD-704E electrical power testing and MIL-STD-461E EMI testing. The Nd:YAG MOPA laser operates at 350 Hz pulse repetition frequency at 45 Watts average 532nm power and is controlled at the system level from within the helicopter. Power monitor circuits allow real time laser health monitoring, which enables input parameter adjustments for consistent laser behavior.
Optical Amplifier Based Space Solar Power
NASA Technical Reports Server (NTRS)
Fork, Richard L.
2001-01-01
The objective was to design a safe optical power beaming system for use in space. Research was focused on identification of strategies and structures that would enable achievement near diffraction limited optical beam quality, highly efficient electrical to optical conversion, and high average power in combination in a single system. Efforts centered on producing high efficiency, low mass of the overall system, low operating temperature, precision pointing and tracking capability, compatibility with useful satellite orbits, component and system reliability, and long component and system life in space. A system based on increasing the power handled by each individual module to an optimum and the number of modules in the complete structure was planned. We were concerned with identifying the most economical and rapid path to commercially viable safe space solar power.
Waveform agile high-power fiber laser illuminators for directed-energy weapon systems
NASA Astrophysics Data System (ADS)
Engin, Doruk; Lu, Wei; Kimpel, Frank; Gupta, Shantanu
2012-06-01
A kW-class fiber-amplifier based laser illuminator system at 1030nm is demonstrated. At 125 kHz pulse repetition rate, 1.9mJ energy per pulse (235W average power) is achieved for 100nsec pulses with >72% optical conversion efficiency, and at 250kHz repetition, >350W average power is demonstrated, limited by the available pumps. Excellent agreement is established between the experimental results and dynamic fiber amplifier simulation, for predicting the pulse shape, spectrum and ASE accumulation throughout the fiber-amplifier chain. High pulse-energy, high power fiber-amplifier operation requires careful engineering - minimize ASE content throughout the pre-amplifier stages, use of large mode area gain fiber in the final power stage for effective pulse energy extraction, and pulse pre-shaping to compensate for the laser gain-saturation induced intra-pulse and pulse-pattern dependent distortion. Such optimization using commercially available (VLMA) fibers with core size in the 30-40μm range is estimated to lead to >4mJ pulse energy for 100nsec pulse at 50kHz repetition rate. Such waveform agile high-power, high-energy pulsed fiber laser illuminators at λ=1030nm satisfies requirements for active-tracking/ranging in high-energy laser (HEL) weapon systems, and in uplink laser beacon for deep space communication.
Experimental study of efficiency of solar panel by phase change material cooling
NASA Astrophysics Data System (ADS)
Wei, Nicholas Tan Jian; Nan, Wong Jian; Guiping, Cheng
2017-07-01
The dependence of efficiency of photovoltaic panels on their temperature during operation is a major concern for developers and users. In this paper, a phase change material (PCM) cooling system was designed for a 60W mono-crystalline solar panel. Tealights candle was selected as the cooling medium. The solar irradiance was recorded using Kipp & Zonen CMP3 pyranometer and Meteon data logger. Temperature distribution on the surface of solar panel, output voltage and output current of solar panel were measured. The average irradiance throughout data collection was found to be 705W/m2 and highest irradiance was 1100 W/m2. The average solar panel temperature was 43.6°C and a maximum temperature of 53°C was at the center of solar panel. Results showed that average power output and efficiency of the solar panel were 44.4W and 15%, respectively. It was found that the higher the solar irradiance, the lower the efficiency of solar panel and the higher the temperature and power output of solar panel. This is due to the fact that high irradiance results in high power input and high solar panel temperature. But high PV panel temperature reduces its power output. Therefore, the increase of power input outweighs that of power output, which leads to the decrease of efficiency of solar panel with the increase of solar irradiance. Compared with solar panel without cooling, the power output and efficiency of solar panel did not increase with PCM cooling. It indicates that Tealights candle as PCM cooling is not efficient in improving the efficiency of solar panel in this study.
Unstable Resonator Mid-Infrared Laser Sources
2016-02-26
of individual materials depending on metal species and growth temperatures . Fig. 8 (a) Average power consumption and (b) delay of C2MOS and double...feedback lasers, chirped gratings, interferometric lithography, nanowire transistors, tunnel field- effect transistors, nanoscale epitaxial growth, nanowire...technical approaches. Approaches to wavelength tuning include thermal/operation temperature tuning [1], variable cavity length with cantilever/piezo
Injection molding plants are large consumers of electricity. At its current level of operations, Harbec Plastics (Ontario, NY) uses about 2,000,000 kilowatt-hours of electricity per year. Based on the US average fuel mix, approximately 1.5 pounds of CO2
A NEW CONCEPT FOR HIGH POWER RF COUPLING BETWEEN WAVEGUIDES AND RESONANT RF CAVITIES
Xu, Chen; Ben-Zvi, Ilan; Wang, Haipeng; ...
2017-01-01
Microwave engineering of high average-power (hundreds of kilowatts) devices often involves a transition from a waveguide to a device, typically a resonant cavity. This is a basic operation, which finds use in various application areas of significance to science and industry. At relatively low frequencies, L-band and below, it is convenient, sometimes essential, to couple the power between the waveguide and the cavity through a coaxial antenna, forming a power coupler. Power flow to the cavity in the fundamental mode leads to a Fundamental Power Coupler (FPC). High-order mode power generated in the cavity by a particle beam leads tomore » a high-order mode power damper. Coupling a cryogenic device, such as a superconducting cavity to a room temperature power source (or damp) leads to additional constraints and challenges. We propose a new approach to this problem, wherein the coax line element is operated in a TE11 mode rather than the conventional TEM mode. We will show that this method leads to a significant increase in the power handling capability of the coupler as well as a few other advantages. As a result, we describe the mode converter from the waveguide to the TE11 coax line, outline the characteristics and performance limits of the coupler and provide a detailed worked out example in the challenging area of coupling to a superconducting accelerator cavity.« less
A NEW CONCEPT FOR HIGH POWER RF COUPLING BETWEEN WAVEGUIDES AND RESONANT RF CAVITIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chen; Ben-Zvi, Ilan; Wang, Haipeng
Microwave engineering of high average-power (hundreds of kilowatts) devices often involves a transition from a waveguide to a device, typically a resonant cavity. This is a basic operation, which finds use in various application areas of significance to science and industry. At relatively low frequencies, L-band and below, it is convenient, sometimes essential, to couple the power between the waveguide and the cavity through a coaxial antenna, forming a power coupler. Power flow to the cavity in the fundamental mode leads to a Fundamental Power Coupler (FPC). High-order mode power generated in the cavity by a particle beam leads tomore » a high-order mode power damper. Coupling a cryogenic device, such as a superconducting cavity to a room temperature power source (or damp) leads to additional constraints and challenges. We propose a new approach to this problem, wherein the coax line element is operated in a TE11 mode rather than the conventional TEM mode. We will show that this method leads to a significant increase in the power handling capability of the coupler as well as a few other advantages. As a result, we describe the mode converter from the waveguide to the TE11 coax line, outline the characteristics and performance limits of the coupler and provide a detailed worked out example in the challenging area of coupling to a superconducting accelerator cavity.« less
NASA Astrophysics Data System (ADS)
Kato, Takeyoshi; Sone, Akihito; Shimakage, Toyonari; Suzuoki, Yasuo
A microgrid (MG) is one of the measures for enhancing the high penetration of renewable energy (RE)-based distributed generators (DGs). For constructing a MG economically, the capacity optimization of controllable DGs against RE-based DGs is essential. By using a numerical simulation model developed based on the demonstrative studies on a MG using PAFC and NaS battery as controllable DGs and photovoltaic power generation system (PVS) as a RE-based DG, this study discusses the influence of forecast accuracy of PVS output on the capacity optimization and daily operation evaluated with the cost. The main results are as follows. The required capacity of NaS battery must be increased by 10-40% against the ideal situation without the forecast error of PVS power output. The influence of forecast error on the received grid electricity would not be so significant on annual basis because the positive and negative forecast error varies with days. The annual total cost of facility and operation increases by 2-7% due to the forecast error applied in this study. The impact of forecast error on the facility optimization and operation optimization is almost the same each other at a few percentages, implying that the forecast accuracy should be improved in terms of both the number of times with large forecast error and the average error.
Preliminary results of Linear Induction Accelerator LIA-200
NASA Astrophysics Data System (ADS)
Sharma, Archana; Senthil, K.; Praveen Kumar, D. D.; Mitra, S.; Sharma, V.; Patel, A.; Sharma, D. K.; Rehim, R.; Kolge, T. S.; Saroj, P. C.; Acharya, S.; Amitava, Roy; Rakhee, M.; Nagesh, K. V.; Chakravarthy, D. P.
2010-05-01
Repetitive Pulsed Power Technology is being developed keeping in mind the potential applications of this technology in material modifications, disinfections of water, timber, and food pasteurization etc. BARC has indigenously developed a Linear Induction Accelerator (LIA-200) rated for 200 kV, 4 kA, 100 ns, 10 Hz. The satisfactory performance of all the sub-systems including solid state power modulator, amorphous core based pulsed transformers, magnetic switches, water capacitors, water pulse- forming line, induction adder and field-emission diode have been demonstrated. This paper presents some design details and operational results of this pulsed power system. It also highlights the need for further research and development to build reliable and economic high-average power systems for industrial applications.
Representation of the Characteristics of Piezoelectric Fiber Composites with Neural Networks
NASA Astrophysics Data System (ADS)
Yapici, A.; Bickraj, K.; Yenilmez, A.; Li, M.; Tansel, I. N.; Martin, S. A.; Pereira, C. M.; Roth, L. E.
2007-03-01
Ideal sensors for the future should be economical, efficient, highly intelligent, and capable of obtaining their operation power from the environment. The use of piezoelectric fiber composites coupled with a low power microprocessor and backpropagation type neural networks is proposed for the development of a simple sensor to estimate the characteristics of harmonic forces. Three neural networks were used for the estimation of amplitude, gain and variation of the load in the time domain. The average estimation errors of the neural networks were less than 8% in all of the studied cases.
2014-09-01
The Pilot radar has a low average power output, the 2.4 m range cell resolution, a resistance to electronic support system detection and/or anti...installation on walls, towers, or buildings, or it can be used as man-portable radar [35]. It features a scan rate of 30°/ s , which allows for a ...Target Velocity .1 – 50 m / s Operating Range 5 – 1400 m False Alarm Rates < 1 per 24 hours Coverage area 6.16 km2 Power Consumption 45 Watts
High-repetition-rate short-pulse gas discharge.
Tulip, J; Seguin, H; Mace, P N
1979-09-01
A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW.
NASA Astrophysics Data System (ADS)
Trifonenkov, A. V.; Trifonenkov, V. P.
2017-01-01
This article deals with a feature of problems of calculating time-average characteristics of nuclear reactor optimal control sets. The operation of a nuclear reactor during threatened period is considered. The optimal control search problem is analysed. The xenon poisoning causes limitations on the variety of statements of the problem of calculating time-average characteristics of a set of optimal reactor power off controls. The level of xenon poisoning is limited. There is a problem of choosing an appropriate segment of the time axis to ensure that optimal control problem is consistent. Two procedures of estimation of the duration of this segment are considered. Two estimations as functions of the xenon limitation were plot. Boundaries of the interval of averaging are defined more precisely.
AIRBORNE MICROORGANISMS IN BROILER PROCESSING PLANTS.
KOTULA, A W; KINNER, J A
1964-05-01
Concentrations of total aerobic bacteria, molds, yeasts, coliforms, enterococci, and psychrophiles were determined in the air of two poultry processing plants with Andersen samplers and a mobile power supply. Total aerobic bacterial counts were highest in the dressing room, with diminishing numbers in the shackling, eviscerating, and holding rooms, when sampling was carried out during plant operation. The average counts per ft(3) of air in these four rooms were 2,200; 560; 230; and 62, respectively. (Each value is the average of 36 observations.) The number of organisms increased in the shackling and dressing rooms once processing was begun. Average total aerobic bacterial counts increased from 70 to 870 to 3,000 in the shackling room and from 310 to 4,900 to 7,000 in the dressing room when sampling was carried out at 5:00 am (before plant operations), 9:00 am, and 2:00 pm, respectively. (Each value is the mean of 12 observations.) Airborne molds might originate from a source other than the poultry being processed.
Airborne Microorganisms in Broiler Processing Plants
Kotula, Anthony W.; Kinner, Jack A.
1964-01-01
Concentrations of total aerobic bacteria, molds, yeasts, coliforms, enterococci, and psychrophiles were determined in the air of two poultry processing plants with Andersen samplers and a mobile power supply. Total aerobic bacterial counts were highest in the dressing room, with diminishing numbers in the shackling, eviscerating, and holding rooms, when sampling was carried out during plant operation. The average counts per ft3 of air in these four rooms were 2,200; 560; 230; and 62, respectively. (Each value is the average of 36 observations.) The number of organisms increased in the shackling and dressing rooms once processing was begun. Average total aerobic bacterial counts increased from 70 to 870 to 3,000 in the shackling room and from 310 to 4,900 to 7,000 in the dressing room when sampling was carried out at 5:00 am (before plant operations), 9:00 am, and 2:00 pm, respectively. (Each value is the mean of 12 observations.) Airborne molds might originate from a source other than the poultry being processed. Images FIG. 3 PMID:14170951
Multi-arm group sequential designs with a simultaneous stopping rule.
Urach, S; Posch, M
2016-12-30
Multi-arm group sequential clinical trials are efficient designs to compare multiple treatments to a control. They allow one to test for treatment effects already in interim analyses and can have a lower average sample number than fixed sample designs. Their operating characteristics depend on the stopping rule: We consider simultaneous stopping, where the whole trial is stopped as soon as for any of the arms the null hypothesis of no treatment effect can be rejected, and separate stopping, where only recruitment to arms for which a significant treatment effect could be demonstrated is stopped, but the other arms are continued. For both stopping rules, the family-wise error rate can be controlled by the closed testing procedure applied to group sequential tests of intersection and elementary hypotheses. The group sequential boundaries for the separate stopping rule also control the family-wise error rate if the simultaneous stopping rule is applied. However, we show that for the simultaneous stopping rule, one can apply improved, less conservative stopping boundaries for local tests of elementary hypotheses. We derive corresponding improved Pocock and O'Brien type boundaries as well as optimized boundaries to maximize the power or average sample number and investigate the operating characteristics and small sample properties of the resulting designs. To control the power to reject at least one null hypothesis, the simultaneous stopping rule requires a lower average sample number than the separate stopping rule. This comes at the cost of a lower power to reject all null hypotheses. Some of this loss in power can be regained by applying the improved stopping boundaries for the simultaneous stopping rule. The procedures are illustrated with clinical trials in systemic sclerosis and narcolepsy. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
High-power and steady-state operation of ICRF heating in the large helical device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.
2015-12-10
Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAITmore » antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.« less
Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring.
Majerus, Steve J A; Garverick, Steven L; Suster, Michael A; Fletter, Paul C; Damaser, Margot S
2012-06-01
The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz. Aggressive power management techniques yield an average current draw of 9 μ A from a 3.6-Volt micro-battery, which minimizes the implant size. Automatic pressure offset cancellation circuits maximize the sensing dynamic range to account for drifting pressure offset due to environmental factors, and a custom telemetry protocol allows transmission with minimum overhead. Wireless operation of the WIMM has demonstrated that the external receiver can receive the telemetry packets, and the low power consumption allows for at least 24 hours of operation with a 4-hour wireless recharge session.
Testing and Development of a Percussive Augmenter for Rotary Drills
NASA Technical Reports Server (NTRS)
Donnelly, Christopher; Bar-Cohen, Yoseph; Chang, Zensheu; Badescu, Mircea; Sherrit, Stewart
2011-01-01
Hammering drills are effective in fracturing the drilled medium while rotary drills remove cuttings. The combination provides a highly effective penetration mechanism. Piezoelectric actuators were integrated into an adapter to produce ultrasonic percussion; augmenting rotary drilling. The drill is capable of operating at low power, low applied force and, with proper tuning, low noise. These characteristics are of great interest for future NASA missions and the construction/remodeling industry. The developed augmenter connects a commercially available drill and bit and was tested to demonstrate its capability. Input power to the drill was read using a multimeter and the augmenter received a separate input voltage. The drive frequency of the piezoelectric actuator was controlled by a hill climb algorithm that optimizes and records average power usage to operate the drill at resonating frequency. Testing the rotary drill and augmenter across a range of combinations with total power constant at 160 Watts has shown results in concrete and limestone samples that are as good as or better than the commercial drill. The drill rate was increased 1.5 to over 10 times when compared to rotation alone.
Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring
MAJERUS, STEVE J. A.; GARVERICK, STEVEN L.; SUSTER, MICHAEL A.; FLETTER, PAUL C.; DAMASER, MARGOT S.
2015-01-01
The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz. Aggressive power management techniques yield an average current draw of 9 μA from a 3.6-Volt micro-battery, which minimizes the implant size. Automatic pressure offset cancellation circuits maximize the sensing dynamic range to account for drifting pressure offset due to environmental factors, and a custom telemetry protocol allows transmission with minimum overhead. Wireless operation of the WIMM has demonstrated that the external receiver can receive the telemetry packets, and the low power consumption allows for at least 24 hours of operation with a 4-hour wireless recharge session. PMID:26778926
Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry
NASA Astrophysics Data System (ADS)
Zanardi, Paolo; Campos Venuti, Lorenzo
2018-01-01
We establish a direct connection between the power of a unitary map in d-dimensions (d < ∞) to generate quantum coherence and the geometry of the set Md of maximally abelian subalgebras (of the quantum system full operator algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.
Laser power meters as an X-ray power diagnostic for LCLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less
Laser power meters as an X-ray power diagnostic for LCLS-II.
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; Song, Sanghoon; Dakovski, Georgi; Nordlund, Dennis; Fritz, David
2018-01-01
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.
Laser power meters as an X-ray power diagnostic for LCLS-II
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; ...
2018-01-01
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less
NASA Astrophysics Data System (ADS)
De Felice, Matteo; Petitta, Marcello; Ruti, Paolo
2014-05-01
Photovoltaic diffusion is steadily growing on Europe, passing from a capacity of almost 14 GWp in 2011 to 21.5 GWp in 2012 [1]. Having accurate forecast is needed for planning and operational purposes, with the possibility to model and predict solar variability at different time-scales. This study examines the predictability of daily surface solar radiation comparing ECMWF operational forecasts with CM-SAF satellite measurements on the Meteosat (MSG) full disk domain. Operational forecasts used are the IFS system up to 10 days and the System4 seasonal forecast up to three months. Forecast are analysed considering average and variance of errors, showing error maps and average on specific domains with respect to prediction lead times. In all the cases, forecasts are compared with predictions obtained using persistence and state-of-art time-series models. We can observe a wide range of errors, with the performance of forecasts dramatically affected by orography and season. Lower errors are on southern Italy and Spain, with errors on some areas consistently under 10% up to ten days during summer (JJA). Finally, we conclude the study with some insight on how to "translate" the error on solar radiation to error on solar power production using available production data from solar power plants. [1] EurObserver, "Baromètre Photovoltaïque, Le journal des énergies renouvables, April 2012."
Infrared Laser System for Extended Area Monitoring of Air Pollution
NASA Technical Reports Server (NTRS)
Snowman, L. R.; Gillmeister, R. J.
1971-01-01
An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.
47 CFR 76.610 - Operation in the frequency bands 108-137 and 225-400 MHz-scope of application.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical... applicable to all MVPDs (cable and non-cable) transmitting carriers or other signal components carried at an average power level equal to or greater than 10−4 watts across a 25 kHz bandwidth in any 160 microsecond...
47 CFR 76.610 - Operation in the frequency bands 108-137 and 225-400 MHz-scope of application.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical... applicable to all MVPDs (cable and non-cable) transmitting carriers or other signal components carried at an average power level equal to or greater than 10−4 watts across a 25 kHz bandwidth in any 160 microsecond...
47 CFR 76.610 - Operation in the frequency bands 108-137 and 225-400 MHz-scope of application.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical... applicable to all MVPDs (cable and non-cable) transmitting carriers or other signal components carried at an average power level equal to or greater than 10−4 watts across a 25 kHz bandwidth in any 160 microsecond...
47 CFR 76.610 - Operation in the frequency bands 108-137 and 225-400 MHz-scope of application.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical... applicable to all MVPDs (cable and non-cable) transmitting carriers or other signal components carried at an average power level equal to or greater than 10−4 watts across a 25 kHz bandwidth in any 160 microsecond...
Output power distributions of mobile radio base stations based on network measurements
NASA Astrophysics Data System (ADS)
Colombi, D.; Thors, B.; Persson, T.; Wirén, N.; Larsson, L.-E.; Törnevik, C.
2013-04-01
In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.
88 kilowatt automotive inverter with new 900 Volt silicon carbide MOSFET technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casady, Jeffrey; Olejniczak, Kraig; McNutt, Ty
This final report is on the design and experimental verification of a 200 kVA traction inverter using three 900 V, 2.5 mΩ, SiC MOSFET-based half-bridge power modules comprising the power stage. Each dual power module contains four 900 V, 10 mΩ SiC MOSFETs per switch position and uses synchronous conduction to achieve high average and peak efficiencies over its entire operating region to meet the demands of hybrid, plug-in hybrid, and extended-range electrified vehicle architectures. Significant performance improvement, via conduction, switching, and reverse-recovery loss metrics, from this SiC MOSFET-based inverter—especially at light load conditions—will be discussed.
High power Raman-converter based on H2-filled inhibited coupling HC-PCF
NASA Astrophysics Data System (ADS)
Benoit, A.; Beaudou, B.; Debord, B.; Gerome, F.; Benabid, F.
2017-02-01
We report on high power Raman-converter frequency stage based on hydrogen-filled inhibited-coupling hollow-core photonic crystal fibers pumped by an Yb-fiber picosecond laser. This fiber Raman-convertor can operate in two SRS emission regimes by simply controlling the fiber length or the gas pressure. It can set to either generate favorably single laser line or to generate an extremely wide Raman comb. Based on this we demonstrate a pico-second pulse Raman source of 9.3 W average-power at 1.8 μm, and an ultra-wide Raman comb spanning over more than five octaves from UV to mid-infrared, containing around 70 laser lines.
Integrated Orbit and Attitude Control for a Nanosatellite with Power Constraints
NASA Technical Reports Server (NTRS)
Naasz, Bo; Hall, Christopher; Berry, Matthew; Hy-Young, Kim
2003-01-01
Small satellites tend to be power-limited, so that actuators used to control the orbit and attitude must compete with each other as well as with other subsystems for limited electrical power. The Virginia Tech nanosatellite project, HokieSat, must use its limited power resources to operate pulsed-plasma thrusters for orbit control and magnetic torque coils for attitude control, while also providing power to a GPS receiver, a crosslink transceiver, and other subsystems. The orbit and attitude control strategies were developed independently. The attitude control system is based on an application of Linear Quadratic Regulator (LQR) to an averaged system of equations, whereas the orbit control is based on orbit element feedback. In this paper we describe the strategy for integrating these two control systems and present simulation results to verify the strategy.
Downlink power distributions for 2G and 3G mobile communication networks.
Colombi, Davide; Thors, Björn; Persson, Tomas; Wirén, Niklas; Larsson, Lars-Eric; Jonsson, Mikael; Törnevik, Christer
2013-12-01
Knowledge of realistic power levels is key when conducting accurate EMF exposure assessments. In this study, downlink output power distributions for radio base stations in 2G and 3G mobile communication networks have been assessed. The distributions were obtained from network measurement data collected from the Operations Support System, which normally is used for network monitoring and management. Significant amounts of data were gathered simultaneously for large sets of radio base stations covering wide geographical areas and different environments. The method was validated with in situ measurements. For the 3G network, the 90th percentile of the averaged output power during high traffic hours was found to be 43 % of the maximum available power. The corresponding number for 2G, with two or more transceivers installed, was 65 % or below.
NASA Astrophysics Data System (ADS)
Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.
2010-06-01
In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.
Patnaik, Lalit; Umanand, Loganathan
2015-10-26
The inverted pendulum is a popular model for describing bipedal dynamic walking. The operating point of the walker can be specified by the combination of initial mid-stance velocity (v0) and step angle (φm) chosen for a given walk. In this paper, using basic mechanics, a framework of physical constraints that limit the choice of operating points is proposed. The constraint lines thus obtained delimit the allowable region of operation of the walker in the v0-φm plane. A given average forward velocity vx,avg can be achieved by several combinations of v0 and φm. Only one of these combinations results in the minimum mechanical power consumption and can be considered the optimum operating point for the given vx,avg. This paper proposes a method for obtaining this optimal operating point based on tangency of the power and velocity contours. Putting together all such operating points for various vx,avg, a family of optimum operating points, called the optimal locus, is obtained. For the energy loss and internal energy models chosen, the optimal locus obtained has a largely constant step angle with increasing speed but tapers off at non-dimensional speeds close to unity.
Pumphrey, Harold L.
1955-01-01
West Fork Carson River offers the best opportunity for power development in the Carson River basin. The Hope Valley reservoir site could be developed to provide adequate storage regulation and concentration of fall would permit utilization of 1,400 feet of head in 51h miles below the clam site, or 1,900 feet of head in about 972 miles below the dam site; however, the average annual runoff susceptible of development is only about 70,000 acre-feet which limits the power that could be developed continuously in an average year with regulation to about 8,700 kilowatts utilizing 1,400 feet of head, or 12,000 kilowatts utilizing 1,900 feet of head. The method and degree of development will be determined to large extent by the method devised to supplement regulated flows from the Hope Valley reservoir to supply the water already appropriated for irrigation. If the Hope Valley site and the Watasheamu site on East Fork Carson River were developed coordinately water could be transferred to the West Fork for distribution through canals leading from that stream thus satisfying the deficiency due to regulation at Hope Valley and release of stored water on a power schedule. This would permit utilization of the entire 1,900 feet of fall. Independent development of the West Fork for optimum power production would require re-regulation of releases from Hope Valley reservoir and storage of a considerable part of the fall and winter flow for use during the irrigation season. Adequate storage capacity is apparently not available on the West Fork below Hope Valley; but offstream storage may be available in Diamond Valley which could be utilized by diversion from the West Fork near Woodfords. This would limit the utilization of the stream for power purposes to the development of the 1,400 feet of head between the Hope Valley dam site and Wood fords. In a year of average discharge East Fork Carson River and three of its principal tributaries could be developed to produce about 13,500 kilowatts of firm power upstream of the Watasheamu site, which has been proposed as the location of a storage reservoir, the principal use of which would be for irrigation and flood control purposes. Substantial storage regulation would be required because of the seasonal variation in flow; and while sufficient storage capacity is available for such regulation, its value for power development is limited because of the lack of concentration of fall below the storage sites where head could be economically developed. The Watasheamu reservoir with a powerplant near the Horseshoe: Bend site could be operated to develop about 5,400 kilowatts of continuous power in a year of average discharge; however, priority to use of water for irrigation purposes would undoubtedly require operation of the Watasheamu reservoir on a schedule unfavorable to the production of firm power. It is estimated that 47 million kilowatt-hours represents the maximum generation capability of a plant at the Horseshoe Bend site in year of average discharge and a large proportion of this amount would be generated during the period of peak irrigation demand and would be seasonal in nature. Installation of about 7,000 kilowatts of capacity in a plant at the Horseshoe Bend site appears feasible. Annual energy generation would probably be less than the maximum represented by streamflow, depending on the magnitude of releases from the Watasheamu reservoir for irrigation and the demand for seasonal power. It is judged, from a general consideration of the probable cost of the required Structures in relation to the benefits which would accrue from the power that could be produced, that development of East and West Forks Carson River for power purposes only would not be feasible.
