Science.gov

Sample records for average power semiconductor

  1. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power.

    PubMed

    Rudin, B; Wittwer, V J; Maas, D J H C; Hoffmann, M; Sieber, O D; Barbarin, Y; Golling, M; Südmeyer, T; Keller, U

    2010-12-20

    High-power ultrafast lasers are important for numerous industrial and scientific applications. Current multi-watt systems, however, are based on relatively complex laser concepts, for example using additional intracavity elements for pulse formation. Moving towards a higher level of integration would reduce complexity, packaging, and manufacturing cost, which are important requirements for mass production. Semiconductor lasers are well established for such applications, and optically-pumped vertical external cavity surface emitting lasers (VECSELs) are most promising for higher power applications, generating the highest power in fundamental transverse mode (>20 W) to date. Ultrashort pulses have been demonstrated using passive modelocking with a semiconductor saturable absorber mirror (SESAM), achieving for example 2.1-W average power, sub-100-fs pulse duration, and 50-GHz pulse repetition rate. Previously the integration of both the gain and absorber elements into a single wafer was demonstrated with the MIXSEL (modelocked integrated external-cavity surface emitting laser) but with limited average output power (<200 mW). We have demonstrated the power scaling concept of the MIXSEL using optimized quantum dot saturable absorbers in an antiresonant structure design combined with an improved thermal management by wafer removal and mounting of the 8-µm thick MIXSEL structure directly onto a CVD-diamond heat spreader. The simple straight cavity with only two components has generated 28-ps pulses at 2.5-GHz repetition rate and an average output power of 6.4 W, which is higher than for any other modelocked semiconductor laser.

  2. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    SciTech Connect

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.

  3. Power semiconductor controlled drives

    NASA Astrophysics Data System (ADS)

    Dubey, Gopal K.

    This book presents power semiconductor controlled drives employing dc motors, induction motors, and synchronous motors. The dynamics of motor and load systems are covered. Open-loop and closed-loop drives are considered, and thyristor, power transistor, and GTO converters are discussed. In-depth coverage is given to ac drives, particularly those fed by voltage and current source inverters and cycloconverters. Full coverage is given to brushless and commutatorless dc drives, including load-commuted synchronous motor drives. Rectifier-controlled dc drives are presented in detail.

  4. New developments in power semiconductors

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1983-01-01

    This paper represents an overview of some recent power semiconductor developments and spotlights new technologies that may have significant impact for aircraft electric secondary power. Primary emphasis will be on NASA-Lewis-supported developments in transistors, diodes, a new family of semiconductors, and solid-state remote power controllers. Several semiconductor companies that are moving into the power arena with devices rated at 400 V and 50 A and above are listed, with a brief look at a few devices.

  5. High average power pockels cell

    DOEpatents

    Daly, Thomas P.

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  6. Cooling and mounting power semiconductors

    NASA Astrophysics Data System (ADS)

    Wetzel, P.

    1980-04-01

    The article examines the process of heat dissipation from power semiconductors. It is shown that for the relationship between temperature loading and dissipation it is possible to take an 'Ohm's law of heat abduction' to define the thermal impedance. The computation of the optimal size for a heatsink is demonstrated in detail. Discussion covers the types of heat dissipation such as heat radiation, heat conduction, and convection. Finally, some factors to consider during installation are examined.

  7. High-Average Power Facilities

    SciTech Connect

    Dowell, David H.; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  8. High average power induction accelerators

    SciTech Connect

    Swingle, J.C.

    1985-10-01

    The induction accelerator is discussed with respect to general background and concept, beam transport, scaling, pulse power technology, and the electron beam injector. A discussion of the factors which affect the scaling of the intensity of the beam is given. Limiting factors include collective forces in the beam, virtual cathode formation, surroundings, and beam breakup instability. 24 refs., 11 figs. (WRF)

  9. Space station power semiconductor package

    NASA Technical Reports Server (NTRS)

    Balodis, Vilnis; Berman, Albert; Devance, Darrell; Ludlow, Gerry; Wagner, Lee

    1987-01-01

    A package of high-power switching semiconductors for the space station have been designed and fabricated. The package includes a high-voltage (600 volts) high current (50 amps) NPN Fast Switching Power Transistor and a high-voltage (1200 volts), high-current (50 amps) Fast Recovery Diode. The package features an isolated collector for the transistors and an isolated anode for the diode. Beryllia is used as the isolation material resulting in a thermal resistance for both devices of .2 degrees per watt. Additional features include a hermetical seal for long life -- greater than 10 years in a space environment. Also, the package design resulted in a low electrical energy loss with the reduction of eddy currents, stray inductances, circuit inductance, and capacitance. The required package design and device parameters have been achieved. Test results for the transistor and diode utilizing the space station package is given.

  10. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  11. Average power meter for laser radiation

    NASA Astrophysics Data System (ADS)

    Shevnina, Elena I.; Maraev, Anton A.; Ishanin, Gennady G.

    2016-04-01

    Advanced metrology equipment, in particular an average power meter for laser radiation, is necessary for effective using of laser technology. In the paper we propose a measurement scheme with periodic scanning of a laser beam. The scheme is implemented in a pass-through average power meter that can perform continuous monitoring during the laser operation in pulse mode or in continuous wave mode and at the same time not to interrupt the operation. The detector used in the device is based on the thermoelastic effect in crystalline quartz as it has fast response, long-time stability of sensitivity, and almost uniform sensitivity dependence on the wavelength.

  12. Laser Diode Cooling For High Average Power Applications

    NASA Astrophysics Data System (ADS)

    Mundinger, David C.; Beach, Raymond J.; Benett, William J.; Solarz, Richard W.; Sperry, Verry

    1989-06-01

    Many applications for semiconductor lasers that require high average power are limited by the inability to remove the waste heat generated by the diode lasers. In order to reduce the cost and complexity of these applications a heat sink package has been developed which is based on water cooled silicon microstructures. Thermal resistivities of less than 0.025°C/01/cm2) have been measured which should be adequate for up to CW operation of diode laser arrays. This concept can easily be scaled to large areas and is ideal for high average power solid state laser pumping. Several packages which illustrate the essential features of this design have been fabricated and tested. The theory of operation will be briefly covered, and several conceptual designs will be described. Also the fabrication and assembly procedures and measured levels of performance will be discussed.

  13. High average power linear induction accelerator development

    SciTech Connect

    Bayless, J.R.; Adler, R.J.

    1987-07-01

    There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs.

  14. High average power solid state laser power conditioning system

    SciTech Connect

    Steinkraus, R.F.

    1987-03-03

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers.

  15. Advances in high power semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  16. High average power, high current pulsed accelerator technology

    SciTech Connect

    Neau, E.L.

    1995-05-01

    Which current pulsed accelerator technology was developed during the late 60`s through the late 80`s to satisfy the needs of various military related applications such as effects simulators, particle beam devices, free electron lasers, and as drivers for Inertial Confinement Fusion devices. The emphasis in these devices is to achieve very high peak power levels, with pulse lengths on the order of a few 10`s of nanoseconds, peak currents of up to 10`s of MA, and accelerating potentials of up to 10`s of MV. New which average power systems, incorporating thermal management techniques, are enabling the potential use of high peak power technology in a number of diverse industrial application areas such as materials processing, food processing, stack gas cleanup, and the destruction of organic contaminants. These systems employ semiconductor and saturable magnetic switches to achieve short pulse durations that can then be added to efficiently give MV accelerating, potentials while delivering average power levels of a few 100`s of kilowatts to perhaps many megawatts. The Repetitive High Energy Puled Power project is developing short-pulse, high current accelerator technology capable of generating beams with kJ`s of energy per pulse delivered to areas of 1000 cm{sup 2} or more using ions, electrons, or x-rays. Modular technology is employed to meet the needs of a variety of applications requiring from 100`s of kV to MV`s and from 10`s to 100`s of kA. Modest repetition rates, up to a few 100`s of pulses per second (PPS), allow these machines to deliver average currents on the order of a few 100`s of mA. The design and operation of the second generation 300 kW RHEPP-II machine, now being brought on-line to operate at 2.5 MV, 25 kA, and 100 PPS will be described in detail as one example of the new high average power, high current pulsed accelerator technology.

  17. High average power diamond Raman laser.

    PubMed

    Feve, Jean-Philippe M; Shortoff, Kevin E; Bohn, Matthew J; Brasseur, Jason K

    2011-01-17

    We report a pulsed Raman laser at 1193 nm based on synthetic diamond crystals with a record output power of 24.5 W and a slope efficiency of 57%. We compared the performance of an anti-reflection coated crystal at normal incidence with a Brewster cut sample. Raman oscillation was achieved at both room temperature and under cryogenic operation at 77 K. Modeling of these experiments allowed us to confirm the value of Raman gain coefficient of diamond, which was found to be 13.5 ± 2.0 cm/GW for a pump wavelength of 1030 nm.

  18. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    SciTech Connect

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  19. Synthesis of Averaged Circuit Models for Switched Power Converters

    DTIC Science & Technology

    1989-11-01

    November 1989 LIDS-P-1930 Synthesis of Averaged Circuit Models for Switched Power Converters * Seth R. Sanders George C. Verghese Abstract Averaged... circuit models for switching power converters are useful for purposes of analysis and obtaining engineering intuition into the operation of these...switched circuits . This paper develops averaged circuit models for switching converters using an in-place averaging method. The method proceeds in a

  20. Power semiconductor laser diode arrays characterization

    NASA Astrophysics Data System (ADS)

    Zeni, Luigi; Campopiano, Stefania; Cutolo, Antonello; D'Angelo, Giuseppe

    2003-09-01

    Nowadays, power semiconductor laser diode arrays are becoming a widespread source for a large variety of industrial applications. In particular, the availability of low-cost high-power laser diode arrays makes their use possible in the industrial context for material cutting, welding, diagnostics and processing. In the above applications, the exact control of the beam quality plays a very important role because it directly affects the reliability of the final result. In this paper, we present two different approaches useful for the characterization of the beam quality in laser diode arrays. The first one, starting from total intensity measurements on planes orthogonal to the beam propagation path, is able to deduce the working conditions of each laser setting up the array. The second one is aimed at the measurement of a global quality factor of the array itself; to this end, the empirical extension of the M2 concept to composite beams is presented along with some experimental results. As the first technique is especially intended for the non-destructive detection of design problems in the array itself and in the bias circuitry, the second one represents a powerful tool for the rapid on-line diagnostics of the laser beam during its use.

  1. Temperature control of power semiconductor devices in traction applications

    NASA Astrophysics Data System (ADS)

    Pugachev, A. A.; Strekalov, N. N.

    2017-02-01

    The peculiarity of thermal management of traction frequency converters of a railway rolling stock is highlighted. The topology and the operation principle of the automatic temperature control system of power semiconductor modules of the traction frequency converter are designed and discussed. The features of semiconductors as an object of temperature control are considered; the equivalent circuit of thermal processes in the semiconductors is suggested, the power losses in the two-level voltage source inverters are evaluated and analyzed. The dynamic properties and characteristics of the cooling fan induction motor electric drive with the scalar control are presented. The results of simulation in Matlab are shown for the steady state of thermal processes.

  2. High average power scaleable thin-disk laser

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Payne, Stephen A.; Powell, Howard; Krupke, William F.; Sutton, Steven B.

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  3. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high-power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  4. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  5. High average power diode pumped solid state lasers for CALIOPE

    SciTech Connect

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory`s water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW`s 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL`s first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers.

  6. High power semiconductor lasers for deep space communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1981-01-01

    The parameters of semiconductor lasers pertaining to their application as optical emitters are discussed. Several methods to overcome their basic disadvantage, which is the low level of powers they emit, are reviewed. Most of these methods are based on a coherent power combining of several lasers.

  7. HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB

    SciTech Connect

    Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher; Williams, Gwyn

    2012-07-01

    Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

  8. High-average-power diode-pumped Yb: YAG lasers

    SciTech Connect

    Avizonis, P V; Beach, R; Bibeau, C M; Emanuel, M A; Harris, D G; Honea, E C; Monroe, R S; Payne, S A; Skidmore, J A; Sutton, S B

    1999-10-01

    A scaleable diode end-pumping technology for high-average-power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M{sup 2} = 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M{sup 2} value of 13.5 at an optical-to-optical conversion efficiency of 27.5%. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M{sup 2} < 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods.

  9. Thermal effects in high average power optical parametric amplifiers.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  10. Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser.

    PubMed

    Mangold, Mario; Zaugg, Christian A; Link, Sandro M; Golling, Matthias; Tilma, Bauke W; Keller, Ursula

    2014-03-10

    The high-power semiconductor laser studied here is a modelocked integrated external-cavity surface emitting laser (MIXSEL), which combines the gain of vertical-external-cavity surface-emitting lasers (VECSELs) with the saturable absorber of a semiconductor saturable absorber mirror (SESAM) in a single semiconductor layer stack. The MIXSEL concept allows for stable and self-starting fundamental passive modelocking in a simple straight cavity and the average power scaling is based on the semiconductor disk laser concept. Previously record-high average output power from an optically pumped MIXSEL was demonstrated, however the long pulse duration of 17 ps prevented higher pulse repetition rates and many interesting applications such as supercontinuum generation and broadband frequency comb generation. With a novel MIXSEL structure, the first femtosecond operation was then demonstrated just recently. Here we show that such a MIXSEL can also support pulse repetition rate scaling from ≈5 GHz to >100 GHz with excellent beam quality and high average output power, by mechanically changing the cavity length of the linear straight cavity and the output coupler. Up to a pulse repetition rate of 15 GHz we obtained average output power >1 W and pulse durations <4 ps. Furthermore we have been able to demonstrate the highest pulse repetition rate from any fundamentally modelocked semiconductor disk laser with 101.2 GHz at an average output power of 127 mW and a pulse duration of 570 fs.

  11. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  12. Energy stability in a high average power FEL

    SciTech Connect

    Merminga, L.; Bisognano, J.J.

    1995-12-31

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M{sub 56}, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents determined. Design strategies to increase the instability threshold are discussed and the high average power FEL proposed for construction at CEBAF is used as an example.

  13. Power combining of semiconductor lasers: A review

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1982-01-01

    Several methods of coherent power combining are described and compared. A comparison is also made between coherent and incoherent power combining, and important operational characteristics are considered. It is found that in communication links with demanding requirements coherent power combining is necessary.

  14. Microchannel heatsinks for high average power laser diode arrays

    SciTech Connect

    Beach, R.; Benett, B.; Freitas, B.; Ciarlo, D.; Sperry, V.; Comaskey, B.; Emanuel, M.; Solarz, R.; Mundinger, D.

    1992-01-01

    Detailed performance results and fabrication techniques for an efficient and low thermal impedance laser diode array heatsink are presented. High duty factor or even CW operation of fully filled laser diode arrays is enabled at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using a photolithographic pattern definition procedure followed by anisotropic chemical etching. A modular rack-and-stack architecture is adopted for the heatsink design allowing arbitrarily large two-dimensional arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel cooled heatsinks is ideally suited to pump array requirements for high average power crystalline lasers because of the stringent temperature demands that result from coupling the diode light to several nanometers wide absorption features characteristic of leasing ions in crystals.

  15. Microchannel cooled heatsinks for high average power laser diode arrays

    SciTech Connect

    Bennett, W.J.; Freitas, B.L.; Ciarlo, D.; Beach, R.; Sutton, S.; Emanuel, M.; Solarz, R.

    1993-01-15

    Detailed performance results for an efficient and low impedance laser diode array heatsink are presented. High duty factor and even cw operation of fully filled laser diode arrays at high stacking densities are enabled at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using an anisotropic chemical etching process. A modular rack-and-stack architecture is adopted for heatsink design, allowing arbitrarily large two-dimensional arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel heatsinks is ideally suited to pump army requirements for high average power crystalline laser because of the stringent temperature demands are required to efficiently couple diode light to several-nanometer-wide absorption features characteristic of lasing ions in crystals.

  16. A Thermal and Electrical Analysis of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Vafai, Kambiz

    1997-01-01

    The state-of-art power semiconductor devices require a thorough understanding of the thermal behavior for these devices. Traditional thermal analysis have (1) failed to account for the thermo-electrical interaction which is significant for power semiconductor devices operating at high temperature, and (2) failed to account for the thermal interactions among all the levels involved in, from the entire device to the gate micro-structure. Furthermore there is a lack of quantitative studies of the thermal breakdown phenomenon which is one of the major failure mechanisms for power electronics. This research work is directed towards addressing. Using a coupled thermal and electrical simulation, in which the drift-diffusion equations for the semiconductor and the energy equation for temperature are solved simultaneously, the thermo-electrical interactions at the micron scale of various junction structures are thoroughly investigated. The optimization of gate structure designs and doping designs is then addressed. An iterative numerical procedure which incorporates the thermal analysis at the device, chip and junction levels of the power device is proposed for the first time and utilized in a BJT power semiconductor device. In this procedure, interactions of different levels are fully considered. The thermal stability issue is studied both analytically and numerically in this research work in order to understand the mechanism for thermal breakdown.

  17. Design of a High Average Power Waveguide Window

    NASA Astrophysics Data System (ADS)

    Chojnacki, E.; Hays, T.; Kirchgessner, J.; Padamsee, H.; Cole, M.; Schultheiss, T.

    1997-05-01

    A study has been performed to design a waveguide vacuum window operating at 500 MHz capable of propagating >1 MW average power. This would extend current technology by about a factor of 2 in average power, made possible by advances in available ceramic size and quality. Self-matched and tuning-post-matched configurations were examined, as well as full-height and reduced-height waveguide cross sections. The two ceramics considered were aluminum oxide and beryllia oxide. Beryllia's greater thermal conductivity over alumina and its availability in large sizes with low loss tangent (<3 × 10-4) made it very attractive despite its tensile strength being lower than alumina's. The analyses to be presented comprise of obtaining satisfactory RF design using the computer code MAFIA, performing a perturbation calculation in MAFIA to obtain power deposition in the slightly lossy ceramic, feeding the power deposition data into the thermo-mechanical computer code ANSYS, then using ANSYS to determine ceramic operating temperature and mechanical stress. Another pertinent quantity obtained from MAFIA is the electric field profile throughout the window assembly. Results from numerous window configurations will be tabulated, plotted, and discussed.

  18. A new FET-bipolar combinational power semiconductor switch

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Chandrasekaran, S.; Chin, S. A.

    1984-01-01

    A novel FET-BJT combinational transistor configuration is proposed and demonstrated using discrete devices. This new transistor features fast switching, very simple drive requirement, elimination of reverse bias second breakdown, and good utilization of semiconductor chip area. Initial results indicate that power hybrid construction of the device is essential to enhance the current rating of the device.

  19. Strategies for Radiation Hardness Testing of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Soltis, James V. (Technical Monitor); Patton, Martin O.; Harris, Richard D.; Rohal, Robert G.; Blue, Thomas E.; Kauffman, Andrew C.; Frasca, Albert J.

    2005-01-01

    Plans on the drawing board for future space missions call for much larger power systems than have been flown in the past. These systems would employ much higher voltages and currents to enable more powerful electric propulsion engines and other improvements on what will also be much larger spacecraft. Long term human outposts on the moon and planets would also require high voltage, high current and long life power sources. Only hundreds of watts are produced and controlled on a typical robotic exploration spacecraft today. Megawatt systems are required for tomorrow. Semiconductor devices used to control and convert electrical energy in large space power systems will be exposed to electromagnetic and particle radiation of many types, depending on the trajectory and duration of the mission and on the power source. It is necessary to understand the often very different effects of the radiations on the control and conversion systems. Power semiconductor test strategies that we have developed and employed will be presented, along with selected results. The early results that we have obtained in testing large power semiconductor devices give a good indication of the degradation in electrical performance that can be expected in response to a given dose. We are also able to highlight differences in radiation hardness that may be device or material specific.

  20. Design Principles for a Compact High Average Power IR FEL

    SciTech Connect

    Lia Merminga; Steve Benson

    2001-08-01

    Progress in superconducting rf (srf) technology has led to dramatic changes in cryogenic losses, cavity gradients, and microphonic levels. Design principles for a compact high average power Energy Recovery FEL at IR wavelengths, consistent with the state of the art in srf, are outlined, High accelerating gradients, of order 20 MV/m at Q{sub 0}{approx}1x10{sup 10} possible at rf frequencies of 1300 MHz and 1500 MHz, allow for a single-cryomodule linac, with minimum cryogenic losses. Filling every rf bucket, at these high frequencies, results in high average current at relatively low charge per bunch, thereby greatly ameliorating all single bunch phenomena, such as wakefields and coherent synchrotron radiation. These principles are applied to derive self-consistent sets of parameters for 100 kW and 1 MW average power IR FELs and are compared with low frequency solutions. This work supported by U.S. DOE Contract No. DE-AC05-84ER40150, the Commonwealth of Virginia and the Laser Processing Consortium.

  1. Optical Parametric Amplification for High Peak and Average Power

    SciTech Connect

    Jovanovic, Igor

    2001-11-26

    Optical parametric amplification is an established broadband amplification technology based on a second-order nonlinear process of difference-frequency generation (DFG). When used in chirped pulse amplification (CPA), the technology has been termed optical parametric chirped pulse amplification (OPCPA). OPCPA holds a potential for producing unprecedented levels of peak and average power in optical pulses through its scalable ultrashort pulse amplification capability and the absence of quantum defect, respectively. The theory of three-wave parametric interactions is presented, followed by a description of the numerical model developed for nanosecond pulses. Spectral, temperature and angular characteristics of OPCPA are calculated, with an estimate of pulse contrast. An OPCPA system centered at 1054 nm, based on a commercial tabletop Q-switched pump laser, was developed as the front end for a large Nd-glass petawatt-class short-pulse laser. The system does not utilize electro-optic modulators or multi-pass amplification. The obtained overall 6% efficiency is the highest to date in OPCPA that uses a tabletop commercial pump laser. The first compression of pulses amplified in highly nondegenerate OPCPA is reported, with the obtained pulse width of 60 fs. This represents the shortest pulse to date produced in OPCPA. Optical parametric amplification in {beta}-barium borate was combined with laser amplification in Ti:sapphire to produce the first hybrid CPA system, with an overall conversion efficiency of 15%. Hybrid CPA combines the benefits of high gain in OPCPA with high conversion efficiency in Ti:sapphire to allow significant simplification of future tabletop multi-terawatt sources. Preliminary modeling of average power limits in OPCPA and pump laser design are presented, and an approach based on cascaded DFG is proposed to increase the average power beyond the single-crystal limit. Angular and beam quality effects in optical parametric amplification are modeled

  2. Using Bayes Model Averaging for Wind Power Forecasts

    NASA Astrophysics Data System (ADS)

    Preede Revheim, Pål; Beyer, Hans Georg

    2014-05-01

    For operational purposes predictions of the forecasts of the lumped output of groups of wind farms spread over larger geographic areas will often be of interest. A naive approach is to make forecasts for each individual site and sum them up to get the group forecast. It is however well documented that a better choice is to use a model that also takes advantage of spatial smoothing effects. It might however be the case that some sites tends to more accurately reflect the total output of the region, either in general or for certain wind directions. It will then be of interest giving these a greater influence over the group forecast. Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles. Raftery et al. [1] show how BMA can be used for statistical post processing of forecast ensembles, producing PDFs of future weather quantities. The BMA predictive PDF of a future weather quantity is a weighted average of the ensemble members' PDFs, where the weights can be interpreted as posterior probabilities and reflect the ensemble members' contribution to overall forecasting skill over a training period. In Revheim and Beyer [2] the BMA procedure used in Sloughter, Gneiting and Raftery [3] were found to produce fairly accurate PDFs for the future mean wind speed of a group of sites from the single sites wind speeds. However, when the procedure was attempted applied to wind power it resulted in either problems with the estimation of the parameters (mainly caused by longer consecutive periods of no power production) or severe underestimation (mainly caused by problems with reflecting the power curve). In this paper the problems that arose when applying BMA to wind power forecasting is met through two strategies. First, the BMA procedure is run with a combination of single site wind speeds and single site wind power production as input. This solves the problem with longer consecutive periods where the input data

  3. Thermal management in high average power pulsed compression systems

    SciTech Connect

    Wavrik, R.W.; Reed, K.W.; Harjes, H.C.; Weber, G.J.; Butler, M.; Penn, K.J.; Neau, E.L.

    1992-08-01

    High average power repetitively pulsed compression systems offer a potential source of electron beams which may be applied to sterilization of wastes, treatment of food products, and other environmental and consumer applications. At Sandia National Laboratory, the Repetitive High Energy Pulsed Power (RHEPP) program is developing a 7 stage magnetic pulse compressor driving a linear induction voltage adder with an electron beam diode load. The RHEPP machine is being design to deliver 350 kW of average power to the diode in 60 ns FWHM, 2.5 MV, 3 kJ pulses at a repetition rate of 120 Hz. In addition to the electrical design considerations, the repetition rate requires thermal management of the electrical losses. Steady state temperatures must be kept below the material degradation temperatures to maximize reliability and component life. The optimum design is a trade off between thermal management, maximizing overall electrical performance of the system, reliability, and cost effectiveness. Cooling requirements and configurations were developed for each of the subsystems of RHEPP. Finite element models that combine fluid flow and heat transfer were used to screen design concepts. The analysis includes one, two, and three dimensional heat transfer using surface heat transfer coefficients and boundary layer models. Experiments were conducted to verify the models as well as to evaluate cooling channel fabrication materials and techniques in Metglas wound cores. 10 refs.

  4. High average power second harmonic generation in air

    SciTech Connect

    Beresna, Martynas; Kazansky, Peter G.; Svirko, Yuri; Barkauskas, Martynas; Danielius, Romas

    2009-09-21

    We demonstrate second harmonic vortex generation in atmospheric pressure air using tightly focused femtosecond laser beam. The circularly polarized ring-shaped beam of the second harmonic is generated in the air by fundamental beam of the same circular polarization, while the linear polarized beam produces two-lobe beam at the second harmonic frequency. The achieved normalized conversion efficiency and average second harmonic power are two orders of magnitude higher compared to those previously reported and can be increased up to 20 times by external gas flow. We demonstrate that the frequency doubling originates from the gradient of photoexcited free electrons created by pondermotive force.

  5. High average power diode pumped solid state laser

    NASA Astrophysics Data System (ADS)

    Gao, Yue; Wang, Yanjie; Chan, Amy; Dawson, Murray; Greene, Ben

    2017-03-01

    A new generation of high average power pulsed multi-joule solid state laser system has been developed at EOS Space Systems for various space related tracking applications. It is a completely diode pumped, fully automated multi-stage system consisting of a pulsed single longitudinal mode oscillator, three stages of pre-amplifiers, two stages of power amplifiers, completely sealed phase conjugate mirror or stimulated Brillouin scattering (SBS) cell and imaging relay optics with spatial filters in vacuum cells. It is capable of generating pulse energy up to 4.7 J, a beam quality M 2 ~ 3, pulse width between 10–20 ns, and a pulse repetition rate between 100–200 Hz. The system has been in service for more than two years with excellent performance and reliability.

  6. Potential of high-average-power solid state lasers

    SciTech Connect

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-09-25

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels.

  7. Deep impurity trapping concepts for power semiconductor devices

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1982-01-01

    High voltage semiconductor switches using deep impurity doped silicon now appear feasible for high voltage (1-100 kV), high power (10 Kw) switching and protection functions for future space power applications. Recent discoveries have demonstrated several practical ways of gating deep impurity doped silicon devices in planar configurations and of electrically controlling their characteristics, leading to a vast array of possible circuit applications. A new family of semiconductor switching devices and transducers are possible based on this technology. New deep impurity devices could be simpler than conventional p-n junction devices and yet use the same basic materials and processing techniques. In addition, multiple functions may be possible on a single device as well as increased ratings.

  8. Ultrahigh-power semiconductor lasers and their applications

    NASA Astrophysics Data System (ADS)

    He, Xiaoguang; Srinivasan, Swaminathan T.; Gupta, Shantanu; Patel, Rushikesh M.

    1998-08-01

    High power semiconductor laser diodes have found their place in a wide variety of markets such as printing, pumping of solid state lasers, illumination, medical diagnosis, surgery, spectroscopy and material processing. In the past two years, the performance of the commercial available multi-mode semiconductor laser diodes has been elevated to a ultra high power level (continuous wave (CW) power density higher than 15 mW/micrometers -aperture for single emitter devices and 10 mW/micrometers -aperture per cm wide bar for monolithic arrays) as the result of breakthrough in device design, processing and packaging. We present in this paper record setting performance of these ultra high power devices in terms of CW power (> 10.6 W from 100 micrometers aperture, > 180 W from 1 cm wide array) and efficiency (wall plug-in efficiency 59%, differential quantum efficiency 87%). Reliability tests of these ultra high power devices indicates that these devices have equivalent to or better reliability than conventional lower power commercial devices. We will discuss the significance of these devices in enabling new applications and empowering current applications.

  9. An automatic step adjustment method for average power analysis technique used in fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Ming

    2006-04-01

    An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.

