Extending solid state laser performance
NASA Astrophysics Data System (ADS)
Miesak, Ed
2017-02-01
Coherent Diode-Pumped Solid-State Orlando (CDO), formerly known as Lee Laser, headquartered in Orlando Florida produces CW and pulsed solid state lasers. Primary wavelengths include 1064 nm, 532 nm, and 355 nm. Other wavelengths produced include 1320 nm, 15xx nm, and 16xx nm. Pulse widths are in the range of singles to hundreds of nanoseconds. Average powers are in the range of a few watts to 1000 watts. Pulse repetition rates are typically in the range of 100 Hz to 100 KHz. Laser performance parameters are often modified according to customer requests. Laser parameters that can be adjusted include average power, pulse repetition rate, pulse length, beam quality, and wavelength. Laser parameters are typically cross-coupled such that adjusting one may change some or all of the others. Customers often request one or more parameters be changed without changing any of the remaining parameters. CDO has learned how to accomplish this successfully with rapid turn-around times and minimal cost impact. The experience gained by accommodating customer requests has produced a textbook of cause and effect combinations of laser components to accomplish almost any parameter change request. Understanding the relationships between component combinations provides valuable insight into lasing effects allowing designers to extend laser performance beyond what is currently available. This has led to several break through products, i.e. >150W average power 355 nm, >60W average power 6 ps 1064 nm, pulse lengths longer than 400 ns at 532 nm with average power >100W, >400W 532 nm with pulse lengths in the 100 ns range.
Rainey, R C T
2018-01-01
For tidal power barrages, a breast-shot water wheel, with a hydraulic transmission, has significant advantages over a conventional Kaplan turbine. It is better suited to combined operations with pumping that maintain the tidal range upstream of the barrage (important in reducing the environmental impact), and is much less harmful to fish. It also does not require tapered entry and exit ducts, making the barrage much smaller and lighter, so that it can conveniently be built in steel. For the case of the Severn Estuary, UK, it is shown that a barrage at Porlock would generate an annual average power of 4 GW (i.e. 35 TWh yr -1 ), maintain the existing tidal ranges upstream of it and reduce the tidal ranges downstream of it by only about 10%. The weight of steel required, in relation to the annual average power generated, compares very favourably with a recent offshore wind farm.
NASA Astrophysics Data System (ADS)
Rainey, R. C. T.
2018-01-01
For tidal power barrages, a breast-shot water wheel, with a hydraulic transmission, has significant advantages over a conventional Kaplan turbine. It is better suited to combined operations with pumping that maintain the tidal range upstream of the barrage (important in reducing the environmental impact), and is much less harmful to fish. It also does not require tapered entry and exit ducts, making the barrage much smaller and lighter, so that it can conveniently be built in steel. For the case of the Severn Estuary, UK, it is shown that a barrage at Porlock would generate an annual average power of 4 GW (i.e. 35 TWh yr-1), maintain the existing tidal ranges upstream of it and reduce the tidal ranges downstream of it by only about 10%. The weight of steel required, in relation to the annual average power generated, compares very favourably with a recent offshore wind farm.
The relationship between wind power, electricity demand and winter weather patterns in Great Britain
NASA Astrophysics Data System (ADS)
Thornton, Hazel E.; Scaife, Adam A.; Hoskins, Brian J.; Brayshaw, David J.
2017-06-01
Wind power generation in Great Britain has increased markedly in recent years. However due to its intermittency its ability to provide power during periods of high electricity demand has been questioned. Here we characterise the winter relationship between electricity demand and the availability of wind power. Although a wide range of wind power capacity factors is seen for a given demand, the average capacity factor reduces by a third between low and high demand. However, during the highest demand average wind power increases again, due to strengthening easterly winds. The nature of the weather patterns affecting Great Britain are responsible for this relationship. High demand is driven by a range of high pressure weather types, each giving cold conditions, but variable wind power availability. Offshore wind power is sustained at higher levels and offers a more secure supply compared to that onshore. However, during high demand periods in Great Britain neighbouring countries may struggle to provide additional capacity due to concurrent low temperatures and low wind power availability.
Gür, Filiz; Yaprak, Günseli
2010-12-01
To evaluate the effect of radionuclide emission on the environment from Yatagan, Yenikoy and Kemerkoy coal-fired power plants which are located in southwestern Anatolia of Turkey, the concentrations of natural radionuclides such as (226)Ra, (232)Th and (40)K in coal, bottom ash and fly ash samples, have been measured, as well as the concentration of the same radionuclides in surface soils. The dose rate arises from the total radioactivity content of soil that the people living by the power plants are exposed to be assessed additionally. The average activity concentrations of (226)Ra for Yatagan CPP is 80 ± 22 Bq kg(-1) ranging from 56 to 131 Bq kg(-1), for Yenikoy CPP is 138 ± 20 Bq kg(-1) ranging from 115 to 189 Bq kg(-1), for Kemerkoy CPP is 238 ± 80 Bq kg(-1) ranging from 134 to 356 Bq kg(-1) in coal; average activity concentrations of (226)Ra in fly ash and in bottom ash for above-mentioned power plants are 334 ± 60 Bq kg(-1) ranging from 291 to 481 Bq kg(-1), 461 ± 33 Bq kg(-1) ranging from 398 to 511 Bq kg(-1), 815 ± 254 Bq kg(-1) ranging from 316 to 1260 Bq kg(-1), 276 ± 51 Bq kg(-1) ranging from 222 to 349 Bq kg(-1), 285 ± 69 Bq kg(-1) ranging from 213 to 409 Bq kg(-1), 743 ± 234 Bq kg(-1) ranging from 366 to 1098 Bq kg(-1), respectively. The radionuclides activity concentrations of surface soil in the vicinity of coal-fired power plants are 32 ± 9 Bq kg(-1) (18-53 Bq kg(-1)) for (226)Ra, 37 ± 16 Bq kg(-1) (17-89 Bq kg(-1)) for (232)Th, 455 ± 165 Bq kg(-1) (203-794 Bq kg(-1)) for (40)K relevant to Yatagan CPP; 42 ± 30 Bq kg(-1) (9-168 Bq kg(-1)) for (226)Ra, 32 ± 14 Bq kg(-1) (6-74 Bq kg(-1)) for (232)Th, 365 ± 151 Bq kg(-1) (117-937 Bq kg(-1)) for (40)K relevant to Yenikoy and Kemerkoy CPP. As a result, average dose rates in the vicinity of coal-fired power plants have been calculated to be 56 ± 16 nGy h(-1) ranging from 30 to 100 nGy h(-1) for Yatagan CPP, 54 ± 22 nGy h(-1) ranging from 15 to 126 nGy h(-1) for Yenikoy and Kemerkoy CPP. To sum up, the natural radionuclide activity concentrations of burnt coal and ashes thrown out from these three power plants are quite high relative to the world average UNSCEAR[1] data. In addition, the average (226)Ra, (232)Th and (40)K activity concentration values of surface soil samples and the calculated gamma dose rates in the vicinity of power plants were located within the worldwide intervals reported by UNSCEAR,[30] with some local differences.
Are Wave and Tidal Energy Plants New Green Technologies?
Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca
2016-07-19
Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.
Modular compact solid-state modulators for particle accelerators
NASA Astrophysics Data System (ADS)
Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.
2017-12-01
The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.
Variable frequency iteration MPPT for resonant power converters
Zhang, Qian; Bataresh, Issa; Chen, Lin
2015-06-30
A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.
NASA Astrophysics Data System (ADS)
Sheng, Jie; Zhu, Qiaoming; Cao, Shijie; You, Yang
2017-05-01
This paper helps in study of the relationship between the photovoltaic power generation of large scale “fishing and PV complementary” grid-tied photovoltaic system and meteorological parameters, with multi-time scale power data from the photovoltaic power station and meteorological data over the same period of a whole year. The result indicates that, the PV power generation has the most significant correlation with global solar irradiation, followed by diurnal temperature range, sunshine hours, daily maximum temperature and daily average temperature. In different months, the maximum monthly average power generation appears in August, which related to the more global solar irradiation and longer sunshine hours in this month. However, the maximum daily average power generation appears in October, this is due to the drop in temperature brings about the improvement of the efficiency of PV panels. Through the contrast of monthly average performance ratio (PR) and monthly average temperature, it is shown that, the larger values of monthly average PR appears in April and October, while it is smaller in summer with higher temperature. The results concluded that temperature has a great influence on the performance ratio of large scale grid-tied PV power system, and it is important to adopt effective measures to decrease the temperature of PV plant properly.
NASA Astrophysics Data System (ADS)
Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Rao, Han; Zhang, Sasa; Liu, Yang; Zverev, Petr G.; Konyushkin, Vasily A.; Zhang, Xingyu
2016-02-01
High-repetition-rate tunable LiF:\\text{F}2- color center lasers pumped by quasi-continuous-wave diode-side-pumped acousto-optically Q-switched Nd:YAG laser are demonstrated. Littrow-grating and Littman-grating tuning schemes are studied respectively. In the Littrow-grating scheme, the tuning range was 1085 nm to 1275 nm, and the maximal average output power was 275 mW. In the Littman-grating scheme, the tuning range was 1105.5 nm to 1215.5 nm, and the maximal average output power was 135 mW.
Demirbas, Umit; Baali, Ilyes
2015-10-15
We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.
Scaling range of power laws that originate from fluctuation analysis
NASA Astrophysics Data System (ADS)
Grech, Dariusz; Mazur, Zygmunt
2013-05-01
We extend our previous study of scaling range properties performed for detrended fluctuation analysis (DFA) [Physica A0378-437110.1016/j.physa.2013.01.049 392, 2384 (2013)] to other techniques of fluctuation analysis (FA). The new technique, called modified detrended moving average analysis (MDMA), is introduced, and its scaling range properties are examined and compared with those of detrended moving average analysis (DMA) and DFA. It is shown that contrary to DFA, DMA and MDMA techniques exhibit power law dependence of the scaling range with respect to the length of the searched signal and with respect to the accuracy R2 of the fit to the considered scaling law imposed by DMA or MDMA methods. This power law dependence is satisfied for both uncorrelated and autocorrelated data. We find also a simple generalization of this power law relation for series with a different level of autocorrelations measured in terms of the Hurst exponent. Basic relations between scaling ranges for different techniques are also discussed. Our findings should be particularly useful for local FA in, e.g., econophysics, finances, or physiology, where the huge number of short time series has to be examined at once and wherever the preliminary check of the scaling range regime for each of the series separately is neither effective nor possible.
Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy.
Charan, Kriti; Li, Bo; Wang, Mengran; Lin, Charles P; Xu, Chris
2018-05-01
Deep tissue multiphoton imaging requires high peak power to enhance signal and low average power to prevent thermal damage. Both goals can be advantageously achieved through laser repetition rate tuning instead of simply adjusting the average power. We show that the ideal repetition rate for deep two-photon imaging in the mouse brain is between 1 and 10 MHz, and we present a fiber-based source with an arbitrarily tunable repetition rate within this range. The performance of the new source is compared to a mode-locked Ti:Sapphire (Ti:S) laser for in vivo imaging of mouse brain vasculature. At 2.5 MHz, the fiber source requires 5.1 times less average power to obtain the same signal as a standard Ti:S laser operating at 80 MHz.
Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber.
Gattass, Rafael R; Brandon Shaw, L; Sanghera, Jasbinder S
2014-06-15
We report on a proof of concept for a compact supercontinuum source for the mid-infrared wavelength range based on a microchip laser and nonlinear conversion inside a selenide-based optical fiber. The spectrum extends from 3.74 to 4.64 μm at -10 dB from the peak and 3.65 to 4.9 μm at -20 dB from the peak; emitting beyond the wavelength range that periodically poled lithium niobate (PPLN) starts to display a power penalty. Wavelength conversion occurs inside the core of a single-mode fiber, resulting in a high-brightness emission source. A maximum average power of 5 mW was demonstrated, but the architecture is scalable to higher average powers.
High-power highly stable passively Q-switched fiber laser based on monolayer graphene
NASA Astrophysics Data System (ADS)
Wu, Hanshuo; Song, Jiaxin; Wu, Jian; Xu, Jiangming; Xiao, Hu; Leng, Jinyong; Zhou, Pu
2018-03-01
We demonstrate a monolayer graphene-based passively Q-switched fiber laser with three-stage amplifiers that can deliver an average power of over 80 W at 1064 nm. The highest average power achieved is 84.1 W, with a pulse energy of 1.67 mJ. To the best of our knowledge this is the first report of a high-power passively Q-switched fiber laser in the 1 µm range. More importantly, the Q-switched fiber laser operated stably during a week of tests for a few hours per day, which proves the stability and practical application potential of graphene in high-power pulsed fiber lasers.
Large-deviation probabilities for correlated Gaussian processes and intermittent dynamical systems
NASA Astrophysics Data System (ADS)
Massah, Mozhdeh; Nicol, Matthew; Kantz, Holger
2018-05-01
In its classical version, the theory of large deviations makes quantitative statements about the probability of outliers when estimating time averages, if time series data are identically independently distributed. We study large-deviation probabilities (LDPs) for time averages in short- and long-range correlated Gaussian processes and show that long-range correlations lead to subexponential decay of LDPs. A particular deterministic intermittent map can, depending on a control parameter, also generate long-range correlated time series. We illustrate numerically, in agreement with the mathematical literature, that this type of intermittency leads to a power law decay of LDPs. The power law decay holds irrespective of whether the correlation time is finite or infinite, and hence irrespective of whether the central limit theorem applies or not.
Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy
Charan, Kriti; Li, Bo; Wang, Mengran; Lin, Charles P.; Xu, Chris
2018-01-01
Deep tissue multiphoton imaging requires high peak power to enhance signal and low average power to prevent thermal damage. Both goals can be advantageously achieved through laser repetition rate tuning instead of simply adjusting the average power. We show that the ideal repetition rate for deep two-photon imaging in the mouse brain is between 1 and 10 MHz, and we present a fiber-based source with an arbitrarily tunable repetition rate within this range. The performance of the new source is compared to a mode-locked Ti:Sapphire (Ti:S) laser for in vivo imaging of mouse brain vasculature. At 2.5 MHz, the fiber source requires 5.1 times less average power to obtain the same signal as a standard Ti:S laser operating at 80 MHz. PMID:29760989
NASA Astrophysics Data System (ADS)
Sakimura, Takeshi; Watanabe, Yojiro; Ando, Toshiyuki; Kameyama, Shumpei; Asaka, Kimio; Tanaka, Hisamichi; Yanagisawa, Takayuki; Hirano, Yoshihito; Inokuchi, Hamaki
2012-11-01
We have developed a 1.5-μm eye-safe wavelength high average power laser amplifier using an Er,Yb:glass planar waveguide for coherent Doppler LIDAR. Large cooling surface of the planar waveguide enabled high average power pumping for Er,Yb:glass which has low thermal fracture limit. Nonlinear effects are suppressed by the large beam size which is designed by the waveguide thickness and the beam width of the planar direction. Multi-bounce optical path configuration and high-intensity pumping provide high-gain and high-efficient operation using three-level laser material. With pulsed operation, the maximum pulse energy of 1.9 mJ was achieved at the repetition rate of 4 kHz. Output average power of the amplified signal was 7.6W with the amplified gain of more than 20dB. This amplifier is suitable for coherent Doppler LIDAR to enhance the measurable range.
Plasma core power exhaust in ELMy H-Mode in JET with ITER-Like Wall
NASA Astrophysics Data System (ADS)
Guillemaut, C.; Metzger, C.; Appel, L.; Drewelow, P.; Horvath, L.; Matthews, G. F.; Szepesi, G.; Solano, E. R.; contributors, JET
2018-07-01
The mitigation of target heat load in future steady state fusion devices will require dissipation of a significant amount of power through radiation. Plasma operations relying on ELMy H-modes could be problematic since ELMs may transport substantial amounts of power to the target without significant dissipation. Therefore, estimation of the average ELM power exhaust from the plasma core is crucial to evaluate the potential limitation on the power dissipation in ELMy H-mode regime. A series of more than 50 Type-I ELMy H-mode discharges in JET with ITER-Like Wall (JET-ILW) with a wide range of conditions has been used here to compare the average ELM power to the average input power. The effect of input power, ELM frequency, plasma current, confinement and radiation on ELM power exhaust has been studied and reported in this paper. Good agreement has been found here with previous studies made in carbon machines. This work suggests that it should not be possible to dissipate more than 70%–80% of the input power in Type-I ELMy H-modes in JET-ILW which is consistent with the maximum radiative fraction found experimentally.
NASA Astrophysics Data System (ADS)
Wada, Yoshio; Satoh, Takumi; Higashi, Yasuhiro; Urata, Yoshiharu
2017-12-01
We demonstrate a high-average-power, single longitudinal-mode, and tunable terahertz (THz)-wave source based on difference frequency generation (DFG) in a MgO:LiNbO3 (MgO:LN) crystal. The waves for DFG are generated using a pair of Yb-doped pulsed fiber lasers with a master oscillator power fiber amplifier configuration. The average power of the THz-wave output reaches 450 μW at 1.07 THz (280 μm) at a linewidth of 7.2 GHz, and the tunability ranges from 0.35 to 1.07 THz under the pulse repetition frequency of 500 kHz. A short burn-in test of the THz wave is also carried out, and the output power stability is within ± 5% of the averaged power without any active stabilizing technique. The combination of MgO:LN-DFG and stable and robust fiber laser sources is highly promising for the development of high-average-power THz-wave sources, particularly in the high transmission sub-THz region. This approach may enable new applications of THz-wave spectroscopy in imaging and remote sensing.
Radiation beam calorimetric power measurement system
Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.
1992-01-01
A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.
Low statistical power in biomedical science: a review of three human research domains.
Dumas-Mallet, Estelle; Button, Katherine S; Boraud, Thomas; Gonon, Francois; Munafò, Marcus R
2017-02-01
Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0-10% or 11-20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation.
Low statistical power in biomedical science: a review of three human research domains
Dumas-Mallet, Estelle; Button, Katherine S.; Boraud, Thomas; Gonon, Francois
2017-01-01
Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0–10% or 11–20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation. PMID:28386409
Green laser pointers for visual astronomy: how much power is enough?
Bará, Salvador; Robles, Marisol; Tejelo, Isabel; Marzoa, Ramón I; González, Héctor
2010-02-01
Green laser pointers with output powers in the tens to hundreds of milliwatt (mW) range, clearly exceeding the limiting 5 mW of American National Standards Institute class 3a (International Electrotechnical Commission class 3R), are now easily available in the global market. They are increasingly being used in public sky observations and other nighttime outreach activities by educators and science communicators in countries where their use is not well regulated, despite the fact that such high power levels may represent a potential threat to visual health. The purpose of this study was to determine the output power reasonably required to perform satisfactorily this kind of activities. Twenty-three observers were asked to vary continuously the output power of a green laser source (wavelength 532 nm) until clearly seeing the laser beam propagating skyward through the atmosphere in a heavily light-polluted urban setting. Measurements were conducted with observers of a wide range of ages (9 to 56 years), refractions (spherical equivalents -8.50 to +1.50 diopters), and previous expertise in using lasers as pointing devices outdoors (from no experience to professional astronomers). Two measurement runs were made in different nights under different meteorological conditions. The output power chosen by observers in the first run (11 observers) averaged to 1.84 mW (+/-0.68 mW, 1 SD). The second run (17 observers) averaged to 2.91 mW (+/-1.54 mW). The global average was 2.38 mW (+/-1.30 mW). Only one observer scored 5.6 mW, just above the class 3a limit. The power chosen by the remaining 22 observers ranged from 1.37 to 3.53 mW. Green laser pointers with output powers below 5 mW (laser classes American National Standards Institute 3a or International Electrotechnical Commission 3R) appear to be sufficient for use in educational nighttime outdoors activities, providing enough bright beams at reasonable safety levels.
Thermal effects in high average power optical parametric amplifiers.
Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas
2013-03-01
Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.
Yang, Kangwen; Li, Wenxue; Yan, Ming; Shen, Xuling; Zhao, Jian; Zeng, Heping
2012-06-04
A high-power ultra-broadband frequency comb covering the spectral range from ultraviolet to infrared was generated directly by nonlinear frequency conversion of a multi-stage high-power fiber comb amplifier. The 1030-nm infrared spectral fraction of a broadband Ti:sapphire femtosecond frequency comb was power-scaled up to 100 W average power by using a large-mode-area fiber chirped-pulse amplifier. We obtained a frequency-doubled green comb at 515 nm and frequency-quadrupled ultraviolet pulses at 258 nm with the average power of 12.8 and 1.62 W under the input infrared power of 42.2 W, respectively. The carrier envelope phase stabilization was accomplished with an ultra-narrow line-width of 1.86 mHz and a quite low accumulated phase jitter of 0.41 rad, corresponding to a timing jitter of 143 as.
Dubois, A B; Ogilvy, C S
1978-12-01
1. Pressures on the right and left sides of the tails of swimming bluefish were measured and found to have a range of +5.9 to -5.9 cm H2O. The pressures were resolved into their forward and lateral vectorial components of force to allow calculation of forward and lateral force and power at speeds ranging from 0.26 to 0.87 m/s. 2. The peak to peak changes in force of acceleration of the body, measured with a forward accelerometer averaged 209 g or 2.05 N at 0.48 m/s, and were compared with the maximum to minimum excursions of forward tail force averaging 201 g or 1.97 N at the same speed. The mean difference was 8 g, S.D. of the mean difference +/-29, SE. of mean difference +/-10 g. 3. Mean tail thrust was calculated as the time average of tail force in the forward direction. It averaged 65 g , or 0.64 N, at 0.48 m/s. The mean forward power was 0.34 N m/s at 0.48 m/s. The drag of the gauges and wires accounted for 10% of this figure. 4. The mean lateral power of the tail was 1.28 N m/s at a mean speed of 0.48 m/s. 5. The propulsive efficiency of the tail, calculated as the ratio of forward power to forward plus lateral power, was found to be 0.20 S.D.+/-0.04, S.E.+/-0.01 and was not related to speed. This suggests that 80% of the mechanical power of the tail was wasted. Turbulence in the water may have contributed to this large drag and low tail efficiency.
NASA Astrophysics Data System (ADS)
Harrison, Paul M.; Ellwi, Samir
2009-02-01
Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.
Cao, Chunyan; Li, Dianyou; Jiang, Tianxiao; Ince, Nuri Firat; Zhan, Shikun; Zhang, Jing; Sha, Zhiyi; Sun, Bomin
2015-04-01
In this study, we investigate the modification to cortical oscillations of patients with Parkinson disease (PD) by subthalamic deep brain stimulation (STN-DBS). Spontaneous cortical oscillations of patients with PD were recorded with magnetoencephalography during on and off subthalamic nucleus deep brain stimulation states. Several features such as average frequency, average power, and relative subband power in regions of interest were extracted in the frequency domain, and these features were correlated with Unified Parkinson Disease Rating Scale III evaluation. The same features were also investigated in patients with PD without surgery and healthy controls. Patients with Parkinson disease without surgery compared with healthy controls had a significantly lower average frequency and an increased average power in 1 to 48 Hz range in whole cortex. Higher relative power in theta and simultaneous decrease in beta and gamma over temporal and occipital were also observed in patients with PD. The Unified Parkinson Disease Rating Scale III rigidity score correlated with the average frequency and with the relative power of beta and gamma in frontal areas. During subthalamic nucleus deep brain stimulation, the average frequency increased significantly when stimulation was on compared with off state. In addition, the relative power dropped in delta, whereas it rose in beta over the whole cortex. Through the course of stimulation, the Unified Parkinson Disease Rating Scale III rigidity and tremor scores correlated with the relative power of alpha over left parietal. Subthalamic nucleus deep brain stimulation improves the symptoms of PD by suppressing the synchronization of alpha rhythm in somatomotor region.
Laser power conversion system analysis, volume 1
NASA Technical Reports Server (NTRS)
Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.
1979-01-01
The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints.
Femtosecond soliton source with fast and broad spectral tunability.
Masip, Martin E; Rieznik, A A; König, Pablo G; Grosz, Diego F; Bragas, Andrea V; Martinez, Oscar E
2009-03-15
We present a complete set of measurements and numerical simulations of a femtosecond soliton source with fast and broad spectral tunability and nearly constant pulse width and average power. Solitons generated in a photonic crystal fiber, at the low-power coupling regime, can be tuned in a broad range of wavelengths, from 850 to 1200 nm using the input power as the control parameter. These solitons keep almost constant time duration (approximately 40 fs) and spectral widths (approximately 20 nm) over the entire measured spectra regardless of input power. Our numerical simulations agree well with measurements and predict a wide working wavelength range and robustness to input parameters.
Injury and mortality of warmwater fishes immobilized by electrofishing
Dolan, C.R.; Miranda, L.E.
2004-01-01
Most studies of injury associated with electrofishing have focused on salmonids: few have given attention to warmwater fishes. Under controlled laboratory conditions, we treated bluegill Lepomis macrochirus, channel catfish Ictalurus punctatus, and largemouth bass Micropterus salmoides of various sizes to duty cycles ranging from 1.5% to 100%. This range of duty cycles represented continuous DC and pulsed-DC frequencies ranging from 15 to 110 Hz and pulse durations of 1 to 6 ms. At each duty cycle, fish were exposed to power densities in excess of those required to immobilize them within 3 s, and we subsequently determined the incidence of hemorrhage, spinal injury, and mortality. Incidence of hemorrhage averaged 3% (range, 0-25%), differed among species, and was not related to duty cycle or fish size. Incidence of spinal injury averaged 3% (range, 0-22%) and mortality averaged 10% (range, 0-75%); both differed among species and were related to duty cycle, fish size, and interactions among these variables. Largemouth bass was the species most vulnerable to hemorrhage, spinal injury, and mortality, channel catfish the least vulnerable; bluegills exhibited effects that were intermediate. Small centrarchids were especially susceptible to mortality. Fish tetanized by the electrical treatment were more likely to experience injury and mortality than fish that were only narcotized. However, mortality was not related to the injuries studied because hemorrhage and spinal injuries were similar in fish that survived electroshock and in those that died. We suggest that electrofishing with intermediate to high duty cycles could reduce electrofishing-induced injury and mortality to warmwater fish. Additionally, the power output and electrode system should be managed to induce narcosis and prevent tetany and to avoid the large peak powers required to immobilize small individuals.
NASA Astrophysics Data System (ADS)
Yuksel, Heba; Davis, Christopher C.
2006-09-01
Intensity fluctuations at the receiver in free space optical (FSO) communication links lead to a received power variance that depends on the size of the receiver aperture. Increasing the size of the receiver aperture reduces the power variance. This effect of the receiver size on power variance is called aperture averaging. If there were no aperture size limitation at the receiver, then there would be no turbulence-induced scintillation. In practice, there is always a tradeoff between aperture size, transceiver weight, and potential transceiver agility for pointing, acquisition and tracking (PAT) of FSO communication links. We have developed a geometrical simulation model to predict the aperture averaging factor. This model is used to simulate the aperture averaging effect at given range by using a large number of rays, Gaussian as well as uniformly distributed, propagating through simulated turbulence into a circular receiver of varying aperture size. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. For each statistical representation of the atmosphere, the three-dimensional trajectory of each ray is analyzed using geometrical optics. These Monte Carlo techniques have proved capable of assessing the aperture averaging effect, in particular, the quantitative expected reduction in intensity fluctuations with increasing aperture diameter. In addition, beam wander results have demonstrated the range-cubed dependence of mean-squared beam wander. An effective turbulence parameter can also be determined by correlating beam wander behavior with the path length.
On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz
NASA Astrophysics Data System (ADS)
Hashimoto, Yota; Hirata, Akimasa; Morimoto, Ryota; Aonuma, Shinta; Laakso, Ilkka; Jokela, Kari; Foster, Kenneth R.
2017-04-01
Incident power density is used as the dosimetric quantity to specify the restrictions on human exposure to electromagnetic fields at frequencies above 3 or 10 GHz in order to prevent excessive temperature elevation at the body surface. However, international standards and guidelines have different definitions for the size of the area over which the power density should be averaged. This study reports computational evaluation of the relationship between the size of the area over which incident power density is averaged and the local peak temperature elevation in a multi-layer model simulating a human body. Three wave sources are considered in the frequency range from 3 to 300 GHz: an ideal beam, a half-wave dipole antenna, and an antenna array. 1D analysis shows that averaging area of 20 mm × 20 mm is a good measure to correlate with the local peak temperature elevation when the field distribution is nearly uniform in that area. The averaging area is different from recommendations in the current international standards/guidelines, and not dependent on the frequency. For a non-uniform field distribution, such as a beam with small diameter, the incident power density should be compensated by multiplying a factor that can be derived from the ratio of the effective beam area to the averaging area. The findings in the present study suggest that the relationship obtained using the 1D approximation is applicable for deriving the relationship between the incident power density and the local temperature elevation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colella, Whitney G.; Pilli, Siva Prasad
2015-06-01
The United States (U.S.) Department of Energy (DOE)’s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNL’s research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Keymore » economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CHP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CHP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution. From the power perspective, the average per unit cost per unit of electrical power is estimated to span a range from $15–19,000/ kilowatt-electric (kWe) (depending on site-specific changes in installation, fuel, and other costs), while the average per unit cost of electrical and heat recovery power varies between $7,000 and $9,000/kW. From the energy perspective, the average per unit cost per unit of electrical energy ranges from $0.38 to $0.46/kilowatt-hour-electric (kWhe), while the average per unit cost per unit of electrical and heat recovery energy varies from $0.18 to $0.23/kWh. These values are calculated from engineering and economic performance data provided by the manufacturer (not independently measured data). The GHG emissions were estimated to decrease by one-third by shifting from a conventional energy system to a CHP FCS system. The GHG mitigation costs were also proportional to the changes in the GHG gas emissions. Human health costs were estimated to decrease significantly with a switch from a conventional system to a CHP FCS system.« less
A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.
Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond
2017-10-01
In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.
Programmable random interval generator
NASA Technical Reports Server (NTRS)
Lindsey, R. S., Jr.
1973-01-01
Random pulse generator can supply constant-amplitude randomly distributed pulses with average rate ranging from a few counts per second to more than one million counts per second. Generator requires no high-voltage power supply or any special thermal cooling apparatus. Device is uniquely versatile and provides wide dynamic range of operation.
Unintended effects of electrofishing on nongame fishes
Miranda, Leandro E.; Kidwell, R. H.
2010-01-01
Most studies of injury associated with electrofishing have focused on game fishes, but few have given attention to cohabiting small nongame species. Under controlled laboratory conditions, we subjected small nongame cyprinids, ictalurids, and percids to a wide range of voltages and waveforms to examine potential harmful effects. Fish were treated with power levels distributed uniformly between the thresholds required to immobilize game fish and also were subjected multiple times to those thresholds to simulate the range of conditions that might exist in a heterogeneous electrical field formed during electrofishing in field situations. Across waveforms and species, the incidence of hemorrhages averaged 2% (range = 0–20%), the incidence of spinal injuries averaged 6% (range = 0–30%), and mortality averaged 16% (range = 0–90%). Continuous DC was generally less harmful than pulsed-DC waveforms; hemorrhages and spinal injuries tended to increase with high pulse frequencies, and mortalities tended to increase with low pulse frequencies. Ambiguities in the results were apparent, suggesting that some species may experience extensive harm, whereas others may not. Given the potential to harm numerically small populations and populations of imperiled species, we suggest (1) expanded efforts to overcome the power limitations that prevent effective use of continuous-DC electrofishing in many field situations and (2) pilot studies at geographic locations where numerically small populations of nongame species may be a concern.
Very high power THz radiation sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.
2002-10-31
We report the production of high power (20 watts average, {approx} 1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. Such sources are ideal for imaging, for high power damage studies and for studies of non-linear phenomena in this spectral range. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source to one based on ultrafast laser techniques.
Waveform agile high-power fiber laser illuminators for directed-energy weapon systems
NASA Astrophysics Data System (ADS)
Engin, Doruk; Lu, Wei; Kimpel, Frank; Gupta, Shantanu
2012-06-01
A kW-class fiber-amplifier based laser illuminator system at 1030nm is demonstrated. At 125 kHz pulse repetition rate, 1.9mJ energy per pulse (235W average power) is achieved for 100nsec pulses with >72% optical conversion efficiency, and at 250kHz repetition, >350W average power is demonstrated, limited by the available pumps. Excellent agreement is established between the experimental results and dynamic fiber amplifier simulation, for predicting the pulse shape, spectrum and ASE accumulation throughout the fiber-amplifier chain. High pulse-energy, high power fiber-amplifier operation requires careful engineering - minimize ASE content throughout the pre-amplifier stages, use of large mode area gain fiber in the final power stage for effective pulse energy extraction, and pulse pre-shaping to compensate for the laser gain-saturation induced intra-pulse and pulse-pattern dependent distortion. Such optimization using commercially available (VLMA) fibers with core size in the 30-40μm range is estimated to lead to >4mJ pulse energy for 100nsec pulse at 50kHz repetition rate. Such waveform agile high-power, high-energy pulsed fiber laser illuminators at λ=1030nm satisfies requirements for active-tracking/ranging in high-energy laser (HEL) weapon systems, and in uplink laser beacon for deep space communication.
Reliability and Validity Assessment of a Linear Position Transducer
Garnacho-Castaño, Manuel V.; López-Lastra, Silvia; Maté-Muñoz, José L.
2015-01-01
The objectives of the study were to determine the validity and reliability of peak velocity (PV), average velocity (AV), peak power (PP) and average power (AP) measurements were made using a linear position transducer. Validity was assessed by comparing measurements simultaneously obtained using the Tendo Weightlifting Analyzer Systemi and T-Force Dynamic Measurement Systemr (Ergotech, Murcia, Spain) during two resistance exercises, bench press (BP) and full back squat (BS), performed by 71 trained male subjects. For the reliability study, a further 32 men completed both lifts using the Tendo Weightlifting Analyzer Systemz in two identical testing sessions one week apart (session 1 vs. session 2). Intraclass correlation coefficients (ICCs) indicating the validity of the Tendo Weightlifting Analyzer Systemi were high, with values ranging from 0.853 to 0.989. Systematic biases and random errors were low to moderate for almost all variables, being higher in the case of PP (bias ±157.56 W; error ±131.84 W). Proportional biases were identified for almost all variables. Test-retest reliability was strong with ICCs ranging from 0.922 to 0.988. Reliability results also showed minimal systematic biases and random errors, which were only significant for PP (bias -19.19 W; error ±67.57 W). Only PV recorded in the BS showed no significant proportional bias. The Tendo Weightlifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and estimating power in resistance exercises. The low biases and random errors observed here (mainly AV, AP) make this device a useful tool for monitoring resistance training. Key points This study determined the validity and reliability of peak velocity, average velocity, peak power and average power measurements made using a linear position transducer The Tendo Weight-lifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and power. PMID:25729300
High-power picosecond laser with 400W average power for large scale applications
NASA Astrophysics Data System (ADS)
Du, Keming; Brüning, Stephan; Gillner, Arnold
2012-03-01
Laser processing is generally known for low thermal influence, precise energy processing and the possibility to ablate every type of material independent on hardness and vaporisation temperature. The use of ultra-short pulsed lasers offers new possibilities in the manufacturing of high end products with extra high processing qualities. For achieving a sufficient and economical processing speed, high average power is needed. To scale the power for industrial uses the picosecond laser system has been developed, which consists of a seeder, a preamplifier and an end amplifier. With the oscillator/amplifier system more than 400W average power and maximum pulse energy 1mJ was obtained. For study of high speed processing of large embossing metal roller two different ps laser systems have been integrated into a cylinder engraving machine. One of the ps lasers has an average power of 80W while the other has 300W. With this high power ps laser fluencies of up to 30 J/cm2 at pulse repetition rates in the multi MHz range have been achieved. Different materials (Cu, Ni, Al, steel) have been explored for parameters like ablation rate per pulse, ablation geometry, surface roughness, influence of pulse overlap and number of loops. An enhanced ablation quality and an effective ablation rate of 4mm3/min have been achieved by using different scanning systems and an optimized processing strategy. The max. achieved volume rate is 20mm3/min.
Pal, Debasis; Ghosh, Aditi; Sen, Ranjan; Pal, Atasi
2016-08-10
A continuous-wave (CW) as well as quasi-continuous wave (QCW) thulium-doped all-fiber laser at 1.94 μm has been designed for targeting applications in urology. The thulium-doped active fiber with an octagonal-shaped inner cladding is pumped at 793 nm to achieve stable CW laser power of 10 W with 32% lasing efficiency (against launched pump power). The linear variation of laser power with pump offers a scope of further power scaling. A QCW operation with variation of duty cycle from 0.5% to 90%, repetition rate from 0.1 Hz to 1 kHz, and pulse width from 40 μs to 2 s has been presented. Laser power of 9.5 W in CW mode of operation and average power of 5.2 W with energy range of 10.4-104 mJ in QCW mode of operation has been employed to fragment calcium oxalate monohydrate kidney stones (size of 1.5-4 cm) having different colors and composition. Dependence of ablation threshold, ablation rate, and average fragmented particle size on the average power and energy has been studied. One minute of laser exposure results in fragmentation of a stone surface with ablation rate of 8 mg/min having minimum particle size of 6.54 μm with an average size of 20-100 μm ensuring the natural removal of fragmented parts through the urethra.
HiLASE: development of fully diode pumped disk lasers with high average power
NASA Astrophysics Data System (ADS)
Divoky, M.; Smrz, M.; Chyla, M.; Sikocinski, P.; Severova, P.; Novák, O.; Huynh, J.; Nagisetty, S. S.; Miura, T.; Liberatore, C.; Pilař, J.; Slezak, O.; Sawicka, M.; Jambunathan, V.; Gemini, L.; Vanda, J.; Svabek, R.; Endo, A.; Lucianetti, A.; Rostohar, D.; Mason, P. D.; Phillips, P. J.; Ertel, K.; Banerjee, S.; Hernandez-Gomez, C.; Collier, J. L.; Mocek, T.
2015-02-01
An overview of Czech national R&D project HiLASE (High average power pulsed LASEr) is presented. The HiLASE project aims at development of pulsed DPSSL for hi-tech industrial applications. HiLASE will be a user oriented facility with several laser systems with output parameters ranging from a few picosecond pulses with energy of 5 mJ to 0.5 J and repetition rate of 1-100 kHz (based on thin disk technology) to systems with 100 J output energy in nanosecond pulses with repetition rate of 10 Hz (based on multi-slab technology).
2014-09-01
The Pilot radar has a low average power output, the 2.4 m range cell resolution, a resistance to electronic support system detection and/or anti...installation on walls, towers, or buildings, or it can be used as man-portable radar [35]. It features a scan rate of 30°/ s , which allows for a ...Target Velocity .1 – 50 m / s Operating Range 5 – 1400 m False Alarm Rates < 1 per 24 hours Coverage area 6.16 km2 Power Consumption 45 Watts
Preparation of TiN films by reactive high-power pulsed sputtering Penning discharges
NASA Astrophysics Data System (ADS)
Kimura, Takashi; Yoshida, Ryo; Mishima, Toshihiko; Azuma, Kingo; Nakao, Setsuo
2018-06-01
Titanium nitride (TiN) films are prepared by reactive high-power pulsed sputtering Penning discharges at a total pressure of 0.7 Pa and an average power of 60 W, where the nitrogen fraction is varied up to 15%. The peak value of the instantaneous power ranges between 3 and 14 kW, and the peak power density ranges between 0.3 and 1.2 kW cm‑2. The hardness of TiN films is higher than 22 GPa at the nitrogen fractions lower than 10% and it reaches 31 GPa at a nitrogen fraction of 5%. The X-ray diffraction peak of TiN(111) texture is observed for all prepared films, showing the grain size of about 10 nm. In X-ray photoelectron spectroscopy, oxygen is mainly bonded to titanium, but the intensity of the TiN bond is dominant in the entire Ti 2p spectrum. The intensity ratio of N 1s to Ti 2p ranges between 0.85 and 0.95.
The nature of turbulence in a triangular lattice gas automaton
NASA Astrophysics Data System (ADS)
Duong-Van, Minh; Feit, M. D.; Keller, P.; Pound, M.
1986-12-01
Power spectra calculated from the coarse-graining of a simple lattice gas automaton, and those of time averaging other stochastic times series that we have investigated, have exponents in the range -1.6 to -2, consistent with observation of fully developed turbulence. This power spectrum is a natural consequence of coarse-graining; the exponent -2 represents the continuum limit.
Individual differences in long-range time representation.
Agostino, Camila S; Caetano, Marcelo S; Balci, Fuat; Claessens, Peter M E; Zana, Yossi
2017-04-01
On the basis of experimental data, long-range time representation has been proposed to follow a highly compressed power function, which has been hypothesized to explain the time inconsistency found in financial discount rate preferences. The aim of this study was to evaluate how well linear and power function models explain empirical data from individual participants tested in different procedural settings. The line paradigm was used in five different procedural variations with 35 adult participants. Data aggregated over the participants showed that fitted linear functions explained more than 98% of the variance in all procedures. A linear regression fit also outperformed a power model fit for the aggregated data. An individual-participant-based analysis showed better fits of a linear model to the data of 14 participants; better fits of a power function with an exponent β > 1 to the data of 12 participants; and better fits of a power function with β < 1 to the data of the remaining nine participants. Of the 35 volunteers, the null hypothesis β = 1 was rejected for 20. The dispersion of the individual β values was approximated well by a normal distribution. These results suggest that, on average, humans perceive long-range time intervals not in a highly compressed, biased manner, but rather in a linear pattern. However, individuals differ considerably in their subjective time scales. This contribution sheds new light on the average and individual psychophysical functions of long-range time representation, and suggests that any attribution of deviation from exponential discount rates in intertemporal choice to the compressed nature of subjective time must entail the characterization of subjective time on an individual-participant basis.
Demirbas, Umit; Baali, Ilyes; Acar, Durmus Alp Emre; Leitenstorfer, Alfred
2015-04-06
We demonstrate continuous-wave (cw), cw frequency-doubled, cw mode-locked and Q-switched mode-locked operation of multimode diode-pumped Cr:LiCAF lasers with record average powers. Up to 2.54 W of cw output is obtained around 805 nm at an absorbed pump power of 5.5 W. Using intracavity frequency doubling with a BBO crystal, 0.9 W are generated around 402 nm, corresponding to an optical-to-optical conversion efficiency of 12%. With an intracavity birefringent tuning plate, the fundamental and frequency-doubled laser output is tuned continuously in a broad wavelength range from 745 nm to 885 nm and from 375 to 440 nm, respectively. A saturable Bragg reflector is used to initiate and sustain mode locking. In the cw mode-locked regime, the Cr:LiCAF laser produces 105-fs long pulses near 810 nm with an average power of 0.75 W. The repetition rate is 96.4 MHz, resulting in pulse energies of 7.7 nJ and peak powers of 65 kW. In Q-switched mode-locked operation, pulses with energies above 150 nJ are generated.
Power strain imaging based on vibro-elastography techniques
NASA Astrophysics Data System (ADS)
Wen, Xu; Salcudean, S. E.
2007-03-01
This paper describes a new ultrasound elastography technique, power strain imaging, based on vibro-elastography (VE) techniques. With this method, tissue is compressed by a vibrating actuator driven by low-pass or band-pass filtered white noise, typically in the 0-20 Hz range. Tissue displacements at different spatial locations are estimated by correlation-based approaches on the raw ultrasound radio frequency signals and recorded in time sequences. The power spectra of these time sequences are computed by Fourier spectral analysis techniques. As the average of the power spectrum is proportional to the squared amplitude of the tissue motion, the square root of the average power over the range of excitation frequencies is used as a measure of the tissue displacement. Then tissue strain is determined by the least squares estimation of the gradient of the displacement field. The computation of the power spectra of the time sequences can be implemented efficiently by using Welch's periodogram method with moving windows or with accumulative windows with a forgetting factor. Compared to the transfer function estimation originally used in VE, the computation of cross spectral densities is not needed, which saves both the memory and computational times. Phantom experiments demonstrate that the proposed method produces stable and operator-independent strain images with high signal-to-noise ratio in real time. This approach has been also tested on a few patient data of the prostate region, and the results are encouraging.
Recent developments in high average power driver technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prestwich, K.R.; Buttram, M.T.; Rohwein, G.J>
1979-01-01
Inertial confinement fusion (ICF) reactors will require driver systems operating with tens to hundreds of megawatts of average power. The pulse power technology that will be required to build such drivers is in a primitive state of development. Recent developments in repetitive pulse power are discussed. A high-voltage transformer has been developed and operated at 3 MV in a single pulse experiment and is being tested at 1.5 MV, 5 kj and 10 pps. A low-loss, 1 MV, 10 kj, 10 pps Marx generator is being tested. Test results from gas-dynamic spark gaps that operate both in the 100 kVmore » and 700 kV range are reported. A 250 kV, 1.5 kA/cm/sup 2/, 30 ns electron beam diode has operated stably for 1.6 x 10/sup 5/ pulses.« less
Testing of optical components to assure performance in a high-average-power environment
NASA Astrophysics Data System (ADS)
Chow, Robert; Taylor, John R.; Eickelberg, William K.; Primdahl, Keith A.
1997-11-01
Evaluation and testing of the optical components used in the atomic vapor laser isotope separation plant is critical for qualification of suppliers, developments of new optical multilayer designs and manufacturing processes, and assurance of performance in the production cycle. The range of specifications requires development of specialized test equipment and methods which are not routine or readily available in industry. Specifications are given on material characteristics such as index homogeneity, subsurface damage left after polishing, microscopic surface defects and contamination, coating absorption, and high average power laser damage. The approach to testing these performance characteristics and assuring the quality throughout the production cycle is described.
Study of the effect of electromagnetic fields on indoor and outdoor radon concentrations
NASA Astrophysics Data System (ADS)
Haider, Lina M.; Shareef, N. R.; Darwoysh, H. H.; Mansour, H. L.
2018-05-01
In the present work, the effect of electromagnetic fields produced by high voltage power lines(132kV) and indoor equipments on the indoor and outdoor average radon concentrations in Al-Kazaliya and Hay Al-Adil regions in Baghdad city were studied using CR-39 track detectors and a gauss-meter.Results of measurements of the present study, have shown that the highest value for the indoor average radon concentration (76.56± 8.44 Bq / m3) was recorded for sample A1(Hay Al-Adel) at a distance of (20 m) from the high voltage power lines, while the lowest value for the indoor average radon concentration (30.46 ± 8.44 Bq / m3) was recorded for sample A3 (Hay Al-Adil) at a distance of (50 m) from the high voltage power lines. The indoor gaussmeter measurements were found to be ranged from (30.2 mG) to (38.5 mG). The higest value for outdoor average radon concentration and the highest gaussmeter measurements were found for sample (1), with values (92.63 ±11.2 Bq / m3) and (87.24 ± 2.85 mG), directly under the high voltage power lines respectively, while the lowest outdoor average radon concentration and the lowest gaussmeter measurements were found in sample (4),with values (34.19 ± 6.33 Bq / m3) and (1.16 ± 0.14 Bq / m3),), at a distance of (120 m) from the high voltage power lines respectively. The results of the present work have shown that there might be an influence of the electromagnetic field on radon concentrations in areas which were close to high voltage power lines and houses which have used many electric equipment for a long period of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, M.; Holttinen, H.; Soder, L.
2012-09-01
Wind and solar power will give rise to challenges in electricity markets regarding flexibility, capacity adequacy, and the participation of wind and solar generators to markets. Large amounts of wind power will have impacts on bulk power system markets and electricity prices. If the markets respond to increased wind power by increasing investments in low-capital, high-cost or marginal-cost power, the average price may remain in the same range. However, experiences so far from Denmark, Germany, Spain, and Ireland are such that the average market prices have decreased because of wind power. This reduction may result in additional revenue insufficiency, whichmore » may be corrected with a capacity market, yet capacity markets are difficult to design. However, the flexibility attributes of the capacity also need to be considered. Markets facilitating wind and solar integration will include possibilities for trading close to delivery (either by shorter gate closure times or intraday markets). Time steps chosen for markets can enable more flexibility to be assessed. Experience from 5- and 10-minute markets has been encouraging.« less
THz polariton laser using an intracavity Mg:LiNbO3 crystal with protective Teflon coating.
Ortega, Tiago A; Pask, Helen M; Spence, David J; Lee, Andrew J
2017-02-20
An enhancement in the performance of a THz polariton laser based on an intracavity magnesium-doped lithium niobate crystal (Mg:LiNbO3) in surface-emitted (SE) configuration is demonstrated resulting from the deposition of a protective Teflon coating on the total internal reflection surface of the crystal. In this cavity geometry the resonating fields undergo total internal reflection (TIR) inside the lithium niobate, and laser damage to that surface can be a limiting factor in performance. The protective layer prevents laser damage to the crystal surface, enabling higher pump power, yielding higher THz output power and wider frequency tuning range. With the unprotected crystal, narrow-band THz output tunable from 1.50 to 2.81 THz was produced, with maximum average output power of 20.1 µW at 1.76 THz for 4 W diode pump power (limited by laser damage to the crystal). With the Teflon coating, no laser damage to the crystal was observed, and the system produced narrow-band THz output tunable from 1.46 to 3.84 THz, with maximum average output power of 56.8 µW at 1.76 THz for 6.5 W diode pump power. This is the highest average output power and the highest diode-to-terahertz conversion efficiency ever reported for an intracavity terahertz polariton laser.
Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants
NASA Astrophysics Data System (ADS)
Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo
2016-10-01
The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.
Optimal Quasi-steady Plasma Thruster system characteristics.
NASA Technical Reports Server (NTRS)
Ludwig, D. E.; Kelly, A. J.
1972-01-01
The overall characteristics of a generalized Quasi-steady Plasma Thruster (QPT) system consisting of thruster head, power conditioning network, propellant supply subsystem are studied. Energy balance equations for the system are coupled with component mass relationships in order to determine overall system mass and performance. Power supply power levels varying from 100 to 10,000 watts with thruster power levels ranging from 300 kw to 30 Mw employing argon as the propellant are considered. The manner in which overall system mass, average thrust, and burn time vary as a function power supply power level, quasi-steady power level, and pulse time are studied. Results indicate the existence of optimum pulse times when system mass is employed as an optimization criterion.
Development and Production of a 201 MHz, 5.0 MW Peak Power Klystron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aymar, Galen; Eisen, Edward; Stockwell, Brad
2016-01-01
Communications & Power Industries LLC has designed and manufactured the VKP-8201A, a high peak power, high gain, VHF band klystron. The klystron operates at 201.25 MHz, with 5.0 MW peak output power, 34 kW average output power, and a gain of 36 dB. The klystron is designed to operate between 1.0 MW and 4.5 MW in the linear range of the transfer curve. The klystron utilizes a unique magnetic field which enables the use of a proven electron gun design with a larger electron beam requirement. Experimental and predicted performance data are compared.
Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz.
Mörz, Florian; Steinle, Tobias; Steinmann, Andy; Giessen, Harald
2015-09-07
We present a high repetition rate mid-infrared optical parametric master oscillator power amplifier (MOPA) scheme, which is tunable from 1370 to 4120nm. Up to 4.3W average output power are generated at 1370nm, corresponding to a photon conversion efficiency of 78%. Bandwidths of 6 to 12nm with pulse durations between 250 and 400fs have been measured. Strong conversion saturation over the whole signal range is observed, resulting in excellent power stability. The system consists of a fiber-feedback optical parametric oscillator that seeds an optical parametric power amplifier. Both systems are pumped by the same Yb:KGW femtosecond oscillator.
A cladding-pumped, tunable holmium doped fiber laser.
Simakov, Nikita; Hemming, Alexander; Clarkson, W Andrew; Haub, John; Carter, Adrian
2013-11-18
We present a tunable, high power cladding-pumped holmium doped fiber laser. The laser generated >15 W CW average power across a wavelength range of 2.043 - 2.171 μm, with a maximum output power of 29.7 W at 2.120 μm. The laser also produced 18.2 W when operating at 2.171 µm. To the best of our knowledge this is the highest power operation of a holmium doped laser at a wavelength >2.15 µm. We discuss the significance of background losses and fiber design for achieving efficient operation in holmium doped fibers.
NASA Technical Reports Server (NTRS)
Kundu, Prasun K.; Bell, T. L.; Lau, William K. M. (Technical Monitor)
2002-01-01
A characteristic feature of rainfall statistics is that they in general depend on the space and time scales over which rain data are averaged. As a part of an earlier effort to determine the sampling error of satellite rain averages, a space-time model of rainfall statistics was developed to describe the statistics of gridded rain observed in GATE. The model allows one to compute the second moment statistics of space- and time-averaged rain rate which can be fitted to satellite or rain gauge data to determine the four model parameters appearing in the precipitation spectrum - an overall strength parameter, a characteristic length separating the long and short wavelength regimes and a characteristic relaxation time for decay of the autocorrelation of the instantaneous local rain rate and a certain 'fractal' power law exponent. For area-averaged instantaneous rain rate, this exponent governs the power law dependence of these statistics on the averaging length scale $L$ predicted by the model in the limit of small $L$. In particular, the variance of rain rate averaged over an $L \\times L$ area exhibits a power law singularity as $L \\rightarrow 0$. In the present work the model is used to investigate how the statistics of area-averaged rain rate over the tropical Western Pacific measured with ship borne radar during TOGA COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmospheric Response Experiment) and gridded on a 2 km grid depends on the size of the spatial averaging scale. Good agreement is found between the data and predictions from the model over a wide range of averaging length scales.
Efficient 2-μm Tm:YAP Q-switched and CW lasers
NASA Astrophysics Data System (ADS)
Hays, A. D.; Cole, Brian; King, Vernon; Goldberg, Lew
2018-02-01
Highly efficient, diode pumped Tm:YAP lasers generating emission in the 1.85-1.94 μm range are demonstrated and characterized. Laser optical efficiencies of 51% and 45%, and electrical efficiencies of 31% and 25% are achieved under CW and Q-switched operation, respectively. Laser performance was characterized for maximum average powers up to 20W with various cavity configurations, all using an intra-cavity lens to compensate for thermal lensing in the Tm:YAP crystal. Q-switched lasers incorportating a Cr:ZnS saturable absorber (SA), resonant mechanical mirror scanner, or acousto-optic modulator were characterized. To enable higher average output powers, measurements of the thermal lens were conducted for the Tm:YAP crystal as a function of pump power and were compared to values predicted by a finiteelement- analysis (FEA) thermal-optical model of the Tm:YAP crystal. A resonator model is developed to incorporate this calculated thermal lens and its effect on laser performance. This paper will address approaches for improving the performance of Tm:YAP lasers, and means for achieving increased average output powers while maintaining high optical efficiency for both SA and mechanical Q-switching.
Code of Federal Regulations, 2012 CFR
2012-01-01
... standby mode, set the clock time to 3:23 and use the average power approach described in Section 5... ranges, conventional cooking tops, conventional ovens, and microwave ovens at this time. However, any... mode may persist for an indefinite time. An indicator that only shows the user that the product is in...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., set the clock time to 3:23 and use the average power approach described in Section 5, Paragraph 5.3.2... conventional ranges, conventional cooking tops, conventional ovens, and microwave ovens at this time. However... finite period of time after the end of the heating function, where the end of the heating function is...
Choi, Tayoung; Ganapathy, Sriram; Jung, Jaehak; Savage, David R.; Lakshmanan, Balasubramanian; Vecasey, Pamela M.
2013-04-16
A system and method for detecting a low performing cell in a fuel cell stack using measured cell voltages. The method includes determining that the fuel cell stack is running, the stack coolant temperature is above a certain temperature and the stack current density is within a relatively low power range. The method further includes calculating the average cell voltage, and determining whether the difference between the average cell voltage and the minimum cell voltage is greater than a predetermined threshold. If the difference between the average cell voltage and the minimum cell voltage is greater than the predetermined threshold and the minimum cell voltage is less than another predetermined threshold, then the method increments a low performing cell timer. A ratio of the low performing cell timer and a system run timer is calculated to identify a low performing cell.