Low-Temperature Spacecraft: Challenges/Opportunities
NASA Technical Reports Server (NTRS)
Dickman, J. E.; Patterson, R. L.; Overton, E.; Hammoud, A. N.; Gerber, S. S.
2001-01-01
Imagine sending a spacecraft into deep space that operates at the ambient temperature of its environment rather than hundreds of degrees Kelvin warmer. The average temperature of a spacecraft warmed only by the sun drops from 279 K near the Earth's orbit to 90 K near the orbit of Saturn, and to 44 K near Pluto's orbit. At present, deep space probes struggle to maintain an operating temperature near 300 K for the onboard electronics. To warm the electronics without consuming vast amounts of electrical energy, radioisotope heater units (RHUs) are used in vast numbers. Unfortunately, since RHU are always 'on', an active thermal management system is required to reject the excess heat. A spacecraft designed to operate at cryogenic temperatures and shielded from the sun by a large communication dish or solar cell array could be less complex, lighter, and cheaper than current deep space probes. Before a complete low-temperature spacecraft becomes a reality, there are several challenges to be met. Reliable cryogenic power electronics is one of the major challenges. The Low-Temperature Power Electronics Research Group at NASA Glenn Research Center (GRC) has demonstrated the ability of some commercial off the shelf power electronic components to operate at temperatures approaching that of liquid nitrogen (77 K). Below 77 K, there exists an opportunity for the development of reliable semiconductor power switching technologies other than bulk silicon CMOS. This paper will report on the results of NASA GRC's Low-Temperature Power Electronics Program and discuss the challenges to (opportunities for) the creation of a low-temperature spacecraft.
Fully integrated Q-switch for commercial high-power resonator with solitary XLMA-fiber
NASA Astrophysics Data System (ADS)
Lange, R.; Bachert, C.; Rehmann, G.; Weber, H.; Luxen, R.; Enns, H.; Schenk, M.; Hosdorf, S.; Marfels, S.; Bay, M.; Kösters, A.; Krause, V.; Giesberts, M.; Fitzau, O.; Hoffmann, H.-D.
2018-02-01
In surface processing applications the correlation of laser power to processing speed demands a further enhancement of the performance of short-pulsed laser sources with respect to the investment costs. The frequently applied concept of master oscillator power amplifier relies on a complex structure, parts of which are highly sensitive to back reflected amplified radiation. Aiming for a simpler, robust source using only a single ytterbium doped XLMA fiber in a q-switched resonator appears as promising design approach eliminating the need for subsequent amplification. This concept requires a high power-tolerant resonator which is provided by the multikilowatt laser platform of Laserline including directly water-cooled active fiber thermal management. Laserline GmbH and Fraunhofer Institute for Laser Technology joined their forces1 to upgrade standard high power laser sources for short-pulsed operation exceeding 1 kW of average power. Therefor a compact, modular qswitch has been developed. In this paper the implementation of a polarization independent q-switch into an off-the-shelf multi-kilowatt diodepumped continuous wave fiber source is shown. In this early step of implementation we demonstrated more than 1000 W of average power at pulse lengths below 50 ns FWHM and 7.5 mJ pulse energy. The M2 corresponds to 9.5. Reliability of the system is demonstrated based on measurements including temperature and stability records. We investigated the variation possibilities concerning pulse parameters and shape as well as upcoming challenges in power up-scaling.
NASA Astrophysics Data System (ADS)
Boullet, Johan; Vincont, Cyril; Jolly, Alain; Pierre, Christophe
2017-03-01
Thermally induced transverse modal instabilities (TMI) have attracted these five years an intense research efforts of the entire fiber laser development community, as it represents the current most limiting effect of further power scaling of high power fiber laser. Anyway, since 2014, a few publications point out a new limiting thermal effect: fiber modal degradation (FMD). It is characterized by a power rollover and simultaneous increase of the cladding light at an average power far from the TMI threshold together with a degraded beam which does not exhibit temporal fluctuations, which is one of the main characteristic of TMI. We report here on the first systemic experimental study of FMD in a high power photonic crystal fiber. We put a particular emphasis on the dependence of its average power threshold on the regime of operation. We experimentally demonstrate that this dependence is intrinsically linked to regime-dependent PD-saturated losses, which are nearly three times higher in CW regime than in short pulse picosecond regime. We make the hypothesis that the existence of these different PD equilibrium states between CW regime and picosecond QCW pulsed regime is due to a partial photo-bleaching of color centers in picosecond regime thanks to a higher probability of multi-photon process induced photobleaching (PB) at high peak power. This hypothesis is corroborated by the demonstration of the reversibility of the FMD induced in CW regime by simply switching the seed CW 1064 nm light by a short pulse, picosecond oscillator.
Nd:YAG-laser-Q-switching with a photo-elastic modulator and applications
NASA Astrophysics Data System (ADS)
Bammer, F.; Petkovšek, R.; Dominguez, H.; Liedl, G.
2010-05-01
We present a rod-Nd:YAG-Laser, side-pumped with eight 50W-laser diode bars at 808nm, and Q-switched with a Single Crystal Photo-Elastic Modulator at 95.1 kHz. The latter is made of a z-cut LiNbO3-crystal, which is electrically y-excited on the mechanical resonance frequency of the x-longitudinal oscillation. With a voltage amplitude of 3 V the crystal shows a strong oscillation such that due to the photo-elastic effect a high polarization modulation is achieved, which, together with a polarizer, can be used as a simple optical switch. With this inside the laser resonator the average power is 47.8W in cw-mode and 45.5W in pulsed mode, with pulse peak powers of 4 kW and pulse widths of 100ns. This kind of operation is similar to cw-operation but offers due to the high peak powers different interaction physics with matter. The source is therefore suited for micro-welding of metals, LIDAR, rapid prototyping of plastics, marking/engraving/cutting of plastics, marking of glasses. In cases where high precision and a small heat affected zone are necessary this simple kind of pulsed operation may be advantageous, when compared to cw-operation.
[Establishment of mouse endometrial injury model by electrocoagulation].
Hu, Xiaoxiao; Lin, Xiaona; Jiang, Yinshen; Shi, Libing; Wang, Jieyu; Zhao, Lijuan; Zhang, Songying
2014-12-23
To establish the murine model of moderate endometrial injury. Electrocoagulation was applied to induce endometrial injury of ICR mice with 0.5 watts power while contralateral uterine cavity acted as control without electrocoagulation. The endometrial histomorphology was observed in 7 days later by microscopy and fetal number of each lateral uterus assessed at 17.5 days after pregnancy. At 7 days post-electrocoagulation, the average endometrial thickness of operating side was significantly thinner than that of control side (1.14 ± 0.08 vs 1.88 ± 0.15 mm, P < 0.05). The density of endometrial glands of operating side was significantly lower than that of control side (20 ± 2 vs 32 ± 3 per 100x field, P < 0.05). After pregnancy, the average number of embryos at operating side decreased by 63.1% compared with control (3 ± 2 vs 8 ± 2, P < 0.01). The established model of endometrial electrocoagulation injury shows morphologic changes and decreased fertile ability. It has potential uses for animal studies of endometrial injury treatment.
Nasseri, Simin; Monazzam, Mohammadreza; Beheshti, Meisam; Zare, Sajad; Mahvi, Amirhosein
2013-12-20
New environmental pollutants interfere with the environment and human life along with technology development. One of these pollutants is electromagnetic field. This study determines the vertical microwave radiation pattern of different types of Base Transceiver Station (BTS) antennae in the Hashtgerd city as the capital of Savojbolagh County, Alborz Province of Iran. The basic data including the geographical location of the BTS antennae in the city, brand, operator type, installation and its height was collected from radio communication office, and then the measurements were carried out according to IEEE STD 95. 1 by the SPECTRAN 4060. The statistical analyses were carried out by SPSS16 using Kolmogorov Smirnov test and multiple regression method. Results indicated that in both operators of Irancell and Hamrah-e-Aval (First Operator), the power density rose with an increase in measurement height or decrease in the vertical distance of broadcaster antenna. With mix model test, a significant statistical relationship was observed between measurement height and the average power density in both types of the operators. With increasing measuring height, power density increased in both operators. The study showed installing antennae in a crowded area needs more care because of higher radiation emission. More rigid surfaces and mobile users are two important factors in crowded area that can increase wave density and hence raise public microwave exposure.
2013-01-01
New environmental pollutants interfere with the environment and human life along with technology development. One of these pollutants is electromagnetic field. This study determines the vertical microwave radiation pattern of different types of Base Transceiver Station (BTS) antennae in the Hashtgerd city as the capital of Savojbolagh County, Alborz Province of Iran. The basic data including the geographical location of the BTS antennae in the city, brand, operator type, installation and its height was collected from radio communication office, and then the measurements were carried out according to IEEE STD 95. 1 by the SPECTRAN 4060. The statistical analyses were carried out by SPSS16 using Kolmogorov Smirnov test and multiple regression method. Results indicated that in both operators of Irancell and Hamrah-e-Aval (First Operator), the power density rose with an increase in measurement height or decrease in the vertical distance of broadcaster antenna. With mix model test, a significant statistical relationship was observed between measurement height and the average power density in both types of the operators. With increasing measuring height, power density increased in both operators. The study showed installing antennae in a crowded area needs more care because of higher radiation emission. More rigid surfaces and mobile users are two important factors in crowded area that can increase wave density and hence raise public microwave exposure. PMID:24359870
NASA Astrophysics Data System (ADS)
Hawkes, Adam; Leach, Matthew
The ability of combined heat and power (CHP) to meet residential heat and power demands efficiently offers potentially significant financial and environmental advantages over centralised power generation and heat-provision through natural-gas fired boilers. A solid oxide fuel cell (SOFC) can operate at high overall efficiencies (heat and power) of 80-90%, offering an improvement over centralised generation, which is often unable to utilise waste heat. This paper applies an equivalent annual cost (EAC) minimisation model to a residential solid oxide fuel cell CHP system to determine what the driving factors are behind investment in this technology. We explore the performance of a hypothetical SOFC system—representing expectations of near to medium term technology development—under present UK market conditions. We find that households with small to average energy demands do not benefit from installation of a SOFC micro-CHP system, but larger energy demands do benefit under these conditions. However, this result is sensitive to a number of factors including stack capital cost, energy import and export prices, and plant lifetime. The results for small and average dwellings are shown to reverse under an observed change in energy import prices, an increase in electricity export price, a decrease in stack capital costs, or an improvement in stack lifetime.
Simultaneous Estimation of Electromechanical Modes and Forced Oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follum, Jim; Pierre, John W.; Martin, Russell
Over the past several years, great strides have been made in the effort to monitor the small-signal stability of power systems. These efforts focus on estimating electromechanical modes, which are a property of the system that dictate how generators in different parts of the system exchange energy. Though the algorithms designed for this task are powerful and important for reliable operation of the power system, they are susceptible to severe bias when forced oscillations are present in the system. Forced oscillations are fundamentally different from electromechanical oscillations in that they are the result of a rogue input to the system,more » rather than a property of the system itself. To address the presence of forced oscillations, the frequently used AutoRegressive Moving Average (ARMA) model is adapted to include sinusoidal inputs, resulting in the AutoRegressive Moving Average plus Sinusoid (ARMA+S) model. From this model, a new Two-Stage Least Squares algorithm is derived to incorporate the forced oscillations, thereby enabling the simultaneous estimation of the electromechanical modes and the amplitude and phase of the forced oscillations. The method is validated using simulated power system data as well as data obtained from the western North American power system (wNAPS) and Eastern Interconnection (EI).« less
NASA Astrophysics Data System (ADS)
Gaustad, K. L.; Desteese, J. G.
1993-07-01
A computer program was developed to analyze the viability of integrating superconducting magnetic energy storage (SMES) with proposed wind farm scenarios at a site near Browning, Montana. The program simulated an hour-by-hour account of the charge/discharge history of a SMES unit for a representative wind-speed year. Effects of power output, storage capacity, and power conditioning capability on SMES performance characteristics were analyzed on a seasonal, diurnal, and hourly basis. The SMES unit was assumed to be charged during periods when power output of the wind resource exceeded its average value. Energy was discharged from the SMES unit into the grid during periods of low wind speed to compensate for below-average output of the wind resource. The option of using SMES to provide power continuity for a wind farm supplemented by combustion turbines was also investigated. Levelizing the annual output of large wind energy systems operating in the Blackfeet area of Montana was found to require a storage capacity too large to be economically viable. However, it appears that intermediate-sized SMES economically levelize the wind energy output on a seasonal basis.
Gong, Feixiang; Wei, Zhiqiang; Cong, Yanping; Chi, Haokun; Yin, Bo; Sun, Mingui
2017-07-20
In this paper, a novel wireless power transfer antenna system was designed for human head implantable devices. The antenna system used the structure of three plates and four coils and operated at low frequencies to transfer power via near field. In order to verify the electromagnetic radiation safety on the human head, the electromagnetic intensity and specific absorption rate (SAR) were studied by finite-difference-time-domain (FDTD) method. A three-layer model of human head including skin, bone and brain tissues was constructed. The transmitting and receiving antenna were set outside and inside the model. The local and average SAR were simulated at the resonance frequency of 18.67 MHz in two situations, in one scenario both transmitting and receiving coil worked, while in the other scenario only the transmitting coil worked. The results showed that the maximum of 10 g SAR average value of human thoracic were 0.142 W/kg and 0.148 W/kg, respectively, both were lower than the international safety standards for human body of the ICNIRP and FCC, which verified the safety of the human body in wireless power transmission based on magnetic coupling resonance.
Lunar South Pole Illumination: Review, Reassessment, and Power System Implications
NASA Technical Reports Server (NTRS)
Fincannon, James
2007-01-01
This paper reviews past analyses and research related to lunar south pole illumination and presents results of independent illumination analyses using an analytical tool and a radar digital elevation model. The analysis tool enables assessment at most locations near the lunar poles for any time and any year. Average illumination fraction, energy storage duration, solar/horizon terrain elevation profiles and illumination fraction profiles are presented for various highly illuminated sites which have been identified for manned or unmanned operations. The format of the data can be used by power system designers to develop mass optimized solar and energy storage systems. Data are presented for the worse case lunar day (a critical power planning bottleneck) as well as three lunar days during lunar south pole winter. The main site under consideration by present lunar mission planners (on the Crater Shackleton rim) is shown to have, for the worse case lunar day, a 0.71 average illumination fraction and 73 to 117 hours required for energy storage (depending on power system type). Linking other sites and including towers at either site are shown to not completely eliminate the need for energy storage.
Characterization of Lunar Polar Illumination from a Power System Perspective
NASA Technical Reports Server (NTRS)
Fincannon, James
2008-01-01
This paper presents the results of illumination analyses for the lunar south and north pole regions obtained using an independently developed analytical tool and two types of digital elevation models (DEM). One DEM was based on radar height data from Earth observations of the lunar surface and the other was a combination of the radar data with a separate dataset generated using Clementine spacecraft stereo imagery. The analysis tool enables the assessment of illumination at most locations in the lunar polar regions for any time and any year. Maps are presented for both lunar poles for the worst case winter period (the critical power system design and planning bottleneck) and for the more favorable best case summer period. Average illumination maps are presented to help understand general topographic trends over the regions. Energy storage duration maps are presented to assist in power system design. Average illumination fraction, energy storage duration, solar/horizon terrain elevation profiles and illumination fraction profiles are presented for favorable lunar north and south pole sites which have the potential for manned or unmanned spacecraft operations. The format of the data is oriented for use by power system designers to develop mass optimized solar and energy storage systems.
Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su'ud, Zaki; Anshari, Rio
Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environmentmore » such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.« less
Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident
NASA Astrophysics Data System (ADS)
Su'ud, Zaki; Anshari, Rio
2012-06-01
Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.
Dual-wavelength mid-infrared CW and Q-switched laser in diode end-pumped Tm,Ho:GdYTaO4 crystal
NASA Astrophysics Data System (ADS)
Wang, Beibei; Gao, Congcong; Dou, Renqin; Nie, Hongkun; Sun, Guihua; Liu, Wenpeng; Yu, Haijuan; Wang, Guoju; Zhang, Qingli; Lin, Xuechun; He, Jingliang; Wang, Wenjun; Zhang, Bingyuan
2018-02-01
Dual-wavelength continuous-wave and Q-switched lasers are demonstrated in a Tm,Ho:GdYTaO4 crystal under 790 nm laser diode end pumping for the first time to the best of our knowledge. The laser operates with a dual wavelength at 1949.677 nm and 2070 nm for continuous-wave with a spacing of about 120 nm. The maximum output power is 0.332 W with a pump power of 3 W. By using graphene as the saturable absorber, a passively Q-switched operation is performed with a dual-wavelength at 1950.323 nm and 2068.064 nm with a wavelength interval of about 118 nm. The maximum average output power of the Q-switched laser goes up to 200 mW with a minimum pulse duration of 1.2 µs and a maximum repetition rate of 34.72 kHz.
Voltage oriented control of self-excited induction generator for wind energy system with MPPT
NASA Astrophysics Data System (ADS)
Amieur, Toufik; Taibi, Djamel; Amieur, Oualid
2018-05-01
This paper presents the study and simulation of the self-excited induction generator in the wind power production in isolated sites. With this intention, a model of the wind turbine was established. Extremum-seeking control algorithm method by using Maximum Power Point Tracking (MPPT) is proposed control solution aims at driving the average position of the operating point near to optimality. The reference of turbine rotor speed is adjusted such that the turbine operates around maximum power for the current wind speed value. After a brief review of the concepts of converting wind energy into electrical energy. The proposed modeling tools were developed to study the performance of standalone induction generators connected to capacitor bank. The purpose of this technique is to maintain a constant voltage at the output of the rectifier whatever the loads and speeds. The system studied in this work is developed and tested in MATLAB/Simulink environment. Simulation results validate the performance and effectiveness of the proposed control methods.
Power hand tool kinetics associated with upper limb injuries in an automobile assembly plant.
Ku, Chia-Hua; Radwin, Robert G; Karsh, Ben-Tzion
2007-06-01
This study investigated the relationship between pneumatic nutrunner handle reactions, workstation characteristics, and prevalence of upper limb injuries in an automobile assembly plant. Tool properties (geometry, inertial properties, and motor characteristics), fastener properties, orientation relative to the fastener, and the position of the tool operator (horizontal and vertical distances) were measured for 69 workstations using 15 different pneumatic nutrunners. Handle reaction response was predicted using a deterministic mechanical model of the human operator and tool that was previously developed in our laboratory, specific to the measured tool, workstation, and job factors. Handle force was a function of target torque, tool geometry and inertial properties, motor speed, work orientation, and joint hardness. The study found that tool target torque was not well correlated with predicted handle reaction force (r=0.495) or displacement (r=0.285). The individual tool, tool shape, and threaded fastener joint hardness all affected predicted forces and displacements (p<0.05). The average peak handle force and displacement for right-angle tools were twice as great as pistol grip tools. Soft-threaded fastener joints had the greatest average handle forces and displacements. Upper limb injury cases were identified using plant OSHA 200 log and personnel records. Predicted handle forces for jobs where injuries were reported were significantly greater than those jobs free of injuries (p<0.05), whereas target torque and predicted handle displacement did not show statistically significant differences. The study concluded that quantification of handle reaction force, rather than target torque alone, is necessary for identifying stressful power hand tool operations and for controlling exposure to forces in manufacturing jobs involving power nutrunners. Therefore, a combination of tool, work station, and task requirements should be considered.
Optimizing Ti:Sapphire laser for quantitative biomedical imaging
NASA Astrophysics Data System (ADS)
James, Jeemol; Thomsen, Hanna; Hanstorp, Dag; Alemán Hérnandez, Felipe Ademir; Rothe, Sebastian; Enger, Jonas; Ericson, Marica B.
2018-02-01
Ti:Sapphire lasers are powerful tools in the field of scientific research and industry for a wide range of applications such as spectroscopic studies and microscopic imaging where tunable near-infrared light is required. To push the limits of the applicability of Ti:Sapphire lasers, fundamental understanding of the construction and operation is required. This paper presents two projects, (i) dealing with the building and characterization of custom built tunable narrow linewidth Ti:Sapphire laser for fundamental spectroscopy studies; and the second project (ii) the implementation of a fs-pulsed commercial Ti:Sapphire laser in an experimental multiphoton microscopy platform. For the narrow linewidth laser, a gold-plated diffraction grating with a Littrow geometry was implemented for highresolution wavelength selection. We demonstrate that the laser is tunable between 700 to 950 nm, operating in a pulsed mode with a repetition rate of 1 kHz and maximum average output power around 350 mW. The output linewidth was reduced from 6 GHz to 1.5 GHz by inserting an additional 6 mm thick etalon. The bandwidth was measured by means of a scanning Fabry Perot interferometer. Future work will focus on using a fs-pulsed commercial Ti:Sapphire laser (Tsunami, Spectra physics), operating at 80 MHz and maximum average output power around 1 W, for implementation in an experimental multiphoton microscopy set up dedicated for biomedical applications. Special focus will be on controlling pulse duration and dispersion in the optical components and biological tissue using pulse compression. Furthermore, time correlated analysis of the biological samples will be performed with the help of time correlated single photon counting module (SPCM, Becker&Hickl) which will give a novel dimension in quantitative biomedical imaging.
Computations of unsteady multistage compressor flows in a workstation environment
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen L.
1992-01-01
High-end graphics workstations are becoming a necessary tool in the computational fluid dynamics environment. In addition to their graphic capabilities, workstations of the latest generation have powerful floating-point-operation capabilities. As workstations become common, they could provide valuable computing time for such applications as turbomachinery flow calculations. This report discusses the issues involved in implementing an unsteady, viscous multistage-turbomachinery code (STAGE-2) on workstations. It then describes work in which the workstation version of STAGE-2 was used to study the effects of axial-gap spacing on the time-averaged and unsteady flow within a 2 1/2-stage compressor. The results included time-averaged surface pressures, time-averaged pressure contours, standard deviation of pressure contours, pressure amplitudes, and force polar plots.
Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking
Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg
2013-01-01
Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load. PMID:24260114
Friction in total hip joint prosthesis measured in vivo during walking.
Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg
2013-01-01
Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.
LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm
NASA Astrophysics Data System (ADS)
Sun, Xinzhi; Zhang, Xihe; Li, Shutao; Dong, Yuan
2017-12-01
A laser diode pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser is experimentally investigated. Simultaneous pulse outputs at 1166 nm and 1176 nm corresponding to the Raman shifts of 807 and 882 cm-1 are acquired. At the pulse repetition frequency (PRF) of 20 kHz, the maximum output power is 103 mW at 1166 nm with the incident pump power of 2.31 W, while 1176 nm output power reaches 530 mW with the incident pump power of 4.11 W. The maximum output power of Raman laser is 570 mW with the incident pump power of 4.11 W and the PRF of 30 kHz. With the incident pump power of 3.67 W and the PRF of 30 kHz, the highest diode-to-Stokes optical conversion efficiency of 14.9% is obtained with the corresponding average output power of 547 mW.
Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.
Mei, Henry; Thackston, Kyle A; Bercich, Rebecca A; Jefferys, John G R; Irazoqui, Pedro P
2017-04-01
The goal of this paper is to create a large wireless powering arena for powering small devices implanted in freely behaving rodents. We design a cavity resonator based wireless power transfer (WPT) system and utilize our previously developed optimal impedance matching methodology to achieve effective WPT performance for operating sophisticated implantable devices, made with miniature receive coils (<8 mm in diameter), within a large volume (dimensions: 60.96 cm × 60.96 cm × 30 cm). We provide unique cavity design and construction methods which maintains electromagnetic performance of the cavity while promoting its utility as a large animal husbandry environment. In addition, we develop a biaxial receive resonator system to address device orientation insensitivity within the cavity environment. Functionality is demonstrated with chronic experiments involving rats implanted with our custom designed bioelectric recording device. We demonstrate an average powering fidelity of 93.53% over nine recording sessions across nine weeks, indicating nearly continuous device operation for a freely behaving rat within the large cavity resonator space. We have developed and demonstrated a cavity resonator based WPT system for long term experiments involving freely behaving small animals. This cavity resonator based WPT system offers an effective and simple method for wirelessly powering miniaturized devices implanted in freely moving small animals within the largest space.
Research and application of key technology of electric submersible plunger pump
NASA Astrophysics Data System (ADS)
Qian, K.; Sun, Y. N.; Zheng, S.; Du, W. S.; Li, J. N.; Pei, G. Z.; Gao, Y.; Wu, N.
2018-06-01
Electric submersible plunger pump is a new generation of rodless oil production equipment, whose improvements and upgrades of key technologies are conducive to its large-scale application and reduce the cost and improve the efficiency. In this paper, the operating mechanism of the unit in-depth study, aimed at the problems existing in oilfield production, to propose an optimization method creatively, including the optimal design of a linear motor for submersible oil, development of new double-acting load-relief pump, embedded flexible closed-loop control technology, research and development of low-cost power cables. 90 oil wells were used on field application, the average pump inspection cycle is 608 days, the longest pump check cycle has exceeded 1037 days, the average power saving rate is 45.6%. Application results show that the new technology of optimization and upgrading can further improve the reliability and adaptability of electric submersible plunger pump, reduce the cost of investment.
A Decentralized Eigenvalue Computation Method for Spectrum Sensing Based on Average Consensus
NASA Astrophysics Data System (ADS)
Mohammadi, Jafar; Limmer, Steffen; Stańczak, Sławomir
2016-07-01
This paper considers eigenvalue estimation for the decentralized inference problem for spectrum sensing. We propose a decentralized eigenvalue computation algorithm based on the power method, which is referred to as generalized power method GPM; it is capable of estimating the eigenvalues of a given covariance matrix under certain conditions. Furthermore, we have developed a decentralized implementation of GPM by splitting the iterative operations into local and global computation tasks. The global tasks require data exchange to be performed among the nodes. For this task, we apply an average consensus algorithm to efficiently perform the global computations. As a special case, we consider a structured graph that is a tree with clusters of nodes at its leaves. For an accelerated distributed implementation, we propose to use computation over multiple access channel (CoMAC) as a building block of the algorithm. Numerical simulations are provided to illustrate the performance of the two algorithms.
On-road heavy-duty diesel particulate matter emissions modeled using chassis dynamometer data.
Kear, Tom; Niemeier, D A
2006-12-15
This study presents a model, derived from chassis dynamometer test data, for factors (operational correction factors, or OCFs) that correct (g/mi) heavy-duty diesel particle emission rates measured on standard test cycles for real-world conditions. Using a random effects mixed regression model with data from 531 tests of 34 heavy-duty vehicles from the Coordinating Research Council's E55/E59 research project, we specify a model with covariates that characterize high power transient driving, time spent idling, and average speed. Gram per mile particle emissions rates were negatively correlated with high power transient driving, average speed, and time idling. The new model is capable of predicting relative changes in g/mi on-road heavy-duty diesel particle emission rates for real-world driving conditions that are not reflected in the driving cycles used to test heavy-duty vehicles.