  10. Compact, 17W average power, 100kW peak power, nanosecond fiber laser system

    NASA Astrophysics Data System (ADS)

    Saracco, Matthieu J.; Logan, David; Green, Jared; Balsley, David; Nelson, Mike; Small, Jay; Mettlen, Scott; Lowder, Tyson L.; McComb, Timothy S.; Kutscha, Tim; Burkholder, Gary; Smith, Michael R.; Kliner, Dahv A. V.; Randall, Matthew; Fanning, Geoff; Bell, Jake

    2013-03-01

    We demonstrate a robust, compact, low-cost, pulsed, linearly polarized, 1064 nm, Yb:fiber laser system capable of generating ~100 kW peak power pulses and >17 W average power at repetition rates of 80 - 285 kHz. The system employs a configurable microchip seed laser that provides nanosecond (~1.0 - 1.5 ns) pulse durations. The seed pulses are amplified in an all-fiber, polarization maintaining, large mode area (LMA) fiber amplifier optimized for high peak power operation. The LMA Yb:fiber amplifier enables near diffraction limited beam quality at 100 kW peak power. The seed laser, fiber amplifier, and beam delivery optics are packaged into an air-cooled laser head of 152×330×87 mm3 with pump power provided from a separate air-cooled laser controller. Due to the high peak power, high beam quality, spectral purity, and linearly polarized nature of the output beam, the laser is readily frequency doubled to 532 nm. Average 532 nm powers up to 7 W and peak powers exceeding 40 kW have been demonstrated. Potential for scaling to higher peak and average powers in both the green and infrared (IR) will be discussed. This laser system has been field tested and demonstrated in numerous materials processing applications in both the IR and green, including scribing and marking. We discuss recent results that demonstrate success in processing a diverse array of representative industrial samples.

  11. Noise power spectral density of a fibre scattered-light interferometer with a semiconductor laser source

    SciTech Connect

    Alekseev, A E; Potapov, V T

    2013-10-31

    Spectral characteristics of the noise intensity fluctuations at the output of a scattered-light interferometer, caused by phase fluctuations of semiconductor laser radiation are considered. This kind of noise is one of the main factors limiting sensitivity of interferometric sensors. For the first time, to our knowledge, the expression is obtained for the average noise power spectral density at the interferometer output versus the degree of a light source coherence and length of the scattering segment. Also, the approximate expressions are considered which determine the power spectral density in the low-frequency range (up to 200 kHz) and in the limiting case of extended scattering segments. The expression obtained for the noise power spectral density agrees with experimental normalised power spectra with a high accuracy. (interferometry of radiation)

  12. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    NASA Technical Reports Server (NTRS)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  13. More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging

    SciTech Connect

    2010-02-01

    Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures, voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.

  14. Reliability of high-power semiconductor laser arrays

    NASA Astrophysics Data System (ADS)

    Kung, Hsing H.; Craig, Richard R.; Zucker, Erik P.; Li, Benjamin; Scifres, Donald R.

    1992-10-01

    The reliability of continuously operating (cw) high power laser arrays is a critical factor for the acceptance of these devices in a wide range of applications. Extensive investigation into the reliability of semiconductor lasers has led to an improved understanding of failure mechanisms such as material defects, mirror damage and solder related failures as well as to methods which significantly suppress the occurrence of catastrophic failure. Furthermore, as a result of material quality improvements, laser arrays exhibit very low gradual degradation for high power operation up to 2 Watts cw. Long term lifetest data shows that the projected medium life at room temperature of such devices exceed 100,000 hours at 2 W cw.

  15. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen T.; Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-07-01

    We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ , bulk semiconductors may give a higher power factor compared to the lower dimensional ones.

  16. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors.

    PubMed

    Hung, Nguyen T; Hasdeo, Eddwi H; Nugraha, Ahmad R T; Dresselhaus, Mildred S; Saito, Riichiro

    2016-07-15

    We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ, bulk semiconductors may give a higher power factor compared to the lower dimensional ones.

  17. High-power picosecond laser with 400W average power for large scale applications

    NASA Astrophysics Data System (ADS)

    Du, Keming; Brüning, Stephan; Gillner, Arnold

    2012-03-01

    Laser processing is generally known for low thermal influence, precise energy processing and the possibility to ablate every type of material independent on hardness and vaporisation temperature. The use of ultra-short pulsed lasers offers new possibilities in the manufacturing of high end products with extra high processing qualities. For achieving a sufficient and economical processing speed, high average power is needed. To scale the power for industrial uses the picosecond laser system has been developed, which consists of a seeder, a preamplifier and an end amplifier. With the oscillator/amplifier system more than 400W average power and maximum pulse energy 1mJ was obtained. For study of high speed processing of large embossing metal roller two different ps laser systems have been integrated into a cylinder engraving machine. One of the ps lasers has an average power of 80W while the other has 300W. With this high power ps laser fluencies of up to 30 J/cm2 at pulse repetition rates in the multi MHz range have been achieved. Different materials (Cu, Ni, Al, steel) have been explored for parameters like ablation rate per pulse, ablation geometry, surface roughness, influence of pulse overlap and number of loops. An enhanced ablation quality and an effective ablation rate of 4mm3/min have been achieved by using different scanning systems and an optimized processing strategy. The max. achieved volume rate is 20mm3/min.

  18. Robust Representations for Face Recognition: The Power of Averages

    ERIC Educational Resources Information Center

    Burton, A. Mike; Jenkins, Rob; Hancock, Peter J. B.; White, David

    2005-01-01

    We are able to recognise familiar faces easily across large variations in image quality, though our ability to match unfamiliar faces is strikingly poor. Here we ask how the representation of a face changes as we become familiar with it. We use a simple image-averaging technique to derive abstract representations of known faces. Using Principal…

  19. Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator

    NASA Astrophysics Data System (ADS)

    Rohrbacher, Andreas; Markovic, Vesna; Pallmann, Wolfgang; Resan, Bojan

    2016-03-01

    Ti:sapphire oscillators are a proven technology to generate sub-100 fs (even sub-10 fs) pulses in the near infrared and are widely used in many high impact scientific fields. However, the need for a bulky, expensive and complex pump source, typically a frequency-doubled multi-watt neodymium or optically pumped semiconductor laser, represents the main obstacle to more widespread use. The recent development of blue diodes emitting over 1 W has opened up the possibility of directly diode-laser-pumped Ti:sapphire oscillators. Beside the lower cost and footprint, a direct diode pumping provides better reliability, higher efficiency and better pointing stability to name a few. The challenges that it poses are lower absorption of Ti:sapphire at available diode wavelengths and lower brightness compared to typical green pump lasers. For practical applications such as bio-medicine and nano-structuring, output powers in excess of 100 mW and sub-100 fs pulses are required. In this paper, we demonstrate a high average power directly blue-diode-laser-pumped Ti:sapphire oscillator without active cooling. The SESAM modelocking ensures reliable self-starting and robust operation. We will present two configurations emitting 460 mW in 82 fs pulses and 350 mW in 65 fs pulses, both operating at 92 MHz. The maximum obtained pulse energy reaches 5 nJ. A double-sided pumping scheme with two high power blue diode lasers was used for the output power scaling. The cavity design and the experimental results will be discussed in more details.

  20. Cryogenic power conversion: Combining HT superconductors and semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Otward

    1992-04-01

    The availability and use of high-temperature superconductors (HTS) will require and enforce completely new electronic systems concepts. One of many possible applications could and probably will be the field of ac/dc, dc/ac as well as RF power conversion at the multi-kilowatt level. Until HTS high frequency switches able to handle hundreds of volts and tens of amperes are invented and produced commercially existing semiconductor devices such as the power MOS field-effect transistor can be used advantageously in order to implement ultra-high efficiency circuits in combination with HTS components such as high Q inductors and capacitors. This marriage could result in a drastic size, weight and cost reduction for various suitable high power applications. The key to high efficiency power conversion are so-called zero-voltage switching circuits known as single transistor Class E and half-bridge Class D amplifiers. This paper analyzes and discusses some relevant design criteria such as conversion efficiency etc. versus temperature down to 77 K.

  1. High average power magnetic modulator for metal vapor lasers

    DOEpatents

    Ball, Don G.; Birx, Daniel L.; Cook, Edward G.; Miller, John L.

    1994-01-01

    A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

  2. High power semiconductor laser source for space applications

    NASA Astrophysics Data System (ADS)

    Goodwin, A. R.; Whiteaway, J. E. A.; Collar, A. J.

    1986-07-01

    Semiconductor laser sources for optical communication links between geostationary and low Earth orbiting satellites were investigated. Phase locked arrays of coupled stripes or related devices offer single mode operation at much lower optical and current density than other techniques. The highest powers are expected using GaAlAs, the best reliability using InGaAsP. Use of very thin highly doped p-InP buffer layers in planar growth, wide mesas, long cavities, and facet coating for DCPBH lasers are suggested. Continuous output power values up to 340 mW can be generated by unoptimized multimode InGaAsP lasers emitting at 1.3 microns. It should be possible to generate continuous power levels greater than 1000 mW by optimizing facet reflectivity and thermal impedance. The Y-coupled array is the most promising concept. The addition of flared output guides, and the positioning of the couplers close to the facet with the larger number of emitters, should improve performance.

  3. Energy stability in a high average power FEL

    SciTech Connect

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-12-31

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples.

  4. Average Power and Brightness Scaling of Diamond Raman Lasers

    DTIC Science & Technology

    2012-01-07

    on 1064 nm beam conversion of 50 W lasers in the ?external cavity? Raman cavity configuration in both pulsed and continuous wave modes of operation...scaling of  diamond Raman  lasers . The investigations focus on  1064  nm beam conversion of 50 W  lasers  in the “external  cavity” Raman cavity configuration... laser  pumped using a CW Nd  laser  at  1064  nm. The output  power is more than three times the highest for a CW crystalline Raman  laser , that being for a

  5. A Methodology for Measuring Strain in Power Semiconductors

    NASA Astrophysics Data System (ADS)

    Avery, Seth M.

    The objective of this work is to develop a strain measurement methodology for use in power electronics during electrical operation; such that strain models can be developed and used as the basis of an active strain controller---improving the reliability of power electronics modules. This research involves developing electronic speckle pattern interferometry (ESPI) into a technology capable of measuring thermal-mechanical strain in electrically active power semiconductors. ESPI is a non-contact optical technique capable of high resolution (approx. 10 nm) surface displacement measurements. This work has developed a 3-D ESPI test stand, where simultaneous in- and out-of-plane measured components are combined to accurately determine full-field surface displacement. Two cameras are used to capture both local (interconnect level) displacements and strains, and global (device level) displacements. Methods have been developed to enable strain measurements of larger loads, while avoiding speckle decorrelation (which limits ESPI measurement of large deformations). A method of extracting strain estimates directly from unfiltered and wrapped phase maps has been developed, simplifying data analysis. Experimental noise measurements are made and used to develop optimal filtering using model-based tracking and determined strain noise characteristics. The experimental results of this work are strain measurements made on the surface of a leadframe of an electrically active IGBT. A model-based tracking technique has been developed to allow for the optimal strain solution to be extracted from noisy displacement results. Also, an experimentally validated thermal-mechanical FE strain model has been developed. The results of this work demonstrate that in situ strain measurements in power devices are feasible. Using the procedures developed in the work, strain measurements at critical locations of strain, which limit device reliability, at relevant power levels can be completed.

  6. Development of High Average Power Lasers for the Photon Collider

    SciTech Connect

    Gronberg, J; Stuart, B; Seryi, A

    2010-05-17

    The laser and optics system for the photon collider seeks to minimize the required laser power by using an optical stacking cavity to recirculate the laser light. An enhancement of between 300 to 400 is desired. In order to achieve this the laser pulses which drive the cavity must precisely match the phase of the pulse circulating within the cavity. We report on simulations of the performance of a stacking cavity to various variations of the drive laser in order to specify the required tolerances of the laser system. We look at the behavior of a simple four mirror cavity as shown in Fig. 1. As a unit input pulse is applied to the coupling mirror a pulse begins to build up in the interior of the cavity. If the drive pulses and the interior pulse arrive at the coupling mirror in phase the interior pulse will build up to a larger value. The achievable enhancement is a strong function of the reflectivity of the cavities. The best performance if attained when the reflectivities of the input coupler is matched to the internal reflectivities of the cavity. In Fig. 2 we show the build up of the internal pulse after a certain number of drive pulses, assuming the input coupler has a reflectivity of 0.996 and the interior mirrors have 0.998 reflectivity. With these parameters the cavity will reach an enhancement factor of 450. Reducing the coupler reflectivity gives a faster cavity loading rate but with a reduced enhancement of the internal pulse. The enhancement as a function of coupler reflectivity and total internal cavity reflectivity is shown in Fig. 3. The best enhancement is achieved when the coupling mirror is matched to the reflectivity of the cavity. A coupler reflectivity just below the internal cavity reflectivity minimizes the required laser power.

  7. High average power lasers for future particle accelerators

    NASA Astrophysics Data System (ADS)

    Dawson, Jay W.; Crane, John K.; Messerly, Michael J.; Prantil, Matthew A.; Pax, Paul H.; Sridharan, Arun K.; Allen, Graham S.; Drachenberg, Derrek R.; Phan, Henry H.; Heebner, John E.; Ebbers, Christopher A.; Beach, Raymond J.; Hartouni, Edward P.; Siders, Craig W.; Spinka, Thomas M.; Barty, C. P. J.; Bayramian, Andrew J.; Haefner, Leon C.; Albert, Felicie; Lowdermilk, W. Howard; Rubenchik, Alexander M.; Bonanno, Regina E.

    2012-12-01

    Lasers are of increasing interest to the accelerator community and include applications as diverse as stripping electrons from hydrogen atoms, sources for Compton scattering, efficient high repetition rate lasers for dielectric laser acceleration, peta-watt peak power lasers for laser wake field and high energy, short pulse lasers for proton and ion beam therapy. The laser requirements for these applications are briefly surveyed. State of the art of laser technologies with the potential to eventually meet those requirements are reviewed. These technologies include diode pumped solid state lasers (including cryogenic), fiber lasers, OPCPA based lasers and Ti:Sapphire lasers. Strengths and weakness of the various technologies are discussed along with the most important issues to address to get from the current state of the art to the performance needed for the accelerator applications. Efficiency issues are considered in detail as in most cases the system efficiency is a valuable indicator of the actual ability of a given technology to deliver the application requirements.

  8. Scalability of components for kW-level average power few-cycle lasers.

    PubMed

    Hädrich, Steffen; Rothhardt, Jan; Demmler, Stefan; Tschernajew, Maxim; Hoffmann, Armin; Krebs, Manuel; Liem, Andreas; de Vries, Oliver; Plötner, Marco; Fabian, Simone; Schreiber, Thomas; Limpert, Jens; Tünnermann, Andreas

    2016-03-01

    In this paper, the average power scalability of components that can be used for intense few-cycle lasers based on nonlinear compression of modern femtosecond solid-state lasers is investigated. The key components of such a setup, namely, the gas-filled waveguides, laser windows, chirped mirrors for pulse compression and low dispersion mirrors for beam collimation, focusing, and beam steering are tested under high-average-power operation using a kilowatt cw laser. We demonstrate the long-term stable transmission of kW-level average power through a hollow capillary and a Kagome-type photonic crystal fiber. In addition, we show that sapphire substrates significantly improve the average power capability of metal-coated mirrors. Ultimately, ultrabroadband dielectric mirrors show negligible heating up to 1 kW of average power. In summary, a technology for scaling of few-cycle lasers up to 1 kW of average power and beyond is presented.

  9. Method and system for powering and cooling semiconductor lasers

    SciTech Connect

    Telford, Steven J; Ladran, Anthony S

    2014-02-25

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  10. Solid-State Raman Converters for High-Average Power Chemical Oxygen Iodine Laser

    DTIC Science & Technology

    1998-01-01

    Converters for High-Average Power Chemical Oxygen Iodine Laser. (r7LEODF61708 97W0212 ) Moscow, 1998 j—SisfRSlJTION STA- IOTCQUAIITY INSPECTED 1 ~Z^ZTtop...Kc 1 Distribution Unlimited FINAL REPORT "Solid State Raman Converter for High-Average Power Chemical Oxygen Iodine Laser" Introduction...TITLE AND SUBTITLE Solid-State Raman Converters for High-Average Power Chemical Oxygen Iodine Laser 6. AUTHOR(S) Prof Tasoltan Tazretovich Basiev

  11. 66 W average power from a microjoule-class sub-100 fs fiber oscillator.

    PubMed

    Baumgartl, Martin; Lecaplain, Caroline; Hideur, Ammar; Limpert, Jens; Tünnermann, Andreas

    2012-05-15

    Performance scaling of passively mode-locked ultrashort-pulse fiber oscillators in terms of average power, peak power, and pulse energy is demonstrated. A very-large-mode-area fiber laser in an all-positive group-velocity-dispersion ring cavity configuration with intracavity spectral filter, mode-locked by nonlinear polarization evolution, emits 66 W of average power at 76 MHz repetition rate, corresponding to 0.9 μJ pulse energy. The pulses are dechirped to 91 fs outside the cavity with an average power of 60 W remaining after the compressor. The generated pulse peak power is as high as 7 MW.

  12. Toward pulsed power uses for photoconductive semiconductor switches: Closing switches

    SciTech Connect

    Loubriel, G.M.; O'Malley, M.W.; Zutavern, F.J.

    1987-01-01

    Recent results on Photoconductive Semiconductor Switches (PCSS) are presented. For Si and GaAs switches surface flashover, contact degradation, and current limitations are addressed. For Si samples have been obtained that, without being triggered, withstand fields of up to 85 kV/cm produced by an approx.2-..mu..s wide voltage pulse. The 1-inch diameter, Si samples (''gap length'' of 1.5 cm) have been switched at 36 kV/cm (approx. =54 kV) into an approx.30-..cap omega.. load with a current of 703 A. For GaAs, most samples can withstand, without being triggered, 100 kV/cm. At low electric fields the GaAs samples behave as switches that close during the laser pulse and then open in nanoseconds. At high voltages GaAs does not open. In this mode, called lock-on, up to 42.7 kV/cm (64.1 kV) has been switched. The lock-on mode can be triggered with small laser powers. Plans are being made to use large arrays of GaAs samples to switch 1 MV and 156 kA.

  13. Direct digital simulation of power semiconductor-controlled electrical machines

    NASA Astrophysics Data System (ADS)

    Bahnassy, H. M.

    1981-06-01

    Generalized computer programming techniques for simulating power semiconductor-controlled electric machines in coil-variable representation are presented. These techniques are developed primarily for implementation in large scale general purpose computer-aided design and analysis (CADA) circuit programs. To demonstrate the validity of the developed techniques, a coil-variable model of a brushless synchronous generator with an ac exciter and rotating rectifiers was constructed. The performance of the control system (thyristor voltage regulator) is represented by a transfer function block diagram model. The CADA circuit program used is the recently developed SUPER SCEPTRE program. The model is validated using the design data and test results of a 60 kVA brushless generator. Numerous computer simulation cases are presented including the steady state and transient conditions. Brushless generator performance under diode failure faults (opened-diode, shorted-diode) is simulated. The effects of the external faults, at the main generator terminals, on the main generator, as well as its excitation system currents, are simulated.

  14. Dual-Passive Mode Locking of High Average Power, Solid-State Lasers

    NASA Astrophysics Data System (ADS)

    Schieffer, Stephanie

    Laser oscillators with average output powers of multiple watts and pulse durations less than 100 picoseconds (ps) have many uses. For instance, precise machining of metals takes advantage of the reduced thermal effect from laser pulses between 100 ps and 10 femtoseconds. Biologists and chemists use lasers in time-resolved spectroscopy of biochemical reactions. Ultrafast lasers are also used in chemistry, physics and material science to probe the electronic and vibrational states of various materials including semiconductors. These applications often require specific photon color and in the cases where this cannot be generated directly from a solid-state oscillator, it may be generated through nonlinear effects in optical parametric oscillators (OPO) and optical parametric amplifiers (OPA) — techniques that typically require watt-level pump lasers. It is the focus of my dissertation to develop a stable, high average power, ultrafast laser suitable for direct use of for pumping an OPO/OPA. The laser oscillator presented in this dissertation employs the thermal-lens-shaping (TLS) concept, the basic idea of which is to actively shape and collimate the pump radiation from unlensed diode bars such that the resulting thermal lens in the gain media, which is experienced by the laser resonator, is stigmatic irrespective of the angle between the laser and the gain medium. This laser oscillator is mode locked using a novel, dual-passive technique in which a saturable Bragg reflector (SBR) provides amplitude modulation while a phase mis-matched second harmonic crystal generates phase-locking resulting in a required threshold energy that is less than half of that for SBR-only mode locking. Of course, the saturable and non-saturable absorption of the laser by the SBR results in thermally-induced stress and strain and thus bowing; an analysis of this thermal effect is conducted. Finally, the design and characterization of a high-resolution, aberration-corrected, flat

  15. Improved low-power semiconductor diode lasers for photodynamic therapy in veterinary medicine

    NASA Astrophysics Data System (ADS)

    Lee, Susanne M.; Mueller, Eduard K.; Van de Workeen, Brian C.; Mueller, Otward M.

    2001-05-01

    Cryogenically cooling semiconductor diode lasers provides higher power output, longer device lifetime, and greater monochromaticity. While these effects are well known, such improvements have not been quantified, and thus cryogenically operated semiconductor lasers have not been utilized in photodynamic therapy (PDT). We report quantification of these results from laser power meter and photospectrometer data. The emission wavelengths of these low power multiple quantum well semiconductor lasers were found to decrease and become more monochromatic with decreasing temperature. Significant power output improvements also were obtained at cryogenic temperatures. In addition, the threshold current, i.e. the current at which lasing begins, decreased with decreasing temperature. This lower threshold current combined with the increased power output produced dramatically higher device efficiencies. It is proposed that cryogenic operation of semiconductor diode lasers will reduce the number of devices needed to produce the requisite output for many veterinary and medical applications, permitting significant cost reductions.

  16. Potential for efficient frequency conversion at high average power using solid state nonlinear optical materials

    SciTech Connect

    Eimerl, D.

    1985-10-28

    High-average-power frequency conversion using solid state nonlinear materials is discussed. Recent laboratory experience and new developments in design concepts show that current technology, a few tens of watts, may be extended by several orders of magnitude. For example, using KD*P, efficient doubling (>70%) of Nd:YAG at average powers approaching 100 KW is possible; and for doubling to the blue or ultraviolet regions, the average power may approach 1 MW. Configurations using segmented apertures permit essentially unlimited scaling of average power. High average power is achieved by configuring the nonlinear material as a set of thin plates with a large ratio of surface area to volume and by cooling the exposed surfaces with a flowing gas. The design and material fabrication of such a harmonic generator are well within current technology.

  17. Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate.

    PubMed

    Liao, Zhi M; Jovanovic, Igor; Ebbers, Chris A; Fei, Yiting; Chai, Bruce

    2006-05-01

    Optical parametric chirped-pulse amplification (OPCPA) in nonlinear crystals has the potential to produce extremes of peak and average power but is limited either in energy by crystal growth issues or in average power by crystal thermo-optic characteristics. Recently, large (7.5 cm diameter x 25 cm length) crystals of yttrium calcium oxyborate (YCOB) have been grown and utilized for high-average-power second-harmonic generation. Further, YCOB has the necessary thermo-optic properties required for scaling OPCPA systems to high peak and average power operation for wavelengths near 1 microm. We report what is believed to be the first use of YCOB for OPCPA. Scalability to higher peak and average power is addressed.

  18. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers.

    PubMed

    Alessi, David A; Rosso, Paul A; Nguyen, Hoang T; Aasen, Michael D; Britten, Jerald A; Haefner, Constantin

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. Combining this technique with low absorption multilayer dielectric gratings developed in our group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.

  19. 45-dB Faraday isolator for 100 W average radiation power

    SciTech Connect

    Andreev, N F; Palashov, O V; Potemkin, A K; Sergeev, Aleksandr M; Khazanov, E A; Reitze, D H

    2000-12-31

    It is demonstrated experimentally that at high average radiation power, the optical isolation in the recently proposed design of a Faraday isolator is substantially higher than in the conventional scheme. The Faraday isolator with the isolation of 45 dB at the radiation power of 100 W is implemented. The data obtained show that a 30-dB isolator for the average laser radiation power of 1 kW can be realised. (laser applications and other topics in quantum electronics)

  20. Fiber-amplifier pumped high average power few-cycle pulse non-collinear OPCPA.

    PubMed

    Tavella, F; Willner, A; Rothhardt, J; Hädrich, S; Seise, E; Düsterer, S; Tschentscher, T; Schlarb, H; Feldhaus, J; Limpert, J; Tünnermann, A; Rossbach, J

    2010-03-01

    We report on the performance of a 60 kHz repetition rate sub-10 fs, optical parametric chirped pulse amplifier system with 2 W average power and 3 GW peak power. This is to our knowledge the highest average power sub-10 fs kHz-amplifier system reported to date. The amplifier is conceived for applications at free electron laser facilities and is designed such to be scalable in energy and repetition rate.

  1. MM&T Program for the Establishment of Production Techniques for High Power Bulk Semiconductor Limiters.

    DTIC Science & Technology

    1979-07-01

    F. Jellison, ’"-Band, High Power Solid State Receiv6:. IProtector Employing a Bulk Semiconductor Limiter", 1979 IEEE, MTT-S- INTERNATIONAL , Orlando...Techniques for High-Power Bulk Semiconductor Limiters", First Quaterly Report for Contract DAAB07-76-C-0039, ECOM, U.S. Army Electronics Research and...Electronics Supply Ctr Palo Alto, CA 94304 Directorate of Engineering & Standardization Rockwell International ATTN: (DESC-ECS) Mr. N.A. Hauck Science

  2. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    SciTech Connect

    Carlin, P.W.

    1996-12-01

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases considered include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.

  3. High average and peak power few-cycle laser pulses delivered by fiber pumped OPCPA system.

    PubMed

    Rothhardt, J; Hädrich, S; Seise, E; Krebs, M; Tavella, F; Willner, A; Düsterer, S; Schlarb, H; Feldhaus, J; Limpert, J; Rossbach, J; Tünnermann, A

    2010-06-07

    We report on a high power optical parametric amplifier delivering 8 fs pulses with 6 GW peak power. The system is pumped by a fiber amplifier and operated at 96 kHz repetition rate. The average output power is as high as 6.7 W, which is the highest average power few-cycle pulse laser reported so far. When stabilizing the seed oscillator, the system delivered carrier-envelop phase stable laser pulses. Furthermore, high harmonic generation up to the 33(th) order (21.8 nm) is demonstrated in a Krypton gas jet. In addition, the scalability of the presented laser system is discussed.

  4. Far field and wavefront characterization of a high-power semiconductor laser for free space optical communications

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Saif, Babak N.

    1991-01-01

    The spatial pointing angle and far field beamwidth of a high-power semiconductor laser are characterized as a function of CW power and also as a function of temperature. The time-averaged spatial pointing angle and spatial lobe width were measured under intensity-modulated conditions. The measured pointing deviations are determined to be well within the pointing requirements of the NASA Laser Communications Transceiver (LCT) program. A computer-controlled Mach-Zehnder phase-shifter interferometer is used to characterize the wavefront quality of the laser. The rms phase error over the entire pupil was measured as a function of CW output power. Time-averaged measurements of the wavefront quality are also made under intensity-modulated conditions. The measured rms phase errors are determined to be well within the wavefront quality requirements of the LCT program.

  5. Metal-Semiconductor Nanocomposites for High Efficiency Thermoelectric Power Generation

    DTIC Science & Technology

    2013-12-07

    the modified phonon and alloy scattering parameters in the modeling to explain the thermoelectric properties of this material. For example, we...near future. 2. Cross-plane thermoelectric properties of perovskite oxide metal/semiconductor superlattices ( Purdue /UCSC) The cross-plane...It therefore became critical that Purdue optimize this characterization technique to extract material properties which show the potential of metal

  6. Modulation characteristics of a high-power semiconductor Master Oscillator Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald Mitchell, Jr.

    1992-01-01

    A semiconductor master oscillator-power amplifier was demonstrated using an anti-reflection (AR) coated broad area laser as the amplifier. Under CW operation, diffraction-limited single-longitudinal-mode powers up to 340 mW were demonstrated. The characteristics of the far-field pattern were measured and compared to a two-dimensional reflective Fabry-Perot amplifier model of the device. The MOPA configuration was modulated by the master oscillator. Prior to injection into the amplifier, the amplitude and frequency modulation properties of the master oscillator were characterized. The frequency response of the MOPA configuration was characterized for an AM/FM modulated injection beam, and was found to be a function of the frequency detuning between the master oscillator and the resonant amplifier. A shift in the phase was also observed as a function of frequency detuning; this phase shift is attributed to the optical phase shift imparted to a wave reflected from a Fabry-Perot cavity. Square-wave optical pulses were generated at 10 MHz and 250 MHz with diffraction-limited peak powers of 200 mW and 250 mW. The peak power for a given modulation frequency is found to be limited by the injected power and the FM modulation at that frequency. The modulation results make the MOPA attractive for use as a transmitter source in applications such as free-space communications and ranging/altimetry.