Widely-duration-tunable nanosecond pulse Nd:YVO4 laser based on double Pockels cells
NASA Astrophysics Data System (ADS)
He, Li-Jiao; Liu, Ke; Bo, Yong; Wang, Xiao-Jun; Yang, Jing; Liu, Zhao; Zong, Qing-Shuang; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan
2018-05-01
The development of duration-tunable pulse lasers with constant output power is important for scientific research and materials processing. We present a widely-duration-tunable nanosecond (ns) pulse Nd:YVO4 laser based on double Pockels cells (PCs), i.e. inserting an extra PC into a conventional electro-optic Q-switched cavity dumped laser resonator. Under the absorbed pump power of 24.9 W, the pulse duration is adjustable from 31.9 ns to 5.9 ns by changing the amplitude of the high voltage on the inserted PC from 1100 V to 4400 V at the pulse repetition rate of 10 kHz. The corresponding average output power is almost entirely maintained in the range of 3.5–4.1 W. This represents more than three times increase in pulse duration tunable regime and average power compared to previously reported results for duration-tunable ns lasers. The laser beam quality factor was measured to be M 2 < 1.18.
Zarya Energy Balance Analysis: The Effect of Spacecraft Shadowing on Solar Array Performance
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Kolosov, Vladimir
1999-01-01
The first element of the International Space Station (ISS). Zarya, was funded by NASA and built by the Russian aerospace company Khrunichev State Research and Production Space Center (KhSC). NASA Glenn Research Center (GRC) and KhSC collaborated in performing analytical predictions of the on-orbit electrical performance of Zarya's solar arrays. GRC assessed the pointing characteristics of and shadow patterns on Zarya's solar arrays to determine the average solar energy incident on the arrays. KHSC used the incident energy results to determine Zarya's electrical power generation capability and orbit-average power balance. The power balance analysis was performed over a range of solar beta angles and vehicle operational conditions. This analysis enabled identification of problems that could impact the power balance for specific flights during ISS assembly and was also used as the primary means of verifying that Zarya complied with electrical power requirements. Analytical results are presented for select stages in the ISS assembly sequence along with a discussion of the impact of shadowing on the electrical performance of Zarya's solar arrays.
Commercial mode-locked vertical external cavity surface emitting lasers
NASA Astrophysics Data System (ADS)
Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Head, C. Robin; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.
2017-02-01
In recent years, M Squared Lasers have successfully commercialized a range of mode-locked vertical external cavity surface emitting lasers (VECSELs) operating between 920-1050nm and producing picosecond-range pulses with average powers above 1W at pulse repetition frequencies (PRF) of 200MHz. These laser products offer a low-cost, easy-to-use and maintenance-free tool for the growing market of nonlinear microscopy. However, in order to present a credible alternative to ultrafast Ti-sapphire lasers, pulse durations below 200fs are required. In the last year, efforts have been directed to reduce the pulse duration of the Dragonfly laser system to below 200fs with a target average power above 1W at a PRF of 200MHz. This paper will describe and discuss the latest efforts undertaken to approach these targets in a laser system operating at 990nm. The relatively low PRF operation of Dragonfly lasers represents a challenging requirement for mode-locked VECSELs due to the very short upper state carrier lifetime, on the order of a few nanoseconds, which can lead to double pulsing behavior in longer cavities as the time between consecutive pulses is increased. Most notably, the design of the Dragonfly VECSEL cavity was considerably modified and the laser system extended with a nonlinear pulse stretcher and an additional compression stage. The improved Dragonfly laser system achieved pulse duration as short as 130fs with an average power of 0.85W.
Structure of air shower disc near the core
NASA Technical Reports Server (NTRS)
Inoue, N.; Kawamoto, M.; Misaki, Y.; Maeda, T.; Takeuchi, T.; Toyoda, Y.
1985-01-01
The longitudinal structure of the air shower disk is studied by measuring the arrival time distributions of air shower particles for showers with electron size in the range 3.2 x 10 to the 5.5. power to 3.2 x 10 to the 7.5 power in the Akeno air-shower array (930 gcm squared atmospheric depth). The average FWHM as a parameter of thickness of air shower disk increases with core distances at less than 50m. AT the present stage, dependence on electron size, zenith angle and air shower age is not apparent. The average thickness of the air shower disk within a core distance of 50m could be determined by an electromagnetic cascade starting from the lower altitude.
Diode-pumped Kerr-lens mode-locked Yb:CaGdAlO4 laser with tunable wavelength
NASA Astrophysics Data System (ADS)
Gao, Ziye; Zhu, Jiangfeng; Wang, Junli; Wang, Zhaohua; Wei, Zhiyi; Xu, Xiaodong; Zheng, Lihe; Su, Liangbi; Xu, Jun
2016-01-01
We experimentally demonstrated a wavelength tunable Kerr-lens mode-locked femtosecond laser based on an Yb:CaGdAlO4 (Yb:CGA) crystal. The Kerr-lens mode-locked wavelength tuning range was from 1043.5 to 1076 nm, as broad as 32.5 nm, by slightly tilting the end mirror. Pulses as short as 60 fs were generated at the central wavelength of 1043.8 nm with an average output power of 66 mW. By using an output coupler with 1.5% transmittance, the Kerr-lens mode-locked average output power reached 127 mW with a pulse duration of 81 fs at a central wavelength of 1049.5 nm.
NASA Technical Reports Server (NTRS)
Dupree, David T.; Hawkins, W. Kent
1947-01-01
A study has been made of the performance of the induction and the exhaust systems on the XR60 power-plant installation as part of an investigation conducted in the Cleveland altitude wind tunnel. Altitude flight conditions from 5000 to 30,000 feet were simulated for a range of engine powers from 750 to 3000 brake horsepower. Slipstream rotation prevented normal pressure recoveries in the right side of the main duct in the region of the right intercooler cooling-air duct inlet. Total-pressure losses in the charge-air flow between the turbosupercharger and the intercoolers were as high as 2.1 inches of mercury. The total-pressure distribution of the charge air at the intercooler inlets was irregular and varied as much as 1.0 inch of mercury from the average value at extreme conditions, Total-pressure surveys at the carburetor top deck showed a variation from the average value of 0.3 inch of mercury at take-off power and 0.05 inch of mercury at maximum cruising power, The carburetor preheater system increased the temperature of the engine charge air a maximum of about 82 F at an average cowl-inlet air temperature of 9 F, a pressure altitude of 5000 feet, and a brake horsepower of 1240.
NASA Astrophysics Data System (ADS)
Strugalska-Gola, Elzbieta; Bielewicz, Marcin; Kilim, Stanislaw; Szuta, Marcin; Tyutyunnikov, Sergey
2017-03-01
This work was performed within the international project "Energy plus Transmutation of Radioactive Wastes" (E&T - RAW) for investigations of energy production and transmutation of radioactive waste of the nuclear power industry. 89Y (Yttrium 89) samples were located in the Quinta assembly in order to measure an average high neutron flux density in three different energy ranges using deuteron and proton beams from Dubna accelerators. Our analysis showed that the neutron density flux for the neutron energy range 20.8 - 32.7 MeV is higher than for the neutron energy range 11.5 - 20.8 MeV both for protons with an energy of 0.66 GeV and deuterons with an energy of 2 GeV, while for deuteron beams of 4 and 6 GeV we did not observe this.
Coherent beam combiner for a high power laser
Dane, C. Brent; Hackel, Lloyd A.
2002-01-01
A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.
Regional water consumption for hydro and thermal electricity generation in the United States
Lee, Uisung; Han, Jeongwoo; Elgowainy, Amgad; ...
2017-05-18
Water is an essential resource for most electric power generation technologies. Thermal power plants typically require a large amount of cooling water whose evaporation is regarded to be consumed. Hydropower plants result in evaporative water loss from the large surface areas of the storing reservoirs. This paper estimated the regional water consumption factors (WCFs) for thermal and hydro electricity generation in the United States, because the WCFs of these power plants vary by region and water supply and demand balance are of concern in many regions. For hydropower, total WCFs were calculated using a reservoir’s surface area, state-level water evaporation,more » and background evapotranspiration. Then, for a multipurpose reservoir, a fraction of its WCF was allocated to hydropower generation based on the share of the economic valuation of hydroelectricity among benefits from all purposes of the reservoir. For thermal power plants, the variations in WCFs by type of cooling technology, prime mover technology, and by region were addressed. The results show that WCFs for electricity generation vary significantly by region. Finally, the generation-weighted average WCFs of thermoelectricity and hydropower are 1.25 (range of 0.18–2.0) and 16.8 (range of 0.67–1194) L/kWh, respectively, and the generation-weighted average WCF by the U.S. generation mix in 2015 is estimated at 2.18 L/kWh.« less
Regional water consumption for hydro and thermal electricity generation in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Uisung; Han, Jeongwoo; Elgowainy, Amgad
Water is an essential resource for most electric power generation technologies. Thermal power plants typically require a large amount of cooling water whose evaporation is regarded to be consumed. Hydropower plants result in evaporative water loss from the large surface areas of the storing reservoirs. This paper estimated the regional water consumption factors (WCFs) for thermal and hydro electricity generation in the United States, because the WCFs of these power plants vary by region and water supply and demand balance are of concern in many regions. For hydropower, total WCFs were calculated using a reservoir’s surface area, state-level water evaporation,more » and background evapotranspiration. Then, for a multipurpose reservoir, a fraction of its WCF was allocated to hydropower generation based on the share of the economic valuation of hydroelectricity among benefits from all purposes of the reservoir. For thermal power plants, the variations in WCFs by type of cooling technology, prime mover technology, and by region were addressed. The results show that WCFs for electricity generation vary significantly by region. Finally, the generation-weighted average WCFs of thermoelectricity and hydropower are 1.25 (range of 0.18–2.0) and 16.8 (range of 0.67–1194) L/kWh, respectively, and the generation-weighted average WCF by the U.S. generation mix in 2015 is estimated at 2.18 L/kWh.« less
Browns Ferry-1 single-loop operation tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, J.; Wood, R.T.; Otaduy, P.J.
1985-09-01
This report documents the results of the stability tests performed on February 9, 1985, at the Browns Ferry Nuclear Power Plant Unit 1 under single-loop operating conditions. The observed increase in neutron noise during single-loop operation is solely due to an increase in flow noise. The Browns Ferry-1 reactor has been found to be stable in all modes of operation attained during the present tests. The most unstable test plateau corresponded to minimum recirculation pump speed in single-loop operation (test BFTP3). This operating condition had the minimum flow and maximum power-to-flow ratio. The estimated decay ratio in this plateau ismore » 0.53. The decay ratio decreased as the flow was increased during single-loop operation (down to 0.34 for test plateau BFTP6). This observation implies that the core-wide reactor stability follows the same trends in single-loop as it does in two-loop operation. Finally, no local or higher mode instabilities were found in the data taken from local power range monitors. The decay ratios estimated from the local power range monitors were not significantly different from those estimated from the average power range monitors.« less
Ultrafast disk technology enables next generation micromachining laser sources
NASA Astrophysics Data System (ADS)
Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk
2013-02-01
Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues operation at 15W is an excellent choice. Currently this is the world's most powerful industrial sub-10 ps UV laser.
Savini, Giacomo; Hoffer, Kenneth J; Lombardo, Marco; Serrao, Sebastiano; Schiano-Lomoriello, Domenico; Ducoli, Pietro
2016-01-01
To calculate the near focal distance of different multifocal intraocular lenses (IOLs) as a function of the 2 parameters that are measured before cataract surgery; that is, axial length (AL) and refractive corneal power (keratometry [K]). GB Bietti Foundation IRCCS, Rome, Italy. Noninterventional theoretical study. The IOL power for emmetropia was first calculated in an eye model with the AL ranging from 20 to 30 mm and K from 38 to 48 diopters (D). Then, the predicted myopic refraction for any given IOL add power (from +1.5 to +4.0 D) was calculated, and from this value the near focal distance was obtained. Calculations were also performed for the average eye (K = 43.81 D; AL = 23.65 mm). The near focal distance increased with increasing values of K and AL for each near power add. The near focal distance ranged between 53 cm and 72 cm (21 inches and 28 inches) for a multifocal IOL with +2.50 D, between 44 cm and 60 cm (17 inches and 24 inches) for a multifocal IOL with +3.00 D add, and between 33 cm and 44 cm (13 inches and 18 inches) for a multifocal IOL with +4.00 D add. In the average eye, the near focal distance ranges between 36 cm (near add power = 4.00 D) and 99 cm (near add power = 1.5 D). Longer eyes with steeper corneas showed the longest near focal distance and could experience more difficulties in focusing near objects after surgery. The opposite was true for short hyperopic eyes. Dr. Hoffer receives licensing fees for the commercial use of the registered trademark Hoffer from all biometry manufacturers using the Hoffer Q formula to ensure that it is programmed correctly and book royalties from Slack, Inc., for the textbook IOL Power. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Witthuhn, Jonas; Macke, Andreas
2017-03-01
The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min-1 and points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10 km × 10 km and averaging periods of 1.5-3 h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2 % (broken clouds). The solar global radiation observed at a single station is found to deviate from the spatial average by as much as 14-23 (clear), 8-26 (cirrus), 4-23 (overcast), and 31-79 W m-2 (broken clouds) from domain averages ranging from 1 km × 1 km to 10 km × 10 km in area.
Radon emissions from natural gas power plants at The Pennsylvania State University.
Stidworthy, Alison G; Davis, Kenneth J; Leavey, Jeff
2016-11-01
Burning natural gas in power plants may emit radon ( 222 Rn) into the atmosphere. On the University Park campus of The Pennsylvania State University, atmospheric radon enhancements were measured and modeled in the vicinity of their two power plants. The three-part study first involved measuring ambient outdoor radon concentrations from August 2014 through January 2015 at four sites upwind and downwind of the power plants at distances ranging from 80 m to 310 m. For each plant, one site served as a background site, while three other sites measured radon concentration enhancements downwind. Second, the radon content of natural gas flowing into the power plant was measured, and third, a plume dispersion model was used to predict the radon concentrations downwind of the power plants. These predictions are compared to the measured downwind enhancements in radon to determine whether the observed radon concentration enhancements could be attributed to the power plants' emissions. Atmospheric radon concentrations were consistently low as compared to the EPA action level of 148 Bq m -3 , averaging 34.5 ± 2.7 Bq m -3 around the East Campus Steam Plant (ECSP) and 31.6 ± 2.7 Bq m -3 around the West Campus Steam Plant (WCSP). Significant concentrations of radon, ranging from 516 to 1,240 Bq m -3 , were detected in the natural gas. The measured enhancements downwind of the ECSP averaged 6.2 Bq m -3 compared to modeled enhancements of 0.08 Bq m -3 . Measured enhancements around the WCSP averaged -0.2 Bq m -3 compared to the modeled enhancements of 0.05 Bq m -3 , which were not significant compared to observational error. The comparison of the measured to modeled downwind radon enhancements shows no correlation over time. The measurements of radon levels in the vicinity of the power plants appear to be unaffected by the emissions from the power plants. Radon measurements at sites surrounding power plants that utilize natural gas did not indicate that the radon concentrations originated from the plants' emissions. There were elevated radon concentrations in the natural gas supply flowing into the power plants, but combustion dilution puts the concentration below EPA action levels coming out of the stack, so no hazardous levels were expected downwind. Power plant combustion of natural gas is not likely to pose a radiation health hazard unless very different gas radon concentrations or combustion dilution ratios are encountered.
The Spectrum of Wind Power Fluctuations
NASA Astrophysics Data System (ADS)
Bandi, Mahesh
2016-11-01
Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.
Power electronics for low power arcjets
NASA Technical Reports Server (NTRS)
Hamley, John A.; Hill, Gerald M.
1991-01-01
In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.
A new study of shower age distribution in near vertical showers by EAS air shower array
NASA Technical Reports Server (NTRS)
Chaudhuri, N.; Basak, D. K.; Goswami, G. C.; Ghosh, B.
1984-01-01
The air shower array has been developed since it started operation in 1931. The array covering an area of 900 sq m now incorporates 21 particle density sampling detectors around two muon magnetic spectrographs. The air showers are detected in the size range 10 to the 4th power to 10 to the 6th power particles. A total of 11000 showers has so far been detected. Average values of shower age have been obtained in various shower size ranges to study the dependence of shower age on shower size. The core distance dependence of shower age parameter has also been analyzed for presentation.
Performance evaluation of Ormat unit at Wabuska, Nevada. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culver, G.
1986-07-01
Three nominal 24 hour tests under summer, winter and spring weather conditions, were run on an Ormat geothermal binary power generation machine. The machine, located at TAD's Enterprises in Wabuska, Nevada is supplied with approximately 830 gpm of geothermal water at 221/sup 0/F and has two spray cooling ponds. During the tests, temperature, pressure, and flows of geothermal water, freon, cooling water and instantaneous electrical production were recorded hourly. At least once during each test, energy consumption of the well pump, freon feed pump and cooling water pumps were made. Power output of the machine is limited by spray pondmore » capacity. Net output ranged from 410.2 kW during summer conditions when cooling water was 65/sup 0/F to 610.4 kW during winter conditions when cooling water was 55/sup 0/F. Net resource utilization ranged from 1.005 Whr/lb during the summer test to 1.55 Whr/lb during the winter test. Spray pond performance averaged 63% for the fall and winter tests. Availability of the Ormat unit itself during the eight month test period was generally good, averaging 95.5%. Overall system availability, including well pumps, cooling system and electric grid was somewhat less - averaging 83%.« less
Power Scaling and Seasonal Evolution of Floe Areas in the Arctic East Siberian Sea
NASA Astrophysics Data System (ADS)
Barton, C. C.; Geise, G. R.; Tebbens, S. F.
2016-12-01
The size distribution of floes and its evolution during the Arctic summer season and a model of fragmentation that generates a power law scaling distribution of fragment sizes are the subject of this paper. This topic is of relevance to marine vessels that encounter floes, to the calculation of sea ice albedo, to the determination of Arctic heat exchange which is strongly influenced by ice concentrations and the amount of open water between floes, and to photosynthetic marine organisms which are dependent upon sunlight penetrating the spaces between floes. Floes are 2-3 m thick and initially range in area from one to millions of square meters. The cumulative number versus floe area distribution of seasonal sea floes from six satellite images of the Arctic Ocean during the summer breakup and melting is well fit by two scale-invariant power law scaling regimes for floe areas ranging from 30 m2 to 28,400,000 m2. Scaling exponents, B, for larger floe areas range from -0.6 to -1.0 with an average of -0.8. Scaling exponents, B, for smaller floe areas range from -0.3 to -0.6 with an average of -0.5. The inflection point between the two scaling regimes ranges from 283 x 102 m2 to 4850 x 102 m2 and generally moves from larger to smaller floe areas through the summer melting season. We observe that the two scaling regimes and the inflection between them are established during the initial breakup of sea ice solely by the process of fracture. The distributions of floe size regimes retain their scaling exponents as the floe pack evolves from larger to smaller floe areas from the initial breakup through the summer season, due to grinding, crushing, fracture, and melting. The scaling exponents for floe area distribution are in the same range as those reported in previous studies of Arctic floes and for the single scaling exponents found for crushed and ground geologic materials including streambed gravel, lunar debris, and artificially crushed quartz. A probabilistic fragmentation model that produces a power distribution of particle sizes has been developed and will be presented.
Xiong, Ying; Li, Jing; Wang, Ningli; Liu, Xue; Wang, Zhao; Tsai, Frank F; Wan, Xiuhua
2017-01-01
To determine corneal Q value and its related factors in Chinese subjects older than 30 years. Cross sectional study. 1,683 participants (1,683 eyes) from the Handan Eye Study were involved, including 955 female and 728 male with average age of 53.64 years old (range from 30 to 107 years). The corneal Q values of anterior and posterior surfaces were measured at 3.0, 5.0 and 7.0mm aperture diameters using Bausch & Lomb Orbscan IIz (software version 3.12). Age, gender and refractive power were recorded. The average Q values of the anterior surface at 3.0, 5.0 and 7.0mm aperture diameters were -0.28±0.18, -0.28±0.18, and -0.29±0.18, respectively. The average Q value of the anterior surface at the 5.0mm aperture diameter was negatively correlated with age (B = -0.003, p<0.01) and the refractive power (B = -0.013, p = 0.016). The average Q values of the posterior surface at 3.0, 5.0, and 7.0mm were -0.26±0.216, -0.26±0.214, and -0.26±0.215, respectively. The average Q value of the posterior surface at the 5.0mm aperture diameter was positively correlated with age (B = 0.002, p = 0.036) and the refractive power (B = 0.016, p = 0.043). The corneal Q value of the elderly Chinese subjects is different from that of previously reported European and American subjects, and the Q value appears to be correlated with age and refractive power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2001-10-29
An inverter topology and control scheme has been developed that can drive low-inductance, surface-mounted permanent magnet motors over the wide constant power speed range required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC) [1]. The DMIC can drive either the Permanent Magnet Synchronous Machine (PMSM) with sinusoidal back emf, or the brushless dc machine (BDCM) with trapezoidal emf in the motoring and regenerative braking modes. In this paper we concentrate on the BDCM under high-speed motoring conditions. Simulation results show that if all motor and inverter loss mechanisms are neglected, the constant power speedmore » range of the DMIC is infinite. The simulation results are supported by closed form expressions for peak and rms motor current and average power derived from analytical solution to the differential equations governing the DMIC/BDCM drive for the lossless case. The analytical solution shows that the range of motor inductance that can be accommodated by the DMIC is more than an order of magnitude such that the DMIC is compatible with both low- and high-inductance BDCMs. Finally, method is given for integrating the classical hysteresis band current control, used for motor control below base speed, with the phase advance of DMIC that is applied above base speed. The power versus speed performance of the DMIC is then simulated across the entire speed range.« less
Low-power wireless medical sensor platform.
Dolgov, Arseny B; Zane, Regan
2006-01-01
Long-term, low duty cycle monitoring of patients with a variety of disabilities or health concerns is often required. In this paper, we discuss the design considerations and implementation of an ultra-low power wireless medical sensor platform, suitable for a wide range of medical and sports applications. A hardware demonstration prototype based on readily available components is presented with sensors for 3-axis acceleration, temperature and galvanic skin response. Detailed power measurements and operation results are shown, demonstrating a sensor life span of more than 10 years on a single 200 mAh lithium watch battery using low current standby techniques with an average power of less than 5 muW and a 10 second sample interval.
Operational trends in the temperature of a high-pressure microwave powered sulfur lamp
NASA Astrophysics Data System (ADS)
Johnston, C. W.; Jonkers, J.; van der Mullen, J. J. A. M.
2002-10-01
Temperatures have been measured in a high-pressure microwave sulfur lamp using sulfur atomic lines found in the spectrum at 867, 921 and 1045 nm. The absolute intensities were determined for 3, 5 and 7 bar lamps at several input powers, ranging from 400 to 600 W. On average, temperatures are found to be 4.1+/-0.15 kK and increase slightly with increasing pressure and input power. These values and trends agree well with our simulations. However, the power trend is reversed to that demonstrated by the model, which might be an indication that the skin-depth model for the electric field may be incomplete.
NASA Astrophysics Data System (ADS)
Gradoboev, A. V.; Orlova, K. N.; Simonova, A. V.
2018-05-01
The paper presents the research results of watt and volt characteristics of LEDs based upon AlGaInP heterostructures with multiple quantum wells in the active region. The research is completed for LEDs (emission wavelengths 624 nm and 590 nm) under irradiation by fast neutron and gamma-quanta in passive powering mode. Watt-voltage characteristics in the average and high electron injection areas are described as a power function of the operating voltage. It has been revealed that the LEDs transition from average electron injection area to high electron injection area occurs by overcoming the transition area. It disappears as it get closer to the limit result of the irradiation LEDs that is low electron injection mode in the entire supply voltage range. It has been established that the gamma radiation facilitates initial defects restructuring only 42% compared to 100% when irradiation is performed by fast neutrons. Ratio between measured on the boundary between low and average electron injection areas current value and the contribution magnitude of the first stage LEDs emissive power reducing is established. It is allows to predict LEDs resistance to irradiation by fast neutrons and gamma rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teplyakova, Ludmila, E-mail: lat168@mail.ru; Koneva, Nina, E-mail: koneva@mail.ru; Kunitsyna, Tatyana, E-mail: kma11061990@mail.ru
2016-01-15
The slip trace pattern of Ni{sub 3}Fe alloy single crystals with the short range order oriented for a single slip were investigated on replica at different stages of deformation using the transmission diffraction electron microscopy method. The connection of staging with the formation of slip trace pattern and the change of its parameters were established. The number of local areas where two or more slip systems work is increased with the change of stages. In these conditions the character of slip localization in the primary slip system is changed from the packets to the homogeneous distribution. The distributions of themore » distances between slip traces and the shear power in slip traces were plotted. The correlation between the average value of the shear power in the primary slip traces and the average distance between them was revealed in this work. It was established that the rates of the average value growth of the relative local shear and the shear power in the slip traces reach the largest values at the transition stage.« less
Passive mode-locking of a diode-pumped Nd:YVO(4) laser by intracavity SHG in PPKTP.
Iliev, Hristo; Chuchumishev, Danail; Buchvarov, Ivan; Petrov, Valentin
2010-03-15
Experimental results on passive mode-locking of a Nd:YVO(4) laser using intracavity frequency doubling in periodically poled KTP (PPKTP) crystal are reported. Both, negative cascaded chi((2)) lensing and frequency doubling nonlinear mirror (FDNLM) are exploited for the laser mode-locking. The FDNLM based on intensity dependent reflection in the laser cavity ensures self-starting and self-sustaining mode-locking while the cascaded chi((2)) lens process contributes to substantial pulse shortening. This hybrid technique enables generation of stable trains of pulses at high-average output power with several picoseconds pulse width. The pulse repetition rate of the laser is 117 MHz with average output power ranging from 0.5 to 3.1 W and pulse duration from 2.9 to 5.2 ps.
Generation of µW level plateau harmonics at high repetition rate.
Hädrich, S; Krebs, M; Rothhardt, J; Carstens, H; Demmler, S; Limpert, J; Tünnermann, A
2011-09-26
The process of high harmonic generation allows for coherent transfer of infrared laser light to the extreme ultraviolet spectral range opening a variety of applications. The low conversion efficiency of this process calls for optimization or higher repetition rate intense ultrashort pulse lasers. Here we present state-of-the-art fiber laser systems for the generation of high harmonics up to 1 MHz repetition rate. We perform measurements of the average power with a calibrated spectrometer and achieved µW harmonics between 45 nm and 61 nm (H23-H17) at a repetition rate of 50 kHz. Additionally, we show the potential for few-cycle pulses at high average power and repetition rate that may enable water-window harmonics at unprecedented repetition rate. © 2011 Optical Society of America
Mercury emission and speciation of coal-fired power plants in China
NASA Astrophysics Data System (ADS)
Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.
2010-02-01
Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.
Mercury emission and speciation of coal-fired power plants in China
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, L.; Li, G.; Wu, Y.; Hao, J.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.
2009-11-01
Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of selective catalyst reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.
NASA Astrophysics Data System (ADS)
Slaski, G.; Ohde, B.
2016-09-01
The article presents the results of a statistical dispersion analysis of an energy and power demand for tractive purposes of a battery electric vehicle. The authors compare data distribution for different values of an average speed in two approaches, namely a short and long period of observation. The short period of observation (generally around several hundred meters) results from a previously proposed macroscopic energy consumption model based on an average speed per road section. This approach yielded high values of standard deviation and coefficient of variation (the ratio between standard deviation and the mean) around 0.7-1.2. The long period of observation (about several kilometers long) is similar in length to standardized speed cycles used in testing a vehicle energy consumption and available range. The data were analysed to determine the impact of observation length on the energy and power demand variation. The analysis was based on a simulation of electric power and energy consumption performed with speed profiles data recorded in Poznan agglomeration.
Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems
NASA Astrophysics Data System (ADS)
Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki
Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.
SU-E-I-71: KVp Dependence of Transmitted Exposure for a Radiography Unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Y; Lynch, D; So, J
2014-06-01
Purpose: To investigate the kVp dependence of the transmitted exposure for a radiography x-ray unit. Methods: The study used a GE DiscoveryTM XR656 DR unit, a 30 (L) × 30 (W) × 25 cm thick Lucite phantom, two anthropomorphic phantoms (an Alderson RS-310 chest phantom and a 3M skull phantom), an Unfors detector, and a Radcal 10x9-6 ion chamber. We measured the entrance exposure and transmitted exposure of each phantom at 60, 70, 80, 90, 100, 110, 120 kVp for mAs range from 2.5 to 200 mAs, without any additional filter. The FOV is 30×30 cm for the Lucite andmore » chest phantom (AP view), and 20×20 cm for skull phantom (Lateral view). The transmitted exposure was measured at the phantom center of the x-ray exit side. For chest phantom, the transmitted exposures at 3 inch upper right and upper left from the center were also measured. We also checked the reproducibility and accuracy of the DR unit. Results: For each phantom, at every kVp and mAs setting, the transmitted exposure per mAs was calculated and normalized by the relative entrance exposure; the averaged transmitted exposure per mAs at each specific kVp was then determined. For chest phantom, the mean transmitted exposure per mAs was the average of three exit locations. The averaged transmitted exposure per mAs was fit as a power function of kVp. The result showed the transmitted exposure per mAs was approximately proportional to third power of the kVp for two anthropomorphic phantoms and forth power of the kVp for the Lucite phantom. Conclusion: The traditional assumption of fifth power kVp dependence to the transmitted exposure is inaccurate. At the normal radiography kVp range, the transmitted exposure is approximately proportional to third power of the kVp for a typical patient and up to forth power of the kVp for a large patient.« less
The Cosmic History of Hot Gas Cooling and Radio AGN Activity in Massive Early-Type Galaxies
NASA Technical Reports Server (NTRS)
Danielson, A. L. R.; Lehmer, B. D.; Alexander, D. M.; Brandt, W. M.; Luo, B.; Miller, N.; Xue, Y. Q.; Stott, J. P.
2012-01-01
We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z approx equals 0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a subset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the approx equals 4 Ms CDF-S and approx equals 2 Ms CDF-N and z = 0.1-0.6 in the approx equals 250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keY to B-band luminosity ratio (L(sub x) /L(sub Beta) varies as [1 +z]) since z approx equals 1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGNs in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z approx equals 1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of approx equals1.4 -- 2.6 times larger than the average radiative cooling power from hot gas over the redshift range z approx equals 0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies.
A comparative study of optimum and suboptimum direct-detection laser ranging receivers
NASA Technical Reports Server (NTRS)
Abshire, J. B.
1978-01-01
A summary of previously proposed receiver strategies for direct-detection laser ranging receivers is presented. Computer simulations are used to compare performance of candidate implementation strategies in the 1- to 100-photoelectron region. Under the condition of no background radiation, the maximum-likelihood and minimum mean-square error estimators were found to give the same performance for both bell-shaped and rectangular optical-pulse shapes. For signal energies greater than 100 photoelectrons, the root-mean-square range error is shown to decrease as Q to the -1/2 power for bell-shaped pulses and Q to the -1 power for rectangular pulses, where Q represents the average pulse energy. Of several receiver implementations presented, the matched-filter peak detector was found to be preferable. A similar configuration, using a constant-fraction discriminator, exhibited a signal-level dependent time bias.
NASA Astrophysics Data System (ADS)
Yan, Dexian; Wang, Yuye; Xu, Degang; Shi, Wei; Zhong, Kai; Liu, Pengxiang; Yan, Chao; Mei, Jialin; Shi, Jia; Yao, Jianquan
2017-01-01
We presented a high power, widely tunable narrowband 2 μm dual-wavelength source employing intracavity optical parametric oscillator with potassium titanium oxide phosphate (KTP) crystal. Two identical KTP crystals were oriented oppositely in the OPO cavity to compensate the walk-off effect. The output average power of dual-wavelength 2 μm laser was up to 18.18 W at 10 kHz with the peak power of 165 kW. The two wavelengths can be tuned in the range of 2070.7 nm to 2191.1 nm for ordinary light while in the range of 2190.7 nm to 2065.9 nm for extraordinary light with the full width at half maximum (FWHM) about 0.8 nm. The pulse width of the tunable laser was as narrow as 11 ns. The beam quality factor M 2 was less than 4 during wavelength tuning.
Piezoelectric-nanowire-enabled power source for driving wireless microelectronics.
Xu, Sheng; Hansen, Benjamin J; Wang, Zhong Lin
2010-10-19
Harvesting energy from irregular/random mechanical actions in variable and uncontrollable environments is an effective approach for powering wireless mobile electronics to meet a wide range of applications in our daily life. Piezoelectric nanowires are robust and can be stimulated by tiny physical motions/disturbances over a range of frequencies. Here, we demonstrate the first chemical epitaxial growth of PbZr(x)Ti(1-x)O(3) (PZT) nanowire arrays at 230 °C and their application as high-output energy converters. The nanogenerators fabricated using a single array of PZT nanowires produce a peak output voltage of ~0.7 V, current density of 4 μA cm(-2) and an average power density of 2.8 mW cm(-3). The alternating current output of the nanogenerator is rectified, and the harvested energy is stored and later used to light up a commercial laser diode. This work demonstrates the feasibility of using nanogenerators for powering mobile and even personal microelectronics.
Movement-related beta oscillations show high intra-individual reliability.
Espenhahn, Svenja; de Berker, Archy O; van Wijk, Bernadette C M; Rossiter, Holly E; Ward, Nick S
2017-02-15
Oscillatory activity in the beta frequency range (15-30Hz) recorded from human sensorimotor cortex is of increasing interest as a putative biomarker of motor system function and dysfunction. Despite its increasing use in basic and clinical research, surprisingly little is known about the test-retest reliability of spectral power and peak frequency measures of beta oscillatory signals from sensorimotor cortex. Establishing that these beta measures are stable over time in healthy populations is a necessary precursor to their use in the clinic. Here, we used scalp electroencephalography (EEG) to evaluate intra-individual reliability of beta-band oscillations over six sessions, focusing on changes in beta activity during movement (Movement-Related Beta Desynchronization, MRBD) and after movement termination (Post-Movement Beta Rebound, PMBR). Subjects performed visually-cued unimanual wrist flexion and extension. We assessed Intraclass Correlation Coefficients (ICC) and between-session correlations for spectral power and peak frequency measures of movement-related and resting beta activity. Movement-related and resting beta power from both sensorimotor cortices was highly reliable across sessions. Resting beta power yielded highest reliability (average ICC=0.903), followed by MRBD (average ICC=0.886) and PMBR (average ICC=0.663). Notably, peak frequency measures yielded lower ICC values compared to the assessment of spectral power, particularly for movement-related beta activity (ICC=0.386-0.402). Our data highlight that power measures of movement-related beta oscillations are highly reliable, while corresponding peak frequency measures show greater intra-individual variability across sessions. Importantly, our finding that beta power estimates show high intra-individual reliability over time serves to validate the notion that these measures reflect meaningful individual differences that can be utilised in basic research and clinical studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Morrow, William R; Griffin, W Michael; Matthews, H Scott
2008-05-15
We update a previously presented Linear Programming (LP) methodology for estimating state level costs for reducing CO2 emissions from existing coal-fired power plants by cofiring switchgrass, a biomass energy crop, and coal. This paper presents national level results of applying the methodology to the entire portion of the United States in which switchgrass could be grown without irrigation. We present incremental switchgrass and coal cofiring carbon cost of mitigation curves along with a presentation of regionally specific cofiring economics and policy issues. The results show that cofiring 189 million dry short tons of switchgrass with coal in the existing U.S. coal-fired electricity generation fleet can mitigate approximately 256 million short tons of carbon-dioxide (CO2) per year, representing a 9% reduction of 2005 electricity sector CO2 emissions. Total marginal costs, including capital, labor, feedstock, and transportation, range from $20 to $86/ton CO2 mitigated,with average costs ranging from $20 to $45/ton. If some existing power plants upgrade to boilers designed for combusting switchgrass, an additional 54 million tons of switchgrass can be cofired. In this case, total marginal costs range from $26 to $100/ton CO2 mitigated, with average costs ranging from $20 to $60/ton. Costs for states east of the Mississippi River are largely unaffected by boiler replacement; Atlantic seaboard states represent the lowest cofiring cost of carbon mitigation. The central plains states west of the Mississippi River are most affected by the boiler replacement option and, in general, go from one of the lowest cofiring cost of carbon mitigation regions to the highest. We explain the variation in transportation expenses and highlight regional cost of mitigation variations as transportation overwhelms other cofiring costs.
Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.
Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan
2017-02-01
The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.
Muscle Force-Velocity Relationships Observed in Four Different Functional Tests
Zivkovic, Milena Z.; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan
2017-01-01
Abstract The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force–velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles. PMID:28469742
Horrevorts, Esther M B; van Grieken, Amy; Mieloo, Cathelijne L; Hafkamp-de Groen, Esther; Bannink, Rienke; Bouwmeester-Landweer, Merian B R; Broeren, Suzanne; Raat, Hein
2017-01-01
Objectives To determine the feasibility, concurrent validity and discriminatory power of the instrument for Identification of Parents At Risk for child Abuse and Neglect (IPARAN) among Dutch parents with a newborn child. Setting Community paediatrics. Participants Data from a controlled trial were used. In total, 2659 Dutch parents with a newborn child were invited to participate. Of the 2659 parents, 759 parents filled in the consent form and participated in the study. Primary and secondary outcome measures Concurrent validity was determined by calculating correlations—using the Pearson’s correlation (r)—between the IPARAN score and related constructs from the following instruments: the Empowerment Questionnaire 2.0, the Family Functioning Questionnaire and the Parenting Stress Questionnaire. Discriminatory power was determined by calculating receiver operating characteristic (ROC) curves between high-risk mothers and low-risk mothers according to their scores on the related constructs. Feasibility was determined by examining the percentage of missing answers. Results In terms of concurrent validity, we found that 3 out of 12 correlations between the IPARAN score and related constructs were strong (ie, r>0.50) and 4 out of 12 were medium (ie, r=0.30–0.49). In terms of discriminatory power, mothers with a score in the borderline/clinical range or lowest 10 percent (P10) range of the related constructs (high-risk mothers) had a higher IPARAN score than mothers with a score in the normal range or highest 90 percent (P90) range of the related constructs (low-risk mothers). Effect sizes varied from d=0.37 to d=1.93, and the area under the ROC curve varied from 0.62 to 0.93. Regarding feasibility, the part of the IPARAN filled in by the mother had on average 0.7% missing answers, whereas the part of the IPARAN filled in by the father had on average 1.7% missing answers. Conclusion The results of this study support the concurrent validity, discriminatory power and feasibility of the IPARAN among a population of Dutch parents with a newborn child. PMID:28838892
Humid free efficient solar panel
NASA Astrophysics Data System (ADS)
Panjwani, Manoj Kumar; Panjwani, Suresh Kumar; Mangi, Fareed Hussain; Khan, Danish; Meicheng, Li
2017-09-01
The paper examines the impact of the humidity on the Solar panels which makes a space for the drastic variation in the power generated and makes the device less efficient. Humidity readily affects the efficiency of the solar cells and creates a minimal layer of water on its surface. It also decreases the efficiency by 10-20% of the total power output produced. Moreover, to handle this issue, all around characterized measures are required to be taken to guarantee the smooth working of the solar panels utilized in humid areas. In connection with this issue, Karachi, the biggest city of Pakistan which is located near the costal line touching Arabian Sea, was taken as a reference city to measure the humidity range. In Karachi, the average humidity lies between 25-70% (as per Pakistan Meteorological Department PMD), that indirectly leads in decreasing power acquired from a Solar Panel and develops various complexities for the solar system. The system on average experiences stability issues, such as those of power fluctuations etc., due to which, the whole solar system installed observes abnormal variations in acquired power. Silica Gel was used as a desiccant material in order to assure dryness over the solar panel. More than four experiments were conducted with the usage of water absorbent to improve the efficiency and to make system more power efficient.
Phelps, Geoffrey; Kelcey, Benjamin; Jones, Nathan; Liu, Shuangshuang
2016-10-03
Mathematics professional development is widely offered, typically with the goal of improving teachers' content knowledge, the quality of teaching, and ultimately students' achievement. Recently, new assessments focused on mathematical knowledge for teaching (MKT) have been developed to assist in the evaluation and improvement of mathematics professional development. This study presents empirical estimates of average program change in MKT and its variation with the goal of supporting the design of experimental trials that are adequately powered to detect a specified program effect. The study drew on a large database representing five different assessments of MKT and collectively 326 professional development programs and 9,365 teachers. Results from cross-classified hierarchical growth models found that standardized average change estimates across the five assessments ranged from a low of 0.16 standard deviations (SDs) to a high of 0.26 SDs. Power analyses using the estimated pre- and posttest change estimates indicated that hundreds of teachers are needed to detect changes in knowledge at the lower end of the distribution. Even studies powered to detect effects at the higher end of the distribution will require substantial resources to conduct rigorous experimental trials. Empirical benchmarks that describe average program change and its variation provide a useful preliminary resource for interpreting the relative magnitude of effect sizes associated with professional development programs and for designing adequately powered trials. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
Geisler, J. E.; Fowlis, W. W.
1980-01-01
The effect of a power law gravity field on baroclinic instability is examined, with a focus on the case of inverse fifth power gravity, since this is the power law produced when terrestrial gravity is simulated in spherical geometry by a dielectric force. Growth rates are obtained of unstable normal modes as a function of parameters of the problem by solving a second order differential equation numerically. It is concluded that over the range of parameter space explored, there is no significant change in the character of theoretical regime diagrams if the vertically averaged gravity is used as parameter.
High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers
NASA Astrophysics Data System (ADS)
Arun, S.; Choudhury, Vishal; Balaswamy, V.; Prakash, Roopa; Supradeepa, V. R.
2018-04-01
We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power Ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm(>1 octave) from 880-1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.
Scaling properties of marathon races
NASA Astrophysics Data System (ADS)
Alvarez-Ramirez, Jose; Rodriguez, Eduardo
2006-06-01
Some regularities in popular marathon races are identified in this paper. It is found for high-performance participants (i.e., racing times in the range [2:15,3:15] h), the average velocity as a function of the marathoner's ranking behaves as a power-law, which may be suggesting the presence of critical phenomena. Elite marathoners with racing times below 2:15 h can be considered as outliers with respect to this behavior. For the main marathon pack (i.e., racing times in the range [3:00,6:00] h), the average velocity as a function of the marathoner's ranking behaves linearly. For this racing times, the interpersonal velocity, defined as the difference of velocities between consecutive runners, displays a continuum of scaling behavior ranging from uncorrelated noise for small scales to correlated 1/f-noise for large scales. It is a matter of fact that 1/f-noise is characterized by correlations extended over a wide range of scales, a clear indication of some sort of cooperative effect.
BORAX V EXPONENTIAL EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirn, F.S.; Hagen, J.I.
1963-04-01
The cadmium ratio was measured in an exponential mockup of Borax V as a function of the void fraction. The extent of voids, simulated by lengths of closed polyethylene tubes, ranged from 0 to 40%. The corresponding cadmium ratios ranged from 6.1 to 4.6. The exponential was also used to determine the radial flux pattern across a Borax-type fuel assembly and the fine flux detail in and around fuel rods. For a normal loading the maximum-to-average power generation across an assembly was 1.24. (auth)
A Thermally Powered ISFET Array for On-Body pH Measurement.
Douthwaite, Matthew; Koutsos, Ermis; Yates, David C; Mitcheson, Paul D; Georgiou, Pantelis
2017-12-01
Recent advances in electronics and electrochemical sensors have led to an emerging class of next generation wearables, detecting analytes in biofluids such as perspiration. Most of these devices utilize ion-selective electrodes (ISEs) as a detection method; however, ion-sensitive field-effect transistors (ISFETs) offer a solution with improved integration and a low power consumption. This work presents a wearable, thermoelectrically powered system composed of an application-specific integrated circuit (ASIC), two commercial power management integrated circuits and a network of commercial thermoelectric generators (TEGs). The ASIC is fabricated in 0.35 m CMOS and contains an ISFET array designed to read pH as a current, a processing module which averages the signal to reduce noise and encodes it into a frequency, and a transmitter. The output frequency has a measured sensitivity of 6 to 8 kHz/pH for a pH range of 7-5. It is shown that the sensing array and processing module has a power consumption 6 W and, therefore, can be entirely powered by body heat using a TEG. Array averaging is shown to reduce noise at these low power levels to 104 V (input referred integrated noise), reducing the minimum detectable limit of the ASIC to 0.008 pH units. The work forms the foundation and proves the feasibility of battery-less, on-body electrochemical for perspiration analysis in sports science and healthcare applications.
Effects of temporal averaging on short-term irradiance variability under mixed sky conditions
NASA Astrophysics Data System (ADS)
Lohmann, Gerald M.; Monahan, Adam H.
2018-05-01
Characterizations of short-term variability in solar radiation are required to successfully integrate large numbers of photovoltaic power systems into the electrical grid. Previous studies have used ground-based irradiance observations with a range of different temporal resolutions and a systematic analysis of the effects of temporal averaging on the representation of variability is lacking. Using high-resolution surface irradiance data with original temporal resolutions between 0.01 and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. In this analysis, we condition all data to states of mixed skies, which are the most potentially problematic in terms of local PV power volatility. Statistics of clear-sky index k* and its increments Δk*τ (i.e., normalized surface irradiance and changes therein over specified intervals of time) are considered separately. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability. Higher-resolution data increase the complexity of data management and quality control without appreciably improving the representation of variability. The results do not show any substantial discrepancies between locations or seasons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentine, Anthony L.; Cox, Jonathan Albert
Methods and systems for stabilizing a resonant modulator include receiving pre-modulation and post-modulation portions of a carrier signal, determining the average power from these portions, comparing an average input power to the average output power, and operating a heater coupled to the modulator based on the comparison. One system includes a pair of input structures, one or more processing elements, a comparator, and a control element. The input structures are configured to extract pre-modulation and post-modulation portions of a carrier signal. The processing elements are configured to determine average powers from the extracted portions. The comparator is configured to comparemore » the average input power and the average output power. The control element operates a heater coupled to the modulator based on the comparison.« less
Long-range wind monitoring in real time with optimized coherent lidar
NASA Astrophysics Data System (ADS)
Dolfi-Bouteyre, Agnes; Canat, Guillaume; Lombard, Laurent; Valla, Matthieu; Durécu, Anne; Besson, Claudine
2017-03-01
Two important enabling technologies for pulsed coherent detection wind lidar are the laser and real-time signal processing. In particular, fiber laser is limited in peak power by nonlinear effects, such as stimulated Brillouin scattering (SBS). We report on various technologies that have been developed to mitigate SBS and increase peak power in 1.5-μm fiber lasers, such as special large mode area fiber designs or strain management. Range-resolved wind profiles up to a record range of 16 km within 0.1-s averaging time have been obtained thanks to those high-peak power fiber lasers. At long range, the lidar signal gets much weaker than the noise and special care is required to extract the Doppler peak from the spectral noise. To optimize real-time processing for weak carrier-to-noise ratio signal, we have studied various Doppler mean frequency estimators (MFE) and the influence of data accumulation on outliers occurrence. Five real-time MFEs (maximum, centroid, matched filter, maximum likelihood, and polynomial fit) have been compared in terms of error and processing time using lidar experimental data. MFE errors and data accumulation limits are established using a spectral method.
Mining the earth's heat in the basin and range
Sass, John H.
1995-01-01
The Geothermal Program of the U.S. Geological Survey (USGS) is revisiting the Basin and Range Province after a hiatus of over a decade. The Basin and Range is a region of Neogene extension and generally high, but regionally and locally variable heat flow. The northern Basin and Range (Great Basin) has higher mean elevation and more intense Quaternary extension than does the southern Basin and Range, and a somewhat higher average heat flow. Present geothermal electric power generation (500+ MW) is entirely from hydrothermal systems of the Great Basin. The USGS is seeking industrial partners to investigate the potential for new hydrothermal reservoirs and to develop the technology to enhance the productivity of existing reservoirs.
2007-09-01
Power Control and Filter Boards (PCFB) are powered. The anticipated temperature range is based on a model, and like all models, it is subject to...voltage regulation, filtering , or averaging at room temperature , and with no rate applied. This data was taken at 1K samples/sec, and resulted in an...buffering or amplification should be done as near to the signal source as possible. The low pass filter was added to the rate, BIT, and temperature
Actively mode-locked Tm-Ho:LiYF4 and Tm-Ho:BaY2F8 lasers
NASA Astrophysics Data System (ADS)
Gatti, D.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P.
2007-01-01
We report on the generation of mode-locking pulse trains with high average output powers from diode-pumped Tm-Ho:LiYF4 and Tm-Ho:BaY2F8 lasers emitting at around 2 μm. The highest output power of 365 mW was obtained with the Tm-Ho:YLF4 laser, whereas the shortest pulse duration of 120 ps and the widest tunability range of 59 nm was achieved with the Tm-Ho:BaY2F8 laser.
Smith, Sheryl M; Coleman, Scott C; Bacon, Stacy A; Polo, Fabian E; Brodsky, James W
2012-06-01
There is limited objective scientific information on the functional effects of cheilectomy. The purpose of this study was to test the hypothesis that cheilectomy for hallux rigidus improves gait by increasing ankle push-off power. Seventeen patients with symptomatic Stage 1 or Stage 2 hallux rigidus were studied. Pre- and postoperative first metatarsophalangeal (MTP) range of motion and AOFAS hallux scores were recorded. A gait analysis was performed within 4 weeks prior to surgery and repeated at a minimum of 1 year after surgery. Gait analysis was done using a three-dimensional motion capture system and a force platform embedded in a 10-m walkway. Gait velocity sagittal plane ankle range of motion and peak sagittal plane ankle push-off power were analyzed. Following cheilectomy, significant increases were noted for first MTP range of motion and AOFAS hallux score. First MTP motion improved an average of 16.7 degrees, from means of 33.9 degrees preoperatively to 50.6 degrees postoperatively (p<0.001). AOFAS hallux score increased from 62 to 81 (p<0.007). As demonstrated through gait anaylsis, a significant increase in postoperative peak sagittal plane ankle push-off power from 1.71±0.92 W/kg to 2.05±0.75 W/kg (p<0.04). In addition to clinically increased range of motion and improved AOFAS Hallux score, first MTP joint cheilectomy produced objective improvement in gait, as measured by increased peak sagittal-plane ankle push-off power.
Overview and Evaluation of Bluetooth Low Energy: An Emerging Low-Power Wireless Technology
Gomez, Carles; Oller, Joaquim; Paradells, Josep
2012-01-01
Bluetooth Low Energy (BLE) is an emerging low-power wireless technology developed for short-range control and monitoring applications that is expected to be incorporated into billions of devices in the next few years. This paper describes the main features of BLE, explores its potential applications, and investigates the impact of various critical parameters on its performance. BLE represents a trade-off between energy consumption, latency, piconet size, and throughput that mainly depends on parameters such as connInterval and connSlaveLatency. According to theoretical results, the lifetime of a BLE device powered by a coin cell battery ranges between 2.0 days and 14.1 years. The number of simultaneous slaves per master ranges between 2 and 5,917. The minimum latency for a master to obtain a sensor reading is 676 μs, although simulation results show that, under high bit error rate, average latency increases by up to three orders of magnitude. The paper provides experimental results that complement the theoretical and simulation findings, and indicates implementation constraints that may reduce BLE performance.
A Stochastic Model of Space-Time Variability of Mesoscale Rainfall: Statistics of Spatial Averages
NASA Technical Reports Server (NTRS)
Kundu, Prasun K.; Bell, Thomas L.
2003-01-01
A characteristic feature of rainfall statistics is that they depend on the space and time scales over which rain data are averaged. A previously developed spectral model of rain statistics that is designed to capture this property, predicts power law scaling behavior for the second moment statistics of area-averaged rain rate on the averaging length scale L as L right arrow 0. In the present work a more efficient method of estimating the model parameters is presented, and used to fit the model to the statistics of area-averaged rain rate derived from gridded radar precipitation data from TOGA COARE. Statistical properties of the data and the model predictions are compared over a wide range of averaging scales. An extension of the spectral model scaling relations to describe the dependence of the average fraction of grid boxes within an area containing nonzero rain (the "rainy area fraction") on the grid scale L is also explored.
NASA Astrophysics Data System (ADS)
Hakulinen, T.; Klein, J.
2016-03-01
Two-photon (2P) microscopy based on tunable Ti:sapphire lasers has become a widespread tool for 3D imaging with sub-cellular resolution in living tissues. In recent years multi-photon microscopy with simpler fixed-wavelength femtosecond oscillators using Yb-doped tungstenates as gain material has raised increasing interest in life-sciences, because these lasers offer one order of magnitude more average power than Ti:sapphire lasers in the wavelength range around 1040 nm: Two-photon (2P) excitation of mainly red or yellow fluorescent dyes and proteins (e.g. YFP, mFruit series) simultaneously has been proven with a single IR laser wavelength. A new approach is to extend the usability of existing tunable Titanium sapphire lasers by adding a fixed IR wavelength with an Yb femtosecond oscillator. By that means a multitude of applications for multimodal imaging and optogenetics can be supported. Furthermore fs Yb-lasers are available with a repetition rate of typically 10 MHz and an average power of typically 5 W resulting in pulse energy of typically 500 nJ, which is comparably high for fs-oscillators. This makes them an ideal tool for two-photon spinning disk laser scanning microscopy and holographic patterning for simultaneous photoactivation of large cell populations. With this work we demonstrate that economical, small-footprint Yb fixed-wavelength lasers can present an interesting add-on to tunable lasers that are commonly used in multiphoton microscopy. The Yb fs-lasers hereby offer higher power for imaging of red fluorescent dyes and proteins, are ideally enhancing existing Ti:sapphire lasers with more power in the IR, and are supporting pulse energy and power hungry applications such as spinning disk microscopy and holographic patterning.
Multi-Watt Average Power Nanosecond Microchip Laser and Power Scalability Estimates
NASA Technical Reports Server (NTRS)
Konoplev, Oleg A.; Vasilyev, Alexey A.; Seas, Antonios A.; Yu, Anthony W.; Li, Steven X.; Shaw, George B.; Stephen, Mark A.; Krainak, Michael A.
2011-01-01
We demonstrated up to 2 W average power, CW-pumped, passively- Q-switched, 1.5 ns monolithic MCL with single-longitudinal mode-operation. We discuss laser design issues to bring the average power to 5-1 OW and beyond.
NASA Astrophysics Data System (ADS)
Tsai, Shih-Chiao; Chen, Jenn-Shyong; Chu, Yen-Hsyang; Su, Ching-Lun; Chen, Jui-Hsiang
2018-01-01
Multi-frequency range imaging (RIM) has been operated in the Chung-Li very high-frequency (VHF) radar, located on the campus of National Central University, Taiwan, since 2008. RIM processes the echo signals with a group of closely spaced transmitting frequencies through appropriate inversion methods to obtain high-resolution distribution of echo power in the range direction. This is beneficial to the investigation of the small-scale structure embedded in dynamic atmosphere. Five transmitting frequencies were employed in the radar experiment for observation of the precipitating atmosphere during the period between 21 and 23 August 2013. Using the Capon and Fourier methods, the radar echoes were synthesized to retrieve the temporal signals at a smaller range step than the original range resolution defined by the pulse width, and such retrieved temporal signals were then processed in the Doppler frequency domain to identify the atmosphere and precipitation echoes. An analysis called conditional averaging was further executed for echo power, Doppler velocity, and spectral width to verify the potential capabilities of the retrieval processing in resolving small-scale precipitation and atmosphere structures. Point-by-point correction of range delay combined with compensation of range-weighting function effect has been performed during the retrieval of temporal signals to improve the continuity of power spectra at gate boundaries, making the small-scale structures in the power spectra more natural and reasonable. We examined stratiform and convective precipitation and demonstrated their different structured characteristics by means of the Capon-processed results. The new element in this study is the implementation of RIM on spectral analysis, especially for precipitation echoes.