The Mercury Project: A High Average Power, Gas-Cooled Laser For Inertial Fusion Energy Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A; Armstrong, P; Ault, E
Hundred-joule, kilowatt-class lasers based on diode-pumped solid-state technologies, are being developed worldwide for laser-plasma interactions and as prototypes for fusion energy drivers. The goal of the Mercury Laser Project is to develop key technologies within an architectural framework that demonstrates basic building blocks for scaling to larger multi-kilojoule systems for inertial fusion energy (IFE) applications. Mercury has requirements that include: scalability to IFE beamlines, 10 Hz repetition rate, high efficiency, and 10{sup 9} shot reliability. The Mercury laser has operated continuously for several hours at 55 J and 10 Hz with fourteen 4 x 6 cm{sup 2} ytterbium doped strontiummore » fluoroapatite (Yb:S-FAP) amplifier slabs pumped by eight 100 kW diode arrays. The 1047 nm fundamental wavelength was converted to 523 nm at 160 W average power with 73% conversion efficiency using yttrium calcium oxy-borate (YCOB).« less
Power strain imaging based on vibro-elastography techniques
NASA Astrophysics Data System (ADS)
Wen, Xu; Salcudean, S. E.
2007-03-01
This paper describes a new ultrasound elastography technique, power strain imaging, based on vibro-elastography (VE) techniques. With this method, tissue is compressed by a vibrating actuator driven by low-pass or band-pass filtered white noise, typically in the 0-20 Hz range. Tissue displacements at different spatial locations are estimated by correlation-based approaches on the raw ultrasound radio frequency signals and recorded in time sequences. The power spectra of these time sequences are computed by Fourier spectral analysis techniques. As the average of the power spectrum is proportional to the squared amplitude of the tissue motion, the square root of the average power over the range of excitation frequencies is used as a measure of the tissue displacement. Then tissue strain is determined by the least squares estimation of the gradient of the displacement field. The computation of the power spectra of the time sequences can be implemented efficiently by using Welch's periodogram method with moving windows or with accumulative windows with a forgetting factor. Compared to the transfer function estimation originally used in VE, the computation of cross spectral densities is not needed, which saves both the memory and computational times. Phantom experiments demonstrate that the proposed method produces stable and operator-independent strain images with high signal-to-noise ratio in real time. This approach has been also tested on a few patient data of the prostate region, and the results are encouraging.
QCL as a game changer in MWIR and LWIR military and homeland security applications
NASA Astrophysics Data System (ADS)
Patel, C. Kumar N.; Lyakh, Arkadiy; Maulini, Richard; Tsekoun, Alexei; Tadjikov, Boris
2012-06-01
QCLs represent an important advance in MWIR and LWIR laser technology. With the demonstration of CW/RT QCLs, large number applications for QCLs have opened up, some of which represent replacement of currently used laser sources such as OPOs and OPSELs, and others being new uses which were not possible using earlier MWIR/LWIR laser sources, namely OPOs, OPSELs and CO2 lasers. Pranalytica has made significant advances in CW/RT power and WPE of QCLs and through its invention of a new QCL structure design, the non-resonant extraction, has demonstrated single emitter power of >4.7 W and WPE of >17% in the 4.4μm-5.0μm region. Pranalytica has also been commercially supplying the highest power MWIR QCLs with high WPEs. The NRE design concept now has been extended to the shorter wavelengths (3.8μm-4.2μm) with multiwatt power outputs and to longer wavelengths (7μm-10μm) with >1 W output powers. The high WPE of the QCLs permits RT operation of QCLs without using TECs in quasi-CW mode where multiwatt average powers are obtained even in ambient T>70°C. The QCW uncooled operation is particularly attractive for handheld, battery-operated applications where electrical power is limited. This paper describes the advances in QCL technology and applications of the high power MWIR and LWIR QCLs for defense applications, including protection of aircraft from MANPADS, standoff detection of IEDs, insitu detection of CWAs and explosives, infrared IFF beacons and target designators. We see that the SWaP advantages of QCLs are game changers.
Electric plant cost and power production expenses 1989. [Glossary included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-03-29
This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, federal, state, and local governments, and the general public. This report primarily presents aggregate operation, maintenance, and fuel expense data about all power plants owned and operated by the major investor-owned electric utilities in the United States. The power production expenses for the major investor-owned electric utilities are summarized. Plant-specific data are presented for a selection of both investor-owned and publicly owned plants. Summary statistics for each plantmore » type (prime mover), as reported by the electric utilities, are presented in the separate chapters as follows: Hydroelectric Plants; Fossil-Fueled Steam-Electric Plants; Nuclear Steam-Electric Plants; and Gas Turbine and Small Scale Electric Plants. These chapters contain plant level data for 50 conventional hydroelectric plants and 22 pumped storage hydroelectric plants, 50 fossil-fueled steam-electric plants, 71 nuclear steam-electric plants, and 50 gas turbine electric plants. Among the operating characteristics of each plant are the capacity, capability, generation and demand on the plant. Physical characteristics comprise the number of units in the plant, the average number of employees, and other information relative to the plant's operation. The Glossary section will enable the reader to understand clearly the terms used in this report. 4 figs., 18 tabs.« less
Nonlinear mirror modelocking of a bounce geometry laser.
Thomas, G M; Bäuerle, A; Farrell, D J; Damzen, M J
2010-06-07
We present the investigation of nonlinear mirror modelocking (NLM) of a bounce amplifier laser. This technique, a potential rival to SESAM modelocking, uses a nonlinear crystal and a dichroic mirror to passively modelock a Nd:GdVO(4) slab bounce amplifier operating at 1063nm. At 11.3W, we present the highest power achieved using the NLM technique, using type-II phase-matched KTP, with a pulse duration of 57ps. Using type-I phase-matched BiBO, modelocking was achieved with a shorter pulse duration of 5.7ps at an average power of 7.1W.
Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm.
Coluccelli, Nicola; Lagatsky, Alexander; Di Lieto, Alberto; Tonelli, Mauro; Galzerano, Gianluca; Sibbett, Wilson; Laporta, Paolo
2011-08-15
We demonstrate the passive mode-locking operation of an in-band-pumped Ho:YLiF(4) laser at 2.06 μm using a semiconductor saturable absorber mirror based on InGaAsSb quantum wells. A transform-limited pulse train with minimum duration of 1.1 ps and average power of 0.58 W has been obtained at a repetition frequency of 122 MHz. A maximum output power of 1.7 W has been generated with a corresponding pulse duration of 1.9 ps. © 2011 Optical Society of America
Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm.
Lagatsky, A A; Han, X; Serrano, M D; Cascales, C; Zaldo, C; Calvez, S; Dawson, M D; Gupta, J A; Brown, C T A; Sibbett, W
2010-09-15
We report, for the first time to our knowledge, femtosecond-pulse operation of a Tm,Ho:NaY(WO(4))(2) laser at around 2060 nm. Transform-limited 191 fs pulses are produced with an average output power of 82 mW at a 144 MHz pulse repetition frequency. Maximum output power of up to 155 mW is generated with a corresponding pulse duration of 258 fs. An ion-implanted InGaAsSb quantum-well-based semiconductor saturable absorber mirror is used for passive mode-locking maintenance.
An extensible, low-cost drifter control unit
NASA Astrophysics Data System (ADS)
Giudici, Andrea; Torsvik, Tomas; Soomere, Tarmo
2017-04-01
We introduce an extensible, low-cost drifter control unit, which is developed for use with surface drifters that are deployed in inland water bodies or near-coast regions. The control unit is custom-built on top of a small footprint micro controller. It makes use of a GPS receiver for position tracking, a GSM radio for data transmission, and two sensor buses to handle analog and digital data measured by an array of external sensors. A cloud-based data collection platform receives and stores the data transmitted over GPRS from the drifter. The control unit was found to perform satisfactorily in operational testing, providing data at sub-Hz frequency for position and temperature during extended time. Test deployments revealed some issues related to power consumption spikes. Even though the unit is fully functional in the present form and shows, on average, low energy consumption , battery packs with relatively large maximum output power are required to ensure its operation within prolonged periods of time. We expect that a further development of the power supply unit together with a careful de-synchronization scheme of sensors' operation would smooth those peaks without any loss of the quality of recorded information.
Nonlinear Burn Control and Operating Point Optimization in ITER
NASA Astrophysics Data System (ADS)
Boyer, Mark; Schuster, Eugenio
2013-10-01
Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Abshire, James B.
2011-01-01
Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW seeder lasers, one on-line and one offline that are intensity modulated by two different frequency sine-waves signals before being amplified by a common laser amplifier. The receiver uses narrowband amplitude demodulation, or lock-in, Signal processing at the given laser modulation frequencies [3,4]. The laser transmitter operates in a quasi CW mode with the peak power equal to twice the average power. The on-line and off-line lasers can be transmitted at the same time without interference. Another direct detection technique uses a low duty cycle pulsed laser modulation [5,6] with the laser wavelengths alternating between on-line and off-line on successive pulses. The receiver uses time resolved detection and can also provide simultaneous target range measurement. With a lower laser duty cycle it requires a much higher peak laser power for the same average power.
Millimeter wave coherent synchrotron radiation in a compact electron storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, J.B.; Blum, E.; Heese, R.
1998-01-01
Installation of a 2,856 MHz RF system into the XLS compact electron storage ring would allow the generation of millimeter wave coherent synchrotron radiation. Operating at 150 MeV, one could produce bunches containing on the order of 2 {times} 10{sup 7} electrons with a bunch length {sigma}{sub L0} = 0.3 mm, resulting in coherent emission at wavelengths above 0.8 mm. The characteristics of the source and the emitted radiation are discussed. In the case of 100 mrad horizontal collection angle, the average power radiated in the wavelength band 1 mm {le} {lambda} {le} 2 mm is 0.3 mW for singlemore » bunch operation and 24 mW for 80 bunch operation. The peak power in a single pulse of a few picosecond duration is on the order of one watt. By reducing the momentum compaction, the bunch length could be reduced to {sigma}{sub L0} = 0.15 mm, resulting in coherent synchrotron radiation down to 500 {micro}m.« less
Self-mode-locked AlGaInP-VECSEL
NASA Astrophysics Data System (ADS)
Bek, R.; Großmann, M.; Kahle, H.; Koch, M.; Rahimi-Iman, A.; Jetter, M.; Michler, P.
2017-10-01
We report the mode-locked operation of an AlGaInP-based semiconductor disk laser without a saturable absorber. The active region containing 20 GaInP quantum wells is used in a linear cavity with a curved outcoupling mirror. The gain chip is optically pumped by a 532 nm laser, and mode-locking is achieved by carefully adjusting the pump spot size. For a pump power of 6.8 W, an average output power of up to 30 mW is reached at a laser wavelength of 666 nm. The pulsed emission is characterized using a fast oscilloscope and a spectrum analyzer, demonstrating stable single-pulse operation at a repetition rate of 3.5 GHz. Intensity autocorrelation measurements reveal a FWHM pulse duration of 22 ps with an additional coherence peak on top, indicating noise-like pulses. The frequency spectrum, as well as the Gaussian beam profile and the measured beam propagation factor below 1.1, shows no influence of higher order transverse modes contributing to the mode-locked operation.
Driving ATHLETE: Analysis of Operational Efficiency
NASA Technical Reports Server (NTRS)
Townsend, Julie; Mittman, David
2012-01-01
The All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) is a modular mobility and manipulation platform being developed to support NASA operations in a variety of missions, including exploration of planetary surfaces. The agile system consists of a symmetrical arrangement of six limbs, each with seven articulated degrees of freedom and a powered wheel. This design enables transport of bulky payloads over a wide range of terrain and is envisioned as a tool to mobilize habitats, power-generation equipment, and other supplies for long-range exploration and outpost construction. In FY2010, ATHLETE traversed more than 80 km in field environments over eight weeks of testing, demonstrating that the concept is well suited to long-range travel. Although ATHLETE is designed to travel at speeds of up to 5 kilometers per hour, the observed average traverse rate during field-testing rarely exceeded 1.5 kilometers per hour. This paper investigates sources of inefficiency in ATHLETE traverse operations and identifies targets for improvement of overall traverse rate.
Driving ATHLETE: Analysis of Operational Efficiency
NASA Technical Reports Server (NTRS)
Townsend, Julie; Mittman, David
2012-01-01
The All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) is a modular mobility and manipulation platform being developed to support NASA operations in a variety of missions, including exploration of planetary surfaces. The agile system consists of a symmetrical arrangement of six limbs, each with seven articulated degrees of freedom and a powered wheel. This design enables transport of bulky payloads over a wide range of terrain and is envisioned as a tool to mobilize habitats, power-generation equipment, and other supplies for long-range exploration and outpost construction. In 2010, ATHLETE traversed more than 80 km in field environments over eight weeks of testing, demonstrating that the concept is well suited to long-range travel. However, while ATHLETE is designed to travel at speeds of up to 5 kilometers per hour, the observed average traverse rate during field-testing rarely exceeded 1.5 kilometers per hour. This paper investigates sources of inefficiency in ATHLETE traverse operations and identifies targets for improvement of overall traverse rate.
Bierbach, Jana; Yeung, Mark; Eckner, Erich; ...
2015-05-01
Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less
High-power diode-pumped solid-state lasers for optical space communications
NASA Technical Reports Server (NTRS)
Koechner, Walter; Burnham, Ralph; Kasinski, Jeff; Bournes, Pat; Dibiase, Don; Le, Khoa; Marshall, Larry; Hays, Alan
1991-01-01
The design and performance of a large diode-pumped multi-stage Nd:YAG laser system for space and airborne applications will be described. The laser operates at a repetition rate of 40 Hz and produces an output either at 1.064 micron or 532 nm with an average power in the Q-switched mode of 30 W at the fundamental and 20 W at the second harmonic wavelength. The output beam is diffraction limited (TEM 00 mode) and can optionally also be operated in a single longitudinal mode. The output energy ranges from 1.25 Joule/pulse in the free lasing mode, 0.75 Joule in a 17 nsec Q-switched pulse, to 0.5 Joules/pulse at 532 nm. The overall electrical efficiency for the Q-switched second harmonic output is 4.
Personalized Pseudophakic Model for Refractive Assessment
Ribeiro, Filomena J.; Castanheira-Dinis, António; Dias, João M.
2012-01-01
Purpose To test a pseudophakic eye model that allows for intraocular lens power (IOL) calculation, both in normal eyes and in extreme conditions, such as post-LASIK. Methods Participants: The model’s efficacy was tested in 54 participants (104 eyes) who underwent LASIK and were assessed before and after surgery, thus allowing to test the same method in the same eye after only changing corneal topography. Modelling The Liou-Brennan eye model was used as a starting point, and biometric values were replaced by individual measurements. Detailed corneal surface data were obtained from topography (Orbscan®) and a grid of elevation values was used to define corneal surfaces in an optical ray-tracing software (Zemax®). To determine IOL power, optimization criteria based on values of the modulation transfer function (MTF) weighted according to contrast sensitivity function (CSF), were applied. Results Pre-operative refractive assessment calculated by our eye model correlated very strongly with SRK/T (r = 0.959, p<0.001) with no difference of average values (16.9±2.9 vs 17.1±2.9 D, p>0.05). Comparison of post-operative refractive assessment obtained using our eye model with the average of currently used formulas showed a strong correlation (r = 0.778, p<0.001), with no difference of average values (21.5±1.7 vs 21.8±1.6 D, p>0.05). Conclusions Results suggest that personalized pseudophakic eye models and ray-tracing allow for the use of the same methodology, regardless of previous LASIK, independent of population averages and commonly used regression correction factors, which represents a clinical advantage. PMID:23056450
Robertson, Benjamin D; Sawicki, Gregory S
2014-07-21
We present a simplified Hill-type model of the human triceps surae-Achilles tendon complex working on a gravitational-inertial load during cyclic contractions (i.e. vertical hopping). Our goal was to determine the role that neural control plays in governing muscle, or contractile element (CE), and tendon, or series elastic element (SEE), mechanics and energetics within a compliant muscle-tendon unit (MTU). We constructed a 2D parameter space consisting of many combinations of stimulation frequency and magnitude (i.e. neural control strategies). We compared the performance of each control strategy by evaluating peak force and average positive mechanical power output for the system (MTU) and its respective components (CE, SEE), force-length (F-L) and -velocity (F-V) operating point of the CE during active force production, average metabolic rate for the CE, and both MTU and CE apparent efficiency. Our results suggest that frequency of stimulation plays a primary role in governing whole-MTU mechanics. These include the phasing of both activation and peak force relative to minimum MTU length, average positive power, and apparent efficiency. Stimulation amplitude was primarily responsible for governing average metabolic rate and within MTU mechanics, including peak force generation and elastic energy storage and return in the SEE. Frequency and amplitude of stimulation both played integral roles in determining CE F-L operating point, with both higher frequency and amplitude generally corresponding to lower CE strains, reduced injury risk, and elimination of the need for passive force generation in the CE parallel elastic element (PEE). Copyright © 2014 Elsevier Ltd. All rights reserved.
SINQ layout, operation, applications and R&D to high power
NASA Astrophysics Data System (ADS)
Bauer, G. S.; Dai, Y.; Wagner, W.
2002-09-01
Since 1997, the Paul Scherrer Institut (PSI) is operating a 1 MW class research spallation neutron source, named SINQ. SINQ is driven by a cascade of three accelerators, the final stage being a 590 MeV isochronous ring cyclotron which delivers a beam current of 1.8 mA at an rf-frequency of 51 MHz. Since for neutron production this is essentially a dc-device, SINQ is a continuous neutron source and is optimized in its design for high time average neutron flux. This makes the facility similar to a research reactor in terms of utilization, but, in terms of beam power, it is, by a large margin, the most powerful spallation neutron source currently in operation world wide. As a consequence, target load levels prevail in SINQ which are beyond the realm of existing experience, demanding a careful approach to the design and operation of a high power target. While the best neutronic performance of the source is expected for a liquid lead-bismuth eutectic target, no experience with such systems exists. For this reason a staged approach has been embarked upon, starting with a heavy water cooled rod target of Zircaloy-2 and proceeding via steel clad lead rods towards the final goal of a target optimised in both, neutronic performance and service life time. Experience currently accruing with a test target containing sample rods with different materials specimens will help to select the proper structural material and make dependable life time estimates accounting for the real operating conditions that prevail in the facility. In parallel, both theoretical and experimental work is going on within the MEGAPIE (MEGAwatt Pilot Experiment) project, a joint initiative by six European research institutions and JAERI (Japan), DOE (USA) and KAERI (Korea), to design, build, operate and explore a liquid lead-bismuth spallation target for 1MW of beam power, taking advantage of the existing spallation neutron facility SINQ.
A non-ideal portal frame energy harvester controlled using a pendulum
NASA Astrophysics Data System (ADS)
Iliuk, I.; Balthazar, J. M.; Tusset, A. M.; Piqueira, J. R. C.; Rodrigues de Pontes, B.; Felix, J. L. P.; Bueno, Á. M.
2013-09-01
A model of energy harvester based on a simple portal frame structure is presented. The system is considered to be non-ideal system (NIS) due to interaction with the energy source, a DC motor with limited power supply and the system structure. The nonlinearities present in the piezoelectric material are considered in the piezoelectric coupling mathematical model. The system is a bi-stable Duffing oscillator presenting a chaotic behavior. Analyzing the average power variation, and bifurcation diagrams, the value of the control variable that optimizes power or average value that stabilizes the chaotic system in the periodic orbit is determined. The control sensitivity is determined to parametric errors in the damping and stiffness parameters of the portal frame. The proposed passive control technique uses a simple pendulum to tuned to the vibration of the structure to improve the energy harvesting. The results show that with the implementation of the control strategy it is possible to eliminate the need for active or semi active control, usually more complex. The control also provides a way to regulate the energy captured to a desired operating frequency.
Influence of source parameters on the growth of metal nanoparticles by sputter-gas-aggregation
NASA Astrophysics Data System (ADS)
Khojasteh, Malak; Kresin, Vitaly V.
2017-11-01
We describe the production of size-selected manganese nanoclusters using a magnetron sputtering/aggregation source. Since nanoparticle production is sensitive to a range of overlapping operating parameters (in particular, the sputtering discharge power, the inert gas flow rates, and the aggregation length), we focus on a detailed map of the influence of each parameter on the average nanocluster size. In this way, it is possible to identify the main contribution of each parameter to the physical processes taking place within the source. The discharge power and argon flow supply the metal vapor, and argon also plays a crucial role in the formation of condensation nuclei via three-body collisions. However, the argon flow and the discharge power have a relatively weak effect on the average nanocluster size in the exiting beam. Here the defining role is played by the source residence time, governed by the helium supply (which raises the pressure and density of the gas column inside the source, resulting in more efficient transport of nanoparticles to the exit) and by the aggregation path length.
Energy conservation through utilization of mechanical energy storage
NASA Astrophysics Data System (ADS)
Eisenhaure, D. B.; Bliamptis, T. E.; Downer, J. R.; Heinemann, P. C.
Potential benefits regarding fuel savings, necessary technology, and evaluation criteria for the development of flywheel-hybrid vehicles are examined. A case study is quoted in which adoption of flywheel-hybrid vehicles in a taxi fleet would result in an increase of 10 mpg average to 32 mpg. Two proposed systems are described, one involving direct engine power to the flywheel and the second regenerating the flywheel from braking energy through a continuously variable transmission. Fuel consumption characteristics are considered the ultimate determinant in the choice of configuration, while material properties and housing shape determine the flywheel speed range. Vehicle losses are characterized and it is expected that a flywheel at 12,000 rpm will experience less than one hp average parasitic power loss. Flywheel storage is suitable for smaller engines because larger engines dominate the power train mass. Areas considered important for further investigation include reliability of an engine run near maximum torque, noise and vibration associated with flywheel operation, start up delays, compatibility of driver controls, integration of normal with regenerative braking systems, and, most importantly, the continuously variable transmission.
High repetition rate, high energy, actively Q-switched all-in-fiber laser
NASA Astrophysics Data System (ADS)
Lecourt, J. B.; Bertrand, A.; Guillemet, S.; Hernandez, Y.; Giannone, D.
2010-05-01
We report an actively Q-switched Ytterbium-doped all-in-fibre laser delivering 10ns pulses with high repetition rate (from 100kHz to 1MHz). The laser operation has been validated at three different wavelengths (1040, 1050 and 1064nm). The laser can deliver up to 20Watts average power with an high beam quality (M2 = 1).
Passively mode-locked Raman fiber laser with 100 GHz repetition rate
NASA Astrophysics Data System (ADS)
Schröder, Jochen; Coen, Stéphane; Vanholsbeeck, Frédérique; Sylvestre, Thibaut
2006-12-01
We experimentally demonstrate the operation of a passively mode-locked Raman fiber ring laser with an ultrahigh repetition rate of 100GHz and up to 430mW of average output power. This laser constitutes a simple wavelength versatile pulsed optical source. Stable mode locking is based on dissipative four-wave mixing with a single fiber Bragg grating acting as the mode-locking element.
Characteristics of pulsed dual frequency inductively coupled plasma
NASA Astrophysics Data System (ADS)
Seo, Jin Seok; Kim, Kyoung Nam; Kim, Ki Seok; Kim, Tae Hyung; Yeom, Geun Young
2015-01-01
To control the plasma characteristics more efficiently, a dual antenna inductively coupled plasma (DF-ICP) source composed of a 12-turn inner antenna operated at 2 MHz and a 3-turn outer antenna at 13.56 MHz was pulsed. The effects of pulsing to each antenna on the change of plasma characteristics and SiO2 etch characteristics using Ar/C4F8 gas mixtures were investigated. When the duty percentage was decreased from continuous wave (CW) mode to 30% for the inner or outer ICP antenna, decrease of the average electron temperature was observed for the pulsing of each antenna. Increase of the CF2/F ratio was also observed with decreasing duty percentage of each antenna, indicating decreased dissociation of the C4F8 gas due to the decreased average electron temperature. When SiO2 etching was investigated as a function of pulse duty percentage, increase of the etch selectivity of SiO2 over amorphous carbon layer (ACL) was observed while decreasing the SiO2 etch rate. The increase of etch selectivity was related to the change of gas dissociation characteristics, as observed by the decrease of average electron temperature and consequent increase of the CF2/F ratio. The decrease of the SiO2 etch rate could be compensated for by using the rf power compensated mode, that is, by maintaining the same time-average rf power during pulsing, instead of using the conventional pulsing mode. Through use of the power compensated mode, increased etch selectivity of SiO2/ACL similar to the conventional pulsing mode could be observed without significant decrease of the SiO2 etch rate. Finally, by using the rf power compensated mode while pulsing rf powers to both antennas, the plasma uniformity over the 300 mm diameter substrate could be improved from 7% for the CW conditions to about around 3.3% with the duty percentage of 30%.
A Battery Charger and State of Charge Indicator
NASA Technical Reports Server (NTRS)
Latos, T. S.
1984-01-01
A battery charger which has a full wave rectifier in series with a transformer isolated 20 kHz dc-dc converter with high frequency switches, which are programmed to actively shape the input dc line current to be a mirror image of the ac line voltage is discussed. The power circuit operates at 2 kW peak and 1 kW average power. The BC/SCI has two major subsystems: (1) the battery charger power electronics with its controls; and (2) a microcomputer subsystem which is used to acquire battery terminal data and exercise the state of charge software programs. The state of charge definition employed is the energy remaining in the battery when extracted at a 10 kW rate divided by the energy capacity of a fully charged new battery. The battery charger circuit is an isolated boost converter operating at an internal frequency of 20 kHz. The switches selected for the battery charger are the single most important item in determining its efficiency. The combination of voltage and current requirements dictate the use of high power NPN Darlington switching transistors. The power circuit topology is a three switch design which utilizes a power FET on the center tap of the isolation transformer and the power Darlingtons on each of the two ends. An analog control system is employed to accomplish active input current waveshaping as well as the necessary regulation.
Life Cycle Assessment of Coal-fired Power Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spath, P. L.; Mann, M. K.; Kerr, D. R.
1999-09-01
Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (thismore » tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).« less
Hall Current Plasma Source Having a Center-Mounted or a Surface-Mounted Cathode
NASA Technical Reports Server (NTRS)
Martinez, Rafael A. (Inventor); Moritz, Jr., Joel A. (Inventor); Williams, John D. (Inventor); Farnell, Casey C. (Inventor)
2018-01-01
A miniature Hall current plasma source apparatus having magnetic shielding of the walls from ionized plasma, an integrated discharge channel and gas distributor, an instant-start hollow cathode mounted to the plasma source, and an externally mounted keeper, is described. The apparatus offers advantages over other Hall current plasma sources having similar power levels, including: lower mass, longer lifetime, lower part count including fewer power supplies, and the ability to be continuously adjustable to lower average power levels using pulsed operation and adjustment of the pulse duty cycle. The Hall current plasma source can provide propulsion for small spacecraft that either do not have sufficient power to accommodate a propulsion system or do not have available volume to incorporate the larger propulsion systems currently available. The present low-power Hall current plasma source can be used to provide energetic ions to assist the deposition of thin films in plasma processing applications.