  7. Technical options for high average power free electron milimeter-wave and laser devices

    NASA Technical Reports Server (NTRS)

    Swingle, James C.

    1989-01-01

    Many of the potential space power beaming applications require the generation of directed energy beams with respectable amounts of average power (MWs). A tutorial summary is provided here on recent advances in the laboratory aimed at producing direct conversion of electrical energy to electromagnetic radiation over a wide spectral regime from microwaves to the ultraviolet.

  8. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    SciTech Connect

    Alessi, D.

    2016-11-01

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new design has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to

  9. Time averaged transmitter power and exposure to electromagnetic fields from mobile phone base stations.

    PubMed

    Bürgi, Alfred; Scanferla, Damiano; Lehmann, Hugo

    2014-08-07

    Models for exposure assessment of high frequency electromagnetic fields from mobile phone base stations need the technical data of the base stations as input. One of these parameters, the Equivalent Radiated Power (ERP), is a time-varying quantity, depending on communication traffic. In order to determine temporal averages of the exposure, corresponding averages of the ERP have to be available. These can be determined as duty factors, the ratios of the time-averaged power to the maximum output power according to the transmitter setting. We determine duty factors for UMTS from the data of 37 base stations in the Swisscom network. The UMTS base stations sample contains sites from different regions of Switzerland and also different site types (rural/suburban/urban/hotspot). Averaged over all regions and site types, a UMTS duty factor for the 24 h-average is obtained, i.e., the average output power corresponds to about a third of the maximum power. We also give duty factors for GSM based on simple approximations and a lower limit for LTE estimated from the base load on the signalling channels.

  10. Time Averaged Transmitter Power and Exposure to Electromagnetic Fields from Mobile Phone Base Stations

    PubMed Central

    Bürgi, Alfred; Scanferla, Damiano; Lehmann, Hugo

    2014-01-01

    Models for exposure assessment of high frequency electromagnetic fields from mobile phone base stations need the technical data of the base stations as input. One of these parameters, the Equivalent Radiated Power (ERP), is a time-varying quantity, depending on communication traffic. In order to determine temporal averages of the exposure, corresponding averages of the ERP have to be available. These can be determined as duty factors, the ratios of the time-averaged power to the maximum output power according to the transmitter setting. We determine duty factors for UMTS from the data of 37 base stations in the Swisscom network. The UMTS base stations sample contains sites from different regions of Switzerland and also different site types (rural/suburban/urban/hotspot). Averaged over all regions and site types, a UMTS duty factor F ≈ 0.32 ± 0.08 for the 24 h-average is obtained, i.e., the average output power corresponds to about a third of the maximum power. We also give duty factors for GSM based on simple approximations and a lower limit for LTE estimated from the base load on the signalling channels. PMID:25105551

  11. High Average Power Diode Pumped Solid State Lasers: Power Scaling With High Spectral and Spatial Coherence

    DTIC Science & Technology

    2009-03-30

    thulium upper laser level through cross-relaxation [5, 6]. Phosphate glass is also an attractive host for high-power single-frequency 2-µm Tm3+- doped...12, (8), p. 512 (1976) [4] D. G. Lancaster, A. Sabella, A. Hemming, S. Bennetts, S.D. Jackson, “Power-scalable thulium and holmium fibre lasers...efficient high-power thulium -doped germanate glass fiber laser,” Optics Letters, 32, (6), p. 638 (2007) [6] S. Jackson, “Power scaling method for 2-μm

  12. Antimonide-Based Compound Semiconductors for Low-Power Electronics

    DTIC Science & Technology

    2013-01-01

    bipolar transistors [3], heterostructure barrier varactors for use as frequency multipliers [4], and p-n diodes for THz mixer applications [5...In0.69Al0.31As0.41Sb0.59/In0.27Ga0.73Sb double-heterojunction bipolar transistors with InAs0.66Sb0.34 contact layers. Electron Lett. 2010;46: 1333-5. [4] Champlain JG...Quantum wells formed from antimonide-based compound semiconductors are exploited in n-channel field-effect transistors (FETs) operating at high speeds

  13. Transparent ceramic photo-optical semiconductor high power switches

    DOEpatents

    Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.

    2016-01-19

    A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.

  14. MOX Average Power Test 30 GWd/MT PIE: Quick Look

    SciTech Connect

    MORRIS, RN

    2001-02-14

    This report summarizes the early results of the post irradiation examination of the 30 GWd/MT MOX Average Power Test Capsules (numbers 3 and 10). The purpose of this preliminary examination is to document and monitor the progress of the MOX Average Power Test Irradiation. The capsules and their fuel pins were found to be in excellent condition. Measurement of the fission gas release fraction (about 1.50 to 2.26%), preliminary fuel stack gamma scan measurements, and preliminary fuel pin diameter measurements indicate that the fuel is behaving as expected.

  15. Utility-Scale Silicon Carbide Semiconductor: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion

    SciTech Connect

    2010-09-01

    ADEPT Project: GeneSiC is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and electronic devices it's used in.GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can't process the high voltages that utility-scale power distribution requires, and they must be stacked in complicated circuits that require bulky insulation and cooling hardware. GeneSiC's semiconductors are well suited for high-power applications like large-scale renewable wind and solar energy installations.

  16. Cryogenic Yb:YAG picosecond laser with high average power visible and ultraviolet harmonic generation

    NASA Astrophysics Data System (ADS)

    Brown, D. C.; Kowalewski, K.; Envid, V.; Zembek, J.; Canale, B.; Kolis, J. W.; McMillen, C. D.; Geisber, H.

    2012-06-01

    Cryogenic Yb:YAG lasers operating at 1029 nm have been demonstrated at Snake Creek Lasers with high average power CW and ultrafast output powers, and provide near diffraction-limited output beams that are ideal for applications in harmonic generation. We describe experiments that have produced high average power green output power at 515 nm as well as preliminary experiments producing UV output power at 257.25 nm. Frequency doubling experiments used a 20 mm long non-critically phase-matched LBO crystal mounted in a constant temperature oven. A mode-locked Yb fiber laser operating at 50 MHz was used to drive a two Yb:YAG cryogenic amplifier system, producing hundreds of watts of average power output with a FWHM pulsewidth of 12 ps. Doubling efficiencies of > 50 % have been observed. For frequency quadrupling, we have used hydrothermally grown KTTP crystals grown at Clemson University and Advanced Photonic Crystals. KBBF offers unprecedented UV transmission down to 155 nm, and was used in a Type I phasematching configuration. The properties of KBBF will be discussed, as well as the experimental results observed and conversion efficiency.

  17. Rainflow Algorithm-Based Lifetime Estimation of Power Semiconductors in Utility Applications

    DOE PAGES

    GopiReddy, Lakshmi Reddy; Tolbert, Leon M.; Ozpineci, Burak; ...

    2015-07-15

    Rainflow algorithms are one of the popular counting methods used in fatigue and failure analysis in conjunction with semiconductor lifetime estimation models. However, the rain-flow algorithm used in power semiconductor reliability does not consider the time-dependent mean temperature calculation. The equivalent temperature calculation proposed by Nagode et al. is applied to semiconductor lifetime estimation in this paper. A month-long arc furnace load profile is used as a test profile to estimate temperatures in insulated-gate bipolar transistors (IGBTs) in a STATCOM for reactive compensation of load. In conclusion, the degradation in the life of the IGBT power device is predicted basedmore » on time-dependent temperature calculation.« less

  18. Rainflow Algorithm-Based Lifetime Estimation of Power Semiconductors in Utility Applications

    SciTech Connect

    GopiReddy, Lakshmi Reddy; Tolbert, Leon M.; Ozpineci, Burak; Pinto, Joao O. P.

    2015-07-15

    Rainflow algorithms are one of the popular counting methods used in fatigue and failure analysis in conjunction with semiconductor lifetime estimation models. However, the rain-flow algorithm used in power semiconductor reliability does not consider the time-dependent mean temperature calculation. The equivalent temperature calculation proposed by Nagode et al. is applied to semiconductor lifetime estimation in this paper. A month-long arc furnace load profile is used as a test profile to estimate temperatures in insulated-gate bipolar transistors (IGBTs) in a STATCOM for reactive compensation of load. In conclusion, the degradation in the life of the IGBT power device is predicted based on time-dependent temperature calculation.

  19. Silicon carbide, a semiconductor for space power electronics

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony; Matus, Lawrence G.

    1991-01-01

    After many years of promise as a high temperature semiconductor, silicon carbide (SiC) is finally emerging as a useful electronic material. Recent significant progress that has led to this emergence has been in the areas of crystal growth and device fabrication technology. High quality single-crystal SiC wafers, up to 25 mm in diameter, can now be produced routinely from boules grown by a high temperature (2700 K) sublimation process. Device fabrication processes, including chemical vapor deposition (CVD), in situ doping during CVD, reactive ion etching, oxidation, metallization, etc. have been used to fabricate p-n junction diodes and MOSFETs. The diode was operated to 870 K and the MOSFET to 770 K.

  20. Silicon carbide, a semiconductor for space power electronics

    NASA Technical Reports Server (NTRS)

    Powell, J. A.; Matus, Lawrence G.

    1991-01-01

    After many years of promise as a high temperature semiconductor, silicon carbide (SiC) is finally emerging as a useful electronic material. Recent significant progress that has led to this emergence has been in the area of crystal growth and device fabrication technology. High quality of single-crystal SiC wafers, up to 25 mm in diameter, can now be produced routinely from boules grown by a high temperature (2700 K) sublimation process. Device fabrication processes, including chemical vapor deposition (CVD), in situ doping during CVD, reactive ion etching, oxidation, metallization, etc. have been used to fabricate p-n junction diodes and MOSFETs. The diode was operated to 870 K and the MOSFET to 770 K.

  1. Effect of semiconductor-controlled voltage injection by UPFC and ULTC on power system stability

    NASA Astrophysics Data System (ADS)

    Alavian Mehr, Alireza

    Commercial availability of various power semiconductor switches indicates proliferation of power electronic based apparatus in utility power systems. Furthermore, existing power system apparatus, e.g. mechanical phase shifters and mechanical tap changing transformers, will be retrofitted to utilize higher switching speed of semiconductor switches. A group of these apparatus, i.e., unified power flow controller (UPFC), static phase shifter (SPS), under-load tap-changing (ULTC) transformer and static series capacitor (SSC), perform their respective functions by means of injecting series controlled voltages in power systems. This thesis demonstrates that fast series voltage injection, for dynamic power flow regulation, can result in voltage dynamics and even voltage instability. This indicates that fast voltage injection by means of power electronic based apparatus can couple voltage stability and angle stability phenomena. To investigate this coupling phenomena, the voltage dependency of the load must be adequately represented in the load model. The reported studies in this work are based on representing the load by a combination of static and dynamic loads. This thesis primarily investigates impacts of UPFC and semiconductor-controlled ULTC on voltage stability and angle stability phenomena. An eigen analysis approach is used for the studies. The eigen analysis results are validated by digital time-domain simulations using a transient stability software. Both the eigen analysis and the transient stability software tools are tailored to account for angle and voltage stability phenomena.

  2. Development of a high average power, CW, MM-wave FEL

    SciTech Connect

    Ramian, G.

    1995-12-31

    Important operational attributes of FELs remain to be demonstrated including high average power and single-frequency, extremely narrow-linewidth lasing. An FEL specifically designed to achieve these goals for scientific research applications is currently under construction. Its most salient feature is operation in a continuous-wave (CW) mode with an electrostatically generated, high-current, recirculating, DC electron beam.

  3. Image registration and averaging of low laser power two-photon fluorescence images of mouse retina

    PubMed Central

    Alexander, Nathan S.; Palczewska, Grazyna; Stremplewski, Patrycjusz; Wojtkowski, Maciej; Kern, Timothy S.; Palczewski, Krzysztof

    2016-01-01

    Two-photon fluorescence microscopy (TPM) is now being used routinely to image live cells for extended periods deep within tissues, including the retina and other structures within the eye . However, very low laser power is a requirement to obtain TPM images of the retina safely. Unfortunately, a reduction in laser power also reduces the signal-to-noise ratio of collected images, making it difficult to visualize structural details. Here, image registration and averaging methods applied to TPM images of the eye in living animals (without the need for auxiliary hardware) demonstrate the structural information obtained with laser power down to 1 mW. Image registration provided between 1.4% and 13.0% improvement in image quality compared to averaging images without registrations when using a high-fluorescence template, and between 0.2% and 12.0% when employing the average of collected images as the template. Also, a diminishing return on image quality when more images were used to obtain the averaged image is shown. This work provides a foundation for obtaining informative TPM images with laser powers of 1 mW, compared to previous levels for imaging mice ranging between 6.3 mW [PalczewskaG., Nat Med. 20, 785 (2014)24952647 SharmaR., Biomed. Opt. Express 4, 1285 (2013)24009992]. PMID:27446697

  4. High-power semiconductor lasers at eye-safe wavelengths

    NASA Astrophysics Data System (ADS)

    Osowski, Mark L.; Gewirtz, Yossi; Lammert, Robert M.; Oh, Se W.; Panja, Chameli; Elarde, Victor C.; Vaissie, Laurent; Patel, Falgun D.; Ungar, Jeffrey E.

    2009-05-01

    InP based diode lasers are required to realize the next generation of eyesafe applications, including direct rangefinding and HEL weapons systems. We report on the progress of high power eyesafe single spatial and longitudinal mode 1550nm MOPA devices, where we have achieved peak powers in excess of 10W with 50ns pulse widths. A conceptual model based on our recent MOPA results show the path towards scaling to high powers based on spatial beam combination with operating conditions suitable for direct rangefinding applications. We also report on the progress towards high power 14xx and 15xx nm pump lasers for eyesafe HEL systems.

  5. High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system.

    PubMed

    Liu, Jiang; Wang, Qian; Wang, Pu

    2012-09-24

    We report a stable highly-integrated high power picosecond thulium-doped all-fiber MOPA system without using conventional chirped pulse amplification technique. The master oscillator was passively mode-locked by a SESAM to generate average power of 15 mW at a fundamental repetition rate of 103 MHz in a short linear cavity, and a uniform narrow bandwidth FBG is employed to stabilize the passively mode-locked laser operation. Two-stage double-clad thulium-doped all-fiber amplifiers were used directly to boost average power to 20.7 W. The laser center wavelength was 1962.8 nm and the pulse width was 18 ps. The single pulse energy and peak-power after the amplication were 200 nJ and 11.2 kW respectively. To the best of our knowledge, this is the highest average power ever reported for a picosecond thulium-doped all-fiber MOPA system.

  6. Recent advances in the development of high average power induction accelerators for industrial and environmental applications

    SciTech Connect

    Neau, E.L.

    1994-09-01

    Short-pulse accelerator technology developed during the early 1960`s through the late 1980`s is being extended to high average power systems capable of use in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput will require systems with beam power levels from several hundreds of kilowatts to megawatts. Beam accelerating potentials can range from less than 1 MeV to as much as 10 MeV depending on the type of beam, depth of penetration required, and the density of the product being treated. This paper addresses the present status of a family of high average power systems, with output beam power levels up to 200 kW, now in operation that use saturable core switches to achieve output pulse widths of 50 to 80 nanoseconds. Inductive adders and field emission cathodes are used to generate beams of electrons or x-rays at up to 2.5 MeV over areas of 1000 cm{sup 2}. Similar high average power technology is being used at {le} 1 MeV to drive repetitive ion beam sources for treatment of material surfaces over 100`s of cm{sup 2}.

  7. High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation.

    PubMed

    Ozawa, Akira; Zhao, Zhigang; Kuwata-Gonokami, Makoto; Kobayashi, Yohei

    2015-06-15

    Intracavity high harmonic generation was utilized to generate high average-power coherent radiation at vacuum ultraviolet (vuv) wavelengths. A ytterbium-doped fiber-laser based master-oscillator power-amplifier (MOPA) system with a 10 MHz repetition frequency was developed and used as a driving laser for an external cavity. A series of odd-order harmonic radiations was generated extending down to ∼ 30 nm (41 eV in photon energy). The 7th harmonic radiation generated was centered at 149 nm and had an average output power of up to 0.5 mW. In this way, we developed a sub-mW coherent vuv-laser with a 10 MHz repetition frequency, which, if used as an excitation laser source for photo-electron spectroscopy, could improve the signal count-rate without deterioration of the spectral-resolution caused by space-charge effects.

  8. Non-chain pulsed DF laser with an average power of the order of 100 W

    NASA Astrophysics Data System (ADS)

    Pan, Qikun; Xie, Jijiang; Wang, Chunrui; Shao, Chunlei; Shao, Mingzhen; Chen, Fei; Guo, Jin

    2016-07-01

    The design and performance of a closed-cycle repetitively pulsed DF laser are described. The Fitch circuit and thyratron switch are introduced to realize self-sustained volume discharge in SF6-D2 mixtures. The influences of gas parameters and charging voltage on output characteristics of non-chain pulsed DF laser are experimentally investigated. In order to improve the laser power stability over a long period of working time, zeolites with different apertures are used to scrub out the de-excitation particles produced in electric discharge. An average output power of the order of 100 W was obtained at an operating repetition rate of 50 Hz, with amplitude difference in laser pulses <8 %. And under the action of micropore alkaline zeolites, the average power fell by 20 % after the laser continuing working 100 s at repetition frequency of 50 Hz.

  9. A few hundred femtosecond FEL with a few kW average and one GW peak power for academic and industrial applications

    NASA Astrophysics Data System (ADS)

    Minehara, Eisuke J.; Hajima, Ryoichi; Sawamura, Masaru; Nagai, Ryoji; Nishimori, Nobuyuki; Kikuzawa, Nobuhiro; Sugimoto, Masayoshi; Yamauchi, Toshihiko; Hayakawa, Taketo; Shizuma, Toshiyuki

    2003-02-01

    The JAERI FEL group has successfully discovered, and realized the brand-new FEL lasing of 255fs ultrafast pulse, 6-9% high-efficiency, one gigawatt high peak power, a few kilowatts average power, and wide tenability of medium and far infrared wavelength regions at the same time. The new lasing was named to be "high-degeneracy superradianct lasing of FEL". Using the new lasing, we could realize a powerful and efficient free-electron laser(FEL) for industrial uses, for examples, pharmacy, medical, defense, shipbuilding, semiconductor industry, chemical industries, environmental sciences, space-debris, power beaming and so on. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by JAERI compact, stand-alone and zero-boil-off super-conducting rf linac with an energy-recovery geometry. Our discussions on the FEL will cover market-requirements and roadmap for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil-off cryostat concept and operational experience over these 10 years, our discovery of the new highly-efficient, high-power, and ultra-short pulse lasing mode, and the energy-recovery geometry.

  10. Nature of the Thermoelectric Power in Bipolar Semiconductors

    NASA Astrophysics Data System (ADS)

    Titov, O. Yu; Bulat, L. P.; Gurevich, Yu. G.

    2016-08-01

    Thermoelectricity increasingly draws the attention of researchers because it can provide us with methods to generate environmentally clean energy and solid-state cooling. However, some problems in thermoelectricity's physics remain unsolved. In this paper, a new approach to thermoelectric phenomena is presented, one that uses a linear description of the nonequilibrium charge carrier transport. The role of nonequilibrium carriers of both surface and bulk recombination processes has been shown to be crucial even within the linear approximation. Electron and hole quasi-Fermi levels originated from the thermal field are explicitly obtained in the case of a thermoelectric current flowing through an external circuit; the necessary corresponding boundary conditions are obtained. For the first time, it is shown that the quasi-Fermi level of one of the carriers can be a nonmonotonous function of spatial coordinates. General expressions for the thermoelectric current, the thermo-electromotive force (thermo-emf), and the electrical resistance of bipolar semiconductors have been obtained. Also for the first time, the influence of both surface recombination and surface resistance in thermoelectric phenomena was taken into account.

  11. Generation of high-power ultrashort optical pulses by semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Dudelev, V. V.; Zazulin, S. V.; Kolykhalova, E. D.; Losev, S. N.; Deryagin, A. G.; Kuchinskii, V. I.; Efanov, M. V.; Sokolovskii, G. S.

    2016-12-01

    Fiber-coupled semiconductor lasers have been studied when pumped by high-power short electrical pulses of 5 ns width and leading front duration below 1 ns. In this pumping regime, it is possible to ensure significant sharpening of output pulses, the duration of which decreases below 80 ps for a single-mode laser and below 120 ps for a broad aperture multimode laser at an output peak optical power as high as 1.5 and 27 W, respectively.

  12. Lifetime of high-power GaAs photoconductive semiconductor switch triggered by laser of different power density

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wang, Wei; Shen, Yi; Shi, Jinshui; Zhang, Linwen; Xia, Liansheng

    2015-02-01

    Conduction modes of GaAs photoconductive semiconductor switch (PCSS) and their conditions are expounded. Laser diode and high-power picosecond Nd:YAG lasers are used as triggers for nonlinear mode and quasi-linear mode respectively in high-power conduction experiment. GaAs PCSS`s failure mechanisms and factors influencing lifetime in both modes are analyzed. It is found that the power density of laser at trigger time determines in which mode GaAs PCSS operates. Low-power laser triggers a nonlinear mode conduction in which GaAs PCSS`s lifetime is only 103, while high-power laser triggers a quasi-linear mode conduction in which GaAs PCSS`s lifetime is up to 105. According to the findings, the compact high-power pulsed power system based on mass of GaAs PCSSs demands for miniature high-power laser generators.

  13. High-power semiconductor laser array packaged on microchannel cooler using gold-tin soldering technology

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Kang, Lijun; Zhang, Pu; Nie, Zhiqiang; Li, Xiaoning; Xiong, Lingling; Liu, Xingsheng

    2012-03-01

    High power semiconductor laser arrays have found increased applications in many fields. In this work, a hard soldering microchannel cooler (HSMCC) technology was developed for packaging high power diode laser array. Numerical simulations of the thermal behavior characteristics of hard solder and indium solder MCC-packaged diode lasers were conducted and analyzed. Based on the simulated results, a series of high power HSMCC packaged diode laser arrays were fabricated and characterized. The test and statistical results indicated that under the same output power the HSMCC packaged laser bar has lower smile and high reliability in comparison with the conventional copper MCC packaged laser bar using indium soldering technology.

  14. High-efficiency, high-average-power, CW Yb:YAG zigzag slab master oscillator power amplifier at room temperature.

    PubMed

    Chen, Xiaoming; Xu, Liu; Hu, Hao; Zhou, Tangjian; Sun, Yinhong; Jiang, Hao; Lei, Jun; Lv, Wenqiang; Su, Hua; Shi, Yong; Li, Mi; Wu, Yingchen; Yao, Zhenyu; Zhao, Na; Xu, Xiaoxiao; Gao, Qingsong; Wang, Xiaojun; Tang, Chun

    2016-10-17

    We demonstrate a high-efficiency, high-average-power, CW master oscillator power amplifier based on a conduction-cooled, end-pumped Yb:YAG slab architecture at room temperature (RT). Firstly, the CW amplification property is theoretically analyzed based on the kinetics model for Yb:YAG. To realize high-efficiency laser amplification extraction for RT Yb:YAG, not only intense pump but also a high-power seed laser is of great importance. Experimentally, a composite Yb:YAG crystal slab with three doped and two un-doped segments symmetrically is employed as the gain medium, which is end-pumped by two high-power, 940-nm diode lasers. A high-power, narrow-spectral-width, 1030-nm fiber seed laser then double passes the composite slab to realize efficient power amplification. For 0.8-kW seed input, maximum output power of 3.54 kW is obtained at 6.7 kW of pump power, with the optical conversion efficiency of 41% and the highest slope efficiency of 59%. To the best of our knowledge, this is the highest power and efficiency reported for Yb:YAG lasing at RT except thin-disk lasers.

  15. Techniques for increasing output power from mode-locked semiconductor lasers

    SciTech Connect

    Mar, A.; Vawter, G.A.

    1996-02-01

    Mode-locked semiconductor lasers have drawn considerable attention as compact, reliable, and relatively inexpensive sources of short optical pulses. Advances in the design of such lasers have resulted in vast improvements in pulsewidth and noise performance, at a very wide range of repetition rates. An attractive application for these lasers would be to serve as alternatives for large benchtop laser systems such as dye lasers and solid-state lasers. However, mode-locked semiconductor lasers have not yet approached the performance of such systems in terms of output power. Different techniques for overcoming the problem of low output power from mode-locked semiconductor lasers will be discussed. Flared and arrayed lasers have been used successfully to increase the pulse saturation energy limit by increasing the gain cross section. Further improvements have been achieved by use of the MOPA configuration, which utilizes a flared semiconductor amplifier s amplify pulses to energies of 120 pJ and peak powers of nearly 30W.

  16. The next generation of high-power semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Botez, Dan; Yang, Jane J.

    Progress made in both high-power coherent arrays for space communications and high-power incoherent arrays for efficient pumping of solid-state (Nd-YAG) laser is reviewed. It is concluded that parallel coupling in a strong index-guided structure makes it possible to increase the performance of resonant-optical-waveguide (ROW) arrays by orders of magnitude higher than that of other array types. Preliminary results from ROW arrays show greater than 2,000 h operation at 0.5-W output with little increase in drive current. Edge-emitting POW arrays are likely to reach 2-3 W continuous-wave diffraction limited power. Monolithic solid-state pumps are likely to deliver optical flux densities in excess of 1 kW/sq cm.

  17. 28W average power hydrocarbon-free rubidium diode pumped alkali laser.

    PubMed

    Zweiback, Jason; Krupke, William F

    2010-01-18

    We present experimental results for a high-power diode pumped hydrocarbon-free rubidium laser with a scalable architecture. The laser consists of a liquid cooled, copper waveguide which serves to both guide the pump light and to provide a thermally conductive surface near the gain volume to remove heat. A laser diode stack, with a linewidth narrowed to approximately 0.35 nm with volume bragg gratings, is used to pump the cell. We have achieved 24W average power output using 4 atmospheres of naturally occurring helium ((4)He) as the buffer gas and 28W using 2.8 atmospheres of (3)He.

  18. High-average-power water window soft X-rays from an Ar laser plasma

    NASA Astrophysics Data System (ADS)

    Amano, Sho

    2016-07-01

    A high average power of 140 mW and high conversion efficiency of 14% were demonstrated in “water window” soft X-rays generated using a laser plasma source developed in-house, when a solid Ar target was irradiated by a commercial Nd:YAG Q-switched laser with an energy of 1 J at a repetition rate of 1 Hz. This soft X-ray power compared favorably with that produced using a synchrotron radiation source, and the developed laser plasma source can be used in various applications, such as soft X-ray microscopy, in place of synchrotron facilities.

  19. Composite Thin-Disk Laser Scaleable to 100 kW Average Power Output and Beyond

    SciTech Connect

    Zapata, L.; Beach, R.; Payne, S.

    2000-06-01

    By combining newly developed technologies to engineer composite laser components with state of the art diode laser pump delivery technologies, we are in a position to demonstrate high beam quality, continuous wave, laser radiation at scaleable high average powers. The crucial issues of our composite thin disk laser technology were demonstrated during a successful first light effort. The high continuous wave power levels that are now within reach make this system of high interest to future DoD initiatives in solid-state laser technology for the laser weapon arena.

  20. Average reflected power from a one-dimensional slab of discrete scatterers

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Lang, Roger H.

    1990-01-01

    Reflection from a one-dimensional random medium of discrete scatterers is considered. The discrete scattering medium is modeled by a Poisson impulse process with concentration lambda. By employing the Markov property of the Poisson impulse process, an exact functional integro-differential equation of the Kolmogorov-Feller type is found for the average reflected power. Approximate solutions to this equation are obtained by regular perturbation and two variable expansion techniques in the limit of small lambda. The regular perturbation results is valid for small slab thicknesses, while the two-variable result is uniformly valid for any thickness. The two-variable result shows that as the slab size becomes infinite all of the incident power is reflected on the average.

  1. High-power optically pumped semiconductor laser apllications

    NASA Astrophysics Data System (ADS)

    Morioka, S. Brandon

    2011-03-01

    OPS lasers have found applications in various industrial and scientific laser applications due to their power scaling capability, their wide range of emission wavelengths, physical size and their superior reliability. This paper provides an overview of commercially available OPS lasers and the applications in which they are used including biotechnology, medical, holography, Titanium-Sapphire laser pumping, non-lethal defense, forensics, and entertainment.