Spatial distribution of topsoil magnetic susceptibility in Sawahlunto City, West Sumatera
NASA Astrophysics Data System (ADS)
Afdal; Wahyuni, E. S.
2018-03-01
A research to determine the spatial distribution of top soil magnetic suceptibility at Sawahlunto City, West Sumatra has been conducted. The top soil samples were taken at four locations ie the downtown area, the steam power plant area, the agricultural area, and coal mine area. At each location, the soil samples were taken at 10 points at a depth of 20 cm. Magnetic susceptibility were measured using Bartington MS2B Magnetic Susceptibility Meter. The topsoil samples from Sawahlunto city have relatively low average value of the magnetic susceptibility that is 67.0×10-8 m3/kg. The magnetic susceptibility of topsoil samples from downtown area have the average and the highest value of magnetic susceptibility (100.6×10-8 and 259.9×10-8 m3/kg), and followed by sample from the steam power plant area (98.4×10-8 and 258.0×10-8 m3/kg), the agricultural area (56.2×10-8 and 83.7×10-8 m3/kg), and coal mine area (12.9×10-8 and 26.8×10-8 m3/kg). Soil samples from the steam power plant area have the widest range of magnetic susceptibility value range from 0.3 × 10-8 to 258.0 × 10-8 m3/kg.
Laser power meters as an X-ray power diagnostic for LCLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less
Laser power meters as an X-ray power diagnostic for LCLS-II.
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; Song, Sanghoon; Dakovski, Georgi; Nordlund, Dennis; Fritz, David
2018-01-01
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.
Laser power meters as an X-ray power diagnostic for LCLS-II
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; ...
2018-01-01
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less
Developments in Marine Current Turbine Research at the United States Naval Academy (Invited)
NASA Astrophysics Data System (ADS)
Flack, K. A.; Luznik, L.
2013-12-01
A series of tests have been performed on a 1/25th scale model of a two bladed horizontal axis marine current turbine. The tests were conducted in a large tow tank facility at the United States Naval Academy. The turbine model has a 0.8 m diameter (D) rotor with a NACA 63-618 cross section, which is Reynolds number independent with respect to the lift coefficient in the operating range of Rec ≈ 4 x 105. Baseline test were conducted to obtain torque, thrust and rotational speed at a range of tip speed ratios (TSR) from 5 < TSR < 11. The power and thrust coefficients for the model turbine match expected results from blade-element-momentum theory. The lift and drag curves for the numerical model were obtained by testing a 2D NACA 63-618 airfoil in a wind tunnel. Additional tests were performed at two rotor depths (1.3D and 2.25D) in the presence of intermediate and deep water waves. The average values for power and thrust coefficient are weakly dependent on turbine depth. The waves yield a small increase in turbine performance which can be explained by Stokes drift velocity. Phase averaged results indicate that the oscillatory wave velocity results in significant variations in measured turbine torque and rotational speed as a function of wave phase. The turbine rotation speed, power, and thrust reach a maximum with the passing of the wave crest and a minimum with the passing of the wave trough. The torque appears dependent on vertical velocity, which lags the horizontal velocity by 90° of wave phase. Variations of the performance parameters are of the same order of magnitude as the average value, especially when the turbine is near the mean free surface and in the presence of high energy waves. These results demonstrate the impact of surface gravity waves on power production and structural loading. Future tests will focus on measuring and modeling the wake of the turbine for unsteady flow conditions. Model Turbine Power Coefficient vs, Tip Speed Ratio
Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier
Zhao, Zhi; Sheehy, Brian; Minty, Michiko
2017-03-29
Here, we report on the generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier. In an Yb-doped fiber master-oscillator-power-amplifier system, 2.3-ps 704 MHz pulses are first amplified in small-core fibers and then in large-mode-area rod fibers to produce 270 W average infrared power with a high polarization extinction ratio and diffraction-limited beam quality. By carrying out frequency doubling in a lithium triborate (LBO) crystal, 180 W average green power is generated. To the best of our knowledge, this is the highest average green power achieved in fiber-based laser systems.
Soft X-ray spectral observations of quasars and high X-ray luminosity Seyfert galaxies
NASA Technical Reports Server (NTRS)
Petre, R.; Mushotzky, R. F.; Krolik, J. H.; Holt, S. S.
1983-01-01
Results of the analysis of 28 Einstein SSS observations of 15 high X-ray luminosity (L(x) 10 to the 435 power erg/s) quasars and Seyfert type 1 nuclei are presented. The 0.75-4.5 keV spectra are in general well fit by a simple model consisting of a power law plus absorption by cold gas. The averager spectral index alpha is 0.66 + or - .36, consistent with alpha for the spectrum of these objects above 2 keV. In all but one case, no evidence was found for intrinsic absorption, with an upper limit of 2 x 10 to the 21st power/sq cm. Neither was evidence found for partial covering of the active nucleus by dense, cold matter (N(H) 10 to the 22nd power/sq cm; the average upper limit on the partial covering fraction is 0.5. There is no obvious correlation between spectral index and 0175-4.5 keV X-ray luminosity (which ranges from 3 x 10 to the 43rd to 47th powers erg/s or with other source properties. The lack of intrinsic X-ray absorption allows us to place constraints on the density and temperature of the broad-line emission region, and narrow line emission region, and the intergalactic medium.
Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking
Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg
2013-01-01
Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load. PMID:24260114
Friction in total hip joint prosthesis measured in vivo during walking.
Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg
2013-01-01
Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.
Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less
Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.; ...
2016-12-26
Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less
88 kilowatt automotive inverter with new 900 Volt silicon carbide MOSFET technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casady, Jeffrey; Olejniczak, Kraig; McNutt, Ty
This final report is on the design and experimental verification of a 200 kVA traction inverter using three 900 V, 2.5 mΩ, SiC MOSFET-based half-bridge power modules comprising the power stage. Each dual power module contains four 900 V, 10 mΩ SiC MOSFETs per switch position and uses synchronous conduction to achieve high average and peak efficiencies over its entire operating region to meet the demands of hybrid, plug-in hybrid, and extended-range electrified vehicle architectures. Significant performance improvement, via conduction, switching, and reverse-recovery loss metrics, from this SiC MOSFET-based inverter—especially at light load conditions—will be discussed.
Arun, S; Choudhury, Vishal; Balaswamy, V; Prakash, Roopa; Supradeepa, V R
2018-04-02
We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm (>1 octave) from 880 to 1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.
Turbulent heat transfer and nanofluid flow in a protruded ribbed square passage
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Kothiyal, Alok Darshan; Bisht, Mangal Singh; Kumar, Anil
In this article, turbulent heat transfer of nanofluid flow in square passage with protruded rib shape is numerically and experimentally studied over Reynolds number ranges of 4000-18000. Different nanoparticles (Al2O3, CuO, and ZnO), with different concentration (φ) range of 1-4% and different nanoparticle diameter (dnp) range of 30-45 nm are disperse in water (base fluid). Several parameters such as stream wise distance (Xs /dp) range of 1.4-2.6, span wise distance (Ys /dp) range of 1.4-2.6, ratio of protruded height to print diameter (ep /dp) range of 0.83-1.67 also studied to find the consequence on thermal and hydrodynamic characteristics. Simulations were carried out to obtain heat and fluid flow behaviour of smooth and ribbed square channel using commercial CFD software, ANSYS 15.0 (Fluent). Renormalization k - ε model was employed to assess the influence of protruded ribs on turbulent flow and velocity field. The outcome indicates that Al2O3 nanofluid has the highest value of average Nusselt number as compare to other nanofluids. The average Nusselt number increases as the concentration increases and it decreases as nanoparticle diameter increases. The thermal hydrodynamic performance parameter based on equal pumping power, average Nusselt number and average friction factor were found to be highest for Al2O3, φ = 0.04, dnp = 30 nm, Xs /dp = 1.8, Ys /dp = 1.8 and ep /dp = 1.0 . The numerical data are compared with the corresponding experimental data. Comparison between CFD and experimental analysis results showed that good agreement as the data fell within ±7.0% error band.
High-speed ultrafast laser machining with tertiary beam positioning (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yang, Chuan; Zhang, Haibin
2017-03-01
For an industrial laser application, high process throughput and low average cost of ownership are critical to commercial success. Benefiting from high peak power, nonlinear absorption and small-achievable spot size, ultrafast lasers offer advantages of minimal heat affected zone, great taper and sidewall quality, and small via capability that exceeds the limits of their predecessors in via drilling for electronic packaging. In the past decade, ultrafast lasers have both grown in power and reduced in cost. For example, recently, disk and fiber technology have both shown stable operation in the 50W to 200W range, mostly at high repetition rate (beyond 500 kHz) that helps avoid detrimental nonlinear effects. However, to effectively and efficiently scale the throughput with the fast-growing power capability of the ultrafast lasers while keeping the beneficial laser-material interactions is very challenging, mainly because of the bottleneck imposed by the inertia-related acceleration limit and servo gain bandwidth when only stages and galvanometers are being used. On the other side, inertia-free scanning solutions like acoustic optics and electronic optical deflectors have small scan field, and therefore not suitable for large-panel processing. Our recent system developments combine stages, galvanometers, and AODs into a coordinated tertiary architecture for high bandwidth and meanwhile large field beam positioning. Synchronized three-level movements allow extremely fast local speed and continuous motion over the whole stage travel range. We present the via drilling results from such ultrafast system with up to 3MHz pulse to pulse random access, enabling high quality low cost ultrafast machining with emerging high average power laser sources.
Sensitivity of a phase-sensitive optical time-domain reflectometer with a semiconductor laser source
NASA Astrophysics Data System (ADS)
Alekseev, A. E.; Tezadov, Ya A.; Potapov, V. T.
2018-06-01
In the present paper we perform, for the first time, an analysis of the average sensitivity of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source to external actions. The sensitivity of this OTDR can be defined in a conventional manner via average SNR at its output, which in turn is defined by the average useful signal power and the average intensity noise power in the OTDR spatial channels in the bandwidth defined by the OTDR sampling frequency. The average intensity noise power is considered in detail in a previous paper. In the current paper we examine the average useful signal power at the output of a phase-OTDR. The analysis of the average useful signal power of a phase-OTDR is based on the study of a fiber scattered-light interferometer (FSLI) which is treated as a constituent part of a phase- OTDR. In the analysis, one of the conventional phase-OTDR schemes with a rectangular dual-pulse probe signal is considered. The FSLI which corresponds to this OTDR scheme has two scattering fiber segments with additional time delay, introduced between backscattered fields. The average useful signal power and the resulting average SNR at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments, and by the additional time delay between the scattering fiber segments. The average useful signal power characteristic of the corresponding phase-OTDR is determined by analogous parameters: the source coherence, the time durations of the parts constituting the dual-pulse, and the time interval which separates these parts. In the paper an expression for the average useful signal power of a phase-OTDR is theoretically derived and experimentally verified. Based on the found average useful signal power of a phase-OTDR and the average intensity noise power, derived in the previous paper, the average SNR of a phase-OTDR is defined. Setting the average signal SNR to 1, at a defined spectral band the minimum detectable external action amplitude for our particular phase-OTDR setup is determined. We also derive a simple relation for the average useful signal power and the average SNR which results when making the assumption that the laser source coherence is high. The results of the paper can serve as the basis for further development of the concept of phase-OTDR sensitivity.
Ten-watt level picosecond parametric mid-IR source broadly tunable in wavelength
NASA Astrophysics Data System (ADS)
Vyvlečka, Michal; Novák, Ondřej; Roškot, Lukáscaron; Smrž, Martin; Mužík, Jiří; Endo, Akira; Mocek, Tomáš
2018-02-01
Mid-IR wavelength range (between 2 and 8 μm) offers perspective applications, such as minimally-invasive neurosurgery, gas sensing, or plastic and polymer processing. Maturity of high average power near-IR lasers is beneficial for powerful mid-IR generation by optical parametric conversion. We utilize in-house developed Yb:YAG thin-disk laser of 100 W average power at 77 kHz repetition rate, wavelength of 1030 nm, and about 2 ps pulse width for pumping of a ten-watt level picosecond mid-IR source. Seed beam is obtained by optical parametric generation in a double-pass 10 mm long PPLN crystal pumped by a part of the fundamental near-IR beam. Tunability of the signal wavelength between 1.46 μm and 1.95 μm was achieved with power of several tens of miliwatts. Main part of the fundamental beam pumps an optical parametric amplification stage, which includes a walk-off compensating pair of 10 mm long KTP crystals. We already demonstrated the OPA output signal and idler beam tunability between 1.70-1.95 μm and 2.18-2.62 μm, respectively. The signal and idler beams were amplified up to 8.5 W and 5 W, respectively, at 42 W pump without evidence of strong saturation. Thus, increase in signal and idler output power is expected for pump power increase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bochong; Kubota, Hitoshi, E-mail: hit-kubota@aist.go.jp; Yakushiji, Kay
The dependence on diameter of the emission power in MgO-based nano-pillar spin torque oscillators (STOs) was systematically investigated. A maximum emission power of over 2.5 μW was obtained around 300 nm in diameter, which is the largest reported to date among the out-of-plane precession STOs. By analyzing physical quantities, precession cone angle of the free-layer magnetization was evaluated. In the diameter range below 300 nm, the increase in power was mainly due to the increase of the injected current. The power decrease above 300 nm is possibly attributed to the decrease in the averaged precession cone angle, suggesting spatial phase difference of magnetization precession.more » This study provides the method for estimating the optimum STO diameter, which is of great importance in practical use.« less
Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires.
Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie
2017-05-15
Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires.
Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires
Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie
2017-01-01
Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires. PMID:28505116
Inertial Range Turbulence of Fast and Slow Solar Wind at 0.72 AU and Solar Minimum
NASA Astrophysics Data System (ADS)
Teodorescu, Eliza; Echim, Marius; Munteanu, Costel; Zhang, Tielong; Bruno, Roberto; Kovacs, Peter
2015-05-01
We investigate Venus Express observations of magnetic field fluctuations performed systematically in the solar wind at 0.72 Astronomical Units (AU), between 2007 and 2009, during the deep minimum of solar cycle 24. The power spectral densities (PSDs) of the magnetic field components have been computed for time intervals that satisfy the data integrity criteria and have been grouped according to the type of wind, fast and slow, defined for speeds larger and smaller, respectively, than 450 km s-1. The PSDs show higher levels of power for the fast wind than for the slow. The spectral slopes estimated for all PSDs in the frequency range 0.005-0.1 Hz exhibit a normal distribution. The average value of the trace of the spectral matrix is -1.60 for fast solar wind and -1.65 for slow wind. Compared to the corresponding average slopes at 1 AU, the PSDs are shallower at 0.72 AU for slow wind conditions suggesting a steepening of the solar wind spectra between Venus and Earth. No significant time variation trend is observed for the spectral behavior of both the slow and fast wind.
Energy Efficiency Upgrades for the Clinic and the Tannery and Wind Energy for Power to the Tannery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakoona, Jane; Fredenberg, Connie
2017-05-08
Under this grant agreement, the Native Village of Shishmaref (Shishmaref) will complete weatherization retrofits to two community buildings, the Clinic and the Tannery, based on recent energy audits. Located 5 miles from the mainland, 126 miles north of Nome and 100 miles south of Kotzebue, Shishmaref sits on Sarichef Island in the Chukchi Sea. As such, Shishmaref experiences a transitional climate between the frozen Arctic and the continental Interior. Summers can be foggy, with average temperatures ranging from 47 to 54 °F (Fahrenheit); winter temperatures average -12 to 2 °F. With heating fuel costs of almost $7/gallon, the goal ofmore » this project is to reduce energy costs at the Clinic and the Tannery by at least 30 to 50% through energy efficiency and weatherization measures and through the installation of a residential-size wind turbine to supplement power for the Tannery building.« less
Ultrahigh molecular weight aromatic siloxane polymers
NASA Technical Reports Server (NTRS)
Ludwick, L. M.
1982-01-01
The condensation of a diol with a silane in toluene yields a silphenylene-siloxane polymer. The reaction of stiochiometric amounts of the diol and silane produced products with molecular weights in the range 2.0 - 6.0 x 10 to the 5th power. The molecular weight of the product was greatly increased by a multistep technique. The methodology for synthesis of high molecular weight polymers using a two step procedure was refined. Polymers with weight average molecular weights in excess of 1.0 x 10 to the 6th power produced by this method. Two more reactive silanes, bis(pyrrolidinyl)dimethylsilane and bis(gamma butyrolactam)dimethylsilane, are compared with the dimethyleminodimethylsilane in ability to advance the molecular weight of the prepolymer. The polymers produced are characterized by intrinsic viscosity in tetrahydrofuran. Weight and number average molecular weights and polydispersity are determined by gel permeation chromatography.
NASA Technical Reports Server (NTRS)
Rall, Jonathan A. R.
1994-01-01
Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.
NASA Astrophysics Data System (ADS)
Khojasteh, Malak; Kresin, Vitaly V.
2016-12-01
We describe the production of size selected manganese nanoclusters using a dc magnetron sputtering/aggregation source. Since nanoparticle production is sensitive to a range of overlapping operating parameters (in particular, the sputtering discharge power, the inert gas flow rates, and the aggregation length) we focus on a detailed map of the influence of each parameter on the average nanocluster size. In this way it is possible to identify the main contribution of each parameter to the physical processes taking place within the source. The discharge power and argon flow supply the atomic vapor, and argon also plays the crucial role in the formation of condensation nuclei via three-body collisions. However, neither the argon flow nor the discharge power have a strong effect on the average nanocluster size in the exiting beam. Here the defining role is played by the source residence time, which is governed by the helium supply and the aggregation path length. The size of mass selected nanoclusters was verified by atomic force microscopy of deposited particles.
Influence of source parameters on the growth of metal nanoparticles by sputter-gas-aggregation
NASA Astrophysics Data System (ADS)
Khojasteh, Malak; Kresin, Vitaly V.
2017-11-01
We describe the production of size-selected manganese nanoclusters using a magnetron sputtering/aggregation source. Since nanoparticle production is sensitive to a range of overlapping operating parameters (in particular, the sputtering discharge power, the inert gas flow rates, and the aggregation length), we focus on a detailed map of the influence of each parameter on the average nanocluster size. In this way, it is possible to identify the main contribution of each parameter to the physical processes taking place within the source. The discharge power and argon flow supply the metal vapor, and argon also plays a crucial role in the formation of condensation nuclei via three-body collisions. However, the argon flow and the discharge power have a relatively weak effect on the average nanocluster size in the exiting beam. Here the defining role is played by the source residence time, governed by the helium supply (which raises the pressure and density of the gas column inside the source, resulting in more efficient transport of nanoparticles to the exit) and by the aggregation path length.
Energy conservation through utilization of mechanical energy storage
NASA Astrophysics Data System (ADS)
Eisenhaure, D. B.; Bliamptis, T. E.; Downer, J. R.; Heinemann, P. C.
Potential benefits regarding fuel savings, necessary technology, and evaluation criteria for the development of flywheel-hybrid vehicles are examined. A case study is quoted in which adoption of flywheel-hybrid vehicles in a taxi fleet would result in an increase of 10 mpg average to 32 mpg. Two proposed systems are described, one involving direct engine power to the flywheel and the second regenerating the flywheel from braking energy through a continuously variable transmission. Fuel consumption characteristics are considered the ultimate determinant in the choice of configuration, while material properties and housing shape determine the flywheel speed range. Vehicle losses are characterized and it is expected that a flywheel at 12,000 rpm will experience less than one hp average parasitic power loss. Flywheel storage is suitable for smaller engines because larger engines dominate the power train mass. Areas considered important for further investigation include reliability of an engine run near maximum torque, noise and vibration associated with flywheel operation, start up delays, compatibility of driver controls, integration of normal with regenerative braking systems, and, most importantly, the continuously variable transmission.
Contact lens overrefraction variability in corneal power estimation after refractive surgery.
Joslin, Charlotte E; Koster, James; Tu, Elmer Y
2005-12-01
To evaluate the accuracy and precision of the contact lens overrefraction (CLO) method in determining corneal refractive power in post-refractive-surgery eyes. Refractive Surgery Service and Contact Lens Service, University of Illinois, Chicago, Illinois, USA. Fourteen eyes of 7 subjects who had a single myopic laser in situ keratomileusis procedure within 12 months with refractive stability were included in this prospective case series. The CLO method was compared with the historical method of predicting the corneal power using 4 different lens fitting strategies and 3 refractive pupil scan sizes (3 mm, 5 mm, and total pupil). Rigid lenses included 3 9.0 mm overall diameter lenses fit flat, steep, and an average of the 2, and a 15.0 mm diameter lens steep fit. Cycloplegic CLO was performed using the autorefractor function of the Nidek OPD-Scan ARK-10000. Results with each strategy were compared with the corneal power estimated with the historical method. The bias (mean of the difference), 95% limits of agreement, and difference versus mean plots for each strategy are presented. In each subject, the CLO-estimated corneal power varied based on lens fit. On average, the bias between CLO and historical methods ranged from -0.38 to +2.42 diopters (D) and was significantly different from 0 in all but 3 strategies. Substantial variability in precision existed between fitting strategies, with the range of the 95% limits of agreement approximating 0.50 D in 2 strategies and 2.59 D in the worst-case scenario. The least precise fitting strategy was use of flat-fitting 9.0 mm diameter lenses. The accuracy and precision of the CLO method of estimating corneal power in post-refractive-surgery eyes was highly variable on the basis of how rigid lense were fit. One of the most commonly used fitting strategies in clinical practice--flat-fitting a 9.0 diameter lens-resulted in the poorest accuracy and precision. Results also suggest use of large-diameter lenses may improve outcomes.
ICRH system performance during ITER-Like Wall operations at JET and the outlook for DT campaign
NASA Astrophysics Data System (ADS)
Monakhov, Igor; Blackman, Trevor; Dumortier, Pierre; Durodié, Frederic; Jacquet, Philippe; Lerche, Ernesto; Noble, Craig
2017-10-01
Performance of JET ICRH system since installation of the metal ITER-Like Wall (ILW) has been assessed statistically. The data demonstrate steady increase of the RF power coupled to plasmas over recent years with the maximum pulse-average and peak values exceeding respectively 6MW and 8MW in 2016. Analysis and extrapolation of power capabilities of conventional JET ICRH antennas is provided and key performance-limiting factors are discussed. The RF plant operational frequency options are presented highlighting the issues of efficient ICRH application within a foreseeable range of DT plasma scenarios.
MIMO radar waveform design with peak and sum power constraints
NASA Astrophysics Data System (ADS)
Arulraj, Merline; Jeyaraman, Thiruvengadam S.
2013-12-01
Optimal power allocation for multiple-input multiple-output radar waveform design subject to combined peak and sum power constraints using two different criteria is addressed in this paper. The first one is by maximizing the mutual information between the random target impulse response and the reflected waveforms, and the second one is by minimizing the mean square error in estimating the target impulse response. It is assumed that the radar transmitter has knowledge of the target's second-order statistics. Conventionally, the power is allocated to transmit antennas based on the sum power constraint at the transmitter. However, the wide power variations across the transmit antenna pose a severe constraint on the dynamic range and peak power of the power amplifier at each antenna. In practice, each antenna has the same absolute peak power limitation. So it is desirable to consider the peak power constraint on the transmit antennas. A generalized constraint that jointly meets both the peak power constraint and the average sum power constraint to bound the dynamic range of the power amplifier at each transmit antenna is proposed recently. The optimal power allocation using the concept of waterfilling, based on the sum power constraint, is the special case of p = 1. The optimal solution for maximizing the mutual information and minimizing the mean square error is obtained through the Karush-Kuhn-Tucker (KKT) approach, and the numerical solutions are found through a nested Newton-type algorithm. The simulation results show that the detection performance of the system with both sum and peak power constraints gives better detection performance than considering only the sum power constraint at low signal-to-noise ratio.
Horrevorts, Esther M B; van Grieken, Amy; Mieloo, Cathelijne L; Hafkamp-de Groen, Esther; Bannink, Rienke; Bouwmeester-Landweer, Merian B R; Broeren, Suzanne; Raat, Hein
2017-08-23
To determine the feasibility, concurrent validity and discriminatory power of the instrument for Identification of Parents At Risk for child Abuse and Neglect (IPARAN) among Dutch parents with a newborn child. Community paediatrics. Data from a controlled trial were used. In total, 2659 Dutch parents with a newborn child were invited to participate. Of the 2659 parents, 759 parents filled in the consent form and participated in the study. Concurrent validity was determined by calculating correlations-using the Pearson's correlation (r)-between the IPARAN score and related constructs from the following instruments: the Empowerment Questionnaire 2.0, the Family Functioning Questionnaire and the Parenting Stress Questionnaire. Discriminatory power was determined by calculating receiver operating characteristic (ROC) curves between high-risk mothers and low-risk mothers according to their scores on the related constructs. Feasibility was determined by examining the percentage of missing answers. In terms of concurrent validity, we found that 3 out of 12 correlations between the IPARAN score and related constructs were strong (ie, r>0.50) and 4 out of 12 were medium (ie, r=0.30-0.49). In terms of discriminatory power, mothers with a score in the borderline/clinical range or lowest 10 percent (P10) range of the related constructs (high-risk mothers) had a higher IPARAN score than mothers with a score in the normal range or highest 90 percent (P90) range of the related constructs (low-risk mothers). Effect sizes varied from d=0.37 to d=1.93, and the area under the ROC curve varied from 0.62 to 0.93. Regarding feasibility, the part of the IPARAN filled in by the mother had on average 0.7% missing answers, whereas the part of the IPARAN filled in by the father had on average 1.7% missing answers. The results of this study support the concurrent validity, discriminatory power and feasibility of the IPARAN among a population of Dutch parents with a newborn child. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Ma, Cheng-Jiun; McNamara, B.; Nulsen, P.; Schaffer, R.
2011-09-01
X-ray observations of nearby clusters and galaxies have shown that energetic feedback from AGN is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 -- 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in 400SD, but cannot rule out the presence of weak cooling flows. The average jet power of central radio AGN is approximately 2 10^{44} erg/s. The jet power corresponds to an average heating of approximately 0.2 keV/particle for gas within R_500. Assuming the current AGN heating rate remained constant out to redshifts of about 2, these figures would rise by a factor of two. Our results show that the integrated energy injected from radio AGN outbursts in clusters is statistically significant compared to the excess entropy in hot atmospheres that is required for the breaking of self-similarity in cluster scaling relations. It is not clear that central AGN in 400SD clusters are maintained by a self-regulated feedback loop at the base of a cooling flow. However, they may play a significant role in preventing the development of strong cooling flows at early epochs.
A wireless power transmission system for implantable devices in freely moving rodents.
Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Kim, Jinhyung; Kim, Junghoon; Lee, Sung Eun; Kim, Sung June
2014-08-01
Reliable wireless power delivery for implantable devices in animals is highly desired for safe and effective experimental use. Batteries require frequent replacement; wired connections are inconvenient and unsafe, and short-distance inductive coupling requires the attachment of an exterior transmitter to the animal's body. In this article, we propose a solution by which animals with implantable devices can move freely without attachments. Power is transmitted using coils attached to the animal's cage and is received by a receiver coil implanted in the animal. For a three-dimensionally uniform delivery of power, we designed a columnar dual-transmitter coil configuration. A resonator-based inductive link was adopted for efficient long-range power delivery, and we used a novel biocompatible liquid crystal polymer substrate as the implantable receiver device. Using this wireless power delivery system, we obtain an average power transfer efficiency of 15.2% (minimum efficiency of 10% and a standard deviation of 2.6) within a cage of 15×20×15 cm3.
Varanasi, Jhansi L; Sinha, Pallavi; Das, Debabrata
2017-05-01
To selectively enrich an electrogenic mixed consortium capable of utilizing dark fermentative effluents as substrates in microbial fuel cells and to further enhance the power outputs by optimization of influential anodic operational parameters. A maximum power density of 1.4 W/m 3 was obtained by an enriched mixed electrogenic consortium in microbial fuel cells using acetate as substrate. This was further increased to 5.43 W/m 3 by optimization of influential anodic parameters. By utilizing dark fermentative effluents as substrates, the maximum power densities ranged from 5.2 to 6.2 W/m 3 with an average COD removal efficiency of 75% and a columbic efficiency of 10.6%. A simple strategy is provided for selective enrichment of electrogenic bacteria that can be used in microbial fuel cells for generating power from various dark fermentative effluents.
Canovas, Carmen; van der Mooren, Marrie; Rosén, Robert; Piers, Patricia A; Wang, Li; Koch, Douglas D; Artal, Pablo
2015-05-01
To determine the impact of the equivalent refractive index (ERI) on intraocular lens (IOL) power prediction for eyes with previous myopic laser in situ keratomileusis (LASIK) using custom ray tracing. AMO B.V., Groningen, the Netherlands, and the Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA. Retrospective data analysis. The ERI was calculated individually from the post-LASIK total corneal power. Two methods to account for the posterior corneal surface were tested; that is, calculation from pre-LASIK data or from post-LASIK data only. Four IOL power predictions were generated using a computer-based ray-tracing technique, including individual ERI results from both calculation methods, a mean ERI over the whole population, and the ERI for normal patients. For each patient, IOL power results calculated from the four predictions as well as those obtained with the Haigis-L were compared with the optimum IOL power calculated after cataract surgery. The study evaluated 25 patients. The mean and range of ERI values determined using post-LASIK data were similar to those determined from pre-LASIK data. Introducing individual or an average ERI in the ray-tracing IOL power calculation procedure resulted in mean IOL power errors that were not significantly different from zero. The ray-tracing procedure that includes an average ERI gave a greater percentage of eyes with an IOL power prediction error within ±0.5 diopter than the Haigis-L (84% versus 52%). For IOL power determination in post-LASIK patients, custom ray tracing including a modified ERI was an accurate procedure that exceeded the current standards for normal eyes. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Towards sub-100 fs multi-GW pulses directly emitted from a Thulium-doped fiber CPA system
NASA Astrophysics Data System (ADS)
Gaida, C.; Gebhardt, M.; Stutzki, F.; Jauregui, C.; Limpert, J.; Tünnermann, A.
2017-02-01
Experimental demonstrations of Tm-doped fiber amplifiers (typically in CW- or narrow-band pulsed operation) span a wavelength range going from about 1700 nm to well beyond 2000 nm. Thus, it should be possible to obtain a bandwidth of more than 100 nm, which would enable sub-100 fs pulse duration in an efficient, linear amplification scheme. In fact, this would allow the emission of pulses with less than 20 optical cycles directly from a Tm-doped fiber system, something that seems to be extremely challenging for other dopants in a fused silica fiber. In this contribution, we summarize the current development of our Thulium-doped fiber CPA system, demonstrate preliminary experiments for further scaling and discuss important design factors for the next steps. The current single-channel laser system presented herein delivers a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. Special care has been taken to reduce the detrimental impact of water vapor absorption by placing the whole system in a dry atmosphere housing (<0.1% rel. humidity) and by using a sufficiently long wavelength (1920-1980 nm). The utilization of a low-pressure chamber in the future will allow for the extension of the amplification bandwidth. Preliminary experiments demonstrating a broader amplification bandwidth that supports almost 100 fs pulse duration and average power scaling to < 100W have already been performed. Based on these results, a Tm-doped fiber CPA with sub-100 fs pulse duration, multi-GW pulse peak power and >100 W average power can be expected in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putter, Roland de; Wagner, Christian; Verde, Licia
2012-04-01
Accurate power spectrum (or correlation function) covariance matrices are a crucial requirement for cosmological parameter estimation from large scale structure surveys. In order to minimize reliance on computationally expensive mock catalogs, it is important to have a solid analytic understanding of the different components that make up a covariance matrix. Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This beat coupling effect has been derived analytically in perturbation theory andmore » while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated average density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including both the beat coupling and this local average effect and we show that while, when isolated, beat coupling indeed causes large excess covariance in agreement with the literature, in a realistic scenario this is compensated almost entirely by the local average effect, leaving only ∼ 10% of the excess. We test our analytic expressions by comparison to a suite of large N-body simulations, using both full simulation boxes and subboxes thereof to study cases without beat coupling, with beat coupling and with both beat coupling and the local average effect. For the variances, we find excellent agreement with the analytic expressions for k < 0.2 hMpc{sup −1} at z = 0.5, while the correlation coefficients agree to beyond k = 0.4 hMpc{sup −1}. As expected, the range of agreement increases towards higher redshift and decreases slightly towards z = 0. We finish by including the large-mode effects in a full covariance matrix description for arbitrary survey geometry and confirming its validity using simulations. This may be useful as a stepping stone towards building an actual galaxy (or other tracer's) power spectrum covariance matrix.« less
Maupin, Molly A.
1999-01-01
Pumped withdrawals compose most of the irrigation-water diversions from the Snake River between Upper Salmon Falls and Swan Falls Dams in southwestern Idaho. Pumps at 32 sites along the reach lift water as high as 745 feet to irrigate croplands on plateaus north and south of the river. The number of pump sites at which withdrawals are being continuously measured has been steadily decreasing, from 32 in 1990 to 7 in 1998. A cost-effective and accurate means of estimating annual irrigation-water withdrawals at pump sites that are no longer continuously measured was needed. Therefore, the U.S. Geological Survey began a study in 1998, as part of its Water-Use Program, to determine power-consumption coeffi- cients (PCCs) for each pump site so that withdrawals could be estimated by using electrical powerconsumption and total head data. PCC values for each pump site were determined by using withdrawal data that were measured by the U.S. Geological Survey during 1990–92 and 1994–95, energy data reported by Idaho Power Company during the same period, and total head data collected at each site during a field inventory in 1998. Individual average annual withdrawals for the 32 pump sites ranged from 1,120 to 44,480 acre-feet; average PCC values ranged from 103 to 1,248 kilowatthours per acre-foot. During the 1998 field season, power demand, total head, and withdrawal at 18 sites were measured to determine 1998 PCC values. Most of the 1998 PCC values were within 10 percent of the 5-year average, which demonstrates that withdrawals for a site that is no longer continuously measured can be calculated with reasonable accuracy by using the PCC value determined from this study and annual power-consumption data. K-factors, coefficients that describe the amount of energy necessary to lift water, were determined for each pump site by using values of PCC and total head and ranged from 1.11 to 1.89 kilowatthours per acre-foot per foot. Statistical methods were used to define the relations among PCC values and selected pumpsite characteristics. Multiple correlation analysis between average PCC values and total head, total horsepower, and total number of pumps revealed the strongest correlation was between average PCC and total head. Linear regression of these two variables resulted in a strong coefficient of determination R2=0 .9 86) and a representative K-factor of 1.463. Pump sites were subdivided into two groups on the basis of total head—0 to 300 feet and greater than 300 feet. Regression of average PCC values for eight pump sites with total head less than 300 feet produced a good correlation of determination (R2=0.870) and a representative K-factor of 1.682. The second group consisted of 10 pump sites with total head greater than 300 feet; regression produced a correlation of R2=0.939 and a representative K-factor of 1.405. Data on pump-site characteristics were successfully used to determine individual PCC and K-factor values. Statistical relations between pumpsite characteristics and PCC values were defined and used to determine regression equations that resulted in good coefficients of determination and representative K-factors. The individual PCC values will be used in the future to calculate irrigation- water withdrawals at sites that are no longer continuously measured. The representative K-factors and regression equations will be used to calculate irrigation-water withdrawals at sites that have not been previously measured and where total head and power consumption are known.
Optical radiative properties of ablating polymers exposed to high-power arc plasmas
NASA Astrophysics Data System (ADS)
Becerra, Marley; Pettersson, Jonas
2018-03-01
The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer of PA6 leads to weak absorption radiation losses, although mainly in the UV range.
Safety of intravenous alteplase within 4.5 hours for patients awakening with stroke symptoms.
Urrutia, Victor C; Faigle, Roland; Zeiler, Steven R; Marsh, Elisabeth B; Bahouth, Mona; Cerdan Trevino, Mario; Dearborn, Jennifer; Leigh, Richard; Rice, Susan; Lane, Karen; Saheed, Mustapha; Hill, Peter; Llinas, Rafael H
2018-01-01
Up to 25% of acute stroke patients first note symptoms upon awakening. We hypothesized that patients awaking with stroke symptoms may be safely treated with intravenous alteplase (IV tPA) using non-contrast head CT (NCHCT), if they meet all other standard criteria. The SAfety of Intravenous thromboLytics in stroke ON awakening (SAIL ON) was a prospective, open-label, single treatment arm, pilot safety trial of standard dose IV tPA in patients who presented with stroke symptoms within 0-4.5 hours of awakening. From January 30, 2013, to September 1, 2015, twenty consecutive wakeup stroke patients selected by NCHCT were enrolled. The primary outcome was symptomatic intracerebral hemorrhage (sICH) in the first 36 hours. Secondary outcomes included NIH stroke scale (NIHSS) at 24 hours; and modified Rankin Score (mRS), NIHSS, and Barthel index at 90 days. The average age was 65 years (range 47-83); 40% were women; 50% were African American. The average NIHSS was 6 (range 4-11). The average time from wake-up to IV tPA was 205 minutes (range 114-270). The average time from last known well to IV tPA was 580 minutes (range 353-876). The median mRS at 90 days was 1 (range 0-5). No patients had sICH; two of 20 (10%) had asymptomatic ICH on routine post IV tPA brain imaging. Administration of IV tPA was feasible and may be safe in wakeup stroke patients presenting within 4.5 hours from awakening, screened with NCHCT. An adequately powered randomized clinical trial is needed. ClinicalTrials.gov NCT01643902.
NASA Astrophysics Data System (ADS)
Kobtsev, Sergey; Ivanenko, Alexey; Smirnov, Sergey; Kokhanovsky, Alexey
2018-02-01
The present work proposes and studies approaches for development of new modified non-linear amplifying loop mirror (NALM) allowing flexible and dynamic control of their non-linear properties within a relatively broad range of radiation powers. Using two independently pumped active media in the loop reflector constitutes one of the most promising approaches to development of better NALM with nonlinear properties controllable independently of the intra-cavity radiation power. This work reports on experimental and theoretical studies of the proposed redesigned NALM allowing both a higher level of energy parameters of output generated by mode-locked fibre oscillators and new possibilities of switching among different mode-locked regimes.
Highly efficient actively Q-switched Yb:LGGG laser generating 3.26 mJ of pulse energy
NASA Astrophysics Data System (ADS)
Li, Yanbin; Zhang, Jian; Zhao, Ruwei; Zhang, Baitao; He, Jingliang; Jia, Zhitai; Tao, Xutang
2018-05-01
An efficient acousto-optic Q-switched laser operation of Yb:(LuxGd1-x)3Ga5O12 (x = 0.062) (Yb:LGGG) crystal is demonstrated, producing stable pulses with repetition rate ranging from 1 to 20 kHz. Under the absorbed pump power of 8.75 W, the maximum average output power of 3.26 W is obtained at the pulse repletion rate of 1 kHz, corresponding to the slope efficiency as high as 52%. The pulse width of 14.5 ns is achieved with the pulse energy and peak power of 3.26 mJ and 225 kW, respectively. It indicates great potential of Yb:LGGG crystal for generating pulsed lasers.
Fully automated 1.5 MHz FDML laser with more than 100mW output power at 1310 nm
NASA Astrophysics Data System (ADS)
Wieser, Wolfgang; Klein, Thomas; Draxinger, Wolfgang; Huber, Robert
2015-07-01
While FDML lasers with MHz sweep speeds have been presented five years ago, these devices have required manual control for startup and operation. Here, we present a fully self-starting and continuously regulated FDML laser with a sweep rate of 1.5 MHz. The laser operates over a sweep range of 115 nm centered at 1315 nm, and provides very high average output power of more than 100 mW. We characterize the laser performance, roll-off, coherence length and investigate the wavelength and phase stability of the laser output under changing environmental conditions. The high output power allows optical coherence tomography (OCT) imaging with an OCT sensitivity of 108 dB at 1.5 MHz.
Intensity stabilisation of optical pulse sequences for coherent control of laser-driven qubits
NASA Astrophysics Data System (ADS)
Thom, Joseph; Yuen, Ben; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G.
2018-05-01
We demonstrate a system for intensity stabilisation of optical pulse sequences used in laser-driven quantum control of trapped ions. Intensity instability is minimised by active stabilisation of the power (over a dynamic range of > 104) and position of the focused beam at the ion. The fractional Allan deviations in power were found to be <2.2 × 10^{-4} for averaging times from 1 to 16,384 s. Over similar times, the absolute Allan deviation of the beam position is <0.1 μm for a 45 {μ }m beam diameter. Using these residual power and position instabilities, we estimate the associated contributions to infidelity in example qubit logic gates to be below 10^{-6} per gate.
NASA Technical Reports Server (NTRS)
1978-01-01
General studies undertaken by the C.N.R.S. in the field of solar power plants have generated the problem of building energy production units in the medium range of electrical power, in the order of 100 kW. Among the possible solutions, the principle of the use of distributed heliothermal converters has been selected as being, with the current status of things, the most advantageous solution. This principle consists of obtaining the conversion of concentrated radiation into heat by using a series of heliothermal conversion modules scattered over the ground; the produced heat is collected by a heat-carrying fluid circulating inside a thermal loop leading to a device for both regulation and storage.
Lunar Polar Illumination for Power Analysis
NASA Technical Reports Server (NTRS)
Fincannon, James
2008-01-01
This paper presents illumination analyses using the latest Earth-based radar digital elevation model (DEM) of the lunar south pole and an independently developed analytical tool. These results enable the optimum sizing of solar/energy storage lunar surface power systems since they quantify the timing and durations of illuminated and shadowed periods. Filtering and manual editing of the DEM based on comparisons with independent imagery were performed and a reduced resolution version of the DEM was produced to reduce the analysis time. A comparison of the DEM with lunar limb imagery was performed in order to validate the absolute heights over the polar latitude range, the accuracy of which affects the impact of long range, shadow-casting terrain. Average illumination and energy storage duration maps of the south pole region are provided for the worst and best case lunar day using the reduced resolution DEM. Average illumination fractions and energy storage durations are presented for candidate low energy storage duration south pole sites. The best site identified using the reduced resolution DEM required a 62 hr energy storage duration using a fast recharge power system. Solar and horizon terrain elevations as well as illumination fraction profiles are presented for the best identified site and the data for both the reduced resolution and high resolution DEMs compared. High resolution maps for three low energy storage duration areas are presented showing energy storage duration for the worst case lunar day, surface height, and maximum absolute surface slope.
Laser rangefinders for autonomous intelligent cruise control systems
NASA Astrophysics Data System (ADS)
Journet, Bernard A.; Bazin, Gaelle
1998-01-01
THe purpose of this paper is to show to what kind of application laser range-finders can be used inside Autonomous Intelligent Cruise Control systems. Even if laser systems present good performances the safety and technical considerations are very restrictive. As the system is used in the outside, the emitted average output power must respect the rather low level of 1A class. Obstacle detection or collision avoidance require a 200 meters range. Moreover bad weather conditions, like rain or fog, ar disastrous. We have conducted measurements on laser rangefinder using different targets and at different distances. We can infer that except for cooperative targets low power laser rangefinder are not powerful enough for long distance measurement. Radars, like 77 GHz systems, are better adapted to such cases. But in case of short distances measurement, range around 10 meters, with a minimum distance around twenty centimeters, laser rangefinders are really useful with good resolution and rather low cost. Applications can have the following of white lines on the road, the target being easily cooperative, detection of vehicles in the vicinity, that means car convoy traffic control or parking assistance, the target surface being indifferent at short distances.
Lakoba, Taras I; Vasilyev, Michael
2008-10-27
In [Opt. Express 15, 10061 (2007)] we proposed a new regime of multichannel all-optical regeneration that required anomalous average dispersion. This regime is superior to the previously studied normal-dispersion regime when signal distortions are deterministic in their temporal shape. However, there was a concern that the regenerator with anomalous average dispersion may be prone to noise amplification via modulational instability. Here, we show that this, in general, is not the case. Moreover, in the range of input powers that is of interest for multichannel regeneration, the device with anomalous average dispersion may even provide less noise amplification than the one with normal dispersion. These results are obtained with an improved version of the parallelized modification of the Multicanonical Monte Carlo method proposed in [IEEE J. Sel. Topics Quantum Electron. 14, 599 (2008)].
Chudoba, Tadeusz; Gierlotka, Stanisław; Lojkowski, Witold
2018-01-01
This paper reports the possibility of changing the size of zinc oxide nanoparticles (ZnO NPs) aggregates through a change of synthesis parameters. The effect of the changed power of microwave heating on the properties of ZnO NPs obtained by the microwave solvothermal synthesis from zinc acetate dissolved in ethylene glycol was tested for the first time. It was found that the size of ZnO aggregates ranged from 60 to 120 nm depending on the power of microwave radiation used in the synthesis of ZnO NPs. The increase in the microwave radiation power resulted in the reduction of the total synthesis time with simultaneous preservation of the constant size and shape of single ZnO NPs, which were synthesized at a pressure of 4 bar. All the obtained ZnO NPs samples were composed of homogeneous spherical particles that were single crystals with an average size of 27 ± 3 nm with a developed specific surface area of 40 m2/g and the skeleton density of 5.18 ± 0.03 g/cm3. A model of a mechanism explaining the correlation between the size of aggregates and the power of microwaves was proposed. This method of controlling the average size of ZnO NPs aggregates is presented for the first time and similar investigations are not found in the literature. PMID:29783651
James Clerk Maxwell Prize Address: High Intensity Laser Propagation and Interactions
NASA Astrophysics Data System (ADS)
Sprangle, Phillip
2013-10-01
High intensity laser radiation sources cover a wide range of parameters, e.g., peak powers from tera to peta watts, pulse lengths from pico to femto seconds, repetition rates ranging from kilo to mega hertz and average powers of many tens of watts. This talk will cover, among other things, some of the unique physical processes which result when high intensity laser radiation interacts with gases and plasmas. One of the interesting topics to be discussed is the propagation of these laser pulses in a turbulent atmosphere which results in a multitude of coupled linear and nonlinear processes including filamentation and scintillation. Phase conjugation techniques to reduce the effects of atmospheric turbulence (scintillation) will be described. This talk will also discuss a range of potential applications of these high intensity lasers, including: electron acceleration in spatially periodic and tapered plasma channels, detection of radioactive material using electromagnetic signatures, atmospheric lasing of N2 molecules, as well as incoherent and coherent x-ray generation mechanisms. Research supported by NRL, ONR and UMD.
Driving ATHLETE: Analysis of Operational Efficiency
NASA Technical Reports Server (NTRS)
Townsend, Julie; Mittman, David
2012-01-01
The All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) is a modular mobility and manipulation platform being developed to support NASA operations in a variety of missions, including exploration of planetary surfaces. The agile system consists of a symmetrical arrangement of six limbs, each with seven articulated degrees of freedom and a powered wheel. This design enables transport of bulky payloads over a wide range of terrain and is envisioned as a tool to mobilize habitats, power-generation equipment, and other supplies for long-range exploration and outpost construction. In FY2010, ATHLETE traversed more than 80 km in field environments over eight weeks of testing, demonstrating that the concept is well suited to long-range travel. Although ATHLETE is designed to travel at speeds of up to 5 kilometers per hour, the observed average traverse rate during field-testing rarely exceeded 1.5 kilometers per hour. This paper investigates sources of inefficiency in ATHLETE traverse operations and identifies targets for improvement of overall traverse rate.
Driving ATHLETE: Analysis of Operational Efficiency
NASA Technical Reports Server (NTRS)
Townsend, Julie; Mittman, David
2012-01-01
The All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) is a modular mobility and manipulation platform being developed to support NASA operations in a variety of missions, including exploration of planetary surfaces. The agile system consists of a symmetrical arrangement of six limbs, each with seven articulated degrees of freedom and a powered wheel. This design enables transport of bulky payloads over a wide range of terrain and is envisioned as a tool to mobilize habitats, power-generation equipment, and other supplies for long-range exploration and outpost construction. In 2010, ATHLETE traversed more than 80 km in field environments over eight weeks of testing, demonstrating that the concept is well suited to long-range travel. However, while ATHLETE is designed to travel at speeds of up to 5 kilometers per hour, the observed average traverse rate during field-testing rarely exceeded 1.5 kilometers per hour. This paper investigates sources of inefficiency in ATHLETE traverse operations and identifies targets for improvement of overall traverse rate.
OSSE Observations of Seyfert AGN
NASA Astrophysics Data System (ADS)
Johnson, W. N.; Grove, J. E.; Kinzer, R. L.; Kroeger, R. A.; Kurfess, J. D.; Strickman, M. S.; McNaron-Brown, K.; Grabelsky, D. A.; Purcell, W. R.; Ulmer, M. P.; Jung, G. V.; Cameron, R. A.
1993-12-01
In the first two years of the Compton Gamma Ray Observatory mission, the Oriented Scintillation Spectrometer Experiment (OSSE) has observed about two dozen Seyfert active galactic nuclei (AGN) selected from the HEAO-1 list (Rothschild et al. 1983) and intense X-ray sources detected by EXOSAT and Ginga. The OSSE observations in the 50 keV - 10 MeV range indicate spectra which, on average, are significantly softer than the power law photon index of Gamma =1.7 which is generally reported in the Xray band. The average spectrum is well described by exponential or thermal Comptonization models indicating a break in the spectrum near 100 keV. We summarize the OSSE observations of AGN and present the average Seyfert spectrum above 50 keV. Rothschild, R.E., et al. 1983, Ap. J., 269, 423.
Determination of the myosin step size from mechanical and kinetic data.
Pate, E; White, H; Cooke, R
1993-01-01
During muscle contraction, work is generated when a myosin cross-bridge attaches to an actin filament and exerts a force on it through some power-stroke distance, h. At the end of this power stroke, attached myosin heads are carried into regions where they exert a negative force on the actin filament (the drag stroke) and where they are released rapidly from actin by ATP binding. Although the length of the power stroke remains controversial, average distance traversed in the drag-stroke region can be determined when one knows both rate of cross-bridge dissociation and filament-sliding velocity. At maximum contraction velocity, the average force exerted in the drag stroke must balance that exerted in the power stroke. We discuss here a simple model of cross-bridge interaction that allows one to calculate the force exerted in the drag stroke and to relate this to the power-stroke distance h traversed by cross-bridges in the positive-force region. Both the rate at which myosin can be dissociated from actin and the velocity at which an actin filament can be translated have been measured for a series of myosin isozymes and for different substrates, producing a wide range of values for each. Nonetheless, we show here that the rate of myosin dissociation from actin correlates well with the velocity of filament sliding, providing support for the simple model presented and suggesting that the power stroke is approximately 10 nm in length. PMID:8460156
Optical variability properties of the largest AGN sample observed with Kepler/K2
NASA Astrophysics Data System (ADS)
Aranzana, E.; Koerding, E.; Uttley, P.; Scaringi, S.; Steven, B.
2017-10-01
We present the first short time-scale ( hours to days) optical variability study of a large sample of Active Galactic Nuclei (AGN) observed with the Kepler/K2 mission. The sample contains 275 AGN observed over four campaigns with ˜30-minute cadence selected from the Million Quasar Catalogue with R magnitude < 19. We performed time series analysis to determine their variability properties by means of the power spectral densities (PSDs) and applied Monte Carlo techniques to find the best model parameters that fit the observed power spectra. A power-law model is sufficient to describe all the PSDs of the AGN in our sample. The average power-law slope is 2.5±0.5, steeper than the PSDs observed in X-rays, and the rest-frame amplitude variability in the frequency range of 6×10^{-6}-10^{-4} Hz varies from 1-10 % with an average of 2.6 %. We explore correlations between the variability amplitude and key parameters of the AGN, finding a significant correlation of rest-frame short-term variability amplitude with redshift, but no such correlation with luminosity. We attribute these effects to the known 'bluer when brighter variability of quasars combined with the fixed bandpass of Kepler. This study enables us to distinguish between Seyferts and Blazar and confirm AGN candidates.
Improving energy efficiency of Embedded DRAM Caches for High-end Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh; Vetter, Jeffrey S; Li, Dong
2014-01-01
With increasing system core-count, the size of last level cache (LLC) has increased and since SRAM consumes high leakage power, power consumption of LLCs is becoming a significant fraction of processor power consumption. To address this, researchers have used embedded DRAM (eDRAM) LLCs which consume low-leakage power. However, eDRAM caches consume a significant amount of energy in the form of refresh energy. In this paper, we propose ESTEEM, an energy saving technique for embedded DRAM caches. ESTEEM uses dynamic cache reconfiguration to turn-off a portion of the cache to save both leakage and refresh energy. It logically divides the cachemore » sets into multiple modules and turns-off possibly different number of ways in each module. Microarchitectural simulations confirm that ESTEEM is effective in improving performance and energy efficiency and provides better results compared to a recently-proposed eDRAM cache energy saving technique, namely Refrint. For single and dual-core simulations, the average saving in memory subsystem (LLC+main memory) on using ESTEEM is 25.8% and 32.6%, respectively and average weighted speedup are 1.09X and 1.22X, respectively. Additional experiments confirm that ESTEEM works well for a wide-range of system parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Ren-Lai; Ren Jian-Cun; Lou Shu-Li
2015-07-31
Broadband supercontinuum (SC) generation in a telecommunication fibre [8/125-μm single mode fibre (SMF) and 50/125-μm multimode fibre (MMF)] directly pumped by a nanosecond Q-switched Tm, Ho:YVO{sub 4} laser is demonstrated. At a 7-kHz pulse repetition frequency (PRF), an output average power of 0.53 W in the 1.95 – 2.5-μm spectral band and 3.51 W in the 1.9 – 2.6-μm spectral band are achieved in SMF and MMF, respectively (the corresponding optic-to-optic conversion efficiencies are 34.6% and 73.7%). The output spectra have extremely high flat segments in the range 2070 – 2390 nm and 2070 – 2475 nm with negligible intensitymore » variation (less than 2%). The SC average power is scalable from 2.1 to 4.2 W by increasing the PRF from 5 to 15 kHz, while maintaining pump power. Compared with the input pump pulse, the output SC pulse width is broadened, and no split is found. The stability of the output SC power has been monitored for a week and the fluctuations being less than 6%. (control of radiation parameters)« less
NASA Astrophysics Data System (ADS)
Voie, Arne; Fisher, David; Ahadi, Golnaz; Hölscher, Thilo
2012-11-01
The purpose of this study was to ascertain the effects of the skull on the location, shape and power of the acoustic field produced by a 150 mm radius hemispherical array operating at 220 kHz. We wanted to determine whether phase aberrations were significant at this frequency, the amount of attenuation, and whether CT data could be predictive of the trans-skull field. The effects of five calvaria were evaluated. Acoustic field data and CT scans for each skull specimen were imported into MATLAB® for measurements and visualization in two and three dimensions. We examined the effects of skull density, porosity, thickness, and sonication incident angles, and estimated the relative contributions of longitudinal and shear transmission to the total transmitted power. Power transmission through the skulls varied between 4% and 23% (mean: 12%). The range of focal position shifts was from 0.50 mm to 4.32 mm (mean: 1.95 mm). The 3 dB dimensions of the focused ultrasound (FUS) intensity focal volume increased on average by 39% (low: 4%, high: 122%). The 6 dB pressure focal volume increased by an average of 130 ± 75%. In general, the main effects of the skulls were power reduction, field dispersion and slight shift of focal peak location.
A statistical survey of ultralow-frequency wave power and polarization in the Hermean magnetosphere.