Davis, Christopher C.; Beard, Brian B.; Tillman, Ahlia; Rzasa, John; Merideth, Eric; Balzano, Quirino
2018-01-01
This paper reports the results of an international intercomparison of the specific absorption rates (SARs) measured in a flat-bottomed container (flat phantom), filled with human head tissue simulant fluid, placed in the near-field of custom-built dipole antennas operating at 900 and 1800 MHz, respectively. These tests of the reliability of experimental SAR measurements have been conducted as part of a verification of the ways in which wireless phones are tested and certified for compliance with safety standards. The measurements are made using small electric-field probes scanned in the simulant fluid in the phantom to record the spatial SAR distribution. The intercomparison involved a standard flat phantom, antennas, power meters, and RF components being circulated among 15 different governmental and industrial laboratories. At the conclusion of each laboratory’s measurements, the following results were communicated to the coordinators: Spatial SAR scans at 900 and 1800 MHz and 1 and 10 g maximum spatial SAR averages for cubic volumes at 900 and 1800 MHz. The overall results, given as meanstandard deviation, are the following: at 900 MHz, 1 g average 7.850.76; 10 g average 5.160.45; at 1800 MHz, 1 g average 18.44 ± 1.65; 10 g average 10.14 ± 0.85, all measured in units of watt per kilogram, per watt of radiated power. PMID:29520117
To flap or not to flap: a discussion between a fish and a jellyfish
NASA Astrophysics Data System (ADS)
Martin, Nathan; Roh, Chris; Idrees, Suhail; Gharib, Morteza
2016-11-01
Fish and jellyfish are known to swim by flapping and by periodically contracting respectively, but which is the more effective propulsion mechanism? In an attempt to answer this question, an experimental comparison is made between simplified versions of these motions to determine which generates the greatest thrust for the least power. The flapping motion is approximated by pitching plates while periodic contractions are approximated by clapping plates. A machine is constructed to operate in either a flapping or a clapping mode between Reynolds numbers 1,880 and 11,260 based on the average plate tip velocity and span. The effect of the total sweep angle, total sweep time, plate flexibility, and duty cycle are investigated. The average thrust generated and power required per cycle are compared between the two modes when their total sweep angle and total sweep time are identical. In general, operating in the clapping mode required significantly more power to generate a similar thrust compared to the flapping mode. However, modifying the duty cycle for clapping caused the effectiveness to approach that of flapping with an unmodified duty cycle. These results suggest that flapping is the more effective propulsion mechanism within the range of Reynolds numbers tested. This work was supported by the Charyk Bio-inspired Laboratory at the California Institute of Technology, the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469, and the Summer Undergraduate Research Fellowships program.
Comparison of hecter fuel with export aviation gasoline
NASA Technical Reports Server (NTRS)
Dickinson, H C; Gage, V R; Sparrow, S W
1921-01-01
Among the fuels which will operate at compression ratios up to at least 8.0 without preignition or "pinking" is hecter fuel, whence a careful determination of its performance is of importance. For the test data presented in this report the hecter fuel used was a mixture of 30 per cent benzol and 70 per cent cyclohexane, having a low freezing point, and distilling from first drop to 90 per cent at nearly a constant temperature, about 20 degrees c. below the average distillation temperature ("mean volatility") of the x gasoline (export grade). The results of these experiments show that the power developed by hecter fuel is the same as that developed by export aviation gasoline at about 1,800 r.p.m. at all altitudes. At lower speeds differences in the power developed by the fuels become evident. Comparisons at ground level were omitted to avoid any possibility of damaging the engine by operating with open throttle on gasoline at so high a compression. The fuel consumption per unit power based on weight, not volume, averaged more than 10 per cent greater with hecter than with x gasoline. The thermal efficiency of the engine when using hecter is less than when using gasoline, particularly at higher speeds. A generalization of the difference for all altitudes and speeds being 8 per cent. A general deduction from these facts is that more hecter is exhausted unburnt. Hecter can withstand high compression pressures and temperature without preignition. (author)
A wirelessly-powered homecage with animal behavior analysis and closed-loop power control.
Yaoyao Jia; Zheyuan Wang; Canales, Daniel; Tinkler, Morgan; Chia-Chun Hsu; Madsen, Teresa E; Mirbozorgi, S Abdollah; Rainnie, Donald; Ghovanloo, Maysam
2016-08-01
This paper presents a new EnerCage-homecage system, EnerCage-HC2, for longitudinal electrophysiology data acquisition experiments on small freely moving animal subjects, such as rodents. EnerCage-HC2 is equipped with multi-coil wireless power transmission (WPT), closed-loop power control, bidirectional data communication via Bluetooth Low Energy (BLE), and Microsoft Kinect® based animal behavior tracking and analysis. The EnerCage-HC2 achieves a homogeneous power transfer efficiency (PTE) of 14% on average, with ~42 mW power delivered to the load (PDL) at a nominal height of 7 cm by the closed-loop power control mechanism. The Microsoft Kinect® behavioral analysis algorithm can not only track the animal position in real-time but also classify 5 different types of rodent behaviors: standstill, walking, grooming, rearing, and rotating. A proof-of-concept in vivo experiment was conducted on two awake freely behaving rats while successfully operating a one-channel stimulator and generating an ethogram.
Using Reanalysis Data for the Prediction of Seasonal Wind Turbine Power Losses Due to Icing
NASA Astrophysics Data System (ADS)
Burtch, D.; Mullendore, G. L.; Delene, D. J.; Storm, B.
2013-12-01
The Northern Plains region of the United States is home to a significant amount of potential wind energy. However, in winter months capturing this potential power is severely impacted by the meteorological conditions, in the form of icing. Predicting the expected loss in power production due to icing is a valuable parameter that can be used in wind turbine operations, determination of wind turbine site locations and long-term energy estimates which are used for financing purposes. Currently, losses due to icing must be estimated when developing predictions for turbine feasibility and financing studies, while icing maps, a tool commonly used in Europe, are lacking in the United States. This study uses the Modern-Era Retrospective Analysis for Research and Applications (MERRA) dataset in conjunction with turbine production data to investigate various methods of predicting seasonal losses (October-March) due to icing at two wind turbine sites located 121 km apart in North Dakota. The prediction of icing losses is based on temperature and relative humidity thresholds and is accomplished using three methods. For each of the three methods, the required atmospheric variables are determined in one of two ways: using industry-specific software to correlate anemometer data in conjunction with the MERRA dataset and using only the MERRA dataset for all variables. For each season, a percentage of the total expected generated power lost due to icing is determined and compared to observed losses from the production data. An optimization is performed in order to determine the relative humidity threshold that minimizes the difference between the predicted and observed values. Eight seasons of data are used to determine an optimal relative humidity threshold, and a further three seasons of data are used to test this threshold. Preliminary results have shown that the optimized relative humidity threshold for the northern turbine is higher than the southern turbine for all methods. For the three test seasons, the optimized thresholds tend to under-predict the icing losses. However, the threshold determined using boundary layer similarity theory most closely predicts the power losses due to icing versus the other methods. For the northern turbine, the average predicted power loss over the three seasons is 4.65 % while the observed power loss is 6.22 % (average difference of 1.57 %). For the southern turbine, the average predicted power loss and observed power loss over the same time period are 4.43 % and 6.16 %, respectively (average difference of 1.73 %). The three-year average, however, does not clearly capture the variability that exists season-to-season. On examination of each of the test seasons individually, the optimized relative humidity threshold methodology performs better than fixed power loss estimates commonly used in the wind energy industry.
Solar Power System Evaluated for the Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.
2000-01-01
The electric power system is a crucial element of any mission for the human exploration of the Martian surface. The bulk of the power generated will be delivered to crew life support systems, extravehicular activity suits, robotic vehicles, and predeployed in situ resource utilization (ISRU) equipment. In one mission scenario, before the crew departs for Mars, the ISRU plant operates for 435 days producing liquefied methane and oxygen for ascent-stage propellants and water for crew life support. About 200 days after ISRU production is completed, the crew arrives for a 500-day surface stay. In this scenario, the power system must operate for a total of 1130 days (equivalent to 1100 Martian "sols"), providing 400 MW-hr of energy to the ISRU plant and up to 18 kW of daytime user power. A photovoltaic power-generation system with regenerative fuel cell (RFC) energy storage has been under study at the NASA Glenn Research Center at Lewis Field. The conceptual power system is dominated by the 4000- m2 class photovoltaic array that is deployed orthogonally as four tent structures, each approximately 5 m on a side and 100-m long. The structures are composed of composite members deployed by an articulating mast, an inflatable boom, or rover vehicles, and are subsequently anchored to the ground. Array panels consist of thin polymer membranes with thin-film solar cells. The array is divided into eight independent electrical sections with solar cell strings operating at 600 V. Energy storage is provided by regenerative fuel cells based on hydrogen-oxygen proton exchange membrane technology. Hydrogen and oxygen reactants are stored in gaseous form at 3000 psi, and the water produced is stored at 14.7 psi. The fuel cell operating temperature is maintained by a 40-m2 deployable pumped-fluid loop radiator that uses water as the working fluid. The power management and distribution (PMAD) architecture features eight independent, regulated 600-Vdc channels. Power management and distribution power cables use various gauges of copper conductors with ethylene tetrafluoroethylene insulation. To assess power system design options and sizing, we developed a dedicated Fortran code to predict detailed power system performance and estimate system mass. This code also modeled the requisite Mars surface environments: solar insolation, Sun angles, dust storms, dust deposition, and thermal and ultraviolet radiation. Using this code, trade studies were performed to assess performance and mass sensitivities to power system design parameters (photovoltaic array geometry and orientation) and mission parameters (landing date and landing site latitude, terrain slope, and dust storm activity). Mission analysis cases were also run. Power results are shown in this graph for an analysis case with a September 1, 2012, landing date; 18.95 North latitude landing site; two seasonal dusts storms; and tent arrays. To meet user load requirements and the ISRU energy requirement, an 8-metric ton (MT) power system and 4000-m2 photovoltaic array area were required for the assumed advanced CuInS2 thin-film solar cell technology. In this figure, the top curve is the average daytime photovoltaic array power, the middle curve is average daytime user load power, and the bottom curve is nighttime power. At mission day 1, daytime user power exceeds 120 kW before falling off to 80 kW at the end of the mission. Throughout the mission, nighttime user power is set to the nighttime power requirement. In this analysis, "nighttime" is defined as the 13- to 15-hr period when array power output is below the daytime power requirement. During dust storms, power system capability falls off dramatically so that by mission day 900, a daily energy balance cannot be maintained. Under these conditions, the ISRU plant is placed in standby mode, and the regenerative fuel cell energy storage is gradually discharged to meet user loads.
High-gradient, pulsed operation of superconducting niobium cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campisi, I.E.; Farkas, Z.D.
1984-02-01
Tests performed on several Niobium TM/sub 010/ cavities at frequencies of about 2856 MHz using a high-power, pulsed method indicate that, at the end of the charging pulse, peak surface magnetic fields of up to approx. 1300 Oe, corresponding to a peak surface electric field of approx. 68 MV/m, can be reached at 4.2/sup 0/K without appreciable average losses. Further studies of the properties of superconductors under pulsed operation might shed light on fundamental properties of rf superconductivity, as well as lead to the possibility of applying the pulse method to the operation of high-gradient linear colliders. 7 references, 30more » figures, 2 tables.« less
Diffusion-cooled high-power single-mode waveguide CO2 laser for transmyocardial revascularization
NASA Astrophysics Data System (ADS)
Berishvili, I. I.; Bockeria, L. A.; Egorov, E. N.; Golubev, Vladimir S.; Galushkin, Michail G.; Kheliminsky, A. A.; Panchenko, Vladislav Y.; Roshin, A. P.; Sigaev, I. Y.; Vachromeeva, M. N.; Vasiltsov, Victor V.; Yoshina, V. I.; Zabelin, Alexandre M.; Zelenov, Evgenii V.
1999-01-01
The paper presents the results on investigations and development of multichannel waveguide CO2 laser with diffusion cooling of active medium excited by discharge of audio-frequency alternating current. The description of high-power single-mode CO2 laser with average beam power up to 1 kW is presented. The result of measurement of the laser basic parameters are offered, as well as the outcomes of performances of the laser head with long active zone, operating in waveguide mode. As an example of application of these laser, various capabilities a description of the developed medical system 'Genom' used in the transmyocardial laser revascularization (TMLR) procedure and clinical results of the possibilities of the TMLR in the surgical treatment are presented.
Highly efficient actively Q-switched Yb:LGGG laser generating 3.26 mJ of pulse energy
NASA Astrophysics Data System (ADS)
Li, Yanbin; Zhang, Jian; Zhao, Ruwei; Zhang, Baitao; He, Jingliang; Jia, Zhitai; Tao, Xutang
2018-05-01
An efficient acousto-optic Q-switched laser operation of Yb:(LuxGd1-x)3Ga5O12 (x = 0.062) (Yb:LGGG) crystal is demonstrated, producing stable pulses with repetition rate ranging from 1 to 20 kHz. Under the absorbed pump power of 8.75 W, the maximum average output power of 3.26 W is obtained at the pulse repletion rate of 1 kHz, corresponding to the slope efficiency as high as 52%. The pulse width of 14.5 ns is achieved with the pulse energy and peak power of 3.26 mJ and 225 kW, respectively. It indicates great potential of Yb:LGGG crystal for generating pulsed lasers.
Development of thermally controlled HALNA DPSSL for inertial fusion energy
NASA Astrophysics Data System (ADS)
Matsumoto, Osamu; Yasuhara, Ryo; Kurita, Takashi; Ikegawa, Tadashi; Sekine, Takashi; Kawashima, Toshiyuki; Kawanaka, Junji; Norimatsu, Takayoshi; Miyanaga, Noriaki; Izawa, Yasukazu; Nakatsuka, Masahiro; Miyamoto, Masahiro; Kan, Hirofumi; Furukawa, Hiroyuki; Motokoshi, Shinji
2006-02-01
We have been developing a high average-power laser system for science and industry applications that can generate an output of 20 J per pulse at 10-Hz operation. Water-cooled Nd:glass zig-zag slab is pumped with 803-nm AlGaAs laser-diode modules. To efficiently extract energy from the laser medium, the laser beam alternately passes through dual zig-zag slab amplifier modules. Twin LD modules equipped on each slab amplifier module pump the laser medium with a peak power density of 2.5 kW/cm2. In high power laser system, thermal load in the laser medium causes serious thermal effects. We arranged cladding glasses on the top and bottom of the laser slab to reduce thermal effects.
Wavelength dependence of l/f noise in the light output of laser diodes; An experimental study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fronen, R.J.
1990-10-01
The optical power emitted by a monomode GaAlAs laser is filtered with a monochromator. The 1/f noise in the filtered emission is found to be directly dependent on the noncoherent emission, such as S{sub p} {proportional to} P{sup m {sub nc}}. Here S{sub p} is the spectral density of the 1/f fluctuations, P{sub nc} is the average noncoherent power, m = 3/2 under spontaneous emission, and m=4 in the superradiation and laser regions. This paper reports that study of the 1/f noise in the optical power in a band centered at the laser wavelength and with variable bandwidth shows threemore » operating regions.« less
The influence of surface waves on tidal turbine performance characteristics
NASA Astrophysics Data System (ADS)
Van Benthem, M.; Luznik, L.; Flack, K.; Lust, E.
2012-12-01
Performance characteristics are presented for a 1/25th scale horizontal axis marine current turbine operating in calm conditions and in the presence of intermediate and deep water waves. The two-bladed turbine has radius of 0.4 m and a maximum blade pitch of 17°. The hydrofoil is a NACA63-618 which was selected to be Reynolds number independent in the operational range (ReC = 2 - 4 x 105). The experiments were performed in the 116 m towing tank at the United States Naval Academy at two depths 0.8D and 1.6D measured from the blade tip to the mean free surface. The performance characteristics without waves match expected results from blade-element-momentum theory. Results show that the average power coefficient is unaffected by the presence of waves, however, the phase averaged results indicate significant variation with wave phase.
The Influence of surface waves on marine current turbine performance
NASA Astrophysics Data System (ADS)
Lust, Ethan; Flack, Karen; Luznik, Luksa
2012-11-01
Performance characteristics are presented for a 1/25th scale marine current turbine operating in calm conditions and in the presence of intermediate and deep water waves. The two-bladed turbine has radius of 0.4 m and a maximum blade pitch of 17. The hydrofoil is a NACA63-618 which was selected to be Reynolds number independent in the operational range (ReC = 2 - 4 × 105) . The experiments were performed in the 116 m tow-tank at the United States Naval Academy at a depth of 0.8D measured from the blade tip to the mean free surface. The performance characteristics without waves match expected results from blade-element-momentum theory. Results show that the average power coefficient is unaffected by the presence of waves, however, the phase averaged results indicate significant variation with wave phase. Work supported by ONR.
Characteristics and Energy Use of Volume Servers in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchs, H.; Shehabi, A.; Ganeshalingam, M.
Servers’ field energy use remains poorly understood, given heterogeneous computing loads, configurable hardware and software, and operation over a wide range of management practices. This paper explores various characteristics of 1- and 2-socket volume servers that affect energy consumption, and quantifies the difference in power demand between higher-performing SPEC and ENERGY STAR servers and our best understanding of a typical server operating today. We first establish general characteristics of the U.S. installed base of volume servers from existing IDC data and the literature, before presenting information on server hardware configurations from data collection events at a major online retail website.more » We then compare cumulative distribution functions of server idle power across three separate datasets and explain the differences between them via examination of the hardware characteristics to which power draw is most sensitive. We find that idle server power demand is significantly higher than ENERGY STAR benchmarks and the industry-released energy use documented in SPEC, and that SPEC server configurations—and likely the associated power-scaling trends—are atypical of volume servers. Next, we examine recent trends in server power draw among high-performing servers across their full load range to consider how representative these trends are of all volume servers before inputting weighted average idle power load values into a recently published model of national server energy use. Finally, we present results from two surveys of IT managers (n=216) and IT vendors (n=178) that illustrate the prevalence of more-efficient equipment and operational practices in server rooms and closets; these findings highlight opportunities to improve the energy efficiency of the U.S. server stock.« less
Southwestern Power Administration Annual Report 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-12-01
Dear Secretary Chu, I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2008. In FY 2008, Southwestern delivered over 7.3 billion kilowatt-hours of energy to its wholesale customers – nearly 31% more than average due to numerous record rainfall amounts in the southwest region. These record amounts produced revenues which exceeded the average annual revenue requirement by nearly $20 million and resulted in over $200 million in economic benefits to the region. Yet even as Southwestern exceeded its goals of marketing and delivering Federal hydroelectric power to our customers,more » we stayed focused on safety, security, and reliability. For example, we maintained our nearly 1,400 miles of high-voltage transmission lines, substations, and communications sites while achieving a Recordable Accident Frequency Rate of 0.0, a record that reflects Southwestern’s safety achievement of no recordable injuries for every 200,000 hours worked. We kept our rights-of-way secure from vegetation and other obstacles, work that not only supports our mission but also promotes reliability of the regional and National grid. We exceeded all North American Electric Reliability Corporation (NERC) Control Performance Standards (CPS- 1 and CPS-2), and maintained regulation and reserve obligations and reactive reserve margins to ensure the reliability of the bulk electric system, even during extended periods of restricted hydro operations due to unusually high project inflows. Finally, we continued our partnerships with the Department of Energy, the U.S. Army Corps of Engineers, our customers, and other Federal power stakeholders, partnerships that are vital to our continued success in marketing and delivering carbon-free, renewable, and domestically produced energy to our customers and to the Nation. Sincerely, Jon Worthington Administrator« less
A New Black Carbon Sensor for Dense Air Quality Monitoring Networks
Caubel, Julien J.; Cados, Troy E.; Kirchstetter, Thomas W.
2018-01-01
Low-cost air pollution sensors are emerging and increasingly being deployed in densely distributed wireless networks that provide more spatial resolution than is typical in traditional monitoring of ambient air quality. However, a low-cost option to measure black carbon (BC)—a major component of particulate matter pollution associated with adverse human health risks—is missing. This paper presents a new BC sensor designed to fill this gap, the Aerosol Black Carbon Detector (ABCD), which incorporates a compact weatherproof enclosure, solar-powered rechargeable battery, and cellular communication to enable long-term, remote operation. This paper also demonstrates a data processing methodology that reduces the ABCD’s sensitivity to ambient temperature fluctuations, and therefore improves measurement performance in unconditioned operating environments (e.g., outdoors). A fleet of over 100 ABCDs was operated outdoors in collocation with a commercial BC instrument (Magee Scientific, Model AE33) housed inside a regulatory air quality monitoring station. The measurement performance of the 105 ABCDs is comparable to the AE33. The fleet-average precision and accuracy, expressed in terms of mean absolute percentage error, are 9.2 ± 0.8% (relative to the fleet average data) and 24.6 ± 0.9% (relative to the AE33 data), respectively (fleet-average ± 90% confidence interval). PMID:29494528
A New Black Carbon Sensor for Dense Air Quality Monitoring Networks.
Caubel, Julien J; Cados, Troy E; Kirchstetter, Thomas W
2018-03-01
Low-cost air pollution sensors are emerging and increasingly being deployed in densely distributed wireless networks that provide more spatial resolution than is typical in traditional monitoring of ambient air quality. However, a low-cost option to measure black carbon (BC)-a major component of particulate matter pollution associated with adverse human health risks-is missing. This paper presents a new BC sensor designed to fill this gap, the Aerosol Black Carbon Detector (ABCD), which incorporates a compact weatherproof enclosure, solar-powered rechargeable battery, and cellular communication to enable long-term, remote operation. This paper also demonstrates a data processing methodology that reduces the ABCD's sensitivity to ambient temperature fluctuations, and therefore improves measurement performance in unconditioned operating environments (e.g., outdoors). A fleet of over 100 ABCDs was operated outdoors in collocation with a commercial BC instrument (Magee Scientific, Model AE33) housed inside a regulatory air quality monitoring station. The measurement performance of the 105 ABCDs is comparable to the AE33. The fleet-average precision and accuracy, expressed in terms of mean absolute percentage error, are 9.2 ± 0.8% (relative to the fleet average data) and 24.6 ± 0.9% (relative to the AE33 data), respectively (fleet-average ± 90% confidence interval).
Turbulent transport measurements with a laser Doppler velocimeter
NASA Technical Reports Server (NTRS)
Edwards, R. V.; Angus, J. C.; Dunning, J. W., Jr.
1972-01-01
The power spectrum of phototube current from a laser Doppler velocimeter operating in the heterodyne mode has been computed. The spectrum is obtained in terms of the space time correlation function of the fluid. The spectral width and shape predicted by the theory are in agreement with experiment. For normal operating parameters the time average spectrum contains information only for times shorter than the Lagrangian integral time scale of the turbulence. To examine the long time behavior, one must use either extremely small scattering angles, much longer wavelength radiation or a different mode of signal analysis, e.g., FM detection.
Determination of Optimum Operating Parameters of Single-Electron Photomultiplier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukichev, A.A.; Shalyapin, A.L.; Shul'gin, B.V.
1986-06-01
This paper presents a procedure for determining the effective quantum yield and average gain of the dynode system of a photomultiplier. An objective performance figure, the extrapolated count response, is introduced. The results for FEU-142 photomultiplier studies are given. The radiation source used in the studies was a PRK-2 mercury-vapor lamp with a regulated power supply. The recorder was a pulse analyzer based on a UNO-4096-90, which was equipped with BPA-2-95, BPV-2-90, and UVTs-2-90 units. The amplifier used a KP303V transistor and a 140UD1B operational amplifier.
Towards sub-100 fs multi-GW pulses directly emitted from a Thulium-doped fiber CPA system
NASA Astrophysics Data System (ADS)
Gaida, C.; Gebhardt, M.; Stutzki, F.; Jauregui, C.; Limpert, J.; Tünnermann, A.
2017-02-01
Experimental demonstrations of Tm-doped fiber amplifiers (typically in CW- or narrow-band pulsed operation) span a wavelength range going from about 1700 nm to well beyond 2000 nm. Thus, it should be possible to obtain a bandwidth of more than 100 nm, which would enable sub-100 fs pulse duration in an efficient, linear amplification scheme. In fact, this would allow the emission of pulses with less than 20 optical cycles directly from a Tm-doped fiber system, something that seems to be extremely challenging for other dopants in a fused silica fiber. In this contribution, we summarize the current development of our Thulium-doped fiber CPA system, demonstrate preliminary experiments for further scaling and discuss important design factors for the next steps. The current single-channel laser system presented herein delivers a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. Special care has been taken to reduce the detrimental impact of water vapor absorption by placing the whole system in a dry atmosphere housing (<0.1% rel. humidity) and by using a sufficiently long wavelength (1920-1980 nm). The utilization of a low-pressure chamber in the future will allow for the extension of the amplification bandwidth. Preliminary experiments demonstrating a broader amplification bandwidth that supports almost 100 fs pulse duration and average power scaling to < 100W have already been performed. Based on these results, a Tm-doped fiber CPA with sub-100 fs pulse duration, multi-GW pulse peak power and >100 W average power can be expected in the near future.
Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier
Zhao, Zhi; Sheehy, Brian; Minty, Michiko
2017-03-29
Here, we report on the generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier. In an Yb-doped fiber master-oscillator-power-amplifier system, 2.3-ps 704 MHz pulses are first amplified in small-core fibers and then in large-mode-area rod fibers to produce 270 W average infrared power with a high polarization extinction ratio and diffraction-limited beam quality. By carrying out frequency doubling in a lithium triborate (LBO) crystal, 180 W average green power is generated. To the best of our knowledge, this is the highest average green power achieved in fiber-based laser systems.
Using Bayes Model Averaging for Wind Power Forecasts
NASA Astrophysics Data System (ADS)
Preede Revheim, Pål; Beyer, Hans Georg
2014-05-01
For operational purposes predictions of the forecasts of the lumped output of groups of wind farms spread over larger geographic areas will often be of interest. A naive approach is to make forecasts for each individual site and sum them up to get the group forecast. It is however well documented that a better choice is to use a model that also takes advantage of spatial smoothing effects. It might however be the case that some sites tends to more accurately reflect the total output of the region, either in general or for certain wind directions. It will then be of interest giving these a greater influence over the group forecast. Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles. Raftery et al. [1] show how BMA can be used for statistical post processing of forecast ensembles, producing PDFs of future weather quantities. The BMA predictive PDF of a future weather quantity is a weighted average of the ensemble members' PDFs, where the weights can be interpreted as posterior probabilities and reflect the ensemble members' contribution to overall forecasting skill over a training period. In Revheim and Beyer [2] the BMA procedure used in Sloughter, Gneiting and Raftery [3] were found to produce fairly accurate PDFs for the future mean wind speed of a group of sites from the single sites wind speeds. However, when the procedure was attempted applied to wind power it resulted in either problems with the estimation of the parameters (mainly caused by longer consecutive periods of no power production) or severe underestimation (mainly caused by problems with reflecting the power curve). In this paper the problems that arose when applying BMA to wind power forecasting is met through two strategies. First, the BMA procedure is run with a combination of single site wind speeds and single site wind power production as input. This solves the problem with longer consecutive periods where the input data does not contain information, but it has the disadvantage of nearly doubling the number of model parameters to be estimated. Second, the BMA procedure is run with group mean wind power as the response variable instead of group mean wind speed. This also solves the problem with longer consecutive periods without information in the input data, but it leaves the power curve to also be estimated from the data. [1] Raftery, A. E., et al. (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. Monthly Weather Review, 133, 1155-1174. [2]Revheim, P. P. and H. G. Beyer (2013). Using Bayesian Model Averaging for wind farm group forecasts. EWEA Wind Power Forecasting Technology Workshop,Rotterdam, 4-5 December 2013. [3]Sloughter, J. M., T. Gneiting and A. E. Raftery (2010). Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging. Journal of the American Statistical Association, Vol. 105, No. 489, 25-35
The ETA-II induction linac as a high-average-power FEL driver
NASA Astrophysics Data System (ADS)
Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.