  2. High-power high-brightness semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Botez, D.

    2005-01-01

    Broad-stripe (greater than or equal to 100 microns) diode lasers have achieved CW powers as high as 15W, and wallplug efficiencies as high as 70%. For high coherent power photonic-crystal structures with modulated gain, that is active photonic crystals (APCs), of large index steps have been used, as early as 1988, for effective lateral-mode control range in large-aperture (100-200 microns) devices. Photonic-bandpass (PBP) structures relying on long-range resonant leaky-wave coupling, so called ROW arrays, have allowed stable, near-diffraction-limited beam operation to powers as high as 1.6W CW and 10W peak pulsed. Photonic-bandgap (PBG) structures with a built-in lattice defect, so called ARROW lasers, have provided up to 0.5W CW stable, single-mode power and hold the potential for 1W CW highly reliable single-mode operation. The solution for high-efficiency surface emission, from 2nd-order DFB/DBR lasers, in a single-lobe beam pattern was found in 2000. Single-lobe and single-mode operation in a diffraction-limited beam orthonormal to the chip surface was demonstrated, which opens the way for the realization of 2-D surface-emitting, 2nd-order APCs for the stable generation of watts of CW single-lobe, single-mode power from large 2-D apertures, as well as scalability of such devices at the wafer level.

  3. The use of induction linacs with nonlinear magnetic drive as high average power accelerators

    NASA Astrophysics Data System (ADS)

    Birx, D. L.; Cook, E. G.; Hawkins, S. A.; Newton, M. A.; Poor, S. E.; Reginato, L. L.; Schmidt, J. A.; Smith, M. W.

    1985-05-01

    The marriage of induction linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/m, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator is under construction at Lawrence Livermore National Laboratory (LLNL) to allow us to demonstrate some of these concepts. Progress on this project is reported here.

  4. Development of solid-state disk laser for high-average power

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Koumvakalis, Andrea; Shah, Raj D.; Endo, Tom

    2003-06-01

    This work describes recent progress in the development of solid-state laser using a composite disk the active mirror configuration. Pump diode arrays are placed around the perimeter of the disk and pump light is injected into the undoped edge. Uniform laser gain can be achieved with proper choice of lasant doping level, diode placement, and diode divergence. Effective reduction of thermo-optical distortions makes this laser suitable for pulse amplification at high-average power.

  5. High-average-power narrow-line-width sum frequency generation 589 nm laser

    NASA Astrophysics Data System (ADS)

    Lu, Yanhua; Fan, Guobin; Ren, Huaijin; Zhang, Lei; Xu, Xiafei; Zhang, Wei; Wan, Min

    2015-10-01

    An 81 W average-power all-solid-state sodium beacon laser at 589 nm with a repetition rate of 250 Hz is introduced, which is based on a novel sum frequency generation idea between two high-energy, different line widths, different beam quality infrared lasers (a 1064 nm laser and a 1319 nm laser). The 1064 nm laser, which features an external modulated CW single frequency seed source and two stages of amplifiers, can provide average-power of 150 W, beam quality M2 of ~1.8 with ultra-narrow line width (< 100 kHz). The 1319 nm laser can deliver average-power of 100 W, beam quality M2 of ~3.0 with a narrow line width of ~0.3 GHz. By sum frequency mixing in a LBO slab crystal (3 mm x 12 mm x 50 mm), pulse energy of 325 mJ is achieved at 589 nm with a conversion efficiency of 32.5 %. Tuning the center wavelength of 1064 nm laser by a PZT PID controller, the target beam's central wavelength is accurately locked to 589.15910 nm with a line width of ~0.3 GHz, which is dominated mainly by the 1319 nm laser. The beam quality is measured to be M2 < 1.3. The pulse duration is measured to be 150 μs in full-width. To the best of our knowledge, this represents the highest average-power for all-solid-state sodium beacon laser ever reported.

  6. High-coherent-power, two-dimensional grating surface-emitting (GSE) semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Li, Shuang

    High-power semiconductor lasers, with coherent radiation, are attractive sources for many applications. However, achieving stable, coherent radiation to watt-range power from monolithic semiconductor lasers has been a challenge. This work covers the study and development of high power coherent semiconductor lasers employing novel-types of both surface-emitting and edge-emitting structures. Surface-emitting (SE) semiconductor lasers are preferred over edge-emitting lasers due to their inherent reliability, scalability, and packaging advantages. Horizontal-cavity, grating SE semiconductor lasers are promising candidates for high-power coherent sources. Here we present the design and analysis of a two-dimensional (2D) horizontal-cavity GSE laser (so called ROW-SEDFB laser), for which 2nd-order, distributed feedback/distributed Bragg reflector (DFB/DBR) gratings with central pi phaseshift are preferentially placed in the element regions of a resonant-optical-waveguide (ROW) structure. We find that beside their usual functions (feedback and outcoupling), the gratings act as an effective array-mode selector. The in-phase mode is strongly favored to lase around its resonance due both to better field overlap with the active-grating (i.e., DFB) and to lower interelement loss than the other array modes. For 20-element arrays with 700/600mum-long DFB/DBR gratings, and of 100mum-wide lateral dimension, high intermodal discrimination is obtained. The primary mechanisms behind this discrimination are found to be: absorption losses for the interelement field to the metal contact and to a semiconductor/metal grating layer, and the longitudinal guided-field overlap with the DFB region. The discrimination can be further enhanced by introducing free-carrier absorption in the interelement regions. The device has relatively uniform guided-field profiles in both lateral and longitudinal directions and a strong built-in index profile in the lateral direction. These features make the ROW

  7. High-power 880-nm diode-directly-pumped passively mode-locked Nd:YVO₄ laser at 1342 nm with a semiconductor saturable absorber mirror.

    PubMed

    Li, Fang-Qin; Liu, Ke; Han, Lin; Zong, Nan; Bo, Yong; Zhang, Jing-Yuan; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan

    2011-04-15

    A high-power 880-nm diode-directly-pumped passively mode-locked 1342 nm Nd:YVO₄ laser was demonstrated with a semiconductor saturable absorber mirror (SESAM). The laser mode radii in the laser crystal and on the SESAM were optimized carefully using the ABCD matrix formalism. An average output power of 2.3 W was obtained with a repetition rate of 76 MHz and a pulse width of 29.2 ps under an absorbed pump power of 12.1 W, corresponding to an optical-optical efficiency of 19.0% and a slope efficiency of 23.9%, respectively.

  8. Spatial and Spectral Brightness Enhancement of High Power Semiconductor Lasers

    NASA Astrophysics Data System (ADS)

    Leidner, Jordan Palmer

    The performance of high-power broad-area diode lasers is inhibited by beam filamentation induced by free-carrier-based self-focusing. The resulting beam degradation limits their usage in high-brightness, high-power applications such as pumping fiber lasers, and laser cutting, welding, or marking. Finite-difference propagation method simulations via RSoft's BeamPROP commercial simulation suite and a custom-built MATLAB code were used for the study and design of laser cavities that suppress or avoid filamentation. BeamPROP was used to design a tapered, passive, multi-mode interference cavity for the creation of a self-phase-locking laser array, which is comprised of many single-mode gain elements coupled to a wide output coupler to avoid damage from local high optical intensities. MATLAB simulations were used to study the effects of longitudinal and lateral cavity confinement on lateral beam quality in conventional broad-area lasers. This simulation was expanded to design a laser with lateral gain and index prescription that is predicted to operate at or above state-of-the-art powers while being efficiently coupled to conventional telecom single-mode optical fibers. Experimentally, a commercial broad-area laser was coupled in the far-field to a single-mode fiber Bragg grating to provide grating-stabilized single-mode laser feedback resulting in measured spectral narrowing for efficient pump absorption. Additionally a 19 GHz-span, spatially resolved, self-heterodyne measurement was made of a broad-area laser to study the evolution/devolution of the mode content of the emitted laser beam with increasing power levels.

  9. High-index asymptotics of spherical Bessel products averaged with modulated Gaussian power laws

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2014-12-01

    Bessel integrals of type are investigated, where the kernel g( k) is a modulated Gaussian power-law distribution , and the jl ( m) are multiple derivatives of spherical Bessel functions. These integrals define the multipole moments of Gaussian random fields on the unit sphere, arising in multipole fits of temperature and polarization power spectra of the cosmic microwave background. Two methods allowing efficient numerical calculation of these integrals are presented, covering Bessel indices l in the currently accessible multipole range 0 ≤ l ≤ 104 and beyond. The first method is based on a representation of spherical Bessel functions by Lommel polynomials. Gaussian power-law averages can then be calculated in closed form as finite Hankel series of parabolic cylinder functions, which allow high-precision evaluation. The second method is asymptotic, covering the high- l regime, and is applicable to general distribution functions g( k) in the integrand; it is based on the uniform Nicholson approximation of the Bessel derivatives in conjunction with an integral representation of squared Airy functions. A numerical comparison of these two methods is performed, employing Gaussian power laws and Kummer distributions to average the Bessel products.

  10. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics.

    PubMed

    Heo, Jinseong; Byun, Kyung-Eun; Lee, Jaeho; Chung, Hyun-Jong; Jeon, Sanghun; Park, Seongjun; Hwang, Sungwoo

    2013-01-01

    Graphene heterostructures in which graphene is combined with semiconductors or other layered 2D materials are of considerable interest, as a new class of electronic devices has been realized. Here we propose a technology platform based on graphene-thin-film-semiconductor-metal (GSM) junctions, which can be applied to large-scale and power-efficient electronics compatible with a variety of substrates. We demonstrate wafer-scale integration of vertical field-effect transistors (VFETs) based on graphene-In-Ga-Zn-O (IGZO)-metal asymmetric junctions on a transparent 150 × 150 mm(2) glass. In this system, a triangular energy barrier between the graphene and metal is designed by selecting a metal with a proper work function. We obtain a maximum current on/off ratio (Ion/Ioff) up to 10(6) with an average of 3010 over 2000 devices under ambient conditions. For low-power logic applications, an inverter that combines complementary n-type (IGZO) and p-type (Ge) devices is demonstrated to operate at a bias of only 0.5 V.

  11. The influence of temperature on the average number of optical phonons in a polar slab of semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-qing

    2017-03-01

    The effects of temperature T, average number of optical phonons N, the phonon frequency ω and slab thickness d in a polar slab were investigated using the linear combination operator and unitary transformation methods. The results showed that the phonon frequency ω increases with increasing temperature T, but the average number of optical phonons N and phonon frequency ω decreases with the increase in slab thickness d. When the slab thickness is <5 nm, N decreases sharply, and when the slab thickness is <10 nm, the phonon frequency ω and slab thickness d changed significantly.

  12. Simulation of spectral stabilization of high-power broad-area edge emitting semiconductor lasers.

    PubMed

    Holly, Carlo; Hengesbach, Stefan; Traub, Martin; Hoffmann, Dieter

    2013-07-01

    The simulation of spectral stabilization of broad-area edge-emitting semiconductor diode lasers is presented in this paper. In the reported model light-, temperature- and charge carrier-distributions are solved iteratively in frequency domain for transverse slices along the semiconductor heterostructure using wide-angle finite-difference beam propagation. Depending on the operating current the laser characteristics are evaluated numerically, including near- and far-field patterns of the astigmatic laser beam, optical output power and the emission spectra, with central wavelength and spectral width. The focus of the model lies on the prediction of influences on the spectrum and power characteristics by frequency selective feedback from external optical resonators. Results for the free running and the spectrally stabilized diode are presented.

  13. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  14. The influence of seat configuration on maximal average crank power during pedaling: a simulation study.

    PubMed

    Rankin, Jeffery W; Neptune, Richard R

    2010-11-01

    Manipulating seat configuration (i.e., seat tube angle, seat height and pelvic orientation) alters the bicycle-rider geometry, which influences lower extremity muscle kinematics and ultimately muscle force and power generation during pedaling. Previous studies have sought to identify the optimal configuration, but isolating the effects of specific variables on rider performance from the confounding effect of rider adaptation makes such studies challenging. Of particular interest is the influence of seat tube angle on rider performance, as seat tube angle varies across riding disciplines (e.g., road racers vs. triathletes). The goals of the current study were to use muscle-actuated forward dynamics simulations of pedaling to 1) identify the overall optimal seat configuration that produces maximum crank power and 2) systematically vary seat tube angle to assess how it influences maximum crank power. The simulations showed that a seat height of 0.76 m (or 102% greater than trochanter height), seat tube angle of 85.1 deg, and pelvic orientation of 20.5 deg placed the major power-producing muscles on more favorable regions of the intrinsic force-length-velocity relationships to generate a maximum average crank power of 981 W. However, seat tube angle had little influence on crank power, with maximal values varying at most by 1% across a wide range of seat tube angles (65 to 110 deg). The similar power values across the wide range of seat tube angles were the result of nearly identical joint kinematics, which occurred using a similar optimal seat height and pelvic orientation while systematically shifting the pedal angle with increasing seat tube angles.

  15. Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers

    SciTech Connect

    Minaev, V P

    2005-11-30

    High-power semiconductor lasers and diode-pumped lasers are considered whose development qualitatively improved the characteristics of laser apparatus for surgery and force therapy, extended the scope of their applications in clinical practice, and enhanced the efficiency of medical treatment based on the use of these lasers. The characteristics of domestic apparatus are presented and their properties related to the laser emission wavelength used in them are discussed. Examples of modern medical technologies based on these lasers are considered. (invited paper)

  16. Application of Bayesian model averaging to measurements of the primordial power spectrum

    SciTech Connect

    Parkinson, David; Liddle, Andrew R.

    2010-11-15

    Cosmological parameter uncertainties are often stated assuming a particular model, neglecting the model uncertainty, even when Bayesian model selection is unable to identify a conclusive best model. Bayesian model averaging is a method for assessing parameter uncertainties in situations where there is also uncertainty in the underlying model. We apply model averaging to the estimation of the parameters associated with the primordial power spectra of curvature and tensor perturbations. We use CosmoNest and MultiNest to compute the model evidences and posteriors, using cosmic microwave data from WMAP, ACBAR, BOOMERanG, and CBI, plus large-scale structure data from the SDSS DR7. We find that the model-averaged 95% credible interval for the spectral index using all of the data is 0.940averaging can tighten the credible upper limit, depending on prior assumptions.

  17. Method and system for modulation of gain suppression in high average power laser systems

    DOEpatents

    Bayramian, Andrew James [Manteca, CA

    2012-07-31

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

  18. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers.

    PubMed

    Ancona, A; Döring, S; Jauregui, C; Röser, F; Limpert, J; Nolte, S; Tünnermann, A

    2009-11-01

    The influence of pulse duration on the laser drilling of metals at repetition rates of up to 1 MHz and average powers of up to 70 W has been experimentally investigated using an ytterbium-doped-fiber chirped-pulse amplification system with pulses from 800 fs to 19 ps. At a few hundred kilohertz particle shielding causes an increase in the number of pulses for breakthrough, depending on the pulse energy and duration. At higher repetition rates, the heat accumulation effect overbalances particle shielding, but significant melt ejection affects the hole quality. Using femtosecond pulses, heat accumulation starts at higher repetition rates, and the ablation efficiency is higher compared with picosecond pulses.

  19. New generation of high average power industry grade ultrafast ytterbium fiber lasers

    NASA Astrophysics Data System (ADS)

    Yusim, Alex; Samartsev, Igor; Shkurikhin, Oleg; Myasnikov, Daniil; Bordenyuk, Andrey; Platonov, Nikolai; Kancharla, Vijay; Gapontsev, Valentin

    2016-03-01

    We report an industrial grade picosecond and femtosecond pulse Yb fiber lasers with >100 μJ pulse energy and hundreds of Watts of average power for improved laser machining speed of sapphire and glass. This highly efficient laser offers >25% wall plug efficiency within a compact 3U rack-mountable configuration plus a long >2m fiber delivery cable. Reconfigurable features such as controllable repetition rate, fine pulse duration control, burst mode operation and adjustable pulse energy permit the customer to tailor the laser to their application.

  20. Specification of optical components for a high average-power laser environment

    SciTech Connect

    Taylor, J.R.; Chow, R.; Rinmdahl, K.A.; Willis, J.B.; Wong, J.N.

    1997-06-25

    Optical component specifications for the high-average-power lasers and transport system used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant must address demanding system performance requirements. The need for high performance optics has to be balanced against the practical desire to reduce the supply risks of cost and schedule. This is addressed in optical system design, careful planning with the optical industry, demonstration of plant quality parts, qualification of optical suppliers and processes, comprehensive procedures for evaluation and test, and a plan for corrective action.

  1. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  2. Modified raised cosine waveform shaping with reduced peak to average power ratio

    NASA Astrophysics Data System (ADS)

    Shamee, B.; Ziyadi, M.; Mhajerin-Ariaei, A.; Almaiman, A.; Cao, Y.; Ahmed, N.; Wilkinson, S. R.; Willner, A. E.

    2016-09-01

    The raised cosine waveform is a common efficient waveform to control the bandwidth reduction of a communications signal at the cost of controlled Inter Symbol Interference (ISI) with relatively large Peak to Average Power Ratio (PAPR). Reducing the PAPR has been addressed extensively in the literature using methods such as the clipping and coding the data among others. In this paper, we reduce the PAPR by windowing the raised cosine waveform to minimize contributions to PAPR with minimal spectral growth. We simulate the modified raised cosine to determine the reduction in PAPR for various Quadrature Amplitude Modulation (QAM) orders and excess bandwidths.

  3. Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers.

    PubMed

    Zapata, Luis E; Lin, Hua; Calendron, Anne-Laure; Cankaya, Huseyin; Hemmer, Michael; Reichert, Fabian; Huang, W Ronny; Granados, Eduardo; Hong, Kyung-Han; Kärtner, Franz X

    2015-06-01

    A cryogenic composite-thin-disk amplifier with amplified spontaneous emission (ASE) rejection is implemented that overcomes traditional laser system problems in high-energy pulsed laser drivers of high average power. A small signal gain of 8 dB was compared to a 1.5 dB gain for an uncapped thin-disk without ASE mitigation under identical pumping conditions. A strict image relayed 12-pass architecture using an off-axis vacuum telescope and polarization switching extracted 100 mJ at 250 Hz in high beam quality stretched 700 ps pulses of 0.6-nm bandwidth.

  4. Laser properties of an improved average-power Nd-doped phosphate glass

    SciTech Connect

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.

    1995-03-15

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young`s modulus), and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime.

  5. Properties of a new average power Nd-doped phosphate laser glass

    SciTech Connect

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.; Wilke, G.D.; Hayden, J.S.

    1995-03-09

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime.

  6. ICAN as a new laser paradigm for high energy, high average power femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Brocklesby, W. S.; Nilsson, J.; Schreiber, T.; Limpert, J.; Brignon, A.; Bourderionnet, J.; Lombard, L.; Michau, V.; Hanna, M.; Zaouter, Y.; Tajima, T.; Mourou, Gérard

    2014-05-01

    The application of petawatt lasers to scientific and technological problems is advancing rapidly. The usefulness of these applications will depend on being able to produce petawatt pulses at much higher repetition rates than is presently possible. The International Coherent Amplification Network (ICAN) consortium seeks to design high repetition rate petawatt lasers using large scale coherent beam combination of femtosecond pulse amplifiers built from optical fibres. This combination of technologies has the potential to overcome many of the hurdles to high energy, high average power pulsed lasers, opening up applications and meeting societal challenges.

  7. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  8. A High-Average-Power Free Electron Laser for Microfabrication and Surface Applications

    NASA Technical Reports Server (NTRS)

    Dylla, H. F.; Benson, S.; Bisognano, J.; Bohn, C. L.; Cardman, L.; Engwall, D.; Fugitt, J.; Jordan, K.; Kehne, D.; Li, Z.; Liu, H.; Merminga, L.; Neil, G. R.; Neuffer, D.; Shinn, M.; Sinclair, C.; Wiseman, M.; Brillson, L. J.; Henkel, D. P.; Helvajian, H.; Kelley, M. J.; Nair, Shanti

    1995-01-01

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt ultraviolet (UV) (160-1000 mm) and infrared (IR) (2-25 micron) free electron laser (FEL) driven by a recirculating, energy recovering 200 MeV superconducting radio frequency (SRF) accelerator. FEL users, CEBAF's partners in the Lase Processing Consortium, including AT&T, DuPont, IBM, Northrop Grumman, 3M, and Xerox, are developing applications such as metal, ceramic, and electronic material micro-fabrication and polymer and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability, and pulse structure.

  9. High average power pulsed phase conjugate laser with birefringence correction. Revision 1

    SciTech Connect

    Bowers, M.W.; Hankla, A.K.; Jacobson, G.F.

    1994-05-01

    Nd:YAG rod lasers have been plagued with the inability to go to high average powers because of thermally induced birefringence and focusing. Several methods have been employed to correct for the birefringence and the thermal aberrations of such systems, but place stringent constraints on the laser heads and/or the system alignment. They have developed a scalable Nd: YAG master oscillator/power amplifier (MOPA) laser system which employs a novel phase conjugation scheme to correct both for the material and thermal distortions as well as the thermal birefringence in double pass amplifier systems. This method reduces the double pass depolarization from 42% to less than 2% and is easy to align.

  10. Optimisation of high average power optical parametric generation using a photonic crystal fiber.

    PubMed

    Sloanes, Trefor; McEwan, Ken; Lowans, Brian; Michaille, Laurent

    2008-11-24

    In this paper the length of a photonic crystal fiber is optimised to perform high average output power parametric generation with maximum efficiency. It is shown that the fiber length has to be increased up to 150 m, well beyond the walk-off distance between the pump and signal/idler, to optimize the generation efficiency. In this regime, the Raman process can take over from four-wave mixing and lead to supercontinuum generation. It is shown that the parametric wavelength conversion is directional; probably due to small variations in the core dimensions along the fiber length. The fiber exhibits up to 40% conversion efficiency, with the idler (0.9 microm) and the signal (1.3 microm) having a combined output power of over 1.5 W.

  11. Simulation of high-average power windows for accelerator production of tritium

    SciTech Connect

    Cummings, K A; Daily, L D; Mayhall, D J; Nelson, S D; Salem, J; Shang, C C

    1998-08-20

    Development of a robust, high-average-power (210 kW, CW) microwave transmission line system for the Accelerator Production of Tritium (APT) facility is a stringent engineering and operational requirement. One key component in this RF transmission system is the vacuum barrier window. The requirement of high-power handling capability coupled to the desirability of good mean time to failure characteristics can be treated substantially with a set of microwave, thermal-structural, and Weibull analysis codes. In this paper, we examine realistic 3-D engineering models of the ceramic windows. We model the detailed cooling circuit and make use of accurate heat deposition models for the RF. This input and simulation detail is used to analyze the thermal- structural induced stresses in baseline coaxial window configurations. We also use a Weibull-distribution failure.

  12. Improved Radio Frequency Power Characteristics of Complementary Metal-Oxide-Semiconductor-Compatible Asymmetric-Lightly-Doped-Drain Metal-Oxide-Semiconductor Transistor

    NASA Astrophysics Data System (ADS)

    Chang, Tsu; Kao, Hsuan-ling; Chen, Y. J.; Chin, Albert

    2010-03-01

    We have characterized and modeled the radio frequency (RF) power performance of a 0.18 µm asymmetric-lightly-doped-drain metal-oxide-semiconductor field-effect transistor (LDD MOSFET). In comparison with the conventional 0.18 µm MOSFET, this asymmetric-LDD device shows a larger power density of 0.54 W/mm, and 8 dB better adjacent channel power ratio (ACPR) linearity at 2.4 GHz from the improved twice DC breakdown voltage of 6.9 V. These significant improvements of RF power performance in the asymmetric-LDD transistor are important for the medium RF power amplifier application.

  13. The ETA-II induction linac as a high-average-power FEL driver

    NASA Astrophysics Data System (ADS)

    Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.

    1990-10-01

    The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.

  14. A new surface characterization technique: RIMAPS (Rotated Image with Maximum Average Power Spectrum).

    PubMed

    Fuentes, N O; Favret, E A

    2002-04-01

    This work introduces a new imaging technique, Rotated Image with Maximum Average Power Spectrum (RIMAPS), for use in determining orientation and characteristics of surface topography. It consists of computing the maximum value of the averaged power spectrum, given by one step of the two-dimensional Fourier transform, for each angle of rotation of a digitized image. The basic measurement science of this technique is described and different cases are studied. The characterization of simple geometrical figures explains the meaning of peaks and their angular positions given by RIMAPS analysis. A known surface pattern made on a sample of pure copper, mechanically ground, is used to study reproducibility, dependence on image quality and topography scale relative to pixel size and magnification. Samples of pure zinc, mechanically ground and chemically etched, were used to show the main features of RIMAPS analysis when characterizing a more complicated pattern on a real surface. All the studies performed under different conditions for observation and acquisition of images give strong evidence of the stability and robustness of RIMAPS as a technique for the characterization of topography.

  15. Yb3+ doped ribbon fiber for high-average power lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Drachenberg, Derrek R.; Messerly, Michael J.; Pax, Paul H.; Sridharan, Arun K.; Tassano, John B.; Dawson, Jay W.

    2014-03-01

    Diffraction-limited high power lasers in the region of 10s of kW to greater than 100 kW are needed for defense, manufacturing and future science applications. A balance of thermal lensing and Stimulated Brillouin Scattering (SBS) for narrowband amplifiers and Stimulated Raman Scattering (SRS) for broadband amplifiers is likely to limit the average power of circular core fiber amplifiers to 2 kW (narrowband) or 36 kW (broadband). A ribbon fiber, which has a rectangular core, operating in a high order mode can overcome these obstacles by increasing mode area without becoming thermal lens limited and without the on-axis intensity peak associated with circular high order modes. High order ribbon fiber modes can also be converted to a fundamental Gaussian mode with high efficiency for applications in which this is necessary. We present an Yb-doped, air clad, optical fiber having an elongated, ribbon-like core having an effective mode area of area of 600 μm² and an aspect ratio of 13:1. As an amplifier, the fiber produced 50% slope efficiency and a seed-limited power of 10.5 W, a gain of 24 dB. As an oscillator, the fiber produced multimode power above 40 W with 71% slope efficiency and single mode power above 5 W with 44% slope efficiency. The multimode M2 beam quality factor of the fiber was 1.6 in the narrow dimension and 15 in the wide dimension.

  16. Design and component specifications for high average power laser optical systems

    SciTech Connect

    O'Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs.

  17. Thermooptics of magnetoactive media: Faraday isolators for high average power lasers

    NASA Astrophysics Data System (ADS)

    Khazanov, E. A.

    2016-09-01

    The Faraday isolator, one of the key high-power laser elements, provides optical isolation between a master oscillator and a power amplifier or between a laser and its target, for example, a gravitational wave detector interferometer. However, the absorbed radiation inevitably heats the magnetoactive medium and leads to thermally induced polarization and phase distortions in the laser beam. This self-action process limits the use of Faraday isolators in high average power lasers. A unique property of magnetoactive medium thermooptics is that parasitic thermal effects arise on the background of circular birefringence rather than in an isotropic medium. Also, even insignificant polarization distortions of the radiation result in a worse isolation ratio, which is the key characteristic of the Faraday isolator. All possible laser beam distortions are analyzed for their deteriorating effect on the Faraday isolator parameters. The mechanisms responsible for and key physical parameters associated with different kinds of distortions are identified and discussed. Methods for compensating and suppressing parasitic thermal effects are described in detail, the published experimental data are systematized, and avenues for further research are discussed based on the results achieved.

  18. Thermally induced distortion of high average power laser system by an optical transport system

    SciTech Connect

    Ault, L; Chow, R; Taylor, Jedlovec, D

    1999-03-31

    The atomic vapor laser isotope separation process uses high-average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics. The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural-optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions are reported on optics made from fused silica and Zerodur substrate materials.

  19. Characterization of coherence-or-power selectable operation of an external-cavity semiconductor diode laser.

    PubMed

    Hyodo, Masaharu; Watanabe, Masayoshi; Kawakami, Akira; Saito, Shingo; Adachi, Masaaki

    2016-12-20

    The properties of the coherence-or-power selectable operation of an external-cavity semiconductor diode laser through the control of intracavity polarization states have been characterized in detail. In our technique, a diffraction grating and a reflector functioned as a polarization-dependent output coupler, such that the portion of light fed back to the gain medium was readily controlled by rotating the intracavity polarization axis, which resulted in the selectable operation of either a high degree of coherence or a high power for the laser output. We could continuously sweep the correlation widths over a range of approximately one order of magnitude, as well as four-fold output powers by simply rotating the intracavity half-wave plate. We also demonstrated experiments on optical phase locking, using two independent coherence-or-power selectable lasers.

  20. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1991-01-01

    The effects of neutron and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10(exp 13) n/sq cm and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are presented. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  1. Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies

    NASA Astrophysics Data System (ADS)

    Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto

    In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.

  2. Time reversal seismic source imaging using peak average power ratio (PAPR) parameter

    NASA Astrophysics Data System (ADS)

    Franczyk, Anna; Leśniak, Andrzej; Gwiżdż, Damian

    2017-03-01

    The time reversal method has become a standard technique for the location of seismic sources. It has been used both for acoustic and elastic numerical modelling and for 2D and 3D propagation models. Although there are many studies concerning its application to point sources, little so far has been done to generalise the time reversal method to the study of sequences of seismic events. The need to describe such processes better motivates the analysis presented in this paper. The synthetic time reversal imaging experiments presented in this work were conducted for sources with the same origin time as well as for the sources with a slight delay in origin time. For efficient visualisation of the seismic wave propagation and interference, a new coefficient—peak average power ratio—was introduced. The paper also presents a comparison of visualisation based on the proposed coefficient against a commonly used visualisation based on a maximum value.