James, Matthew K; Bunce, Emma J; Yeoman, Timothy K; Imber, Suzanne M; Korth, Haje
2016-09-01
We present a statistical survey of ultralow-frequency wave activity within the Hermean magnetosphere using the entire MErcury Surface, Space ENvironment, GEochemistry, and Ranging magnetometer data set. This study is focused upon wave activity with frequencies <0.5 Hz, typically below local ion gyrofrequencies, in order to determine if field line resonances similar to those observed in the terrestrial magnetosphere may be present. Wave activity is mapped to the magnetic equatorial plane of the magnetosphere and to magnetic latitude and local times on Mercury using the KT14 magnetic field model. Wave power mapped to the planetary surface indicates the average location of the polar cap boundary. Compressional wave power is dominant throughout most of the magnetosphere, while azimuthal wave power close to the dayside magnetopause provides evidence that interactions between the magnetosheath and the magnetopause such as the Kelvin-Helmholtz instability may be driving wave activity. Further evidence of this is found in the average wave polarization: left-handed polarized waves dominate the dawnside magnetosphere, while right-handed polarized waves dominate the duskside. A possible field line resonance event is also presented, where a time-of-flight calculation is used to provide an estimated local plasma mass density of ∼240 amu cm -3 .
Carbon loaded Teflon (CLT): a power density meter for biological experiments using millimeter waves.
Allen, Stewart J; Ross, James A
2007-01-01
The standard technique for measurement of millimeter wave fields utilizes an open-ended waveguide attached to a HP power meter. The alignment of the waveguide with the propagation (K) vector is critical to making accurate measurements. Using this technique, it is difficult and time consuming to make a detailed map of average incident power density over areas of biological interest and the spatial resolution of this instrument does not allow accurate measurements in non-uniform fields. For biological experiments, it is important to know the center field average incident power density and the distribution over the exposed area. Two 4 ft x 4 ft x 1/32 inch sheets of carbon loaded Teflon (CLT) (one 15% carbon and one 25% carbon) were procured and a series of tests to determine the usefulness of CLT in defining fields in the millimeter wavelength range was initiated. Since the CLT was to be used both in the laboratory, where the environment was well controlled, and in the field, where the environment could not be controlled, tests were made to determine effects of change in environmental conditions on ability to use CLT as a millimeter wave dosimeter. The empirical results of this study indicate CLT to be an effective dosimeter for biological experiments both in the laboratory and in the field.
152 W average power Tm-doped fiber CPA system.
Stutzki, Fabian; Gaida, Christian; Gebhardt, Martin; Jansen, Florian; Wienke, Andreas; Zeitner, Uwe; Fuchs, Frank; Jauregui, Cesar; Wandt, Dieter; Kracht, Dietmar; Limpert, Jens; Tünnermann, Andreas
2014-08-15
A high-power thulium (Tm)-doped fiber chirped-pulse amplification system emitting a record compressed average output power of 152 W and 4 MW peak power is demonstrated. This result is enabled by utilizing Tm-doped photonic crystal fibers with mode-field diameters of 35 μm, which mitigate detrimental nonlinearities, exhibit slope efficiencies of more than 50%, and allow for reaching a pump-power-limited average output power of 241 W. The high-compression efficiency has been achieved by using multilayer dielectric gratings with diffraction efficiencies higher than 98%.
Standard-Cell, Open-Architecture Power Conversion Systems
2005-10-01
TLmax Maximum junction temperature 423 OK Table 5. 9. PEBB average model description in VTB. Terminal Type Name - 4 -, A Power DC Bus + B Power AC Pole...5 A. Switching models ........................................................................................ 5 B. Average ...11-6 IV. Average Modeling of PEBB-Based Converters...................................................... 11-10 0 IV. 1.Voltage
Phan, Hoang Vu; Truong, Quang Tri; Park, Hoon Cheol
2017-04-19
This work presents a parametric study to find a proper wing configuration for achieving economical flight using unsteady blade element theory, which is based on the 3D kinematics of a flapping wing. Power loading was first considered as a performance parameter for the study. The power loadings at each wing section along the wingspan were obtained for various geometric angles of attack (AoAs) by calculating the ratios of the vertical forces generated and the power consumed by that particular wing section. The results revealed that the power loading of a negatively twisted wing could be higher than the power loading that a flat wing can have; the power loading of the negatively twisted wing was approximately 5.9% higher. Given the relatively low average geometric AoA (α A,root ≈ 44° and α A,tip ≈ 25°), the vertical force produced by the twisted wing for the highest power loading was approximately 24.4% less than that produced by the twisted wing for the strongest vertical force. Therefore, for a given wing geometry and flapping amplitude, a flapping-wing micro air vehicle required a 13.5% increase in flapping frequency to generate the same strongest cycle-average vertical force while saving about 24.3% power. However, when force 3 /power 2 and force 2 /power ratios were considered as performance indices, the twisted wings for the highest force 3 /power 2 (α A,root ≈ 43° and α A,tip ≈ 30°) and force 2 /power (α A,root ≈ 43° and α A,tip ≈ 36°) required only 6.5% and 4% increases in flapping frequency and consumed 26.2% and 25.3% less power, respectively. Thus, it is preferable to use a flapping wing operating at a high frequency using the geometric AoAs for the highest power loading, force 3 /power 2 ratio, and force 2 /power ratio over a flapping wing operating at a low frequency using a high geometric AoA with the strongest vertical force. Additionally, by considering both aerodynamic and inertial forces, this study obtained average geometric AoAs in the range of 30° to 40°, which are similar to those of a typical hovering insect's wings. Therefore, the operation of an aerodynamically uneconomical, high AoA in a hovering insect's wings during flight is explainable.
Compact diode-pumped continuous-wave and passively Q-switched Nd:GYSO laser at 1.07 μm
NASA Astrophysics Data System (ADS)
Lin, Zhi; Huang, Xiaoxu; Lan, Jinglong; Cui, Shengwei; Wang, Yi; Xu, Bin; Luo, Zhengqian; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Xiaoyan; Wang, Jun; Xu, Jun
2016-08-01
We report diode-pumped continuous-wave (CW) and Q-switched Nd:GYSO lasers using a compact two-mirror linear laser cavity. Single-wavelength laser emissions at 1074.11 nm with 4.1-W power and at 1058.27 nm with 1.47-W power have been obtained in CW mode. The slope efficiencies with respect to the absorbed pump powers are 48.5% and 22.9%, respectively. Wavelength tunability is also demonstrated with range of about 8 nm. Using a MoS2 saturable absorber, maximum average output power up to 410 mW at 1074 nm can be yielded with absorbed pump power 6.41 W and the maximum pulse energy reaches 1.20 μJ with pulse repetition rate of 342.5 kHz and shortest pulse width of 810 ns. The CW laser results represent the best laser performance and the Q-switching also present the highest output power for Q-switched Nd3+ lasers with MoS2 as saturable absorber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S; Politte, D; O’Sullivan, J
2016-06-15
Purpose: This work aims at reducing the uncertainty in proton stopping power (SP) estimation by a novel combination of a linear, separable basis vector model (BVM) for stopping power calculation (Med Phys 43:600) and a statistical, model-based dual-energy CT (DECT) image reconstruction algorithm (TMI 35:685). The method was applied to experimental data. Methods: BVM assumes the photon attenuation coefficients, electron densities, and mean excitation energies (I-values) of unknown materials can be approximated by a combination of the corresponding quantities of two reference materials. The DECT projection data for a phantom with 5 different known materials was collected on a Philipsmore » Brilliance scanner using two scans at 90 kVp and 140 kVp. The line integral alternating minimization (LIAM) algorithm was used to recover the two BVM coefficient images using the measured source spectra. The proton stopping powers are then estimated from the Bethe-Bloch equation using electron densities and I-values derived from the BVM coefficients. The proton stopping powers and proton ranges for the phantom materials estimated via our BVM based DECT method are compared to ICRU reference values and a post-processing DECT analysis (Yang PMB 55:1343) applied to vendorreconstructed images using the Torikoshi parametric fit model (tPFM). Results: For the phantom materials, the average stopping power estimations for 175 MeV protons derived from our method are within 1% of the ICRU reference values (except for Teflon with a 1.48% error), with an average standard deviation of 0.46% over pixels. The resultant proton ranges agree with the reference values within 2 mm. Conclusion: Our principled DECT iterative reconstruction algorithm, incorporating optimal beam hardening and scatter corrections, in conjunction with a simple linear BVM model, achieves more accurate and robust proton stopping power maps than the post-processing, nonlinear tPFM based DECT analysis applied to conventional reconstructions of low and high energy scans. Funding Support: NIH R01CA 75371; NCI grant R01 CA 149305.« less
High-Average Power Broadband 18-Beam Klystron Circuit and Collector Designs
2008-04-01
high -average power S - band multiple-beam klystron are presented. The klystron will be powered by the recently completed 41.6 A, 42...al., “ High - power Four-cavity S - band multiple-beam klystron design,” IEEE Trans. Plasma Science, vol. 33, pp. 1119-1135, April 2005. [3] D.K Abe, et...APR 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE High -average Power Broadband 18-beam
Monte Carlo calculation of proton stopping power and ranges in water for therapeutic energies
NASA Astrophysics Data System (ADS)
Bozkurt, Ahmet
2017-09-01
Monte Carlo is a statistical technique for obtaining numerical solutions to physical or mathematical problems that are analytically impractical, if not impossible, to solve. For charged particle transport problems, it presents many advantages over deterministic methods since such problems require a realistic description of the problem geometry, as well as detailed tracking of every source particle. Thus, MC can be considered as a powerful alternative to the well-known Bethe-Bloche equation where an equation with various corrections is used to obtain stopping power and ranges of electrons, positrons, protons, alphas, etc. This study presents how a stochastic method such as MC can be utilized to obtain certain quantities of practical importance related to charged particle transport. Sample simulation geometries were formed for water medium where disk shaped thin detectors were employed to compute average values of absorbed dose and flux at specific distances. For each detector cell, these quantities were utilized to evaluate the values of the range and the stopping power, as well as the shape of Bragg curve, for mono-energetic point source pencil beams of protons. The results were found to be ±2% compared to the data from the NIST compilation. It is safe to conclude that this approach can be extended to determine dosimetric quantities for other media, energies and charged particle types.
Bürgi, Alfred; Scanferla, Damiano; Lehmann, Hugo
2014-01-01
Models for exposure assessment of high frequency electromagnetic fields from mobile phone base stations need the technical data of the base stations as input. One of these parameters, the Equivalent Radiated Power (ERP), is a time-varying quantity, depending on communication traffic. In order to determine temporal averages of the exposure, corresponding averages of the ERP have to be available. These can be determined as duty factors, the ratios of the time-averaged power to the maximum output power according to the transmitter setting. We determine duty factors for UMTS from the data of 37 base stations in the Swisscom network. The UMTS base stations sample contains sites from different regions of Switzerland and also different site types (rural/suburban/urban/hotspot). Averaged over all regions and site types, a UMTS duty factor F ≈ 0.32 ± 0.08 for the 24 h-average is obtained, i.e., the average output power corresponds to about a third of the maximum power. We also give duty factors for GSM based on simple approximations and a lower limit for LTE estimated from the base load on the signalling channels. PMID:25105551
Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies
NASA Astrophysics Data System (ADS)
Schievano, Andrea; Colombo, Alessandra; Grattieri, Matteo; Trasatti, Stefano P.; Liberale, Alessandro; Tremolada, Paolo; Pino, Claudio; Cristiani, Pierangela
2017-02-01
A new type of floating microbial fuel cell (fMFC) was developed for power supply of remote environmental sensors and data transmission. Ten operating fMFCs generated a cell potential in the range 100-800 mV depending on the external resistance applied. Power production peaked around 3-3.5 mW (power density of 22-28 mW m-2 cathode) after about 20-30 days of start-up period. The average of daily electrical energy harvested ranged between 10 and 35 mWh/d. Long-term performances were ensured in the presence of dense rice plants (Oryza Sativa). A power management system, based on a step-up DC/DC converter and a low-power data transmission system via SIGFOX™ technology, have been set up for the fMFCs. The tested fMFCs systems allowed to: i) harvest produced energy, ii) supply electronic devices (intermittent LED-light and a buzzer); iii) transmit remote data at low speed (three message of 12 bites each, in 6 s). Several 'floating garden' MFCs were set in the context of demonstrative events at EXPO2015 world exposition held in Milan between May-October 2015. Some of the 'floating garden' MFCs were operating for more than one year.
Measurement of ozone production scaling in a helium plasma jet with oxygen admixture
NASA Astrophysics Data System (ADS)
Sands, Brian; Ganguly, Biswa
2012-10-01
Capillary dielectric barrier plasma jet devices that generate confined streamer-like discharges along a rare gas flow can produce significant quantities of reactive oxygen species with average input powers ranging from 100 mW to >1 W. We have measured spatially-resolved ozone production in a He plasma jet with O2 admixture concentrations up to 5% using absorption spectroscopy of the O3 Hartley band system. A 20-ns risetime, 10-13 kV positive unipolar voltage pulse train was used to power the discharge, with pulse repetition rates varied from 1-20 kHz. The discharge was operated in a transient glow mode to scale the input power by adjusting the gap width between the anode and downstream cathodic plane. Peak ozone number densities in the range of 10^16 - 10^17 cm-3 were measured. At a given voltage, the density of ozone increased monotonically up to 3% O2 admixture (6 mm gap) as the peak discharge current decreased by an order of magnitude. Ozone production increased with distance from the capillary, consistent with observations by other groups. Atomic oxygen production inferred from O-atom 777 nm emission intensity did not scale with ozone as the input power was increased. The spatial distribution of ozone and scaling with input power will be presented.
Wu, Chi-Chuan
2017-01-01
Following far advancement of modern medicine and technology, functional disability in a certain type of sequelae of poliomyelitis may be effectively improved. Eight consecutive adult patients with unilateral sequelae of poliomyelitis were treated. These patients had shortened lower extremity of an average of 4.8 cm (range, 4.0-5.5 cm) in the lesion side. Muscle power of the ipsilateral knee was nearly intact (grade 4 or 5) but the ankle extension was completely flaccid. The tibia was osteotomized and lengthened with external fixation. Consequently, all external fixators were converted to plates supplemented with autogenous corticocancellous bone graft and bone graft substitute. Ankle arthrodesis was performed concomitantly. Seven patients were followed up for an average of 3.7 years (range, 2.2-5.4 years). All seven lengthened sites healed with an average union time of 3.9 months (range, 3.5-4.5 months) after plating. One ankle infection occurred. Gait function significantly improved by modified Mazur scoring evaluation ( p = 0.02). At the latest follow-up, all patients had a minimal or unnoticed limp in level walking. The described combined techniques may be an excellent alternate for treating selected patients with sequelae of poliomyelitis. The procedure is not complex but the efficiency is extremely prominent.
A novel topology control approach to maintain the node degree in dynamic wireless sensor networks.
Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana
2014-03-07
Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.
Advancements in high-power diode laser stacks for defense applications
NASA Astrophysics Data System (ADS)
Pandey, Rajiv; Merchen, David; Stapleton, Dean; Patterson, Steve; Kissel, Heiko; Fassbender, Wilhlem; Biesenbach, Jens
2012-06-01
This paper reports on the latest advancements in vertical high-power diode laser stacks using micro-channel coolers, which deliver the most compact footprint, power scalability and highest power/bar of any diode laser package. We present electro-optical (E-O) data on water-cooled stacks with wavelengths ranging from 7xx nm to 9xx nm and power levels of up to 5.8kW, delivered @ 200W/bar, CW mode, and a power-conversion efficiency of >60%, with both-axis collimation on a bar-to-bar pitch of 1.78mm. Also, presented is E-O data on a compact, conductively cooled, hardsoldered, stack package based on conventional CuW and AlN materials, with bar-to-bar pitch of 1.8mm, delivering average power/bar >15W operating up to 25% duty cycle, 10ms pulses @ 45C. The water-cooled stacks can be used as pump-sources for diode-pumped alkali lasers (DPALs) or for more traditional diode-pumped solid-state lasers (DPSSL). which are power/brightness scaled for directed energy weapons applications and the conductively-cooled stacks as illuminators.
Performance of laser Doppler velocimeter with polydisperse seed particles in high speed flows
NASA Technical Reports Server (NTRS)
Samimy, M.; Bhattacharyya, S.; Abu-Hijleh, B. A./K.
1988-01-01
The flowfield behind an oblique shock wave, where the LDV measured velocities are seed particle size dependent, was used to investigate the effects of LDV system parameters on the range of detectable polydisperse seed particles. The parameters included frequency shifting, laser power, scattered signal amplification level, and number of required fringe crossings. The results showed that with polydisperse seed particles ranging from 0.1 to 4.0 microns available in the flow, the average diameter of the detected particles could change from 0.2 to 3.0 microns by changing different LDV system parameters. The effects of this shift in the range of detectable particles on the frequency response of LDV was discussed.
Performance of laser Doppler velocimeter with polydisperse seed particles in high-speed flows
NASA Technical Reports Server (NTRS)
Samimy, M.; Abu-Hijleh, B. A. K.
1989-01-01
The flowfield behind an oblique shock wave, where the LDV measured velocities are seed-particle-size dependent, was used to investigate the effects of LDV system parameters on the range of detectable polydisperse seed particles. The parameters included frequency shifting, laser power, scattered signal amplification level, and number of required fringe crossings. The results showed that with polydisperse seed particles ranging from 0.1 to 4.0 microns available in the flow, the average diameter of the detected particles could change from 0.2 to 3.0 microns by changing different LDV system parameters. The effects of this shift in the range of detectable particles on the frequency response of LDV are discussed.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., set the clock time to 3:23 and use the average power approach described in Section 5, Paragraph 5.3.2... circulates air internally or externally to the cooking product for a finite period of time after the end of... persist for an indefinite time. An indicator that only shows the user that the product is in the off...
European Scientific Notes. Volume 37, Numbers 10/11.
1983-11-01
percent decrease in the intensity of space-geodetic methods for monitoring solar radiation reachipg the earth’s local crustal deformations. surface, the...1983) - and solids. The average power available 35-nm range at the Comitato Nazionale and the predicted high efficiency of Energia Nucleare laboratory in...the David W. Taylor Naval gated for transmittance. These measure- Ship Research and Development Center, ments are important for solar energy Bethesda
pp Elastic Scattering: New results from EDDA (COSY)
NASA Astrophysics Data System (ADS)
Scobel, W.
2000-06-01
In the EDDA experiment excitation functions of proton-proton elastic scattering are studied with narrow steps in the projectile momentum range from 0.8 to 3.4 GeV/c and the angular range 35°⩽Θcm⩽90° with a detector providing ΔΘcm≈1.4° resolution and 85% solid angle coverage. Measurements are performed continuously during projectile acceleration in the Cooler Synchrotron COSY. In phase 1 of the experiment spin-averaged differential cross sections dσ/dΩ have been measured with an internal CH2 fiber target; background corrections were derived from measurements with a carbon fiber target and from Monte Carlo simulations of inelastic pp contributions. The results provide excitation functions and angular distributions of high precision and internal consistency. In phase 2 of the experiment excitation functions of the analyzing power AN have been measured using a polarized (P⩾75%) atomic beam target, and those of the polarization correlation parameters ANN, ASS and ASL will be measured lateron with the polarized COSY beam. The measured excitation functions are compared to recent phase shift analyses, and their impact on them is discussed. So far evidence for narrow structures was neither found in the spin averaged cross sections nor in the analyzing powers.
Kaye, Stephen B
2009-04-01
To provide a scalar measure of refractive error, based on geometric lens power through principal, orthogonal and oblique meridians, that is not limited to the paraxial and sag height approximations. A function is derived to model sections through the principal meridian of a lens, followed by rotation of the section through orthogonal and oblique meridians. Average focal length is determined using the definition for the average of a function. Average univariate power in the principal meridian (including spherical aberration), can be computed from the average of a function over the angle of incidence as determined by the parameters of the given lens, or adequately computed from an integrated series function. Average power through orthogonal and oblique meridians, can be similarly determined using the derived formulae. The widely used computation for measuring refractive error, the spherical equivalent, introduces non-constant approximations, leading to a systematic bias. The equations proposed provide a good univariate representation of average lens power and are not subject to a systematic bias. They are particularly useful for the analysis of aggregate data, correlating with biological treatment variables and for developing analyses, which require a scalar equivalent representation of refractive power.
CW and femtosecond operation of a diode-pumped Yb:BaY(2)F(8) laser.
Galzerano, G; Coluccelli, N; Gatti, D; Di Lieto, A; Tonelli, M; Laporta, P
2010-03-15
We report for the first time on laser action of a diode-pumped Yb:BaY(2)F(8) crystal. Both CW and femtosecond operations have been demonstrated at room-temperature conditions. A maximum output power of 0.56 W, a slope efficiency of 34%, and a tunability range from 1013 to 1067 nm have been obtained in CW regime. Transform-limited pulse trains with a minimum duration of 275 fs, an average power of 40 mW, and a repetition rate of 83 MHz have been achieved in a passive mode-locked regime using a semiconductor saturable absorber mirror.
International Data Base for the U.S. Renewable Energy Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
none
1986-05-01
The International Data Base for the US Renewable Energy Industry was developed to provide the US renewable energy industry with background data for identifying and analyzing promising foreign market opportunities for their products and services. Specifically, the data base provides the following information for 161 developed and developing countries: (1) General Country Data--consisting of general energy indicators; (2) Energy Demand Data--covering commercial primary energy consumption; (3) Energy Resource Data--identifying annual average insolation, wind power, and river flow data; (4) Power System Data--indicating a wide range of electrical parameters; and (5) Business Data--including currency and credit worthiness data.
NASA Technical Reports Server (NTRS)
Lichtenstein, J. H.
1978-01-01
An analytical method of computing the averaging effect of wing-span size on the loading of a wing induced by random turbulence was adapted for use on a digital electronic computer. The turbulence input was assumed to have a Dryden power spectral density. The computations were made for lift, rolling moment, and bending moment for two span load distributions, rectangular and elliptic. Data are presented to show the wing-span averaging effect for wing-span ratios encompassing current airplane sizes. The rectangular wing-span loading showed a slightly greater averaging effect than did the elliptic loading. In the frequency range most bothersome to airplane passengers, the wing-span averaging effect can reduce the normal lift load, and thus the acceleration, by about 7 percent for a typical medium-sized transport. Some calculations were made to evaluate the effect of using a Von Karman turbulence representation. These results showed that using the Von Karman representation generally resulted in a span averaging effect about 3 percent larger.
Estimation of average annual streamflows and power potentials for Alaska and Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdin, Kristine L.
2004-05-01
This paper describes the work done to develop average annual streamflow estimates and power potential for the states of Alaska and Hawaii. The Elevation Derivatives for National Applications (EDNA) database was used, along with climatic datasets, to develop flow and power estimates for every stream reach in the EDNA database. Estimates of average annual streamflows were derived using state-specific regression equations, which were functions of average annual precipitation, precipitation intensity, drainage area, and other elevation-derived parameters. Power potential was calculated through the use of the average annual streamflow and the hydraulic head of each reach, which is calculated from themore » EDNA digital elevation model. In all, estimates of streamflow and power potential were calculated for over 170,000 stream segments in the Alaskan and Hawaiian datasets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierbach, Jana; Yeung, Mark; Eckner, Erich
Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less
Study on W-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide
NASA Astrophysics Data System (ADS)
Fang, Shuanzhu; Xu, Jin; Jiang, Xuebing; Lei, Xia; Wu, Gangxiong; Li, Qian; Ding, Chong; Yu, Xiang; Wang, Wenxiang; Gong, Yubin; Wei, Yanyu
2018-05-01
A W-band sheet electron beam (SEB) traveling-wave tube (TWT) based on flat-roofed sine waveguide slow-wave structure (FRSWG-SWS) is proposed. The sine wave of the metal grating is replaced by a flat-roofed sine wave around the electron beam tunnel. The slow-wave characteristics including the dispersion properties and interaction impedance have been investigated by using the eigenmode solver in the 3-D electromagnetic simulation software Ansoft HFSS. Through calculations, the FRSWG SWS possesses the larger average interaction impedance than the conventional sine waveguide (SWG) SWS in the frequency range of 86-110 GHz. The beam-wave interaction was studied and particle-in-cell simulation results show that the SEB TWT can produce output power over 120 W within the bandwidth ranging from 90 to 100 GHz, and the maximum output power is 226 W at typical frequency 94 GHz, corresponding electron efficiency of 5.89%.
Fast and broadband detector for laser radiation
NASA Astrophysics Data System (ADS)
Scorticati, Davide; Crapella, Giacomo; Pellegrino, Sergio
2018-02-01
We developed a fast detector (patent pending) based on the Laser Induced Transverse Voltage (LITV) effect. The advantage of detectors using the LITV effect over pyroelectric sensors and photodiodes for laser radiation measurements is the combination of an overall fast response time, broadband spectral acceptance, high saturation threshold to direct laser irradiation and the possibility to measure pulsed as well as cw-laser sources. The detector is capable of measuring the energy of single laser pulses with repetition frequencies up to the MHz range, adding the possibility to also measure the output power of cw-lasers. Moreover, the thermal nature of the sensor enables the capability to work in a broadband spectrum, from UV to THz as well as the possibility of operating in a broad-range (10-3-102 W/cm2 ) of incident average optical power densities of the laser radiation, without the need of adopting optical filters nor other precautions.
Adverse design of defibrillators: turning off the machine when trying to shock.
Høyer, Christian S; Christensen, Erika F; Eika, Berit
2008-11-01
A recent publication demonstrated the possibility of erroneous operation of 2 widely used monitor-defibrillators and observed that the design of user interfaces might contribute to error during operation. During an ambulance simulation training exercise for 72 junior internal medicine physicians that called for defibrillation in the management of cardiac arrest, we observed that in 5 of 192 defibrillation attempts by the physicians, the monitor-defibrillator was inadvertently powered off. When the device is inadvertently powered off, recognition and subsequent steps to defibrillate delayed defibrillation an average of 24 seconds (range 14 to 32 seconds). Our analysis of the controls of this monitor-defibrillator found that the device could be powered off even if fully charged and ready to shock. Redesign of the equipment might prevent this inadvertent event.
Bragg gratings inscription in step-index PMMA optical fiber by femtosecond laser pulses at 400 nm
NASA Astrophysics Data System (ADS)
Hu, X.; Kinet, D.; Chah, K.; Mégret, P.; Caucheteur, C.
2016-05-01
In this paper, we report photo-inscription of uniform Bragg gratings in trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber. Gratings were produced at ~1575 nm by the phase mask technique with a femtosecond laser emitting at 400 nm with different average optical powers (8 mW, 13 mW and 20 mW). The grating growth dynamics in transmission were monitored during the manufacturing process, showing that the grating grows faster with higher power. Using 20 mW laser beam power, the reflectivity reaches 94 % (8 dB transmission loss) in 70 seconds. Finally, the gratings were characterized in temperature in the range 20 - 45 °C. The thermal sensitivity has been computed equal to - 86.6 pm/°C.
Microwave influence on the isolated heart function. 1: Effect of modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakhomov, A.G.; Dubovick, B.V.; Degtyariov, I.G.
1995-09-01
Dependence of the microwave effect on modulation parameters (pulse width, duty ratio, and peak intensity) was studied in an isolated frog auricle preparation. The rate and amplitude of spontaneous auricle twitches were measured during and after a 2 min exposure to 915 or 885 MHz microwaves and were compared to preexposure values. The studied ranges of modulation parameters were: pulse width, 10{sup {minus}6}--10{sup {minus}2} s; duty ratio, 7:100000, and peak specific absorption rate, 100--3,000 W/kg. Combinations of the parameters were chosen by chance, and about 400 various exposure regimes were tested. The experiments established that no regime was effective unlessmore » the average microwave power was high enough to induce preparation heating (0.1--0.4 C). The twitch rate instantly increased, and the amplitude decreased, as the temperature rose; similar changes could be induced by equivalent conventional heating. the data provide evidence that the effect of short-term microwave exposure on the isolated heart pacemaker and contractile functions depends on pulse modulation just as much as modulation determines the average absorbed power. These functions demonstrated no specific dependence on exposure parameters such as frequency or power windows.« less
A short-range optical wireless transmission method based on LED
NASA Astrophysics Data System (ADS)
Miao, Meiyuan; Chen, Ailin; Zhu, Mingxing; Li, Ping; Gao, Yingming; Zou, Nianyu
2016-10-01
As to electromagnetic wave interfere and only one to one transmission problem of Bluetooth, a short-range LED optical wireless transmission method is proposed to be complementary technology in this paper. Furthermore achieved image transmission through this method. The system makes C52 to be the mater controller, transmitter got data from terminals by USB and sends modulated signals with LED. Optical signal is detected by PD, through amplified, filtered with shaping wave from, and demodulated on receiver. Then send to terminals like PC and reverted back to original image. Analysis the performance from peak power and average power, power consumption of transmitter, relationship of bit error rate and modulation mode, and influence of ambient light, respectively. The results shows that image can be received accurately which uses this method. The most distant transmission distance can get to 1m with transmitter LED source of 1w, and the transfer rate is 14.4Kbit/s with OOK modulation mode on stabilization system, the ambient light effect little to LED transmission system in normal light environment. The method is a convenient to carry LED wireless short range transmission for mobile transmission equipment as a supplement of Bluetooth short-range transmission for its ISM band interfere, and the analysis method in this paper can be a reference for other similar systems. It also proves the system is feasibility for next study.
Dual-wavelength tunable fibre laser with a 15-dBm peak power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latif, A A; Awang, N A; Zulkifli, M Z
2011-08-31
A high-power dual-wavelength tunable fibre laser (HP-DWTFL) operating in the C-band at wavelengths from 1536.7 nm to 1548.6 nm is proposed and demonstrated. The HP-DWTFL utilises an arrayed waveguide grating (AWG) (1 x 16 channels) and is capable of generating eight different dual-wavelength pairs with eight possible wavelength spacings ranging from 0.8 nm (the narrowest spacing) to 12.0 nm (the widest spacing). The average output power and side mode suppression ratio (SMSR) of the HP-DWTFL are measured to be 15 dBm and 52.55 dB, respectively. The proposed HP-DWTFL is highly stable with no variations in the chosen output wavelengths andmore » has minimal changes in the output power. Such a laser has good potential for use in measurements, communications, spectroscopy and terahertz applications. (control of radiation parameters)« less
Design considerations for Mars photovoltaic power systems
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Appelbaum, Joseph
1990-01-01
Considerations for operation of a photovoltaic power system on Mars are discussed with reference to Viking Lander data. The average solar insolation at Mars is 590 W/sq m, which is reduced yet further by atmospheric dust. Of major concern are dust storms, which have been observed to occur on local as well as on global scales, and their effect on solar array output. While atmospheric opacity may rise to values ranging from 3 to 9, depending on storm severity, there is still an appreciable large diffuse illumination, even at high opacities, so that photovoltaic operation is still possible. If the power system is to continue to generate power even on high-optical-opacity (i.e., dusty atmosphere) days, it is important that the photovoltaic system be designed to collect diffuse irradiance as well as direct. Energy storage will be required for operation during the night. Temperature and wind provide additional considerations for array design.
Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface
Blakely, Tim M.; Miller, Kai J.; Rao, Rajesh P. N.; Ojemann, Jeffrey G.
2014-01-01
Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75–200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms. PMID:25599079
Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P.W.
Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less
Design study of steel V-Belt CVT for electric vehicles
NASA Technical Reports Server (NTRS)
Swain, J. C.; Klausing, T. A.; Wilcox, J. P.
1980-01-01
A continuously variable transmission (CVT) design layout was completed. The intended application was for coupling the flywheel to the driveline of a flywheel battery hybrid electric vehicle. The requirements were that the CVT accommodate flywheel speeds from 14,000 to 28,000 rpm and driveline speeds of 850 to 5000 rpm without slipping. Below 850 rpm a slipping clutch was used between the CVT and the driveline. The CVT was required to accommodate 330 ft-lb maximum torque and 100 hp maximum transient. The weighted average power was 22 hp, the maximum allowable full range shift time was 2 seconds and the required lift was 2600 hours. The resulting design utilized two steel V-belts in series to accommodate the required wide speed ratio. The size of the CVT, including the slipping clutch, was 20.6 inches long, 9.8 inches high and 13.8 inches wide. The estimated weight was 155 lb. An overall potential efficiency of 95 percent was projected for the average power condition.
Yuksel, Tugce; Michalek, Jeremy J
2015-03-17
We characterize the effect of regional temperature differences on battery electric vehicle (BEV) efficiency, range, and use-phase power plant CO2 emissions in the U.S. The efficiency of a BEV varies with ambient temperature due to battery efficiency and cabin climate control. We find that annual energy consumption of BEVs can increase by an average of 15% in the Upper Midwest or in the Southwest compared to the Pacific Coast due to temperature differences. Greenhouse gas (GHG) emissions from BEVs vary primarily with marginal regional grid mix, which has three times the GHG intensity in the Upper Midwest as on the Pacific Coast. However, even within a grid region, BEV emissions vary by up to 22% due to spatial and temporal ambient temperature variation and its implications for vehicle efficiency and charging duration and timing. Cold climate regions also encounter days with substantial reduction in EV range: the average range of a Nissan Leaf on the coldest day of the year drops from 70 miles on the Pacific Coast to less than 45 miles in the Upper Midwest. These regional differences are large enough to affect adoption patterns and energy and environmental implications of BEVs relative to alternatives.
Hart, George W.; Kern, Jr., Edward C.
1987-06-09
An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.
Hart, G.W.; Kern, E.C. Jr.
1987-06-09
An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.
An embedded processor for real-time atmoshperic compensation
NASA Astrophysics Data System (ADS)
Bodnar, Michael R.; Curt, Petersen F.; Ortiz, Fernando E.; Carrano, Carmen J.; Kelmelis, Eric J.
2009-05-01
Imaging over long distances is crucial to a number of defense and security applications, such as homeland security and launch tracking. However, the image quality obtained from current long-range optical systems can be severely degraded by the turbulent atmosphere in the path between the region under observation and the imager. While this obscured image information can be recovered using post-processing techniques, the computational complexity of such approaches has prohibited deployment in real-time scenarios. To overcome this limitation, we have coupled a state-of-the-art atmospheric compensation algorithm, the average-bispectrum speckle method, with a powerful FPGA-based embedded processing board. The end result is a light-weight, lower-power image processing system that improves the quality of long-range imagery in real-time, and uses modular video I/O to provide a flexible interface to most common digital and analog video transport methods. By leveraging the custom, reconfigurable nature of the FPGA, a 20x speed increase over a modern desktop PC was achieved in a form-factor that is compact, low-power, and field-deployable.
Hybrid thermionic-photovoltaic converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datas, A.
2016-04-04
A conceptual device for the direct conversion of heat into electricity is presented. This concept hybridizes thermionic (TI) and thermophotovoltaic (TPV) energy conversion in a single thermionic-photovoltaic (TIPV) solid-state device. This device transforms into electricity both the electron and photon fluxes emitted by an incandescent surface. This letter presents an idealized analysis of this device in order to determine its theoretical potential. According to this analysis, the key advantage of this converter, with respect to either TPV or TI, is the higher power density in an extended temperature range. For low temperatures, TIPV performs like TPV due to the negligiblemore » electron flux. On the contrary, for high temperatures, TIPV performs like TI due to the great enhancement of the electron flux, which overshadows the photon flux contribution. At the intermediate temperatures, ∼1650 K in the case of this particular study, I show that the power density potential of TIPV converter is twice as great as that of TPV and TI. The greatest impact concerns applications in which the temperature varies in a relatively wide range, for which averaged power density enhancement above 500% is attainable.« less
Power electronic supply system with the wind turbine dedicated for average power receivers
NASA Astrophysics Data System (ADS)
Widerski, Tomasz; Skrzypek, Adam
2018-05-01
This article presents the original project of the AC-DC-AC converter dedicated to low power wind turbines. Such a set can be a good solution for powering isolated objects that do not have access to the power grid, for example isolated houses, mountain lodges or forester's lodges, where they can replace expensive diesel engine generators. An additional source of energy in the form of a mini-wind farm is also a good alternative to yachts, marinas and tent sites, which are characterized by relatively low power consumption. This article presents a designed low power wind converter that is dedicated to these applications. The main design idea of the authors was to create a device that converts the very wide range input voltage directly to a stable 230VAC output voltage without the battery buffer. Authors focused on maximum safety of using and service. The converter contains the thermal protection, short-circuit protection and overvoltage protection. The components have been selected in such a way as to ensure that the device functions as efficiently as possible.
Integrated unaligned resonant modulator tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zortman, William A.; Lentine, Anthony L.
Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, frommore » the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.« less
NASA Technical Reports Server (NTRS)
Nagano, S. (Inventor)
1979-01-01
A module failure isolation circuit is described which senses and averages the collector current of each paralled inverter power transistor and compares the collector current of each power transistor the average collector current of all power transistors to determine when the sensed collector current of a power transistor in any one inverter falls below a predetermined ratio of the average collector current. The module associated with any transistor that fails to maintain a current level above the predetermined radio of the average collector current is then shut off. A separate circuit detects when there is no load, or a light load, to inhibit operation of the isolation circuit during no load or light load conditions.
Brazhnik, Elena; Cruz, Ana V; Avila, Irene; Wahba, Marian I; Novikov, Nikolay; Ilieva, Neda M; McCoy, Alex J; Gerber, Colin; Walters, Judith R
2012-06-06
Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, 7 d after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8-25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25-40 Hz band with a peak frequency at 30-35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons, and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25-40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity.
Liang, Huaqing; Beerse, Matthew; Ke, Xiang; Wu, Jianhua
2017-05-01
Whole body vibration (WBV) can affect postural control and muscular activation. The purpose of this study was to investigate the center-of-mass (COM) movement of children and young adults before, during, immediately after, and 5min after 40-s WBV in quiet standing. Fourteen young adults (mean age 24.5 years) and fourteen children (mean age 8.1 years) participated in the study. A full-body 35-marker set was placed on the participants and used to calculate COM. Forty-second standing trials were collected before, during, immediately after, and 5min after WBV with an frequency of 28Hz and an amplitude of <1mm. Two visual conditions were provided: eyes-open (EO) and eyes-closed (EC). COM variables included time-domain measures (average velocity, range, sway area and fractal dimension), frequency-domain measures (total power and median frequency), and detrended fluctuation analysis (DFA) scaling exponent in both anterior-posterior (AP) and medial-lateral (ML) directions. Results show that during WBV both children and adults increased average velocity and median frequency, but decreased range and the DFA scaling exponent. Immediately after WBV both groups increased the range, but showed pre-vibration values for most of the COM variables. Comparing to adults, children displayed a higher COM velocity, range, fractal dimension, and total power, but a lower DFA scaling exponent at all phases. The results suggest that both children and adults can quickly adapt their postural control system to WBV and maintain balance during and after vibration. Children display some adult-like postural control during and after WBV; however, their postural development continues into adolescence. Published by Elsevier B.V.
Variability in effective radiating area and output power of new ultrasound transducers at 3 MHz.
Johns, Lennart D; Straub, Stephen J; Howard, Samuel M
2007-01-01
Spatial average intensity (SAI) is often used by clinicians to gauge therapeutic ultrasound dosage, yet SAI measures are not directly regulated by US Food and Drug Administration (FDA) standards. Current FDA guidelines permit a possible 50% to 150% minimum to maximum range of SAI values, potentially contributing to variability in clinical outcomes. To measure clinical values that describe ultrasound transducers and to determine the degree of intramanufacturer and intermanufacturer variability in effective radiating area, power, and SAI when the transducer is functioning at 3 MHz. A descriptive and interferential approach was taken to this quasi-experimental design. Measurement laboratory. Sixty-six 5-cm(2) ultrasound transducers were purchased from 6 different manufacturers. All transducers were calibrated and then assessed using standardized measurement techniques; SAI was normalized to account for variability in effective radiating area, resulting in an nSAI. Effective radiating area, power, and nSAI. All manufacturers with the exception of Omnisound (P = .534) showed a difference between the reported and measured effective radiating area values (P < .001). All transducers were within FDA guidelines for power (+/-20%). Chattanooga (0.85 +/- 0.05 W/cm(2)) had a lower nSAI (P < .05) than all other manufacturers functioning at 3 MHz. Intramanufacturer variability in SAI ranged from 16% to 35%, and intermanufacturer variability ranged from 22% to 61%. Clinicians should consider treatment values of each individual transducer, regardless of the manufacturer. In addition, clinicians should scrutinize the power calibration and recalibration record of the transducer and adjust clinical settings as needed for the desired level of heating. Our data may aid in explaining the reported heating differences among transducers from different manufacturers. Stricter FDA standards regarding effective radiating area and total power are needed, and standards regulating SAI should be established.
Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gvozdev, S V; Glova, A F; Dubrovskii, V Yu
2012-04-30
The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beammore » axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.« less
Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene
NASA Astrophysics Data System (ADS)
Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Solomakhin, V. B.
2012-04-01
The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the ~103 — 5×104 W cm-2 range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene — ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.
An Analysis of the Effects of RFID Tags on Narrowband Navigation and Communication Receivers
NASA Technical Reports Server (NTRS)
LaBerge, E. F. Charles
2007-01-01
The simulated effects of the Radio Frequency Identification (RFID) tag emissions on ILS Localizer and ILS Glide Slope functions match the analytical models developed in support of DO-294B provided that the measured peak power levels are adjusted for 1) peak-to-average power ratio, 2) effective duty cycle, and 3) spectrum analyzer measurement bandwidth. When these adjustments are made, simulated and theoretical results are in extraordinarily good agreement. The relationships hold over a large range of potential interference-to-desired signal power ratios, provided that the adjusted interference power is significantly higher than the sum of the receiver noise floor and the noise-like contributions of all other interference sources. When the duty-factor adjusted power spectral densities are applied in the evaluation process described in Section 6 of DO-294B, most narrowband guidance and communications radios performance parameters are unaffected by moderate levels of RFID interference. Specific conclusions and recommendations are provided.
Code of Federal Regulations, 2014 CFR
2014-10-01
... power control level. Power must be summed across all antennas and antenna elements. The average must not... symbols, during which the average symbol envelope power is constant. (q) RLAN. Radio Local Area Network. (r) Transmit Power Control (TPC). A feature that enables a U-NII device to dynamically switch between...
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil T.
2015-03-01
Apertured averaged scintillation requires the evaluation of rather complicated irradiance covariance function. Here we develop a much simpler numerical method based on our earlier introduced semi-analytic approach. Using this method, we calculate aperture averaged scintillation of fully and partially coherent Gaussian, annular Gaussian flat topped and dark hollow beams. For comparison, the principles of equal source beam power and normalizing the aperture averaged scintillation with respect to received power are applied. Our results indicate that for fully coherent beams, upon adjusting the aperture sizes to capture 10 and 20% of the equal source power, Gaussian beam needs the largest aperture opening, yielding the lowest aperture average scintillation, whilst the opposite occurs for annular Gaussian and dark hollow beams. When assessed on the basis of received power normalized aperture averaged scintillation, fixed propagation distance and aperture size, annular Gaussian and dark hollow beams seem to have the lowest scintillation. Just like the case of point-like scintillation, partially coherent beams will offer less aperture averaged scintillation in comparison to fully coherent beams. But this performance improvement relies on larger aperture openings. Upon normalizing the aperture averaged scintillation with respect to received power, fully coherent beams become more advantageous than partially coherent ones.
Spherical aberrations of human astigmatic corneas.
Zhao, Huawei; Dai, Guang-Ming; Chen, Li; Weeber, Henk A; Piers, Patricia A
2011-11-01
To evaluate whether the average spherical aberration of human astigmatic corneas is statistically equivalent to human nonastigmatic corneas. Spherical aberrations of 445 astigmatic corneas prior to laser vision correction were retrospectively investigated to determine Zernike coefficients for central corneal areas 6 mm in diameter using CTView (Sarver and Associates). Data were divided into groups according to cylinder power (0.01 to 0.25 diopters [D], 0.26 to 0.75 D, 0.76 to 1.06 D, 1.07 to 1.53 D, 1.54 to 2.00 D, and >2.00 D) and according to age by decade. Spherical aberrations were correlated with age and astigmatic power among groups and the entire population. Statistical analyses were conducted, and P<.05 was considered statistically significant. Mean patient age was 42.6±11 years. Astigmatic corneas had an average astigmatic power of 0.78±0.58 D and mean spherical aberration was 0.25±0.13 μm for the entire population and approximately the same (0.27 μm) for individual groups, ranging from 0.23 to 0.29 μm (P>.05 for all tested groups). Mean spherical aberration of astigmatic corneas was not correlated significantly with cylinder power or age (P>.05). Spherical aberrations are similar to those of nonastigmatic corneas, permitting the use of these additional data in the design of aspheric toric intra-ocular lenses. Copyright 2011, SLACK Incorporated.
Hu, Xiaoqin; You, Huiyan
2009-11-01
In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.
53 W average power few-cycle fiber laser system generating soft x rays up to the water window.
Rothhardt, Jan; Hädrich, Steffen; Klenke, Arno; Demmler, Stefan; Hoffmann, Armin; Gotschall, Thomas; Eidam, Tino; Krebs, Manuel; Limpert, Jens; Tünnermann, Andreas
2014-09-01
We report on a few-cycle laser system delivering sub-8-fs pulses with 353 μJ pulse energy and 25 GW of peak power at up to 150 kHz repetition rate. The corresponding average output power is as high as 53 W, which represents the highest average power obtained from any few-cycle laser architecture so far. The combination of both high average and high peak power provides unique opportunities for applications. We demonstrate high harmonic generation up to the water window and record-high photon flux in the soft x-ray spectral region. This tabletop source of high-photon flux soft x rays will, for example, enable coherent diffractive imaging with sub-10-nm resolution in the near future.
A piezoelectric energy harvester for broadband rotational excitation using buckled beam
NASA Astrophysics Data System (ADS)
Xie, Zhengqiu; Kitio Kwuimy, C. A.; Wang, Zhiguo; Huang, Wenbin
2018-01-01
This paper proposes a rotational energy harvester using a piezoelectric bistable buckled beam to harvest low-speed rotational energy. The proposed harvester consists of a piezoelectric buckled beam with a center magnet, and a rotary magnet pair with opposite magnetic poles mounted on a revolving host. The magnetic plucking is used to harvest the angular kinetic energy of the host. The nonlinear snap-through mechanism is utilized to improve the vibration displacement and output voltage of the piezoelectric layer over a wide rotation frequency range. Theoretical simulation and experimental results show that the proposed energy harvester can yield a stable average output power ranging between 6.91-48.01 μW over a rotation frequency range of 1-14 Hz across a resistance load of 110 kΩ. Furthermore, dual attraction magnets were employed to overcome the suppression phenomenon at higher frequencies, which yields a broadband and flat frequency response over 6-14 Hz with the output power reaching 42.19-65.44 μW, demonstrating the great potential of the bistable buckled beam for wideband rotation motion energy harvesting.
Novel adaptive fiber-optics collimator for coherent beam combination.
Zhi, Dong; Ma, Pengfei; Ma, Yanxing; Wang, Xiaolin; Zhou, Pu; Si, Lei
2014-12-15
In this manuscript, we experimentally validate a novel design of adaptive fiber-optics collimator (AFOC), which utilizes two levers to enlarge the movable range of the fiber end cap. The enlargement of the range makes the new AFOC possible to compensate the end-cap/tilt aberration in fiber laser beam combining system. The new AFOC based on flexible hinges and levers was fabricated and the performance of the new AFOC was tested carefully, including its control range, frequency response and control accuracy. Coherent beam combination (CBC) of two 5-W fiber amplifiers array with simultaneously end-cap/tilt control and phase-locking control was implemented successfully with the novel AFOC. Experimental results show that the average normalized power in the bucket (PIB) value increases from 0.311 to 0.934 with active phasing and tilt aberration compensation simultaneously, and with both controls on, the fringe contrast improves to more than 82% from 0% for the case with both control off. This work presents a promising structure for tilt aberration control in high power CBC system.
Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H
2012-12-21
For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.
Range prediction for tissue mixtures based on dual-energy CT
NASA Astrophysics Data System (ADS)
Möhler, Christian; Wohlfahrt, Patrick; Richter, Christian; Greilich, Steffen
2016-06-01
The use of dual-energy CT (DECT) potentially decreases range uncertainties in proton and ion therapy treatment planning via determination of the involved physical target quantities. For eventual clinical application, the correct treatment of tissue mixtures and heterogeneities is an essential feature, as they naturally occur within a patient’s CT. Here, we present how existing methods for DECT-based ion-range prediction can be modified in order to incorporate proper mixing behavior on several structural levels. Our approach is based on the factorization of the stopping-power ratio into the relative electron density and the relative stopping number. The latter is confined for tissue between about 0.95 and 1.02 at a therapeutic beam energy of 200 MeV u-1 and depends on the I-value. We show that convenient mixing and averaging properties arise by relating the relative stopping number to the relative cross section obtained by DECT. From this, a maximum uncertainty of the stopping-power ratio prediction below 1% is suggested for arbitrary mixtures of human body tissues.
Performance Characteristics of a Cross-Flow Hydrokinetic Turbine under Unsteady Conditions
NASA Astrophysics Data System (ADS)
Flack, Karen; Lust, Ethan; Bailin, Ben
2017-11-01
Performance characteristics are presented for a cross-flow hydrokinetic turbine designed for use in a riverine environment. The test turbine is a 1:6 scale model of a three-bladed device (9.5 m span, 6.5 m diameter) that has been proposed by the Department of Energy. Experiments are conducted in the large towing tank (116 m long, 7.9 m wide, 5 m deep) at the United States Naval Academy. The turbine is towed beneath a moving carriage at a constant speed in combination with a shaft motor to achieve the desired tip speed ratio (TSR) range. The measured quantities of turbine thrust, torque and RPM result in power and thrust coefficients for a range of TSR. Results will be presented for cases with quiescent flow at a range of Reynolds numbers and flow with mild surface waves, representative of riverine environments. The impact of unsteady flow conditions on the average turbine performance was not significant. Unsteady flow conditions did have an impact on instantaneous turbine performance which operationally would result in unsteady blade loading and instantaneous power quality.
Integration of Pneumatic Technology in Powered Mobility Devices
Daveler, Brandon; Wang, Hongwu; Gebrosky, Benjamin; Grindle, Garrett G.; Schneider, Urs
2017-01-01
Advances in electric motors, electronics, and control systems have enhanced the capability and drivability of electric power mobility devices over the last 60 years. Yet, battery technologies used in powered mobility devices (PMDs) have not kept pace. Recent advances in pneumatic technology, primarily the high torque, low speed design of rotary piston air motors, directly align with the needs of PMD. Pneumatic technology has advantages over battery-powered technology, including lighter weight, lower operating costs, decreased environmental impact, better reliability, and increased safety. Two prototypes were created that incorporated rotary piston air motors, high-pressure air tanks, and air-pressure regulators. Prototype 1 was created by modifying an existing electric PMD. Range tests were performed to determine the feasibility of pneumatic technology and the optimal combination of components to allow the longest range possible at acceptable speeds over ideal conditions. Using a 1.44 L air tank for feasibility testing, prototype 1 was capable of traveling 800 m, which confirmed the feasibility of pneumatic technology usage in PMDs. Prototype 2 was designed based on the testing results from prototype 1. After further optimization of prototype 2, the average maximum range was 3,150 m. Prototype 2 is up to 28.3% lighter than an equivalent size electric PMD and can be fully recharged in approximately 2 minutes. It decreases the cost of PMDs by approximately $1,500, because batteries do not need to be replaced over the lifetime of the device. The results provide justification for the use of pneumatic technology in PMDs. PMID:29339888
Integration of Pneumatic Technology in Powered Mobility Devices.
Daveler, Brandon; Wang, Hongwu; Gebrosky, Benjamin; Grindle, Garrett G; Schneider, Urs; Cooper, Rory A
2017-01-01
Advances in electric motors, electronics, and control systems have enhanced the capability and drivability of electric power mobility devices over the last 60 years. Yet, battery technologies used in powered mobility devices (PMDs) have not kept pace. Recent advances in pneumatic technology, primarily the high torque, low speed design of rotary piston air motors, directly align with the needs of PMD. Pneumatic technology has advantages over battery-powered technology, including lighter weight, lower operating costs, decreased environmental impact, better reliability, and increased safety. Two prototypes were created that incorporated rotary piston air motors, high-pressure air tanks, and air-pressure regulators. Prototype 1 was created by modifying an existing electric PMD. Range tests were performed to determine the feasibility of pneumatic technology and the optimal combination of components to allow the longest range possible at acceptable speeds over ideal conditions. Using a 1.44 L air tank for feasibility testing, prototype 1 was capable of traveling 800 m, which confirmed the feasibility of pneumatic technology usage in PMDs. Prototype 2 was designed based on the testing results from prototype 1. After further optimization of prototype 2, the average maximum range was 3,150 m. Prototype 2 is up to 28.3% lighter than an equivalent size electric PMD and can be fully recharged in approximately 2 minutes. It decreases the cost of PMDs by approximately $1,500, because batteries do not need to be replaced over the lifetime of the device. The results provide justification for the use of pneumatic technology in PMDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alessi, D.
Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new designmore » has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to operate at 50kW average power.« less
Fluctuations of global energy release and crackling in nominally brittle heterogeneous fracture.
Barés, J; Hattali, M L; Dalmas, D; Bonamy, D
2014-12-31
The temporal evolution of mechanical energy and spatially averaged crack speed are both monitored in slowly fracturing artificial rocks. Both signals display an irregular burstlike dynamics, with power-law distributed fluctuations spanning a broad range of scales. Yet, the elastic power released at each time step is proportional to the global velocity all along the process, which enables defining a material-constant fracture energy. We characterize the intermittent dynamics by computing the burst statistics. This latter displays the scale-free features signature of crackling dynamics, in qualitative but not quantitative agreement with the depinning interface models derived for fracture problems. The possible sources of discrepancies are pointed out and discussed.
Modeling of an Adjustable Beam Solid State Light Project
NASA Technical Reports Server (NTRS)
Clark, Toni
2015-01-01
This proposal is for the development of a computational model of a prototype variable beam light source using optical modeling software, Zemax Optics Studio. The variable beam light source would be designed to generate flood, spot, and directional beam patterns, while maintaining the same average power usage. The optical model would demonstrate the possibility of such a light source and its ability to address several issues: commonality of design, human task variability, and light source design process improvements. An adaptive lighting solution that utilizes the same electronics footprint and power constraints while addressing variability of lighting needed for the range of exploration tasks can save costs and allow for the development of common avionics for lighting controls.
Sound power and vibration levels for two different piano soundboards
NASA Astrophysics Data System (ADS)
Squicciarini, Giacomo; Valiente, Pablo Miranda; Thompson, David J.
2016-09-01
This paper compares the sound power and vibration levels for two different soundboards for upright pianos. One of them is made of laminated spruce and the other of solid spruce (tone-wood). These differ also in the number of ribs and manufacturing procedure. The methodology used is defined in two major steps: (i) acoustic power due to a unit force is obtained reciprocally by measuring the acceleration response of the piano soundboards when excited by acoustic waves in reverberant field; (ii) impact tests are adopted to measure driving point and spatially-averaged mean-square transfer mobility. The results show that, in the midhigh frequency range, the soundboard made of solid spruce has a greater vibrational and acoustic response than the laminated soundboard. The effect of string tension is also addressed, showing that is only relevant at low frequencies.
Electrically rectified piezoelectric energy harvester excited by rotary magnetic plucking
NASA Astrophysics Data System (ADS)
Shu, Y. C.; Chang, Y. P.; Wang, W. C.