1990-10-01
The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.
Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies
NASA Astrophysics Data System (ADS)
Schievano, Andrea; Colombo, Alessandra; Grattieri, Matteo; Trasatti, Stefano P.; Liberale, Alessandro; Tremolada, Paolo; Pino, Claudio; Cristiani, Pierangela
2017-02-01
A new type of floating microbial fuel cell (fMFC) was developed for power supply of remote environmental sensors and data transmission. Ten operating fMFCs generated a cell potential in the range 100-800 mV depending on the external resistance applied. Power production peaked around 3-3.5 mW (power density of 22-28 mW m-2 cathode) after about 20-30 days of start-up period. The average of daily electrical energy harvested ranged between 10 and 35 mWh/d. Long-term performances were ensured in the presence of dense rice plants (Oryza Sativa). A power management system, based on a step-up DC/DC converter and a low-power data transmission system via SIGFOX™ technology, have been set up for the fMFCs. The tested fMFCs systems allowed to: i) harvest produced energy, ii) supply electronic devices (intermittent LED-light and a buzzer); iii) transmit remote data at low speed (three message of 12 bites each, in 6 s). Several 'floating garden' MFCs were set in the context of demonstrative events at EXPO2015 world exposition held in Milan between May-October 2015. Some of the 'floating garden' MFCs were operating for more than one year.
An RFID tag system-on-chip with wireless ECG monitoring for intelligent healthcare systems.
Wang, Cheng-Pin; Lee, Shuenn-Yuh; Lai, Wei-Chih
2013-01-01
This paper presents a low-power wireless ECG acquisition system-on-chip (SoC), including an RF front-end circuit, a power unit, an analog front-end circuit, and a digital circuitry. The proposed RF front-end circuit can provide the amplitude shift keying demodulation and distance to digital conversion to accurately receive the data from the reader. The received data will wake up the power unit to provide the required supply voltages of analog front-end (AFE) and digital circuitry. The AFE, including a pre-amplifier, an analog filter, a post-amplifier, and an analog-to-digital converter, is used for the ECG acquisition. Moreover, the EPC Class I Gen 2 UHF standard is employed in the digital circuitry for the handshaking of communication and the control of the system. The proposed SoC has been implemented in 0.18-µm standard CMOS process and the measured results reveal the communication is compatible to the RFID protocol. The average power consumption for the operating chip is 12 µW. Using a Sony PR44 battery to the supply power (605mAh@1.4V), the RFID tag SoC operates continuously for about 50,000 hours (>5 years), which is appropriate for wireless wearable ECG monitoring systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maget, H.J.R.
1979-06-15
This program consists of a design study and component development for an experimental 50-kWp photovoltaic concentrator system to supply power to the San Ramon substation of the Pacific Gas and Electric Company. The photovoltaic system is optimized to produce peaking power to relieve the air conditioning load on the PG and E system during summer afternoons; and would therefore displace oil-fired power generation capacity. No electrical storage is required. The experiment would use GaAs concentrator cells with point-focus fresnel lenses operating at 400X, in independent tracking arrays of 440 cells each, generating 3.8 kWp. Fourteen arrays, each 9 feet bymore » 33 feet, are connected electrically in series to generate the 50 kWp. The high conversion efficiency possible with GaAs concentrator cells results in a projected annual average system efficiency (AC electric power output to sunlight input) of better than 15%. The capability of GaAs cells for high temperature operation made possible the design of a total energy option, whereby thermal power from selected arrays could be used to heat and cool the control center for the installation. System design and analysis, fabrication and installation, environmental assessment, and cost projections are described in detail. (WHK)« less
Power tiller: vibration magnitudes and intervention development for vibration reduction.
Chaturvedi, Varun; Kumar, Adarsh; Singh, J K
2012-09-01
The operators of power tiller are exposed to a high level of vibration originating from the dynamic interaction between the soil and the machine. The vibration from the power tiller is transmitted from the handle to hands, arms and shoulders. In the present study, experiments were conducted in three operational conditions i.e. transportation on farm roads, tilling with cultivator and rota-tilling with rota-vator. The highest vibration values were observed in x-direction in all the experiments. The maximum vibration rms values for x-direction were 5.96, 6.81 and 8.00 ms(-2) in tilling with cultivator, transportation and rota-tilling respectively. Three materials were used for intervention development to reduce vibration magnitude. The maximum reduction of 25.30, 31.21 and 30.45% in transportation; 23.50, 30.64 and 20.86% in tilling with cultivator and 24.03, 29.18 and 25.52% in rota-tilling were achieved with polyurethane (PU), rubber and combination of PU and rubber intervention. It was found that the maximum vibration reductions were achieved with the rubber in all three operational conditions. The average exposure time for occurrence of white finger syndrome increased by 28-50% with incorporation of intervention in different operations. Physiological and postural parameters also improved with incorporation of interventions. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
1987-11-17
the Land of the Soviets. In recent years this cooperation has been spreading to more and more domains of economy, science, technology , and culture...in a country that has technological problems in manufacturing toilet paper, not to mention the production of an average grade of automobile. There...and technology are a shambles, and yet the minister tells us to believe that it is possible to create a safely operating atomic power plant. Well
Sensitivity of a phase-sensitive optical time-domain reflectometer with a semiconductor laser source
NASA Astrophysics Data System (ADS)
Alekseev, A. E.; Tezadov, Ya A.; Potapov, V. T.
2018-06-01
In the present paper we perform, for the first time, an analysis of the average sensitivity of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source to external actions. The sensitivity of this OTDR can be defined in a conventional manner via average SNR at its output, which in turn is defined by the average useful signal power and the average intensity noise power in the OTDR spatial channels in the bandwidth defined by the OTDR sampling frequency. The average intensity noise power is considered in detail in a previous paper. In the current paper we examine the average useful signal power at the output of a phase-OTDR. The analysis of the average useful signal power of a phase-OTDR is based on the study of a fiber scattered-light interferometer (FSLI) which is treated as a constituent part of a phase- OTDR. In the analysis, one of the conventional phase-OTDR schemes with a rectangular dual-pulse probe signal is considered. The FSLI which corresponds to this OTDR scheme has two scattering fiber segments with additional time delay, introduced between backscattered fields. The average useful signal power and the resulting average SNR at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments, and by the additional time delay between the scattering fiber segments. The average useful signal power characteristic of the corresponding phase-OTDR is determined by analogous parameters: the source coherence, the time durations of the parts constituting the dual-pulse, and the time interval which separates these parts. In the paper an expression for the average useful signal power of a phase-OTDR is theoretically derived and experimentally verified. Based on the found average useful signal power of a phase-OTDR and the average intensity noise power, derived in the previous paper, the average SNR of a phase-OTDR is defined. Setting the average signal SNR to 1, at a defined spectral band the minimum detectable external action amplitude for our particular phase-OTDR setup is determined. We also derive a simple relation for the average useful signal power and the average SNR which results when making the assumption that the laser source coherence is high. The results of the paper can serve as the basis for further development of the concept of phase-OTDR sensitivity.
NASA Astrophysics Data System (ADS)
Engin, Doruk; Chuang, Ti; Litvinovitch, Slava; Storm, Mark
2017-08-01
Fibertek has developed and demonstrated an ideal high-power; low-risk; low-size, weight, and power (SWaP) 2051 nm laser design meeting the lidar requirements for satellite-based global measurement of carbon dioxide (CO2). The laser design provides a path to space for either a coherent lidar approach being developed by NASA Jet Propulsion Laboratory (JPL)1,2 or an Integrated Path Differential Lidar (IPDA) approach developed by Harris Corp using radio frequency (RF) modulation and being flown as part of a NASA Earth Venture Suborbital Mission—NASA's Atmospheric Carbon and Transport - America.3,4 The thulium (Tm) fiber laser amplifies a <500 kHz linewidth distributed feedback (DFB) laser up to 25 W average power in a polarization maintaining (PM) fiber. The design manages and suppresses all deleterious non-linear effects that can cause linewidth broadening or amplified spontaneous emission (ASE) and meets all lidar requirements. We believe the core laser components, architecture, and design margins can support a coherent or IPDA lidar 10-year space mission. With follow-on funding Fibertek can adapt an existing space-based Technology Readiness Level 6 (TRL-6), 20 W erbium fiber laser package for this Tm design and enable a near-term space mission with an electrical-to-optical (e-o) efficiency of <20%. A cladding-pumped PM Tm fiber-based amplifier optimized for high efficiency and high-power operation at 2051 nm is presented. The two-stage amplifier has been demonstrated to achieve 25 W average power and <16 dB polarization extinction ratio (PER) out of a single-mode PM fiber using a <500 kHz linewidth JPL DFB laser5-7 and 43 dB gain. The power amplifier's optical conversion efficiency is 53%. An internal efficiency of 58% is calculated after correcting for passive losses. The two-stage amplifier sustains its highly efficient operation for a temperature range of 5-40°C. The absence of stimulated Brillouin scattering (SBS) for the narrow linewidth amplification shows promise for further power scaling.
NASA Astrophysics Data System (ADS)
Cooley, Christopher G.
2017-09-01
This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.
NASA Astrophysics Data System (ADS)
Voie, Arne; Fisher, David; Ahadi, Golnaz; Hölscher, Thilo
2012-11-01
The purpose of this study was to ascertain the effects of the skull on the location, shape and power of the acoustic field produced by a 150 mm radius hemispherical array operating at 220 kHz. We wanted to determine whether phase aberrations were significant at this frequency, the amount of attenuation, and whether CT data could be predictive of the trans-skull field. The effects of five calvaria were evaluated. Acoustic field data and CT scans for each skull specimen were imported into MATLAB® for measurements and visualization in two and three dimensions. We examined the effects of skull density, porosity, thickness, and sonication incident angles, and estimated the relative contributions of longitudinal and shear transmission to the total transmitted power. Power transmission through the skulls varied between 4% and 23% (mean: 12%). The range of focal position shifts was from 0.50 mm to 4.32 mm (mean: 1.95 mm). The 3 dB dimensions of the focused ultrasound (FUS) intensity focal volume increased on average by 39% (low: 4%, high: 122%). The 6 dB pressure focal volume increased by an average of 130 ± 75%. In general, the main effects of the skulls were power reduction, field dispersion and slight shift of focal peak location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierbach, Jana; Yeung, Mark; Eckner, Erich
Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less
Seeking maximum linearity of transfer functions
NASA Astrophysics Data System (ADS)
Silva, Filipi N.; Comin, Cesar H.; Costa, Luciano da F.
2016-12-01
Linearity is an important and frequently sought property in electronics and instrumentation. Here, we report a method capable of, given a transfer function (theoretical or derived from some real system), identifying the respective most linear region of operation with a fixed width. This methodology, which is based on least squares regression and systematic consideration of all possible regions, has been illustrated with respect to both an analytical (sigmoid transfer function) and a simple situation involving experimental data of a low-power, one-stage class A transistor current amplifier. Such an approach, which has been addressed in terms of transfer functions derived from experimentally obtained characteristic surface, also yielded contributions such as the estimation of local constants of the device, as opposed to typically considered average values. The reported method and results pave the way to several further applications in other types of devices and systems, intelligent control operation, and other areas such as identifying regions of power law behavior.
NASA Astrophysics Data System (ADS)
Agliulin, S. G.; Nikolaev, S. F.; Zvegintsev, V. I.; Yurkin, I. A.; Shabanov, I. I.; Palkin, V. F.; Sergienko, S. P.; Vlasov, S. M.
2014-09-01
A new pneumoimpulsive technology, central to which is an impact effect of air jet on ash deposits, was proposed for carrying out continuous preventive cleaning of the platens installed in the steam superheater primary and secondary paths of the PK-38 boiler at the Nazarovo district power station. The pneumoimpulsive cleaning system was mounted in the PK-38 boiler unit no. 6A, and the cleaning system tests were carried out during field operation of the boiler. Owing to the use of the proposed cleaning system, long-term (for no less than 3 months of observations) slag-free operation of the platen surfaces was achieved in the range of steam loads from 215 to 235 t/h with the average load equal to 225 t/h at furnace gas temperatures upstream of the platens equal to 1220-1250°C.
Results from the Space Shuttle STS-95 Electronic Nose Experiment
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Buehler, M. G.; Homer, M. L.; Mannatt, K. S.; Lau, B.; Jackson, S.; Zhou, H.
2000-01-01
A miniature electronic nose in which the sensing media are insulating polymers loaded with carbon black as a conductive medium has been designed and built at the Jet Propulsion Laboratory. The ENose has a volume of 1700 cc, weighs 1.4 kg including the operating computer, and uses 1.5 W average power (3 W peak power). This ENose was used in a demonstration experiment aboard STS-95 (October, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the middeck. The ENose was designed to detect ten common contaminants in space shuttle crew quarters air. The experiment was controlled by collecting air samples daily and analyzing them using standard analytical techniques after the flight. Changes in humidity were detected and quantified, neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.
The impacts of storing solar energy in the home to reduce reliance on the utility
NASA Astrophysics Data System (ADS)
Fares, Robert L.; Webber, Michael E.
2017-01-01
There has been growing interest in using energy storage to capture solar energy for later use in the home to reduce reliance on the traditional utility. However, few studies have critically assessed the trade-offs associated with storing solar energy rather than sending it to the utility grid, as is typically done today. Here we show that a typical battery system could reduce peak power demand by 8-32% and reduce peak power injections by 5-42%, depending on how it operates. However, storage inefficiencies increase annual energy consumption by 324-591 kWh per household on average. Furthermore, storage operation indirectly increases emissions by 153-303 kg CO2, 0.03-0.20 kg SO2 and 0.04-0.26 kg NOx per Texas household annually. Thus, home energy storage would not automatically reduce emissions or energy consumption unless it directly enables renewable energy.
Pm-1 Reactor Core Final Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagley, R. O.; Cox, F. H.; Carnasale, A.
1962-01-01
The PM-1 water cooled and moderated core contains 741 highly enriched stainless steel cermet tubular fuel elements and 90 lumped B stainless steel burnable poison elements, and it is controlled by 6 Y-shaped europium titanate movable control rods. The core has a lifetime of 1.95 years when operated at its design power level of 9.37 mw of thermal energy. The control of the core is designed so that there is a positive shutdown margin at all times with either one rod stuck completely out or the core or with two rods stuck in the operating condition. The core power ismore » removed by 2125 gpm of pressurized water at an average temperature of 463 deg F and pressure of 1300 psia. In reactors of this type, the core is stable with a negative temperature coefficient of approximately 2.5 x 10/sup -4/ DELTA K/K/ deg F.« less
NASA Astrophysics Data System (ADS)
Sykes, Alan
1997-05-01
The world's first high-power auxiliary heating experiments in a tight aspect ratio (or spherical) tokamak have been performed on the Small Tight Aspect Ratio Tokomak (START) device [Sykes et al., Nucl. Fusion 32, 694 (1992)] at Culham Laboratory, using the 40 keV, 0.5 MW Neutral Beam Injector loaned by the Oak Ridge National Laboratory. Injection has been mainly of hydrogen into hydrogen or deuterium target plasmas, with a one-day campaign to explore D→D operation. In each case injection provides a combination of higher density operation and effective heating of both ions and electrons. The highest β values achieved to date in START are volume average βT˜11.5% and central beta βO˜50%. Already high, these values are expected to increase further with the use of higher beam power.
Chen, Qihong; Long, Rong; Quan, Shuhai
2014-01-01
This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell. PMID:24707206
Conceptual design of the cryogenic system and estimation of the recirculated power for CFETR
NASA Astrophysics Data System (ADS)
Liu, Xiaogang; Qiu, Lilong; Li, Junjun; Wang, Zhaoliang; Ren, Yong; Wang, Xianwei; Li, Guoqiang; Gao, Xiang; Bi, Yanfang
2017-01-01
The China Fusion Engineering Test Reactor (CFETR) is the next tokamak in China’s roadmap for realizing commercial fusion energy. The CFETR cryogenic system is crucial to creating and maintaining operational conditions for its superconducting magnet system and thermal shields. The preliminary conceptual design of the CFETR cryogenic system has been carried out with reference to that of ITER. It will provide an average capacity of 75 to 80 kW at 4.5 K and a peak capacity of 1300 kW at 80 K. The electric power consumption of the cryogenic system is estimated to be 24 MW, and the gross building area is about 7000 m2. The relationships among the auxiliary power consumed by the cryogenic system, the fusion power gain and the recirculated power of CFETR are discussed, with the suggestion that about 52% of the electric power produced by CFETR in phase II must be recirculated to run the fusion test reactor.
Novel fiber-MOPA-based high power blue laser
NASA Astrophysics Data System (ADS)
Engin, Doruk; Fouron, Jean-Luc; Chen, Youming; Huffman, Andromeda; Fitzpatrick, Fran; Burnham, Ralph; Gupta, Shantanu
2012-06-01
5W peak power at 911 nm is demonstrated with a pulsed Neodymium (Nd) doped fiber master oscillator power amplifier (MOPA). This result is the first reported high gain (16dB) fiber amplifier operation at 911nm. Pulse repetition frequency (PRF) and duty-cycle dependence of the all fiber system is characterized. Negligible performance degreadation is observed down to 1% duty cycle and 10 kHz PRF, where 2.5μJ of pulse energy is achieved. Continuous wave (CW) MOPA experiments achieved 55mW average power and 9dB gain with 15% optical to optical (o-o) efficiency. Excellent agreement is established between dynammic fiber MOPA simulation tool and experimental results in predicting output amplified spontaneous emission (ase) and signal pulse shapes. Using the simulation tool robust Stimulated Brillion Scattering (SBS) free operation is predicted out of a two stage all fiber system that generates over 10W's of peak power with 500 MHz line-width. An all fiber 911 nm pulsed laser source with >10W of peak power is expected to increase reliability and reduce complexity of high energy 455 nm laser system based on optical parametric amplification for udnerwater applications. The views expressed are thos of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.
Photodiodes integration on a suspended ridge structure VOA using 2-step flip-chip bonding method
NASA Astrophysics Data System (ADS)
Kim, Seon Hoon; Kim, Tae Un; Ki, Hyun Chul; Kim, Doo Gun; Kim, Hwe Jong; Lim, Jung Woon; Lee, Dong Yeol; Park, Chul Hee
2015-01-01
In this works, we have demonstrated a VOA integrated with mPDs, based on silica-on-silicon PLC and flip-chip bonding technologies. The suspended ridge structure was applied to reduce the power consumption. It achieves the attenuation of 30dB in open loop operation with the power consumption of below 30W. We have applied two-step flipchip bonding method using passive alignment to perform high density multi-chip integration on a VOA with eutectic AuSn solder bumps. The average bonding strength of the two-step flip-chip bonding method was about 90gf.
Passive mode locking of a Tm,Ho:KY(WO4)2 laser around 2 microm.
Lagatsky, A A; Fusari, F; Calvez, S; Gupta, J A; Kisel, V E; Kuleshov, N V; Brown, C T A; Dawson, M D; Sibbett, W
2009-09-01
We report the first demonstration, to our knowledge, of passive mode locking in a Tm(3+), Ho(3+)-codoped KY(WO(4))(2) laser operating in the 2000-2060 nm spectral region. An InGaAsSb-based quantum well semiconductor saturable absorber mirror is used for the initiation and stabilization of the ultrashort pulse generation. Pulses as short as 3.3 ps were generated at 2057 nm with average output powers up to 315 mW at a pulse repetition frequency of 132 MHz for 1.15 W of absorbed pump power at 802 nm from a Ti:sapphire laser.
Cavity temperature and flow characteristics in a gas-core test reactor
NASA Technical Reports Server (NTRS)
Putre, H. A.
1973-01-01
A test reactor concept for conducting basic studies on a fissioning uranium plasma and for testing various gas-core reactor concepts is analyzed. The test reactor consists of a conventional fuel-element region surrounding a 61-cm-(2-ft-) diameter cavity region which contains the plasma experiment. The fuel elements provide the neutron flux for the cavity region. The design operating conditions include 60-MW reactor power, 2.7-MW cavity power, 200-atm cavity pressure, and an average uranium plasma temperature of 15,000 K. The analytical results are given for cavity radiant heat transfer, hydrogen transpiration cooling, and uranium wire or powder injection.
Mobile phone types and SAR characteristics of the human brain.
Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth
2017-04-07
Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.
Mobile phone types and SAR characteristics of the human brain
NASA Astrophysics Data System (ADS)
Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth
2017-04-01
Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.
NASA Astrophysics Data System (ADS)
Chew, Z. J.; Zhu, M.
2015-12-01
A maximum power point tracking (MPPT) scheme by tracking the open-circuit voltage from a piezoelectric energy harvester using a differentiator is presented in this paper. The MPPT controller is implemented by using a low-power analogue differentiator and comparators without the need of a sensing circuitry and a power hungry controller. This proposed MPPT circuit is used to control a buck converter which serves as a power management module in conjunction with a full-wave bridge diode rectifier. Performance of this MPPT control scheme is verified by using the prototyped circuit to track the maximum power point of a macro-fiber composite (MFC) as the piezoelectric energy harvester. The MFC was bonded on a composite material and the whole specimen was subjected to various strain levels at frequency from 10 to 100 Hz. Experimental results showed that the implemented full analogue MPPT controller has a tracking efficiency between 81% and 98.66% independent of the load, and consumes an average power of 3.187 μW at 3 V during operation.
Advancements in high-power diode laser stacks for defense applications
NASA Astrophysics Data System (ADS)
Pandey, Rajiv; Merchen, David; Stapleton, Dean; Patterson, Steve; Kissel, Heiko; Fassbender, Wilhlem; Biesenbach, Jens
2012-06-01
This paper reports on the latest advancements in vertical high-power diode laser stacks using micro-channel coolers, which deliver the most compact footprint, power scalability and highest power/bar of any diode laser package. We present electro-optical (E-O) data on water-cooled stacks with wavelengths ranging from 7xx nm to 9xx nm and power levels of up to 5.8kW, delivered @ 200W/bar, CW mode, and a power-conversion efficiency of >60%, with both-axis collimation on a bar-to-bar pitch of 1.78mm. Also, presented is E-O data on a compact, conductively cooled, hardsoldered, stack package based on conventional CuW and AlN materials, with bar-to-bar pitch of 1.8mm, delivering average power/bar >15W operating up to 25% duty cycle, 10ms pulses @ 45C. The water-cooled stacks can be used as pump-sources for diode-pumped alkali lasers (DPALs) or for more traditional diode-pumped solid-state lasers (DPSSL). which are power/brightness scaled for directed energy weapons applications and the conductively-cooled stacks as illuminators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lu; Hejazi, Mohamad; Li, Hongyi
This study explores the interactions between climate and thermoelectric generation in the U.S. by coupling an Earth System Model with a thermoelectric power generation model. We validated model simulations of power production for selected power plants (~44% of existing thermoelectric capacity) against reported values. In addition, we projected future usable capacity for existing power plants under two different climate change scenarios. Results indicate that climate change alone may reduce average thermoelectric generating capacity by 2%-3% by the 2060s. Reductions up to 12% are expected if environmental requirements are enforced without waivers for thermal variation. This study concludes that the impactmore » of climate change on the U.S. thermoelectric power system is less than previous estimates due to an inclusion of a spatially-disaggregated representation of environmental regulations and provisional variances that temporarily relieve power plants from permit requirements. This work highlights the significance of accounting for legal constructs in which the operation of power plants are managed, and underscores the effects of provisional variances in addition to environmental requirements.« less
NASA Astrophysics Data System (ADS)
Obara, Shin'ya
A micro-grid with the capacity for sustainable energy is expected to be a distributed energy system that exhibits quite a small environmental impact. In an independent micro-grid, “green energy,” which is typically thought of as unstable, can be utilized effectively by introducing a battery. In the past study, the production-of-electricity prediction algorithm (PAS) of the solar cell was developed. In PAS, a layered neural network is made to learn based on past weather data and the operation plan of the compound system of a solar cell and other energy systems was examined using this prediction algorithm. In this paper, a dynamic operational scheduling algorithm is developed using a neural network (PAS) and a genetic algorithm (GA) to provide predictions for solar cell power output. We also do a case study analysis in which we use this algorithm to plan the operation of a system that connects nine houses in Sapporo to a micro-grid composed of power equipment and a polycrystalline silicon solar cell. In this work, the relationship between the accuracy of output prediction of the solar cell and the operation plan of the micro-grid was clarified. Moreover, we found that operating the micro-grid according to the plan derived with PAS was far superior, in terms of equipment hours of operation, to that using past average weather data.
Energy Storage Applications in Power Systems with Renewable Energy Generation
NASA Astrophysics Data System (ADS)
Ghofrani, Mahmoud
In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to demonstrate our operational-planning framework and economic justification for different storage applications. A new reliability model is proposed for security and adequacy assessment of power networks containing renewable resources and energy storage systems. The proposed model is used in combination with the operational-planning framework to enhance the reliability and operability of wind integration. The proposed framework optimally utilizes the storage capacity for reliability applications of wind integration. This is essential for justification of storage deployment within regulated utilities where the absence of market opportunities limits the economic advantage of storage technologies over gas-fired generators. A control strategy is also proposed to achieve the maximum reliability using energy storage systems. A cost-benefit analysis compares storage technologies and conventional alternatives to reliably and efficiently integrate different wind penetrations and determines the most economical design. Our simulation results demonstrate the necessity of optimal storage placement for different wind applications. This dissertation also proposes a new stochastic framework to optimally charge and discharge electric vehicles (EVs) to mitigate the effects of wind power uncertainties. Vehicle-to-grid (V2G) service for hedging against wind power imbalances is introduced as a novel application for EVs. This application enhances the predictability of wind power and reduces the power imbalances between the scheduled output and actual power. An Auto Regressive Moving Average (ARMA) wind speed model is developed to forecast the wind power output. Driving patterns of EVs are stochastically modeled and the EVs are clustered in the fleets of similar daily driving patterns. Monte Carlo Simulation (MCS) simulates the system behavior by generating samples of system states using the wind ARMA model and EVs driving patterns. A Genetic Algorithm (GA) is used in combination with MCS to optimally coordinate the EV fleets for their V2G services and minimize the penalty cost associated with wind power imbalances. The economic characteristics of automotive battery technologies and costs of V2G service are incorporated into a cost-benefit analysis which evaluates the economic justification of the proposed V2G application. Simulation results demonstrate that the developed algorithm enhances wind power utilization and reduces the penalty cost for wind power under-/over-production. This offers potential revenues for the wind producer. Our cost-benefit analysis also demonstrates that the proposed algorithm will provide the EV owners with economic incentives to participate in V2G services. The proposed smart scheduling strategy develops a sustainable integrated electricity and transportation infrastructure.