  3. A Method for the Estimation of p-Mode Parameters from Averaged Solar Oscillation Power Spectra

    NASA Astrophysics Data System (ADS)

    Reiter, J.; Rhodes, E. J., Jr.; Kosovichev, A. G.; Schou, J.; Scherrer, P. H.; Larson, T. P.

    2015-04-01

    A new fitting methodology is presented that is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from m-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the “Windowed, MuLTiple-Peak, averaged-spectrum” or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run, using weights from a leakage matrix that takes into account observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method, which employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure, which is based upon 6366 modes that we computed using the WMLTP method on the 66 day 2010 Solar and Heliospheric Observatory/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion, we developed a new procedure for the identification and correction of outliers in a frequency dataset. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle 24 during mid-2010.

  4. 120 Mbit/s QPPM high power semiconductor transmitter performance and reliability

    NASA Astrophysics Data System (ADS)

    Greulich, P.; Hespeler, B.; Spatscheck, Th.

    1991-06-01

    Optical and electrical performance of a high power semiconductor laser transmitter (HPST) and of the related driver electronics are presented. Stable single-lobed operation of the HPST is accomplished by retroreflection of one lobe of the dual-lobed far field using a GRIN lens and stripe mirror. The envisaged peak-power output power of 1 W is achieved and 120 Mbit/s data transmission applying QPPM is demonstrated. Preliminary results after 2400 h of a lifetest performed on a laser array without a stripe mirror yield a bias current increase of about 2.1 x 10 exp -5/h and an efficiency decrease of 1 x 10 exp -5 hr.

  5. Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires.

    PubMed

    Chen, R S; Wang, W C; Lu, M L; Chen, Y F; Lin, H C; Chen, K H; Chen, L C

    2013-08-07

    The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed.

  6. Equivalent circuit theory of spontaneous emission power in semiconductor laser optical amplifiers

    NASA Astrophysics Data System (ADS)

    Chu, James Chi-Yin; Ghafouri-Shiraz, H.

    1994-05-01

    An equivalent circuit model for a semiconductor laser amplifier (SLA) has been developed. This model can be used with a transfer matrix method (TMM) to analyze the performance of a SLA. The validity of the model is explored in this paper by analyzing the spontaneous emission noise power in a Fabry-Perot SLA with a uniform distribution of material gain coefficient. The result is found to be identical with that derived by the Green function approach. The physical reasons for the validity of the equivalent circuit model are also discussed, and possible further applications of the model are suggested.

  7. Procedure for pressure contact on high-power semiconductor devices free of thermal fatigue

    NASA Technical Reports Server (NTRS)

    Knobloch, J.

    1979-01-01

    To eliminate thermal fatigue, a procedure for manufacturing semiconductor power devices with pure pressure contact without solid binding was developed. Pressure contact without the use of a solid binding to avoid a limitation of the maximum surface in the contact was examined. A silicon wafer covered with a relatively thick metal layer is imbedded with the aid of a soft silver foil between two identically sized hard contact discs (molybdenum or tungsten) which are rotationally symmetrical. The advantages of this concept are shown for large diameters. The pressure contact was tested successfully in many devices in a large variety of applications.

  8. Increasing average power in medical ultrasonic endoscope imaging system by coded excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Zhou, Hao; Wen, Shijie; Yu, Daoyin

    2008-12-01

    Medical ultrasonic endoscope is the combination of electronic endoscope and ultrasonic sensor technology. Ultrasonic endoscope sends the ultrasonic probe into coelom through biopsy channel of electronic endoscope and rotates it by a micro pre-motor, which requires that the length of ultrasonic probe is no more than 14mm and the diameter is no more than 2.2mm. As a result, the ultrasonic excitation power is very low and it is difficult to obtain a sharp image. In order to increase the energy and SNR of ultrasonic signal, we introduce coded excitation into the ultrasonic imaging system, which is widely used in radar system. Coded excitation uses a long coded pulse to drive ultrasonic transducer, which can increase the average transmitting power accordingly. In this paper, in order to avoid the overlapping between adjacent echo, we used a four-figure Barker code to drive the ultrasonic transducer, which is modulated at the operating frequency of transducer to improve the emission efficiency. The implementation of coded excitation is closely associated with the transient operating characteristic of ultrasonic transducer. In this paper, the transient operating characteristic of ultrasonic transducer excited by a shock pulse δ(t) is firstly analyzed, and then the exciting pulse generated by special ultrasonic transmitting circuit composing of MD1211 and TC6320. In the final part of the paper, we designed an experiment to validate the coded excitation with transducer operating at 5MHz and a glass filled with ultrasonic coupling liquid as the object. Driven by a FPGA, the ultrasonic transmitting circuit output a four-figure Barker excitation pulse modulated at 5MHz, +/-20 voltage and is consistent with the transient operating characteristic of ultrasonic transducer after matched by matching circuit. The reflected echo from glass possesses coded character, which is identical with the simulating result by Matlab. Furthermore, the signal's amplitude is higher.

  9. Laser damage of dichroic coatings in a high average power laser vacuum resonator

    SciTech Connect

    Arnold, P A; Berzins, L V; Chow, R; Erbert, G V

    1999-07-28

    In our application, dichroics in a high average power, near-infrared, laser system have short operating lifetimes. These dichroics were used as the resonator fold mirrors and permitted the transmission of the pumping argon (Ar) ion laser light. Representative samples of two different dichroic optics were taken off-line and the transmission performance monitored in various scenarios. Irradiating these optics under resonator vacuum conditions, ({le}1 mT, 11.7 kW/cm{sup 2}, Ar laser running all wavelengths) resulted in a degradation of transmission with time. Irradiating these optics in a rarefied oxygen atmosphere (1 to 10 T of oxygen, 11.7 kW/cm{sup 2}, Ar laser running all wavelengths) the transmission remained steady over a period of days. The transmission loss observed in the optic tested in vacuum was somewhat reversible if the optic was subsequently irradiated in a rarefied oxygen atmosphere. This reversibility was only possible if the transmission degradation was not too severe. Further tests demonstrated that an atmosphere of 10 T of air also prevented the transmission degradation. In addition, tests were performed to demonstrate that the optic damage was not caused by the ultra-violet component in the Ar ion laser. Mechanisms that may account for this behavior are proposed.

  10. NEO-LISP: Deflecting near-Earth objects using high average power, repetitively pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, C. R.; Michaelis, M. M.

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime; (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory; and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA's) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  11. Development of a High-Average-Power Compton Gamma Source for Lepton Colliders

    SciTech Connect

    Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.

    2009-01-22

    Gamma-({gamma}{sup -}) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A {gamma}-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition {gamma}-source assumes placing the Compton interaction point inside a CO{sub 2} laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of {gamma}-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO{sub 2}-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO{sub 2} laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO{sub 2} laser pulses circulating inside the cavity that incorporates the Compton interaction point.

  12. NEO-LISP: Deflecting near-earth objects using high average power, repetitively pulsed lasers

    SciTech Connect

    Phipps, C.R.; Michaelis, M.M.

    1994-10-01

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime, (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory, and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA`s) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  13. Development of a High-Average-Power Compton Gamma Source for Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.

    2009-01-01

    Gamma- (γ-) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A γ-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition γ-source assumes placing the Compton interaction point inside a CO2 laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of γ-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO2-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO2 laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO2 laser pulses circulating inside the cavity that incorporates the Compton interaction point.

  14. Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Wang, W. C.; Lu, M. L.; Chen, Y. F.; Lin, H. C.; Chen, K. H.; Chen, L. C.

    2013-07-01

    The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed.The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01635h

  15. Very Low-Power Consumption Analog Pulse Processing ASIC for Semiconductor Radiation Detectors

    SciTech Connect

    Wessendorf, K.O.; Lund, J.C.; Brunett, B.A.; Laguna, G.R.; Clements, J.W.

    1999-08-23

    We describe a very-low power consumption circuit for processing the pulses from a semiconductor radiation detector. The circuit was designed for use with a cadmium zinc telluride (CZT) detector for unattended monitoring of stored nuclear materials. The device is intended to be battery powered and operate at low duty-cycles over a long period of time. This system will provide adequate performance for medium resolution gamma-ray pulse-height spectroscopy applications. The circuit incorporates the functions of a charge sensitive preamplifier, shaping amplifier, and peak sample and hold circuit. An application specific integrated circuit (ASIC) version of the design has been designed, built and tested. With the exception of the input field effect transistor (FET), the circuit is constructed using bipolar components. In this paper the design philosophy and measured performance characteristics of the circuit are described.

  16. A study on the reliability of indium solder die bonding of high power semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Liu, Xingsheng; Davis, Ronald W.; Hughes, Lawrence C.; Rasmussen, Michael H.; Bhat, Rajaram; Zah, Chung-En; Stradling, Jim

    2006-07-01

    High power semiconductor lasers have found increased applications. Indium solder is one of the most widely used solders in high power laser die bonding. Indium solder has some advantages in laser die bonding. It also has some concerns, however, especially in terms of reliability. In this paper, the reliability of indium solder die bonding of high power broad area semiconductor lasers was studied. It was found that indium solder bonded lasers have much shorter lifetime than AuSn solder bonded devices. Catastrophic degradation was observed in indium solder bonded lasers. Nondestructive optical and acoustic microscopy was conducted during the lifetime testing to monitor the failure process and destructive failure analysis was performed after the lasers failed. It was found that the sudden failure was caused by electromigration of indium solder at the high testing current of up to 7A. It was shown that voids were created and gradually enlarged by indium solder electromigration, which caused local heating near the facets of the laser. The local heating induced catastrophic optical mirror damage (COMD) of the lasers. It was discussed that current crowding, localized high temperature, and large temperature gradient contributed to the fast indium solder electromigration. It was observed that some bright pattern structures appeared on the front facet of the indium solder bonded lasers after the devices failed and the bright patterns grew and spread upon further testing. Failure analysis showed that the bright pattern structure apparent on the front facet was due to crystallization of the TiOx material of the front facet coating as a result of overheating during lifetime testing. It was concluded that indium solder is not suitable for high power laser applications due to electromigration at high current densities and high temperatures.

  17. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    SciTech Connect

    Kimel, I.; Elias, L.R.

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  18. Improved Radio Frequency Power Characteristics of Complementary Metal-Oxide-Semiconductor-Compatible Asymmetric-Lightly-Doped-Drain Metal-Oxide-Semiconductor Transistor

    NASA Astrophysics Data System (ADS)

    Tsu Chang,; Hsuan-ling Kao,; Y. J. Chen,; Albert Chin,

    2010-03-01

    We have characterized and modeled the radio frequency (RF) power performance of a 0.18 μm asymmetric-lightly-doped-drain metal-oxide-semiconductor field-effect transistor (LDD MOSFET). In comparison with the conventional 0.18 μm MOSFET, this asymmetric-LDD device shows a larger power density of 0.54 W/mm, and 8 dB better adjacent channel power ratio (ACPR) linearity at 2.4 GHz from the improved twice DC breakdown voltage of 6.9 V. These significant improvements of RF power performance in the asymmetric-LDD transistor are important for the medium RF power amplifier application.

  19. Improved volume-averaged model for steady and pulsed-power electronegative discharges

    SciTech Connect

    Kim, Sungjin; Lieberman, M. A.; Lichtenberg, A. J.; Gudmundsson, J. T.

    2006-11-15

    An improved volume-averaged global model is developed for a cylindrical (radius R, length L) electronegative (EN) plasma that is applicable over a wide range of electron densities, electronegativities, and pressures. It is applied to steady and pulsed-power oxygen discharges. The model incorporates effective volume and surface loss factors for positive ions, negative ions, and electrons combining three electronegative discharge regimes: a two-region regime with a parabolic EN core surrounded by an electropositive edge, a one-region parabolic EN plasma, and a one-region flat-topped EN plasma, spanning the plasma parameters and gas pressures of interest for low pressure processing (below a few hundred millitorr). Pressure-dependent effective volume and surface loss factors are also used for the neutral species. A set of reaction rate coefficients, updated from previous model calculations, is developed for oxygen for the species O{sub 2}, O{sub 2}({sup 1}{delta}{sub g}), O, O{sub 2}{sup +}, O{sup +}, and O{sup -}, based on the latest published cross-section sets and measurements. The model solutions yield all of the quantities above together with such important processing quantities such as the neutral/ion flux ratio {gamma}{sub O}/{gamma}{sub i}, with the discharge aspect ratio 2R/L and pulsed-power period and duty ratio (pulse on-time/pulse period) as parameters. The steady discharge results are compared to an experiment, giving good agreement. For steady discharges, increasing 2R/L from 1 to 6 leads to a factor of 0.45 reduction in {gamma}{sub O}/{gamma}{sub i}. For pulsed discharges with a fixed duty ratio, {gamma}{sub O}/{gamma}{sub i} is found to have a minimum with respect to pulse period. A 25% duty ratio pulse reduces {gamma}{sub O}/{gamma}{sub i} by a factor of 0.75 compared to the steady-state case.

  20. 53 W average power few-cycle fiber laser system generating soft x rays up to the water window.

    PubMed

    Rothhardt, Jan; Hädrich, Steffen; Klenke, Arno; Demmler, Stefan; Hoffmann, Armin; Gotschall, Thomas; Eidam, Tino; Krebs, Manuel; Limpert, Jens; Tünnermann, Andreas

    2014-09-01

    We report on a few-cycle laser system delivering sub-8-fs pulses with 353 μJ pulse energy and 25 GW of peak power at up to 150 kHz repetition rate. The corresponding average output power is as high as 53 W, which represents the highest average power obtained from any few-cycle laser architecture so far. The combination of both high average and high peak power provides unique opportunities for applications. We demonstrate high harmonic generation up to the water window and record-high photon flux in the soft x-ray spectral region. This tabletop source of high-photon flux soft x rays will, for example, enable coherent diffractive imaging with sub-10-nm resolution in the near future.

  1. High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier.

    PubMed

    Liu, Jiang; Xu, Jia; Liu, Kun; Tan, Fangzhou; Wang, Pu

    2013-10-15

    We demonstrate a high-power, picosecond, thulium-doped, all-fiber master oscillator power amplifier with average power of 120.4 W. The compact fiber oscillator is carefully designed with high repetition rate for the purpose of overcoming the detrimental effects of fiber nonlinearity in the later fiber amplifiers. The pulse duration of 16 ps at 333.75 MHz repetition rate results in a peak power of 22.5 kW in the final fiber power amplifier. To the best of our knowledge, this is the first demonstration of average power exceeding 100 W from an ultrashort pulse laser at 2 μm wavelength. On the other hand, by decreasing the fiber oscillator repetition rate and pulse duration for enhancing the fiber nonlinearity effects, we also demonstrate a high-power supercontinuum source with average power of 36 W from 1.95 μm to beyond 2.4 μm in the final fiber power amplifier.

  2. Researching the 915 nm high-power and high-brightness semiconductor laser single chip coupling module

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping

    2017-02-01

    Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.

  3. High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Tamura, Fumihiko

    2000-04-01

    We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.

  4. High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser.

    PubMed

    Brown, David C; Singley, Joseph M; Kowalewski, Katie; Guelzow, James; Vitali, Victoria

    2010-11-22

    We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods.

  5. Error analysis in the measurement of average power with application to switching controllers

    NASA Technical Reports Server (NTRS)

    Maisel, J. E.

    1980-01-01

    Power measurement errors due to the bandwidth of a power meter and the sampling of the input voltage and current of a power meter were investigated assuming sinusoidal excitation and periodic signals generated by a model of a simple chopper system. Errors incurred in measuring power using a microcomputer with limited data storage were also considered. The behavior of the power measurement error due to the frequency responses of first order transfer functions between the input sinusoidal voltage, input sinusoidal current, and the signal multiplier was studied. Results indicate that this power measurement error can be minimized if the frequency responses of the first order transfer functions are identical. The power error analysis was extended to include the power measurement error for a model of a simple chopper system with a power source and an ideal shunt motor acting as an electrical load for the chopper. The behavior of the power measurement error was determined as a function of the chopper's duty cycle and back EMF of the shunt motor. Results indicate that the error is large when the duty cycle or back EMF is small. Theoretical and experimental results indicate that the power measurement error due to sampling of sinusoidal voltages and currents becomes excessively large when the number of observation periods approaches one-half the size of the microcomputer data memory allocated to the storage of either the input sinusoidal voltage or current.

  6. New Performance Indicators of Metal-Oxide-Semiconductor Field-Effect Transistors for High-Frequency Power-Conscious Design

    NASA Astrophysics Data System (ADS)

    Katayama, Kosuke; Fujishima, Minoru

    2012-02-01

    With the progress of complementary metal-oxide-semiconductor (CMOS) process technology, it is possible to apply CMOS devices to millimeter-wave amplifier design. However, the power consumption of the system becomes higher in proportion to its target frequency. Moreover, CMOS devices are biased at a point where the device achieves the highest gain and consumes much power. In order to reduce the power consumption without any compromise, we introduce two types of indicator. One works towards achieving the highest gain with the lowest power consumption. The other works towards achieving the highest linearity with consideration of the power consumption. In this work, we have shown the effectiveness of those indicators by applying measured data of the fabricated metal-oxide-semiconductor field-effect transistors (MOSFETs) to cascade common-source amplifiers.

  7. The world's first high voltage GaN-on-Diamond power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Baltynov, Turar; Unni, Vineet; Narayanan, E. M. Sankara

    2016-11-01

    This paper presents the detailed fabrication method and extensive electrical characterisation results of the first-ever demonstrated high voltage GaN power semiconductor devices on CVD Diamond substrate. Fabricated circular GaN-on-Diamond HEMTs with gate-to-drain drift length of 17 μm and source field plate length of 3 μm show an off-state breakdown voltage of ∼1100 V. Temperature characterisation of capacitance-voltage characteristics and on-state characteristics provides insight on the temperature dependence of key parameters such as threshold voltage, 2DEG sheet carrier concentration, specific on-state resistance, and drain saturation current in the fabricated devices.

  8. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power.

    PubMed

    Dawson, Jay W; Messerly, Michael J; Beach, Raymond J; Shverdin, Miroslav Y; Stappaerts, Eddy A; Sridharan, Arun K; Pax, Paul H; Heebner, John E; Siders, Craig W; Barty, C P J

    2008-08-18

    We analyze the scalability of diffraction-limited fiber lasers considering thermal, non-linear, damage and pump coupling limits as well as fiber mode field diameter (MFD) restrictions. We derive new general relationships based upon practical considerations. Our analysis shows that if the fiber's MFD could be increased arbitrarily, 36 kW of power could be obtained with diffraction-limited quality from a fiber laser or amplifier. This power limit is determined by thermal and non-linear limits that combine to prevent further power scaling, irrespective of increases in mode size. However, limits to the scaling of the MFD may restrict fiber lasers to lower output powers.

  9. Alternative lattice options for energy recovery in high-average-power high-efficiency free-electron lasers

    SciTech Connect

    Piot, P.; /Northern Illinois U. /NICADD, DeKalb /Fermilab

    2009-03-01

    High-average-power free-electron lasers often rely on energy-recovering linacs. In a high-efficiency free electron laser, the main limitation to high average power stems from the fractional energy spread induced by the free-electron laser process. Managing beams with large fractional energy spread while simultaneously avoiding beam losses is extremely challenging and relies on intricate longitudinal phase space manipulations. In this paper we discuss a possible alternative technique that makes use of an emittance exchange between one of the transverse and the longitudinal phase spaces.

  10. Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power.

    PubMed

    Jocher, Christoph; Eidam, Tino; Hädrich, Steffen; Limpert, Jens; Tünnermann, Andreas

    2012-11-01

    We report on a highpower femtosecond fiber chirped-pulse amplification system with an excellent beam quality (M(2)=1.2) operating at 250 MHz repetition rate. We demonstrate nonlinear compression in a solid-core photonic crystal fiber at unprecedented average power levels. By exploiting self-phase modulation with subsequent chirped-mirror compression we achieve pulse shortening by more than one order of magnitude to 23 fs pulses. The use of circular polarization allows higher than usual peak powers in the broadening fiber resulting in compressed 0.9 μJ pulse energy and a peak power of 34 MW at 250 W of average power (M(2)=1.3). This system is well suited for driving cavity-enhanced high-repetition rate high-harmonic generation.

  11. High-average-power and high-beam-quality Innoslab picosecond laser amplifier.

    PubMed

    Xu, Liu; Zhang, Hengli; Mao, Yefei; Yan, Ying; Fan, Zhongwei; Xin, Jianguo

    2012-09-20

    We demonstrated a laser-diode, end-pumped picosecond amplifier. With effective shaping of the seed laser, we achieved 73 W amplified laser output at the pump power of 255 W, and the optical-optical efficiency was about 28%. The beam propagation factors M(2) measured at the output power of 60 W in the horizontal direction and the vertical direction were 1.5 and 1.4, respectively.

  12. High Average Power Raman Conversion in Diamond: ’Eyesafe’ Output and Fiber Laser Conversion

    DTIC Science & Technology

    2015-06-19

    optical effects (namely stress fracture , birefringence and end-facet distortion). Future work will need to involve these processes as DRL powers move...SBS can be obtained in a bulk crystal, in contrast to other crystalline media for which SBS has only been achieved in nano -structured devices, so...providing a new tool for creating diamond nano - and micro-devices. The project raises several questions for further research. As power scaling is

  13. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    SciTech Connect

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  14. Highly Efficient Transmitter for High Peak to Average Power Ratio (PAPR) Waveforms

    DTIC Science & Technology

    2011-01-19

    and high peak to average ratios (PAR) modulation topologies like Orthogonal Frequency Division Modulation ( OFDM ) including Wideband Code Division...Collision Avoidance and Traffic Alert 1030 1090 DWTS Digital Wideband Transmission System 1350 1850 EPLRS Enhanced Position Location Reporting System 420...interface protocols that can be customized based on the necessary platform and application while synonymously controlling the frequency selectable components

  15. The main factors that affect coupling efficiency of high-power semiconductor laser array and selfoc lens array

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoping; Liu, Desen

    2008-03-01

    The coupling technique of high-power semiconductor laser array is an advancing key project. A high power density collimated beam, which facula is much smaller, can be get by coupling high-power laser array with selfoc lens array. At the same time, the coupling efficiency is higher. The factors which affect the coupling efficiency mainly include NA, diameter, length and end surface fabricating of selfoc lens and coupling technique. In this paper, an 1×19 linear laser array which maximum continuous output power is 22W is coupled with a corresponding selfoc lens array. The maximum coupling efficiency is 58.2%.

  16. Reliability of single-mode and multi-mode high-power semiconductor lasers at eye-safe wavelengths

    NASA Astrophysics Data System (ADS)

    Stakelon, T.; Lucas, J.; Osowski, M.; Lammert, R.; Moon, S.; Panja, C.; Elarde, V.; Gallup, K.; Hu, W.; Ungar, J.

    2009-02-01

    High power semiconductor lasers with wavelengths in the eye-safer region have application to a variety of defense, medical and industrial applications. We report on the reliability of high power multimode and single mode InGaAsP/InP diode lasers with wavelengths in the range 1320 to 1550 nm in a variety of configurations, including single-chip, conduction-cooled arrays, arrays incorporating internal diffraction gratings, master-oscillator power amplifiers, and fiber-coupled modules of the above. In all cases we show very low rates of degradation in optical power and the absence of sudden failure from catastrophic optical damage or from laser-package interactions.

  17. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures.

    PubMed

    Xu, Gangyi; Colombelli, Raffaele; Khanna, Suraj P; Belarouci, Ali; Letartre, Xavier; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Beere, Harvey E; Ritchie, David A

    2012-07-17

    Symmetric and antisymmetric band-edge modes exist in distributed feedback surface-emitting semiconductor lasers, with the dominant difference being the radiation loss. Devices generally operate on the low-loss antisymmetric modes, although the power extraction efficiency is low. Here we develop graded photonic heterostructures, which localize the symmetric mode in the device centre and confine the antisymmetric modes close to the laser facet. This modal spatial separation is combined with absorbing boundaries to increase the antisymmetric mode loss, and force device operation on the symmetric mode, with elevated radiation efficiency. Application of this concept to terahertz quantum cascade lasers leads to record-high peak-power surface emission (>100 mW) and differential efficiencies (230 mW A(-1)), together with low-divergence, single-lobed emission patterns, and is also applicable to continuous-wave operation. Such flexible tuning of the radiation loss using graded photonic heterostructures, with only a minimal influence on threshold current, is highly desirable for optimizing second-order distributed feedback lasers.

  18. Stopping power of fluorides and semiconductor organic films for low-velocity protons

    SciTech Connect

    Serkovic Loli, L. N.; Sanchez, E. A.; Grizzi, O.; Arista, N. R.

    2010-02-15

    A combined experimental and theoretical study of the energy loss of protons in fluorides and organic films is presented. The measurements were performed in fresh AlF{sub 3}, LiF, and N,N{sup '}-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxdiimide (EP-PTCDI) evaporated in situ on self-supported C or Ag foils, covering the very low energy range from 25 keV down to 0.7 keV. The transmission method is used in combination with time-of-flight (TOF) spectrometry. In the case of fluorides with large band gap energies (AlF{sub 3} and LiF), the experimental stopping power increases almost linearly with the mean projectile velocity showing a velocity threshold at about 0.1 a.u. These features are well reproduced by a model based on quantum scattering theory that takes into account the velocity distribution and the excitation of the active 2p electrons in the F{sup -} anions, and the properties of the electronic bands of the insulators. In the case of the semiconductor organic film with a lower gap, the experimental stopping power increases linearly with the mean projectile velocity without presenting a clear threshold. This trend is also reproduced by the proposed model.

  19. Simulations of the high average power selene free electron laser prototype. Master's thesis

    SciTech Connect

    Quick, D.D.

    1994-06-01

    Free electron laser (FEL) technology continues to advance, providing alternative solutions to existing and potential problems. The capabilities of an FEL with respect to tunability, power and efficiency make it an attractive choice when moving into new laser utilization fields. The initial design parameters, for any new system, offer a good base to begin system simulation tests in an effort to determine the best possible design. This is a study of the Novosibirsk design which is a prototype for the proposed SELENE FEL. The design uses a three-section, low-power optical klystron followed by a single-pass, high-power radiator. This system is inherently sensitive to electron beam quality, but affords flexibility in achieving the final design. The performance of the system is studied using the initial parameters. An FEL, configured as a simple, two section optical klystron is studied to determine the basic operating characteristics of a high current FEL klystron.

  20. On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz.

    PubMed

    Hashimoto, Yota; Hirata, Akimasa; Morimoto, Ryota; Aonuma, Shinta; Laakso, Ilkka; Jokela, Kari; Foster, Kenneth R

    2017-02-08

    Incident power density is used as the dosimetric quantity to specify the restrictions on human exposure to electromagnetic fields at frequencies above 3 or 10 GHz in order to prevent excessive temperature elevation at the body surface. However, international standards and guidelines have different definitions for the size of the area over which the power density should be averaged. This study reports computational evaluation of the relationship between the size of the area over which incident power density is averaged and the local peak temperature elevation in a multi-layer model simulating a human body. Three wave sources are considered in the frequency range from 3 to 300 GHz: an ideal beam, a half-wave dipole antenna, and an antenna array. 1D analysis shows that averaging area of 20 mm  ×  20 mm is a good measure to correlate with the local peak temperature elevation when the field distribution is nearly uniform in that area. The averaging area is different from recommendations in the current international standards/guidelines, and not dependent on the frequency. For a non-uniform field distribution, such as a beam with small diameter, the incident power density should be compensated by multiplying a factor that can be derived from the ratio of the effective beam area to the averaging area. The findings in the present study suggest that the relationship obtained using the 1D approximation is applicable for deriving the relationship between the incident power density and the local temperature elevation.

  1. On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yota; Hirata, Akimasa; Morimoto, Ryota; Aonuma, Shinta; Laakso, Ilkka; Jokela, Kari; Foster, Kenneth R.

    2017-04-01

    Incident power density is used as the dosimetric quantity to specify the restrictions on human exposure to electromagnetic fields at frequencies above 3 or 10 GHz in order to prevent excessive temperature elevation at the body surface. However, international standards and guidelines have different definitions for the size of the area over which the power density should be averaged. This study reports computational evaluation of the relationship between the size of the area over which incident power density is averaged and the local peak temperature elevation in a multi-layer model simulating a human body. Three wave sources are considered in the frequency range from 3 to 300 GHz: an ideal beam, a half-wave dipole antenna, and an antenna array. 1D analysis shows that averaging area of 20 mm  ×  20 mm is a good measure to correlate with the local peak temperature elevation when the field distribution is nearly uniform in that area. The averaging area is different from recommendations in the current international standards/guidelines, and not dependent on the frequency. For a non-uniform field distribution, such as a beam with small diameter, the incident power density should be compensated by multiplying a factor that can be derived from the ratio of the effective beam area to the averaging area. The findings in the present study suggest that the relationship obtained using the 1D approximation is applicable for deriving the relationship between the incident power density and the local temperature elevation.