2018-03-01
The paper is focuses on the development of a theoretical framework together with an experimental validation to investigate rotational piezoelectric energy harvesting. The proposed device includes an electrically rectified piezoelectric bimorph mounted on a stationary base with a magnet attached to its free end. Energy is harvested by vibration of beam induced by non-contact rotary magnetic plucking. The DC power frequency response is predicted and found to be in good agreement with experiment. It shows that the harvested DC power is around 1 mW in average with the rotational frequency ranging from 5 Hz to 14 Hz. In addition, the parallel connection of two piezoelectric oscillators with respective electrical rectification is considered. It is observed that the power output of the array is the addition of the response from each individual piezoelectric oscillator.
A Novel Topology Control Approach to Maintain the Node Degree in Dynamic Wireless Sensor Networks
Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana
2014-01-01
Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power. PMID:24608008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, Sonia; Newman, Jennifer F.
The role of atmospheric turbulence in influencing wind-turbine power production remains an unsolved mystery despite a growing number of researchers who have attempted to make sense of this issue. Turbulence, a term for short-term deviations around the average wind speed, can cause fluctuations in turbine power production and structural loads. While research strongly suggests that ignoring atmospheric turbulence can result in significant errors in power-curve measurements and annual energy production, it appears that there may be no universal relationship between turbulence and power production. Typically when we think of a wind farm operating in a turbulent atmosphere, we picture amore » waked turbine, battered by vortex eddies (circular wind flow) shed from turbine blades upwind. However, turbulence is present nearly everywhere, and is constantly produced and diminished over a wide range of temporal and spatial scales. This article aims to unravel some of the complex factors that remain unsolved regarding turbulence and wind power« less
Wharton, Sonia; Newman, Jennifer F.
2017-09-11
The role of atmospheric turbulence in influencing wind-turbine power production remains an unsolved mystery despite a growing number of researchers who have attempted to make sense of this issue. Turbulence, a term for short-term deviations around the average wind speed, can cause fluctuations in turbine power production and structural loads. While research strongly suggests that ignoring atmospheric turbulence can result in significant errors in power-curve measurements and annual energy production, it appears that there may be no universal relationship between turbulence and power production. Typically when we think of a wind farm operating in a turbulent atmosphere, we picture amore » waked turbine, battered by vortex eddies (circular wind flow) shed from turbine blades upwind. However, turbulence is present nearly everywhere, and is constantly produced and diminished over a wide range of temporal and spatial scales. This article aims to unravel some of the complex factors that remain unsolved regarding turbulence and wind power« less
Study to determine and improve design for lithium-doped solar cells
NASA Technical Reports Server (NTRS)
Brucker, G.; Faith, T. J.; Holmes-Siedle, A.
1971-01-01
Solar cell experiments show that a single lithium density parameter, the lithium density gradient, calculated from nondestructive capacitance measurements, provides the basis for accurate predictions of lithium cell behavior in a 1-MeV electron environment for fluences ranging between 3 X 10 to the 13th power e/sq cm and 3 X 10 to the 15th power/e sq cm. The oxygen-rich (quartz crucible) lithium cell with phosphorous starting dopant and lithium gradient between approximately 5 X 10 to the 18th power and 1.5 x 10 to the 19th power/cm to the 4th power was found superior in performance to the commercial 10 ohm-cm n/p control cells. Post-recovery stability of oxygen-rich cells was satisfactory. An average post-recovery current drop of approximately 1 mA was observed for 70 crucible cells after 1 year-equivalent storage time at 80 C. In contrast the oxygen-poor (float zone and Lopex) lithium cells displayed spotty initial performance and stability problems at room temperature.
NASA Technical Reports Server (NTRS)
Welch, Gerand E.
2010-01-01
The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range (100% at take-off to 54% at cruise). The variable-speed power turbine, when coupled to a fixed-gear-ratio transmission, offers one approach to accomplish this speed variation. The key aero-challenges of the variable-speed power turbine are related to high work factors at cruise, where the power turbine operates at 54% of take-off speed, wide incidence variations into the vane, blade, and exit-guide-vane rows associated with the power-turbine speed change, and the impact of low aft-stage Reynolds number (transitional flow) at 28 kft cruise. Meanline and 2-D Reynolds-Averaged Navier- Stokes analyses are used to characterize the variable-speed power-turbine aerodynamic challenges and to outline a conceptual design approach that accounts for multi-point operation. Identified technical challenges associated with the aerodynamics of high work factor, incidence-tolerant blading, and low Reynolds numbers pose research needs outlined in the paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yangmei; Zhang, Xiaoping, E-mail: plinafly@163.com; Zhang, Jiande
2014-10-15
The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675 kV and the guiding magnetic field is 0.8 T, a combined microwave with an average power of about 4.0 GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diodemore » voltage range from 675 kV to 755 kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720 kV/cm, which is relatively low corresponding to an output power of 4.0 GW. The stable combined output suggests the probability of long-pulse operation for the combined source.« less
Low-level laser therapy equipment needs calibration before clinical use
NASA Astrophysics Data System (ADS)
Machado de Senna, André; Machado-de-sena, Rosa Maria; Facundes, Arseni Lázaro; Barros Nepomuceno, Patrícia; Sávya Florentino, Wanilza; Olegário de Araújo, Ronyere
2018-04-01
Many factors can influence the radiant power delivered by the low-level laser therapy (LLLT) equipment, such as its cleaning and condition, as well as the use of plastic films for protecting the laser or even its time of use. Radiant power is an important factor to consider because it affects the amount of energy delivered to the target tissue. The difference between real radiant power (RRP) and nominal radiant power (NRP) may interfere in the expected results, because the delivered energy is different from the desired energy. Purpose: The objective of this study was to compare the NRP with the RRP offered by LLLT devices under clinical conditions of use. Material and Methods: For data collection to this study, 61 LLLT devices used in private and public dental practices in the state of Tocantins, Brazil, were evaluated. Three consecutive power measurements were performed at one-minute intervals and then the average of the measured power was calculated. The RRP was compared to the NRP. Results: The equipment presented NRP from 30 to 500mW while RRP ranged from 17.3 to 107.0mW. Discussion and Conclusion: The mean power measured in clinical conditions of use of the laser equipment was different from the nominal power reported by the manufacturers of the devices (p<0,01). The RRP ranged between 12.92% and 107% of NRP. This fact is worrisome, since one of the most important parameters for the success of the treatment of an injury using LLLT is the energy (power x time) delivered. These findings reinforce the need of calibrating the equipment before each laser application in order to avoid failures in the therapeutic conduct.
NASA Technical Reports Server (NTRS)
Dijk, D. J.
1999-01-01
In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.
Applications of high average power nonlinear optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velsko, S.P.; Krupke, W.F.
1996-02-05
Nonlinear optical frequency convertors (harmonic generators and optical parametric oscillators are reviewed with an emphasis on high average power performance and limitations. NLO materials issues and NLO device designs are discussed in reference to several emerging scientific, military and industrial commercial applications requiring {approx} 100 watt average power level in the visible and infrared spectral regions. Research efforts required to enable practical {approx} 100 watt class NLO based laser systems are identified.
High average power pockels cell
Daly, Thomas P.
1991-01-01
A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.
Predictions of lithium interactions with earth's bow shock in the presence of wave activity
NASA Technical Reports Server (NTRS)
Decker, R. B.; Lui, A. T. Y.; Vlahos, L.
1984-01-01
The results of a test-particle simulation studying the movement of a lithium tracer ion injected upstream of the bow shock are reported. Wave activity consists of parallel and antiparallel propagating Alfven waves characterized by a frequency power spectrum within a frequency or range of amplitudes defined separately in the upstream and downstream regions. The results show that even a moderate level of wave activity can substantially change the results obtained in the absence of waves. Among the effects observed are: (1) increased ion transmission; (2) both the average energy gain and spread about the average are increased for transmitted and reflected particles; (3) the average final pitch angle for transmitted particles tends to 90 deg, and the spread of reflected particles is reduced; and (4) the spatial dispersion of the ions on the bow shock after a single encounter is increased.
NASA Technical Reports Server (NTRS)
Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo
2015-01-01
Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.
Compact near-IR and mid-IR cavity ring down spectroscopy device
NASA Technical Reports Server (NTRS)
Miller, J. Houston (Inventor)
2011-01-01
This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.
Population dose commitments due to radioactive releases from nuclear-power-plant sites in 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peloquin, R.A.; Schwab, J.D.; Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1978. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving variousmore » average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 200 person-rem to a low of 0.0004 person-rem with an arithmetic mean of 14 person-rem. The total population dose for allsites was estimated at 660 person-rem for the 93 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 3 x 10/sup -6/ mrem to a high of 0.08 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
Population dose commitments due to radioactive releases from Nuclear-Power-Plant Sites in 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.; Peloquin, R.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1979. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving variousmore » average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 1300 person-rem to a low of 0.0002 person-rem with an arithmetic mean of 38 person-rem. The total population dose for all sites was estimated at 1800 person-rem for the 94 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 2 x 10/sup -6/ mrem to a high of 0.7 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D. A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1977. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ, Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving variousmore » average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 220 person-rem to a low of 0.003 person-rem with an arithmetic mean of 16 person-rem. The total population dose for all sites was estimated at 700 person-rem for the 92 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 2 x 10{sup -5} mrem to a high of 0.1 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
The Influence of Surface Gravity Waves on Marine Current Turbine Performance
NASA Astrophysics Data System (ADS)
Lust, E.; Luznik, L.; Flack, K. A.; Walker, J.; Van Benthem, M.
2013-12-01
Surface gravity waves can significantly impact operating conditions for a marine current turbine, imparting unsteady velocities several orders of magnitude larger than the ambient turbulence. The influence of surface waves on the performance characteristics of a two-bladed horizontal axis marine current turbine was investigated experimentally in a large towing tank facility at the United States Naval Academy. The turbine model had a 0.8 m diameter (D) rotor with a NACA 63-618 cross section, which is Reynolds number independent with respect to lift coefficient in the operating range of Rec ≈ 4 x 105. The torque, thrust and rotational speed were measured at a range of tip speed ratios (TSR) from 5 < TSR < 11. Tests were performed at two rotor depths (1.3D and 2.25D) with and without waves. The average turbine performance characteristics were largely unchanged by depth or the presence of waves. However, tests with waves indicate large variations in thrust, rotational speed, and torque occurred with the passage of the wave. These results demonstrate the impact of surface gravity waves on power production and structural loading and suggest that turbines should be positioned vertically within the water column at a depth which maximizes power output while minimizing material fatigue. Keywords-- marine current turbine, tidal turbine, towing-tank experiments, surface gravity waves, fatigue loading, phase averaging
Population dose commitments due to radioactive releases from nuclear power plant sites in 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1987. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 70 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for reach of the sites is a histogram showing the fraction of the total population within 2 to 80 kmmore » around each site receiving various average dose commitments from the airborne pathways. The site average individual dose commitment from all pathways ranged from a low of 2 {times} 10{sup {minus}6} mrem to a high of 0.009 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year). 2 refs., 2 figs., 7 tabs.« less
Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows
NASA Technical Reports Server (NTRS)
Williams, J. G.; Steenken, W. G.; Yuhas, A. J.
1996-01-01
The P404-GF-400 Powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the impact of inlet-generated total-pressure distortion on estimating levels of engine airflow. Five airflow estimation methods were studied. The Reference Method was a fan corrected airflow to fan corrected speed calibration from an uninstalled engine test. In-flight airflow estimation methods utilized the average, or individual, inlet duct static- to total-pressure ratios, and the average fan-discharge static-pressure to average inlet total-pressure ratio. Correlations were established at low distortion conditions for each method relative to the Reference Method. A range of distorted inlet flow conditions were obtained from -10 deg. to +60 deg. angle of attack and -7 deg. to +11 deg. angle of sideslip. The individual inlet duct pressure ratio correlation resulted in a 2.3 percent airflow spread for all distorted flow levels with a bias error of -0.7 percent. The fan discharge pressure ratio correlation gave results with a 0.6 percent airflow spread with essentially no systematic error. Inlet-generated total-pressure distortion and turbulence had no significant impact on the P404-GE400 engine airflow pumping. Therefore, a speed-flow relationship may provide the best airflow estimate for a specific engine under all flight conditions.
Population dose commitments due to radioactive releases from nuclear power plant sites in 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1988. Fifty-year commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 71 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 16 person-rem to a low of 0.0011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.1 person-rem. The total population dose for all sites was estimated at 75 person-rem for the 150 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 3 {times} 10{sup {minus}7} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1988. Fifty-year commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 71 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 16 person-rem to a low of 0.0011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.1 person-rem. The total population dose for all sites was estimated at 75 person-rem for the 150 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 3 {times} 10{sup {minus}7} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year).« less
Tracking through laser-induced clutter for air-to-ground directed energy system
NASA Astrophysics Data System (ADS)
Belen'kii, Mikhail; Brinkley, Timothy; Hughes, Kevin; Tannenbaum, Allen
2003-09-01
The agility and speed with which directed energy can be retargeted and delivered to the target makes a laser weapon highly desirable in tactical battlefield environments. A directed energy system can effectively damage and possibly destroy relatively soft targets on the ground. In order to accurately point a high-energy beam at the target, the directed energy system must be able to acquire and track targets of interest in highly cluttered environments, under different weather, smoke, and camouflage conditions and in the presence of turbulence and thermal blooming. To meet these requirements, we proposed a concept of a multi spectral tracker, which integrates three sensors: SAR radar, a passive MWIR optical tracker, and a range-gated laser illuminated tracker. In this paper we evaluated the feasibility of the integrated optical tracker and arrived to the following conclusions: a) the contrast enhancement by mapping the original pixel distribution to the desired one enhances the target identification capability, b) a reduction of the divergence of the illuminating beam reduces rms pointing error of a laser tracker, c) a clutter removal algorithm based on active contours is capable of capturing targets in highly cluttered environments, d) the daytime rms pointing error caused by anisoplanatism of the track point to the aim point is comparable to the diffraction-limited beam spot size, f) the peak intensity shift from the optical axis caused by thermal blooming at 5 km range for the air-to-ground engagement scenario is on the order of 8 μrad, and it is 10 μrad at 10 km range, and e) the thermal blooming reduces the peak average power in a 2 cm bucket at 5 km range by a factor of 8, and it reduces the peak average power in the bucket at 10 km range by a factor of 22.
Doucette, Margaret R; Kurth, Salome; Chevalier, Nicolas; Munakata, Yuko; LeBourgeois, Monique K
2015-11-04
Cognitive development is influenced by maturational changes in processing speed, a construct reflecting the rapidity of executing cognitive operations. Although cognitive ability and processing speed are linked to spindles and sigma power in the sleep electroencephalogram (EEG), little is known about such associations in early childhood, a time of major neuronal refinement. We calculated EEG power for slow (10-13 Hz) and fast (13.25-17 Hz) sigma power from all-night high-density electroencephalography (EEG) in a cross-sectional sample of healthy preschool children (n = 10, 4.3 ± 1.0 years). Processing speed was assessed as simple reaction time. On average, reaction time was 1409 ± 251 ms; slow sigma power was 4.0 ± 1.5 μV²; and fast sigma power was 0.9 ± 0.2 μV². Both slow and fast sigma power predominated over central areas. Only slow sigma power was correlated with processing speed in a large parietal electrode cluster (p < 0.05, r ranging from -0.6 to -0.8), such that greater power predicted faster reaction time. Our findings indicate regional correlates between sigma power and processing speed that are specific to early childhood and provide novel insights into the neurobiological features of the EEG that may underlie developing cognitive abilities.
Effect of the target power density on high-power impulse magnetron sputtering of copper
NASA Astrophysics Data System (ADS)
Kozák, Tomáš
2012-04-01
We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.
Feasibility of Wave Energy in Hong Kong
NASA Astrophysics Data System (ADS)
Lu, M.; Hodgson, P.
2014-12-01
Kinetic energy produced by the movement of ocean waves can be harnessed by wave energy converter equipment such as wave turbines to power onshore electricity generators, creating a valuable source of renewable energy. This experiment measures the potential of wave energy in Hoi Ha Wan Marine Park, Hong Kong using a data buoy programmed to send data through wireless internet every five minutes. Wave power (known as 'wave energy flux') is proportional to wave energy periodicity and to the square of wave height, and can be calculated using the equation: P = 0.5 kW/(m3)(s) x Hs2 x Tp P = wave energy flux (wave energy per unit of wave crest length in kW/m) Hs = significant wave height (m) Tp = wave period (seconds) Acoustic Doppler Current Profilers (ADCPs), or ultrasonic sensors, were installed on the seabed at three monitoring locations to measure Significant Wave Heights (Hs), Significant Wave Periods (Tp) and Significant Wave Direction (Wd). Over a twelve month monitoring period, Significant Wave Heights ranged from 0 ~ 8.63m. Yearly averages were 1.051m. Significant Wave Period ranged from 0 ~ 14.9s. Yearly averages were 6.846s. The maximum wave energy amount recorded was 487.824 kW/m. These results implied that electricity sufficient to power a small marine research center could be supplied by a generator running at 30% efficiency or greater. A wave piston driven generator prototype was designed that could meet output objectives without using complex hydraulics, expensive mechanical linkages, or heavy floating buoys that might have an adverse impact on marine life. The result was a design comprising a water piston connected by an air pipe to a rotary turbine powered generator. A specially designed air valve allowed oscillating bidirectional airflow generated in the piston to be converted into unidirectional flow through the turbine, minimizing kinetic energy loss. A 35cm wave with a one second period could generate 139.430W of electricity, with an efficiency of 37.6%.
Average focal length and power of a section of any defined surface.
Kaye, Stephen B
2010-04-01
To provide a method to allow calculation of the average focal length and power of a lens through a specified meridian of any defined surface, not limited to the paraxial approximations. University of Liverpool, Liverpool, United Kingdom. Functions were derived to model back-vertex focal length and representative power through a meridian containing any defined surface. Average back-vertex focal length was based on the definition of the average of a function, using the angle of incidence as an independent variable. Univariate functions allowed determination of average focal length and power through a section of any defined or topographically measured surface of a known refractive index. These functions incorporated aberrations confined to the section. The proposed method closely approximates the average focal length, and by inference power, of a section (meridian) of a surface to a single or scalar value. It is not dependent on the paraxial and other nonconstant approximations and includes aberrations confined to that meridian. A generalization of this method to include all orthogonal and oblique meridians is needed before a comparison with measured wavefront values can be made. Copyright (c) 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Lesnik, Keaton Larson; Liu, Hong
2017-09-19
The complex interactions that occur in mixed-species bioelectrochemical reactors, like microbial fuel cells (MFCs), make accurate predictions of performance outcomes under untested conditions difficult. While direct correlations between any individual waste stream characteristic or microbial community structure and reactor performance have not been able to be directly established, the increase in sequencing data and readily available computational power enables the development of alternate approaches. In the current study, 33 MFCs were evaluated under a range of conditions including eight separate substrates and three different wastewaters. Artificial Neural Networks (ANNs) were used to establish mathematical relationships between wastewater/solution characteristics, biofilm communities, and reactor performance. ANN models that incorporated biotic interactions predicted reactor performance outcomes more accurately than those that did not. The average percent error of power density predictions was 16.01 ± 4.35%, while the average percent error of Coulombic efficiency and COD removal rate predictions were 1.77 ± 0.57% and 4.07 ± 1.06%, respectively. Predictions of power density improved to within 5.76 ± 3.16% percent error through classifying taxonomic data at the family versus class level. Results suggest that the microbial communities and performance of bioelectrochemical systems can be accurately predicted using data-mining, machine-learning techniques.
A comparison of renewable energy technologies using two simulation softwares: HOMER and RETScreen
NASA Astrophysics Data System (ADS)
Ramli, Mohd Sufian; Wahid, Siti Sufiah Abd; Hassan, Khairul Kamarudin
2017-08-01
This paper concerns on modelling renewable energy technologies including PV standalone system (PVSS) and wind standalone system (WSS) as well as PV-wind hybrid system (PVWHS). To evaluate the performance of all power system configurations in term of economic analysis and optimization, simulation tools called HOMER and RETScreen are used in this paper. HOMER energy modeling software is a powerful tool for designing and analyzing hybrid power systems, which contains a mix of conventional generators, wind turbines, solar photovoltaic's, hydropower, batteries, and other inputs. RETScreen uses a Microsoft Excel-based spreadsheet model that consists of a set of workbooks which calculates the annual average energy flows with adjustment factors to account for temporal effects such as solar-load coincidence. Sizes of equipments are calculated and inserted as inputs to HOMER and RETScreen. The result obtained are analyzed and discussed. The cost per kWh to generate electricity using the PVSS system to supply the average demand of 8.4 kWh/day ranges between RM 1.953/kWh to RM 3.872/kWh. It has been found that the PVSS gives the lowest cost of energy compared to the other proposed two technologies that have been simulated by using HOMER and RETScreen.
Maximal Aerobic Power in Aging Men: Insights From a Record of 1-Hour Unaccompanied Cycling.
Capelli, Carlo
2018-01-01
To analyze best 1-h unaccompanied performances of master athletes in ages ranging from 35 to 105 y to estimate the decay of maximal aerobic power (MAP) across the spectrum of age. MAP at the various ages was estimated by computing the metabolic power ([Formula: see text]) maintained to cover the distances during best 1-h unaccompanied performances established by master athletes of different classes of age and by assuming that they were able to maintain an [Formula: see text] equal to 88% of their MAP during 1 h of exhaustive exercise. MAP started monotonically decreasing at 47 y of age. Thereafter, it showed an average rate of decrease of ∼14% for the decades up to 105 y of age, similar to other classes of master athletes. The results confirm, by extending the analysis to centennial subjects, that MAP seems to start declining from the middle of the 5th decade of age, with an average percentage decay that is faster than that traditionally reported, even when one maintains a very active lifestyle. The proposed approach may be applied to other types of human locomotion for which the relationship between speed and [Formula: see text] is known.
Huang, Jehn-Yu; Pekmezci, Melike; Mesiwala, Nisreen; Kao, Andrew; Lin, Shan
2011-02-01
To evaluate the capability of the optic disc, peripapillary retinal nerve fiber layer (P-RNFL), macular inner retinal layer (M-IRL) parameters, and their combination obtained by Fourier-domain optical coherent tomography (OCT) in differentiating a glaucoma suspect from perimetric glaucoma. Two hundred and twenty eyes from 220 patients were enrolled in this study. The optic disc morphology, P-RNFL, and M-IRL were assessed by the Fourier-domain OCT (RTVue OCT, Model RT100, Optovue, Fremont, CA). A linear discriminant function was generated by stepwise linear discriminant analysis on the basis of OCT parameters and demographic factors. The diagnostic power of these parameters was evaluated with receiver operating characteristic (ROC) curve analysis. The diagnostic power in the clinically relevant range (specificity ≥ 80%) was presented as the partial area under the ROC curve (partial AROC). The individual OCT parameter with the largest AROC and partial AROC in the high specificity (≥ 80%) range were cup/disc vertical ratio (AROC = 0.854 and partial AROC = 0.142) for the optic disc parameters, average thickness (AROC = 0.919 and partial AROC = 0.147) for P-RNFL parameters, inferior hemisphere thickness (AROC = 0.871 and partial AROC = 0.138) for M-IRL parameters, respectively. The linear discriminant function further enhanced the ability in detecting perimetric glaucoma (AROC = 0.970 and partial AROC = 0.172). Average P-RNFL thickness is the optimal individual OCT parameter to detect perimetric glaucoma. Simultaneous evaluation on disc morphology, P-RNFL, and M-IRL thickness can improve the diagnostic accuracy in diagnosing glaucoma.
Brazhnik, Elena; Cruz, Ana V.; Avila, Irene; Wahba, Marian I.; Novikov, Nikolay; Ilieva, Neda M.; McCoy, Alex J.; Gerber, Colin; Walters, Judith. R.
2012-01-01
Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of Parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, seven days after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8–25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25–40 Hz band with a peak frequency at 30–35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25–40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity. PMID:22674263
Directivity and trends of noise generated by a propeller in a wake
NASA Technical Reports Server (NTRS)
Block, P. J. W.; Gentry, C. L., Jr.
1986-01-01
An experimental study of the effects on far-field propeller noise of a pylon wake interaction was conducted with a scale model of a single-rotation propeller in a low-speed anechoic wind tunnel. A detailed mapping of the noise directivity was obtained at 10 test conditions covering a wide range of propeller power landings at several subsonic tip speeds. Two types of noise penalties were investigated-pulser and spacing. The pusher noise penalty is the difference in the average overall sound pressure level, OASPL, for pusher and tractor installations. (In a pusher installation, the propeller disk is downstream of a pylon or another aerodynamic surface.) The spacing noise penalty is the difference in the average OASPL for different distances between the pylon trailing edge and the propeller. The variations of these noise penalties with axial, or flyover, angle theta and circumferential angle phi are presented, and the trends in these noise penalties with tip Mach number and power loading are given for selected values of theta and phi. The circumferential directivity of the noise from a pusher installation showed that the addition noise due to the interaction of the pylon wake with the propeller had a broad peak over a wide range of circumferential angles approximately perpendicular to the pylon with a sharp minimum 90 deg. to the pylon for the majority of cases tested. The variation of the pusher noise penalty with theta had a minimum occurring near the propeller plane and maximum values of as much as 20 dB occurring toward the propeller axes. The magnitude of the pusher noise penalty generally decreased as propeller tip Mach number or power loading was increased.
WE-D-BRF-05: Quantitative Dual-Energy CT Imaging for Proton Stopping Power Computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, D; Williamson, J; Siebers, J
2014-06-15
Purpose: To extend the two-parameter separable basis-vector model (BVM) to estimation of proton stopping power from dual-energy CT (DECT) imaging. Methods: BVM assumes that the photon cross sections of any unknown material can be represented as a linear combination of the corresponding quantities for two bracketing basis materials. We show that both the electron density (ρe) and mean excitation energy (Iex) can be modeled by BVM, enabling stopping power to be estimated from the Bethe-Bloch equation. We have implemented an idealized post-processing dual energy imaging (pDECT) simulation consisting of monogenetic 45 keV and 80 keV scanning beams with polystyrene-water andmore » water-CaCl2 solution basis pairs for soft tissues and bony tissues, respectively. The coefficients of 24 standard ICRU tissue compositions were estimated by pDECT. The corresponding ρe, Iex, and stopping power tables were evaluated via BVM and compared to tabulated ICRU 44 reference values. Results: BVM-based pDECT was found to estimate ρe and Iex with average and maximum errors of 0.5% and 2%, respectively, for the 24 tissues. Proton stopping power values at 175 MeV, show average/maximum errors of 0.8%/1.4%. For adipose, muscle and bone, these errors result range prediction accuracies less than 1%. Conclusion: A new two-parameter separable DECT model (BVM) for estimating proton stopping power was developed. Compared to competing parametric fit DECT models, BVM has the comparable prediction accuracy without necessitating iterative solution of nonlinear equations or a sample-dependent empirical relationship between effective atomic number and Iex. Based on the proton BVM, an efficient iterative statistical DECT reconstruction model is under development.« less
Analytical approximations for effective relative permeability in the capillary limit
NASA Astrophysics Data System (ADS)
Rabinovich, Avinoam; Li, Boxiao; Durlofsky, Louis J.
2016-10-01
We present an analytical method for calculating two-phase effective relative permeability, krjeff, where j designates phase (here CO2 and water), under steady state and capillary-limit assumptions. These effective relative permeabilities may be applied in experimental settings and for upscaling in the context of numerical flow simulations, e.g., for CO2 storage. An exact solution for effective absolute permeability, keff, in two-dimensional log-normally distributed isotropic permeability (k) fields is the geometric mean. We show that this does not hold for krjeff since log normality is not maintained in the capillary-limit phase permeability field (Kj=k·krj) when capillary pressure, and thus the saturation field, is varied. Nevertheless, the geometric mean is still shown to be suitable for approximating krjeff when the variance of lnk is low. For high-variance cases, we apply a correction to the geometric average gas effective relative permeability using a Winsorized mean, which neglects large and small Kj values symmetrically. The analytical method is extended to anisotropically correlated log-normal permeability fields using power law averaging. In these cases, the Winsorized mean treatment is applied to the gas curves for cases described by negative power law exponents (flow across incomplete layers). The accuracy of our analytical expressions for krjeff is demonstrated through extensive numerical tests, using low-variance and high-variance permeability realizations with a range of correlation structures. We also present integral expressions for geometric-mean and power law average krjeff for the systems considered, which enable derivation of closed-form series solutions for krjeff without generating permeability realizations.
Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas
2015-12-01
Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.
Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers.
Saraceno, C J; Heckl, O H; Baer, C R E; Südmeyer, T; Keller, U
2011-01-17
We report on two pulse compressors for a high-power thin disk laser oscillator using rod-type fiber amplifiers. Both systems are seeded by a standard SESAM modelocked thin disk laser that delivers 16 W of average power at a repetition rate of 10.6 MHz with a pulse energy of 1.5 μJ and a pulse duration of 1 ps. We discuss two results with different fiber parameters with different trade-offs in pulse duration, average power, damage and complexity. The first amplifier setup consists of a Yb-doped fiber amplifier with a 2200 μm2 core area and a length of 55 cm, resulting in a compressed average power of 55 W with 98-fs pulses at a repetition rate of 10.6 MHz. The second system uses a shorter 36-cm fiber with a larger core area of 4500 μm2. In a stretcher-free configuration we obtained 34 W of compressed average power and 65-fs pulses. In both cases peak powers of > 30 MW were demonstrated at several μJ pulse energies. The power scaling limitations due to damage and self-focusing are discussed.
Powerful glow discharge excilamp
Tarasenko, Victor F.; Panchenko, Aleksey N.; Skakun, Victor S.; Sosnin, Edward A.; Wang, Francis T.; Myers, Booth R.; Adamson, Martyn G.
2002-01-01
A powerful glow discharge lamp comprising two coaxial tubes, the outer tube being optically transparent, with a cathode and anode placed at opposite ends of the tubes, the space between the tubes being filled with working gas. The electrodes are made as cylindrical tumblers placed in line to one other in such a way that one end of the cathode is inserted into the inner tube, one end of the anode coaxially covers the end of the outer tube, the inner tube penetrating and extending through the anode. The increased electrodes' surface area increases glow discharge electron current and, correspondingly, average radiation power of discharge plasma. The inner tube contains at least one cooling liquid tube placed along the axis of the inner tube along the entire lamp length to provide cathode cooling. The anode has a circumferential heat extracting radiator which removes heat from the anode. The invention is related to lighting engineering and can be applied for realization of photostimulated processes under the action of powerful radiation in required spectral range.
Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking
NASA Astrophysics Data System (ADS)
Kuang, Yang; Ruan, Tingwen; Chew, Zheng Jun; Zhu, Meiling
2016-11-01
Recently, there has been a huge amount of work devoted to wearable energy harvesting (WEH) in a bid to establish energy autonomous wireless sensing systems for a range of health monitoring applications. However, limited work has been performed to implement and test such systems in real-world settings. This paper reports the development and real-world characterisation of a magnetically plucked wearable knee-joint energy harvester (Mag-WKEH) powered wireless sensing system, which integrates our latest research progresses in WEH, power conditioning and wireless sensing to achieve high energy efficiency. Experimental results demonstrate that with walking speeds of 3∼7 km/h, the Mag-WKEH generates average power of 1.9∼4.5 mW with unnoticeable impact on the wearer and is able to power the wireless sensor node (WSN) with three sensors to work at duty cycles of 6.6%∼13%. In each active period of 2 s, the WSN is able to measure and transmit 482 readings to the base station.
18 CFR 301.7 - Average System Cost methodology functionalization.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Average System Cost methodology functionalization. 301.7 Section 301.7 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.7 Average System Cost methodology functionalization. (a) Functionalization of each Account...
18 CFR 301.7 - Average System Cost methodology functionalization.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Average System Cost methodology functionalization. 301.7 Section 301.7 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.7 Average System Cost methodology functionalization. (a) Functionalization of each Account...
18 CFR 301.7 - Average System Cost methodology functionalization.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Average System Cost methodology functionalization. 301.7 Section 301.7 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.7 Average System Cost methodology functionalization. (a) Functionalization of each Account...
18 CFR 301.7 - Average System Cost methodology functionalization.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Average System Cost methodology functionalization. 301.7 Section 301.7 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.7 Average System Cost methodology functionalization. (a) Functionalization of each Account...
Computationally Efficient Resampling of Nonuniform Oversampled SAR Data
2010-05-01
noncoherently . The resample data is calculated using both a simple average and a weighted average of the demodulated data. The average nonuniform...trials with randomly varying accelerations. The results are shown in Fig. 5 for the noncoherent power difference and Fig. 6 for and coherent power...simple average. Figure 5. Noncoherent difference between SAR imagery generated with uniform sampling and nonuniform sampling that was resampled
Varifocal liquid lens based on microelectrofluidic technology.
Chang, Jong-hyeon; Jung, Kyu-Dong; Lee, Eunsung; Choi, Minseog; Lee, Seungwan; Kim, Woonbae
2012-11-01
This Letter presents a tunable liquid lens based on microelectrofluidic technology. In the microelectrofluidic lens (MEFL), electrowetting in the hydrophobic surface channel induces the Laplace pressure difference between two fluidic interfaces on the lens aperture and the surface channel. Then, the pressure difference makes the lens curvature tunable. In spite of the contact angle saturation, the narrow surface channel increases the Laplace pressure to have a wide range of optical power variation in the MEFL. The magnitude of the applied voltage determines the lens curvature in the analog mode MEFL. Digital operation is also possible when the control electrodes of the MEFL are patterned to have an array. The lens aperture and maximum surface channel diameter were designed to 3.2 mm and 6.4 mm, respectively, with a channel height of 0.2 mm for an optical power range between +210 and -30 D. By switching the control electrodes, the averaged transit time in steps and turnaround time were as low as 2.4 ms and 16.5 ms, respectively, in good agreement with the simulation results. It is expected that the proposed MEFL may be widely used with advantages of wide variation of the optical power with fast and precise controllability in a digital manner.
NASA Astrophysics Data System (ADS)
Nikolaev, V. S.; Timofeev, A. V.
2018-01-01
It is often suggested that inter-particle distance in stable dusty plasma structures decreases with cooling as a square root of neutral gas temperature. Deviations from this dependence (up to the increase at cryogenic temperatures) found in the experimental results for the pressures range 0.1-8.0 mbar and for the currents range 0.1-1.0 mA are given. Inter-particle distance dependences on the charge of particles, parameter of the trap and the screening length in surrounding plasma are obtained for different conditions from molecular dynamics simulations. They are well approximated by power functions in the mentioned range of parameters. It is found that under certain assumptions thermophoretical force is responsible for inter-particle distance increase at cryogenic temperatures.
RF Design of a High Average Beam-Power SRF Electron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sipahi, Nihan; Biedron, Sandra; Gonin, Ivan
2016-06-01
There is a significant interest in developing high-average power electron sources, particularly in the area of electron sources integrated with Superconducting Radio Frequency (SRF) systems. For these systems, the electron gun and cathode parts are critical components for stable intensity and high-average powers. In this initial design study, we will present the design of a 9-cell accelerator cavity having a frequency of 1.3 GHz and the corresponding field optimization studies.
Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser
NASA Astrophysics Data System (ADS)
Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.
2013-10-01
We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.
A quick response four decade logarithmic high-voltage stepping supply
NASA Technical Reports Server (NTRS)
Doong, H.
1978-01-01
An improved high-voltage stepping supply, for space instrumentation is described where low power consumption and fast settling time between steps are required. The high-voltage stepping supply, utilizing an average power of 750 milliwatts, delivers a pair of mirror images with 64 level logarithmic outputs. It covers a four decade range of + or - 2500 to + or - 0.29 volts having an output stability of + or - 0.5 percent or + or - 20 millivolts for all line load and temperature variations. The supply provides a typical step setting time of 1 millisecond with 100 microseconds for the lower two decades. The versatile design features of the high-voltage stepping supply provides a quick response staircase generator as described or a fixed voltage with the option to change levels as required over large dynamic ranges without circuit modifications. The concept can be implemented up to + or - 5000 volts. With these design features, the high-voltage stepping supply should find numerous applications where charged particle detection, electro-optical systems, and high voltage scientific instruments are used.
Bierbach, Jana; Yeung, Mark; Eckner, Erich; ...
2015-05-01
Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less
Song, Pan-Pan; Xiang, Jing; Jiang, Li; Chen, Heng-Sheng; Liu, Ben-Ke; Hu, Yue
2016-01-01
To analyze spectral and spatial signatures of high frequency oscillations (HFOs), which include ripples and fast ripples (FRs, >200 Hz) by quantitatively assessing average and peak spectral power in a rat model of different stages of epileptogenesis. The lithium-pilocarpine model of temporal lobe epilepsy was used. The acute phase of epilepsy was assessed by recording intracranial electroencephalography (EEG) activity for 1 day after status epilepticus (SE). The chronic phase of epilepsy, including spontaneous recurrent seizures (SRSs), was assessed by recording EEG activity for 28 days after SE. Average and peak spectral power of five frequency bands of EEG signals in CA1, CA3, and DG regions of the hippocampus were analyzed with wavelet and digital filter. FRs occurred in the hippocampus in the animal model. Significant dynamic changes in the spectral power of FRS were identified in CA1 and CA3. The average spectral power of ripples increased at 20 min before SE ( p < 0.05), peaked at 10 min before diazepam injection. It decreased at 10 min after diazepam ( p < 0.05) and returned to baseline after 1 h. The average spectral power of FRs increased at 30 min before SE ( p < 0.05) and peaked at 10 min before diazepam. It decreased at 10 min after diazepam ( p < 0.05) and returned to baseline at 2 h after injection. The dynamic changes were similar between average and peak spectral power of FRs. Average and peak spectral power of both ripples and FRs in the chronic phase showed a gradual downward trend compared with normal rats 14 days after SE. The spectral power of HFOs may be utilized to distinguish between normal and pathologic HFOs. Ictal average and peak spectral power of FRs were two parameters for predicting acute epileptic seizures, which could be used as a new quantitative biomarker and early warning marker of seizure. Changes in interictal HFOs power in the hippocampus at the chronic stage may be not related to seizure occurrence.
Gallium-doped germanium, evaluation of photoconductors, part 1
NASA Technical Reports Server (NTRS)
Moore, W. J.
1979-01-01
Gallium-doped germanium far infrared detectors were evaluated at low temperatures and low background simulating the space environment. Signal and noise characteristics were determined for detector temperatures in the 2K to 4K range. Optimum performance occurs at about 2.5K for all devices tested. The minimum average NEP in the 40-130 micron region was found to be approximately 4 x 10 to the minus 17th power watt Hz(-1/2) at a frequency of 1 Hz.
Physical and performance characteristics of instruments selected for global change monitoring
NASA Technical Reports Server (NTRS)
Allen, Cheryl L.
1991-01-01
The following appendix (appendix B) lists the instruments chosen for the Global Change Monitoring program. The instruments are described according to the following categories: (1) Title; (2) Measurement; (3) Contact; (4) Instrument Type; (5) Dimensions; (6) Mass; (7) Average Operational Power; (8) Data Rate; (9) Spectral/Frequency Range; (10) Number of Channels/Frequencies; (11) Viewing Field; (12) Scanning Characteristics; (13) Resolution (Horizontal/Vertical); (14) Swath Width; (15) Satellite Application; and (16) Technology Status. A technical drawing of each instrument is also provided.
Vrijheid, M; Mann, S; Vecchia, P; Wiart, J; Taki, M; Ardoino, L; Armstrong, B K; Auvinen, A; Bédard, D; Berg-Beckhoff, G; Brown, J; Chetrit, A; Collatz-Christensen, H; Combalot, E; Cook, A; Deltour, I; Feychting, M; Giles, G G; Hepworth, S J; Hours, M; Iavarone, I; Johansen, C; Krewski, D; Kurttio, P; Lagorio, S; Lönn, S; McBride, M; Montestrucq, L; Parslow, R C; Sadetzki, S; Schüz, J; Tynes, T; Woodward, A; Cardis, E
2009-10-01
The output power of a mobile phone is directly related to its radiofrequency (RF) electromagnetic field strength, and may theoretically vary substantially in different networks and phone use circumstances due to power control technologies. To improve indices of RF exposure for epidemiological studies, we assessed determinants of mobile phone output power in a multinational study. More than 500 volunteers in 12 countries used Global System for Mobile communications software-modified phones (GSM SMPs) for approximately 1 month each. The SMPs recorded date, time, and duration of each call, and the frequency band and output power at fixed sampling intervals throughout each call. Questionnaires provided information on the typical circumstances of an individual's phone use. Linear regression models were used to analyse the influence of possible explanatory variables on the average output power and the percentage call time at maximum power for each call. Measurements of over 60,000 phone calls showed that the average output power was approximately 50% of the maximum, and that output power varied by a factor of up to 2 to 3 between study centres and network operators. Maximum power was used during a considerable proportion of call time (39% on average). Output power decreased with increasing call duration, but showed little variation in relation to reported frequency of use while in a moving vehicle or inside buildings. Higher output powers for rural compared with urban use of the SMP were observed principally in Sweden where the study covered very sparsely populated areas. Average power levels are substantially higher than the minimum levels theoretically achievable in GSM networks. Exposure indices could be improved by accounting for average power levels of different telecommunications systems. There appears to be little value in gathering information on circumstances of phone use other than use in very sparsely populated regions.
Non-disturbing optical power monitor for links in the visible spectrum using a polymer optical fibre
NASA Astrophysics Data System (ADS)
Ribeiro, Ricardo M.; Freitas, Taiane A. M. G.; Barbero, Andrés P. L.; Silva, Vinicius N. H.
2015-08-01
We describe a simple and inexpensive inline optical power monitor (OPMo) for polymer optical fibre (POF) links that are transmitting visible light carriers. The OPMo is non-invasive in the sense that it does not tap any guided light from the fibre core; rather, it collects and detects the spontaneous side-scattered light. Indeed, the OPMo indicates whether a POF transmission link has dark or live status and measures the average optical power level of the propagating signals without disconnecting the fibre link. This paper demonstrates the proof-of-principle of the device for one wavelength at a time, selected from a set of previously calibrated wavelength channels which have been found in the 45 dB dynamic range, with 50 dBm sensitivity or insensitivity by the use or non-use of a mode scrambler. Our findings are very promising milestones for further OPMo development towards the marketplace.
Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He
2016-08-01
Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.
Helical screw expander evaluation project
NASA Technical Reports Server (NTRS)
Mckay, R.
1982-01-01
A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.
Compact self-Q-switched Tm:YLF laser at 1.91 μm
NASA Astrophysics Data System (ADS)
Zhang, B.; Li, L.; He, C. J.; Tian, F. J.; Yang, X. T.; Cui, J. H.; Zhang, J. Z.; Sun, W. M.
2018-03-01
We report self-Q-switching operation in a diode-pumped Tm:YLF bulk laser by exploiting saturable re-absorption under the quasi-three-level regime. Robust self-Q-switched pulse output at 1.91 μm in fundamental mode is demonstrated experimentally with 1.5 at.% doped Tm:YLF crystal. At maximum absorbed pump power of 4.5 W, the average output power and pulse energy are obtained as high as 610 mW and 29 μJ, respectively, with the corresponding slope efficiency of 22%. Pulse repetition rate is tunable in the range of 3-21 kHz with changing the pump power. The dynamics of self-Q-switching of Tm:YLF laser are discussed with the help of a rate equation model showing good agreement with the experiment. The compact self-Q-switched laser near 2 μm has potential application in laser radar systems for accurate wind velocity measurements.
Konter, Erkut
2010-09-01
The purpose of this study was to analyze the leadership power perception of amateur and professional soccer coaches and players according to their belief in good luck or not. Data collected from 165 male soccer coaches and 870 male soccer players including professionals and amateurs. The coaches had a mean age of 40.24 years (SD = 8.40) and had been coaching for an average of 8.56 years (SD = 6.75). The players had a mean age of 18.40 years (SD = 4.00) and had been playing soccer for an average of 6.00 years (SD = 4.15) with license. Adapted Turkish version of Power in Soccer Questionnaire-Other (PSQ-O for soccer players), Power in Soccer Questionnaire-Self (PSQ-S for coaches) and an information form were used for the data collection. Cronbach Reliability Alphas of PSQ-O and PSQ-S range between 0.60 and 0.84. Players' and coaches' data were analyzed by Kruskal-Wallis and Mann Whitney Tests. Analysis of PSQ-O revealed significant differences related to Coersive Power-CP [chi2 (3) = 8.46, p < 0.037], Referent Power-RP [chi2 (3) = 14.84, p < 0.002] and Expert Power-EP [chi2 (3) = 7.63, p < 0.054], and no significant differences related to Legitimate Power-LP (p > 0.05). Results of PSQ-O and PSQ-S indicated complex relationships related to belief in good luck or not. Overall, there are differences between coaches' and players'perception of CP, LP and EP related to belief in good luck or not. The only similarity appears to be in perception of RP. However, there is lack of research to make more certain conclusions. Future researchers should also take into consideration gender, sport experience, age, taking responsibility, self-confidence, attributions, expectations, superstitions, emotions, perception of achievement etc.
Code of Federal Regulations, 2010 CFR
2010-10-01
... between several transmission power levels in the data transmission process. (s) U-NII devices. Intentional... bridge in a peer-to-peer connection or as a connector between the wired and wireless segments of the... the presence of a radar. (c) Average Symbol Envelope Power. The average symbol envelope power is the...
NASA Astrophysics Data System (ADS)
Umansky, Moti; Weihs, Daphne
2012-08-01
In many physical and biophysical studies, single-particle tracking is utilized to reveal interactions, diffusion coefficients, active modes of driving motion, dynamic local structure, micromechanics, and microrheology. The basic analysis applied to those data is to determine the time-dependent mean-square displacement (MSD) of particle trajectories and perform time- and ensemble-averaging of similar motions. The motion of particles typically exhibits time-dependent power-law scaling, and only trajectories with qualitatively and quantitatively comparable MSD should be ensembled. Ensemble averaging trajectories that arise from different mechanisms, e.g., actively driven and diffusive, is incorrect and can result inaccurate correlations between structure, mechanics, and activity. We have developed an algorithm to automatically and accurately determine power-law scaling of experimentally measured single-particle MSD. Trajectories can then categorized and grouped according to user defined cutoffs of time, amplitudes, scaling exponent values, or combinations. Power-law fits are then provided for each trajectory alongside categorized groups of trajectories, histograms of power laws, and the ensemble-averaged MSD of each group. The codes are designed to be easily incorporated into existing user codes. We expect that this algorithm and program will be invaluable to anyone performing single-particle tracking, be it in physical or biophysical systems. Catalogue identifier: AEMD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 25 892 No. of bytes in distributed program, including test data, etc.: 5 572 780 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.11 (2010b) or higher, program should also be backwards compatible. Symbolic Math Toolboxes (5.5) is required. The Curve Fitting Toolbox (3.0) is recommended. Computer: Tested on Windows only, yet should work on any computer running MATLAB. In Windows 7, should be used as administrator, if the user is not the administrator the program may not be able to save outputs and temporary outputs to all locations. Operating system: Any supporting MATLAB (MathWorks Inc.) v7.11 / 2010b or higher. Supplementary material: Sample output files (approx. 30 MBytes) are available. Classification: 12 External routines: Several MATLAB subfunctions (m-files), freely available on the web, were used as part of and included in, this code: count, NaN suite, parseArgs, roundsd, subaxis, wcov, wmean, and the executable pdfTK.exe. Nature of problem: In many physical and biophysical areas employing single-particle tracking, having the time-dependent power-laws governing the time-averaged meansquare displacement (MSD) of a single particle is crucial. Those power laws determine the mode-of-motion and hint at the underlying mechanisms driving motion. Accurate determination of the power laws that describe each trajectory will allow categorization into groups for further analysis of single trajectories or ensemble analysis, e.g. ensemble and time-averaged MSD. Solution method: The algorithm in the provided program automatically analyzes and fits time-dependent power laws to single particle trajectories, then group particles according to user defined cutoffs. It accepts time-dependent trajectories of several particles, each trajectory is run through the program, its time-averaged MSD is calculated, and power laws are determined in regions where the MSD is linear on a log-log scale. Our algorithm searches for high-curvature points in experimental data, here time-dependent MSD. Those serve as anchor points for determining the ranges of the power-law fits. Power-law scaling is then accurately determined and error estimations of the parameters and quality of fit are provided. After all single trajectory time-averaged MSDs are fit, we obtain cutoffs from the user to categorize and segment the power laws into groups; cutoff are either in exponents of the power laws, time of appearance of the fits, or both together. The trajectories are sorted according to the cutoffs and the time- and ensemble-averaged MSD of each group is provided, with histograms of the distributions of the exponents in each group. The program then allows the user to generate new trajectory files with trajectories segmented according to the determined groups, for any further required analysis. Additional comments: README file giving the names and a brief description of all the files that make-up the package and clear instructions on the installation and execution of the program is included in the distribution package. Running time: On an i5 Windows 7 machine with 4 GB RAM the automated parts of the run (excluding data loading and user input) take less than 45 minutes to analyze and save all stages for an 844 trajectory file, including optional PDF save. Trajectory length did not affect run time (tested up to 3600 frames/trajectory), which was on average 3.2±0.4 seconds per trajectory.
NASA Astrophysics Data System (ADS)
Zreihan, Noam; Faran, Eilon; Vives, Eduard; Planes, Antoni; Shilo, Doron
2018-01-01
It is generally claimed that physical processes which display scale-invariant power-law distributions are subjected to a dynamic criticality that prohibits a well-defined kinetic law. In this paper, we demonstrate the coexistence of these two apparently contradicting behaviors during the same physical process—the motion of type-II twin boundaries in martensite Ni-Mn-Ga. The process is investigated by combined measurements of the temporal twin-boundary velocity and the acoustic emitted energy. Velocity values are extracted from high-resolution force measurements taken during displacement-driven mechanical tests, as well as from force-driven magnetic tests, and cover an overall range of six orders of magnitude. Acoustic emission (AE) is measured during mechanical tests. Velocity values follow a normal distribution whose characteristic value is determined by the material's kinetic relation, and its width scales with the average velocity. In addition, it is observed that velocity distributions are characterized by a heavy tail at the right (i.e., faster) end that exhibits a power law over more than one and a half orders of magnitude. At the same time, the AE signals follow a scale-invariant power-law distribution, which is not sensitive to the average twin-boundary velocity. The coexistence of these two different statistical behaviors reflects the complex nature of twin-boundary motion and suggests the possibility that the transformation proceeds through physical subprocesses that are close to criticality alongside other processes that are not.
QUESPOWR MRI: QUantification of Exchange as a function of Saturation Power On the Water Resonance
Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio
2018-01-01
QUantification of Exchange as a function of Saturation Power On the Water Resonance (QUESPOWR) MRI is a new method that can estimate chemical exchange rates. This method acquires a series of OPARACHEE MRI acquisitions with a range of RF powers for the WALTZ16* pulse train, which are applied on the water resonance. A QUESPOWR plot can be generated from the power dependence of the % water signal, which is similar to a QUESP plot that is generated from CEST MRI acquisition methods with RF saturation applied off-resonance from water. A QUESPOWR plot can be quantitatively analyzed using linear fitting methods to provide estimates of average chemical exchange rates. Analyses of the shapes of QUESPOWR plots can also be used to estimate relative differences in average chemical exchange rates and concentrations of biomolecules. The performance of QUESPOWR MRI was assessed via simulations, an in vitro study with iopamidol, and an in vivo study with a mouse model of mammary carcinoma. The results showed that QUESPOWR MRI is especially sensitive to chemical exchange between water and biomolecules that have intermediate to fast chemical exchange rates and chemical shifts that are close to water, which are notoriously difficult to assess with other CEST MRI methods. In addition, in vivo QUESPOWR MRI detected acidic tumor tissues relative to normal tissues that are pH-neutral, and therefore may be a new paradigm for tumor detection with MRI. PMID:27404128
Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2-6.7 µm
NASA Astrophysics Data System (ADS)
Kumar, S. Chaitanya; Casals, J. Canals; Parsa, S.; Zawilski, K. T.; Schunemann, P. G.; Ebrahim-Zadeh, M.
2018-06-01
We report a high-average-power picosecond optical parametric oscillator (OPO) tunable in the mid-infrared (mid-IR) based on CdSiP2 synchronously pumped by an Yb-fiber laser at 80 MHz repetition rate. Successful operation of this high-repetition-rate singly-resonant picosecond OPO has been enabled by the improved CSP crystal quality over a long interaction length. The OPO can be tuned across 1264-1284 nm in the near-IR signal and 6205-6724 nm in the mid-IR idler by temperature tuning the CSP crystal over 39-134 °C. By deploying a 5% output coupler for the resonant signal, we have extracted up to 44 mW of average power in the near-IR and up to 95 mW of non-resonant idler power at 6205 nm at 6.3% total conversion efficiency, with > 50 mW over > 55% of the mid-IR tuning range. We have investigated temperature-tuning characteristics of the OPO and compared the data with the theoretical calculations using the recent Sellmeier and thermo-optic coefficients for CdSiP2. The signal pulses from the OPO exhibit a Gaussian pulse duration of 19 ps centered at 1284 nm. We have also studied the output power stability of the OPO, resulting in a passive stability better than 1.9% rms for the near-IR signal and 2.4% rms for the mid-IR idler, measured over > 17 h, with both beams in high spatial quality.
NASA Astrophysics Data System (ADS)
Tang, Q. C.; Yang, Y. L.; Li, Xinxin
2011-12-01
This paper presents miniaturized energy harvesters, where the frequency up-conversion technique is used to improve the bandwidth of vibration energy harvesters. The proposed and developed miniature piezoelectric energy harvester utilizes magnetic repulsion forces to achieve non-contact frequency up-conversion, thereby avoiding mechanical collision and wear for long-term working durability. A pair of piezoelectric resonant cantilevers is micro-fabricated to generate electric power. A simplified model involving linear oscillators and magnetic interaction is deployed to demonstrate the feasibility of the device design. A bench-top harvester has been fabricated and characterized, resulting in average power generation of over 10 µW within a broad frequency range of 10-22 Hz under 1g acceleration.
An Approach to Average Modeling and Simulation of Switch-Mode Systems
ERIC Educational Resources Information Center
Abramovitz, A.
2011-01-01
This paper suggests a pedagogical approach to teaching the subject of average modeling of PWM switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The paper discusses the derivation of PSPICE/ORCAD-compatible average models of the switch-mode power stages, their software implementation, and…
18 CFR 301.5 - Changes in Average System Cost methodology.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Changes in Average System Cost methodology. 301.5 Section 301.5 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.5 Changes in Average System Cost methodology. (a) The Administrator, at his or her...
18 CFR 301.5 - Changes in Average System Cost methodology.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Changes in Average System Cost methodology. 301.5 Section 301.5 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.5 Changes in Average System Cost methodology. (a) The Administrator, at his or her...
18 CFR 301.5 - Changes in Average System Cost methodology.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Changes in Average System Cost methodology. 301.5 Section 301.5 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.5 Changes in Average System Cost methodology. (a) The Administrator, at his or her...
18 CFR 301.5 - Changes in Average System Cost methodology.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Changes in Average System Cost methodology. 301.5 Section 301.5 Conservation of Power and Water Resources FEDERAL ENERGY... ACT § 301.5 Changes in Average System Cost methodology. (a) The Administrator, at his or her...