Transparent and flexible, nanostructured and mediatorless glucose/oxygen enzymatic fuel cells
NASA Astrophysics Data System (ADS)
Pankratov, Dmitry; Sundberg, Richard; Sotres, Javier; Maximov, Ivan; Graczyk, Mariusz; Suyatin, Dmitry B.; González-Arribas, Elena; Lipkin, Aleksey; Montelius, Lars; Shleev, Sergey
2015-10-01
Here we detail transparent, flexible, nanostructured, membrane-less and mediator-free glucose/oxygen enzymatic fuel cells, which can be reproducibly fabricated with industrial scale throughput. The electrodes were built on a biocompatible flexible polymer, while nanoimprint lithography was used for their nanostructuring. The electrodes were covered with gold, their surfaces were visualised using scanning electron and atomic force microscopies, and they were also studied spectrophotometrically and electrochemically. The enzymatic fuel cells were fabricated following our previous reports on membrane-less and mediator-free biodevices in which cellobiose dehydrogenase and bilirubin oxidase were used as anodic and cathodic biocatalysts, respectively. The following average characteristics of transparent and flexible biodevices operating in glucose and chloride containing neutral buffers were registered: 0.63 V open-circuit voltage, and 0.6 μW cm-2 maximal power density at a cell voltage of 0.35 V. A transparent and flexible enzymatic fuel cell could still deliver at least 0.5 μW cm-2 after 12 h of continuous operation. Thus, such biodevices can potentially be used as self-powered biosensors or electric power sources for smart electronic contact lenses.
HISCAT: A proposed new scatter facility in Northern Scandinavia
NASA Technical Reports Server (NTRS)
Bostrom, R.; Thide, B.
1986-01-01
It is proposed that a new versatile ionospheric and atmospheric scatter radar be constructed in northern Scandavia through a multinational collaborative effort. The new facility tentatively named HISCAT (High frequency, High power, High latitude, Heating and Ionospheric Scatter facility), should be used for scientific investigations of: the physics of the neutral (middle) atmosphere; fundamental plasma phenomena, natural or artificially induced in the ionosphere; electrodynamic conditions at high altitudes above the auroral region and in the polar cap ionosphere; plasma waves in the solar atmosphere. The system should thus be able to operate as a mesosphere-stratosphere-troposphere (MST) radar, a so-called ionospheric modification facility, incoherent-scatter radar, coherent-scatter radar, and solar radar. Basically, the new facility should be a device that can operate simultaneously on several frequencies in the frequency range 5 to 50 MHz not covered by other instruments. It should comprise: powerful transmitters, capable of delivering a total average power of several megawatts; an advanced phased antenna array of high gain forming one or two steerable and well collimated beams; and an advanced data collection and analysis system.
NASA Astrophysics Data System (ADS)
Hwang, Eunju; Kim, Kyung Jae; Choi, Bong Dae
In IEEE 802.16e, power saving is one of the important issues for battery-powered mobile stations (MSs). We present a performance analysis of power saving class (PSC) of type I in IEEE 802.16e standard for voice over Internet protocol (VoIP) service with silence suppression in two-way communication. On-off pattern of a voice user in two-way communication is characterized by the modified Brady model, which includes short silence gaps less than 200ms and talkspurt periods shorter than 15ms, and so differs from the Brady model. Our analysis of PSC I follows the standard-based procedure for the deactivation of the sleep mode, where a uplink packet arrival during a mutual silence period wakes up the MS immediately while a downlink packet arrival waits to be served until the next listening window. We derive the delay distribution of the first downlink packet arriving during a mutual silence period, and find the dropping probability of downlink packets since a voice packet drops if it is not transmitted within maximum delay constraint. In addition, we calculate the average power consumption under the modified Brady model. Analysis and simulation results show that the sleep mode operation for the MS with VoIP service yields 32 ∼ 39% reduction in the power consumption of the MS. Finally we obtain the optimal initial/final-sleep windows that yield the minimum average power consumption while satisfying QoS constraints on the packet dropping probability and the maximum delay.
Design, operation and performance of a ground coupled heat pump system in a cold climate
NASA Astrophysics Data System (ADS)
Metz, P. D.
An antifreeze filled serpentine earth coil was designed to just meet heating needs of a small, well insulated house with an average brine temperature never less than 7 C (20 F). The 155 m (507 ft) long, 1.2 m (4 ft) coil made from nominal size 1-1/2 in medium density polyethylene pipe was installed by a local plumbing contractor using two different chain driven trenchers. A commercially available water to air heat pump was used with minor modifications. System performance was monitored using kilowat hour meters, a Btu meter, and a datalogger microcomputer data acquisition system. The house temperature was kept between 21 and 23 C (70 and 74 F) all winter despite outdoor temperature as low as 24 C (-11 F). During a period when the outdoor temperature averaged -2 C (28 F), the system extracted approximately 10.2 x 10 to the 9th power 3 (9.7 x 10 to the 6th power Btu) from the ground with an almost constant heat pump COP (coefficient of performance) averaging about 2.3 and a system COP of 2.2. No resistance heating was used.
Efficient Array Design for Sonotherapy
Stephens, Douglas N.; Kruse, Dustin E.; Ergun, Arif S.; Barnes, Stephen; Ming Lu, X.; Ferrara, Katherine
2008-01-01
New linear multi-row, multi-frequency arrays have been designed, constructed and tested as fully operational ultrasound probes to produce confocal imaging and therapeutic acoustic intensities with a standard commercial ultrasound imaging system. The triple-array probes and imaging system produce high quality B-mode images with a center row imaging array at 5.3 MHz, and sufficient acoustic power with dual therapeutic arrays to produce mild hyperthermia at 1.54 MHz. The therapeutic array pair in the first probe design (termed G3) utilizes a high bandwidth and peak pressure, suitable for mechanical therapies. The second multi-array design (termed G4) has a redesigned therapeutic array pair which is optimized for high time-averaged power output suitable for mild hyperthermia applications. The “thermal therapy” design produces more than 4 Watts of acoustic power from the low frequency arrays with only a 10.5 °C internal rise in temperature after 100 seconds of continuous use with an unmodified conventional imaging system, or substantially longer operation at lower acoustic power. The low frequency arrays in both probe designs were examined and contrasted for real power transfer efficiency with a KLM model which includes all lossy contributions in the power delivery path from system transmitters to tissue load. Laboratory verification was successfully performed for the KLM derived estimates of transducer parallel model acoustic resistance and dissipation resistance, which are the critical design factors for acoustic power output and undesired internal heating respectively. PMID:18591737
Battery charger and state of charge indicator. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latos, T.S.
1984-04-15
The battery charger has a full-wave rectifier in series with a transformer isolated 20 kHz dc-dc converter with high frequency switches which are programmed to actively shape the input ac line current to be a mirror image of the ac line voltage. The power circuit is capable of operating at 2 kW peak and 1 kW average power. The BC/SCI has two major subsystems: (1) the battery charger power electronics with its controls; and (2) a microcomputer subsystem which is used to acquire battery terminal data and exercise the state-of-charge software programs. The state-of-charge definition employed is the energy remainingmore » in the battery when extracted at a 10 kW rate divided by the energy capacity of a fully charged new battery. The battery charger circuit is an isolated boost converter operating at an internal frequency of 20 kHz. The switches selected for the battery charger are the single most important item in determining its efficiency. The combination of voltage and current requirements dictated the use of high power NPN Darlington switching transistors. The power circuit topology developed is a three switch design utilizing a power FET on the center tap of the isolation transformer and the power Darlingtons on each of the two ends. An analog control system is employed to accomplish active input current waveshaping as well as the necessary regulation.« less
Nickel-hydrogen battery integration study for the Multimission Modular Spacecraft
NASA Technical Reports Server (NTRS)
Mueller, V. C.
1980-01-01
A study has been performed to determine the feasibility of using nickel-hydrogen batteries as replacements for the nickel-cadmium batteries currently used for energy storage in the Multimission Modular Spacecraft under a contract with NASA Goddard Space Flight Center. The battery configuration was selected such that it meets volumetric and mounting constraints of the existing battery location, interfaces electrically with existing power conditioning and distribution equipment, and maintains acceptable cell operating temperatures. The battery contains 21, 50 ampere-hour cells in a cast aluminum structural frame. Cells used in the battery design are those developed under the Air Force's Aero Propulsion Laboratory funding and direction. Modifications of the thermal control system were necessary to increase the average output power capability of the Modular Power Subsystem.
NASA Astrophysics Data System (ADS)
Ruopp, A.; Ruprecht, A.; Riedelbauch, S.; Arnaud, G.; Hamad, I.
2014-03-01
The development of a hydro-kinetic prototype was shown including the compound structure, guide vanes, runner blades and a draft tube section with a steeply sloping, short spoiler. The design process of the hydrodynamic layout was split into three major steps. First the compound and the draft tube section was designed and the best operating point was identified using porous media as replacement for the guide vane and runner section (step one). The best operating point and the volume flux as well as the pressure drop was identified and used for the design of the guide vane section and the runner section. Both were designed and simulated independently (step two). In step three, all parts were merged in stationary simulation runs detecting peak power and operational bandwidth. In addition, the full scale demonstrator was installed in August 2010 and measured in the St. Lawrence River in Quebec supporting the average inflow velocity using ADCP (Acoustic Doppler Current Profiler) and the generator power output over the variable rotational speed. Simulation data and measurements are in good agreement. Thus, the presented approach is a suitable way in designing a hydro kinetic turbine.
Commissioning of a kW-class nanosecond pulsed DPSSL operating at 105 J, 10 Hz
NASA Astrophysics Data System (ADS)
Mason, Paul; Divoký, Martin; Butcher, Thomas; Pilař, Jan; Ertel, Klaus; Hanuš, Martin; De Vido, Mariastefania; Banerjee, Saumyabrata; Phillips, Jonathan; Smith, Jodie; Hollingham, Ian; Muresan, Mihai-George; Landowski, Brian; Suarez-Merchan, Jorge; Thomas, Adrian; Dominey, Mark; Benson, Luke; Lintern, Andrew; Costello, Billy; Tomlinson, Stephanie; Blake, Steve; Tyldesley, Mike; Lucianetti, Antonio; Hernandez-Gomez, Cristina; Edwards, Chris; Mocek, Tomas; Collier, John
2017-05-01
In this paper we present details of the commissioning of DiPOLE100, a kW-class nanosecond pulsed diode pumped solid state laser (DPSSL), at the HiLASE Centre at Dolní Břežany in the Czech Republic. The laser system, built at the Central Laser Facility (CLF), was dismantled, packaged, shipped and reassembled at HiLASE over a 12 month period by a collaborative team from the CLF and HiLASE. First operation of the laser at the end of 2016 demonstrated amplification of 10 ns pulses at 10 Hz pulse repetition rate to an energy of 105 J at 1029.5 nm, representing the world's first kW average power, high-energy, nanosecond pulsed DPSSL. To date DiPOLE100 has been operated for over 2.5 hours at energies in excess of 100 J at 10 Hz, corresponding to nearly 105 shots, and has demonstrated long term energy stability of less than 1% RMS for continuous operation over 1 hour. This confirms the power scalability of multislab cryogenic gas-cooled amplifier technology and demonstrates its potential as a laser driver for next generation scientific, industrial, and medical applications.
VCSELs in short-pulse operation for time-of-flight applications
NASA Astrophysics Data System (ADS)
Moench, Holger; Gronenborn, Stephan; Gu, Xi; Gudde, Ralph; Herper, Markus; Kolb, Johanna; Miller, Michael; Smeets, Michael; Weigl, Alexander
2018-02-01
VCSEL arrays are the ideal light source for 3D imaging applications. The narrow emission spectrum and the ability for short pulses make them superior to LEDs. Combined with fast photodiodes or special camera chips spatial information can be obtained which is needed in diverse applications like camera autofocus, indoor navigation, 3D-object recognition, augmented reality or autonomously driving vehicles. Pulse operation at the ns scale and at low duty cycle can work with significantly higher current than traditionally used for VCSELs in continuous wave operation. With reduced thermal limitations at low average heat dissipation very high currents become feasible and tens of Watts output power have been realized with small VCSEL chips. The optical emission pattern of VCSELs can be tailored to the desired field of view using beam shaping elements. Such optical elements also enable laser safe class 1 products. A detailed analysis of the complete system and the operation mode is required to calculate the maximum permitted power for a safe system. The good VCSEL properties like robustness, stability over temperature and the potential for integrated solutions open a huge potential for VCSELs in new mass applications in the consumer and automotive markets.
Thermoelectric integrated membrane evaporation water recovery technology
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.
1982-01-01
The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.
Impacts of Variable Renewable Energy on Bulk Power System Assets, Pricing, and Costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan H.; Mills, Andrew; Seel, Joachim
We synthesize available literature, data, and analysis on the degree to which growth in variable renewable energy (VRE) has impacted to date or might in the future impact bulk power system assets, pricing, and costs. We do not analyze impacts on specific power plants, instead focusing on national and regional system-level trends. The issues addressed are highly context dependent—affected by the underlying generation mix of the system, the amount of wind and solar penetration, and the design and structure of the bulk power system in each region. Moreover, analyzing the impacts of VRE on the bulk power system is amore » complex area of research and there is much more to be done to increase understanding of how VRE impacts the dynamics of current and future electricity markets. While more analysis is warranted, including additional location-specific assessments, several high-level findings emerge from this synthesis: -VRE Is Already Impacting the Bulk Power Market -VRE Impacts on Average Wholesale Prices Have Been Modest -VRE Impacts on Power Plant Retirements Have So Far Been Limited -VRE Impacts on the Bulk Power Market will Grow with Penetration -The ’System Value’ of VRE will Decline with Penetration -Power System Flexibility Can Reduce the Rate of VRE Value Decline All generation types are unique in some respect—bringing benefits and challenges to the power system—and wholesale markets, industry investments, and operational procedures have evolved over time to manage the characteristics of a changing generation fleet. With increased VRE penetrations, power system planners, operators, regulators, and policymakers will continue to be challenged to develop methods to smoothly and cost-effectively manage the reliable integration of these new and growing sources of electricity supply.« less
MW peak power Er/Yb-doped fiber femtosecond laser amplifier at 1.5 µm center wavelength
NASA Astrophysics Data System (ADS)
Han, Seongheum; Jang, Heesuk; Kim, Seungman; Kim, Young-Jin; Kim, Seung-Woo
2017-08-01
An erbium (Er)/ytterbium (Yb) co-doped double-clad fiber is configured to amplify single-mode pulses with a high average power of 10 W at a 1.5 µm center wavelength. The pulse duration at the exit of the Er/Yb fiber amplifier is measured to be ~440 fs after grating-based compression. The whole single-mode operation of the amplifier system permits the M 2-value of the output beam quality to be evaluated better than 1.05. By tuning the repetition rate from 100 MHz down to 600 kHz, the pulse peak power is scaled up to 19.1 MW to be the highest ever reported using an Er/Yb single-mode fiber. The proposed amplifier system is well suited for strong-power applications such as free-space LIDAR, non-thermal machining and medical surgery.
Dual-wavelength tunable fibre laser with a 15-dBm peak power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latif, A A; Awang, N A; Zulkifli, M Z
2011-08-31
A high-power dual-wavelength tunable fibre laser (HP-DWTFL) operating in the C-band at wavelengths from 1536.7 nm to 1548.6 nm is proposed and demonstrated. The HP-DWTFL utilises an arrayed waveguide grating (AWG) (1 x 16 channels) and is capable of generating eight different dual-wavelength pairs with eight possible wavelength spacings ranging from 0.8 nm (the narrowest spacing) to 12.0 nm (the widest spacing). The average output power and side mode suppression ratio (SMSR) of the HP-DWTFL are measured to be 15 dBm and 52.55 dB, respectively. The proposed HP-DWTFL is highly stable with no variations in the chosen output wavelengths andmore » has minimal changes in the output power. Such a laser has good potential for use in measurements, communications, spectroscopy and terahertz applications. (control of radiation parameters)« less
Evaluation of Signal Regeneration Impact on the Power Efficiency of Long-Haul DWDM Systems
NASA Astrophysics Data System (ADS)
Pavlovs, D.; Bobrovs, V.; Parfjonovs, M.; Alsevska, A.; Ivanovs, G.
2017-10-01
Due to potential economic benefits and expected environmental impact, the power consumption issue in wired networks has become a major challenge. Furthermore, continuously increasing global Internet traffic demands high spectral efficiency values. As a result, the relationship between spectral efficiency and energy consumption of telecommunication networks has become a popular topic of academic research over the past years, where a critical parameter is power efficiency. The present research contains calculation results that can be used by optical network designers and operators as guidance for developing more power efficient communication networks if the planned system falls within the scope of this paper. The research results are presented as average aggregated traffic curves that provide more flexible data for the systems with different spectrum availability. Further investigations could be needed in order to evaluate the parameters under consideration taking into account particular spectral parameters, e.g., the entire C-band.
NASA Astrophysics Data System (ADS)
1982-03-01
Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.
Global Precipitation Measurement (GPM) Spacecraft Lithium Ion Battery Micro-Cycling Investigation
NASA Technical Reports Server (NTRS)
Dakermanji, George; Lee, Leonine; Spitzer, Thomas
2016-01-01
The Global Precipitation Measurement (GPM) spacecraft was jointly developed by NASA and JAXA. It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The power system is a Direct Energy Transfer (DET) system designed to support 1950 watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s by 84p batteries operated in parallel as a single battery. During instrument integration with the spacecraft, large current transients were observed in the battery. Investigation into the matter traced the cause to the Dual-Frequency Precipitation Radar (DPR) phased array radar which generates cyclical high rate current transients on the spacecraft power bus. The power system electronics interaction with these transients resulted in the current transients in the battery. An accelerated test program was developed to bound the effect, and to assess the impact to the mission.
High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System
NASA Astrophysics Data System (ADS)
El-Genk, Mohamed S.; Tournier, Jean-Michel
2006-01-01
A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at ~ 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By contrast, the shortest water heat pipes in the forward segments operate much cooler (427 K and 0.52 MPa), and reject a much lower power of 45 W each. The radiator with six fixed and 12 rear deployable segments rejects a total of 324 kWth, weights 994 kg and has an average specific power of 326 Wth/kg and a specific mass of 5.88 kg/m2.
Fish Passage Center; Columbia Basin Fish and Wildlife Authority, 2000 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Michele
2001-06-01
The year 2000 hydrosystem operations illustrated two main points: (1) that the NMFS Biological Opinion on the operations of the Federal Columbia River Power System (FCRPS) fish migration measures could not be met in a slightly below average water year, and; (2) the impacts and relationships of energy deregulation and volatile wholesale energy prices on the ability of the FCRPS to provide the Biological Opinion fish migration measures. In 2000, a slightly below average water year, the flow targets were not met and, when energy ''emergencies'' were declared, salmon protection measures were reduced. The 2000 migration year was a belowmore » average runoff volume year with an actual run off volume of 61.1 MAF or 96% of average. This year illustrated the ability of the hydro system to meet the migration protection measures established by the NMFS Biological Opinion. The winter operation of storage reservoirs was based upon inaccurate runoff volume forecasts which predicted a January-July runoff volume forecast at The Dalles of 102 to 105% of average, from January through June. Reservoir flood control drafts during the winter months occurred according to these forecasts. This caused an over-draft of reservoirs that resulted in less volume of water available for fish flow augmentation in the spring and the summer. The season Biological Opinion flow targets for spring and summer migrants at Lower Granite and McNary dams were not met. Several power emergencies were declared by BPA in the summer of 2000. The first in June was caused by loss of resources (WNP2 went off-line). The second and third emergencies were declared in August as a result of power emergencies in California and in the Northwest. The unanticipated effects of energy deregulation, power market volatility and rising wholesale electricity prices, and Californian energy deregulation reduced the ability of the FCRPS to implement fish protection measures. A Spill Plan Agreement was implemented in the FCRPS. Under this plan, spill hours were increased at Lower Monumental Dam. Spill volume at The Dalles was reduced and daytime spill tests were conducted at John Day and Bonneville Dams. Although provided for fish, most spill that occurred in 2000 was either in excess of project hydraulic capacity or excess generation. This effectively reduced the actual cost of the spill program. For the most part, spill in 2000 was managed to the waiver limits for total dissolved gas levels and the NMFS action criteria for dissolved gas signs were not exceeded. Hatchery spring chinook returns comprised an estimated 81.4% of the total spring chinook adult return to Lower Granite Dam. Smolt travel time and survival were similar to past years for most Smolt Monitoring Program groups. The notable exceptions were Snake River hatchery steelhead groups and mid-Columbia hatchery sub-yearling groups from Wells and Ringold hatcheries, which had significantly lower survival than previous years. Yearling chinook travel time showed variation from past years, reflecting the atypical flow shape in 2000 which had high flows in April, declining through May.« less
Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability
NASA Astrophysics Data System (ADS)
Parali, Ufuk; Sheng, Xin; Minassian, Ara; Tawy, Goronwy; Sathian, Juna; Thomas, Gabrielle M.; Damzen, Michael J.
2018-03-01
We report the first experimental demonstration of a wavelength tunable passively Q-switched red-diode-end pumped Alexandrite laser using a semiconductor saturable absorber mirror (SESAM). We present the results of the study of passive SESAM Q-switching and wavelength-tuning in continuous diode-pumped Alexandrite lasers in both linear cavity and X-cavity configurations. In the linear cavity configuration, pulsed operation up to 27 kHz repetition rate in fundamental TEM00 mode was achieved and maximum average power was 41 mW. The shortest pulse generated was 550 ns (FWHM) and the Q-switched wavelength tuning band spanned was between 740 nm and 755 nm. In the X-cavity configuration, a higher average power up to 73 mW, and obtained with higher pulse energy 6 . 5 μJ at 11.2 kHz repetition rate, in fundamental TEM00 mode with excellent spatial quality M2 < 1 . 1. The Q-switched wavelength tuning band spanned was between 775 nm and 781 nm.
In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery
NASA Astrophysics Data System (ADS)
Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall
2016-01-01
This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a ;Geothermic Fuel Cell; (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.
MinT: Middleware for Cooperative Interaction of Things
Jeon, Soobin; Jung, Inbum
2017-01-01
This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices. PMID:28632182
MinT: Middleware for Cooperative Interaction of Things.
Jeon, Soobin; Jung, Inbum
2017-06-20
This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices.
NASA Astrophysics Data System (ADS)
Veselov, F. V.; Erokhina, I. V.; Makarova, A. S.; Khorshev, A. A.
2017-03-01
The article deals with issues of technical and economic substantiation of priorities and scopes of modernizing the existing thermal power plants (TPPs) in Russia to work out long-term forecasts of the development of the industry. The current situation in the TPP modernization trends is analyzed. The updated initial figures of the capital and operation costs are presented and the obtained estimates of the comparative efficiency of various investment decisions on modernization and equipment replacement at gas-and-oil-burning and coal-fired TPPs with regard to the main zones of the national Unified Power System (UPS) of Russia are cited. The results of optimization of the generating capacity structure underlie a study of alternative TPP modernization strategies that differ in the scope of switching to new technologies, capital intensity, and energy efficiency (decrease in the average heat rate). To provide an integral economic assessment of the above strategies, the authors modified the traditional approach based on determination of the overall discounted costs of power supply (least-cost planning) supplemented with a comparison by the weighted average wholesale price of the electricity. A method for prediction of the wholesale price is proposed reasoning from the direct and dual solutions of the optimization problem. The method can be adapted to various combinations of the mechanisms of payment for the electricity and the capacity on the basis of marginal and average costs. Energy and economic analysis showed that the opposite effects of reduction in the capital investment and fuel saving change in a nonlinear way as the scope of the switch to more advanced power generation technologies at the TPPs increases. As a consequence, a strategy for modernization of the existing power plants rational with respect to total costs of the power supply and wholesale electricity prices has been formulated. The strategy combines decisions on upgrade and replacement of the equipment at the existing power plants of various types. The basic parameters of the strategy for the future until 2035 are provided.
High repetition-rate Q-switched and intracavity doubled diode-pumped Nd:YAG laser
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Lesh, James R.
1992-01-01
A Nd:YAG laser was end pumped with 2.2 W of continuous-wave (CW) diode laser output. Efficient operation of the laser at high repetition rates was emphasized. This laser provides 890 mW of TEM00 CW output at 1064 nm, and 340 mW of 532 nm average power at a Q-switched repetition rate of 25 kHz. Experimental data are compared with analysis.
The Bush Doctrine: Power Concepts, Preemption and the Global War on Terror
2004-03-19
17013 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour...including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports , 1215 Jefferson...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE
A magnesium–sodium hybrid battery with high operating voltage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Hui; Li, Yifei; Liang, Yanliang
2016-06-10
We report a high performance magnesium-sodium hybrid battery utilizing a magnesium-sodium dual-salt electrolyte, a magnesium anode, and a Berlin green cathode. The cell delivers an average discharge voltage of 2.2 V and a reversible capacity of 143 mAh g -1. We also demonstrate the cell with an energy density of 135 Wh kg -1 and a high power density of up to 1.67 kW kg -1.
NASA Technical Reports Server (NTRS)
Ramins, P.
1984-01-01
Computer designed axisymmetric 2.4-cm-diameter three-, four-, and five-stage depressed collectors were evaluated in conjunction with an octave bandwidth, high-perveance, and high-electronic-efficiency, griddled-gun traveling wave tube (TWT). Spent-beam refocusing was used to condition the beam for optimum entry into the depressed collectors. Both the TWT and multistage depressed collector (MDC) efficiencies were measured, as well as the MDC current, dissipated thermal power, and DC input power distributions, for the TWT operating both at saturation over its bandwidth and over its full dynamic range. Relatively high collector efficiencies were obtained, leading to a very substantial improvement in the overall TWT efficiency. In spite of large fixed TWT body losses (due largely to the 6 to 8 percent beam interception), average overall efficiencies of 45 to 47 percent (for three to five collector stages) were obtained at saturation across the 2.5-, to 5.5-GHz operating band. For operation below saturation the collector efficiencies improved steadily, leading to reasonable ( 20 percent) overall efficiencies as far as 6 dB below saturation.
Power System Simulation for Policymaking and Making Policymakers
NASA Astrophysics Data System (ADS)
Cohen, Michael Ari
Power system simulation is a vital tool for anticipating, planning for and ultimately addressing future conditions on the power grid, especially in light of contemporary shifts in power generation, transmission and use that are being driven by a desire to utilize more environmentally responsible energy sources. This dissertation leverages power system simulation and engineering-economic analysis to provide initial answers to one open question about future power systems: how will high penetrations of distributed (rooftop) solar power affect the physical and economic operation of distribution feeders? We find that the overall impacts of distributed solar power (both positive and negative) on the feeders we modeled are minor compared to the overall cost of energy, but that there is on average a small net benefit provided by distributed generation. We then describe an effort to make similar analyses more accessible to a non-engineering (high school) audience by developing an educational video game called "Griddle" that is based on the same power system simulation techniques used in the first study. We describe the design and evaluation of Griddle and find that it demonstrates potential to provide students with insights about key power system learning objectives.
Submicron particle monitoring of paving and related road construction operations.