  2. Transmission line pulse system for avalanche characterization of high power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Riccio, Michele; Ascione, Giovanni; De Falco, Giuseppe; Maresca, Luca; De Laurentis, Martina; Irace, Andrea; Breglio, Giovanni

    2013-05-01

    Because of the increasing in power density of electronic devices for medium and high power application, reliabilty of these devices is of great interest. Understanding the avalanche behaviour of a power device has become very important in these last years because it gives an indication of the maximum energy ratings which can be seen as an index of the device ruggedness. A good description of this behaviour is given by the static IV blocking characteristc. In order to avoid self heating, very relevant in high power devices, very short pulses of current have to be used, whose value can change from few milliamps up to tens of amps. The most used method to generate short pulses is the TLP (Transmission Line Pulse) test, which is based on charging the equivalent capacitance of a transmission line to high value of voltage and subsequently discharging it onto a load. This circuit let to obtain very short square pulses but it is mostly used for evaluate the ESD capability of semiconductor and, in this environment, it generates pulses of low amplitude which are not high enough to characterize the avalanche behaviour of high power devices . Advanced TLP circuit able to generate high current are usually very expensive and often suffer of distorption of the output pulse. In this article is proposed a simple, low cost circuit, based on a boosted-TLP configuration, which is capable to produce very square pulses of about one hundreds of nanosecond with amplitude up to some tens of amps. A prototype is implemented which can produce pulses up to 20A of amplitude with 200 ns of duration which can characterize power devices up to 1600V of breakdown voltage. Usage of microcontroller based logic make the circuit very flexible. Results of SPICE simulation are provided, together with experimental results. To prove the effectiveness of the circuit, the I-V blocking characteristics of two commercial devices, namely a 600V PowerMOS and a 1200V Trench-IGBT, are measured at different

  3. Error analysis in the measurement of average power with application to switching controllers

    NASA Technical Reports Server (NTRS)

    Maisel, J. E.

    1979-01-01

    The behavior of the power measurement error due to the frequency responses of first order transfer functions between the input sinusoidal voltage, input sinusoidal current and the signal multiplier was studied. It was concluded that this measurement error can be minimized if the frequency responses of the first order transfer functions are identical.

  4. Does Stevens's Power Law for Brightness Extend to Perceptual Brightness Averaging?

    ERIC Educational Resources Information Center

    Bauer, Ben

    2009-01-01

    Stevens's power law ([Psi][infinity][Phi][beta]) captures the relationship between physical ([Phi]) and perceived ([Psi]) magnitude for many stimulus continua (e.g., luminance and brightness, weight and heaviness, area and size). The exponent ([beta]) indicates whether perceptual magnitude grows more slowly than physical magnitude ([beta] less…

  5. High average power scaling of optical parametric amplification through cascaded difference-frequency generators

    DOEpatents

    Jovanovic, Igor; Comaskey, Brian J.

    2004-09-14

    A first pump pulse and a signal pulse are injected into a first optical parametric amplifier. This produces a first amplified signal pulse. At least one additional pump pulse and the first amplified signal pulse are injected into at least one additional optical parametric amplifier producing an increased power coherent optical pulse.

  6. Simulation of power – current characteristics of high-power semiconductor lasers emitting in the range 1.5 – 1.55 μm

    SciTech Connect

    Gorlachuk, P V; Ivanov, A V; Kurnosov, V D; Kurnosov, K V; Romantsevich, V I; Simakov, V A; Chernov, R V

    2014-02-28

    We report the simulation of power – current characteristics of high-power semiconductor lasers emitting in the range 1.5 – 1.55 μm. A technique is described which allows one to determine the thermal resistance and characteristic temperatures of a laser diode. The radiative and nonradiative carrier recombination rates are evaluated. Simulation results are shown to agree well with experimental data. (lasers)

  7. Yb-fiber-laser-based, 1.8 W average power, picosecond ultraviolet source at 266 nm.

    PubMed

    Chaitanya Kumar, S; Canals Casals, J; Sanchez Bautista, E; Devi, K; Ebrahim-Zadeh, M

    2015-05-15

    We report a compact, stable, high-power, picosecond ultraviolet (UV) source at 266 nm based on simple single-pass two-step fourth-harmonic generation (FHG) of a mode-locked Yb-fiber laser at 79.5 MHz in LiB3O5 (LBO) and β-BaB2O4. Using a 30-mm-long LBO crystal for single-pass second-harmonic generation, we achieve up to 9.1 W of average green power at 532 nm for 16.8 W of Yb-fiber power at a conversion efficiency of 54% in 16.2 ps pulses with a TEM00 spatial profile and passive power stability better than 0.5% rms over 16 h. The generated green radiation is then used for single-pass FHG into the UV, providing as much as 1.8 W of average power at 266 nm under the optimum focusing condition in the presence of spatial walk-off, at an overall FHG conversion efficiency of ∼11%. The generated UV output exhibits passive power stability better than 4.6% rms over 1.5 h and beam pointing stability better than 84 μrad over 1 h. The UV output beam has a circularity of >80% in high beam quality with the TEM00 mode profile. To the best of our knowledge, this is the first report of picosecond UV generation at 266 nm at megahertz repetition rates.

  8. High-average-power diode-end-pumped intracavity-doubled Nd:YAG laser

    SciTech Connect

    Honea, E.C.; Ebbers, C.A.; Beach, R.J.; Speth, J.A.; Emanuel, M.S>; Skidmore, J.A.; Payne, S.A.

    1998-02-12

    A compact diode-pumped ND:YAG laser was frequency-doubled to 0.532 {mu}m with an intracavity KTP or LBO crystal using a `V` cavity configuration. Two acousto-optic Q-switches were employed at repetition rates of 10-30 kHz. Dichroic fold and end mirrors were used to output two beams with up to 140 W of 0.532 {mu}m power using KTP and 116 W using LBO as the frequency doubling crystal. This corresponds to 66% of the maximum output power at 1.064 {mu}m obtained with an optimized output coupler reflectivity. The minimum output pulse duration varied with repetition rate from 90 to 130 ns. The multimode output beam had a smooth profile and a beam quality of M{sup 2} = 5 1.

  9. Program THEK energy production units of average power and using thermal conversion of solar radiation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    General studies undertaken by the C.N.R.S. in the field of solar power plants have generated the problem of building energy production units in the medium range of electrical power, in the order of 100 kW. Among the possible solutions, the principle of the use of distributed heliothermal converters has been selected as being, with the current status of things, the most advantageous solution. This principle consists of obtaining the conversion of concentrated radiation into heat by using a series of heliothermal conversion modules scattered over the ground; the produced heat is collected by a heat-carrying fluid circulating inside a thermal loop leading to a device for both regulation and storage.

  10. Intracavity, adaptive correction of a high-average-power, solid-state, heat-capacity laser

    SciTech Connect

    LaFortune, K N; Hurd, R L; Brase, J M; Yamamoto, R M

    2005-01-05

    The Solid-State, Heat-Capacity Laser (SSHCL) program at Lawrence Livermore National Laboratory is a multigeneration laser development effort scalable to the megawatt power levels. Wavefront quality is a driving metric of its performance. A deformable mirror with over 100 degrees of freedom situated within the cavity is used to correct both the static and dynamic aberrations sensed with a Shack-Hartmann wavefront sensor. The laser geometry is an unstable, confocal resonator with a clear aperture of 10 cm x 10 cm. It operates in a pulsed mode at a high repetition rate (up to 200 Hz) with a correction being applied before each pulse. Wavefront information is gathered in real-time from a low-power pick-off of the high-power beam. It is combined with historical trends of aberration growth to calculate a correction that is both feedback and feed-forward driven. The overall system design, measurement techniques and correction algorithms are discussed. Experimental results are presented.

  11. Semiconductor disk laser-pumped subpicosecond holmium fibre laser

    SciTech Connect

    Chamorovskiy, A Yu; Marakulin, A V; Leinonen, T; Kurkov, Andrei S; Okhotnikov, Oleg G

    2012-01-31

    The first passively mode-locked holmium fibre laser has been demonstrated, with a semiconductor saturable absorber mirror (SESAM) as a mode locker. Semiconductor disk lasers have been used for the first time to pump holmium fibre lasers. We obtained 830-fs pulses at a repetition rate of 34 MHz with an average output power of 6.6 mW.

  12. High energy, high average power solid state green or UV laser

    DOEpatents

    Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent

    2004-03-02

    A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.

  13. On Random Matrix Averages Involving Half-Integer Powers of GOE Characteristic Polynomials

    NASA Astrophysics Data System (ADS)

    Fyodorov, Y. V.; Nock, A.

    2015-05-01

    Correlation functions involving products and ratios of half-integer powers of characteristic polynomials of random matrices from the Gaussian orthogonal ensemble (GOE) frequently arise in applications of random matrix theory (RMT) to physics of quantum chaotic systems, and beyond. We provide an explicit evaluation of the large- limits of a few non-trivial objects of that sort within a variant of the supersymmetry formalism, and via a related but different method. As one of the applications we derive the distribution of an off-diagonal entry of the resolvent (or Wigner -matrix) of GOE matrices which, among other things, is of relevance for experiments on chaotic wave scattering in electromagnetic resonators.

  14. Non-Invasive Beam Detection in a High-Average Power Electron Accelerator

    SciTech Connect

    Williams, J.; Biedron, S.; Harris, J.; Martinez, J.; Milton, S. V.; Van Keuren, J.; Benson, Steve V.; Evtushenko, Pavel; Neil, George R.; Zhang, Shukui

    2013-12-01

    For a free-electron laser (FEL) to work effectively the electron beam quality must meet exceptional standards. In the case of an FEL operating at infrared wavelengths in an amplifier configuration the critical phase space tends to be in the longitudinal direction. Achieving high enough longitudinal phase space density directly from the electron injector system of such an FEL is difficult due to space charge effects, thus one needs to manipulate the longitudinal phase space once the beam energy reaches a sufficiently high value. However, this is fraught with problems. Longitudinal space charge and coherent synchrotron radiation can both disrupt the overall phase space, furthermore, the phase space disruption is exacerbated by the longitudinal phase space manipulation process required to achieve high peak current. To achieve and maintain good FEL performance one needs to investigate the longitudinal emittance and be able to measure it during operation preferably in a non-invasive manner. Using the electro-optical sampling (EOS) method, we plan to measure the bunch longitudinal profile of a high-energy (~120-MeV), high-power (~10kW or more FEL output power) beam.

  15. Brightness and average power as driver for advancements in diode lasers and their applications

    NASA Astrophysics Data System (ADS)

    Hengesbach, Stefan; Poprawe, Reinhart; Hoffmann, Dieter; Traub, Martin; Schwarz, Thomas; Holly, Carlo; Eibl, Florian; Weisheit, Andreas; Vogt, Sabrina; Britten, Simon; Ungers, Michael; Thombansen, Ulrich; Engelmann, Christoph; Mamuschkin, Viktor; Lott, Philipp

    2015-03-01

    Spatial and spectral emission characteristics and efficiency of high-power diode laser (HPDL) based pump sources enable and define the performance of the fundamental solid state laser concepts like disk, fiber and slab lasers. HPDL are also established as a versatile tool for direct materials processing substituting other laser types like CO2 lasers and lamp pumped solid state lasers and are starting to substitute even some of the diode pumped solid state lasers. Both, pumping and direct applications will benefit from the further improvement of the brightness and control of the output spectrum of HPDL. While edge emitting diodes are already established, a new generation of vertical emitting diode lasers (VCSELs) made significant progress and provides easy scalable output power in the kW range. Beneficial properties are simplified beam shaping, flexible control of the temporal and spatial emission, compact design and low current operation. Other characteristics like efficiency and brightness of VCSELs are still lagging behind the edge emitter performance. Examples of direct applications like surface treatment, soldering, welding, additive manufacturing, cutting and their requirements on the HPDL performance are presented. Furthermore, an overview on process requirements and available as well as perspective performance of laser sources is derived.

  16. High power single-frequency continuously-tunable compact extended-cavity semiconductor laser.

    PubMed

    Laurain, A; Myara, M; Beaudoin, G; Sagnes, I; Garnache, A

    2009-06-08

    We demonstrate high power high efficiency (0:3 W) low noise single frequency operation of a compact extended-cavity surface-emitting-semiconductor-laser exhibiting a continuous tunability over 0:84 THz with high beam quality. We took advantage of thermal lens-based stability to develop a short (< 3 mm) plano-plano external cavity without any intracavity filter. The structure is optically pumped by a 1 W commercial 830 nm multimode diode laser. No heat management was required. We measured a low divergence circular TEM(00) beam at the diffraction limit (M(2) < 1:05) with a linear light polarization (> 37 dB). The side mode suppression ratio is 60 dB. The free running laser linewidth is 850 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting a low intensity noise, with a cutoff frequency approximately 250 MHz above which the shot noise level is reached. We show that pump properties define the cavity design and laser coherence.

  17. SEMICONDUCTOR INTEGRATED CIRCUITS: Low power CMOS preamplifier for neural recording applications

    NASA Astrophysics Data System (ADS)

    Xu, Zhang; Weihua, Pei; Beiju, Huang; Hongda, Chen

    2010-04-01

    A fully-differential bandpass CMOS (complementary metal oxide semiconductor) preamplifier for extracellular neural recording is presented. The capacitive-coupled and capacitive-feedback topology is adopted. The preamplifier has a midband gain of 20.4 dB and a DC gain of 0. The -3 dB upper cut-off frequency of the preamplifier is 6.7 kHz. The lower cut-off frequency can be adjusted for amplifying the field or action potentials located in different bands. It has an input-referred noise of 8.2 μVrms integrated from 0.15 Hz to 6.7 kHz for recording the local field potentials and the mixed neural spikes with a power dissipation of 23.1 μW from a 3.3 V supply. A bandgap reference circuitry is also designed for providing the biasing voltage and current. The 0.22 mm2 prototype chip, including the preamplifier and its biasing circuitry, is fabricated in the 0.35-μm N-well CMOS 2P4M process.

  18. A novel FFT/IFFT based peak-to-average power reduction method for OFDM communication systems using tone reservation

    NASA Astrophysics Data System (ADS)

    Besong, Samuel Oru; Yu, Xiaoyou; Li, Bin; Hou, Weibing; Wang, Xiaochun

    2011-10-01

    One of the main drawbacks of OFDM systems is the high Peak-to-Average Power ratio, which could limit transmission efficiency and efficient use of HPA. In this paper we present a modified tone reservation scheme for PAPR reduction using FFT iterations to generate the tones. In this Scheme, the reserve tones are designed to both cancel peaks and slightly increase the average power to induce a better PAPR reduction..The tones are generated by means of 2 FFT operations and the process is sometimes iterated to achieve better PAPR reductions. This scheme achieves a significant PAPR reduction of at least 4.6dB when about 4% of the carriers are used as reserve tones and with even lesser iterations when simulated in an OFDM system.

  19. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    DOEpatents

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  20. New Tone Reservation Technique for Peak to Average Power Ratio Reduction

    NASA Astrophysics Data System (ADS)

    Wilharm, Joachim; Rohling, Hermann

    2014-09-01

    In Orthogonal Frequency Division Multiplexing (OFDM) the transmit signals have a highly fluctuating, non-constant envelope which is a technical challenge for the High Power Amplifier (HPA). Without any signal processing procedures the amplitude peaks of the transmit signal will be clipped by the HPA resulting in out-ofband radiation and in bit error rate (BER) performance degradation. The classical Tone Reservation (TR) technique calculates a correction signal in an iterative way to reduce the amplitude peaks. However this step leads to a high computational complexity. Therefore, in this paper an alternative TR technique is proposed. In this case a predefined signal pattern is shifted to any peak position inside the transmit signal and reduces thereby all amplitude peaks. This new procedure is able to outperform the classical TR technique and has a much lower computational complexity.

  1. High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths

    SciTech Connect

    Reagan, Brendon; Berrill, Mark A; Wernsing, Keith; Baumgarten, Cory; Woolston, Mark; Rocca, Jorge

    2014-01-01

    Efficient excitation of dense plasma columns at 100-Hz repetition rate using a tailored pump pulse profile produced a tabletop soft-x-ray laser average power of 0.1 mW at = 13.9 nm and 20 W at = 11.9 nm from transitions of Ni-like Ag and Ni-like Sn, respectively. Lasing on several other transitions with wavelengths between 10.9 and 14.7 nm was also obtained using 0.9-J pump pulses of 5-ps duration from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Hydrodynamic and atomic plasma simulations show that the pump pulse profile, consisting of a nanosecond ramp followed by two peaks of picosecond duration, creates a plasma with an increased density of Ni-like ions at the time of peak temperature that results in a larger gain coefficient over a temporally and spatially enlarged space leading to a threefold increase in the soft-x-ray laser output pulse energy. The high average power of these compact soft-x-ray lasers will enable applications requiring high photon flux. These results open the path to milliwatt-average-power tabletop soft-x-ray lasers.

  2. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  3. Diode Pumped Alkali Vapor Lasers - A New Pathway to High Beam Quality at High Average Power

    SciTech Connect

    Page, R H; Boley, C D; Rubenchik, A M; Beach, R J

    2005-05-06

    Resonance-transition alkali-vapor lasers have only recently been demonstrated [1] but are already attracting considerable attention. Alkali-atom-vapor gain media are among the simplest possible systems known, so there is much laboratory data upon which to base performance predictions. Therefore, accurate modeling is possible, as shown by the zero- free-parameter fits [2] to experimental data on alkali-vapor lasers pumped with Ti:sapphire lasers. The practical advantages of two of the alkali systems--Rb and Cs--are enormous, since they are amenable to diode-pumping [3,4]. Even without circulating the gas mixture, these lasers can have adequate cooling built-in owing to the presence of He in their vapor cells. The high predicted (up to 70%) optical-to-optical efficiency of the alkali laser, the superb (potentially 70% or better) wall-plug efficiency of the diode pumps, and the ability to exhaust heat at high temperature (100 C) combine to give a power-scalable architecture that is lightweight. A recent design exercise [5] at LLNL estimated that the system ''weight-to-power ratio'' figure of merit could be on the order of 7 kg/kW, an unprecedented value for a laser of the 100 kW class. Beam quality is expected to be excellent, owing to the small dn/dT value of the gain medium. There is obviously a long way to go, to get from a small laser pumped with a Ti:sapphire or injection-seeded diode system (of near-perfect beam quality, and narrow linewidth) [1, 4] to a large system pumped with broadband, multimode diode- laser arrays. We have a vision for this technology-development program, and have already built diode-array-pumped Rb lasers at the 1 Watt level. A setup for demonstrating Diode-array-Pumped Alkali vapor Lasers (DPALs) is shown in Figure 1. In general, use of a highly-multimode, broadband pump source renders diode-array-based experiments much more difficult than the previous ones done with Ti:sapphire pumping. High-NA optics, short focal distances, and short

  4. Simulation of a high-average power free-electron laser oscillator

    SciTech Connect

    H.P. Freund; M. Shinn; S.V. Benson

    2007-03-01

    In this paper, we compare the 10 kW-Upgrade experiment at the Thomas Jefferson National Accelerator Facility in Newport News, VA, with numerical simulations using the medusa code. medusa is a three-dimensional FEL simulation code that is capable of treating both amplifiers and oscillators in both the steady-state and time-dependent regimes. medusa employs a Gaussian modal expansion, and treats oscillators by decomposing the modal representation at the exit of the wiggler into the vacuum Gaussian modes of the resonator and then analytically determining the propagation of these vacuum resonator modes through the resonator back to the entrance of the wiggler in synchronism with the next electron bunch. The bunch length in the experiment is of the order of 380–420 fsec FWHM. The experiment operates at a wavelength of about 1.6 microns and the wiggler is 30 periods in length; hence, the slippage time is about 160 fsec. Because of this, slippage is important, and must be included in the simulation. The observed single pass gain is 65%–75% and, given the experimental uncertainties, this is in good agreement with the simulation. Multipass simulations including the cavity detuning yield an output power of 12.4 kW, which is also in good agreement with the experiment.

  5. The Mercury Laser System-A scaleable average-power laser for fusion and beyond

    SciTech Connect

    Ebbers, C A; Moses, E I

    2008-03-26

    Nestled in a valley between the whitecaps of the Pacific and the snowcapped crests of the Sierra Nevada, Lawrence Livermore National Laboratory (LLNL) is home to the nearly complete National Ignition Facility (NIF). The purpose of NIF is to create a miniature star-on demand. An enormous amount of laser light energy (1.8 MJ in a pulse that is 20 ns in duration) will be focused into a small gold cylinder approximately the size of a pencil eraser. Centered in the gold cylinder (or hohlraum) will be a nearly perfect sphere filled with a complex mixture of hydrogen gas isotopes that is similar to the atmosphere of our Sun. During experiments, the laser light will hit the inside of the gold cylinder, heating the metal until it emits X-rays (similar to how your electric stove coil emits visible red light when heated). The X-rays will be used to compress the hydrogen-like gas with such pressure that the gas atoms will combine or 'fuse' together, producing the next heavier element (helium) and releasing energy in the form of energetic particles. 2010 will mark the first credible attempt at this world-changing event: the achievement of fusion energy 'break-even' on Earth using NIF, the world's largest laser! NIF is anticipated to eventually perform this immense technological accomplishment once per week, with the capability of firing up to six shots per day - eliminating the need for continued underground testing of our nation's nuclear stockpile, in addition to opening up new realms of science. But what about the day after NIF achieves ignition? Although NIF will achieve fusion energy break-even and gain, the facility is not designed to harness the enormous potential of fusion for energy generation. A fusion power plant, as opposed to a world-class engineering research facility, would require that the laser deliver drive pulses nearly 100,000 times more frequently - a rate closer to 10 shots per second as opposed to several shots per day.

  6. Ultrafast laser with an average power of 120 W at 515 nm and a highly dynamic repetition rate in the MHz range for novel applications in micromachining

    NASA Astrophysics Data System (ADS)

    Harth, F.; Piontek, M. C.; Herrmann, T.; L'huillier, J. A.

    2016-03-01

    A new generation of resonant scanners in the kHz-range shows ultra-high deflection speeds of more than 1000m/s but suffer from an inherent nonlinear mirror oscillation. If this oscillation is not compensated, a typical bitmap, written point by point, would be strongly distorted because of the decreasing spot distance at the turning point of the scanning mirror. However, this can be avoided by a dynamic adaption of the repetition rate (RR) of the ultrafast laser. Since resonant scanners are operated in the 10 kHz-range, this means that the RR has to be continuously swept up to several 10 000 times per second between e.g. 5MHz and 10 MHz. High-speed continuous adaption of the RR could also optimize laser micromachining of narrow curved geometries, where nowadays a time consuming approximation with numerous vectors is required. We present a laser system, which is capable of sweeping the RR more than 32 000 times per second between 5MHz and 10MHz at an average output power of more than 120W at 515nm with a pulse duration of about 40 ps. The laser consists of a semiconductor oscillator, a 3-stage fiber pre-amplifier, a solid state InnoSlab power amplifier and a SHG stage. We systematically analyzed the dynamic of the laser system as well as the spectral and temporal behavior of the optical pulses. Switching the repetition rate typically causes a varying pulse energy, which could affect the machining quality over one scanning line. This effect will be analyzed and discussed. Possible techniques to compensate or avoid this effect will be considered.

  7. Optimization and Annual Average Power Predictions of a Backward Bent Duct Buoy Oscillating Water Column Device Using the Wells Turbine.

    SciTech Connect

    Smith, Christopher S.; Bull, Diana L; Willits, Steven M.; Fontaine, Arnold A.

    2014-08-01

    This Technical Report presents work completed by The Applied Research Laboratory at The Pennsylvania State University, in conjunction with Sandia National Labs, on the optimization of the power conversion chain (PCC) design to maximize the Average Annual Electric Power (AAEP) output of an Oscillating Water Column (OWC) device. The design consists of two independent stages. First, the design of a floating OWC, a Backward Bent Duct Buoy (BBDB), and second the design of the PCC. The pneumatic power output of the BBDB in random waves is optimized through the use of a hydrodynamically coupled, linear, frequency-domain, performance model that links the oscillating structure to internal air-pressure fluctuations. The PCC optimization is centered on the selection and sizing of a Wells Turbine and electric power generation equipment. The optimization of the PCC involves the following variables: the type of Wells Turbine (fixed or variable pitched, with and without guide vanes), the radius of the turbine, the optimal vent pressure, the sizing of the power electronics, and number of turbines. Also included in this Technical Report are further details on how rotor thrust and torque are estimated, along with further details on the type of variable frequency drive selected.

  8. Flexible power 90W to 120W ArF immersion light source for future semiconductor lithography

    NASA Astrophysics Data System (ADS)

    Burdt, R.; Thornes, J.; Duffey, T.; Bibby, T.; Rokitski, R.; Mason, E.; Melchior, J.; Aggarwal, T.; Haran, D.; Wang, J.; Rechtsteiner, G.; Haviland, M.; Brown, D.

    2014-03-01

    Semiconductor market demand for improved performance at lower cost continues to drive enhancements in excimer light source technologies. Increased output power, reduced variability in key light source parameters, and improved beam stability are required of the light source to support immersion lithography, multi-patterning, and 450mm wafer applications in high volume semiconductor manufacturing. To support future scanner needs, Cymer conducted a technology demonstration program to evaluate the design elements for a 120W ArFi light source. The program was based on the 90W XLR 600ix platform, and included rapid power switching between 90W and 120W modes to potentially support lot-to-lot changes in desired power. The 120W requirements also included improved beam stability in an exposure window conditionally reduced by 20%. The 120W output power is achieved by efficiency gains in system design, keeping system input power at the same level as the 90W XLR 600ix. To assess system to system variability, detailed system testing was conducted from 90W - 120W with reproducible results.

  9. TECATE - a code for anisotropic thermoelasticity in high-average-power laser technology. Phase 1 final report

    SciTech Connect

    Gelinas, R.J.; Doss, S.K.; Carlson, N.N.

    1985-01-01

    This report describes a totally Eulerian code for anisotropic thermoelasticity (code name TECATE) which may be used in evaluations of prospective crystal media for high-average-power lasers. The present TECATE code version computes steady-state distributions of material temperatures, stresses, strains, and displacement fields in 2-D slab geometry. Numerous heat source and coolant boundary condition options are available in the TECATE code for laser design considerations. Anisotropic analogues of plane stress and plane strain evaluations can be executed for any and all crystal symmetry classes. As with all new and/or large physics codes, it is likely that some code imperfections will emerge at some point in time.

  10. A Large-Bandwidth, Cylindrical Offner Pulse Stretcher for a High-Average-Power, 15 Femtosecond Laser

    SciTech Connect

    Molander, W A; Bayramian, A J; Campbell, R; Cross, R R; Huete, G; Schenkel, N; Ebbers, C; Caird, J; Barty, C J; Siders, C W

    2008-09-24

    We have designed and built an all-reflective pulse stretcher based on an Offner telescope. It uses cylindrical optics to simplify alignment and reduce aberrations. The stretch is {approx}1x10{sup 5} with a bandwidth of 200 nm. The stretcher is to be part of a 10 Hz repetition rate, high-average-power, femtosecond laser. This new design compensates for dispersion in the laser by using gratings of different groove spacing in the stretcher and compressor and a spectral phase corrector plate, made by magneto-rheological finishing, within the stretcher.

  11. Relationship Between Selected Strength and Power Assessments to Peak and Average Velocity of the Drive Block in Offensive Line Play.

    PubMed

    Jacobson, Bert H; Conchola, Eric C; Smith, Doug B; Akehi, Kazuma; Glass, Rob G

    2016-08-01

    Jacobson, BH, Conchola, EC, Smith, DB, Akehi, K, and Glass, RG. Relationship between selected strength and power assessments to peak and average velocity of the drive block in offensive line play. J Strength Cond Res 30(8): 2202-2205, 2016-Typical strength training for football includes the squat and power clean (PC) and routinely measured variables include 1 repetition maximum (1RM) squat and 1RM PC along with the vertical jump (VJ) for power. However, little research exists regarding the association between the strength exercises and velocity of an actual on-the-field performance. The purpose of this study was to investigate the relationship of peak velocity (PV) and average velocity (AV) of the offensive line drive block to 1RM squat, 1RM PC, the VJ, body mass (BM), and body composition. One repetition maximum assessments for the squat and PC were recorded along with VJ height, BM, and percent body fat. These data were correlated with PV and AV while performing the drive block. Peal velocity and AV were assessed using a Tendo Power and Speed Analyzer as the linemen fired, from a 3-point stance into a stationary blocking dummy. Pearson product analysis yielded significant (p ≤ 0.05) correlations between PV and AV and the VJ, the squat, and the PC. A significant inverse association was found for both PV and AV and body fat. These data help to confirm that the typical exercises recommended for American football linemen is positively associated with both PV and AV needed for the drive block effectiveness. It is recommended that these exercises remain the focus of a weight room protocol and that ancillary exercises be built around these exercises. Additionally, efforts to reduce body fat are recommended.