Bates, Jonathan; Parzynski, Craig S; Dhruva, Sanket S; Coppi, Andreas; Kuntz, Richard; Li, Shu-Xia; Marinac-Dabic, Danica; Masoudi, Frederick A; Shaw, Richard E; Warner, Frederick; Krumholz, Harlan M; Ross, Joseph S
2018-06-12
To estimate medical device utilization needed to detect safety differences among implantable cardioverter defibrillators (ICDs) generator models and compare these estimates to utilization in practice. We conducted repeated sample size estimates to calculate the medical device utilization needed, systematically varying device-specific safety event rate ratios and significance levels while maintaining 80% power, testing 3 average adverse event rates (3.9, 6.1, and 12.6 events per 100 person-years) estimated from the American College of Cardiology's 2006 to 2010 National Cardiovascular Data Registry of ICDs. We then compared with actual medical device utilization. At significance level 0.05 and 80% power, 34% or fewer ICD models accrued sufficient utilization in practice to detect safety differences for rate ratios <1.15 and an average event rate of 12.6 events per 100 person-years. For average event rates of 3.9 and 12.6 events per 100 person-years, 30% and 50% of ICD models, respectively, accrued sufficient utilization for a rate ratio of 1.25, whereas 52% and 67% for a rate ratio of 1.50. Because actual ICD utilization was not uniformly distributed across ICD models, the proportion of individuals receiving any ICD that accrued sufficient utilization in practice was 0% to 21%, 32% to 70%, and 67% to 84% for rate ratios of 1.05, 1.15, and 1.25, respectively, for the range of 3 average adverse event rates. Small safety differences among ICD generator models are unlikely to be detected through routine surveillance given current ICD utilization in practice, but large safety differences can be detected for most patients at anticipated average adverse event rates. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Alexander, J. K.; Carr, T. D.; Thieman, J. R.; Schauble, J. J.; Riddle, A. C.
1980-01-01
Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W.
The metabolic power and energetic demands of elite Gaelic football match play.
Malone, Shane; Solan, Barry; Collins, Kieran; Doran, Dominic
2017-05-01
Metabolic power has not yet been investigated within elite Gaelic football. The aim of the current investigation was to compare the metabolic power demands between positional groups and examine the temporal profile of elite Gaelic football match play. Global positional satellite system (GPS) data were collected from 50 elite Gaelic football players from 4 inter-county teams during 35 elite competitive matches over a three season period. A total of 351 complete match samples were obtained for final analysis. Players were categorized based on positional groups; full-back, half-back, midfield, half-forward and full-forward. Instantaneous raw velocity data was obtained from the GPS and exported to a customized spreadsheet which provided estimations of both speed based, derived metabolic power and energy expenditure variables (total distance, high speed distance, average metabolic power, high power distance and total energy expenditure). Match mean distance was 9222±1588 m, reflective of an average metabolic power of 9.5-12.5 W·kg-1, with an average energy expenditure of 58-70 Kj·kg-1 depending on position. There were significant differences between positional groups for both speed-based and metabolic power indices. Midfielders covered more total and high-speed distance, as well as greater average and overall energy expenditure compared to other positions (P<0.001). A reduction in total, high-speed, and high-power distance, as well as average metabolic power throughout the match (P<0.001) was observed. Positional differences exist for both metabolic power and traditional running based variables. The middle three positions (midfield, half-back and half-forward) possess greater activity profiles when compared to other positional groups. The reduction in metabolic power and traditional running based variables are comparable across match play. The current study demonstrates that metabolic power may contribute to our understanding of Gaelic football match-play.
Yin, Ke; Zhu, Rongzhen; Zhang, Bin; Jiang, Tian; Chen, Shengping; Hou, Jing
2016-09-05
Fiber based supercontinuum (SC) sources with output spectra covering the infrared atmospheric window are very useful in long-range atmospheric applications. It is proven that silica fibers can support the generation of broadband SC sources ranging from the visible to the short-wave infrared region. In this paper, we present the generation of an ultrahigh-brightness spectrally-flat 2-2.5 μm SC source in a cladding pumped thulium-doped fiber amplifier (TDFA) numerically and experimentally. The underlying physical mechanisms behind the SC generation process are investigated firstly with a numerical model which includes the fiber gain and loss, the dispersive and nonlinear effects. Simulation results show that abundant soliton pulses are generated in the TDFA, and they are shifted towards the long wavelength side very quickly with the nonlinearity of Raman soliton self-frequency shift (SSFS), and eventually the Raman SSFS process is halted due to the silica fiber's infrared loss. A spectrally-flat 2-2.5 μm SC source could be generated as the result of the spectral superposition of these abundant soliton pulses. These simulation results correspond qualitatively well to the following experimental results. Then, in the experiment, a cladding pumped large-mode-area TDFA is built for pursuing a high-power 2-2.5 μm SC source. By enhancing the pump strength, the output SC spectrum broadens to the long wavelength side gradually. At the highest pump power, the obtained SC source has a maximum average power of 203.4 W with a power conversion efficiency of 38.7%. It has a 3 dB spectral bandwidth of 545 nm ranging from 1990 to 2535 nm, indicating a power spectral density in excess of 370 mW/nm. Meanwhile, the output SC source has a good beam profile. This SC source, to the best of our knowledge, is the brightest spectrally-flat 2-2.5 μm light source ever reported. It will be highly desirable in a lot of long-range atmospheric applications, such as broad-spectrum LIDAR, free space communication and hyper-spectral imaging.
JVLA 1.5 GHz Continuum Observation of CLASH Clusters. I. Radio Properties of the BCGs
NASA Astrophysics Data System (ADS)
Yu, Heng; Tozzi, Paolo; van Weeren, Reinout; Liuzzo, Elisabetta; Giovannini, Gabriele; Donahue, Megan; Balestra, Italo; Rosati, Piero; Aravena, Manuel
2018-02-01
We present high-resolution (∼1″), 1.5 GHz continuum observations of the brightest cluster galaxies (BCGs) of 13 CLASH (Cluster Lensing And Supernova survey with Hubble) clusters at 0.18< z< 0.69 with the Karl G. Jansky Very Large Array (JVLA). Radio emission is clearly detected and characterized for 11 BCGs, while for two of them we obtain only upper limits to their radio flux (< 0.1 mJy at 5σ confidence level). We also consider five additional clusters whose BCG is detected in FIRST or NVSS. We find radio powers in the range from 2× {10}23 to ∼ {10}26 {{W}} {{Hz}}-1 and radio spectral indices {α }1.530 (defined as the slope between 1.5 and 30 GHz) distributed from ∼ -1 to ‑0.25 around the central value < α > =-0.68. The radio emission from the BCGs is resolved in three cases (Abell 383, MACS J1931, and RX J2129), and unresolved or marginally resolved in the remaining eight cases observed with JVLA. In all the cases the BCGs are consistent with being powered by active galactic nuclei. The radio power shows a positive correlation with the BCG star formation rate, and a negative correlation with the central entropy of the surrounding intracluster medium (ICM) except in two cases (MACS J1206 and CL J1226). Finally, over the restricted range in radio power sampled by the CLASH BCGs, we observe a significant scatter between the radio power and the average mechanical power stored in the ICM cavities.
NASA Astrophysics Data System (ADS)
Sawada, Kazuaki; Kawakami, Ryosuke; Fang, Yi-Cheng; Hung, Jui-Hung; Kozawa, Yuichi; Otomo, Kohei; Sato, Shunichi; Yokoyama, Hiroyuki; Nemoto, Tomomi
2018-02-01
In vivo two-photon microscopy is an advantageous technique for observing living mouse brains at high spatial resolutions. We previously used a 1064 nm high-power light source based on an electrically controllable gain-switched laser diode (maximum power: 4 W, repetition rate: 10 MHz, pulse width: 7.5 picoseconds) and successfully visualized EYFP expressing neurons at deeper regions in H-line mouse brains under living conditions. However, severe damages were frequently observed when the laser power after the objective lens was over 600 mW, suggesting that a higher average power might not be suitable for visualizing neural structures and functions at deep regions. To increase fluorescent signals as a strategy to avoid such invasions, here, we evaluated the effects of the excitation laser parameters such as the repetition rate (5 - 10 MHz), or the peak power, at the moderate average powers (10 - 500 mW), by taking the advantage that this electrically controllable light source could be used to change the repetition rate independently from the average power or the pulse width. The fluorescent signals of EYFP at layer V of the cerebral cortex were increased by approximately twofold when the repetition rate was decreased from 10 MHz to 5 MHz at the same average power. We also confirmed similar effects in the EYFP solution (335 μM) and fixed brain slices. These results suggest that in vivo two-photon microscopic imaging might be improved by increasing the peak power at the same average power while avoiding the severe damages in living brains.
2011-01-01
Background We herein describe a surgical technique for the repair of complete tear of the pectoralis major (PM) tendon using endobuttons to strengthen initial fixation. Methods Five male patients (3 judo players, 1 martial arts player, and 1 body builder) were treated within 2 weeks of sustaining complete tear of the PM tendon. Average age at surgery and follow-up period were 28.4 years (range, 23-33) and 28.8 months (range, 24-36). A rectangular bone trough (about 1 × 4 cm) was created on the humerus at the insertion of the distal PM tendon. The tendon stump was introduced into this trough, and fixed to the reverse side of the humeral cortex using endobuttons and non-absorbable suture. Clinical assessment of re-tear was examined by MRI. Shoulder range of motion (ROM), outcome of treatment, and isometric power were measured at final follow-up. Results There were no clinical re-tears, and MRI findings also showed continuity of the PM tendon in all cases at final follow-up. Average ROM did not differ significantly between the affected and unaffected shoulders. The clinical outcomes at final follow-up were excellent (4/5 cases) or good (1/5). In addition, postoperative isometric power in horizontal flexion of the affected shoulder showed complete recovery when compared with the unaffected side. Conclusions Satisfactory outcomes could be obtained when surgery using the endobutton technique was performed within 2 weeks after complete tear of the PM tendon. Therefore, our new technique appears promising as a useful method to treat complete tear of the PM tendon. PMID:21955511
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Rishi, E-mail: rishiv9@gmail.com, E-mail: rishiv@barc.gov.in; Mishra, Ekansh; Dhang, Prosenjit
2016-09-15
The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuteriummore » filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10{sup 9} neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.« less
High speed pulsed laser cutting of LiCoO2 Li-ion battery electrodes
NASA Astrophysics Data System (ADS)
Lutey, Adrian H. A.; Fortunato, Alessandro; Carmignato, Simone; Fiorini, Maurizio
2017-09-01
Laser cutting of Li-ion battery electrodes represents an alternative to mechanical blanking that avoids complications associated with tool wear and allows assembly of different cell geometries with a single device. In this study, laser cutting of LiCoO2 Li-ion battery electrodes is performed at up to 5m /s with a 1064nm wavelength nanosecond pulsed fiber laser with a maximum average power of 500W and a repetition rate of up to 2MHz . Minimum average cutting power for cathode and anode multi-layer films is established for 12 parameter groups with velocities over the range 1 - 5m /s , varying laser pulse fluence and overlap. Within the tested parameter range, minimum energy per unit cut length is found to decrease with increasing repetition rate and velocity. SEM analysis of the resulting cut edges reveals visible clearance widths in the range 20 - 50 μm , with cut quality found to improve with velocity due to a reduction in lateral heat conduction losses. Raman line map spectra reveal changes in the cathode at 60 μm from the cut edge, where bands at 486cm-1 and 595cm-1 , corresponding to the Eg and A1g modes of LiCoO2 , are replaced with a single wide band centered at 544cm-1 , and evidence of carbon black is no longer present. No changes in Raman spectra are observed in the anode. The obtained results suggest that further improvements in cutting efficiency and quality could be achieved by increasing the repetition rate above 2MHz , thereby improving ablation efficiency of the metallic conductor layers. The laser source utilized in the present study nonetheless represents an immediately available solution for repeatability and throughput that are superior to mechanical blanking.
Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag
2016-09-01
The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10 9 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.
High Power Broadband Millimeter Wave TWTs
NASA Astrophysics Data System (ADS)
James, Bill G.
1998-04-01
In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.
NASA Astrophysics Data System (ADS)
Xu, Qi; Qin, Yong
2017-07-01
The average power is one of the key parameters of piezoelectric nanogenerators (PENGs). In this paper, we demonstrate that the PENG's output can be gigantically improved by choosing driving force with an appropriate shape. When the load resistance is 100 MΩ and the driven forces have a magnitude of 19.6 nN, frequency of 10 Hz, the average power of PENG driven by square shaped force is six orders of magnitude higher than that driven by triangular shaped and sinusoidal shaped forces. These results are of importance for optimizing the average power of the PENGs in practical applications.
High average power scaleable thin-disk laser
Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Payne, Stephen A.; Powell, Howard; Krupke, William F.; Sutton, Steven B.
2002-01-01
Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.
Pilot study for quantifying driving characteristics during power wheelchair soccer.
Kumar, Amit; Karmarkar, Amol M; Collins, Diane M; Souza, Ana; Oyster, Michelle L; Cooper, Rosemarie; Cooper, Rory A
2012-01-01
This study determined the driving characteristics of wheelchair users during power wheelchair soccer games. Data for this study were collected at the 28th and 29th National Veterans Wheelchair Games. Nineteen veterans who were 18 years or older and power wheelchair soccer players completed a brief demographic survey and provided information about their power wheelchairs. A customized data-logging device was placed on each participant's wheelchair before power soccer game participation. The data logger was removed at the end of the final game for each participant. The average distance traveled during the games was 899.5 +/- 592.5 m, and the average maximum continuous distance traveled was 256.0 +/- 209.4 m. The average wheelchair speed was 0.8 +/- 0.2 m/s, and the average duration of driving time was 17.6 +/- 8.3 min. Average proportion of time spent at a speed >1 m/s was 30.7% +/- 33.8%, between 0.5 and 1 m/s was 16.2% +/- 34.4%, and <0.5 m/s was 21.4% +/- 24.3%. The information from this descriptive study provides insight for future research in the field of adapted sports for people with high levels of impairments who use power wheelchairs for their mobility.
NASA Astrophysics Data System (ADS)
Krause, Sebastian M.; Börries, Stefan; Bornholdt, Stefan
2015-07-01
The average economic agent is often used to model the dynamics of simple markets, based on the assumption that the dynamics of a system of many agents can be averaged over in time and space. A popular idea that is based on this seemingly intuitive notion is to dampen electric power fluctuations from fluctuating sources (as, e.g., wind or solar) via a market mechanism, namely by variable power prices that adapt demand to supply. The standard model of an average economic agent predicts that fluctuations are reduced by such an adaptive pricing mechanism. However, the underlying assumption that the actions of all agents average out on the time axis is not always true in a market of many agents. We numerically study an econophysics agent model of an adaptive power market that does not assume averaging a priori. We find that when agents are exposed to source noise via correlated price fluctuations (as adaptive pricing schemes suggest), the market may amplify those fluctuations. In particular, small price changes may translate to large load fluctuations through catastrophic consumer synchronization. As a result, an adaptive power market may cause the opposite effect than intended: Power demand fluctuations are not dampened but amplified instead.
Average power scaling of UV excimer lasers drives flat panel display and lidar applications
NASA Astrophysics Data System (ADS)
Herbst, Ludolf; Delmdahl, Ralph F.; Paetzel, Rainer
2012-03-01
Average power scaling of 308nm excimer lasers has followed an evolutionary path over the last two decades driven by diverse industrial UV laser microprocessing markets. Recently, a new dual-oscillator and beam management concept for high-average power upscaling of excimer lasers has been realized, for the first time enabling as much as 1.2kW of stabilized UV-laser average output power at a UV wavelength of 308nm. The new dual-oscillator concept enables low temperature polysilicon (LTPS) fabrication to be extended to generation six glass substrates. This is essential in terms of a more economic high-volume manufacturing of flat panel displays for the soaring smartphone and tablet PC markets. Similarly, the cost-effective production of flexible displays is driven by 308nm excimer laser power scaling. Flexible displays have enormous commercial potential and can largely use the same production equipment as is used for rigid display manufacturing. Moreover, higher average output power of 308nm excimer lasers aids reducing measurement time and improving the signal-to-noise ratio in the worldwide network of high altitude Raman lidar stations. The availability of kW-class 308nm excimer lasers has the potential to take LIDAR backscattering signal strength and achievable altitude to new levels.
Brown, David C; Singley, Joseph M; Kowalewski, Katie; Guelzow, James; Vitali, Victoria
2010-11-22
We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods.
Development of high-average-power DPSSL with high beam quality
NASA Astrophysics Data System (ADS)
Nakai, Sadao; Kanabe, Tadashi; Kawashima, Toshiyuki; Yamanaka, Masanobu; Izawa, Yasukazu; Nakatuka, Masahiro; Kandasamy, Ranganathan; Kan, Hirofumi; Hiruma, Teruo; Niino, Masayuki
2000-08-01
The recent progress of high power diode laser is opening new fields of laser and its application. We are developing high average power diode pumped solid state laser DPSSL for laser fusion power plant, for space propulsion and for various applications in industry. The common features or requirements of our High Average-power Laser for Nuclear-fusion Application (HALNA) are large pulse energy with relatively low repetition of few tens Hz, good beam quality of order of diffraction limit and high efficiency more than 10%. We constructed HALNA 10 (10J X 10 Hz) and tested the performance to clarify the scalability to higher power system. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern.
NASA Technical Reports Server (NTRS)
Flegel, Ashlie B.; Welch, Gerard E.; Giel, Paul W.; Ames, Forrest E.; Long, Jonathon A.
2015-01-01
Two independent experimental studies were conducted in linear cascades on a scaled, two-dimensional mid-span section of a representative Variable Speed Power Turbine (VSPT) blade. The purpose of these studies was to assess the aerodynamic performance of the VSPT blade over large Reynolds number and incidence angle ranges. The influence of inlet turbulence intensity was also investigated. The tests were carried out in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility and at the University of North Dakota (UND) High Speed Compressible Flow Wind Tunnel Facility. A large database was developed by acquiring total pressure and exit angle surveys and blade loading data for ten incidence angles ranging from +15.8deg to -51.0deg. Data were acquired over six flow conditions with exit isentropic Reynolds number ranging from 0.05×106 to 2.12×106 and at exit Mach numbers of 0.72 (design) and 0.35. Flow conditions were examined within the respective facility constraints. The survey data were integrated to determine average exit total-pressure and flow angle. UND also acquired blade surface heat transfer data at two flow conditions across the entire incidence angle range aimed at quantifying transitional flow behavior on the blade. Comparisons of the aerodynamic datasets were made for three "match point" conditions. The blade loading data at the match point conditions show good agreement between the facilities. This report shows comparisons of other data and highlights the unique contributions of the two facilities. The datasets are being used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range.
Favre-Averaged Turbulence Statistics in Variable Density Mixing of Buoyant Jets
NASA Astrophysics Data System (ADS)
Charonko, John; Prestridge, Kathy
2014-11-01
Variable density mixing of a heavy fluid jet with lower density ambient fluid in a subsonic wind tunnel was experimentally studied using Particle Image Velocimetry and Planar Laser Induced Fluorescence to simultaneously measure velocity and density. Flows involving the mixing of fluids with large density ratios are important in a range of physical problems including atmospheric and oceanic flows, industrial processes, and inertial confinement fusion. Here we focus on buoyant jets with coflow. Results from two different Atwood numbers, 0.1 (Boussinesq limit) and 0.6 (non-Boussinesq case), reveal that buoyancy is important for most of the turbulent quantities measured. Statistical characteristics of the mixing important for modeling these flows such as the PDFs of density and density gradients, turbulent kinetic energy, Favre averaged Reynolds stress, turbulent mass flux velocity, density-specific volume correlation, and density power spectra were also examined and compared with previous direct numerical simulations. Additionally, a method for directly estimating Reynolds-averaged velocity statistics on a per-pixel basis is extended to Favre-averages, yielding improved accuracy and spatial resolution as compared to traditional post-processing of velocity and density fields.
Characteristics and Energy Use of Volume Servers in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchs, H.; Shehabi, A.; Ganeshalingam, M.
Servers’ field energy use remains poorly understood, given heterogeneous computing loads, configurable hardware and software, and operation over a wide range of management practices. This paper explores various characteristics of 1- and 2-socket volume servers that affect energy consumption, and quantifies the difference in power demand between higher-performing SPEC and ENERGY STAR servers and our best understanding of a typical server operating today. We first establish general characteristics of the U.S. installed base of volume servers from existing IDC data and the literature, before presenting information on server hardware configurations from data collection events at a major online retail website.more » We then compare cumulative distribution functions of server idle power across three separate datasets and explain the differences between them via examination of the hardware characteristics to which power draw is most sensitive. We find that idle server power demand is significantly higher than ENERGY STAR benchmarks and the industry-released energy use documented in SPEC, and that SPEC server configurations—and likely the associated power-scaling trends—are atypical of volume servers. Next, we examine recent trends in server power draw among high-performing servers across their full load range to consider how representative these trends are of all volume servers before inputting weighted average idle power load values into a recently published model of national server energy use. Finally, we present results from two surveys of IT managers (n=216) and IT vendors (n=178) that illustrate the prevalence of more-efficient equipment and operational practices in server rooms and closets; these findings highlight opportunities to improve the energy efficiency of the U.S. server stock.« less
Measuring radio-signal power accurately
NASA Technical Reports Server (NTRS)
Goldstein, R. M.; Newton, J. W.; Winkelstein, R. A.
1979-01-01
Absolute value of signal power in weak radio signals is determined by computer-aided measurements. Equipment operates by averaging received signal over several-minute period and comparing average value with noise level of receiver previously calibrated.
Variability in Effective Radiating Area and Output Power of New Ultrasound Transducers at 3 MHz
Johns, Lennart D; Straub, Stephen J; Howard, Samuel M
2007-01-01
Context: Spatial average intensity (SAI) is often used by clinicians to gauge therapeutic ultrasound dosage, yet SAI measures are not directly regulated by US Food and Drug Administration (FDA) standards. Current FDA guidelines permit a possible 50% to 150% minimum to maximum range of SAI values, potentially contributing to variability in clinical outcomes. Objective: To measure clinical values that describe ultrasound transducers and to determine the degree of intramanufacturer and intermanufacturer variability in effective radiating area, power, and SAI when the transducer is functioning at 3 MHz. Design: A descriptive and interferential approach was taken to this quasi-experimental design. Setting: Measurement laboratory. Patients or Other Participants: Sixty-six 5-cm2 ultrasound transducers were purchased from 6 different manufacturers. Intervention(s): All transducers were calibrated and then assessed using standardized measurement techniques; SAI was normalized to account for variability in effective radiating area, resulting in an nSAI. Main Outcome Measure(s): Effective radiating area, power, and nSAI. Results: All manufacturers with the exception of Omnisound (P = .534) showed a difference between the reported and measured effective radiating area values (P < .001). All transducers were within FDA guidelines for power (±20%). Chattanooga (0.85 ± 0.05 W/cm2) had a lower nSAI (P < .05) than all other manufacturers functioning at 3 MHz. Intramanufacturer variability in SAI ranged from 16% to 35%, and intermanufacturer variability ranged from 22% to 61%. Conclusions: Clinicians should consider treatment values of each individual transducer, regardless of the manufacturer. In addition, clinicians should scrutinize the power calibration and recalibration record of the transducer and adjust clinical settings as needed for the desired level of heating. Our data may aid in explaining the reported heating differences among transducers from different manufacturers. Stricter FDA standards regarding effective radiating area and total power are needed, and standards regulating SAI should be established. PMID:17597939
NASA Astrophysics Data System (ADS)
Negm, Amro; Minacapilli, Mario; Provenzano, Giuseppe
2017-04-01
The accurate estimation of grass reference evapotranspiration (ET0) is important for many fields, including hydrology and irrigation water management. Being direct measure of ET0 difficult, expensive and time consuming, application of simplified approaches and web-based meteorological information are often preferred. The Prediction of Worldwide Energy Resource project developed by the American National Aeronautics and Space Administration (POWER-NASA) provides meteorological observations and surface energy fluxes on 1° latitude by 1° longitude grid, with a continuous daily coverage and for the entire globe. However, the broad spatial resolution of these data represents a limiting factor, for example when they have to be used for local estimations of reference ET0. In this work, a procedure for the spatial disaggregation of POWER-NASA daily average air temperature was proposed. In particular, a daily scaling factor was initially defined as the ratio between disaggregated average air temperature and the corresponding native value. This ratio was then modeled with a cosine function, characterized by three parameters depending on elevation, so to account for seasonal and regional variability. The proposed model was calibrated with three years of ground measurements (2006-2008) and then validated over six years (2009-2014). The suitability of the procedure was finally assessed by applying two simplified empirical models to estimate ET0 (Turc, 1961; Hargreaves, 1975). When compared to ET0 values obtained with FAO-56 PM equation, both simplified equations associated to downscaled meteorological observations, were characterized by RMSE ranging between 0.44 and 1.08 mm (average of 0.72-0.74 mm), and average MBE of -0.06 (Turc equation) and 0.13 mm (Hargreaves equation). These results indicated the strength of the proposed procedure to estimate ET0, even for regions characterized by the lack of detailed meteorological information.
Power flow as a complement to statistical energy analysis and finite element analysis
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.
AutoSyP: A Low-Cost, Low-Power Syringe Pump for Use in Low-Resource Settings.
Juarez, Alexa; Maynard, Kelley; Skerrett, Erica; Molyneux, Elizabeth; Richards-Kortum, Rebecca; Dube, Queen; Oden, Z Maria
2016-10-05
This article describes the design and evaluation of AutoSyP, a low-cost, low-power syringe pump intended to deliver intravenous (IV) infusions in low-resource hospitals. A constant-force spring within the device provides mechanical energy to depress the syringe plunger. As a result, the device can run on rechargeable battery power for 66 hours, a critical feature for low-resource settings where the power grid may be unreliable. The device is designed to be used with 5- to 60-mL syringes and can deliver fluids at flow rates ranging from 3 to 60 mL/hour. The cost of goods to build one AutoSyP device is approximately $500. AutoSyP was tested in a laboratory setting and in a pilot clinical study. Laboratory accuracy was within 4% of the programmed flow rate. The device was used to deliver fluid to 10 healthy adult volunteers and 30 infants requiring IV fluid therapy at Queen Elizabeth Central Hospital in Blantyre, Malawi. The device delivered fluid with an average mean flow rate error of -2.3% ± 1.9% for flow rates ranging from 3 to 60 mL/hour. AutoSyP has the potential to improve the accuracy and safety of IV fluid delivery in low-resource settings. © The American Society of Tropical Medicine and Hygiene.
Multi-watt, multi-octave, mid-infrared femtosecond source
Hussain, Syed A.; Hartung, Alexander; Zawilski, Kevin T.; Schunemann, Peter G.; Habel, Florian; Pervak, Vladimir
2018-01-01
Spectroscopy in the wavelength range from 2 to 11 μm (900 to 5000 cm−1) implies a multitude of applications in fundamental physics, chemistry, as well as environmental and life sciences. The related vibrational transitions, which all infrared-active small molecules, the most common functional groups, as well as biomolecules like proteins, lipids, nucleic acids, and carbohydrates exhibit, reveal information about molecular structure and composition. However, light sources and detectors in the mid-infrared have been inferior to those in the visible or near-infrared, in terms of power, bandwidth, and sensitivity, severely limiting the performance of infrared experimental techniques. This article demonstrates the generation of femtosecond radiation with up to 5 W at 4.1 μm and 1.3 W at 8.5 μm, corresponding to an order-of-magnitude average power increase for ultrafast light sources operating at wavelengths longer than 5 μm. The presented concept is based on power-scalable near-infrared lasers emitting at a wavelength near 1 μm, which pump optical parametric amplifiers. In addition, both wavelength tunability and supercontinuum generation are reported, resulting in spectral coverage from 1.6 to 10.2 μm with power densities exceeding state-of-the-art synchrotron sources over the entire range. The flexible frequency conversion scheme is highly attractive for both up-conversion and frequency comb spectroscopy, as well as for a variety of time-domain applications. PMID:29713685
An ultra-low power wireless sensor network for bicycle torque performance measurements.
Gharghan, Sadik K; Nordin, Rosdiadee; Ismail, Mahamod
2015-05-21
In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach.
An Ultra-Low Power Wireless Sensor Network for Bicycle Torque Performance Measurements
Gharghan, Sadik K.; Nordin, Rosdiadee; Ismail, Mahamod
2015-01-01
In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach. PMID:26007728
22 W average power multiterawatt femtosecond laser chain enabling 1019 W/cm2 at 100 Hz
NASA Astrophysics Data System (ADS)
Clady, R.; Azamoum, Y.; Charmasson, L.; Ferré, A.; Utéza, O.; Sentis, M.
2018-05-01
We measure the wavefront distortions of a high peak power ultrashort (23 fs) laser system under high average power load. After 6 min—100 Hz operation of the laser at full average power (> 22 W after compression), the thermally induced wavefront distortions reach a steady state and the far-field profile of the laser beam no longer changes. By means of a deformable mirror located after the vacuum compressor, we apply a static pre-compensation to correct those aberrations allowing us to demonstrate a dramatic improvement of the far-field profile at 100 Hz with the reduction of the residual wavefront distortions below λ/16 before focusing. The applied technique provides 100 Hz operation of the femtosecond laser chain with stable pulse characteristics, corresponding to peak intensity above 1019 W/cm2 and average power of 19 W on target, which enables the study of relativistic optics at high repetition rate using a moderate f-number focusing optics ( f/4.5).
Doucette, Margaret R.; Kurth, Salome; Chevalier, Nicolas; Munakata, Yuko; LeBourgeois, Monique K.
2015-01-01
Cognitive development is influenced by maturational changes in processing speed, a construct reflecting the rapidity of executing cognitive operations. Although cognitive ability and processing speed are linked to spindles and sigma power in the sleep electroencephalogram (EEG), little is known about such associations in early childhood, a time of major neuronal refinement. We calculated EEG power for slow (10–13 Hz) and fast (13.25–17 Hz) sigma power from all-night high-density electroencephalography (EEG) in a cross-sectional sample of healthy preschool children (n = 10, 4.3 ± 1.0 years). Processing speed was assessed as simple reaction time. On average, reaction time was 1409 ± 251 ms; slow sigma power was 4.0 ± 1.5 μV2; and fast sigma power was 0.9 ± 0.2 μV2. Both slow and fast sigma power predominated over central areas. Only slow sigma power was correlated with processing speed in a large parietal electrode cluster (p < 0.05, r ranging from −0.6 to −0.8), such that greater power predicted faster reaction time. Our findings indicate regional correlates between sigma power and processing speed that are specific to early childhood and provide novel insights into the neurobiological features of the EEG that may underlie developing cognitive abilities. PMID:26556377
Population dose commitments due to radioactive releases from nuclear power plant sites in 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commericial power reactors operating during 1985. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 61 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 73 person-rem to a low of 0.011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 200 person-rem for the 110 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 5 /times/ 10/sup /minus/6/ mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
Population dose commitments due to radioactive releases from nuclear power plant sites in 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1984. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 56 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 110 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 5 person-rem. The total population dose for all sites was estimated at 280 person-rem for the 100 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 6 x 10/sup -6/ mrem to a high of 0.04 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
Population dose commitments due to radioactive releases from nuclear power plant sites in 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1986. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 66 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 kmmore » around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 31 person-rem to a low of 0.0007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.7 person-rem. The total population dose for all sites was estimated at 110 person-rem for the 140 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 2 {times} 10{sup -6} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. 12 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.; Peloquin, R.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1982. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 51 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each sitemore » receiving various average dose commitments from the airborne pathways. The total dose commitments from both liquid and airborne pathways ranged from a high of 30 person-rem to a low of 0.007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 130 person-rem for the 100 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 6 x 10/sup -7/ mrem to a high of 0.06 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
NASA Astrophysics Data System (ADS)
Baumgartner, Peter O.
A database on Middle Jurassic-Early Cretaceous radiolarians consisting of first and final occurrences of 110 species in 226 samples from 43 localities was used to compute Unitary Associations and probabilistic ranking and scaling (RASC), in order to test deterministic versus probabilistic quantitative biostratigraphic methods. Because the Mesozoic radiolarian fossil record is mainly dissolution-controlled, the sequence of events differs greatly from section to section. The scatter of local first and final appearances along a time scale is large compared to the species range; it is asymmetrical, with a maximum near the ends of the range and it is non-random. Thus, these data do not satisfy the statistical assumptions made in ranking and scaling. Unitary Associations produce maximum ranges of the species relative to each other by stacking cooccurrence data from all sections and therefore compensate for the local dissolution effects. Ranking and scaling, based on the assumption of a normal random distribution of the events, produces average ranges which are for most species much shorter than the maximum UA-ranges. There are, however, a number of species with similar ranges in both solutions. These species are believed to be the most dissolution-resistant and, therefore, the most reliable ones for the definition of biochronozones. The comparison of maximum and average ranges may be a powerful tool to test reliability of species for biochronology. Dissolution-controlled fossil data yield high crossover frequencies and therefore small, statistically insignificant interfossil distances. Scaling has not produced a useful sequence for this type of data.
Comparative Assessment of Models and Methods To Calculate Grid Electricity Emissions.
Ryan, Nicole A; Johnson, Jeremiah X; Keoleian, Gregory A
2016-09-06
Due to the complexity of power systems, tracking emissions attributable to a specific electrical load is a daunting challenge but essential for many environmental impact studies. Currently, no consensus exists on appropriate methods for quantifying emissions from particular electricity loads. This paper reviews a wide range of the existing methods, detailing their functionality, tractability, and appropriate use. We identified and reviewed 32 methods and models and classified them into two distinct categories: empirical data and relationship models and power system optimization models. To illustrate the impact of method selection, we calculate the CO2 combustion emissions factors associated with electric-vehicle charging using 10 methods at nine charging station locations around the United States. Across the methods, we found an up to 68% difference from the mean CO2 emissions factor for a given charging site among both marginal and average emissions factors and up to a 63% difference from the average across average emissions factors. Our results underscore the importance of method selection and the need for a consensus on approaches appropriate for particular loads and research questions being addressed in order to achieve results that are more consistent across studies and allow for soundly supported policy decisions. The paper addresses this issue by offering a set of recommendations for determining an appropriate model type on the basis of the load characteristics and study objectives.
Bi-fuel System - Gasoline/LPG in A Used 4-Stroke Motorcycle - Fuel Injection Type
NASA Astrophysics Data System (ADS)
Suthisripok, Tongchit; Phusakol, Nachaphat; Sawetkittirut, Nuttapol
2017-10-01
Bi-fuel-Gasoline/LPG system has been effectively and efficiently used in gasoline vehicles with less pollutants emission. The motorcycle tested was a used Honda AirBlade i110 - fuel injection type. A 3-litre LPG storage tank, an electronic fuel control unit, a 1-mm LPG injector and a regulator were securely installed. The converted motorcycle can be started with either gasoline or LPG. The safety relief valve was set below 48 kPa and over 110 kPa. The motorcycle was tuned at the relative rich air-fuel ratio (λ) of 0.85-0.90 to attain the best power output. From dynamometer tests over the speed range of 65-100 km/h, the average power output when fuelling LPG was 5.16 hp; dropped 3.9% from the use of gasoline91. The average LPG consumption rate from the city road test at the average speed of 60 km/h was 40.1 km/l, about 17.7% more. This corresponded to lower LPG’s energy density of about 16.2%. In emission, the CO and HC concentrations were 44.4% and 26.5% lower. Once a standard gas equipment set with ECU and LPG injector were securely installed and the engine was properly tuned up to suit LPG’s characteristics, the converted bi-fuel motorcycle offers efficiently, safely and economically performance with environmental friendly emission.
Turbulence in the Outer Heliosheath
NASA Astrophysics Data System (ADS)
Burlaga, L. F.; Florinski, V.; Ness, N. F.
2018-02-01
We present in situ observations of magnetic turbulence in the draped interstellar magnetic field {\\boldsymbol{B}} measured by Voyager 1 during an undisturbed interval from 2015.3987 to 2016.6759 confirming the existence of the turbulence observed previously from 2013.3593 to 2014.6373. The power spectral density of the turbulence was the same in both cases. The turbulence had a Kolmogorov k ‑5/3 spectrum in the range from k = 1.3 × 10‑13 cm‑1 to 4 × 10‑12 cm‑1. The ratio of the turbulent fluctuations to the average magnetic field strength was only 0.02, indicating that the turbulence was very weak. Extrapolating the power-law slope to lower frequencies yields an upper limit on the turbulence outer scale of 0.01 pc = 2000 au, which may be regarded as the distance at which Voyager 1 will enter the undisturbed local interstellar medium, beyond the outer heliosheath or bow wave in the upstream direction. The maximum variance of the fluctuations was in the two directions transverse to the average magnetic field in the recent interval, whereas it was parallel to the average magnetic field in the earlier interval, suggesting a transformation from turbulence with a dominant compressive component to turbulence dominated by transverse fluctuations. As the magnitude of the fluctuations was approaching that of the uncertainties of the measurements, the latter result requires confirmation by further observations.
NASA Technical Reports Server (NTRS)
Rennak, Robert M; Messing, Wesley E; Morgan, James E
1946-01-01
The temperature distribution of a two-row radial engine in a twin-engine airplane has been investigated in a series of flight tests. The test engine was operated over a wide range of conditions at density altitudes of 5000 and 20,000 feet; quantitative results are presented showing the effects of flight and engine variables upon average engine temperature and over-all temperature spread. Discussions of the effect of the variables on the shape of the temperature patterns and on the temperature distribution of individual cylinders are also included. The results indicate that, for the tests conducted, the temperature distribution patterns were chiefly determined by the fuel-air ratio and cooling-air distributions. It was possible to calculate individual cylinder temperature, on the assumption of equal power distribution among cylinders, to within an average of plus or minus 14 degrees F. of the actual temperature. A considerable change occurred in either the spread or the thrust axis, the average engine fuel-air ratio, the engine speed, the power, or the blower ratio. Smaller effects on the temperature pattern were noticed with a change in cowl-flap opening and altitude. In most of the tests, a change in conditions affected the temperature of the barrels less than that of the heads. The variation of flight and engine variables had a negligible effect on the temperature distributions of the individual cylinders. (author)
Kuehn, Sven; Kelsh, Michael A; Kuster, Niels; Sheppard, Asher R; Shum, Mona
2013-09-01
The US FCC mandates the testing of all mobile phones to demonstrate compliance with the rule requiring that the peak spatial SAR does not exceed the limit of 1.6 W/kg averaged over any 1 g of tissue. These test data, measured in phantoms with mobile phones operating at maximum antenna input power, permitted us to evaluate the variation in SARs across mobile phone design factors such as shape and antenna design, communication technology, and test date (over a 7-year period). Descriptive statistical summaries calculated for 850 MHz and 1900 MHz phones and ANOVA were used to evaluate the influence of the foregoing factors on SARs. Service technology accounted for the greatest variability in compliance test SARs that ranged from AMPS (highest) to CDMA, iDEN, TDMA, and GSM (lowest). However, the dominant factor for SARs during use is the time-averaged antenna input power, which may be much less than the maximum power used in testing. This factor is largely defined by the communication system; e.g., the GSM phone average output can be higher than CDMA by a factor of 100. Phone shape, antenna type, and orientation of a phone were found to be significant but only on the order of up to a factor of 2 (3 dB). The SAR in the tilt position was significantly smaller than for touch. The side of the head did not affect SAR levels significantly. Among the remaining factors, external antennae produced greater SARs than internal ones, and brick and clamshell phones produced greater SARs than slide phones. Assuming phone design and usage patterns do not change significantly over time, we have developed a normalization procedure and formula that permits reliable prediction of the relative SAR between various communication systems. This approach can be applied to improve exposure assessment in epidemiological research. Copyright © 2013 Wiley Periodicals, Inc.
Stochastic Growth Theory of Spatially-Averaged Distributions of Langmuir Fields in Earth's Foreshock
NASA Technical Reports Server (NTRS)
Boshuizen, Christopher R.; Cairns, Iver H.; Robinson, P. A.
2001-01-01
Langmuir-like waves in the foreshock of Earth are characteristically bursty and irregular, and are the subject of a number of recent studies. Averaged over the foreshock, it is observed that the probability distribution is power-law P(bar)(log E) in the wave field E with the bar denoting this averaging over position, In this paper it is shown that stochastic growth theory (SGT) can explain a power-law spatially-averaged distributions P(bar)(log E), when the observed power-law variations of the mean and standard deviation of log E with position are combined with the log normal statistics predicted by SGT at each location.
Harnessing electrical power from vortex-induced vibration of a circular cylinder
NASA Astrophysics Data System (ADS)
Soti, Atul Kumar; Thompson, Mark C.; Sheridan, John; Bhardwaj, Rajneesh
2017-04-01
The generation of electrical power from Vortex-Induced Vibration (VIV) of a cylinder is investigated numerically. The cylinder is free to oscillate in the direction transverse to the incoming flow. The cylinder is attached to a magnet that can move along the axis of a coil made from conducting wire. The magnet and the coil together constitute a basic electrical generator. When the cylinder undergoes VIV, the motion of the magnet creates a voltage across the coil, which is connected to a resistive load. By Lenz's law, induced current in the coil applies a retarding force to the magnet. Effectively, the electrical generator applies a damping force on the cylinder with a spatially varying damping coefficient. For the initial investigation reported here, the Reynolds number is restricted to Re < 200, so that the flow is laminar and two-dimensional (2D). The incompressible 2D Navier-Stokes equations are solved using an extensively validated spectral-element based solver. The effects of the electromagnetic (EM) damping constant xi_m, coil dimensions (radius a, length L), and mass ratio on the electrical power extracted are quantified. It is found that there is an optimal value of xi_m (xi_opt) at which maximum electrical power is generated. As the radius or length of the coil is increased, the value of xi_opt is observed to increase. Although the maximum average power remains the same, a larger coil radius or length results in a more robust system in the sense that a relatively large amount of power can be extracted when xi_m is far from xi_opt, unlike the constant damping ratio case. The average power output is also a function of Reynolds number, primarily through the increased maximum oscillation amplitude that occurs with increased Reynolds number at least within the laminar range, although the general qualitative findings seem likely to carry across to high Reynolds number VIV.
NASA Astrophysics Data System (ADS)
Woldeyesus, Tibebe Argaw
Water supply constraints can significantly restrict electric power generation, and such constraints are expected to worsen with future climate change. The overarching goal of this thesis is to incorporate stochastic water-climate interactions into electricity portfolio models and evaluate various pathways for water savings in co-managed water-electric utilities. Colorado Springs Utilities (CSU) is used as a case study to explore the above issues. The thesis consists of three objectives: Characterize seasonality of water withdrawal intensity factors (WWIF) for electric power generation and develop a risk assessment framework due to water shortages; Incorporate water constraints into electricity portfolio models and evaluate the impact of varying capital investments (both power generation and cooling technologies) on water use and greenhouse gas emissions; Compare the unit cost and overall water savings from both water and electric sectors in co-managed utilities to facilitate overall water management. This thesis provided the first discovery and characterization of seasonality of WWIF with distinct summertime and wintertime variations of +/-17% compared to the power plant average (0.64gal/kwh) which itself is found to be significantly higher than the literature average (0.53gal/kwh). Both the streamflow and WWIF are found to be highly correlated with monthly average temperature (r-sq = 89%) and monthly precipitation (r-sq of 38%) enabling stochastic simulation of future WWIF under moderate climate change scenario. Future risk to electric power generation also showed the risk to be underestimated significantly when using either the literature average or the power plant average WWIF. Seasonal variation in WWIF along with seasonality in streamflow, electricity demand and other municipal water demands along with storage are shown to be important factors for more realistic risk estimation. The unlimited investment in power generation and/or cooling technologies is also found to save water and GHG emissions by 68% and 75% respectively at a marginal levelized cost increase of 12%. In contrast, the zero investment scenarios (which optimizes exiting technologies to address water scarcity constraints on power generation) shows 50% water savings and 23% GHG emissions reduction at a relatively high marginal levelized cost increase of 37%. Water saving strategies in electric sector show very high cost of water savings (48,000 and 200,000)/Mgal-year under unlimited investment and zero investment scenarios respectively, but they have greater water saving impacts of 6% to CSU municipal water demand; while the individual water saving strategies from water sector have low cost of water savings ranging from (37-1,500)/Mgal-year but with less than 0.5% water reduction impact to CSU due to their low penetration. On the other hand, use of reclaimed water for power plant cooling systems have shown great water savings of up to 92% against the BAU and cost of water saving from (0-73,000)/Mgal-year when integrated with unlimited investment and zero investment water minimizing scenarios respectively in the electric sector. Overall, cities need to focus primarily on use of reclaimed water and in new generation technologies' investment including cooling system retrofits while focusing on expanding the penetration rate of individual water saving strategies in the water sector.
NASA Technical Reports Server (NTRS)
Abshire, James B.; Ramanathan, Anand; Riris, Haris; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Weaver, Clark J.; Browell, Edward V.
2013-01-01
We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5-6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s) matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were <1.4 ppm for flight measurement altitudes >6 km.
Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power
NASA Astrophysics Data System (ADS)
Wagner, Gerd; Shiler, Max; Wulfmeyer, Volker
2005-10-01
A detailed 3-dimensional calculation of the temperature field of a laser crystal pumped with high average power is presented. The pump configuration, the anisotropy of a Brewster-angle-cut Ti:Sapphire crystal, and the temperature dependence of the thermal conductivity are taken into account. The corresponding focal length of the thermal lens is calculated for pump levels up to 100 W. This refined thermal model is the basis for a optimized resonator design of a high-average power differential absorption lidar system transmitter.
Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power.
Wagner, Gerd; Shiler, Max; Wulfmeyer, Volker
2005-10-03
A detailed 3-dimensional calculation of the temperature field of a laser crystal pumped with high average power is presented. The pump configuration, the anisotropy of a Brewster-angle-cut Ti:Sapphire crystal, and the temperature dependence of the thermal conductivity are taken into account. The corresponding focal length of the thermal lens is calculated for pump levels up to 100 W. This refined thermal model is the basis for a optimized resonator design of a high-average power differential absorption lidar system transmitter.
Statistical physics in foreign exchange currency and stock markets
NASA Astrophysics Data System (ADS)
Ausloos, M.
2000-09-01
Problems in economy and finance have attracted the interest of statistical physicists all over the world. Fundamental problems pertain to the existence or not of long-, medium- or/and short-range power-law correlations in various economic systems, to the presence of financial cycles and on economic considerations, including economic policy. A method like the detrended fluctuation analysis is recalled emphasizing its value in sorting out correlation ranges, thereby leading to predictability at short horizon. The ( m, k)-Zipf method is presented for sorting out short-range correlations in the sign and amplitude of the fluctuations. A well-known financial analysis technique, the so-called moving average, is shown to raise questions to physicists about fractional Brownian motion properties. Among spectacular results, the possibility of crash predictions has been demonstrated through the log-periodicity of financial index oscillations.
Generalized weighted ratio method for accurate turbidity measurement over a wide range.
Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying
2015-12-14
Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.
Evaluation of performance of select fusion experiments and projected reactors
NASA Technical Reports Server (NTRS)
Miley, G. H.
1978-01-01
The performance of NASA Lewis fusion experiments (SUMMA and Bumpy Torus) is compared with other experiments and that necessary for a power reactor. Key parameters cited are gain (fusion power/input power) and the time average fusion power, both of which may be more significant for real fusion reactors than the commonly used Lawson parameter. The NASA devices are over 10 orders of magnitude below the required powerplant values in both gain and time average power. The best experiments elsewhere are also as much as 4 to 5 orders of magnitude low. However, the NASA experiments compare favorably with other alternate approaches that have received less funding than the mainline experiments. The steady-state character and efficiency of plasma heating are strong advantages of the NASA approach. The problem, though, is to move ahead to experiments of sufficient size to advance in gain and average power parameters.
Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Huang, Ke; Tao, Mengmeng; Chen, Hongwei; Yi, Aiping; Feng, Guobin; Si, Jinhai
2016-01-01
A diode-cladding pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) is demonstrated. Stable pulse train was produced at a slope efficiency of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ, from which the maximum peak power was calculated to be 21.9 W. To the best of our knowledge, the average power and the peak power are the highest in 3 μm region passively Q-switched fiber lasers. The influence of gain fiber length on the operation regime of the fiber laser has been investigated in detail. PMID:27225029
NASA Astrophysics Data System (ADS)
Wei, Xianglin; Duan, Yuewei; Liu, Yongxue; Jin, Song; Sun, Chao
2018-05-01
The demand for efficient and cost-effective renewable energy is increasing as traditional sources of energy such as oil, coal, and natural gas, can no longer satisfy growing global energy demands. Among renewable energies, wind energy is the most prominent due to its low, manageable impacts on the local environment. Based on meteorological data from 2006 to 2014 and multi-source satellite data (i.e., Advanced Scatterometer, Quick Scatterometer, and Windsat) from 1999 to 2015, an assessment of the onshore and offshore wind energy potential in Jiangsu Province was performed by calculating the average wind speed, average wind direction, wind power density, and annual energy production (AEP). Results show that Jiangsu has abundant wind energy resources, which increase from inland to coastal areas. In onshore areas, wind power density is predominantly less than 200 W/m2, while in offshore areas, wind power density is concentrates in the range of 328-500 W/m2. Onshore areas comprise more than 13,573.24 km2, mainly located in eastern coastal regions with good wind farm potential. The total wind power capacity in onshore areas could be as much as 2.06 x 105 GWh. Meanwhile, offshore wind power generation in Jiangsu Province is calculated to reach 2 x 106 GWh, which is approximately four times the electricity demand of the entire Jiangsu Province. This study validates the effective application of Advanced Scatterometer, Quick Scatterometer, and Windsat data to coastal wind energy monitoring in Jiangsu. Moreover, the methodology used in this study can be effectively applied to other similar coastal zones.
Scaling of Yb-Fiber Frequency Combs
NASA Astrophysics Data System (ADS)
Ruehl, Axel; Marcinkevicius, Andrius; Fermann, Martin E.; Hartl, Ingmar
2010-06-01
Immediately after their introduction in 1999, femtosecond laser frequency combs revolutionized the field of precision optical frequency metrology and are key elements in many experiments. Frequency combs based on femtosecond Er-fiber lasers based were demonstrated in 2005, allowing additionally rugged, compact set-ups and reliable unattended long-term operation. The introduction of Yb-fiber technology led to an dramatic improvement in fiber-comb performance in various aspects. Low-noise Yb-fiber femtosecond oscillators enabled a reduction of relative comb tooth linewidth to the sub-Hz level as well as scaling of the fundamental comb spacings up to 1 GHz. This is beneficial for any frequency-domain comb application due to the higher power per comb-mode. Many spectroscopic applications require, however, frequency combs way beyond the wavelength range accessible with broad band laser materials, so nonlinear conversion and hence higher peak intensity is required. We demonstrated power scaling of Yb-fiber frequency combs up to 80 W average power in a strictly linear chirped-pulse amplification schemes compatible with low-noise phase control. These high-power Yb-fiber-frequency combs facilitated not only the extension to the mid-IR spectral region. When coupled to a passive enhancement cavity, the average power can be further scaled to the kW-level opening new capabilities for XUV frequency combs via high-harmonic generation. All these advances of fiber-based frequency combs will trigger many novel applications both in fundamental and applied sciences. Schibli et al., Nature Photonics 2 355 (2008). Hartl et al., MF9 in Advanced Solid-State Photonics. 2009, Optical Society of America. Ruehl et al., AWC7 in Advanced Solid-State Photonics. 2010, Optical Society of America. Adler et al., Optics Letters 34 1330 (2009). Yost et al., Nature Physics 5 815 (2009).
Discovery of the Neutron Star Spin Frequency in EXO 0748-676
NASA Technical Reports Server (NTRS)
Villarreal, Adam R.; Strohmayer, Tod E.
2004-01-01
We report the results of a search for burst oscillations during thermonuclear X-ray bursts from the low mass X-ray binary (LMXB) EXO 0748-676. With the proportional counter array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE) we have detected a 45 Hz oscillation in the average power spectrum of 38 thermonuclear X-ray bursts from this source. We computed power spectra with 1 Hz frequency resolution for both the rising and decaying portions of 38 X-ray bursts from the public RXTE archive. We averaged the 1 Hz power spectra and detected a significant signal at 45 Hz in the decaying phases of the bursts. The signal is detected at a significance level of 4 x 10 (exp -8) similar signal was detected in the rising intervals. The oscillation peak is unresolved at 1 Hz frequency resolution, indicating an oscillation quality factor, Q = nu (sub 0)/Delta nu (sub fwhm) greater than 45, and the average signal amplitude is approximately equal to 3% (rms) The detection of 45 Hz burst oscillations from EXO 0748-676 provides compelling evidence that this is the neutron star spin frequency in this system. We use the inferred spin frequency to model the widths of absorption lines from the neutron star surface and show that the widths of the absorption lines from EXO 0748-676 recently reported by Cottam et al. are consistent with a 45 Hz spin frequency as long as the neutron star radius is in the range from about 9.5 - 15 km. With a known spin frequency, precise modelling of the line profiles from EXO 0748-676 holds great promise for constraining the dense matter equation of state.
Height extrapolation of wind data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhail, A.S.
1982-11-01
Hourly average data for a period of 1 year from three tall meteorological towers - the Erie tower in Colorado, the Goodnoe Hills tower in Washington and the WKY-TV tower in Oklahoma - were used to analyze the wind shear exponent variabiilty with various parameters such as thermal stability, anemometer level wind speed, projection height and surface roughness. Different proposed models for prediction of height variability of short-term average wind speeds were discussed. Other models that predict the height dependence of Weilbull distribution parameters were tested. The observed power law exponent for all three towers showed strong dependence on themore » anemometer level wind speed and stability (nighttime and daytime). It also exhibited a high degree of dependence on extrapolation height with respect to anemometer height. These dependences became less severe as the anemometer level wind speeds were increased due to the turbulent mixing of the atmospheric boundary layer. The three models used for Weibull distribution parameter extrapolation were he velocity-dependent power law model (Justus), the velocity, surface roughness, and height-dependent model (Mikhail) and the velocity and surface roughness-dependent model (NASA). The models projected the scale parameter C fairly accurately for the Goodnoe Hills and WKY-TV towers and were less accurate for the Erie tower. However, all models overestimated the C value. The maximum error for the Mikhail model was less than 2% for Goodnoe Hills, 6% for WKY-TV and 28% for Erie. The error associated with the prediction of the shape factor (K) was similar for the NASA, Mikhail and Justus models. It ranged from 20 to 25%. The effect of the misestimation of hub-height distribution parameters (C and K) on average power output is briefly discussed.« less
Bauer, Dominik; Zawischa, Ivo; Sutter, Dirk H; Killi, Alexander; Dekorsy, Thomas
2012-04-23
We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency. © 2012 Optical Society of America
Wind power application research on the fusion of the determination and ensemble prediction
NASA Astrophysics Data System (ADS)
Lan, Shi; Lina, Xu; Yuzhu, Hao
2017-07-01
The fused product of wind speed for the wind farm is designed through the use of wind speed products of ensemble prediction from the European Centre for Medium-Range Weather Forecasts (ECMWF) and professional numerical model products on wind power based on Mesoscale Model5 (MM5) and Beijing Rapid Update Cycle (BJ-RUC), which are suitable for short-term wind power forecasting and electric dispatch. The single-valued forecast is formed by calculating the different ensemble statistics of the Bayesian probabilistic forecasting representing the uncertainty of ECMWF ensemble prediction. Using autoregressive integrated moving average (ARIMA) model to improve the time resolution of the single-valued forecast, and based on the Bayesian model averaging (BMA) and the deterministic numerical model prediction, the optimal wind speed forecasting curve and the confidence interval are provided. The result shows that the fusion forecast has made obvious improvement to the accuracy relative to the existing numerical forecasting products. Compared with the 0-24 h existing deterministic forecast in the validation period, the mean absolute error (MAE) is decreased by 24.3 % and the correlation coefficient (R) is increased by 12.5 %. In comparison with the ECMWF ensemble forecast, the MAE is reduced by 11.7 %, and R is increased 14.5 %. Additionally, MAE did not increase with the prolongation of the forecast ahead.