Freund, Alice; Zuckerman, Norman; Baum, Lisa; Milek, Debra
2012-01-01
This study identified activities and sources that contribute to ultrafine and other submicron particle exposure that could trigger respiratory symptoms in highway repair workers. Submicron particle monitoring was conducted for paving, milling, and pothole repair operations in a major metropolitan area where several highway repair workers were identified as symptomatic for respiratory illness following exposures at the 2001 World Trade Center disaster site. Exposure assessments were conducted for eight trades involved in road construction using a TSI P-Trak portable condensation particle counter. Direct readings near the workers' breathing zones and observations of activities and potential sources were logged on 7 days on 27 workers using four different models of pavers and two types of millers. Average worker exposure levels ranged from 2 to 3 times background during paving and from 1 to 4 times background during milling. During asphalt paving, average personal exposures to submicron particulates were 25,000-60,000, 28,000-70,000, and 23,000-37,000 particles/ cm(3) for paver operators, screed operators, and rakers, respectively. Average personal exposures during milling were 19,000-111,000, 28,000-81,000, and 19,000 particles/cm(3) for the large miller operators, miller screed operators, and raker, respectively. Personal peak exposures were measured up to 467,000 and 455,000 particles/cm(3) in paving and milling, respectively. Several sources of submicron particles were identified. These included the diesel and electric fired screed heaters; engine exhaust from diesel powered construction vehicles passing by or idling; raking, dumping, and paving of asphalt; exhaust from the hotbox heater; pavement dust or fumes from milling operations, especially when the large miller started and stopped; and secondhand cigarette smoke. To reduce the potential for health effects in workers, over 40 recommendations were made to control exposures, including improved maintenance of paver ventilation systems; diesel fume engineering controls; reduced idling; provision of cabs for the operators; and improved dust suppression systems on the milling machine.
Abdullah-Al-Shafi, Md; Bahar, Ali Newaz; Bhuiyan, Mohammad Maksudur Rahman; Shamim, S M; Ahmed, Kawser
2018-08-01
Quantum-dot cellular automata (QCA) as nanotechnology is a pledging contestant that has incredible prospective to substitute complementary metal-oxide-semiconductor (CMOS) because of its superior structures such as intensely high device thickness, minimal power depletion with rapid operation momentum. In this study, the dataset of average output polarization (AOP) for fundamental reversible logic circuits is organized as presented in (Abdullah-Al-Shafi and Bahar, 2017; Bahar et al., 2016; Abdullah-Al-Shafi et al., 2015; Abdullah-Al-Shafi, 2016) [1-4]. QCADesigner version 2.0.3 has been utilized to survey the AOP of reversible circuits at separate temperature point in Kelvin (K) unit.
NASA Astrophysics Data System (ADS)
Minakova, N. N.; Ushakov, V. Ya.
2017-12-01
One of the key problems in modern materials technology is synthesis of materials for electrotechnical devices capable of operating under severe conditions. Electrical and power engineering, in particular, demands for electrically conductive composite materials operating at high and low temperatures, various mechanical loads, electric fields, etc. Chaotic arrangement of electrically conductive component in the matrix and its structural and geometrical inhomogeneity can increase the local electric and thermal energy flux densities up to critical values even when their average values remain moderate. Elastomers filled with technical carbon being a promising component for electrotechnical devices was chosen as an object of study.
Parasitic oscillation suppression in solid state lasers using absorbing thin films
Zapata, L.E.
1994-08-02
A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber. 16 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, C.T.; Dulaney, J.L.; Campbell, B.E.
Demonstrations of operation of a compact neodymium glass laser with average output powers greater than 1 kW for several seconds are reported. The laser is based on the thermal inertia laser (TIL) concept wherein a neodymium-doped glass rod is pumped uniformly without cooling during a burst mode of laser operation. Design principles for TIL devices and scaling to 100 kW class lasers are discussed. Experimental results for a low repetition-rate proof-of-concept pulsed device (30 J, 0.2 Hz) and a high repetition-rate pulsed prototype (40 J, 36 Hz) are presented and compared to numerical solutions for the laser rate equations withmore » temperature dependent cross-sections.« less
Parasitic oscillation suppression in solid state lasers using absorbing thin films
Zapata, Luis E.
1994-01-01
A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber.
Free-electron laser power beaming to satellites at China Lake, California
NASA Astrophysics Data System (ADS)
Bennett, Harold E.; Rather, John D.; Montgomery, Edward E.
1994-05-01
Laser power beaming of energy through the atmosphere to a satellite can extend its lifetime by maintaining the satellite batteries in operating condition. An alternate propulsion system utilizing power beaming will also significantly reduce the initial insertion cost of these satellites, which now are as high as $72,000/lb for geosynchronous orbit. Elements of the power beaming system are a high-power laser, a large diameter telescope to reduce diffractive losses, an adaptive optic beam conditioning system and possibly a balloon or aerostat carrying a large mirror to redirect the laser beam to low earth orbit satellites after it has traversed most of the earth's atmosphere vertically. China Lake, California has excellent seeing, averages 260 cloud-free days/year, has the second largest geothermal plant in the United States nearby for power, groundwater from the lake for cooling water, and is at the center of one of the largest restricted airspaces in the United States. It is an ideal site for such a laser power beaming system. Technological challenges in building such a system and installing it at China Lake are discussed.
Free-electron laser power beaming to satellites at China Lake, California
NASA Astrophysics Data System (ADS)
Bennett, Harold E.; Rather, John D.; Montgomery, Edward E.
1994-05-01
Laser power beaming of energy through the atmosphere to a satellite can extend its lifetime by maintaining the satellite batteries in operating condition. An alternate propulsion system utilizing power beaming will also significantly reduce the initial insertion cost of these satellites, which now are as high as $DLR72,000/lb for geosynchronous orbit. Elements of the power beaming system are a high-power laser, a large diameter telescope to reduce diffractive losses, an adaptive optic beam conditioning system and possibly a balloon or aerostat carrying a large mirror to redirect the laser beam to low earth orbit satellites after it has traversed most of the earth's atmosphere vertically. China Lake, California has excellent seeing, averages 260 cloud-free days/year, has the second largest geothermal plant in the United States nearby for power, groundwater from the lake for cooling water, and is at the center of one of the largest restricted airspaces in the United States. It is an ideal site for such a laser power beaming system. Technological challenges in building such a system and installing it at China Lake will be discussed.
Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance
NASA Technical Reports Server (NTRS)
Hallock, A. K.; Martin, A. K.; Polzin, K. A.; Kimberlin, A. C.; Eskridge, R. H.
2013-01-01
Impulse bits produced by conical theta-pinch inductive pulsed plasma thrusters possessing cone angles of 20deg, 38deg, and 60deg, were quantified for 500J/pulse operation by direct measurement using a hanging-pendulum thrust stand. All three cone angles were tested in single-pulse mode, with the 38deg model producing the highest impulse bits at roughly 1 mN-s operating on both argon and xenon propellants. A capacitor charging system, assembled to support repetitively-pulsed thruster operation, permitted testing of the 38deg thruster at a repetition-rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. The average thrust measured during multiple-pulse operation exceeded the value obtained when the single-pulse impulse bit is multiplied by the repetition rate.
Application of Improved Genetic Algorithm to Service Restoration Problem for Distribution Systems
NASA Astrophysics Data System (ADS)
Michibata, Ikuo; Aoki, Hidenori
The problem of recovery from power-system failures is the problem of handling operations that make it possible to supply power from other lines in response to power-system failures or construction by switching between the opened and closed states of sectionalizing switches. Considerable research has already been conducted with regard to this issue. This paper addresses the issue of determining target systems for final recovery in cases when some sections remain subject to power failure (i.e., sound bank capacity < load capacity). For this purpose, intersection is conducted only for parameters within such power-failure sections. In such research, calculations are implemented by setting a value of 2 to the sectionalizing switches of a single parameter. In addition, when the state of a sound section changes due to mutation improvements, the method of simultaneously changing the selected points and neighboring sectionalizing switches is applied. It is clear that the proposed method, consisting of conventional GA only, is superior in terms of average fitness values.
High power THz sources for nonlinear imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tekavec, Patrick F.; Kozlov, Vladimir G.
2014-02-18
Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source deliversmore » 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.« less
High power THz sources for nonlinear imaging
NASA Astrophysics Data System (ADS)
Tekavec, Patrick F.; Kozlov, Vladimir G.
2014-02-01
Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source delivers 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.
Reconstructive operations for the upper limb after brachial plexus palsy.
Rühmann, Oliver; Schmolke, Stephan; Bohnsack, Michael; Carls, Jörg; Flamme, Christian; Wirth, Carl Joachim
2004-07-01
Limited function due to paralysis following brachial plexus lesions can be improved by secondary operations of the bony and soft tissue. Between April 1994 and December 2000, 109 patients suffering from arm-plexus lesions underwent a total of 144 reconstructive operations guided by our concept of integrated therapy. The average age at the time of surgery was 32 years (range: 15-59). The following operations were performed: shoulder arthrodesis (23), trapezius transfer (74), rotation osteotomy of humerus (9), triceps to biceps transposition (9), transposition of forearm flexors or extensors (8), latissimus transfer (7), pectoralis transfer (1), teres major transfer (1), transposition of flexor carpi ulnaris to the tendons of extensor digitorum (10), and wrist arthrodesis (2). Prospectively, in all patients, the grade of muscle power of the affected upper extremity was evaluated prior to surgery. The follow-up period for all 144 operations was, on average, 22 months (range: 6-74). By means of operative measures, almost all patients obtained an improvement of shoulder function (100%) and stability (>90%), elbow flexion (85%), and hand, finger, and thumb (100%). When muscles malfunction after brachial plexus lesions, one should take into account the individual neuromuscular defect, passive joint function, and bony deformities; different procedures such as muscle transpositions, arthrodeses, and corrective osteotomies can then be performed to improve function of the upper extremity. Each form of operative treatment presents patients with certain benefits and all are integrated into a total treatment plan for the affected extremity.
Overview of ASDEX Upgrade results
NASA Astrophysics Data System (ADS)
Zohm, H.; Adamek, J.; Angioni, C.; Antar, G.; Atanasiu, C. V.; Balden, M.; Becker, W.; Behler, K.; Behringer, K.; Bergmann, A.; Bertoncelli, T.; Bilato, R.; Bobkov, V.; Boom, J.; Bottino, A.; Brambilla, M.; Braun, F.; Brüdgam, M.; Buhler, A.; Chankin, A.; Classen, I.; Conway, G. D.; Coster, D. P.; de Marné, P.; D'Inca, R.; Drube, R.; Dux, R.; Eich, T.; Engelhardt, K.; Esposito, B.; Fahrbach, H.-U.; Fattorini, L.; Fink, J.; Fischer, R.; Flaws, A.; Foley, M.; Forest, C.; Fuchs, J. C.; Gál, K.; García Muñoz, M.; Gemisic Adamov, M.; Giannone, L.; Görler, T.; Gori, S.; da Graça, S.; Granucci, G.; Greuner, H.; Gruber, O.; Gude, A.; Günter, S.; Haas, G.; Hahn, D.; Harhausen, J.; Hauff, T.; Heinemann, B.; Herrmann, A.; Hicks, N.; Hobirk, J.; Hölzl, M.; Holtum, D.; Hopf, C.; Horton, L.; Huart, M.; Igochine, V.; Janzer, M.; Jenko, F.; Kallenbach, A.; Kálvin, S.; Kardaun, O.; Kaufmann, M.; Kick, M.; Kirk, A.; Klingshirn, H.-J.; Koscis, G.; Kollotzek, H.; Konz, C.; Krieger, K.; Kurki-Suonio, T.; Kurzan, B.; Lackner, K.; Lang, P. T.; Langer, B.; Lauber, P.; Laux, M.; Leuterer, F.; Likonen, J.; Liu, L.; Lohs, A.; Lunt, T.; Lyssoivan, A.; Maggi, C. F.; Manini, A.; Mank, K.; Manso, M.-E.; Mantsinen, M.; Maraschek, M.; Martin, P.; Mayer, M.; McCarthy, P.; McCormick, K.; Meister, H.; Meo, F.; Merkel, P.; Merkel, R.; Mertens, V.; Merz, F.; Meyer, H.; Mlynek, A.; Monaco, F.; Müller, H.-W.; Münich, M.; Murmann, H.; Neu, G.; Neu, R.; Neuhauser, J.; Nold, B.; Noterdaeme, J.-M.; Pautasso, G.; Pereverzev, G.; Poli, E.; Potzel, S.; Püschel, M.; Pütterich, T.; Pugno, R.; Raupp, G.; Reich, M.; Reiter, B.; Ribeiro, T.; Riedl, R.; Rohde, V.; Roth, J.; Rott, M.; Ryter, F.; Sandmann, W.; Santos, J.; Sassenberg, K.; Sauter, P.; Scarabosio, A.; Schall, G.; Schilling, H.-B.; Schirmer, J.; Schmid, A.; Schmid, K.; Schneider, W.; Schramm, G.; Schrittwieser, R.; Schustereder, W.; Schweinzer, J.; Schweizer, S.; Scott, B.; Seidel, U.; Sempf, M.; Serra, F.; Sertoli, M.; Siccinio, M.; Sigalov, A.; Silva, A.; Sips, A. C. C.; Speth, E.; Stäbler, A.; Stadler, R.; Steuer, K.-H.; Stober, J.; Streibl, B.; Strumberger, E.; Suttrop, W.; Tardini, G.; Tichmann, C.; Treutterer, W.; Tröster, C.; Urso, L.; Vainonen-Ahlgren, E.; Varela, P.; Vermare, L.; Volpe, F.; Wagner, D.; Wigger, C.; Wischmeier, M.; Wolfrum, E.; Würsching, E.; Yadikin, D.; Yu, Q.; Zasche, D.; Zehetbauer, T.; Zilker, M.
2009-10-01
ASDEX Upgrade was operated with a fully W-covered wall in 2007 and 2008. Stationary H-modes at the ITER target values and improved H-modes with H up to 1.2 were run without any boronization. The boundary conditions set by the full W wall (high enough ELM frequency, high enough central heating and low enough power density arriving at the target plates) require significant scenario development, but will apply to ITER as well. D retention has been reduced and stationary operation with saturated wall conditions has been found. Concerning confinement, impurity ion transport across the pedestal is neoclassical, explaining the strong inward pinch of high-Z impurities in between ELMs. In improved H-mode, the width of the temperature pedestal increases with heating power, consistent with a \\beta_{pol,ped}^{1/2} scaling. In the area of MHD instabilities, disruption mitigation experiments using massive Ne injection reach volume averaged values of the total electron density close to those required for runaway suppression in ITER. ECRH at the q = 2 surface was successfully applied to delay density limit disruptions. The characterization of fast particle losses due to MHD has shown the importance of different loss mechanisms for NTMs, TAEs and also beta-induced Alfven eigenmodes (BAEs). Specific studies addressing the first ITER operational phase show that O1 ECRH at the HFS assists reliable low-voltage breakdown. During ramp-up, additional heating can be used to vary li to fit within the ITER range. Confinement and power threshold in He are more favourable than in H, suggesting that He operation could allow us to assess H-mode operation in the non-nuclear phase of ITER operation.
Fixed-point image orthorectification algorithms for reduced computational cost
NASA Astrophysics Data System (ADS)
French, Joseph Clinton
Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing. A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation to be used in place of the traditional floating point division. This method increases the throughput of the orthorectification operation by 38% when compared to floating point processing. Additionally, this method improves the accuracy of the existing integer-based orthorectification algorithms in terms of average pixel distance, increasing the accuracy of the algorithm by more than 5x. The quadratic function reduces the pixel position error to 2% and is still 2.8x faster than the 128-bit floating point algorithm.
The ETA-2 induction linac as a high average power FEL driver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nexsen, W.E.; Atkinson, D.P.; Barrett, D.M.
1989-10-16
The Experimental Test Accelerator-II (ETA-II) is the first induction linac designed specifically to FEL requirements. It primarily is intended to demonstrate induction accelerator technology for high average power, high brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switchesmore » allows high average power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 Mev energy, 2kA current, 20ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} at the wiggler with a pulse repetition frequency (PRF) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 Mev energy, 3kA current, 50ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} with a 5 kHz PRF for 0.5 sec. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements. 13 refs., 9 figs., 1 tab.« less
Microgrid optimal scheduling considering impact of high penetration wind generation
NASA Astrophysics Data System (ADS)
Alanazi, Abdulaziz
The objective of this thesis is to study the impact of high penetration wind energy in economic and reliable operation of microgrids. Wind power is variable, i.e., constantly changing, and nondispatchable, i.e., cannot be controlled by the microgrid controller. Thus an accurate forecasting of wind power is an essential task in order to study its impacts in microgrid operation. Two commonly used forecasting methods including Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) have been used in this thesis to improve the wind power forecasting. The forecasting error is calculated using a Mean Absolute Percentage Error (MAPE) and is improved using the ANN. The wind forecast is further used in the microgrid optimal scheduling problem. The microgrid optimal scheduling is performed by developing a viable model for security-constrained unit commitment (SCUC) based on mixed-integer linear programing (MILP) method. The proposed SCUC is solved for various wind penetration levels and the relationship between the total cost and the wind power penetration is found. In order to reduce microgrid power transfer fluctuations, an additional constraint is proposed and added to the SCUC formulation. The new constraint would control the time-based fluctuations. The impact of the constraint on microgrid SCUC results is tested and validated with numerical analysis. Finally, the applicability of proposed models is demonstrated through numerical simulations.
Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster.
Olsen, Thomas
2007-02-01
This study aimed to demonstrate how the level of accuracy in intraocular lens (IOL) power calculation can be improved with optical biometry using partial optical coherence interferometry (PCI) (Zeiss IOLMaster) and current anterior chamber depth (ACD) prediction algorithms. Intraocular lens power in 461 consecutive cataract operations was calculated using both PCI and ultrasound and the accuracy of the results of each technique were compared. To illustrate the importance of ACD prediction per se, predictions were calculated using both a recently published 5-variable method and the Haigis 2-variable method and the results compared. All calculations were optimized in retrospect to account for systematic errors, including IOL constants and other off-set errors. The average absolute IOL prediction error (observed minus expected refraction) was 0.65 dioptres with ultrasound and 0.43 D with PCI using the 5-variable ACD prediction method (p < 0.00001). The number of predictions within +/- 0.5 D, +/- 1.0 D and +/- 2.0 D of the expected outcome was 62.5%, 92.4% and 99.9% with PCI, compared with 45.5%, 77.3% and 98.4% with ultrasound, respectively (p < 0.00001). The 2-variable ACD method resulted in an average error in PCI predictions of 0.46 D, which was significantly higher than the error in the 5-variable method (p < 0.001). The accuracy of IOL power calculation can be significantly improved using calibrated axial length readings obtained with PCI and modern IOL power calculation formulas incorporating the latest generation ACD prediction algorithms.
Compact fs ytterbium fiber laser at 1010 nm for biomedical applications.
Kong, Cihang; Pilger, Christian; Hachmeister, Henning; Wei, Xiaoming; Cheung, Tom H; Lai, Cora S W; Huser, Thomas; Tsia, Kevin K; Wong, Kenneth K Y
2017-11-01
Ytterbium-doped fiber lasers (YDFLs) working in the near-infrared (NIR) spectral window and capable of high-power operation are popular in recent years. They have been broadly used in a variety of scientific and industrial research areas, including light bullet generation, optical frequency comb formation, materials fabrication, free-space laser communication, and biomedical diagnostics as well. The growing interest in YDFLs has also been cultivated for the generation of high-power femtosecond (fs) pulses. Unfortunately, the operating wavelengths of fs YDFLs have mostly been confined to two spectral bands, i.e., 970-980 nm through the three-level energy transition and 1030-1100 nm through the quasi three-level energy transition, leading to a spectral gap (990-1020 nm) in between, which is attributed to an intrinsically weak gain in this wavelength range. Here we demonstrate a high-power mode-locked fs YDFL operating at 1010 nm, which is accomplished in a compact and cost-effective package. It exhibits superior performance in terms of both short-term and long-term stability, i.e., <0.3% (peak intensity over 2.4 μs) and <4.0% (average power over 24 hours), respectively. To illustrate the practical applications, it is subsequently employed as a versatile fs laser for high-quality nonlinear imaging of biological samples, including two-photon excited fluorescence microscopy of mouse kidney and brain sections, as well as polarization-sensitive second-harmonic generation microscopy of potato starch granules and mouse tail muscle. It is anticipated that these efforts will largely extend the capability of fs YDFLs which is continuously tunable over 970-1100 nm wavelength range for wideband hyperspectral operations, serving as a promising complement to the gold-standard Ti:sapphire fs lasers.
Compact fs ytterbium fiber laser at 1010 nm for biomedical applications
Kong, Cihang; Pilger, Christian; Hachmeister, Henning; Wei, Xiaoming; Cheung, Tom H.; Lai, Cora S. W.; Huser, Thomas; Tsia, Kevin. K.; Wong, Kenneth K. Y.
2017-01-01
Ytterbium-doped fiber lasers (YDFLs) working in the near-infrared (NIR) spectral window and capable of high-power operation are popular in recent years. They have been broadly used in a variety of scientific and industrial research areas, including light bullet generation, optical frequency comb formation, materials fabrication, free-space laser communication, and biomedical diagnostics as well. The growing interest in YDFLs has also been cultivated for the generation of high-power femtosecond (fs) pulses. Unfortunately, the operating wavelengths of fs YDFLs have mostly been confined to two spectral bands, i.e., 970-980 nm through the three-level energy transition and 1030-1100 nm through the quasi three-level energy transition, leading to a spectral gap (990-1020 nm) in between, which is attributed to an intrinsically weak gain in this wavelength range. Here we demonstrate a high-power mode-locked fs YDFL operating at 1010 nm, which is accomplished in a compact and cost-effective package. It exhibits superior performance in terms of both short-term and long-term stability, i.e., <0.3% (peak intensity over 2.4 μs) and <4.0% (average power over 24 hours), respectively. To illustrate the practical applications, it is subsequently employed as a versatile fs laser for high-quality nonlinear imaging of biological samples, including two-photon excited fluorescence microscopy of mouse kidney and brain sections, as well as polarization-sensitive second-harmonic generation microscopy of potato starch granules and mouse tail muscle. It is anticipated that these efforts will largely extend the capability of fs YDFLs which is continuously tunable over 970-1100 nm wavelength range for wideband hyperspectral operations, serving as a promising complement to the gold-standard Ti:sapphire fs lasers. PMID:29188091
152 W average power Tm-doped fiber CPA system.
Stutzki, Fabian; Gaida, Christian; Gebhardt, Martin; Jansen, Florian; Wienke, Andreas; Zeitner, Uwe; Fuchs, Frank; Jauregui, Cesar; Wandt, Dieter; Kracht, Dietmar; Limpert, Jens; Tünnermann, Andreas
2014-08-15
A high-power thulium (Tm)-doped fiber chirped-pulse amplification system emitting a record compressed average output power of 152 W and 4 MW peak power is demonstrated. This result is enabled by utilizing Tm-doped photonic crystal fibers with mode-field diameters of 35 μm, which mitigate detrimental nonlinearities, exhibit slope efficiencies of more than 50%, and allow for reaching a pump-power-limited average output power of 241 W. The high-compression efficiency has been achieved by using multilayer dielectric gratings with diffraction efficiencies higher than 98%.
Case Studies for the Statistical Design of Experiments Applied to Powered Rotor Wind Tunnel Tests
NASA Technical Reports Server (NTRS)
Overmeyer, Austin D.; Tanner, Philip E.; Martin, Preston B.; Commo, Sean A.
2015-01-01
The application of statistical Design of Experiments (DOE) to helicopter wind tunnel testing was explored during two powered rotor wind tunnel entries during the summers of 2012 and 2013. These tests were performed jointly by the U.S. Army Aviation Development Directorate Joint Research Program Office and NASA Rotary Wing Project Office, currently the Revolutionary Vertical Lift Project, at NASA Langley Research Center located in Hampton, Virginia. Both entries were conducted in the 14- by 22-Foot Subsonic Tunnel with a small portion of the overall tests devoted to developing case studies of the DOE approach as it applies to powered rotor testing. A 16-47 times reduction in the number of data points required was estimated by comparing the DOE approach to conventional testing methods. The average error for the DOE surface response model for the OH-58F test was 0.95 percent and 4.06 percent for drag and download, respectively. The DOE surface response model of the Active Flow Control test captured the drag within 4.1 percent of measured data. The operational differences between the two testing approaches are identified, but did not prevent the safe operation of the powered rotor model throughout the DOE test matrices.
Multiple Restart Testing of a Stainless Steel Sodium Heat Pipe Module
NASA Astrophysics Data System (ADS)
Martin, James; Mireles, Omar; Reid, Robert
2005-02-01
A heat pipe cooled reactor is one of several candidate reactor concepts being considered for space power and propulsion systems to support future space exploration activities. Long life heat pipe modules, with concepts verified through a combination of theoretical analysis and experimental evaluations, would be necessary to establish the viability of this option. A number of stainless steel/sodium heat pipe modules have been designed and fabricated to support experimental testing of a Safe Affordable Fission Engine (SAFE) project, a 100-kWt core design pursued jointly by the Marshall Space Flight Center and the Los Alamos National Laboratory. One of the SAFE heat pipe modules was successfully subjected to over 200 restarts, examining the behavior of multiple passive freeze/thaw operations. Typical operation included a 1-hour startup to an average evaporator temperature of 1000 K followed by a 15-minute hold at temperature. Nominal maximum input power to the evaporator (measured at the power supply) during the hold period was 1.9 kW, with approximately 1.6 kW calculated as the axial power transfer to the condenser (the 300W difference was lost to environment at the evaporator surface). Between heating cycles the module was cooled to less than 325 K, returning the sodium to a frozen state in preparation for the next startup cycle.
A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure
NASA Astrophysics Data System (ADS)
Jiang, Tao; He, Jun-Tao; Zhang, Jian-De; Li, Zhi-Qiang; Ling, Jun-Pu
2016-12-01
In order to enhance the power capacity, an improved Ku-band magnetically insulated transmission line oscillator (MILO) with overmoded slow-wave-structure (SWS) is proposed and investigated numerically and experimentally. The analysis of the dispersion relationship and the resonant curve of the cold test indicate that the device can operate at the near π mode of the TM01 mode, which is useful for mode selection and control. In the particle simulation, the improved Ku-band MILO generates a microwave with a power of 1.5 GW and a frequency of 12.3 GHz under an input voltage of 480 kV and input current of 42 kA. Finally, experimental investigation of the improved Ku-band MILO is carried out. A high-power microwave (HPM) with an average power of 800 MW, a frequency of 12.35 GHz, and pulse width of 35 ns is generated under a diode voltage of 500 kV and beam current of 43 kA. The consistency between the experimental and simulated far-field radiation pattern confirms that the operating mode of the improved Ku-band MILO is well controlled in π mode of the TM01 mode. Project supported partly by the National Natural Science Foundation of China (Grant No. 61171021).
Fermilab proton accelerator complex status and improvement plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, Vladimir
2017-05-30
Fermilab carries out an extensive program of accelerator-based high energy particle physics research at the Intensity Frontier that relies on the operation of 8 GeV and 120 GeV proton beamlines for a n umber of fixed target experiments. Routine operation with a world-record 700kW of average 120 GeV beam power on the neutrino target was achieved in 2017 as the result of the Proton Improvement Plan (PIP) upgrade. There are plans to further increase the power to 900 – 1000 kW. The next major upgrade of the FNAL accelerator complex, called PIP-II, is under development. It aims at 1.2MW beammore » power on target at the start of the LBNF/DUNE experiment in the middle of the next decade and assumes replacement of the existing 40-years old 400 MeV normal-conducting Linac with a modern 800 MeV superconducting RF linear accelerator. There are several concepts to further double the beam power to >2.4MW after replacement of the existing 8 GeV Booster synchrotron. In this article we discuss current performance of the Fermilab proton accelerator complex, the upgrade plans for the next two decades and the accelerator R&D program to address cost and performance risks for these upgrades.« less
A new study of shower age distribution in near vertical showers by EAS air shower array
NASA Technical Reports Server (NTRS)
Chaudhuri, N.; Basak, D. K.; Goswami, G. C.; Ghosh, B.