  12. A Study on Estimation of Average Power Output Fluctuation of Clustered Photovoltaic Power Generation Systems in Urban District of a Few km2

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Suzuoki, Yasuo

    The fluctuation of the total power output of clustered PV systems would be smaller than that of single PV system because of the time difference in the power output fluctuation among PV systems at different locations. This effect, so called smoothing-effect, must be taken into account properly when the impact of clustered PV systems on electric power system is assessed. If the average power output of clustered PV systems can be estimated from the power output of single PV system, it is very useful and helpful for the impact assessment. In this study, we propose a simple method to estimate the total power output fluctuation of clustered PV systems. In the proposed method, a smoothing effect is assumed to be caused as a result of two factors, i.e. time difference of overhead clouds passing among PV systems and the random change in the size and/or shape of clouds. The first one is formulated as a low-pass filter, assuming that output fluctuation is transmitted to the same direction as the wind direction at the constant speed. The second one is taken into account by using a Fourier transform surrogate data. The parameters in the proposed method were selected, so that the estimated fluctuation can be similar with that of ensemble average fluctuation of data observed at 5 points used as a training data set. Then, by using the selected parameters, the fluctuation property was estimated for other data set. The results show that the proposed method is useful for estimating the total power output fluctuation of clustered PV systems.

  13. Wavelength and average power density dependency of the recrystallization of tooth dentin using a MIR-FEL

    NASA Astrophysics Data System (ADS)

    Heya, Manabu; Awazu, Kunio

    2002-04-01

    Recrystallization of tooth dentin by the application of mid- infrared (MIR) pulsed-laser irradiation is one candidate for a novel, non-invasive treatment for the prevention of tooth decay. Recrystallized dentin functions in a similar way to dental enamel. To recrystallize the dentin effectively and non-invasively it is essential to estimate quantitatively and qualitatively the laser parameters, such as the wavelength and the average power density, required for recrystallization. The laser-tissue interaction is initiated effectively by selective excitation of phosphate acid ions (PO4) in the dentin. Using a tunable, MIR Free Electron Laser (FEL) in the wavelength region of 8.8- 10.6micrometers , corresponding to intense absorption bands due to PO4 vibration modes, we have investigated macroscopically extent of surface modification of dentin, and we have obtained experimental results related to the ablation depth, the MIR absorption spectrum, and the elemental chemical composition. From these results, it was found that (1) the laser parameters at which efficient surface modification, without enhanced ablation effects, occurred were estimated to be approximately in the wavelength and average power density regions of ~9.4- 10.3micrometers and ~10-20 W/cm2, and that (2) in this region PO4 vibration modes with lower binding energy were preferentially excluded from the dentin.

  14. Duration-tunable picosecond source at 560  nm with watt-level average power.

    PubMed

    Runcorn, T H; Murray, R T; Kelleher, E J R; Popov, S V; Taylor, J R

    2015-07-01

    A pulse source at 560 nm that is tunable in duration between 50 ps and 2.7 ns with >1  W of average power and near diffraction-limited beam quality is demonstrated. The source is based on efficient (up to 50%) second-harmonic generation in a periodically poled lithium tantalate crystal of a linearly polarized fiber-integrated Raman amplifier operating at 1120 nm. A duration-tunable ytterbium master-oscillator power-fiber amplifier is used to pulse-pump the Raman amplifier, which is seeded by a continuous-wave distributed-feedback laser diode at 1120 nm. The performance of the system using two different master oscillator schemes is compared. A pulse energy of up to 765 nJ is achieved with a conversion efficiency of 25% from the ytterbium fiber pump, demonstrating a compact and turn-key architecture for obtaining high peak-power radiation at 560 nm.

  15. Modelling of ELM-averaged power exhaust on JET using the EDGE2D code with variable transport coefficients

    NASA Astrophysics Data System (ADS)

    Kirnev, G.; Fundamenski, W.; Corrigan, G.

    2007-06-01

    The scrape-off layer (SOL) of the JET tokamak has been modelled using a two-dimensional plasma/neutral code, EDGE2D/NIMBUS, with variable transport coefficients, chosen according to nine candidate theories for radial heat transport in the SOL. Comparison of the radial power width on the outer divertor plates, λq, predicted by modelling and measured experimentally in L-mode and ELM-averaged H-mode at JET is presented. Transport coefficients based on classical and neo-classical ion conduction are found to offer the best agreement with experimentally measured λq magnitude and scaling with target power, upstream density and toroidal field. These results reinforce the findings of an earlier study, based on a simplified model of the SOL (Chankin 1997 Plasma Phys. Control. Fusion 39 1059), and support the earlier estimate of the power width at the entrance of the outer divertor volume in ITER, λq ap 4 mm mapped to the outer mid-plane (Fundamenski et al 2004 Nucl. Fusion 44 20).

  16. Two-photon bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source.

    PubMed

    Yokoyama, Hiroyuki; Tsubokawa, Hiroshi; Guo, Hengchang; Shikata, Jun-ichi; Sato, Ki-ichi; Takashima, Keijiro; Kashiwagi, Kaori; Saito, Naoaki; Taniguchi, Hirokazu; Ito, Hiromasa

    2007-01-01

    We developed a novel scheme for two-photon fluorescence bioimaging. We generated supercontinuum (SC) light at wavelengths of 600 to 1200 nm with 774-nm light pulses from a compact turn-key semiconductor laser picosecond light pulse source that we developed. The supercontinuum light was sliced at around 1030- and 920-nm wavelengths and was amplified to kW-peak-power level using laboratory-made low-nonlinear-effects optical fiber amplifiers. We successfully demonstrated two-photon fluorescence bioimaging of mouse brain neurons containing green fluorescent protein (GFP).

  17. Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Loeschner, Udo

    2015-09-01

    In this paper, laser processing of technical grade stainless steel and copper using high-average-power ultrashort pulse lasers is studied in order to gain deeper insight into material removal for microfabrication. A high-pulse repetition frequency picosecond and femtosecond laser is used in conjunction with high-performance galvanometer scanners and an in-house developed two-axis polygon scanner system. By varying the processing parameters such as wavelength, pulse length, fluence and repetition rate, cavities of standardized geometry are fabricated and analyzed. From the depths of the cavities produced, the ablation rate and removal efficiency are estimated. In addition, the quality of the cavities is evaluated by means of scanning electron microscope micrographs or rather surface roughness measurements. From the results obtained, the influence of the machining parameters on material removal and machining quality is discussed. In addition, it is shown that both material removal rate and quality increase by using femtosecond compared to picosecond laser pulses. On stainless steel, a maximum throughput of 6.81 mm3/min is achieved with 32 W femtosecond laser powers; if using 187 W picosecond laser powers, the maximum is 15.04 mm3/min, respectively. On copper, the maximum throughputs are 6.1 mm3/min and 21.4 mm3/min, obtained with 32 W femtosecond and 187 W picosecond laser powers. The findings indicate that ultrashort pulses in the mid-fluence regime yield most efficient material removal. In conclusion, from the results of this analysis, a range of optimum processing parameters are derived feasible to enhance machining efficiency, throughput and quality in high-rate micromachining. The work carried out here clearly opens the way to significant industrial applications.

  18. Design and development of a 6 MW peak, 24 kW average power S-band klystron

    SciTech Connect

    Joshi, L.M.; Meena, Rakesh; Nangru, Subhash; Kant, Deepender; Pal, Debashis; Lamba, O.S.; Jindal, Vishnu; Jangid, Sushil Kumar; Chakravarthy, D.P.; Dixit, Kavita

    2011-07-01

    A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design of collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)

  19. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    SciTech Connect

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, {approximately}1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length ({approximately}1 m) of short period ({lambda}{sub {omega}} = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab.

  20. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system.

    PubMed

    Ancona, A; Röser, F; Rademaker, K; Limpert, J; Nolte, S; Tünnermann, A

    2008-06-09

    We present an experimental study on the drilling of metal targets with ultrashort laser pulses at high repetition rates (from 50 kHz up to 975 kHz) and high average powers (up to 68 Watts), using an ytterbium-doped fiber CPA system. The number of pulses to drill through steel and copper sheets with thicknesses up to 1 mm have been measured as a function of the repetition rate and the pulse energy. Two distinctive effects, influencing the drilling efficiency at high repetition rates, have been experimentally found and studied: particle shielding and heat accumulation. While the shielding of subsequent pulses due to the ejected particles leads to a reduced ablation efficiency, this effect is counteracted by heat accumulation. The experimental data are in good qualitative agreement with simulations of the heat accumulation effect and previous studies on the particle emission. However, for materials with a high thermal conductivity as copper, both effects are negligible for the investigated processing parameters. Therefore, the full power of the fiber CPA system can be exploited, which allows to trepan high-quality holes in 0.5mm-thick copper samples with breakthrough times as low as 75 ms.

  1. Study of the correlation parameters of the surface structure of disordered semiconductors by the two-dimensional DFA and average mutual information methods

    SciTech Connect

    Alpatov, A. V.; Vikhrov, S. P.; Rybina, N. V.

    2015-04-15

    The processes of self-organization of the surface structure of hydrogenated amorphous silicon are studied by the methods of fluctuation analysis and average mutual information on the basis of atomic-force-microscopy images of the surface. It is found that all of the structures can be characterized by a correlation vector and represented as a superposition of harmonic components and noise. It is shown that, under variations in the technological parameters of the production of a-Si:H films, the correlation properties of their structure vary as well. As the substrate temperature is increased, the formation of structural irregularities becomes less efficient; in this case, the length of the correlation vector and the degree of structural ordering increase. It is shown that the procedure based on the method of fluctuation analysis in combination with the method of average mutual information provides a means for studying the self-organization processes in any structures on different length scales.

  2. Studies of High Power Density, Pico-Second Rise-Time Light Activated Semiconductor Switch

    DTIC Science & Technology

    1988-12-31

    34 Proceedings of the IEEE, vol.55, pp.2192-2193, 1967. 3. McKay, K., K. McAfee, "Electron Multiplication in Silicon and Germanium ," Physical Review...Conwell, E., "Properties of Silicon and Germanium : II," Proceedings of the Institute of Radio Engineers. vol.46, pp.1281-1300, 1958. 6. Zucker, 0...light activated semiconductor switches made of silicon junction diode have been demonstrated. A novel optical delay line has been designed in sampling

  3. Bayesian Network Model with Application to Smart Power Semiconductor Lifetime Data.

    PubMed

    Plankensteiner, Kathrin; Bluder, Olivia; Pilz, Jürgen

    2015-09-01

    In this article, Bayesian networks are used to model semiconductor lifetime data obtained from a cyclic stress test system. The data of interest are a mixture of log-normal distributions, representing two dominant physical failure mechanisms. Moreover, the data can be censored due to limited test resources. For a better understanding of the complex lifetime behavior, interactions between test settings, geometric designs, material properties, and physical parameters of the semiconductor device are modeled by a Bayesian network. Statistical toolboxes in MATLAB® have been extended and applied to find the best structure of the Bayesian network and to perform parameter learning. Due to censored observations Markov chain Monte Carlo (MCMC) simulations are employed to determine the posterior distributions. For model selection the automatic relevance determination (ARD) algorithm and goodness-of-fit criteria such as marginal likelihoods, Bayes factors, posterior predictive density distributions, and sum of squared errors of prediction (SSEP) are applied and evaluated. The results indicate that the application of Bayesian networks to semiconductor reliability provides useful information about the interactions between the significant covariates and serves as a reliable alternative to currently applied methods.

  4. A Three-Stage Inverter-Based Stacked Power Amplifier in 65 nm Complementary Metal Oxide Semiconductor Process

    NASA Astrophysics Data System (ADS)

    Kiumarsi, Hamid; Mizuochi, Yutaka; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2012-02-01

    A three-stage inverter-based stacked power amplifier (PA) in complementary metal oxide semiconductor (CMOS) process is proposed to overcome low breakdown voltage problem of scaled CMOS technologies. Unlike previous reported stacked PAs which radio frequency choke (RFC) was inevitable, we proposed stacked nMOS and pMOS transistors which effectively eliminates use of RFC. By properly setting self-biased circuits' and transistors' parameters, output impedance could reach up to 50 Ω which together with not employing the RFC makes this topology very appealing for the scalable PA realization. As a proof of concept, a three-stage PA using 65 nm CMOS technology is implemented. With a 6 V power supply for the third stage, the fabricated PA shows a small-signal gain of 36 dB, a saturated output power of 16 dBm and a maximum power added efficiency of 10% at 1 GHz. Using a 7.5 V of power supply, saturated output power reaches 18 dBm. To the best of our knowledge, this is the first reported inverter-based stacked PA.

  5. Method to improve the noise figure and saturation power in multi-contact semiconductor optical amplifiers: simulation and experiment.

    PubMed

    Carney, Kevin; Lennox, Robert; Maldonado-Basilio, Ramon; Philippe, Severine; Surre, Frederic; Bradley, Louise; Landais, Pascal

    2013-03-25

    The consequences of tailoring the longitudinal carrier density along the active layer of a multi-contact bulk semiconductor optical amplifier (SOA) are investigated using a rate equation model. It is shown that both the noise figure and output power saturation can be optimized for a fixed total injected bias current. The simulation results are validated by comparison with experiment using a multi-contact SOA. The inter-contact resistance is increased using a focused ion beam in order to optimize the carrier density control. A chip noise figure of 3.8 dB and a saturation output power of 9 dBm are measured experimentally for a total bias current of 150 mA.

  6. High-power single spatial mode AlGaAs channeled-substrate-planar semiconductor diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Carlin, D. B.; Ettenberg, M.

    1989-01-01

    A high power single spatial mode channeled substrate planar AlGaAs semiconductor diode laser was developed. The emission wavelength was optimized at 860 to 880 nm. The operating characteristics (power current, single spatial mode behavior, far field radiation patterns, and spectral behavior) and results of computer modeling studies on the performance of the laser are discussed. Reliability assessment at high output levels is included. Performance results on a new type of channeled substrate planar diode laser incorporating current blocking layers, grown by metalorganic chemical vapor deposition, to more effectively focus the operational current to the lasing region was demonstrated. The optoelectronic behavior and fabrication procedures for this new diode laser are discussed. The highlights include single spatial mode devices with up to 160 mW output at 8600 A, and quantum efficiencies of 70 percent (1 W/amp) with demonstrated operating lifetimes of 10,000 h at 50 mW.

  7. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    PubMed

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  8. NCD Diamond Semiconductor System for Advanced Power Electronics Systems Integration : CRADA report

    SciTech Connect

    Sumant, Anirudha

    2016-07-22

    The integration of 2D materials such as molybdenum disulphide (MoS2) with diamond (3D) was achieved by forming an heterojunction between these two materials and its electrical performance was studied experimentally. The device charactertics did show good rectifying nature when p-type single crystal diamond was integrated with n-type MoS2. These results are very encouraging indicating possible applications in semiconductor electronics, however further studies are required for a detailed understanding of the transport phenomena at the MoS2/diamond interface.

  9. Optimization of x-ray sources for proximity lithography produced by a high average power Nd:glass laser

    SciTech Connect

    Celliers, P.; DaSilva, L.B.; Dane, C.B.

    1995-07-01

    We measured the conversion efficiency of laser pulse energy into x-rays from a variety of solid planar targets and a Xe gas puff target irradiated using a high average power Nd:glass slab laser capable of delivering 13 ns FWHM pulses at up to 20 J at 1.053 {mu}m and 12 J at 0.53 {mu}m. Targets where chosen to optimize emission in the 9-19 {Angstrom} wavelength band, including L-shell emission from materials with atomic numbers in the Z=24-30 and M-shell emission from Xe (Z=54). With 1.053 {mu}m a maximum conversion of 10% into 2{pi} sr was measured from solid Xe and type 302 stainless steel targets. At 0.527 {mu}m efficiencies of 12-18%/(2{pi} sr) were measured for all of the solid targets in the same wavelength band. The x-ray conversion efficiency from the Xe gas puff target was considerably lower, at about 3%/(2{pi} sr) when irradiated with 1.053 {mu}m.

  10. Description and interpretation of the bracts epidermis of Gramineae (Poaceae) with rotated image with maximum average power spectrum (RIMAPS) technique.

    PubMed

    Favret, Eduardo A; Fuentes, Néstor O; Molina, Ana M; Setten, Lorena M

    2008-10-01

    During the last few years, RIMAPS technique has been used to characterize the micro-relief of metallic surfaces and recently also applied to biological surfaces. RIMAPS is an image analysis technique which uses the rotation of an image and calculates its average power spectrum. Here, it is presented as a tool for describing the morphology of the trichodium net found in some grasses, which is developed on the epidermal cells of the lemma. Three different species of grasses (herbarium samples) are analyzed: Podagrostis aequivalvis (Trin.) Scribn. & Merr., Bromidium hygrometricum (Nees) Nees & Meyen and Bromidium ramboi (Parodi) Rúgolo. Simple schemes representing the real microstructure of the lemma are proposed and studied. RIMAPS spectra of both the schemes and the real microstructures are compared. These results allow inferring how similar the proposed geometrical schemes are to the real microstructures. Each geometrical pattern could be used as a reference for classifying other species. Finally, this kind of analysis is used to determine the morphology of the trichodium net of Agrostis breviculmis Hitchc. As the dried sample had shrunk and the microstructure was not clear, two kinds of morphology are proposed for the trichodium net of Agrostis L., one elliptical and the other rectilinear, the former being the most suitable.

  11. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2014-05-01

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  12. Mapping hidden potential identity elements by computing the average discriminating power of individual tRNA positions.

    PubMed

    Szenes, Aron; Pál, Gábor

    2012-06-01

    The recently published discrete mathematical method, extended consensus partition (ECP), identifies nucleotide types at each position that are strictly absent from a given sequence set, while occur in other sets. These are defined as discriminating elements (DEs). In this study using the ECP approach, we mapped potential hidden identity elements that discriminate the 20 different tRNA identities. We filtered the tDNA data set for the obligatory presence of well-established tRNA features, and then separately for each identity set, the presence of already experimentally identified strictly present identity elements. The analysis was performed on the three kingdoms of life. We determined the number of DE, e.g. the number of sets discriminated by the given position, for each tRNA position of each tRNA identity set. Then, from the positional DE numbers obtained from the 380 pairwise comparisons of the 20 identity sets, we calculated the average excluding value (AEV) for each tRNA position. The AEV provides a measure on the overall discriminating power of each position. Using a statistical analysis, we show that positional AEVs correlate with the number of already identified identity elements. Positions having high AEV but lacking published identity elements predict hitherto undiscovered tRNA identity elements.

  13. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2014-05-01

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  14. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    SciTech Connect

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2014-05-15

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  15. Mapping Hidden Potential Identity Elements by Computing the Average Discriminating Power of Individual tRNA Positions

    PubMed Central

    Szenes, Áron; Pál, Gábor

    2012-01-01

    The recently published discrete mathematical method, extended consensus partition (ECP), identifies nucleotide types at each position that are strictly absent from a given sequence set, while occur in other sets. These are defined as discriminating elements (DEs). In this study using the ECP approach, we mapped potential hidden identity elements that discriminate the 20 different tRNA identities. We filtered the tDNA data set for the obligatory presence of well-established tRNA features, and then separately for each identity set, the presence of already experimentally identified strictly present identity elements. The analysis was performed on the three kingdoms of life. We determined the number of DE, e.g. the number of sets discriminated by the given position, for each tRNA position of each tRNA identity set. Then, from the positional DE numbers obtained from the 380 pairwise comparisons of the 20 identity sets, we calculated the average excluding value (AEV) for each tRNA position. The AEV provides a measure on the overall discriminating power of each position. Using a statistical analysis, we show that positional AEVs correlate with the number of already identified identity elements. Positions having high AEV but lacking published identity elements predict hitherto undiscovered tRNA identity elements. PMID:22378766

  16. Experimental assessment of blade tip immersion depth from free surface on average power and thrust coefficients of marine current turbine

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Flack, Karen; Luznik, Luksa

    2014-11-01

    Results from an experimental study on the effects of marine current turbine immersion depth from the free surface are presented. Measurements are performed with a 1/25 scale (diameter D = 0.8m) two bladed horizontal axis turbine towed in the large towing tank at the U.S. Naval Academy. Thrust and torque are measured using a dynamometer, mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using a shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Two optical wave height sensors are used to measure the free surface elevation. The turbine is towed at 1.68 m/s, resulting in a 70% chord based Rec = 4 × 105. An Acoustic Doppler Velocimeter (ADV) is installed one turbine diameter upstream of the turbine rotation plane to characterize the inflow turbulence. Measurements are obtained at four relative blade tip immersion depths of z/D = 0.5, 0.4, 0.3, and 0.2 at a TSR value of 7 to identify the depth where free surface effects impact overall turbine performance. The overall average power and thrust coefficient are presented and compared to previously conducted baseline tests. The influence of wake expansion blockage on the turbine performance due to presence of the free surface at these immersion depths will also be discussed.

  17. 240 W high-average-power square-shaped nanosecond all-fiber-integrated laser with near diffraction-limited beam quality.

    PubMed

    Yu, Hailong; Tao, Rumao; Wang, Xiaolin; Zhou, Pu; Chen, Jinbao

    2014-10-01

    We report an all-fiber-integrated high-average-power square-shaped nanosecond pulse laser operating at 1068 nm based on the master oscillator power amplifier configuration. The seed source is a passively mode-locked Yb-doped fiber laser with fundamental cavity repetition rate of 1.86 MHz. Output pulses with a square shape can be tuned in pulse width from 271 ps to the nanosecond level. The average output power reaches to 9.21 W after three preamplifiers. Finally, a main amplifier is developed to boost the average output power to 240 W, and the corresponding pulse energy and peak power are ∼ 129.3 μJ and 36 kW, respectively. The efficiency of the main amplifier is ∼ 61.3%, and the beam quality represented by M(2) factors is below 1.3 and 1.2 in the X and Y directions.

  18. Improvement of deoxidization efficiency of nitric monoxide by shortening pulse width of semiconductor opening switch pulse power generator

    NASA Astrophysics Data System (ADS)

    Kakuta, Takatoshi; Yagi, Ippei; Takaki, Koichi

    2015-01-01

    The deoxidization efficiency of nitric monoxide (NO) was improved by shortening the pulse width of the voltage applied to a corona reactor. The deoxidization efficiency of NO was evaluated as the NO removal efficiency in nitrogen (N2) gas containing 200 ppm NO. The corona reactor had a coaxial geometry and consisted of center high-voltage wire and outer grounded cylinder electrodes. A nanosecond high-voltage pulse was generated using an inductive energy storage pulse power circuit with a semiconductor opening switch and was applied to the center wire electrode in the corona reactor. Fast recovery diodes were utilized as a semiconductor opening switch. The pulse width of the applied voltage was reduced from 21 to 14 ns with the arrester connected in parallel to the reactor. The energy efficiency for NO removal was improved from 8.2 to 35.7 g kW-1 h-1 with the arrester connected. The pulse width was also reduced to 8 ns by optimizing the circuit parameters. It was confirmed from observation with an intensified charge-coupled device (ICCD) camera that the streamer corona discharge transited to a glowlike discharge after the streamer propagated from the center wire electrode to the outer cylinder electrode. The duration of the glowlike phase was reduced with the arrester connected. The energy consumed in the glowlike phase was also reduced from 15.7 to 4.6 mJ with the arrester connected.

  19. Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier.

    PubMed

    Chi, Mingjun; Jensen, Ole Bjarlin; Holm, Jesper; Pedersen, Christian; Andersen, Peter Eskil; Erbert, Götz; Sumpf, Bernd; Petersen, Paul Michael

    2005-12-26

    A high-power narrow-linewidth laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The external cavity laser system uses a new tapered amplifier with a super-large optical-cavity (SLOC) design that leads to improved performance of the external cavity diode lasers. The laser system is tunable over a 29 nm range centered at 802 nm. As high as 1.95 W output power is obtained at 803.84 nm, and an output power above 1.5 W is achieved from 793 to 812 nm at operating current of 3.0 A. The emission linewidth is below 0.004 nm and the beam quality factor M2 is below 1.3 over the 29 nm tunable range. As an example of application, the laser system is used as a pump source for the generation of 405 nm blue light by single-pass frequency doubling in a periodically poled KTiOPO4. An output power of 24 mW at 405 nm, corresponding to a conversion efficiency of 0.83%/W is attained.

  20. Significant increase in wavelength, power, and temperature operating envelopes for semiconductor laser diode bars for solid-state lasers

    NASA Astrophysics Data System (ADS)

    Haden, J.; Plano, B.; Major, J.; Harnagel, G.; Endriz, J.

    Attention is given to the substantial increase in the performance envelope of AlGaAs base semiconductor laser diode array bars (QCW bars) that are available to designers of diode pumped solid-state lasers. Reliable QCW bar performance includes operation to 100 W/cm with greater than 10 exp 9 pulse life, 65 C operation, and 780 to 980 nm wavelength availability (60 W/cm). Consideration is also given to 247-W QCW operation. At Nd:YAG, YLF wavelengths (798-807 nm), significant improvements have been achieved in allowable operating temperature (to 65 C) and operating power (to 100 W). These improvements offer the opportunity for the design of high-efficiency solid-state laser systems that need to operate in relatively severe environments.

  1. High-order diffraction gratings for high-power semiconductor lasers

    SciTech Connect

    Vasil'eva, V. V.; Vinokurov, D. A.; Zolotarev, V. V.; Leshko, A. Yu.; Petrunov, A. N.; Pikhtin, N. A.; Rastegaeva, M. G.; Sokolova, Z. N. Shashkin, I. S.; Tarasov, I. S.

    2012-02-15

    A deep diffraction grating with a large period ({approx}2 {mu}m) within one of the cladding layers is proposed for the implementation of selective feedback in a semiconductor laser. Frequency dependences of reflectance in the 12th diffraction order for rectangular, triangular, and trapezoidal diffraction gratings are calculated. It is shown that the maximum reflectance of the waveguide mode is attained using a rectangular or trapezoidal grating {approx}2 {mu}m deep in the laser structure. Deep trapezoidal diffraction gratings with large periods are fabricated in the Al{sub 0.3}Ga{sub 0.7}As cladding layer of a GaAs/AlGaAs laser structure using photolithography and reactive ion etching.

  2. The Power of Materials Science Tools for Gaining Insights into Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Treat, Neil D.; Westacott, Paul; Stingelin, Natalie

    2015-07-01

    The structure of organic semiconductors can be complex because features from the molecular level (such as molecular conformation) to the micrometer scale (such as the volume fraction and composition of phases, phase distribution, and domain size) contribute to the definition of the optoelectronic landscape of the final architectures and, hence, to device performance. As a consequence, a detailed understanding of how to manipulate molecular ordering, e.g., through knowledge of relevant phase transitions, of the solidification process, of relevant solidification mechanisms, and of kinetic factors, is required to induce the desired optoelectronic response. In this review, we discuss relevant structural features of single-component and multicomponent systems; provide a case study of the multifaceted structure that polymer:fullerene systems can adopt; and highlight relevant solidification mechanisms such as nucleation and growth, liquid-liquid phase separation, and spinodal decomposition. In addition, cocrystal formation, solid solutions, and eutectic systems are treated and their relevance within the optoelectronic area emphasized.

  3. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Limpert, Jens; Tünnermann, Andreas

    2012-05-07

    We report on an OPCPA system delivering CEP-stable pulses with a pulse duration of only 1.7 optical cycles at 880 nm wavelength. This pulse duration is achieved by the generation, optical parametric amplification and compression of a full optical octave of bandwidth. The system is pumped by a high average power Yb-fiber laser system, which allows for operation of the OPCPA at up to 1 MHz repetition rate and 22 W of average output power. Further scaling towards single-cycle pulses, higher energy and output power is discussed.

  4. Power semiconductors empirical diagrams expressing life as a function of temperature excursion

    SciTech Connect

    Somos, I.L. ); Piccone, D.E.; Willinger, L.J.; Tobin, W.H. )

    1993-01-01

    Solid state switches are being actively pursued to replace thyratons, ignitrons and triggered spark gaps in various pulse power applications. These include electric gun development for tanks such as the EM gun (electromagnetic) and the ETC gun (electrothermal) and electromechanical launcher for aircraft. High power thyristors and rectifier diodes have been applied in stringent power cycling applications in the past with predictable life assurance. The validity of a simple mathematical concept expression life in terms of numbers of power cycles versus temperature excursion is explained and supported by examples of empirical tests data.

  5. High-power coherent GaAs-based monolithic semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Botez, Dan

    2001-11-01

    Stable-beam operation to high coherent powers from large aperture devices can only be obtained from active-photonic- lattice (APL) structures of large built-in index step. Resonant phase-locked arrays of antiguides, so called ROW array, have provided 1.6W CW coherent power from 200micrometers - wide apertures. Two-dimensional surface-emitting APLs combining ROW arrays and DFB-DBR structures with central (pi) phase-shift are capable of providing coherent powers in the multi-watt range. ARROW-type devices, simpler APL structures, hold the potential for emitting 1W single-mode CW power reliability in stable beam patterns.