Acousto-optic modulation in diode pumped solid state lasers
NASA Astrophysics Data System (ADS)
Jabczynski, Jan K.; Zendzian, Waldemar; Kwiatkowski, Jacek
2007-02-01
The main properties of acousto-optic modulators (AOM) applied in laser technology are presented and discussed in the paper. The critical review of application of AOMs in several types of diode pumped solid state lasers (DPSSL) is given. The short description of few DPSSLs developed in our group is presented in the following chapters of the paper. The parameters of a simple AO-Q-switched Nd:YVO 4 laser (peak power up to 60 kW, pulse duration of 5-15 ns, repetition rate in the range 10-100 kHz, with average power above 5 W) are satisfactory for different application as follows: higher harmonic generation, pumping of 'eye-safe' OPOs etc. The achieved brightness of 10 17 W/m2/srd is comparable to the strongest technological Q-switched lasers of kW class of average power. The main aim of paper is to present novel type of lasers with acousto-optic modulation namely: AO-q-switched and mode locked (AO-QML) lasers. We have designed the 3.69-m long Z-type resonator of the frequency matched to the RF frequency of AOM. As a gain medium the Nd:YVO 4 crystal end pumped by 20 W laser diode was applied. The energy of envelope of QML pulse train was up to 130 μJ with sub-nanosecond mode locked pulse of maximum 30-μJ energy.
van der Laak, Jeroen A W M; Dijkman, Henry B P M; Pahlplatz, Martin M M
2006-03-01
The magnification factor in transmission electron microscopy is not very precise, hampering for instance quantitative analysis of specimens. Calibration of the magnification is usually performed interactively using replica specimens, containing line or grating patterns with known spacing. In the present study, a procedure is described for automated magnification calibration using digital images of a line replica. This procedure is based on analysis of the power spectrum of Fourier transformed replica images, and is compared to interactive measurement in the same images. Images were used with magnification ranging from 1,000 x to 200,000 x. The automated procedure deviated on average 0.10% from interactive measurements. Especially for catalase replicas, the coefficient of variation of automated measurement was considerably smaller (average 0.28%) compared to that of interactive measurement (average 3.5%). In conclusion, calibration of the magnification in digital images from transmission electron microscopy may be performed automatically, using the procedure presented here, with high precision and accuracy.
Wind resource assessment: San Nicolas Island, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenna, E.; Olsen, T.L.
1996-01-01
San Nicolas Island (SNI) is the site of the Navy Range Instrumentation Test Site which relies on an isolated diesel-powered grid for its energy needs. The island is located in the Pacific Ocean 85 miles southwest of Los Angeles, California and 65 miles south of the Naval Air Weapons Station (NAWS), Point Mugu, California. SNI is situated on the continental shelf at latitude N33{degree}14` and longitude W119{degree}27`. It is approximately 9 miles long and 3.6 miles wide and encompasses an area of 13,370 acres of land owned by the Navy in fee title. Winds on San Nicolas are prevailingly northwestmore » and are strong most of the year. The average wind speed is 7.2 m/s (14 knots) and seasonal variation is small. The windiest months, March through July, have wind speeds averaging 8.2 m/s (16 knots). The least windy months, August through February, have wind speeds averaging 6.2 m/s (12 knots).« less
Radioactive cesium concentrations in coastal suspended matter after the Fukushima nuclear accident.
Kubo, Atsushi; Tanabe, Kai; Suzuki, Genta; Ito, Yukari; Ishimaru, Takashi; Kasamatsu-Takasawa, Nobue; Tsumune, Daisuke; Mizuno, Takuji; Watanabe, Yutaka W; Arakawa, Hisayuki; Kanda, Jota
2018-06-01
Radioactive cesium concentrations in the suspended matter of the coastal waters around the Fukushima Daiichi Nuclear Power Plant (FDNPP) were investigated between January 2014 and August 2015. The concentrations of radioactive cesium in the suspended matter were two orders higher in magnitude than those determined in the sediment. In addition, we discovered highly radioactive Cs particles in the suspended matter using autoradiography. The geometrical average radioactivity of particles was estimated to be 0.6 Bq at maximum and 0.2 Bq on average. The contribution ratio of highly radioactive Cs particles to each sample ranged from 13 to 54%, and was 36% on average. A major part of the radioactive Cs concentration in the suspended matter around the FDNPP was strongly influenced by the highly radioactive particles. The subsequent resuspension of highly radioactive Cs particles has been suggested as a possible reason for the delay in radioactive Cs depuration from benthic biota. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott
Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.
NASA Astrophysics Data System (ADS)
Tender, Leonard M.; Gray, Sam A.; Groveman, Ethan; Lowy, Daniel A.; Kauffman, Peter; Melhado, Julio; Tyce, Robert C.; Flynn, Darren; Petrecca, Rose; Dobarro, Joe
2008-05-01
Here we describe the first demonstration of a microbial fuel cell (MFC) as a practical alternative to batteries for a low-power consuming application. The specific application reported is a meteorological buoy (ca. 18-mW average consumption) that measures air temperature, pressure, relative humidity, and water temperature, and that is configured for real-time line-of-sight RF telemetry of data. The specific type of MFC utilized in this demonstration is the benthic microbial fuel cell (BMFC). The BMFC operates on the bottom of marine environments, where it oxidizes organic matter residing in oxygen depleted sediment with oxygen in overlying water. It is maintenance free, does not deplete (i.e., will run indefinitely), and is sufficiently powerful to operate a wide range of low-power marine-deployed scientific instruments normally powered by batteries. Two prototype BMFCs used to power the buoy are described. The first was deployed in the Potomac River in Washington, DC, USA. It had a mass of 230 kg, a volume of 1.3 m3, and sustained 24 mW (energy equivalent of ca. 16 alkaline D-cells per year at 25 °C). Although not practical due to high cost and extensive in-water manipulation required to deploy, it established the precedence that a fully functional scientific instrument could derive all of its power from a BMFC. It also provided valuable lessons for developing a second, more practical BMFC that was subsequently used to power the buoy in a salt marsh near Tuckerton, NJ, USA. The second version BMFC has a mass of 16 kg, a volume of 0.03 m3, sustains ca. 36 mW (energy equivalent of ca. 26 alkaline D-cells per year at 25 °C), and can be deployed by a single person from a small craft with minimum or no in-water manipulation. This BMFC is being further developed to reduce cost and enable greater power output by electrically connecting multiple units in parallel. Use of this BMFC powering the meteorological buoy highlights the potential impact of BMFCs to enable long term (persistent) operation of durable low-power marine instruments (up to 100 mW average power consumption) far longer than practical by batteries.
Bevelhimer, Mark S.; Stewart, Aurthur J.; Fortner, Allison M.; ...
2016-01-06
During August-September 2012, we sampled six hydropower reservoirs in southeastern United States. for CO 2 and CH 4 emissions via three pathways: diffusive emissions from water surface; ebullition in the water column; and losses from dam tailwaters during power generation. Average total emission rates of CO 2 for the six reservoirs ranged from 1,127 to 2,051 mg m -2 d -1, which is low to moderate compared to CO 2 emissions rates reported for tropical hydropower reservoirs and boreal ponds and lakes, and similar to rates reported for other temperate reservoirs. Similar average rates for CH 4 were also relativelymore » low, ranging from 5 to 83 mg m -2 d -1. On a whole-reservoir basis, total emissions of CO 2 ranged nearly 10-fold, from ~51,000 kg per day for Fontana to ~486,000 kg per day for Guntersville, and total emissions of CH 4 ranged nearly 20-fold, from ~5 kg per day for Fontana to ~83 kg per day for Allatoona. Emissions through the tailwater pathway varied among reservoirs, comprising from 20 to 50% of total CO 2 emissions and 0 to 90% of CH 4 emissions, depending on the reservoir. Furthermore, several explanatory factors related to reservoir morphology and water quality were considered for observed differences among reservoirs.« less
NASA Technical Reports Server (NTRS)
Grund, C. J.; Eloranta, E. W.
1990-01-01
The High Spectral Resolution Lidar (HSRL) was operated from a roof-top site in Madison, Wisconsin. The transmitter configuration used to acquire the case study data produces about 50 mW of ouput power and achieved eye-safe, direct optical depth, and backscatter cross section measurements with 10 min averaging times. A new continuously pumped, injection seeded, frequency doubled Nd:YAG laser transmitter reduces time-averaging constraints by a factor of about 10, while improving the aerosol-molecular signal separation capabilities and wavelength stability of the instrument. The cirrus cloud backscatter-phase functions have been determined for the October 27-28, 1986 segment of the HSRL FIRE dataset. Features exhibiting backscatter cross sections ranging over four orders of magnitude have been observed within this 33 h period. During this period, cirrus clouds were observed with optical thickness ranging from 0.01 to 1.4. The altitude relationship between cloud top and bottom boundaries and the optical center of the cloud is influenced by the type of formation observed.
The indirect costs of psoriatic arthritis: systematic review and meta-analysis.
Kawalec, Paweł; Malinowski, Krzysztof Piotr
2015-02-01
The aim of this systematic review is to collect all current data on the indirect costs (IC) related to psoriatic arthritis (PsA). The search was conducted using MEDLINE (via PubMed), Embase and Centre for Reviews and Dissemination databases. We considered original studies, systematic reviews, economic evaluations, conference abstracts and posters. All collected data were recalculated to average annual cost per patient, expressed using the consumer price index for 2013 and converted to US dollars using purchasing power parity. Eight of the identified publications presented IC of PsA. Average annual IC per patient calculated using the friction cost approach range from US$1693.83 to $12,318.45, while using the human capital approach they range from US$1750.68 to $50,270.52. Result of the meta-analysis was a basis for calculating cost of work disability equaled US$10,754.04 per patient per year in 2013 prices. This systematic review revealed a great economic burden of the disease to the society. A small number of studies on IC in PsA justify further investigations.
Mass modeling for electrically powered space-based Yb:YAG lasers
NASA Astrophysics Data System (ADS)
Fitzgerald, Kevin F.; Leshner, Richard B.; Winsor, Harry V.
2000-05-01
An estimate for the mass of a nominal high-energy laser system envisioned for space applications is presented. The approach features a diode pumped solid state Yb:YAG laser. The laser specifications are10 MW average output power, and periods of up to 100 seconds continuous, full-power operation without refueling. The system is powered by lithium ion batteries, which are recharged by a solar array. The power requirements for this system dominate over any fixed structural features, so the critical issues in scaling a DPSSL to high power are made transparent. When based on currently available space qualified batteries, the design mass is about 500 metric tons. Therefore, innovations are required before high power electrical lasers will be serious contenders for use in space systems. The necessary innovations must improve the rate at which lithium ion batteries can output power. Masses for systems based on batteries that should be available in the near future are presented. This analysis also finds that heating of the solid state lasing material, cooling of the diode pump lasers and duty cycle are critical issues. Features dominating the thermal control requirements are the heat capacity of garnet, the operational temperature range of the system, and the required cooling time between periods of full operation. The duty cycle is a critical factor in determining both the mass of the diode array needed, and the mass of the power supply system.
Noninvasive acceleration measurements to characterize knee arthritis and chondromalacia.
Reddy, N P; Rothschild, B M; Mandal, M; Gupta, V; Suryanarayanan, S
1995-01-01
Devising techniques and instrumentation for early detection of knee arthritis and chondromalacia presents a challenge in the domain of biomedical engineering. The purpose of the present investigation was to characterize normal knees and knees affected by osteoarthritis, rheumatoid arthritis, and chondromalacia using a set of noninvasive acceleration measurements. Ultraminiature accelerometers were placed on the skin over the patella in four groups of subjects, and acceleration measurements were obtained during leg rotation. Acceleration measurements were significantly different in the four groups of subjects in the time and frequency domains. Power spectral analysis revealed that the average power was significantly different for these groups over a 100-500 Hz range. Noninvasive acceleration measurements can characterize the normal, arthritis, and chondromalacia knees. However, a study on a larger group of subjects is indicated.
X-33 XRS-2200 Linear Aerospike Engine Sea Level Plume Radiation
NASA Technical Reports Server (NTRS)
DAgostino, Mark G.; Lee, Young C.; Wang, Ten-See; Turner, Jim (Technical Monitor)
2001-01-01
Wide band plume radiation data were collected during ten sea level tests of a single XRS-2200 engine at the NASA Stennis Space Center in 1999 and 2000. The XRS-2200 is a liquid hydrogen/liquid oxygen fueled, gas generator cycle linear aerospike engine which develops 204,420 lbf thrust at sea level. Instrumentation consisted of six hemispherical radiometers and one narrow view radiometer. Test conditions varied from 100% to 57% power level (PL) and 6.0 to 4.5 oxidizer to fuel (O/F) ratio. Measured radiation rates generally increased with engine chamber pressure and mixture ratio. One hundred percent power level radiation data were compared to predictions made with the FDNS and GASRAD codes. Predicted levels ranged from 42% over to 7% under average test values.
Are There Paleomagnetic Signals That Herald the Inner Core?
NASA Astrophysics Data System (ADS)
Coe, R. S.
2016-12-01
Calculated estimates for the age of the inner core (IC) have ranged from 3.5 Ga to as little as 0.5 Ga over the past five decades. A few years ago opinion swung sharply toward the younger end of the range based on a much increased estimate for the thermal conductivity of the core. But more recently these values are contested by other studies, and support for an additional energy source for the geodynamo involving exsolution of MgO has also been proposed, rendering the age of IC initiation wide open again. Thus there is strong motivation to examine the paleomagnetic record for any signal that may constrain when the IC formed. Presence of a solid IC changes the topology of the fluid core, and its growth releases buoyant material that helps power the dynamo, so there is reason to hope that detectable changes in the paleomagnetic record might indeed mark its existence. Such changes, however, must be discerned against the backdrop of ordinary geomagnetic secular variation, which is substantial, so that time averages must be established before looking for telltale signals in the paleomagnetic field. Intuitively, the most likely signal to look for is an increase in the average strength of the field. Paleointensity, though, is the most difficult part of the ancient field vector to determine experimentally, and it can only be obtained from igneous rocks with unaltered magnetic mineralogy. Another potential signal for development of the IC is difference in morphology of the paleomagnetic field, namely a change in the latitudinal pattern of time-averaged secular variation. Again, rapidly cooled igneous rocks are required because only they can provide a reliable snapshot of the field direction, even after substantial overprinting by later geologic events. A third potential marker is a change in average reversal frequency. An advantage over the other two is that polarity is the most robust of paleomagnetic signals, and it can be well recorded by both sedimentary and igneous rocks. However, it may well have the least resolving power of the three. I will discuss some of the candidate changes in long-term paleomagnetic field strength, morphology and reversal frequency that have been proposed as markers of IC nucleation. While some appear to hold promise, none are definitive and all require more data to establish meaningful background averages.
Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor
NASA Technical Reports Server (NTRS)
Mayo, W.; Lantz, E.
1973-01-01
A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Abshire, James B.
2011-01-01
Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW seeder lasers, one on-line and one offline that are intensity modulated by two different frequency sine-waves signals before being amplified by a common laser amplifier. The receiver uses narrowband amplitude demodulation, or lock-in, Signal processing at the given laser modulation frequencies [3,4]. The laser transmitter operates in a quasi CW mode with the peak power equal to twice the average power. The on-line and off-line lasers can be transmitted at the same time without interference. Another direct detection technique uses a low duty cycle pulsed laser modulation [5,6] with the laser wavelengths alternating between on-line and off-line on successive pulses. The receiver uses time resolved detection and can also provide simultaneous target range measurement. With a lower laser duty cycle it requires a much higher peak laser power for the same average power.
Technical options for high average power free electron milimeter-wave and laser devices
NASA Technical Reports Server (NTRS)
Swingle, James C.
1989-01-01
Many of the potential space power beaming applications require the generation of directed energy beams with respectable amounts of average power (MWs). A tutorial summary is provided here on recent advances in the laboratory aimed at producing direct conversion of electrical energy to electromagnetic radiation over a wide spectral regime from microwaves to the ultraviolet.
Novosibirsk Free Electron Laser: Recent Achievements and Future Prospects
NASA Astrophysics Data System (ADS)
Shevchenko, O. A.; Arbuzov, V. S.; Vinokurov, N. A.; Vobly, P. D.; Volkov, V. N.; Getmanov, Ya. V.; Davidyuk, I. V.; Deychuly, O. I.; Dementyev, E. N.; Dovzhenko, B. A.; Knyazev, B. A.; Kolobanov, E. I.; Kondakov, A. A.; Kozak, V. R.; Kozyrev, E. V.; Kubarev, V. V.; Kulipanov, G. N.; Kuper, E. A.; Kuptsov, I. V.; Kurkin, G. Ya.; Krutikhin, S. A.; Medvedev, L. E.; Motygin, S. V.; Ovchar, V. K.; Osipov, V. N.; Petrov, V. M.; Pilan, A. M.; Popik, V. M.; Repkov, V. V.; Salikova, T. V.; Sedlyarov, I. K.; Serednyakov, S. S.; Skrinsky, A. N.; Tararyshkin, S. V.; Tribendis, A. G.; Cheskidov, V. G.; Chernov, K. N.; Shcheglov, M. A.
2017-01-01
Free electron lasers (FELs) are unique sources of electromagnetic radiation with tunable wavelength. A high-power FEL has been created at the G. I.Budker Institute for Nuclear Physics. Its radiation frequency can be tuned over a wide range in the terahertz and infrared spectral ranges. As the source of electron bunches, this FEL uses a multi-turn energy-recovery linac, which has five straight sections. Three sections are used for three FELs which operate in different wavelength ranges (90-240 μm for the first, 37-80 μm for the second, and 5-20 μm for the third ones). The first and the second FELs were commissioned in 2003 and 2009, respectively. They are used for various applied and research problems now. The third FEL is installed on the last, forth accelerator loop, in which the electron energy is the maximum. It comprises three undulator sections and a 40 m optical cavity. The first lasing of this FEL was obtained in the summer of 2015. The radiation wavelength was 9 μm and the average power was about 100 W. The design power is 1 kW at a pulse repetition rate of 3.75 MHz. Radiation of the third FEL will be delivered to user stations from the protected hall in the near future. The third FEL commissioning results are presented and the current status of the first and second FELs as well as their future development prospects are described.
Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy
Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.
2014-01-01
Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content. PMID:24689588
Noise shaping in populations of coupled model neurons.
Mar, D J; Chow, C C; Gerstner, W; Adams, R W; Collins, J J
1999-08-31
Biological information-processing systems, such as populations of sensory and motor neurons, may use correlations between the firings of individual elements to obtain lower noise levels and a systemwide performance improvement in the dynamic range or the signal-to-noise ratio. Here, we implement such correlations in networks of coupled integrate-and-fire neurons using inhibitory coupling and demonstrate that this can improve the system dynamic range and the signal-to-noise ratio in a population rate code. The improvement can surpass that expected for simple averaging of uncorrelated elements. A theory that predicts the resulting power spectrum is developed in terms of a stochastic point-process model in which the instantaneous population firing rate is modulated by the coupling between elements.
A process for the chemical preparation of high-field ZnO varistors
Brooks, R.A.; Dosch, R.G.; Tuttle, B.A.
1986-02-19
Chemical preparation techniques involving co-precipitation of metals are used to provide microstructural characteristics necessary in order to produce ZnO varistors and their precursors for high field applications. The varistors produced have homogeneous and/or uniform dopant distributions and a submicron average grain size with a narrow size distribution. Precursor powders are prepared via chemical precipitation techniques and varistors made by sintering uniaxially and/or isostatically pressed pellets. Using these methods, varistors were made which were suitable for high-power applications, having values of breakdown field, E/sub B/, in the 10 to 100 kV/cm range, ..cap alpha.. > 30 and densities in the range of 65 to 99% of theoretical, depending on both composition and sintering temperature.
Process for the chemical preparation of high-field ZnO varistors
Brooks, Robert A.; Dosch, Robert G.; Tuttle, Bruce A.
1987-01-01
Chemical preparation techniques involving co-precipitation of metals are used to provide micro-structural characteristics necessary in order to produce ZnO varistors and their precursors for high field applications. The varistors produced have homogeneous and/or uniform dopant distributions and a submicron average grain size with a narrow size distribution. Precursor powders are prepared via chemical precipitation techniques and varistors made by sintering uniaxially and/or isostatically pressed pellets. Using these methods, varistors were made which were suitable for high-power applications, having values of breakdown field, E.sub.B, in the 10-100 kV/cm range, .alpha.>30 and densities in the range of 65-99% of theoretical, depending on both composition and sintering temperature.
The predictive power of local properties of financial networks
NASA Astrophysics Data System (ADS)
Caraiani, Petre
2017-01-01
The literature on analyzing the dynamics of financial networks has focused so far on the predictive power of global measures of networks like entropy or index cohesive force. In this paper, I show that the local network properties have similar predictive power. I focus on key network measures like average path length, average degree or cluster coefficient, and also consider the diameter and the s-metric. Using Granger causality tests, I show that some of these measures have statistically significant prediction power with respect to the dynamics of aggregate stock market. Average path length is most robust relative to the frequency of data used or specification (index or growth rate). Most measures are found to have predictive power only for monthly frequency. Further evidences that support this view are provided through a simple regression model.
Pulsed power systems for environmental and industrial applications
NASA Astrophysics Data System (ADS)
Neau, E. L.
1994-10-01
The development of high peak power simulators, laser drivers, free electron lasers, and Inertial Confinement Fusion drivers is being extended to high average power short-pulse machines with the capabilities of performing new roles in environmental cleanup and industrial manufacturing processes. We discuss a new class of short-pulse, high average power accelerator that achieves megavolt electron and ion beams with 10's of kiloamperes of current and average power levels in excess of 100 kW. Large treatment areas are possible with these systems because kilojoules of energy are available in each output pulse. These systems can use large area x-ray converters for applications requiring grater depth of penetration such as food pasteurization and waste treatment. The combined development of this class of accelerators and applications, and Sandia National Laboratories, is called Quantum Manufacturing.
Cutting efficiency of a mid-infrared laser on human enamel.
Levy, G; Koubi, G F; Miserendino, L J
1998-02-01
In this study, the cutting ability of a newly developed dental laser was compared with a dental high-speed handpiece and rotary bur for removal of enamel. Measurements of the volume of tissue removed, energy emitted, and time of exposure were used to quantify the ablation rate (rate of tissue removal) for each test group and compared. Cutting efficiency (mm3/s) of the laser was calculated based on the mean volume of tissue removed per pulse (mm3/pulse) and unit energy expended (mm3/J) over the range of applied powers (2, 4, 6, and 8 W). The specimens were then examined by light microscopy and scanning electron micrographs for qualitative analysis of the amount of remaining debris and the presence of the smear layer on the prepared enamel surface. Calculations of the cutting efficiency of the laser over the range of powers tested revealed a linear relationship with the level of applied power. The maximum average rate of tissue removal by the laser was 0.256 mm3/s at 8 W, compared with 0.945 mm3/s by the dental handpiece. Light microscopy and scanning electron micrograph examinations revealed a reduction in the amount of remaining debris and smear layer in the laser-prepared enamel surfaces, compared with the conventional method. Based on the results of this study, the cutting efficiency of the high-speed handpiece and dental bur was 3.7 times greater than the laser over the range of powers tested, but the laser appeared to create a cleaner enamel surface with minimal thermal damage. Further modifications of the laser system are suggested for improvement of laser cutting efficiency.
Characterization of advanced electric propulsion systems
NASA Technical Reports Server (NTRS)
Ray, P. K.
1982-01-01
Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.
The Physiological Profile of Junior Soccer Players at SSBB Surabaya Bhakti
NASA Astrophysics Data System (ADS)
Nashirudin, M.; Kusnanik, N. W.
2018-01-01
Soccer players are required to have good physical fitness in order to achieve optimum accomplishment; physical fitness stands as the foundation of technical and tactical proficiency as well as the mental maturity during the matches. The purpose of this study was to identify the physiological profile of junior soccer players of SSB Surabaya Bhakti age 16-17. The research was conducted at 20 junior soccer players. This research was quantitative with descriptive analysis. Data were collected by testing of physiological (anaerobic power and capacity including explosive leg power, speed, agility; aerobic capacity: cardiovascular endurance). Data was analyzed using percentage. The result showed that the percentage of explosive leg power of junior soccer players were 30% (good category), speed was 85% (average category), right agility was 90% (average category), left agility was 75% (average category). On the other hand, the aerobic power and capacity of the junior soccer players in this study was 50% (average category). The conclusion of this research is that the physiological profile of junior soccer players at SSB Surabaya Bhakti age 16-17 was majority in average category.
The independent effects of speed and propulsive force on joint power generation in walking
Browne, Michael G.; Franz, Jason R.
2017-01-01
Walking speed is modulated using propulsive forces (FP) during push-off and both preferred speed and FP decrease with aging. However, even prior to walking slower, reduced FP may be accompanied by potentially unfavorable changes in joint power generation. For example, compared to young adults, older adults exhibit a redistribution of mechanical power generation from the propulsive plantarflexor muscles to more proximal muscles acting across the knee and hip. Here, we used visual biofeedback based on real-time FP measurements to decouple and investigate the interaction between joint-level coordination, whole-body FP, and walking speed. 12 healthy young subjects walked on a dual-belt instrumented treadmill at a range of speeds (0.9 – 1.3 m/s). We immediately calculated the average FP from each speed. Subjects then walked at 1.3 m/s while completing a series of biofeedback trials with instructions to match their instantaneous FP to their averaged FP from slower speeds. Walking slower decreased FP and total positive joint work with little effect on relative joint-level contributions. Conversely, subjects walked at a constant speed with reduced FP, not by reducing total positive joint work, but by redistributing the mechanical demands of each step from the plantarflexor muscles during push-off to more proximal leg muscles during single support. Interestingly, these naturally emergent joint- and limb-level biomechanical changes, in the absence of neuromuscular constraints, resemble those due to aging. Our findings provide important reference data to understand the presumably complex interactions between joint power generation, whole-body FP, and walking speed in our aging population. PMID:28262285
Microwave Driven Magnetic Plasma Accelerator Studies (CYCLOPS)
NASA Technical Reports Server (NTRS)
Crimi, G. F.; Eckert, A. C.; Miller, D. B.
1967-01-01
A microwave-driven cyclotron resonance plasma acceleration device was investigated using argon, krypton, xenon, and mercury as propellants. Limited ranges of propellant flow rate, input power, and magnetic field strength were used. Over-all efficiencies (including the 65% efficiency of the input polarizer) less than 10% were obtained for specific impulse values between 500 and 1500 sec. Power transfer efficiencies, however, approached 100% of the input power available in the right-hand component of the incident circularly polarized radiation. Beam diagnostics using Langmuir probes, cold gas mapping, r-f mapping and ion energy analyses were performed in conjunction with an engine operating in a pulsed mode. Measurements of transverse electron energies at the position of cyclotron resonant absorption yielded energy values more than an order of magnitude lower than anticipated. The measured electron energies were, however, consistent with the low values of average ion energy measured by retarding potential techniques. The low values of average ion energy were also consistent with the measured thrust values. It is hypothesized that ionization and radiation limit the electron kinetic energy to low-values thus limiting the energy which is finally transferred to the ion. Thermalization by electron-electron collision was also identified as an additional loss mechanism. The use of light alkali metals, which have relatively few low lying energy levels to excite, with the input power to mass ratio selected so as to limit the electron energies to less than the second ionization potential, is suggested. It is concluded, however, that the over-all efficiency for such propellants would be less than 40 per cent.
Video semaphore decoding for free-space optical communication
NASA Astrophysics Data System (ADS)
Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.
2001-04-01
Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Sook; Han, Inwoo; Valyavin, G.; Lee, Byeong-Cheol; Shimansky, V.; Galazutdinov, G. A.
2009-10-01
We present a high resolving power (λ/Δλ = 90,000) and high signal-to-noise ratio (˜700) spectral atlas of Vega covering the 3850-6860 Å wavelength range. The atlas is a result of averaging of spectra recorded with the aid of the echelle spectrograph BOES fed by the 1.8 m telescope at Bohyunsan Observatory (Korea). The atlas is provided only in machine-readable form (electronic data file) and will be available in the SIMBAD database upon publication. Based on data collected with the 1.8 m telescope operated at BOAO Observatory, Korea.
PV industry growth and module reliability in Thailand
NASA Astrophysics Data System (ADS)
Chenvidhya, Dhirayut; Seapan, Manit; Sangpongsanont, Yaowanee; Chenvidhya, Tanokkorn; Limsakul, Chamnan; Songprakorp, Roongrojana
2015-09-01
The PV applications in Thailand are now installed more than 1.2 GWp cumulatively. It is due to the National Renewable Energy Program and its targets. In the latest Alternative Energy Development Plan (AEDP), the PV electricity production target has increased from 2 GWp to 3 GWp. With this rapid growth, customers and manufacturers seek for module standard testing. So far over one thousands of PV modules per annum have been tested since 2012. The normal tests include type approval test according to TIS standard, acceptance test and testing for local standard development. For type test, the most module failure was found during damp heat test. For annual evaluation test, the power degradation and delamination of power was found between 0 to 6 percent from its nameplate after deployment of 0 to 5 years in the field. For thin-film module, the degradation and delamination was found in range of 0 to 13 percent (about 5 percent on average) from its nameplate for the modules in operation with less than 5 years. However, for the PV modules at the reference site on campus operated for 12 years, the power degradation was ranging from 10 to 15 percent. Therefore, a long term performance assessment needs to be considered to ensure the system reliability.
NASA Astrophysics Data System (ADS)
Ahmad, H.; Samion, M. Z.; Sharbirin, A. S.; Norizan, S. F.; Aidit, S. N.; Ismail, M. F.
2018-05-01
Graphene, a 2D material, has been used for generation of pulse lasers due to the presence of its various fascinating optical properties compared to other materials. Hence in this paper, we report the first demonstration of a thulium doped fiber laser with a wavelength-tunable, passive Q-switched output using a graphene-polyvinyl-alcohol composite film for operation in the 2.0 µm region. The proposed laser has a wavelength-tunable output spanning from 1932.0 nm to 1946.0 nm, giving a total tuning range of 14.0 nm. The generated pulse has a maximum repetition rate and average output power of 36.29 kHz and 0.394 mW at the maximum pump power of 130.87 mW, as well as a pulse width of 6.8 µs at this pump power. The generated pulses have a stable output, having a signal-to-noise ratio of 31.75 dB, and the laser output is stable when tested over a period of 60 min. The proposed laser would have multiple applications for operation near the 2.0 micron region, especially for bio-medical applications and range-finding.
Makeyev, Oleksandr; Liu, Xiang; Wang, Liling; Zhu, Zhenghan; Taveras, Aristides; Troiano, Derek; Medvedev, Andrei V; Besio, Walter G
2012-01-01
As epilepsy remains a refractory condition in about 30% of patients with complex partial seizures, electrical stimulation of the brain has recently shown potential for additive seizure control therapy. Previously, we applied noninvasive transcranial focal stimulation via novel tripolar concentric ring electrodes (TCREs) on the scalp of rats after inducing seizures with pentylenetetrazole (PTZ). We developed a close-loop system to detect seizures and automatically trigger the stimulation and evaluated its effect on the electrographic activity recorded by TCREs in rats. In our previous work the detectors of seizure onset were based on seizure-induced changes in signal power in the frequency range up to 100 Hz, while in this preliminary study we assess the feasibility of recording high frequency oscillations (HFOs) in the range up to 300 Hz noninvasively with scalp TCREs during PTZ-induced seizures. Grand average power spectral density estimate and generalized likelihood ratio tests were used to compare power of electrographic activity at different stages of seizure development in a group of rats (n= 8). The results suggest that TCREs have the ability to record HFOs from the scalp as well as that scalp-recorded HFOs can potentially be used as features for seizure onset detection.
NASA Astrophysics Data System (ADS)
Zhang, Jing-Yi; Ming, Min; Jiang, Yuan-Ze; Duan, Hui-Zong; Yeh, Hsien-Chi
2018-06-01
Laser link acquisition is a key technology for inter-satellite laser ranging and laser communication. In this paper, we present an acquisition scheme based on the differential power sensing method with dual-way scanning, which will be used in the next-generation gravity measurement mission proposed in China, called Space Advanced Gravity Measurements (SAGM). In this scheme, the laser beams emitted from two satellites are power-modulated at different frequencies to enable the signals of the two beams to be measured distinguishably, and their corresponding pointing angles are determined by using the differential power sensing method. As the master laser beam and the slave laser beam are decoupled, the dual-way scanning method, in which the laser beams of both the master and the slave satellites scan uncertainty cones simultaneously and independently, can be used, instead of the commonly used single-way scanning method, in which the laser beam of one satellite scans and that of the other one stares. Therefore, the acquisition time is reduced significantly. Numerical simulation and experiments of the acquisition process are performed using the design parameters of the SAGM mission. The results show that the average acquisition time is less than 10 s for a scanning range of 1-mrad radius with a success rate of more than 99%.
Relationships Among Lower Body Strength, Power, and Performance of Functional Tasks
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori; Ryder, J.; Hackney, K.; Scott-Pandorf, M.; Redd, E.; Buxton, R.; Bloomberg, J.
2010-01-01
There is a large degree of variability among crewmembers with respect to decrements in muscle strength and power following long duration spaceflight, ranging from 0 to approx.30% reductions. The purpose of this study was to investigate the influence of varying decrements in lower body muscle strength and power (relative to body weight) on the performance of 2 occupationally relevant tasks (ladder climb and supine egress & walk). Seventeen participants with leg strength similar to US crewmembers performed a leg press power test, an isokinetic knee extension strength test and they were asked to complete the 2 functional tasks as quickly as possible. On additional test days the participants were asked to repeat the functional tasks under 3 conditions where a different external load was applied each time using a weighted suit in order to experimentally manipulate participants strength/body weight and power/body weight ratios. The weight in the suit ranged from 20-120% of body weight and was distributed in proportion to limb segment weights to minimize changes in center of gravity. The ladder task consisted of climbing 40 rungs on a ladder treadmill as fast as possible. The supine egress & walk task consisted of rising from a supine position and walking through an obstacle course. Results show a relatively linear relationship between strength/body weight and task time and power/body weight with task time such that the fastest performance times are associated with higher strength and power with about half the variance in task time is accounted for by a single variable (either strength or power). For the average person, a 20% reduction in power/body weight (from 18 to 14.4 W/kg) induces an increase (slowing) of about 10 seconds in the ladder climb task from 14 to 24 seconds (approx.70%) and a slowing of the supine egress & walk task from 14 to 21 seconds (approx.50%). Similar relationships were observed with strength/body weight and task performance. For the average person, a 20% reduction in strength/body weight (from 2.1 to 1.7 Nm/kg) resulted in a slowing of the ladder climb from 10.5 to 24 seconds (approx.128%) and a slowing of the supine egress & walk from 11 to 20 seconds (approx.82%). These data suggest that the single variable of either low body muscle strength or power, relative to body weight is predictive of about 50% of the variance in task performance time, and that considerable slowing in task performance is associated with relatively typical decrements in muscle performance seen with long duration spaceflight. The observation of a relatively linear relationship between strength/power and task time suggests that across the full spectrum of initial crew strengths and typical decrements in strength previously observed, that task performance would be expected to be slowed following long duration spaceflight. These data will be confirmed in actual spaceflight with subsequent studies.
A statistically defined anthropomorphic software breast phantom.
Lau, Beverly A; Reiser, Ingrid; Nishikawa, Robert M; Bakic, Predrag R
2012-06-01
Digital anthropomorphic breast phantoms have emerged in the past decade because of recent advances in 3D breast x-ray imaging techniques. Computer phantoms in the literature have incorporated power-law noise to represent glandular tissue and branching structures to represent linear components such as ducts. When power-law noise is added to those phantoms in one piece, the simulated fibroglandular tissue is distributed randomly throughout the breast, resulting in dense tissue placement that may not be observed in a real breast. The authors describe a method for enhancing an existing digital anthropomorphic breast phantom by adding binarized power-law noise to a limited area of the breast. Phantoms with (0.5 mm)(3) voxel size were generated using software developed by Bakic et al. Between 0% and 40% of adipose compartments in each phantom were replaced with binarized power-law noise (β = 3.0) ranging from 0.1 to 0.6 volumetric glandular fraction. The phantoms were compressed to 7.5 cm thickness, then blurred using a 3 × 3 boxcar kernel and up-sampled to (0.1 mm)(3) voxel size using trilinear interpolation. Following interpolation, the phantoms were adjusted for volumetric glandular fraction using global thresholding. Monoenergetic phantom projections were created, including quantum noise and simulated detector blur. Texture was quantified in the simulated projections using power-spectrum analysis to estimate the power-law exponent β from 25.6 × 25.6 mm(2) regions of interest. Phantoms were generated with total volumetric glandular fraction ranging from 3% to 24%. Values for β (averaged per projection view) were found to be between 2.67 and 3.73. Thus, the range of textures of the simulated breasts covers the textures observed in clinical images. Using these new techniques, digital anthropomorphic breast phantoms can be generated with a variety of glandular fractions and patterns. β values for this new phantom are comparable with published values for breast tissue in x-ray projection modalities. The combination of conspicuous linear structures and binarized power-law noise added to a limited area of the phantom qualitatively improves its realism. © 2012 American Association of Physicists in Medicine.
Fundamental formulae for wave-energy conversion.
Falnes, Johannes; Kurniawan, Adi
2015-03-01
The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.
NASA Astrophysics Data System (ADS)
Brewer, Eli Henry
We study the PM2.5and ultrafine exhaust emissions from a new natural gas-fired turbine power facility to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine. These tests included PM2.5 and wet chemical tests for SO2/SO 3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. The turbine exhaust had an average particle number concentration that was 2.3x103 times higher than ambient air. The majority of these particles were nanoparticles; at the 100 nm size, stack particle concentrations were about 20 times higher than ambient, and increased to 3.9x104 times higher on average in the 2.5 - 3 nm particle size range. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. Some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings similar to those previously measured from turbines in the SCAQMD area, however, the turbine exhaust contained far more particles than ambient air. The power consumed by an air conditioner accounts for a significant fraction of the total power used by hybrid and electric vehicles especially during summer. This study examined the effect of recirculation of cabin air on power consumption of mobile air conditioners both in-lab and on-road. Real time power consumption and vehicle mileage were recorded by an On Board Diagnostic monitor and carbon balance method. Vehicle mileage improved with increased cabin air recirculation. The recirculation of cabin air also significantly reduced in-cabin particle concentrations. Recirculation of cabin air is an excellent and immediate solution to increase vehicle mileage and improve cabin air quality.
Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring.
Majerus, Steve J A; Garverick, Steven L; Suster, Michael A; Fletter, Paul C; Damaser, Margot S
2012-06-01
The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz. Aggressive power management techniques yield an average current draw of 9 μ A from a 3.6-Volt micro-battery, which minimizes the implant size. Automatic pressure offset cancellation circuits maximize the sensing dynamic range to account for drifting pressure offset due to environmental factors, and a custom telemetry protocol allows transmission with minimum overhead. Wireless operation of the WIMM has demonstrated that the external receiver can receive the telemetry packets, and the low power consumption allows for at least 24 hours of operation with a 4-hour wireless recharge session.
Reale, D V; Parson, J M; Neuber, A A; Dickens, J C; Mankowski, J J
2016-03-01
A stripline gyromagnetic nonlinear transmission line (NLTL) was constructed out of yttrium iron garnet ferrite and tested at charge voltages of 35 kV-55 kV with bias fields ranging from 10 kA/m to 20 kA/m. Typically, high power gyromagnetic NLTLs are constructed in a coaxial geometry. While this approach has many advantages, including a uniform transverse electromagnetic (TEM) mode, simple interconnection between components, and the ability to use oil or pressurized gas as an insulator, the coaxial implementation suffers from complexity of construction, especially when using a solid insulator. By moving to a simpler transmission line geometry, NLTLs can be constructed more easily and arrayed on a single substrate. This work represents a first step in exploring the suitability of various transmission line structures, such as microstrips and coplanar waveguides. The resulting high power microwave (HPM) source operates in ultra high frequency (UHF) band with an average bandwidth of 40.1% and peak rf power from 2 MW to 12.7 MW.
Testing and Development of a Percussive Augmenter for Rotary Drills
NASA Technical Reports Server (NTRS)
Donnelly, Christopher; Bar-Cohen, Yoseph; Chang, Zensheu; Badescu, Mircea; Sherrit, Stewart
2011-01-01
Hammering drills are effective in fracturing the drilled medium while rotary drills remove cuttings. The combination provides a highly effective penetration mechanism. Piezoelectric actuators were integrated into an adapter to produce ultrasonic percussion; augmenting rotary drilling. The drill is capable of operating at low power, low applied force and, with proper tuning, low noise. These characteristics are of great interest for future NASA missions and the construction/remodeling industry. The developed augmenter connects a commercially available drill and bit and was tested to demonstrate its capability. Input power to the drill was read using a multimeter and the augmenter received a separate input voltage. The drive frequency of the piezoelectric actuator was controlled by a hill climb algorithm that optimizes and records average power usage to operate the drill at resonating frequency. Testing the rotary drill and augmenter across a range of combinations with total power constant at 160 Watts has shown results in concrete and limestone samples that are as good as or better than the commercial drill. The drill rate was increased 1.5 to over 10 times when compared to rotation alone.
NASA Astrophysics Data System (ADS)
Goudarzi, A. M.; Mazandarani, P.; Panahi, R.; Behsaz, H.; Rezania, A.; Rosendahl, L. A.
2013-07-01
Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is augmented by two devices. An electric fan can increase the air-to-fuel ratio in order to increase the system's efficiency and decrease air pollution by providing complete combustion of wood. In addition, thermoelectric generators (TEGs) produce power that can be used to satisfy all basic needs. In this study, a water-based cooling system is designed to increase the efficiency of the TEGs and also produce hot water for residential use. Through a range of tests, an average of 7.9 W was achieved by a commercial TEG with substrate area of 56 mm × 56 mm, which can produce 14.7 W output power at the maximum matched load. The total power generated by the stove is 166 W. Also, in this study a reasonable ratio of fuel to time is described for residential use. The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water, and essential heat for warming the room and cooking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reale, D. V., E-mail: david.reale@ttu.edu; Parson, J. M.; Neuber, A. A.
2016-03-15
A stripline gyromagnetic nonlinear transmission line (NLTL) was constructed out of yttrium iron garnet ferrite and tested at charge voltages of 35 kV–55 kV with bias fields ranging from 10 kA/m to 20 kA/m. Typically, high power gyromagnetic NLTLs are constructed in a coaxial geometry. While this approach has many advantages, including a uniform transverse electromagnetic (TEM) mode, simple interconnection between components, and the ability to use oil or pressurized gas as an insulator, the coaxial implementation suffers from complexity of construction, especially when using a solid insulator. By moving to a simpler transmission line geometry, NLTLs can be constructedmore » more easily and arrayed on a single substrate. This work represents a first step in exploring the suitability of various transmission line structures, such as microstrips and coplanar waveguides. The resulting high power microwave (HPM) source operates in ultra high frequency (UHF) band with an average bandwidth of 40.1% and peak rf power from 2 MW to 12.7 MW.« less
Performance of High-Efficiency Advanced Triple-Junction Solar Panels for the LILT Mission Dawn
NASA Technical Reports Server (NTRS)
Fatemi, Navid S.; Sharma, Surya; Buitrago, Oscar; Sharps, Paul R.; Blok, Ron; Kroon, Martin; Jalink, Cees; Harris, Robin; Stella, Paul; Distefano, Sal
2005-01-01
NASA's Discovery Mission Dawn is designed to (LILT) conditions. operate within the solar system's Asteroid belt, where the large distance from the sun creates a low-intensity, low-temperature (LILT) condition. To meet the mission power requirements under LlLT conditions, very high-efficiency multi-junction solar cells were selected to power the spacecraft to be built by Orbital Sciences Corporation (OSC) under contract with JPL. Emcore's InGaP/InGaAs/Ge advanced triple-junction (ATJ) solar cells, exhibiting an average air mass zero (AMO) efficiency of greater than 27.6% (one-sun, 28 C), were used to populate the solar panels [1]. The two solar array wings, to be built by Dutch Space, with 5 large- area panels each (total area of 36.4 sq. meters) are projected to produce between 10.3 kWe and 1.3 kWe of end-of life (EOL) power in the 1.0 to 3.0 AU range, respectively. The details of the solar panel design, testing and power analysis are presented.
Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring
MAJERUS, STEVE J. A.; GARVERICK, STEVEN L.; SUSTER, MICHAEL A.; FLETTER, PAUL C.; DAMASER, MARGOT S.
2015-01-01
The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz. Aggressive power management techniques yield an average current draw of 9 μA from a 3.6-Volt micro-battery, which minimizes the implant size. Automatic pressure offset cancellation circuits maximize the sensing dynamic range to account for drifting pressure offset due to environmental factors, and a custom telemetry protocol allows transmission with minimum overhead. Wireless operation of the WIMM has demonstrated that the external receiver can receive the telemetry packets, and the low power consumption allows for at least 24 hours of operation with a 4-hour wireless recharge session. PMID:26778926
Comparison of up-scaling methods in poroelasticity and its generalizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J G
2003-12-13
Four methods of up-scaling coupled equations at the microscale to equations valid at the mesoscale and/or macroscale for fluid-saturated and partially saturated porous media will be discussed, compared, and contrasted. The four methods are: (1) effective medium theory, (2) mixture theory, (3) two-scale and multiscale homogenization, and (4) volume averaging. All these methods have advantages for some applications and disadvantages for others. For example, effective medium theory, mixture theory, and homogenization methods can all give formulas for coefficients in the up-scaled equations, whereas volume averaging methods give the form of the up-scaled equations but generally must be supplemented with physicalmore » arguments and/or data in order to determine the coefficients. Homogenization theory requires a great deal of mathematical insight from the user in order to choose appropriate scalings for use in the resulting power-law expansions, while volume averaging requires more physical insight to motivate the steps needed to find coefficients. Homogenization often is performed on periodic models, while volume averaging does not require any assumption of periodicity and can therefore be related very directly to laboratory and/or field measurements. Validity of the homogenization process is often limited to specific ranges of frequency - in order to justify the scaling hypotheses that must be made - and therefore cannot be used easily over wide ranges of frequency. However, volume averaging methods can quite easily be used for wide band data analysis. So, we learn from these comparisons that a researcher in the theory of poroelasticity and its generalizations needs to be conversant with two or more of these methods to solve problems generally.« less
Detectability of planetary characteristics in disk-averaged spectra. I: The Earth model.
Tinetti, Giovanna; Meadows, Victoria S; Crisp, David; Fong, William; Fishbein, Evan; Turnbull, Margaret; Bibring, Jean-Pierre
2006-02-01
Over the next 2 decades, NASA and ESA are planning a series of space-based observatories to detect and characterize extrasolar planets. This first generation of observatories will not be able to spatially resolve the terrestrial planets detected. Instead, these planets will be characterized by disk-averaged spectroscopy. To assess the detectability of planetary characteristics in disk-averaged spectra, we have developed a spatially and spectrally resolved model of the Earth. This model uses atmospheric and surface properties from existing observations and modeling studies as input, and generates spatially resolved high-resolution synthetic spectra using the Spectral Mapping Atmospheric Radiative Transfer model. Synthetic spectra were generated for a variety of conditions, including cloud coverage, illumination fraction, and viewing angle geometry, over a wavelength range extending from the ultraviolet to the farinfrared. Here we describe the model and validate it against disk-averaged visible to infrared observations of the Earth taken by the Mars Global Surveyor Thermal Emission Spectrometer, the ESA Mars Express Omega instrument, and ground-based observations of earthshine reflected from the unilluminated portion of the Moon. The comparison between the data and model indicates that several atmospheric species can be identified in disk-averaged Earth spectra, and potentially detected depending on the wavelength range and resolving power of the instrument. At visible wavelengths (0.4-0.9 microm) O3, H2O, O2, and oxygen dimer [(O2)2] are clearly apparent. In the mid-infrared (5-20 microm) CO2, O3, and H2O are present. CH4, N2O, CO2, O3, and H2O are visible in the near-infrared (1-5 microm). A comprehensive three-dimensional model of the Earth is needed to produce a good fit with the observations.
NASA Astrophysics Data System (ADS)
Curt, Petersen F.; Bodnar, Michael R.; Ortiz, Fernando E.; Carrano, Carmen J.; Kelmelis, Eric J.
2009-02-01
While imaging over long distances is critical to a number of security and defense applications, such as homeland security and launch tracking, current optical systems are limited in resolving power. This is largely a result of the turbulent atmosphere in the path between the region under observation and the imaging system, which can severely degrade captured imagery. There are a variety of post-processing techniques capable of recovering this obscured image information; however, the computational complexity of such approaches has prohibited real-time deployment and hampers the usability of these technologies in many scenarios. To overcome this limitation, we have designed and manufactured an embedded image processing system based on commodity hardware which can compensate for these atmospheric disturbances in real-time. Our system consists of a reformulation of the average bispectrum speckle method coupled with a high-end FPGA processing board, and employs modular I/O capable of interfacing with most common digital and analog video transport methods (composite, component, VGA, DVI, SDI, HD-SDI, etc.). By leveraging the custom, reconfigurable nature of the FPGA, we have achieved performance twenty times faster than a modern desktop PC, in a form-factor that is compact, low-power, and field-deployable.
A simple encoding method for Sigma-Delta ADC based biopotential acquisition systems.
Guerrero, Federico N; Spinelli, Enrique M
2017-10-01
Sigma Delta analogue-to-digital converters allow acquiring the full dynamic range of biomedical signals at the electrodes, resulting in less complex hardware and increased measurement robustness. However, the increased data size per sample (typically 24 bits) demands the transmission of extremely large volumes of data across the isolation barrier, thus increasing power consumption on the patient side. This problem is accentuated when a large number of channels is used as in current 128-256 electrodes biopotential acquisition systems, that usually opt for an optic fibre link to the computer. An analogous problem occurs for simpler low-power acquisition platforms that transmit data through a wireless link to a computing platform. In this paper, a low-complexity encoding method is presented to decrease sample data size without losses, while preserving the full DC-coupled signal. The method achieved a 2.3 average compression ratio evaluated over an ECG and EMG signal bank acquired with equipment based on Sigma-Delta converters. It demands a very low processing load: a C language implementation is presented that resulted in an 110 clock cycles average execution on an 8-bit microcontroller.
Joo, Dong Hyuk; Leem, Jung Woo; Yu, Jae Su
2011-11-01
We report the disordered silicon (Si) subwavelength structures (SWSs), which are fabricated with the use of inductively coupled plasma (ICP) etching in SiCl4 gas using nickel/silicon dioxide (Ni/SiO2) nanopattens as the etch mask, on Si substrates by varying the etching parameters for broadband antireflective and self-cleaning surfaces. For the fabricated Si SWSs, the antireflection characteristics are experimentally investigated and a theoretical analysis is made based on the rigorous coupled-wave analysis method. The desirable dot-like Ni nanoparticles on SiO2/Si substrates are formed by the thermal dewetting process of Ni films at 900 degrees C. The truncated cone shaped Si SWS with a high average height of 790 +/- 23 nm, which is fabricated by ICP etching with 5 sccm SiCl4 at 50 W RF power with additional 200 W ICP power under 10 mTorr process pressure, exhibits a low average reflectance of approximately 5% over a wide wavelength range of 450-1050 nm. The water contact angle of 110 degrees is obtained, indicating a hydrophobic surface. The calculated reflectance results are also reasonably consistent with the experimental data.
Self-avoiding walks on scale-free networks
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.
2005-01-01
Several kinds of walks on complex networks are currently used to analyze search and navigation in different systems. Many analytical and computational results are known for random walks on such networks. Self-avoiding walks (SAW’s) are expected to be more suitable than unrestricted random walks to explore various kinds of real-life networks. Here we study long-range properties of random SAW’s on scale-free networks, characterized by a degree distribution P (k) ˜ k-γ . In the limit of large networks (system size N→∞ ), the average number sn of SAW’s starting from a generic site increases as μn , with μ= < k2 > /
NASA Technical Reports Server (NTRS)
Reed, E. I.; Chandra, S.
1974-01-01
The green line of atomic oxygen and the Herzberg bands of molecular oxygen as observed from the OGO-4 airglow photometer are discussed in terms of their spatial and temporal distributions and their relation to the atomic oxygen content in the lower thermosphere. Daily maps of the distribution of emissions show considerable structure (cells, patches, and bands) with appreciable daily changes. When data are averaged over periods of several days in length, the resulting patterns have occasional tendencies to follow geomagnetic parallels. The Seasonal variations are characterized by maxima in both the Northern and Southern Hemispheres in October, with the Northern Hemisphere having substantially higher emission rates. Formulae are derived relating the vertical column emission rates of the green line and the Herzberg bands to the atomic oxygen peak density. Global averages for the time period for these data (August 1967 to January 1968), when converted to maximum atomic oxygen densities near 95 km, have a range of 2.0 x 10 to the 11th power/cu cm 2.7 x 10 to the 11th power/cu cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, James; Mileva, Ana; Johnston, Josiah
2014-01-01
This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to themore » present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was installed on some gas plants by 2050.« less
Tessum, Christopher W; Hill, Jason D; Marshall, Julian D
2014-12-30
Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration-response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or "grid average" electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.
Operational frequency stability of rubidium and cesium frequency standards
NASA Technical Reports Server (NTRS)
Lavery, J. E.
1973-01-01
The frequency stabilities under operational conditions of several commercially available rubidium and cesium frequency standards were determined from experimental data for frequency averaging times from 10 to the 7th power s and are presented in table and graph form. For frequency averaging times between 10 to the 5th power and 10 to the 7th power s, the rubidium standards tested have a stability of between 10 to the minus 12th power and 5 x 10 to the minus 12th power, while the cesium standards have a stability of between 2 x 10 to the minus 13th power and 5 x 10 to the minus 13th power.
NASA Astrophysics Data System (ADS)
Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred
2016-05-01
Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they contribute to the global increase of greenhouse gas concentrations. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents standoff detection of CH4 and N2O leaks using a quantum cascade laser open-path system that retrieves path-averaged concentrations by collecting the backscattered light from a remote hard target. It is a true standoff system and differs from other open-path systems that are deployed as point samplers or long-path transmission systems that use retroreflectors. The measured absorption spectra are obtained using a thermal intra-pulse frequency chirped DFB quantum cascade laser at ~7.7 µm wavelength range with ~200 ns pulse width. Making fast time resolved observations, the system simultaneously realizes high spectral resolution and range to the target, resulting in path-averaged concentration retrieval. The system performs measurements at high speed ~15 Hz and sufficient range (up to 45 m, ~148 feet) achieving an uncertainty of 3.1 % and normalized sensitivity of 3.3 ppm m Hz-1/2 for N2O and 9.3 % and normalized sensitivity of 30 ppm m Hz-1/2 for CH4 with a 0.31 mW average power QCL. Given these characteristics, this system is promising for mobile or multidirectional search and remote detection of gas leaks.
Highlights of NASA/DOE photovoltaic market assessment visit to Morocco
NASA Technical Reports Server (NTRS)
1981-01-01
A broad range of agricultural, rural development, and other power applications in various regions of Morocco were examined to determine the potential market for photovoltaic products in Moroccan development. The primary focus of the study was the agriculture sector which accounts for approximately 17% of the country's GNP. The country has a clear need for reliable remote power systems, but does not have the financial resources to invest in the relatively high capital cost PV equipment. A modest potential for PV use was identified in nonagricultural rural services, such as refrigerators for rural clinics and rural radio-telephones. The main potential for PV in Morocco in the next five years lies mainly in the telecommunications sector. Applications include rural TV sets, TV repeater stations, microwave relay stations, and railroad, marine, and airline signalling. Market size estimates were derived from development and expansion plans. At an average customer cost for complete installed systems from $18/Wp to $30/Wp the total potential market value is estimated in the range of $6.6 to $11 million over the 1981-1986 period.