1984-01-01
The air shower array has been developed since it started operation in 1931. The array covering an area of 900 sq m now incorporates 21 particle density sampling detectors around two muon magnetic spectrographs. The air showers are detected in the size range 10 to the 4th power to 10 to the 6th power particles. A total of 11000 showers has so far been detected. Average values of shower age have been obtained in various shower size ranges to study the dependence of shower age on shower size. The core distance dependence of shower age parameter has also been analyzed for presentation.
Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations.
Chang, M T; Liang, H C; Su, K W; Chen, Y F
2015-04-20
The dependence of lasing threshold on the output transmission is numerically analyzed to find the condition for the gain-to-loss balance for the orthogonal Np and Nm polarizations with a Ng-cut Yb:KGW laser crystal. With the numerical analysis, an orthogonally polarized dual-comb self-mode-locked operation is experimentally achieved with a coated Yb:KGW crystal to form a monolithic cavity. At a pump power of 5.2 W, the average output power, the pulse repetition rate, and the pulse duration are measured to be 0.24 (0.6) W, 25.8 (25.3) GHz, and 1.06 (1.12) ps for the output along the Np (Nm) polarization.
Short-term electric power demand forecasting based on economic-electricity transmission model
NASA Astrophysics Data System (ADS)
Li, Wenfeng; Bai, Hongkun; Liu, Wei; Liu, Yongmin; Wang, Yubin Mao; Wang, Jiangbo; He, Dandan
2018-04-01
Short-term electricity demand forecasting is the basic work to ensure safe operation of the power system. In this paper, a practical economic electricity transmission model (EETM) is built. With the intelligent adaptive modeling capabilities of Prognoz Platform 7.2, the econometric model consists of three industrial added value and income levels is firstly built, the electricity demand transmission model is also built. By multiple regression, moving averages and seasonal decomposition, the problem of multiple correlations between variables is effectively overcome in EETM. The validity of EETM is proved by comparison with the actual value of Henan Province. Finally, EETM model is used to forecast the electricity consumption of the 1-4 quarter of 2018.
Method and apparatus for altering material
Stinnett, Regan W.; Greenly, John B.
2002-01-01
Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.
Method and apparatus for altering material
Stinnett, Regan W.; Greenly, John B.
1995-01-01
Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.
Method and apparatus for altering material
Stinnett, Regan W.; Greenly, John B.
2002-02-05
Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.
Radiological effluents released and public doses from nuclear power plants in Korea.
Son, Jung Kwon; Kim, Hee Geun; Kong, Tae Young; Ko, Jong Hyun; Lee, Goung Jin
2013-08-01
As of the end of 2010, there were 20 commercially operating nuclear reactors in Korea. Releases of radioactive effluents from nuclear power plants (NPPs) have increased continuously; the total radioactivity of effluent amount released in 2010 was 547.12 TBq. From 2001 to 2010, the annual average radioactivity of gaseous and liquid effluents per reactor was 11.61 TBq for pressurised water reactors and 118.12 TBq for pressurised heavy water reactors. Most of the radioactivity from gaseous and liquid effluents came from tritium. Based on the results of release trends and analyses, the characteristics of effluents have been investigated to improve the management of radioactive effluents from NPPs.
Status of the Northrop Grumman Compact Infrared Free-Electron Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehrman, I.S.; Krishnaswamy, J.; Hartley, R.A.
1995-12-31
The Compact Infrared Free Electron Laser (CIRFEL) was built as part of a joint collaboration between the Northrop Grumman Corporation and Princeton University to develop FEL`s for use by researchers in the materials, medical and physical sciences. The CIRFEL was designed to lase in the Mid-IR and Far-IR regimes with picosecond pulses, megawatt level peak powers and an average power of a few watts. The micropulse separation is 7 nsec which allows a number of relaxation phenomenon to be observed. The CIRFEL utilizes an RF photocathode gun to produce high-brightness time synchronized electron bunches. The operational status and experimental resultsmore » of the CERFEL will be presented.« less
Standard-Cell, Open-Architecture Power Conversion Systems
2005-10-01
TLmax Maximum junction temperature 423 OK Table 5. 9. PEBB average model description in VTB. Terminal Type Name - 4 -, A Power DC Bus + B Power AC Pole...5 A. Switching models ........................................................................................ 5 B. Average ...11-6 IV. Average Modeling of PEBB-Based Converters...................................................... 11-10 0 IV. 1.Voltage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckers, Koenraad J; Young, Katherine R; Johnston, Henry
When conducting techno-economic analysis of geothermal systems, assumptions are typically necessary for reservoir and wellbore parameters such as producer/injector well ratio, production temperature drawdown, and production/injection temperature, pressure and flow rate. To decrease uncertainty of several of these parameters, we analyzed field data reported by operators in monthly production reports. This paper presents results of a statistical analysis conducted on monthly production reports at 19 power plants in California and Nevada covering 196 production wells and 175 injection wells. The average production temperature was 304 degrees F (151 degrees C) for binary plants and 310 degrees F (154 degrees C)more » for flash plants. The average injection temperature was 169 degrees F (76 degrees C) for binary plants and 173 degrees F (78 degrees C) for flash plants. The average production temperature drawdown was 0.5% per year for binary plants and 0.8% per year for flash plants. The average production well flow rate was 112 L/s for binary plant wells and 62 L/s for flash plant wells. For all 19 plants combined, the median injectivity index value was 3.8 L/s/bar, and the average producer/injector well ratio was 1.6. As an additional example of analysis using data from monthly production reports, a coupled reservoir-wellbore model was developed to derive productivity curves at various pump horsepower settings. The workflow and model were applied to two example production wells.« less
Essential Power Systems Workshop - OEM Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill Gouse
2001-12-12
In California, idling is largely done for climate control. This suggests that climate control devices alone could be used to reduce idling. Line-haul truck drivers surveyed require an average of 4-6 kW of power for a stereo, CB radio, light, refrigerator, and climate control found in the average truck. More power may likely be necessary for peak power demands. The amount of time line-haul trucks reported to have stopped is between 25 and 30 hours per week. It was not possible to accurately determine from the pilot survey the location, purpose, and duration of idling. Consulting driver logs or electronicallymore » monitoring trucks could yield more accurate data, including seasonal and geographic differences. Truck drivers were receptive to idling alternatives. Two-thirds of truck drivers surveyed support a program to reduce idling. Two-thirds of drivers reported they would purchase idling reduction technologies if the technology yielded a payback period of two years or less. Willingness to purchase auxiliary power units appears to be higher for owner-operators than for company drivers. With a 2-year payback period, 82% of owner- operators would be willing to buy an idle- reducing device, while 63% of company drivers thought their company would do the same. Contact with companies is necessary to discern whether this difference between owner- operators and companies is true or simply due to the perception of the company drivers. Truck stops appear to be a much more attractive option for electrification than rest areas by a 48% to 21% margin. Much of this discrepancy may be due to perceived safety problems with rest areas. This survey did not properly differentiate between using these areas for breaks or overnight. The next, full survey will quantify where the truck drivers are staying overnight, where they go for breaks, and the duration of time they spend at each place. The nationwide survey, which is in progress, will indicate how applicable the results are to the US in general. In addition to the survey, we believe data loggers and focus groups will be necessary to collect the idling duration and location data necessary to compare auxiliary power units to truck stop electrification. Focus groups are recommended to better understand the driver response to APUs and electrification. The appearance and perception of the new systems will need further clarification, which could be accomplished with a demonstration for truck drivers.« less
Composite operators in cubic field theories and link-overlap fluctuations in spin-glass models
NASA Astrophysics Data System (ADS)
Altieri, Ada; Parisi, Giorgio; Rizzo, Tommaso
2016-01-01
We present a complete characterization of the fluctuations and correlations of the squared overlap in the Edwards-Anderson spin-glass model in zero field. The analysis reveals that the energy-energy correlation (and thus the specific heat) has a different critical behavior than the fluctuations of the link overlap in spite of the fact that the average energy and average link overlap have the same critical properties. More precisely the link-overlap fluctuations are larger than the specific heat according to a computation at first order in the 6 -ɛ expansion. An unexpected outcome is that the link-overlap fluctuations have a subdominant power-law contribution characterized by an anomalous logarithmic prefactor which is absent in the specific heat. In order to compute the ɛ expansion we consider the problem of the renormalization of quadratic composite operators in a generic multicomponent cubic field theory: the results obtained have a range of applicability beyond spin-glass theory.
Energy-efficient quantum computing
NASA Astrophysics Data System (ADS)
Ikonen, Joni; Salmilehto, Juha; Möttönen, Mikko
2017-04-01
In the near future, one of the major challenges in the realization of large-scale quantum computers operating at low temperatures is the management of harmful heat loads owing to thermal conduction of cabling and dissipation at cryogenic components. This naturally raises the question that what are the fundamental limitations of energy consumption in scalable quantum computing. In this work, we derive the greatest lower bound for the gate error induced by a single application of a bosonic drive mode of given energy. Previously, such an error type has been considered to be inversely proportional to the total driving power, but we show that this limitation can be circumvented by introducing a qubit driving scheme which reuses and corrects drive pulses. Specifically, our method serves to reduce the average energy consumption per gate operation without increasing the average gate error. Thus our work shows that precise, scalable control of quantum systems can, in principle, be implemented without the introduction of excessive heat or decoherence.
Effects of vacuum exposure on stress and spectral shift of high reflective coatings
NASA Astrophysics Data System (ADS)
Stolz, C. J.; Taylor, J. R.; Eickelberg, W. K.; Lindh, J. D.
1992-06-01
The Atomic Vapor Laser Isotope Laser Separation (AVLIS) program operates the world's largest average power dye laser; the dye laser beams are combined, formatted, and transported in vacuum. The optical system is aligned at atmosphere, while the system must meet requirements in vacuum. Therefore, coating performance must be characterized in both atmosphere and vacuum. Changes in stress and spectral shift in ambient and vacuum environments are reported for conventional and dense multilayer dielectric coatings.
Advanced AC permanent magnet axial flux disc motor for electric passenger vehicle
NASA Technical Reports Server (NTRS)
Kliman, G. B.
1982-01-01
An ac permanent magnet axial flux disc motor was developed to operate with a thyristor load commutated inverter as part of an electric vehicle drive system. The motor was required to deliver 29.8 kW (40 hp) peak and 10.4 kW (14 hp) average with a maximum speed of 11,000 rpm. It was also required to run at leading power factor to commutate the inverter. Three motors were built.
Advanced Current Collection Research
1978-04-19
GoPDId Goal Current Density (HA/M3) 7.8 b4. Collector Surface Velocity (m/s) 15-75 25-75 Brush Material Life (uax, 1400 1400 velocity) (hr/in...net power loss and longest life for brush operation. The development of a multi-fiber shunt was continued through two iterations in preparation fnr... life . Neither energy loss density nor wear were degraded as the number of test brushes was increased to the full complement level. Over one year average
Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert
2016-01-01
A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples. PMID:27699118
Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert
2016-09-01
A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples.
The Influence of Surface Gravity Waves on Marine Current Turbine Performance
NASA Astrophysics Data System (ADS)
Lust, E.; Luznik, L.; Flack, K. A.; Walker, J.; Van Benthem, M.
2013-12-01
Surface gravity waves can significantly impact operating conditions for a marine current turbine, imparting unsteady velocities several orders of magnitude larger than the ambient turbulence. The influence of surface waves on the performance characteristics of a two-bladed horizontal axis marine current turbine was investigated experimentally in a large towing tank facility at the United States Naval Academy. The turbine model had a 0.8 m diameter (D) rotor with a NACA 63-618 cross section, which is Reynolds number independent with respect to lift coefficient in the operating range of Rec ≈ 4 x 105. The torque, thrust and rotational speed were measured at a range of tip speed ratios (TSR) from 5 < TSR < 11. Tests were performed at two rotor depths (1.3D and 2.25D) with and without waves. The average turbine performance characteristics were largely unchanged by depth or the presence of waves. However, tests with waves indicate large variations in thrust, rotational speed, and torque occurred with the passage of the wave. These results demonstrate the impact of surface gravity waves on power production and structural loading and suggest that turbines should be positioned vertically within the water column at a depth which maximizes power output while minimizing material fatigue. Keywords-- marine current turbine, tidal turbine, towing-tank experiments, surface gravity waves, fatigue loading, phase averaging
Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll
2015-09-15
The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean Schneider; Michael Martin; Renee Berry
2012-07-31
This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing powermore » generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.« less
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Aldrich, Jack; Chang, Zensheu
2006-01-01
The search for existing or past life in the Universe is one of the most important objectives of NASA's mission. For this purpose, effective instruments that can sample and conduct in-situ astrobiology analysis are being developed. In support of this objective, a series of novel mechanisms that are driven by an Ultrasonic/Sonic actuator have been developed to probe and sample rocks, ice and soil. This mechanism is driven by an ultrasonic piezoelectric actuator that impacts a bit at sonic frequencies through the use of an intermediate free-mass. Ultrasonic/Sonic Driller/Corer (USDC) devices were made that can produce both core and powdered cuttings, operate as a sounder to emit elastic waves and serve as a platform for sensors. For planetary exploration, this mechanism has the important advantage of requiring low axial force, virtually no torque, and can be duty cycled for operation at low average power. The advantage of requiring low axial load allows overcoming a major limitation of planetary sampling in low gravity environments or when operating from lightweight robots and rovers. The ability to operate at duty cycling with low average power produces a minimum temperature rise allowing for control of the sample integrity and preventing damage to potential biological markers in the acquired sample. The development of the USDC is being pursued on various fronts ranging from analytical modeling to mechanisms improvements while considering a wide range of potential applications. While developing the analytical capability to predict and optimize its performance, efforts are made to enhance its capability to drill at higher power and high speed. Taking advantage of the fact that the bit does not require rotation, sensors (e.g., thermocouple and fiberoptics) were integrated into the bit to examine the borehole during drilling. The sounding effect of the drill was used to emit elastic waves in order to evaluate the surface characteristics of rocks. Since the USDC is driven by piezoelectric actuation mechanism it can designed to operate at extreme temperature environments from very cold as on Titan and Europa to very hot as on Venus. In this paper, a review of the latest development and applications of the USDC will be given.
High-Average Power Broadband 18-Beam Klystron Circuit and Collector Designs
2008-04-01
high -average power S - band multiple-beam klystron are presented. The klystron will be powered by the recently completed 41.6 A, 42...al., “ High - power Four-cavity S - band multiple-beam klystron design,” IEEE Trans. Plasma Science, vol. 33, pp. 1119-1135, April 2005. [3] D.K Abe, et...APR 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE High -average Power Broadband 18-beam
Operating temperatures of open-rack installed photovoltaic inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Wang, L.; Kurtz, S.
This paper presents a model for evaluating the heat-sink and component temperatures of open-rack installed photovoltaic inverters. These temperatures can be used for predicting inverter reliability. Inverter heat-sink temperatures were measured for inverters connected to three grid-connected PV (photovoltaic) test systems in Golden, Colorado, US. A model is proposed for calculating the inverter heat-sink temperature based on the ambient temperature, the ratio of the consumed power to the rated power of the inverter, and the measured wind speed. To verify and study this model, more than one year of inverter DC/AC power, irradiance, wind speed, and heat sink temperature risemore » data were collected and analyzed. The model is shown to be accurate in predicting average inverter temperatures, but will require further refinement for prediction of transient temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lansey, Kevin; Hortsman, Chris
2016-10-01
In this study, the preliminary feasibility of a hybrid solar and modular pumped storage system designed for high energy independence at Biosphere 2 is assessed. The system consists of an array of solar PV panels that generate electricity during the day to power both Biosphere 2 and a pump that sends water through a pipe to a tank at a high elevation. When solar power is not available, the water is released back down the pipe towards a tank at a lower elevation, where it passes through a hydraulic water turbine to generate hydroelectricity to power Biosphere 2. The hybridmore » system is sized to generate and store enough energy to enable Biosphere 2 to operate without a grid interconnection on an average day.« less
Kumar, S Chaitanya; Casals, J Canals; Wei, Junxiong; Ebrahim-Zadeh, M
2015-10-19
We report a systematic study on the performance characteristics of a high-power, high-repetition-rate, picosecond ultraviolet (UV) source at 266 nm based on β-BaB2O4 (BBO). The source, based on single-pass fourth harmonic generation (FHG) of a compact Yb-fiber laser in a two-crystal spatial walk-off compensation scheme, generates up to 2.9 W of average power at 266 nm at a pulse repetition rate of ~80 MHz with a single-pass FHG efficiency of 35% from the green to UV. Detrimental issues such as thermal effects have been studied and confirmed by performing relevant measurements. Angular and temperature acceptance bandwidths in BBO for FHG to 266 nm are experimentally determined, indicating that the effective interaction length is limited by spatial walk-off and thermal gradients under high-power operation. The origin of dynamic color center formation due to two-photon absorption in BBO is investigated by measurements of intensity-dependent transmission at 266 nm. Using a suitable theoretical model, two-photon absorption coefficients as well as the color center densities have been estimated at different temperatures. The measurements show that the two-photon absorption coefficient in BBO at 266 nm is ~3.5 times lower at 200°C compared to that at room temperature. The long-term power stability as well as beam pointing stability is analyzed at different output power levels and focusing conditions. Using cylindrical optics, we have circularized the generated elliptic UV beam to a circularity of >90%. To our knowledge, this is the first time such high average powers and temperature-dependent two-photon absorption measurements at 266 nm are reported at repetition rates as high as ~80 MHz.
Initial Demonstration of Mercury Wavefront Correction System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Z M
2006-02-01
High average power operation of the Mercury Laser induces dynamic aberrations to the laser beam wavefront. Analysis of recent data indicates that up to 4 waves of low order aberration (mainly focus error or power, with spatial resolution < 0.5 cm{sup -1}) could be expected at each pass. Because of the magnitude of the wavefront error, the logical position is to place a deformable mirror (DM) at the M11 position, where the DM will correct the beam between passes 1 & 2 and 3 & 4. Currently, there are only two established commercial vendors offering complete adaptive optic (AO) systemsmore » that can accommodate the Mercury beam size (45 x 75 mm) which are compatible with high damage threshold coatings. Xinetics (MA, USA) offers a complete AO system along with a Shack-Hartmann wavefront sensor. The Xinetics DM is based on lead magnesium niobate (PMN) technology. A number of US aerospace firms as well as NIF use Xinetics PMN technology for their DMs. Phasics (Paris, France) offers a complete AO solution with its proprietary SID-4, a four-way shearing interferometric wavefront sensor capable of high resolution (over 100 x 100 sampling points). The Phasics system includes a bimorph deformable mirror from Night-n-Opt (Moscow, Russia) that uses lead zirconate titanate (PZT) technology. Various high power laser laboratories around the world such as LULI (France), HELEN (UK), and GEKKO (Japan) are using the PZT-based bimorph DM in their system. While both DM technologies are equivalent and have been deployed in high-energy laser systems, the PZT based bimorph DM offers two distinct features that makes it more attractive for high average power laser systems. The bimorph DM uses two layers of PZT actuators with the outer layer acting as power correctors, capable of correcting up to 20 waves of power. The Xinetics DM offers a maximum stroke of 4 waves. In addition, Night-N-Opt has also designed a water-cooled DM with a silicon based substrate (as opposed to a glass substrate) specifically for high average power laser systems--an option that is currently not available for PMN based DMs.« less
Bürgi, Alfred; Scanferla, Damiano; Lehmann, Hugo
2014-01-01
Models for exposure assessment of high frequency electromagnetic fields from mobile phone base stations need the technical data of the base stations as input. One of these parameters, the Equivalent Radiated Power (ERP), is a time-varying quantity, depending on communication traffic. In order to determine temporal averages of the exposure, corresponding averages of the ERP have to be available. These can be determined as duty factors, the ratios of the time-averaged power to the maximum output power according to the transmitter setting. We determine duty factors for UMTS from the data of 37 base stations in the Swisscom network. The UMTS base stations sample contains sites from different regions of Switzerland and also different site types (rural/suburban/urban/hotspot). Averaged over all regions and site types, a UMTS duty factor F ≈ 0.32 ± 0.08 for the 24 h-average is obtained, i.e., the average output power corresponds to about a third of the maximum power. We also give duty factors for GSM based on simple approximations and a lower limit for LTE estimated from the base load on the signalling channels. PMID:25105551
Application of Solar Electric Propulsion to a Comet Surface Sample Return Mission
NASA Technical Reports Server (NTRS)
Cupples, Mike; Coverstone, Victoria; Woo, Byoungsam
2004-01-01
Current NSTAR (planned for the Discovery Mission: Dawn) and NASA's Evolutionary Xenon Thruster based propulsion systems were compared for a comet surface sample return mission to Tempe1 1. Mission and systems analyses were conducted over a range of array power for each propulsion system with an array of 12 kW EOL at 1 AU chosen for a baseline. Engine configurations investigated for NSTAR included 4 operational engines with 1 spare and 5 operational engines with 1 spare. The NEXT configuration investigated included 2 operational engines plus 1 spare, with performance estimated for high thrust and high Isp throttling modes. Figures of merit for this comparison include Solar Electric Propulsion dry mass, average engine throughput, and net non-propulsion payload returned to Earth flyby.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, Sonia; Newman, Jennifer F.
The role of atmospheric turbulence in influencing wind-turbine power production remains an unsolved mystery despite a growing number of researchers who have attempted to make sense of this issue. Turbulence, a term for short-term deviations around the average wind speed, can cause fluctuations in turbine power production and structural loads. While research strongly suggests that ignoring atmospheric turbulence can result in significant errors in power-curve measurements and annual energy production, it appears that there may be no universal relationship between turbulence and power production. Typically when we think of a wind farm operating in a turbulent atmosphere, we picture amore » waked turbine, battered by vortex eddies (circular wind flow) shed from turbine blades upwind. However, turbulence is present nearly everywhere, and is constantly produced and diminished over a wide range of temporal and spatial scales. This article aims to unravel some of the complex factors that remain unsolved regarding turbulence and wind power« less
Wharton, Sonia; Newman, Jennifer F.
2017-09-11
The role of atmospheric turbulence in influencing wind-turbine power production remains an unsolved mystery despite a growing number of researchers who have attempted to make sense of this issue. Turbulence, a term for short-term deviations around the average wind speed, can cause fluctuations in turbine power production and structural loads. While research strongly suggests that ignoring atmospheric turbulence can result in significant errors in power-curve measurements and annual energy production, it appears that there may be no universal relationship between turbulence and power production. Typically when we think of a wind farm operating in a turbulent atmosphere, we picture amore » waked turbine, battered by vortex eddies (circular wind flow) shed from turbine blades upwind. However, turbulence is present nearly everywhere, and is constantly produced and diminished over a wide range of temporal and spatial scales. This article aims to unravel some of the complex factors that remain unsolved regarding turbulence and wind power« less
Analysis of DMFC/battery hybrid power system for portable applications
NASA Astrophysics Data System (ADS)
Lee, Bong-Do; Jung, Doo-Hwan; Ko, Young-Ho
This study was carried out to develop a direct methanol fuel cell (DMFC)/battery hybrid power system used in portable applications. For a portable power system, the DMFC was applied for the main power source at average load and the battery was applied for auxiliary power at overload. Load share characteristics of hybrid power source were analyzed by computational simulation. The connection apparatus between the DMFC and the battery was set and investigated in the real system. Voltages and currents of the load, the battery and the DMFC were measured according to fuel, air and load changes. The relationship between load share characteristic and battery capacity was surveyed. The relationship was also studied in abnormal operation. A DMFC stack was manufactured for this experiment. For the study of the connection characteristics to the fuel cell Pb-acid, Ni-Cd and Ni-MH batteries were tested. The results of this study can be applied to design the interface module of the fuel cell/battery hybrid system and to determine the design requirement in the fuel cell stack for portable applications.
Population dose commitments due to radioactive releases from nuclear power plant sites in 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1988. Fifty-year commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 71 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 16 person-rem to a low of 0.0011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.1 person-rem. The total population dose for all sites was estimated at 75 person-rem for the 150 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 3 {times} 10{sup {minus}7} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1988. Fifty-year commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 71 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 16 person-rem to a low of 0.0011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.1 person-rem. The total population dose for all sites was estimated at 75 person-rem for the 150 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 3 {times} 10{sup {minus}7} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year).« less
On measurement noise in the European TWSTFT network.
Piester, Dirk; Bauch, Andreas; Becker, Jürgen; Staliuniene, Egle; Schlunegger, Christian
2008-09-01
Two-way satellite time and frequency transfer (TWSTFT) using geostationary telecommunication satellites is widely used in the timing community today and has also been chosen as the primary means to effect synchronization of elements of the ground segment of the European satellite navigation system Galileo. We investigated the link performance in a multistation network based on operational parameters such as the number of simultaneously transmitting stations, transmit and receive power, and chip rates of the pseudorandom noise modulation of the transmitted signals. Our work revealed that TWSTFT through a "quiet" transponder channel (2 stations transmitting only) leads to a measurement noise, expressed by the 1 pps jitter, reduced by a factor of 1.4 compared with a busy transponder carrying signals of 12 stations. The frequency transfer capability expressed by the Allan deviation is reduced at short averaging times by the same amount. At averaging times of >1 d, no such reduction could be observed, which points to the fact that other noise sources dominate at such averaging times. We also found that higher transmit power increases the carrier-to-noise density ratio at the receive station and thus entails lower jitter but causes interference with other station's signals. In addition, the use of lower chip rates, which could be accommodated by a reduced assigned bandwidth on the satellite transponder, is not recommended. The 1 pps jitter would go up by a factor of 2.5 when going from 2.5 MCh/s to 1 MCh/s. The 2 Galileo precise timing facilities (PTFs) can be included in the currently operated network of 12 stations in Europe and all requirements on the TWSTFT performance can be met, provided that suitable ground equipment will be installed in the Galileo ground segment.
Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid
2016-07-01
Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control.
Mirbozorgi, S Abdollah; Jia, Yaoyao; Canales, Daniel; Ghovanloo, Maysam
2016-10-01
A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the energized homecage (EnerCage) system is enabling longitudinal experiments with minimal operator involvement or interruption, while providing test subjects with an enriched environment closer to their natural habitat, without the burden of being tethered or carrying bulky batteries. The magnetic resonant multi-coil design used in the new EnerCage-HC2 automatically localizes the transmitted electromagnetic power from a single transmitter (Tx) coil at the bottom of the cage toward the receiver coil (Rx), carried on/in the animal body, obviating the need for tracking the animal or switching the coils. In order to increase the resonators' quality factor (Q > 166) at the desired operating frequency of 13.56 MHz, while maintaining a high self-resonance frequency [Formula: see text], they are made of wide copper foils and optimally segmented based on a set of design rules that can be adopted for experimental arenas with different shapes and dimensions. The Rx rectified voltage is regulated at a user-defined window [Formula: see text] by a Tx-Rx closed-loop power control (CLPC) mechanism that creates a volume inside the homecage with 42 mW of power delivered to the load (PDL), and a homogeneous power transfer efficiency (PTE) plane of 14% on average at ∼7 cm height, plus stability against angular mis-alignments of up to 80°.