A Low-Power Wide Dynamic-Range Current Readout Circuit for Ion-Sensitive FET Sensors.
Son, Hyunwoo; Cho, Hwasuk; Koo, Jahyun; Ji, Youngwoo; Kim, Byungsub; Park, Hong-June; Sim, Jae-Yoon
2017-06-01
This paper presents an amplifier-less and digital-intensive current-to-digital converter for ion-sensitive FET sensors. Capacitance on the input node is utilized as a residue accumulator, and a clocked comparator is followed for quantization. Without any continuous-time feedback circuit, the converter performs a first-order noise shaping of the quantization error. In order to minimize static power consumption, the proposed circuit employs a single-ended current-steering digital-to-analog converter which flows only the same current as the input. By adopting a switching noise averaging algorithm, our dynamic element matching not only mitigates mismatch of current sources in the current-steering DAC, but also makes the effect of dynamic switching noise become an input-independent constant. The implemented circuit in 0.35 μm CMOS converts the current input with a range of 2.8 μ A to 15 b digital output in about 4 ms, showing a DNL of +0.24/-0.25 LSB and an INL of + 1.98/-1.98 LSB while consuming 16.8 μW.
Intelligent trend analysis for a solar thermal energy collector field
NASA Astrophysics Data System (ADS)
Juuso, E. K.
2018-03-01
Solar thermal power plants collect available solar energy in a usable form at a temperature range which is adapted to the irradiation levels and seasonal variations. Solar energy can be collected only when the irradiation is high enough to produce the required temperatures. During the operation, a trade-off of the temperature and the flow is needed to achieve a good level for the collected power. The scaling approach brings temporal analysis to all measurements and features: trend indices are calculated by comparing the averages in the long and short time windows, a weighted sum of the trend index and its derivative detects the trend episodes and severity of the trend is estimated by including also the variable level in the sum. The trend index, trend episodes and especially, the deviation index reveal early evolving changes in the operating conditions, including cloudiness and load disturbances. The solution is highly compact: all variables, features and indices are transformed to the range [-2, 2] and represented in natural language which is important in integrating data-driven solutions with domain expertise. The special situations detected during the test campaigns are explained well.
Advanced High Power mm-Wave Microwave Devices Final Report CRADA No. TC-0287-92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C. C.; Tomlin, T.
The purpose of this CRADA was to improve existing high-average-power microwave devices and develop the next generation microwave devices for energy and defense applications. A Free Electron Maser was under test at the FOM Institute (Rijnhuizen) Netherlands with the goal of producing a lMW-long pulse to CW microwave output in the range 130GHz to 250GHz. The DC acceleration and beam transport system is eventually to be used in a depressed collector cotilguration requiring 99.8% beam transmission in order that the high voltage 2MV supply be required only to supply 20 milliamps of body current. A relativistic version of the Herrmannmore » optical theory originally developed for microwave tube beams was used to take into account thermal elections far out on the gaussian distribution tail that can translate into beam current well outside the ideal beam edge. This theory was applied to the FOM beamline design and predicts that the beam envelope containing 99.8% of the current can be successfully transported to the undulator for a wide range of assumed eminence values.« less
Investigation of microwave hologram techniques for application to earth resources
NASA Technical Reports Server (NTRS)
Larson, R. W.; Bayma, R. W.; Evans, M. B.; Zelenka, J. S.; Doss, H. W.; Ferris, J. E.
1974-01-01
An investigation of microwave hologram techniques for application to earth resources was conducted during the period from June 1971 to November 1972. The objective of this investigation has been to verify the feasibility of an orbital microwave holographic radar experiment. The primary advantage of microwave hologram radar (MHR) over the side-looking airborne radar (SLAR) is that of aspect or viewing angle; the MHR has a viewing angle identical with that of photography and IR systems. The combination of these systems can thus extend the multispectral analysis concept to span optical through microwave wavelengths. Another advantage is the capacity of the MHR system to generate range contours by operating in a two-frequency mode. It should be clear that along-track resolution of an MHR can be comparable with SLAR systems, but cross-track resolution will be approximately an order of magnitude coarser than the range resolution achievable with an arbitrary SLAR system. An advantage of the MHR over the SLAR is that less average transmitter power is required. This reduction in power results from the much larger receiving apertures associated with MHR systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtold, D.B.
1983-12-31
The levels and composition of filterable corrosion products in the Hanford N Reactor Primary Loop are measurable by filtration. The suspended crud level has ranged from 0.0005 ppM to 6.482 ppM with a median 0.050 ppM. The composition approximates magnetite. The particle size distribution has been found in 31 cases to be uniformly a log normal distribution with a count median ranging from 1.10 to 2.31 microns with a median of 1.81 microns, and the geometric standard deviation ranging from 1.60 to 2.34 with a median of 1.84. An auto-correcting inline turbidimeter was found to respond to linearly to suspendedmore » crud levels over a range 0.05 to at least 6.5 ppM by direct comparison with filter sample weights. Cause of crud bursts in the primary loop were found to be power decreases. The crud transients associated with a reactor power drop, several reactor shutdowns, and several reactor startups could be modeled consistently with each other using a simple stirred-tank, first order exchange model of particulate between makeup, coolant, letdown, and loosely adherent crud on pipe walls. Over 3/10 of the average steady running particulate crud level could be accounted for by magnetically filterable particulate in the makeup feed. A simulation model of particulate transport has been coded in FORTRAN.« less
Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, T. C.; Mutus, J. Y.; Hoi, I.-C.
Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers (TWPAs) promise similar noise performance, while allowing for significant increases in both bandwidth and dynamic range. We present a TWPA device based on an LC-ladder transmission line of Josephson junctions and parallel plate capacitors using low-loss amorphous silicon dielectric. Crucially, we have inserted λ/4 resonators at regular intervals along the transmission line in order to maintain the phase matching condition between pump, signal, and idler and increase gain. We achieve an average gain of 12 dB acrossmore » a 4 GHz span, along with an average saturation power of −92 dBm with noise approaching the quantum limit.« less
Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida
2016-01-01
This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Isokinetic muscular strength and power were increased ( P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases ( P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases ( P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases ( P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases ( P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits.
Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida
2016-01-01
Background: This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Methods: Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Results: Isokinetic muscular strength and power were increased (P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases (P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases (P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases (P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases (P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. Conclusions: RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits. PMID:27833721
Comparing supply and demand models for future photovoltaic power generation in the USA
Basore, Paul A.; Cole, Wesley J.
2018-02-22
We explore the plausible range of future deployment of photovoltaic generation capacity in the USA using a supply-focused model based on supply-chain growth constraints and a demand-focused model based on minimizing the overall cost of the electricity system. Both approaches require assumptions based on previous experience and anticipated trends. For each of the models, we assign plausible ranges for the key assumptions and then compare the resulting PV deployment over time. Each model was applied to 2 different future scenarios: one in which PV market penetration is ultimately constrained by the uncontrolled variability of solar power and one in whichmore » low-cost energy storage or some equivalent measure largely alleviates this constraint. The supply-focused and demand-focused models are in substantial agreement, not just in the long term, where deployment is largely determined by the assumed market penetration constraints, but also in the interim years. For the future scenario without low-cost energy storage or equivalent measures, the 2 models give an average plausible range of PV generation capacity in the USA of 150 to 530 GWdc in 2030 and 260 to 810 GWdc in 2040. With low-cost energy storage or equivalent measures, the corresponding ranges are 160 to 630 GWdc in 2030 and 280 to 1200 GWdc in 2040. The latter range is enough to supply 10% to 40% of US electricity demand in 2040, based on current demand growth.« less
Comparing supply and demand models for future photovoltaic power generation in the USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basore, Paul A.; Cole, Wesley J.
We explore the plausible range of future deployment of photovoltaic generation capacity in the USA using a supply-focused model based on supply-chain growth constraints and a demand-focused model based on minimizing the overall cost of the electricity system. Both approaches require assumptions based on previous experience and anticipated trends. For each of the models, we assign plausible ranges for the key assumptions and then compare the resulting PV deployment over time. Each model was applied to 2 different future scenarios: one in which PV market penetration is ultimately constrained by the uncontrolled variability of solar power and one in whichmore » low-cost energy storage or some equivalent measure largely alleviates this constraint. The supply-focused and demand-focused models are in substantial agreement, not just in the long term, where deployment is largely determined by the assumed market penetration constraints, but also in the interim years. For the future scenario without low-cost energy storage or equivalent measures, the 2 models give an average plausible range of PV generation capacity in the USA of 150 to 530 GWdc in 2030 and 260 to 810 GWdc in 2040. With low-cost energy storage or equivalent measures, the corresponding ranges are 160 to 630 GWdc in 2030 and 280 to 1200 GWdc in 2040. The latter range is enough to supply 10% to 40% of US electricity demand in 2040, based on current demand growth.« less
Self-contained eye-safe laser radar using an erbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Driscoll, Thomas A.; Radecki, Dan J.; Tindal, Nan E.; Corriveau, John P.; Denman, Richard
2003-07-01
An Eye-safe Laser Radar has been developed under White Sands Missile Range sponsorship. The SEAL system, the Self-contained Eyesafe Autonomous Laser system, is designed to measure target position within a 0.5 meter box. Targets are augmented with Scotchlite for ranging out to 6 km and augmented with a retroreflector for targets out to 20 km. The data latency is less than 1.5 ms, and the position update rate is 1 kHz. The system is air-cooled, contained in a single 200-lb, 6-cubic-foot box, and uses less than 600 watts of prime power. The angle-angle-range data will be used to measure target dynamics and to control a tracking mount. The optical system is built around a diode-pumped, erbium-doped fiber laser rated at 1.5 watts average power at 10 kHz repetition rate with 25 nsec pulse duration. An 8 inch-diameter, F/2.84 telescope is relayed to a quadrant detector at F/0.85 giving a 5 mrad field of view. Two detectors have been evaluated, a Germanium PIN diode and an Intevac TE-IPD. The receiver electronics uses a DSP network of 6 SHARC processors to implement ranging and angle error algorithms along with an Optical AGC, including beam divergence/FOV control loops.Laboratory measurements of the laser characteristics, and system range and angle accuracies will be compared to simulations. Field measurements against actual targets will be presented.
NASA Astrophysics Data System (ADS)
Fetisova, Yu. A.; Ermolenko, B. V.; Ermolenko, G. V.; Kiseleva, S. V.
2017-04-01
We studied the information basis for the assessment of wind power potential on the territory of Russia. We described the methodology to determine the parameters of the Weibull function, which reflects the density of distribution of probabilities of wind flow speeds at a defined basic height above the surface of the earth using the available data on the average speed at this height and its repetition by gradations. The application of the least square method for determining these parameters, unlike the use of graphical methods, allows performing a statistical assessment of the results of approximation of empirical histograms by the Weibull formula. On the basis of the computer-aided analysis of the statistical data, it was shown that, at a fixed point where the wind speed changes at different heights, the range of parameter variation of the Weibull distribution curve is relatively small, the sensitivity of the function to parameter changes is quite low, and the influence of changes on the shape of speed distribution curves is negligible. Taking this into consideration, we proposed and mathematically verified the methodology of determining the speed parameters of the Weibull function at other heights using the parameter computations for this function at a basic height, which is known or defined by the average speed of wind flow, or the roughness coefficient of the geological substrate. We gave examples of practical application of the suggested methodology in the development of the Atlas of Renewable Energy Resources in Russia in conditions of deficiency of source meteorological data. The proposed methodology, to some extent, may solve the problem related to the lack of information on the vertical profile of repeatability of the wind flow speeds in the presence of a wide assortment of wind turbines with different ranges of wind-wheel axis heights and various performance characteristics in the global market; as a result, this methodology can become a powerful tool for effective selection of equipment in the process of designing a power supply system in a certain location.
Characterization of particulate matter and gaseous emissions of a C-130H aircraft.
Corporan, Edwin; Quick, Adam; DeWitt, Matthew J
2008-04-01
The gaseous and nonvolatile particulate matter (PM) emissions of two T56-A-15 turboprop engines of a C-130H aircraft stationed at the 123rd Airlift Wing in the Kentucky Air National Guard were characterized. The emissions campaign supports the Strategic Environmental Research and Development Program (SERDP) project WP-1401 to determine emissions factors from military aircraft. The purpose of the project is to develop a comprehensive emissions measurement program using both conventional and advanced techniques to determine emissions factors of pollutants, and to investigate the spatial and temporal evolutions of the exhaust plumes from fixed and rotating wing military aircraft. Standard practices for the measurement of gaseous emissions from aircraft have been well established; however, there is no certified methodology for the measurement of aircraft PM emissions. In this study, several conventional instruments were used to physically characterize and quantify the PM emissions from the two turboprop engines. Emissions samples were extracted from the engine exit plane and transported to the analytical instrumentation via heated lines. Multiple sampling probes were used to assess the spatial variation and obtain a representative average of the engine emissions. Particle concentrations, size distributions, and mass emissions were measured using commercially available aerosol instruments. Engine smoke numbers were determined using established Society of Automotive Engineers (SAE) practices, and gaseous species were quantified via a Fourier-transform infrared-based gas analyzer. The engines were tested at five power settings, from idle to take-off power, to cover a wide range of operating conditions. Average corrected particle numbers (PNs) of (6.4-14.3) x 10(7) particles per cm3 and PN emission indices (EI) from 3.5 x 10(15) to 10.0 x 10(15) particles per kg-fuel were observed. The highest PN EI were observed for the idle power conditions. The mean particle diameter varied between 50 nm at idle to 70 nm at maximum engine power. PM mass EI ranged from 1.6 to 3.5 g/kg-fuel for the conditions tested, which are in agreement with previous T56 engine measurements using other techniques. Additional PM data, smoke numbers, and gaseous emissions will be presented and discussed.
The rate of transient beta frequency events predicts behavior across tasks and species
Law, Robert; Tsutsui, Shawn; Moore, Christopher I; Jones, Stephanie R
2017-01-01
Beta oscillations (15-29Hz) are among the most prominent signatures of brain activity. Beta power is predictive of healthy and abnormal behaviors, including perception, attention and motor action. In non-averaged signals, beta can emerge as transient high-power 'events'. As such, functionally relevant differences in averaged power across time and trials can reflect changes in event number, power, duration, and/or frequency span. We show that functionally relevant differences in averaged beta power in primary somatosensory neocortex reflect a difference in the number of high-power beta events per trial, i.e. event rate. Further, beta events occurring close to the stimulus were more likely to impair perception. These results are consistent across detection and attention tasks in human magnetoencephalography, and in local field potentials from mice performing a detection task. These results imply that an increased propensity of beta events predicts the failure to effectively transmit information through specific neocortical representations. PMID:29106374
Material Processing Opportunites Utilizing a Free Electron Laser
NASA Astrophysics Data System (ADS)
Todd, Alan
1996-11-01
Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise missiles, and for the first time, provide an industrial testbed capable of processing various materials in market evaluation quantities.
Adaptive pitch control for variable speed wind turbines
Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO
2012-05-08
An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.
NASA Technical Reports Server (NTRS)
Chen, C. J.; Bhanji, A. M.; Russell, G. R.
1978-01-01
A copper laser utilizing copper bromide as a lasant and neon as the buffer gas has been operated at an average laser power of between 16 and 19.5 W for a period of 68 h. Lasing was attained at a pulsing rate of 16.7 kHz in a quartz discharge tube 2.5-cm in diameter with an electrode separation of 200 cm. The laser energy/pulse and peak power/pulse corresponding to an average power of 19.5 W are 1.2 mJ and 30 kW, respectively. The ratio of laser power at 510.6 and 578.2 nm varied from 3.9 to 1.1 corresponding to a total average laser power of 4 and 18 W, respectively. The highest wall plug and capacitor efficiency measured during 68 h of operation were 0.7 and 1.1%, respectively.
Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F
2014-03-15
Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.
Deterministic propagation model for RFID using site-specific and FDTD
NASA Astrophysics Data System (ADS)
Cunha de Azambuja, Marcelo; Passuelo Hessel, Fabiano; Luís Berz, Everton; Bauermann Porfírio, Leandro; Ruhnke Valério, Paula; De Pieri Baladei, Suely; Jung, Carlos Fernando
2015-06-01
The conduction of experiments to evaluate a tag orientation and its readability in a laboratory offers great potential for reducing time and costs for users. This article presents a novel methodology for developing simulation models for RFID (radio-frequency identification) environments. The main challenges in adopting this model are: (1) to find out how the properties of each one of the materials, on which the tag is applied, influence the read range and to determine the necessary power for tag reading and (2) to find out the power of the backscattered signal received by the tag when energised by the RF wave transmitted by the reader. The validation tests, performed in four different kinds of environments, with tags applied to six different kinds of materials, six different distances and with a reader configured with three different powers, showed achievements on the average of 95.3% accuracy in the best scenario and 87.0% in the worst scenario. The methodology can be easily duplicated to generate simulation models to other different RFID environments.
Quasi-Lagrangian measurements of density surface fluctuations and power spectra in the stratosphere
NASA Technical Reports Server (NTRS)
Quinn, Elizabeth P.; Holzworth, Robert H.
1987-01-01
Pressure and temperature data from eight superpressure balloon flights at 26 km in the southern hemisphere stratosphere are analyzed. The balloons, which float on a constant density surface, travel steadily westward during summer and eastward during winter, as expected from local climatology. Two types of fluctuations are observed: neutral buoyancy oscillations (NBO) of around 4 min, and 0.1- to 1-hour oscillations that are characterized as small-amplitude density surface fluctuations. Lapse rates and densities are calculated and found to agree well with the expected values. Examples of wave damping and simultaneous fluctuation at two nearby balloons are presented. Spectral analysis is performed clearly showing the NBO and that the majority of the power is in the mesoscale range. Spectral slopes of power versus frequency are measured to be on the average -2.18 + or - 0.24 for pressure and -1.72 + or - 0.24 for temperature. These slopes are compared to the predictions of turbulence theories and the theory of a universal gravity wave spectrum.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Fazi, Christian
1999-01-01
This paper outlines the dynamic reverse-breakdown characteristics of low-voltage (<250 V) small-area <5 x 10(exp -4) sq cm 4H-SiC p(sup +)n diodes subjected to nonadiabatic breakdown-bias pulsewidths ranging from 0.1 to 20 microseconds. 4H-SiC diodes with and without elementary screw dislocations exhibited positive temperature coefficient of breakdown voltage and high junction failure power densities approximately five times larger than the average failure power density of reliable silicon pn rectifiers. This result indicates that highly reliable low-voltage SiC rectifiers may be attainable despite the presence of elementary screw dislocations. However, the impact of elementary screw dislocations on other more useful 4H-SiC power device structures, such as high-voltage (>1 kV) pn junction and Schottky rectifiers, and bipolar gain devices (thyristors, IGBT's, etc.) remains to be investigated.
NASA Astrophysics Data System (ADS)
Chen, Xinyu; Zhang, Hongcai; Xu, Zhiwei; Nielsen, Chris P.; McElroy, Michael B.; Lv, Jiajun
2018-05-01
Current Chinese policy promotes the development of both electricity-propelled vehicles and carbon-free sources of power. Concern has been expressed that electric vehicles on average may emit more CO2 and conventional pollutants in China. Here, we explore the environmental implications of investments in different types of electric vehicle (public buses, taxis and private light-duty vehicles) and different modes (fast or slow) for charging under a range of different wind penetration levels. To do this, we take Beijing in 2020 as a case study and employ hourly simulation of vehicle charging behaviour and power system operation. Assuming the slow-charging option, we find that investments in electric private light-duty vehicles can result in an effective reduction in the emission of CO2 at several levels of wind penetration. The fast-charging option, however, is counter-productive. Electrifying buses and taxis offers the most effective option to reduce emissions of NOx, a major precursor for air pollution.
Blood absorption during 970 and 1470 nm laser radiation in vitro.
Shaydakov, E; Ilyukhin, E; Rosukhovskiy, D
2015-10-01
Soon after introduction of water lasers in medical practice for EVLA, less power and energy line density have been used. However, there are no experimental grounds for different energy modes and there is no clear evidence for a difference in the effect of the two wavelengths dealt with in this study. The goal of this study was to evaluate the temperature profile of various laser action modes with testing devices. Three experimental testing devices consisted of cylinders filled with whole donor blood and a set of temperature sensors installed in different positions. We have determined the range of temperatures around the fiber tip of 970 and 1470 nm lasers. The average temperature of 970 nm laser at 1 mm distance along the axis from the fiber tip substantially differed from that of 1470 nm laser, power being equal. Statistically substantial differences were found in endovenous laser ablation simulation in vitro for the 970 nm and 1470 nm laser radiation. Similar temperatures can be reached with 970 nm lasers if power is increased.
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Zhang, Cheng; Zu, Yuqian; Fan, Xiuwei; Liu, Jie; Guo, Xinsheng; Qian, Xiaobo; Su, Liangbi
2018-04-01
Laser operations in the continuous-wave as well as in the pulsed regime of a 4 at.% Tm3+:CaF2 crystal are reported. For the continuous-wave operation, a maximum average output power of 1.15 W was achieved, and the corresponding slope efficiency was more than 64%. A continuous tuning range of about 160 nm from 1877-2036 nm was achieved using a birefringent filter. Using Argentum nanorods as a saturable absorber, the significant pulsed operation of a passively Q-switched Tm3+:CaF2 laser was observed at 1935.4 nm for the first time, to the best of our knowledge. A maximum output power of 385 mW with 41.4 µJ pulse energy was obtained under an absorbed pump power of 2.04 W. The present results indicate that the Tm3+:CaF2 lasers could be promising laser sources to operate in the eye-safe spectral region.
NASA Astrophysics Data System (ADS)
Meng, Xianghao; Wang, Zhaohua; Tian, Wenlong; Fang, Shaobo; Wei, Zhiyi
2018-01-01
We have demonstrated a high-repetition-rate tunable femtosecond dual-signal-wavelength optical parametric oscillator (OPO) based on BiB3O6 (BiBO) crystal, synchronously pumped by a frequency-doubled mode-locked Yb:KGW laser. The cavity is simple since no dispersion compensators are used in the cavity. The wavelength range of dual-signal is widely tunable from 710 to 1000 nm. Tuning is accomplished by rotating phase-matching angle of BiBO, and optimizing cavity length and output coupler. Using a 3.75 W pump laser, the maximum average dual-signal output power is 760 mW at 707 and 750 nm, leading to a conversion efficiency of 20.3% not taking into account the idler power. Our experimental results show a non-critical phase-matching configuration pumped by a high peak power laser source. The operation of the dual-signal benefits from the balance of phase matching and group velocity mismatching between the two signals.
Temporal frequency of radio emissions for the April 25, 1984 flare
NASA Technical Reports Server (NTRS)
Wells, G. D.; Hausman, B. A.; Kroehl, H. W.
1986-01-01
The National Geophysical Data Center archives data of the solar-terrestrial environment. The USAF Radio Solar Telescope Network (RSTN) data allow performance of time series analysis to determine temporal oscillations as low as three seconds. The X13/3B flare which erupted in region 4474 (S12E43) on the 24 to 25 of April 1984, was selected. The soft X-rays, 1 to 8 A, remained above X-levels for 50 minutes and the radio emissions measured at Learmonth Solar Observatory reached a maximum of 3.15 x 10 to the 5th power SFUs at 410 MHz at 0000UT. A power spectral analysis of the fixed frequency RSTN data from Learmonth shows possible quasi-periodic fluctuations in the range two to ten seconds. Repetition rates or quasi-periodicities, in the case of the power spectral analysis, generally showed the same trends as the average solar radio flux at 245 and 8800 MHz. The quasi-periodicities at 1415 MHz showed no such trends.
GaSb superluminescent diodes with broadband emission at 2.55 μm
NASA Astrophysics Data System (ADS)
Zia, Nouman; Viheriälä, Jukka; Koivusalo, Eero; Virtanen, Heikki; Aho, Antti; Suomalainen, Soile; Guina, Mircea
2018-01-01
We report the development of superluminescent diodes (SLDs) emitting mW-level output power in a broad spectrum centered at a wavelength of 2.55 μm. The emitting structure consists of two compressively strained GaInAsSb/GaSb-quantum wells placed within a lattice-matched AlGaAsSb waveguide. An average output power of more than 3 mW and a peak power of 38 mW are demonstrated at room temperature under pulsed operation. A cavity suppression element is used to prevent lasing at high current injection allowing emission in a broad spectrum with a full width at half maximum (FWHM) of 124 nm. The measured far-field of the SLD confirms a good beam quality at different currents. These devices open further development possibilities in the field of spectroscopy, enabling, for example, detection of complex molecules and mixtures of gases that manifest a complex absorption spectrum over a broad spectral range.
Nature of the atmospheric dynamics on Venus from power spectrum analysis of Mariner 10 images
NASA Technical Reports Server (NTRS)
Travis, L. D.
1978-01-01
Power spectrum analysis of Mariner 10 images for planetary zonal wavenumbers no less than 3 and for latitudes in the range 55 deg S to 25 deg N yields spectra which show a systematic and apparently significant variation with latitude. Accordingly, average spectra are determined for three latitude zones: an equatorial region, a midlatitude region, and an intermediate zone. A comparison of the results for Venus with brightness distribution spectra for terrestrial clouds reveals similarities between the Venus midlatitude region spectrum and that for the equatorial region of the earth. The only indication of a departure from a general power law behavior for the Venus spectra is a flattening of the equatorial spectrum in the region of wavenumbers 3 and 4. The characteristics of the Venus image spectra appear to be compatible with the interpretation that the observable clouds lie in a region of high static stability with the inertial eddy motions corresponding to two-dimensional turbulence.
Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect
NASA Astrophysics Data System (ADS)
Schumer, Rina; Taloni, Alessandro; Furbish, David Jon
2017-03-01
Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.
Direct diode lasers and their advantages for materials processing and other applications
NASA Astrophysics Data System (ADS)
Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael
2015-03-01
The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of <10μs and repetition rates can be adjusted continuously from several kHz up to cw mode while addressing power levels from 0-100%. By combining trigger signals with analog modulations nearly any kind of pulse form can be realized. Diode lasers also offer a wide, adaptable range of wavelengths, and wavelength stabilization. We report a line width of less than 0.1nm while the wavelength stability is in the range of MHz which is comparable to solid state lasers. In terms of applications, especially our (broad) wavelength combining technology for power scaling opens the window to new processes of cutting or welding and process control. Fast power modulation through direct current control allows pulses of several microseconds with hundreds of watts average power. Spot sizes of less than 100 μm are obtained at the work piece. Such a diode system allows materials processing with a pulse parameter range that is hardly addressed by any other laser system. High productivity material ablation with cost effective lasers is enabled. The wide variety of wavelengths, high brightness, fast power modulation and high efficiency of diode lasers results in a strong pull of existing markets, but also spurs the development of a wide variety of new applications.
Ellison, Candice R; Overa, Sean; Boldor, Dorin
2018-05-19
Lipids extracted from algal biomass could provide an abundant, rapidly growing, high yield feedstock for bio-diesel and other green fuels to supplement current fossil-based sources. Ultrasound pretreatment is a mechanical cell disruption method that has been shown to enhance lipid recovery from algae due to cavitation effects that disrupt algae cell walls. In this study, a locally grown mixture of Chlorella vulgaris/Cyanobacteria leptolyngbya was sonicated in an ultrasonic reactor with a clamp-on transducer prior to solvent lipid extraction. This configuration allows for a non-contact delivery method of ultrasonic energy with improved operational advantages (no fouling of transducer, continuous operation, and fully scalable design). A central composite design (CCD) was implemented to statistically analyze and evaluate the effect of ultrasonic power (350-750 W) and treatment time (5-30 min) on lipid yield. Lipid recovery was found to increase with both ultrasonic power and treatment time. Total lipid yields (on dry biomass basis) extracted via the Bligh and Dyer method from Chlorella vulgaris/cyanobacteria co-culture ranged from 8.3% for untreated algae to 16.9% for algae sonicated with 750 W power for 30 min, which corresponds to more than a doubling of lipid recovery due to ultrasound pretreatment. Increased power and treatment times were found to increase the degree of cell disruption as observed in the SEM and TEM images after ultrasonic pretreatment. Additionally, hexane (1:1 v/v) was evaluated as an alternative to the standard Bligh & Dyer (2:2:1.8 v/v/v chloroform/methanol/cell suspension) lipid extraction solvent system. On average, the Bligh and Dyer method extracted on average over twice the amount of lipids compared to hexane extraction. The lipid profile of the algae extracts indicates high concentrations of lauric acid (12:0), palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). This particular configuration of an ultrasonic system proved to be a viable method for the pretreatment of algae for enhanced lipid yields. Future research should focus on identifying alternative extraction solvents and expanding the range of treatment conditions to optimize the ultrasonic power and treatment times for maximum lipid recovery. Copyright © 2018 Elsevier B.V. All rights reserved.
n-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation
Liu, Weishu; Kim, Hee Seok; Chen, Shuo; Jie, Qing; Lv, Bing; Yao, Mengliang; Ren, Zhensong; Opeil, Cyril P.; Wilson, Stephen; Chu, Ching-Wu; Ren, Zhifeng
2015-01-01
Thermoelectric power generation is one of the most promising techniques to use the huge amount of waste heat and solar energy. Traditionally, high thermoelectric figure-of-merit, ZT, has been the only parameter pursued for high conversion efficiency. Here, we emphasize that a high power factor (PF) is equivalently important for high power generation, in addition to high efficiency. A new n-type Mg2Sn-based material, Mg2Sn0.75Ge0.25, is a good example to meet the dual requirements in efficiency and output power. It was found that Mg2Sn0.75Ge0.25 has an average ZT of 0.9 and PF of 52 μW⋅cm−1⋅K−2 over the temperature range of 25–450 °C, a peak ZT of 1.4 at 450 °C, and peak PF of 55 μW⋅cm−1⋅K−2 at 350 °C. By using the energy balance of one-dimensional heat flow equation, leg efficiency and output power were calculated with Th = 400 °C and Tc = 50 °C to be of 10.5% and 6.6 W⋅cm−2 under a temperature gradient of 150 °C⋅mm−1, respectively. PMID:25733845
NASA Astrophysics Data System (ADS)
Gebhardt, Martin; Gaida, Christian; Heuermann, T.; Stutzki, F.; Jauregui, C.; Antonio-Lopez, J.; Schüuzgen, A.; Amezcua-Correa, R.; Tünnermann, A.; Limpert, J.
2018-02-01
In this contribution we demonstrate the nonlinear pulse compression of an ultrafast thulium-doped fiber laser down to 14 fs FWHM duration (sub-3 optical cycles) at a record average power of 43 W and 34.5 μJ pulse energy. To the best of our knowledge, we present the highest average power few-cycle laser source at 2 μm wavelength. This performance level in combination with GW-class peak power makes our laser source extremely interesting for driving high-harmonic generation or for generating mid-infrared frequency combs via intra-pulse frequency down-conversion at an unprecedented average power. The experiments were enabled by an ultrafast thulium-doped fiber laser delivering 110 fs pulses at high repetition rates, and an argon gas-filled antiresonant hollow-core fiber (ARHCF) with excellent transmission and weak anomalous dispersion, leading to the self-compression of the pulses. We have shown that ARHCFs are well-suited for nonlinear pulse compression around 2 μm wavelength and that this concept features excellent power handling capabilities. Based on this result, we discuss the next steps for energy and average power scaling including upscaling the fiber dimensions in order to fully exploit the capabilities of our laser system, which can deliver several GW of peak power. This way, a 100 W-class laser source with mJ-level few-cycle pulses at 2 μm wavelength is feasible in the near future.
Heterodyne laser diagnostic system
Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.
1990-01-01
The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.
18 CFR 301.6 - Appendix 1 instructions.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST METHODOLOGY... 4: Average System Cost (f) The filing Utility must reference and attach work papers, documentation... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Appendix 1 instructions...
18 CFR 301.6 - Appendix 1 instructions.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST METHODOLOGY... 4: Average System Cost (f) The filing Utility must reference and attach work papers, documentation... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Appendix 1 instructions...
18 CFR 301.6 - Appendix 1 instructions.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST METHODOLOGY... 4: Average System Cost (f) The filing Utility must reference and attach work papers, documentation... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Appendix 1 instructions...
18 CFR 301.6 - Appendix 1 instructions.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST METHODOLOGY... 4: Average System Cost (f) The filing Utility must reference and attach work papers, documentation... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Appendix 1 instructions...
Distinguished Lecture Series - Balancing the Energy & Climate Budget
None
2017-12-09
The average American uses 11400 Watts of power continuously. This is the equivalent of burning 114 x100 Watt light bulbs, all the time. The average person globally uses 2255 Watts of power, or a little less than 23 x100 Watt light bulbs.
Evaluation of seepage and discharge uncertainty in the middle Snake River, southwestern Idaho
Wood, Molly S.; Williams, Marshall L.; Evetts, David M.; Vidmar, Peter J.
2014-01-01
The U.S. Geological Survey, in cooperation with the State of Idaho, Idaho Power Company, and the Idaho Department of Water Resources, evaluated seasonal seepage gains and losses in selected reaches of the middle Snake River, Idaho, during November 2012 and July 2013, and uncertainty in measured and computed discharge at four Idaho Power Company streamgages. Results from this investigation will be used by resource managers in developing a protocol to calculate and report Adjusted Average Daily Flow at the Idaho Power Company streamgage on the Snake River below Swan Falls Dam, near Murphy, Idaho, which is the measurement point for distributing water to owners of hydropower and minimum flow water rights in the middle Snake River. The evaluated reaches of the Snake River were from King Hill to Murphy, Idaho, for the seepage studies and downstream of Lower Salmon Falls Dam to Murphy, Idaho, for evaluations of discharge uncertainty. Computed seepage was greater than cumulative measurement uncertainty for subreaches along the middle Snake River during November 2012, the non-irrigation season, but not during July 2013, the irrigation season. During the November 2012 seepage study, the subreach between King Hill and C J Strike Dam had a meaningful (greater than cumulative measurement uncertainty) seepage gain of 415 cubic feet per second (ft3/s), and the subreach between Loveridge Bridge and C J Strike Dam had a meaningful seepage gain of 217 ft3/s. The meaningful seepage gain measured in the November 2012 seepage study was expected on the basis of several small seeps and springs present along the subreach, regional groundwater table contour maps, and results of regional groundwater flow model simulations. Computed seepage along the subreach from C J Strike Dam to Murphy was less than cumulative measurement uncertainty during November 2012 and July 2013; therefore, seepage cannot be quantified with certainty along this subreach. For the uncertainty evaluation, average uncertainty in discharge measurements at the four Idaho Power Company streamgages in the study reach ranged from 4.3 percent (Snake River below Lower Salmon Falls Dam) to 7.8 percent (Snake River below C J Strike Dam) for discharges less than 7,000 ft3/s in water years 2007–11. This range in uncertainty constituted most of the total quantifiable uncertainty in computed discharge, represented by prediction intervals calculated from the discharge rating of each streamgage. Uncertainty in computed discharge in the Snake River below Swan Falls Dam near Murphy was 10.1 and 6.0 percent at the Adjusted Average Daily Flow thresholds of 3,900 and 5,600 ft3/s, respectively. All discharge measurements and records computed at streamgages have some level of uncertainty that cannot be entirely eliminated. Knowledge of uncertainty at the Adjusted Average Daily Flow thresholds is useful for developing a measurement and reporting protocol for purposes of distributing water to hydropower and minimum flow water rights in the middle Snake River.
Development of on-line laser power monitoring system
NASA Astrophysics Data System (ADS)
Ding, Chien-Fang; Lee, Meng-Shiou; Li, Kuan-Ming
2016-03-01
Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.
High-average-power CTH:YAG for the medical environment
NASA Astrophysics Data System (ADS)
Wright, Sidney P.; Adamkiewicz, Edward J.; Moulton, Peter F.
1992-06-01
Medical procedures such as arthroscopy have placed increasing demands on the output performance of the CTH:YAG laser at 2.1 micrometers . Intensive research has been conducted to improve the average power, pulse energies, and rep rates while reducing any failure mechanisms. The results of this work is reported along with a discussion of the important engineering parameters concerning the design of a high power medical CTH:YAG laser.
NASA Astrophysics Data System (ADS)
Yao, Yuhong; Knox, Wayne H.
2014-02-01
We report a fiber based approach to broadly tunable femtosecond mid-IR source based on difference frequency mixing of the outputs from dual photonic crystal fibers (PCF) pumped by a femtosecond fiber laser, which is a custom-built Yb-doped fiber chirped pulse amplifier (CPA) delivering 1.35 W, 300 fs, 40 MHz pulses centered at 1035 nm. The CPA output is split into two arms to pump two different types of PCFs for generation of the spectrally separated pulses. The shorter wavelength pulses are generated in one PCF with its single zero dispersion wavelength (ZDW) at 1040 nm. Low normal dispersion around the pumping wavelength enables spectral broadening dominated by self-phase modulation (SPM), which extends from 970 to 1092 nm with up to 340 mW of average power. The longer wavelength pulses are generated in a second PCF which has two closely spaced ZDWs around the laser wavelength. Facilitated by its special dispersion profile, the laser wavelength is converted to the normal dispersion region of the fiber, leading to the generation of the narrow-band intense Stokes pulses with 1 to 1.25 nJ of pulse energy at a conversion efficiency of ~30% from the laser pulses. By difference mixing the outputs from both PCFs in a type-II AgGaS2 crystal, mid-IR pulses tunable from 4.2 to 9 μm are readily generated with its average power ranging from 135 - 640 μW, corresponding to 3 - 16 pJ of pulse energy which is comparable to the reported fiber based mid-IR sources enabled by the solitons self-frequency shift (for example, 3 - 10 μm with 10 pJ of maximum pulse energy in [10]). The reported approach provides a power-scalable route to the generation of broadly tunable femtosecond mid-IR pulses, which we believe to be a promising solution for developing compact, economic and high performance mid-IR sources.
Dolan, C.R.; Miranda, L.E.; Henry, T.B.
2002-01-01
Continuous direct current (DC) and pulsed DC (PDC) of varying frequency and pulse period are commonly used to immobilize and collect crappies Pomoxis spp. in freshwater. However, little information is available about the minimum electrical-setting thresholds required for immobilization or how the settings relate to incidence of injury. We investigated the effect of increasing power densities on the immobilization and injury of black crappies P. nigromaculatus (average total length = 154 mm) treated with DC and various PDC settings. Forced swimming toward the electrodes was observed in black crappies exposed to DC, but that was less apparent for PDC. The minimum peak power densities required to immobilize black crappies ranged from 0.10 to 6.5 mW/cm3 and depended on pulse frequency and period. The incidence of hemorrhaging ranged from 0% to 50% and that of spinal damage from 9% to 45%. However, the severity of injury also depended on pulse frequency and period. No fish suffered mortality at or below the immobilization thresholds, but mortality ranged from 0% to 15% at settings above the thresholds. Mortality was observed with PDC settings of 15 Hz only. Fish that were tetanized following electrical treatment were more prone to injury than those that exhibited narcosis.
NASA Astrophysics Data System (ADS)
Elsberry, Wesley R.; Cranford, Ted W.; Ridgway, Sam H.; Carder, Donald A.; Vanbonn, William G.; Blackwood, Diane J.; Carr, Jennifer A.; Evans, William E.
2002-05-01
Three Atlantic bottlenose dolphins (Tursiops truncatus) were given a target recognition biosonar task. During their performance of the task, both acoustic data in the far field and pressure within the bony nasal passages were digitally recorded (Elsberry et al., 1999). Analysis of over 15
Pennycuick, C. J.; Åkesson, Susanne; Hedenström, Anders
2013-01-01
We measured the air speeds of 31 bird species, for which we had body mass and wing measurements, migrating along the east coast of Sweden in autumn, using a Vectronix Vector 21 ornithodolite and a Gill WindSonic anemometer. We expected each species’ average air speed to exceed its calculated minimum-power speed (Vmp), and to fall below its maximum-range speed (Vmr), but found some exceptions to both limits. To resolve these discrepancies, we first reduced the assumed induced power factor for all species from 1.2 to 0.9, attributing this to splayed and up-turned primary feathers, and then assigned body drag coefficients for different species down to 0.060 for small waders, and up to 0.12 for the mute swan, in the Reynolds number range 25 000–250 000. These results will be used to amend the default values in existing software that estimates fuel consumption in migration, energy heights on arrival and other aspects of flight performance, using classical aeronautical theory. The body drag coefficients are central to range calculations. Although they cannot be measured on dead bird bodies, they could be checked against wind tunnel measurements on living birds, using existing methods. PMID:23804440
NASA Astrophysics Data System (ADS)
Visvanathan, Karthik; Gianchandani, Yogesh B.
2011-12-01
This paper reports the locomotion response of airborne, ambulatory and aquatic insects to thermal stimulation. A finite element model has been developed to predict the variation of insect-stimulator interface temperature with input power. Piezothermal stimulators have been fabricated from lead zirconate titanate (PZT) using a batch mode micro ultrasonic machining process. Typical sizes range from 200 µm to 3.2 mm. For PZT stimulators, the temperature and thermal efficiency reach the maximum value around the resonance frequency which is typically in the range of 650 kHz to 47 MHz. Experiments have been conducted on green June beetles (GJBs), Madagascar hissing roaches and green diving beetles (GDBs) in order to show the versatility of the proposed technique. The stimulators have been implanted near the antennae of the GJBs and on either side of the thorax of the Madagascar hissing roaches and GDBs, respectively. In all cases, the insects move away from the direction of the actuated stimulator. The left and right turns are statistically similar. Thermal stimulation achieves an overall success rate of 78.7%, 92.8% and 61.6% in GJBs, roaches and GDBs, respectively. On average, thermal stimulation results in an angle turn of about 13.7°-16.2° on GJBs, 30°-45° on the roaches and 30°-50° on GDBs. The corresponding average input power is 360, 330 and 100 mW for GJBs, roach and GDBs, respectively. Scaling limits of the PZT stimulators for operating these stimulators are also discussed.
Real-time emission factor measurements of isocyanic acid from light duty gasoline vehicles.
Brady, James M; Crisp, Timia A; Collier, Sonya; Kuwayama, Toshihiro; Forestieri, Sara D; Perraud, Véronique; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D; Bertram, Timothy H
2014-10-07
Exposure to gas-phase isocyanic acid (HNCO) has been previously shown to be associated with the development of atherosclerosis, cataracts and rheumatoid arthritis. As such, accurate emission inventories for HNCO are critical for modeling the spatial and temporal distribution of HNCO on a regional and global scale. To date, HNCO emission rates from light duty gasoline vehicles, operated under driving conditions, have not been determined. Here, we present the first measurements of real-time emission factors of isocyanic acid from a fleet of eight light duty gasoline-powered vehicles (LDGVs) tested on a chassis dynamometer using the Unified Driving Cycle (UC) at the California Air Resources Board (CARB) Haagen-Smit test facility, all of which were equipped with three-way catalytic converters. HNCO emissions were observed from all vehicles, in contrast to the idealized laboratory measurements. We report the tested fleet averaged HNCO emission factors, which depend strongly on the phase of the drive cycle; ranging from 0.46 ± 0.13 mg kg fuel(-1) during engine start to 1.70 ± 1.77 mg kg fuel(-1) during hard acceleration after the engine and catalytic converter were warm. The tested eight-car fleet average fuel based HNCO emission factor was 0.91 ± 0.58 mg kg fuel(-1), within the range previously estimated for light duty diesel-powered vehicles (0.21-3.96 mg kg fuel(-1)). Our results suggest that HNCO emissions from LDGVs represent a significant emission source in urban areas that should be accounted for in global and regional models.
An Evaluation of Functional Sit-to-Stand Power in Cohorts of Healthy Adults Aged 18-97 Years.
Glenn, Jordan M; Gray, Michelle; Vincenzo, Jennifer; Paulson, Sally; Powers, Melissa
2017-04-01
This investigation examined differences in functional sit-to-stand power/velocity between cohorts of adults aged 18-97 years. This study included 264 healthy adults classified into four cohorts (18-40, C1; 60-69, C2; 70-79, C2; ≥ 80, C4). Participants completed the sit-to-stand task five times. Power and velocity were measured via the TENDO power analyzer. Absolute average power was maintained from C1-C3, but decreased (p < .01) in C4. Absolute peak power decreased between C1-C2 (p < .01), was similar between C2-C3, and decreased in C4 (p < .01). Relative (to body weight) average and peak power decreased between C1-C2 (p < .01), was similar between C2-C3, and decreased in C4 (p < .01). Average velocity was similar between C1 and C2, but decreased in C3 (p < .01) and C4 (p < .01), respectively. Peak velocity was significantly different between all cohorts (p < .01). Declines in functional power may plateau during the seventh and eighth decades, accelerating after 80 years.
Measured radiofrequency exposure during various mobile-phone use scenarios.
Kelsh, Michael A; Shum, Mona; Sheppard, Asher R; McNeely, Mark; Kuster, Niels; Lau, Edmund; Weidling, Ryan; Fordyce, Tiffani; Kühn, Sven; Sulser, Christof
2011-01-01
Epidemiologic studies of mobile phone users have relied on self reporting or billing records to assess exposure. Herein, we report quantitative measurements of mobile-phone power output as a function of phone technology, environmental terrain, and handset design. Radiofrequency (RF) output data were collected using software-modified phones that recorded power control settings, coupled with a mobile system that recorded and analyzed RF fields measured in a phantom head placed in a vehicle. Data collected from three distinct routes (urban, suburban, and rural) were summarized as averages of peak levels and overall averages of RF power output, and were analyzed using analysis of variance methods. Technology was the strongest predictor of RF power output. The older analog technology produced the highest RF levels, whereas CDMA had the lowest, with GSM and TDMA showing similar intermediate levels. We observed generally higher RF power output in rural areas. There was good correlation between average power control settings in the software-modified phones and power measurements in the phantoms. Our findings suggest that phone technology, and to a lesser extent, degree of urbanization, are the two stronger influences on RF power output. Software-modified phones should be useful for improving epidemiologic exposure assessment.
Larsen, Peter H.; LaCommare, Kristina H.; Eto, Joseph H.; ...
2016-10-27
Here, this study examines the relationship between annual changes in electricity reliability reported by a large cross-section of U.S. electricity distribution utilities over a period of 13 years and a broad set of potential explanatory variables, including weather and utility characteristics. We find statistically significant correlations between the average number of power interruptions experienced annually and above average wind speeds, precipitation, lightning strikes, and a measure of population density: customers per line mile. We also find significant relationships between the average number of minutes of power interruptions experienced and above average wind speeds, precipitation, cooling degree-days, and one strategy usedmore » to mitigate the impacts of severe weather: the amount of underground transmission and distribution line miles. Perhaps most importantly, we find a significant time trend of increasing annual average number of minutes of power interruptions over time—especially when interruptions associated with extreme weather are included. Lastly, the research method described in this analysis can provide a basis for future efforts to project long-term trends in reliability and the associated benefits of strategies to improve grid resiliency to severe weather—both in the U.S. and abroad.« less
Fundamental formulae for wave-energy conversion
Falnes, Johannes; Kurniawan, Adi
2015-01-01
The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units—i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)—may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the ‘added-mass’ matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called ‘fundamental theorem for wave power’. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies. PMID:26064612
Solar perspectives - Israel, solar pond innovator
NASA Astrophysics Data System (ADS)
Winsberg, S.
1981-07-01
Existing and planned solar pond electricity producing power plants in Israel and California are discussed. Salt ponds, with salinity increasing with depth, are coupled with low temperature, organic working fluid Rankine cycle engines to form self-storage, nonpolluting, electric plants. Average pond thermal gradients range from 25 C surface to 90 C at the bottom; 160 GW of potential power have been projected as currently available from existing natural solar ponds from a partial survey of 14 countries. The largest installation to date has a 220 kW output, and a 5 MW plant is scheduled for completion in 1983. Efficiencies of 10% and a cost of $2,000/kW for a 40 MW plant are projected, a cost which is comparable to that of conventional plants. The 40 MW plant is an optimized design, allowing for modular plant additions to increase capacity.
High-power diode-pumped solid-state lasers for optical space communications
NASA Technical Reports Server (NTRS)
Koechner, Walter; Burnham, Ralph; Kasinski, Jeff; Bournes, Pat; Dibiase, Don; Le, Khoa; Marshall, Larry; Hays, Alan
1991-01-01
The design and performance of a large diode-pumped multi-stage Nd:YAG laser system for space and airborne applications will be described. The laser operates at a repetition rate of 40 Hz and produces an output either at 1.064 micron or 532 nm with an average power in the Q-switched mode of 30 W at the fundamental and 20 W at the second harmonic wavelength. The output beam is diffraction limited (TEM 00 mode) and can optionally also be operated in a single longitudinal mode. The output energy ranges from 1.25 Joule/pulse in the free lasing mode, 0.75 Joule in a 17 nsec Q-switched pulse, to 0.5 Joules/pulse at 532 nm. The overall electrical efficiency for the Q-switched second harmonic output is 4.
Oxygen production rates for P/Halley over much of the 1985-1986 apparition
NASA Technical Reports Server (NTRS)
Spinrad, Hyron; Mccarthy, Patrick J.; Strauss, Michael A.
1986-01-01
Long slit CCD spectrophotometry of comet P/Halley in the visible region was used to measure the production rate of atomic oxygen during the 1985/86 apparition. The observations cover a large range of heliocentric distances, since the technique is applicable to apparently bright and faint comets. The cometary gas production rate for P/Halley increases rapidly with decreasing heliocentric distance toward perihelion and is systematicaly larger at a given heliocentric distance for the postperihelion observations. The average production rate for O1D on the day of the Giotto flyby is 4 times 10 to the 28th power atoms/sec giving an extrapolated total water production rate of 6 times 10 to the 29th power mols/sec. A method for comparing the absolute cometary gas production rates for different comets is discussed.
Experimental Evaluation of Energy Efficiency for a Soft Wearable Robotic Suit.
Jin, Shanhai; Iwamoto, Noriyasu; Hashimoto, Kazunobu; Yamamoto, Motoji
2016-10-12
This paper presents a new soft wearable robotic suit for energy-efficient walking in daily activities for elderly persons. The presented robotic suit provides a small yet effective assistive force for hip flexion through winding belts that include elastic elements. In addition, it does not restrict the range of movement in the lower limbs. Moreover, its structure is simple and lightweight, and thus wearers can easily take the device on and off by themselves. Experimental results on nine elderly subjects (age = 74.23.7 years) show that the robotic suit worn and powered on (PON) significantly reduced energy expenditure by an average of 5.9 % compared with the condition of worn but powered off (POFF). Furthermore, compared with the POFF condition, there was a significant improvement in gait characteristics in the PON condition for all subjects.
NASA Technical Reports Server (NTRS)
Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.
1985-01-01
The arrival time distributions of muons with energies above 1.0GeV and 0.5GeV have been measured in the Akeno air-shower array to study the longitudinal development of muons in air showers with primary energies in the range 10 to the 17th power to 10 to the 18th power ev. The average rise times of muons with energies above 1.0GeV at large core distances are consistent with those expected from very high multiplicity models and, on the contrary, with those expected from the low multiplicity models at small core distances. This implies that the longitudinal development at atmospheric depth smaller than 500 cm square is very fast and that at larger atmospheric depths is rather slow.
NASA Astrophysics Data System (ADS)
Hinterberger, F.; Rohdjeß, H.; Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Büßer, K.; Busch, M.; Colberg, T.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Eversheim, P. D.; Felden, O.; Gebel, R.; Glende, M.; Greiff, J.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Jonas, E.; Krause, H.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Meinerzhagen, A.; Nähle, O.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Trelle, H. J.; Weise, E.; Wellinghausen, A.; Woller, K.; Ziegler, R.
2000-01-01
The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power AN and the polarization correlation parameters ANN, ASS and ASL are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent dσ/dΩ and AN data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.
High power infrared QCLs: advances and applications
NASA Astrophysics Data System (ADS)
Patel, C. Kumar N.
2012-01-01
QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared countermeasures for protecting aircraft from MANPADS, testing of infrared countermeasures, MWIR and LWIR lasers for identify-friend-or-foe (IFF) personnel beacons, infrared target illuminators and designators and tunable QCL applications including in-situ and standoff detection of chemical warfare agents (CWAs) and explosives. The last of these applications addresses a very important and timely need for detection of improvised explosive devices (IEDs) in combat environments like Iraq and Afghanistan.
Environmental effects of interstate power trading on electricity consumption mixes.
Marriott, Joe; Matthews, H Scott
2005-11-15
Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. We create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these "consumption mixes" can provide a more accurate assessment of electricity use in life-cycle analyses. We conclude that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy--such as resource extraction and material processing sectors--are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses.
Grid regulation services for energy storage devices based on grid frequency
Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K
2013-07-02
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
Grid regulation services for energy storage devices based on grid frequency
Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.
2017-09-05
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
Grid regulation services for energy storage devices based on grid frequency
Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K
2014-04-15
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
To flap or not to flap: a discussion between a fish and a jellyfish
NASA Astrophysics Data System (ADS)
Martin, Nathan; Roh, Chris; Idrees, Suhail; Gharib, Morteza
2016-11-01
Fish and jellyfish are known to swim by flapping and by periodically contracting respectively, but which is the more effective propulsion mechanism? In an attempt to answer this question, an experimental comparison is made between simplified versions of these motions to determine which generates the greatest thrust for the least power. The flapping motion is approximated by pitching plates while periodic contractions are approximated by clapping plates. A machine is constructed to operate in either a flapping or a clapping mode between Reynolds numbers 1,880 and 11,260 based on the average plate tip velocity and span. The effect of the total sweep angle, total sweep time, plate flexibility, and duty cycle are investigated. The average thrust generated and power required per cycle are compared between the two modes when their total sweep angle and total sweep time are identical. In general, operating in the clapping mode required significantly more power to generate a similar thrust compared to the flapping mode. However, modifying the duty cycle for clapping caused the effectiveness to approach that of flapping with an unmodified duty cycle. These results suggest that flapping is the more effective propulsion mechanism within the range of Reynolds numbers tested. This work was supported by the Charyk Bio-inspired Laboratory at the California Institute of Technology, the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469, and the Summer Undergraduate Research Fellowships program.
Femtosecond deep-infrared optical parametric oscillator pumped directly by a Ti:sapphire laser
NASA Astrophysics Data System (ADS)
O'Donnell, Callum; Chaitanya Kumar, S.; Zawilski, Kevin T.; Schunemann, Peter G.; Ebrahim-Zadeh, Majid
2018-02-01
We report a high-repetition-rate femtosecond optical parametric oscillator (OPO) for the deep-infrared (deep-IR) based on the nonlinear optical crystal, CdSiP2 (CSP), pumped directly by a Ti:sapphire laser, for the first time. By pumping CSP at <1 μm, we have achieved practical output powers at the longest wavelengths generated by any Ti:sapphire-pumped OPO. Using a combination of pump wavelength tuning, type-I critical phase-matching, and cavity delay tuning, we have generated continuously tunable radiation across 6654-8373 nm (1194-1503 cm-1) at 80.5 MHz repetition rate, providing up to 20 mW of average power at 7314 nm and <7 mW beyond 8000 nm, with idler spectra exhibiting bandwidths of 140-180 nm across the tuning range. Moreover, the near-IR signal is tunable across 1127-1192 nm, providing up to 37 mW of average power at 1150 nm. Signal pulses, characterised using intensity autocorrelation, have durations of 260-320 fs, with corresponding time-bandwidth product of ΔυΔτ 1. The idler and signal output exhibit a TEM00 spatial profile with single-peak Gaussian distribution. With an equivalent spectral brightness of 6.68×1020 photons s-1 mm-2 sr-1 0.1% BW-1, this OPO represents a viable table-top alternative to synchrotron and supercontinuum sources for deep-IR applications in spectroscopy, metrology and medical diagnostics.