  6. Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression.

    PubMed

    Emaury, Florian; Saraceno, Clara J; Debord, Benoit; Ghosh, Debashri; Diebold, Andreas; Gèrôme, Frederic; Südmeyer, Thomas; Benabid, Fetah; Keller, Ursula

    2014-12-15

    We present nonlinear pulse compression of a high-power SESAM-modelocked thin-disk laser (TDL) using an Ar-filled hypocycloid-core kagome hollow-core photonic crystal fiber (HC-PCF). The output of the modelocked Yb:YAG TDL with 127 W average power, a pulse repetition rate of 7 MHz, and a pulse duration of 740 fs was spectrally broadened 16-fold while propagating in a kagome HC-PCF containing 13 bar of static argon gas. Subsequent compression tests performed using 8.4% of the full available power resulted in a pulse duration as short as 88 fs using the spectrally broadened output from the fiber. Compressing the full transmitted power through the fiber (118 W) could lead to a compressed output of >100  W of average power and >100  MW of peak power with an average power compression efficiency of 88%. This simple laser system with only one ultrafast laser oscillator and a simple single-pass fiber pulse compressor, generating both high peak power >100  MW and sub-100-fs pulses at megahertz repetition rate, is very interesting for many applications such as high harmonic generation and attosecond science with improved signal-to-noise performance.

  7. Three-dimensional failure analysis of high power semiconductor laser diodes operated in vacuum

    NASA Astrophysics Data System (ADS)

    Yeoh, Terence S.; Chaney, John A.; Leung, Martin S.; Ives, Neil A.; Feinberg, Z. D.; Ho, James G.; Wen, Jianguo

    2007-12-01

    The damaged region of a semiconductor laser diode that failed in a vacuum environment was analyzed using focused ion beam (FIB) serial sectioning, time-of-flight secondary ion mass spectrometry (ToF-SIMS), high resolution transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), energy dispersive x-ray spectroscopy (EDS), and nanodiffraction. The FIB nanotomography models and the TEM cross sections show a damage structure extending deep into the core and originating at the diode/antireflective (AR) coating interface. Nanocrystalline gold was detected at this interface using both TEM diffraction and EDS, and the localization of gold along the core at the diode/AR interface was corroborated using 3D ToF-SIMS. A thinning of the AR coating above the failure site was observed by TEM with a corresponding increase in carbon content on the AR surface detected with EELS. It is suggested that failure proceeded by pyrolysis of adsorbed hydrocarbons on the AR coating, which, in the presence of a high optical flux, contributed to carbothermal reduction of the AR coating. As the optical flux increased, thermal gradients facilitate metal migration, leading to larger gold clusters. These clusters are sites for deep level traps and may promote catalytic reactions.

  8. Optimal design of semiconductor opening switches for use in the inductive stage of high power pulse generators

    NASA Astrophysics Data System (ADS)

    Engelko, A.; Bluhm, H.

    2004-05-01

    Semiconductor opening switches (SOS) are able to interrupt currents at density levels of up to 10 kA/cm2 in less than 10 ns, operate at repetition rates up to 1 kHz, and possess lifetimes of more than 1011 pulses. If stacked, SOS diodes can hold off voltage levels up to several 100 kV. They are therefore ideal for the design of compact high voltage pulse generators of the GW-class for industrial applications. The aim of this work was to improve our understanding of the opening process in a semiconductor diode of SOS-type with a doping profile of p+pnn+ structure, obtainable through diffusion from the surfaces. To simulate the physical processes inside this diode the code POSEOSS was developed. It contains a detailed physical model of charge carrier transport under the influence of density gradients and electric fields and considers all relevant generation and recombination processes. It possesses a large degree of flexibility and is easy to use, and thus allows to carry out parameter studies to determine the influence of different physical quantities, such as doping and impurity levels, on the performance of the device. When applying the code some interesting results concerning the plasma dynamics during the opening process in the switch have been found. In particular, using realistic values for the charge carrier mobility, it was found that the opening process starts first at the n-n+ boundary. Also it has been possible to derive the physical conditions for the occurrence of the SOS-effect. Based on the simulation results a simplified SOS equivalent circuit model has been developed. This model can be used in the circuit simulation program PSPICE. A pulse generator scheme based on inductive storage is proposed, in which power multiplication is achieved by unloading the inductors, previously charged in series, in parallel. This scheme can be considered as the inductive equivalent of a Marx-generator. PSPICE simulations of such a scheme based on semiconductor opening

  9. Semiconductor heterostructure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold John (Inventor); Woodall, Jerry MacPherson (Inventor)

    1978-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  10. Semiconductor structure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold J. (Inventor); Woodall, Jerry M. (Inventor)

    1979-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  11. Low-dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states.

    PubMed

    Bilc, Daniel I; Hautier, Geoffroy; Waroquiers, David; Rignanese, Gian-Marco; Ghosez, Philippe

    2015-04-03

    Thermoelectrics are promising for addressing energy issues but their exploitation is still hampered by low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band structure: a narrow energy distribution and a low effective mass. Quantum confinement in nanostructures and the introduction of resonant states were suggested as possible solutions to this paradox, but with limited success. Here, we propose an original approach to fulfill both requirements in bulk semiconductors. It exploits the highly directional character of some orbitals to engineer the band structure and produce a type of low-dimensional transport similar to that targeted in nanostructures, while retaining isotropic properties. Using first-principle calculations, the theoretical concept is demonstrated in Fe2YZ Heusler compounds, yielding power factors 4 to 5 times larger than in classical thermoelectrics at room temperature. Our findings are totally generic and rationalize the search of alternative compounds with similar behavior. Beyond thermoelectricity, these might be relevant also in the context of electronic, superconducting, or photovoltaic applications.

  12. Development and fabrication of improved power transistor switches. [fabrication and manufacturing of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Hower, P. L.; Chu, C. K.

    1976-01-01

    A new class of high-voltage power transistors has been achieved by adapting present interdigitated thyristor processing techniques to the fabrication of NPN Si transistors. Present devices are 2.3 cm in diameter. The electrical performance obtained is consistent with the predictions of an optimum design theory specifically developed for power switching transistors. The forward safe operating area of the experimental transistors shows a significant improvement over commercially available devices. The report describes device design, wafer processing, and various measurements which include dc characteristics, forward and reverse second breakdown limits, and switching times.

  13. Single Event Effects (SEE) for Power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2011-01-01

    Single-event gate rupture (SEGR) continues to be a key failure mode in power MOSFETs. (1) SEGR is complex, making rate prediction difficult SEGR mechanism has two main components: (1) Oxide damage-- Reduces field required for rupture (2) Epilayer response -- Creates transient high field across the oxide.

  14. Design of a thin disk amplifier with extraction during pumping for high peak and average power Ti:Sa systems (EDP-TD).

    PubMed

    Chvykov, Vladimir; Nagymihaly, Roland S; Cao, Huabao; Kalashnikov, Mikhail; Osvay, Karoly

    2016-02-22

    Combination of the scheme of extraction during pumping (EDP) and the Thin Disk (TD) technology is presented to overcome the limitations associated with thermal cooling of crystal and transverse amplified spontaneous emission in high average power laser systems based on Ti:Sa amplifiers. The optimized design of high repetition rate 1-10 PW Ti:Sapphire EDP-TD power amplifiers are discussed, including their thermal dynamic behavior.

  15. Nuclear Science Symposium, 23rd, Scintillation and Semiconductor Counter Symposium, 15th, and Nuclear Power Systems Symposium, 8th, New Orleans, La., October 20-22, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    Wagner, L. J.

    1977-01-01

    The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.

  16. High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars.

    PubMed

    Lee, J R; Baker, H J; Friel, G J; Hilton, G J; Hall, D R

    2002-04-01

    A planar waveguide Nd:YAG laser is pumped with 430 W of power from 10 laser diode bars to produce a multimode output power of 150 W at an optical efficiency of 35%. Use of a hybrid resonator of the positive-branch confocal unstable type for the lateral axis and of one of the near-case I waveguide type for the transverse axis increased the laser brightness by a factor of ~26 with only 12% less power than in the multimode case.

  17. Numerical study of high-power semiconductor lasers for operation at sub-zero temperatures

    NASA Astrophysics Data System (ADS)

    Hasler, K. H.; Frevert, C.; Crump, P.; Erbert, G.; Wenzel, H.

    2017-04-01

    We present results on the impact of the Al-content in the waveguide structure on the electro-optical characteristics of 9xx nm, GaAs-based high-power lasers operated at room (300 K) and at sub-zero (200 K) heat sink temperatures. Experimentally a strong improvement of conversion efficiency and output power has been found if the lasers are cooled down. Numerical simulations using a software tool which solves the thermo-dynamic based drift-diffusion equations are able to reproduce the experimental findings. The reasons for the improved performance at lower temperatures are the enhancement of the modal gain and the reduced accumulation of electrons in the p-confinement layers resulting in a reduction of the leakage current. The latter allows the realization of lasers with a reduced Al content having a smaller series resistance and thus further enlarged conversion efficiency at sub-zero temperatures.

  18. SEMICONDUCTOR INTEGRATED CIRCUITS: A 0.8 V low power low phase-noise PLL

    NASA Astrophysics Data System (ADS)

    Yan, Han; Xiao, Liang; Haifeng, Zhou; Yinfang, Xie; Waisum, Wong

    2010-08-01

    A low power and low phase noise phase-locked loop (PLL) design for low voltage (0.8 V) applications is presented. The voltage controlled oscillator (VCO) operates from a 0.5 V voltage supply, while the other blocks operate from a 0.8 V supply. A differential NMOS-only topology is adopted for the oscillator, a modified precharge topology is applied in the phase-frequency detector (PFD), and a new feedback structure is utilized in the charge pump (CP) for ultra-low voltage applications. The divider adopts the extended true single phase clock DFF in order to operate in the high frequency region and save circuit area and power. In addition, several novel design techniques, such as removing the tail current source, are demonstrated to cut down the phase noise. Implemented in the SMIC 0.13 μm RF CMOS process and operated at 0.8 V supply voltage, the PLL measures a phase noise of-112.4 dBc/Hz at an offset frequency of 1 MHz from the carrier and a frequency range of 3.166-3.383 GHz. The improved PFD and the novel CP dissipate 0.39 mW power from a 0.8 V supply. The occupied chip area of the PFD and CP is 100 × 100 μm2. The chip occupies 0.63 mm2, and draws less than 6.54 mW from a 0.8 V supply.

  19. 25 W of average power at 172 nm in the vacuum ultraviolet from flat, efficient lamps driven by interlaced arrays of microcavity plasmas

    NASA Astrophysics Data System (ADS)

    Park, S.-J.; Herring, C. M.; Mironov, A. E.; Cho, J. H.; Eden, J. G.

    2017-04-01

    More than 25 W of average power and >800 W of peak power have been generated at λ =172 nm (h ν =7.2 eV) in the vacuum ultraviolet (VUV) from the Xe2 molecule in flat, 10 × 10 cm2 lamps having an active area and volume of 80 cm2 and <60 cm3, respectively. Powered by at least two interlaced arrays of microplasmas generated within cavities fabricated into an interior surface of the <6 mm thick lamp, these lamps have an electrical-to-optical conversion efficiency >20 % . For a bipolar voltage waveform driving frequency of 137 kHz and a 54% Xe/Ne gas fill mixture at a 300 K pressure of 550 Torr, the lamp generates as much as 31.5 W of average power and intensities >350 mW cm-2 in 40-60 μJ, 70±10 ns FWHM pulses produced in a burst mode-four pulses of 600-850 W peak power in every cycle of the driving waveform. The lamp intensity is uniform to within ±2.5% at ≥10 mm from its surface and average power varies linearly with pulse repetition frequency throughout the 18-135 kHz interval. The spectral breadth of the Xe dimer emission is ˜9 nm FWHM and time-resolved, spatial intensity maps show improved utilization of the power pulse (VṡI) with two or more microcavity arrays that are interleaved. This photonic source technology is capable of generating unprecedented power levels in the VUV spectral region (e.g., ˜2.5 kW m-2) with tiled lamps.

  20. Toward realizing high power semiconductor terahertz laser sources at room temperature

    NASA Astrophysics Data System (ADS)

    Razeghi, Manijeh

    2011-05-01

    The terahertz (THz) spectral range offers promising applications in science, industry, and military. THz penetration through nonconductors (fabrics, wood, plastic) enables a more efficient way of performing security checks (for example at airports), as illegal drugs and explosives could be detected. Being a non-ionizing radiation, THz radiation is environment-friendly enabling a safer analysis environment than conventional X-ray based techniques. However, the lack of a compact room temperature THz laser source greatly hinders mass deployment of THz systems in security check points and medical centers. In the past decade, tremendous development has been made in GaAs/AlGaAs based THz Quantum Cascade Laser (QCLs), with maximum operating temperatures close to 200 K (without magnetic field). However, higher temperature operation is severely limited by a small LO-phonon energy (~ 36 meV) in this material system. With a much larger LO-phonon energy of ~ 90 meV, III-Nitrides are promising candidates for room temperature THz lasers. However, realizing high quality material for GaN-based intersubband devices presents a significant challenge. Advances with this approach will be presented. Alternatively, recent demonstration of InP based mid-infrared QCLs with extremely high peak power of 120 W at room temperature opens up the possibility of producing high power THz emission with difference frequency generation through two mid-infrared wavelengths.

  1. Quaternion Averaging

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Cheng, Yang; Crassidis, John L.; Oshman, Yaakov

    2007-01-01

    Many applications require an algorithm that averages quaternions in an optimal manner. For example, when combining the quaternion outputs of multiple star trackers having this output capability, it is desirable to properly average the quaternions without recomputing the attitude from the the raw star tracker data. Other applications requiring some sort of optimal quaternion averaging include particle filtering and multiple-model adaptive estimation, where weighted quaternions are used to determine the quaternion estimate. For spacecraft attitude estimation applications, derives an optimal averaging scheme to compute the average of a set of weighted attitude matrices using the singular value decomposition method. Focusing on a 4-dimensional quaternion Gaussian distribution on the unit hypersphere, provides an approach to computing the average quaternion by minimizing a quaternion cost function that is equivalent to the attitude matrix cost function Motivated by and extending its results, this Note derives an algorithm that deterniines an optimal average quaternion from a set of scalar- or matrix-weighted quaternions. Rirthermore, a sufficient condition for the uniqueness of the average quaternion, and the equivalence of the mininiization problem, stated herein, to maximum likelihood estimation, are shown.

  2. 0.5 μm Silicon-on-Sapphire Metal Oxide Semiconductor Field Effect Transistor for RF Power Amplifier Applications

    NASA Astrophysics Data System (ADS)

    Tsui, Kenneth; Chen, Kevin J.; Lam, Sang; Chan, Mansun

    2003-08-01

    0.5 μm thin-film silicon-on-sapphire (SOS) metal oxide semiconductor field effect transistors (MOSFETs) are investigated for applications in RF power amplifiers. Detailed static and pulsed I-V characteristics are measured to distinguish between fully depleted and partially depleted SOS MOSFETs. We have performed the first detailed large-signal load-pull characterization of SOS MOSFETs at 2 GHz with a Maury load-pull system with automated tuners. The maximum output power (Pout) of 18 dBm, maximum gain (G) of 12.5 dB and maximum power-added efficiency (PAE) of 55% were achieved. Third-order intermodulation (IM3) and adjacent channel power ratio (ACPR) were measured to characterize the linearity of an SOS MOSFET power amplifier. For the optimum design of RF power amplifiers, impedance matching information is essential as revealed by the large-signal load-pull measurements.

  3. Measurement of pump-induced transient lensing in a cryogenically-cooled high average power Ti:sapphire amplifier.

    PubMed

    Planchon, Thomas A; Amir, Wafa; Childress, Colby; Squier, Jeff A; Durfee, Charles G

    2008-11-10

    The transient thermal lensing in a liquid-nitrogren cooled kilohertz multipass amplifier is quantitatively measured with spatially-resolved Fourier transform spectral interferometry. A pump-probe arrangement allows the observation of a polarization-dependent non-thermal component following the fluorescence timescale: additional cooling would not suppress this residual lensing. We also observe a time-dependent thermal component that has a timescale sufficiently fast to indicate that there is cooling between shots even at a repetition rate of 1 kHz. The value of pump-induced lensing would be underestimated when performing time-averaged measurements of pump-induced phase shifts.

  4. Theoretical Analyses of Oxide-Bypassed Superjunction Power Metal Oxide Semiconductor Field Effect Transistor Devices

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Liang, Yung C.; Samudra, Ganesh S.

    2005-02-01

    The performance merit of silicon unipolar power devices is best described by a trade-off relationship between specific on-state resistance (Ron,sp) and breakdown voltage (Vbr), which leads to the establishment of an ideal unipolar limit on device performance. Recently, engineering the electric field in the device drift region to break this unipolar silicon limit for superior performance has become an important research topic. The superjunction (SJ) structure achieves this by paralleling precisely matched higher doping alternate p--n layers to replace the typically low doping drift region. Alternatively, for fabrication simplicity in an oxide-bypassed (OB) structure, an oxide layer of predetermined thickness together with a polycontact is used to replace the p-column of the SJ structure to modulate the electric field. The further improved gradient OB (GOB) structure with slanted oxide sidewalls delivers a performance similar to ideal SJ devices. In this paper, detailed theoretical analyses in closed-form equations on OB and GOB devices are made for the first time to model the performance in various operating regions. The theoretical analyses were also carefully verified through two-dimensional numerical simulations.

  5. Photoluminescence and photostability investigations of biocompatible semiconductor nanocrystals coated with glutathione using low laser power

    NASA Astrophysics Data System (ADS)

    Ibrahim, Salwa Ali; Ahmed, Wafaa; Youssef, Tareq

    2014-06-01

    Great efforts are currently devoted to fabricate high-quality quantum dots (QDs) in aqueous solutions for biomedical applications. Two biocompatible systems consisting of core (CdSe) and core/shell (CdSe/ZnS) QDs surface modified with glutathione (GSH), named CdSe-GSH and CdSe/ZnS-GSH, respectively, were built. Upon photoirradiation using low laser power, both systems in HEPES buffer (pH 7.2) showed significant photoluminescence (PL) enhancements. CdSe/ZnS-GSH showed much less blue shifts in excitonic absorption and emission peaks without photobleaching compared with CdSe-GSH QDs system. X-ray diffraction showed that there is no change in the crystalline phase structure of the CdSe/ZnS-GSH QDs system after 1 h irradiation. Cell viability assessment, in the dark, demonstrated that no cytotoxic effects were shown upon incubation CdSe/ZnS-GSH QDs with normal human skin cell line for periods up to 72 h and at concentrations up to 100 nM. The present study demonstrates that CdSe/ZnS-GSH QDs system exhibits a high photostability with a relatively high PL efficiency in aqueous medium following low intensity photoexcitation, without dark cytotoxicity, making this system attractive for several important biomedical applications.

  6. High average/peak power linearly polarized all-fiber picosecond MOPA seeded by mode-locked noise-like pulses

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Ma, P. F.; Tao, R. M.; Wang, X. L.; Zhou, P.; Chen, J. B.

    2015-06-01

    The characteristics of mode-locked noise-like pulses generated from a passively mode-locked fiber oscillator are experimentally investigated. By carefully adjusting the two polarization controllers, stable mode-locked noise-like pulse emission with a high radio frequency signal/noise ratio of  >55 dB is successfully achieved, ensuring the safety and possibility of high power amplification. To investigate the amplification characteristics of such pulses, one all-fiber master oscillator power amplifier (MOPA) is built to boost the power and energy of such pulses. Amplified noise-like pulses with average output power of 423 W, repetition rate of 18.71 MHz, pulse energy of 22.61 μJ, pulse duration of 72.1 ps and peak power of 314 kW are obtained. Near diffraction-limited beam is also demonstrated with M2 factor measured at full power operation of ~1.2 in the X and Y directions. The polarization extinction ratio at output power of 183 W is measured to be ~13 dB. To the best of our knowledge, this is the first demonstration of high-power amplification of noise-like pulses and the highest peak power ever reported in all-fiber picosecond MOPAs. The temporal self-compression process of such pulses and high peak power when amplified make it an ideal pump source for generation of high-power supercontinuum. Other potential applications, such as material processing and optical coherent tomography, could also be foreseen.

  7. Linear Averaged and Sampled Data Models for Large Signal Control of High Power Factor AC-DC Converters

    DTIC Science & Technology

    1990-06-01

    design a digital controller for the outer trol schemes for high power factor ac to dc converters, loop, including PI control , and presents simulation re...design of an analog control (e.g. PI control ) for by the current loop. If kin] is too large, then the inductor tam el (3) Isnoar ts ee lin at tne. Fcorl...with PI Control 6 mm am I m mmmmimmm~mmml r .14 _ _ _ _ _ _ _ _ _ _ O .12 SM .16 .p N 17 .6 Is , TV 240 6 F tic .04 113 .02 a I I ’ 190 0 0.973 I • 0

  8. All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2  μm with mJ-level pulse energy.

    PubMed

    Wang, Xiong; Jin, Xiaoxi; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2016-03-10

    We present a high-power nanosecond-pulsed Tm-doped fiber amplifier at 1.971 μm based on a master-oscillator power amplifier (MOPA) configuration. When the repetition rate is 500 kHz and the pulse width is 63.3 ns, the average power reaches 238 W, the peak power reaches 7.06 kW, and the pulse energy is 0.477 mJ. When the pulse train's repetition rate is 300 kHz with a pulse width of 63.7 ns, the average power reaches 197 W, the peak power reaches 9.73 kW, and the pulse energy is 0.66 mJ. When the pulse train's repetition rate is 200 kHz with a pulse width of 58.2 ns, the average power reaches 150 W, the peak power reaches 12.1 kW, and the pulse energy is 0.749 mJ. The spectral linewidths of the pulse trains are 0.15, 0.14, and 0.10 nm for 500 kHz repetition rate, 300 kHz repetition rate, and 200 kHz repetition rate, respectively. To the best of our knowledge, this is the first demonstration of high-power nanosecond-pulsed MOPA at 2 μm with the maximum average power reaching 238 W, the maximum peak power reaching 12.1 kW, and the maximum pulse energy reaching 0.749 mJ.

  9. Femtosecond pulses at 50-W average power from an Yb:YAG planar waveguide amplifier seeded by an Yb:KYW oscillator.

    PubMed

    Leburn, Christopher G; Ramírez-Corral, Cristtel Y; Thomson, Ian J; Hall, Denis R; Baker, Howard J; Reid, Derryck T

    2012-07-30

    We report the demonstration of a high-power single-side-pumped Yb:YAG planar waveguide amplifier seeded by an Yb:KYW femtosecond laser. Five passes through the amplifier yielded 700-fs pulses with average powers of 50 W at 1030 nm. A numerical simulation of the amplifier implied values for the laser transition saturation intensity, the small-signal intensity gain coefficient and the gain bandwidth of 10.0 kW cm(-2), 1.6 cm(-1), and 3.7 nm respectively, and identified gain-narrowing as the dominant pulse-shaping mechanism.

  10. 1 W average-power 100 MHz repetition-rate 259 nm femtosecond deep ultraviolet pulse generation from ytterbium fiber amplifier.

    PubMed

    Zhou, Xiangyu; Yoshitomi, Dai; Kobayashi, Yohei; Torizuka, Kenji

    2010-05-15

    We demonstrate 1W average-power ultraviolet (UV) femtosecond (fs) ultrashort pulse generation at a wavelength of 259 nm and a repetition rate as high as 100 MHz by quadrupling a fs ytterbium-fiber laser. A cavity-enhanced design is employed for efficient frequency doubling to the UV region. The optical-to-optical efficiency of UV output to the pump diode is 2.6%.

  11. Surface activated bonding of GaAs and SiC wafers at room temperature for improved heat dissipation in high-power semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Higurashi, Eiji; Okumura, Ken; Nakasuji, Kaori; Suga, Tadatomo

    2015-03-01

    Thermal management of high-power semiconductor lasers is of great importance since the output power and beam quality are affected by the temperature rise of the gain region. Thermal simulations of a vertical-external-cavity surface-emitting laser by a finite-element method showed that the solder layer between the semiconductor thin film consisting of the gain region and a heat sink has a strong influence on the thermal resistance and direct bonding is preferred to achieve effective heat dissipation. To realize thin-film semiconductor lasers directly bonded on a high-thermal-conductivity substrate, surface-activated bonding using an argon fast atom beam was applied to the bonding of gallium arsenide (GaAs) and silicon carbide (SiC) wafers. The GaAs/SiC structure was demonstrated in the wafer scale (2 in. in diameter) at room temperature. The cross-sectional transmission electron microscopy observations showed that void-free bonding interfaces were achieved.

  12. Diode-pumped continuous-wave and femtosecond Cr:LiCAF lasers with high average power in the near infrared, visible and near ultraviolet.

    PubMed

    Demirbas, Umit; Baali, Ilyes; Acar, Durmus Alp Emre; Leitenstorfer, Alfred

    2015-04-06

    We demonstrate continuous-wave (cw), cw frequency-doubled, cw mode-locked and Q-switched mode-locked operation of multimode diode-pumped Cr:LiCAF lasers with record average powers. Up to 2.54 W of cw output is obtained around 805 nm at an absorbed pump power of 5.5 W. Using intracavity frequency doubling with a BBO crystal, 0.9 W are generated around 402 nm, corresponding to an optical-to-optical conversion efficiency of 12%. With an intracavity birefringent tuning plate, the fundamental and frequency-doubled laser output is tuned continuously in a broad wavelength range from 745 nm to 885 nm and from 375 to 440 nm, respectively. A saturable Bragg reflector is used to initiate and sustain mode locking. In the cw mode-locked regime, the Cr:LiCAF laser produces 105-fs long pulses near 810 nm with an average power of 0.75 W. The repetition rate is 96.4 MHz, resulting in pulse energies of 7.7 nJ and peak powers of 65 kW. In Q-switched mode-locked operation, pulses with energies above 150 nJ are generated.

  13. Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power

    SciTech Connect

    Yasuhara, Ryo; Snetkov, Ilya; Starobor, Alexey; Palashov, Oleg

    2014-12-15

    A scalable aperture Faraday isolator for high-energy pulsed lasers with kW-level average power was demonstrated using terbium gallium garnet ceramics with water cooling and compensation of thermally induced depolarization in a magnetic field. An isolation ratio of 35 dB (depolarization ratio γ of 3.4 × 10{sup −4}) was experimentally observed at a maximum laser power of 740 W. By using this result, we estimated that this isolator maintains an isolation ratio of 30 dB for laser powers of up to 2.7 kW. Our results provide the solution for achieving optical isolation in high-energy (100 J to kJ) laser systems with a repetition rate greater than 10 Hz.

  14. 2 Gbit/s 0.5 μm complementary metal-oxide semiconductor optical transceiver with event-driven dynamic power-on capability

    NASA Astrophysics Data System (ADS)

    Wang, Xingle; Kiamilev, Fouad; Gui, Ping; Wang, Xiaoqing; Ekman, Jeremy; Zuo, Yongrong; Blankenberg, Jason; Haney, Michael

    2006-06-01

    A 2 Gb/s0.5 μm complementary metal-oxide semiconductor optical transceiver designed for board- or backplane level power-efficient interconnections is presented. The transceiver supports optical wake-on-link (OWL), an event-driven dynamic power-on technique. Depending on external events, the transceiver resides in either the active mode or the sleep mode and switches accordingly. The active-to-sleep transition shuts off the normal, gigabit link and turns on dedicated circuits to establish a low-power (~1.8 mW), low data rate (less than 100 Mbits/s) link. In contrast the normal, gigabit link consumes over 100 mW. Similarly the sleep-to-active transition shuts off the low-power link and turns on the normal, gigabit link. The low-power link, sharing the same optical channel with the normal, gigabit link, is used to achieve transmitter/receiver pair power-on synchronization and greatly reduces the power consumption of the transceiver. A free-space optical platform was built to evaluate the transceiver performance. The experiment successfully demonstrated the event-driven dynamic power-on operation. To our knowledge, this is the first time a dynamic power-on scheme has been implemented for optical interconnects. The areas of the circuits that implement the low-power link are approximately one-tenth of the areas of the gigabit link circuits.

  15. Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes.

    PubMed

    Erdem, Talha; Nizamoglu, Sedat; Demir, Hilmi Volkan

    2012-01-30

    We present power conversion efficiency (PCE) and luminous efficiency (LE) performance levels of high photometric quality white LEDs integrated with quantum dots (QDs) achieving an averaged color rendering index of ≥90 (with R9 at least 70), a luminous efficacy of optical radiation of ≥380 lm/W(opt) a correlated color temperature of ≤4000 K, and a chromaticity difference dC <0.0054. We computationally find that the device LE levels of 100, 150, and 200 lm/W(elect) can be achieved with QD quantum efficiency of 43%, 61%, and 80% in film, respectively, using state-of-the-art blue LED chips (81.3% PCE). Furthermore, our computational analyses suggest that QD-LEDs can be both photometrically and electrically more efficient than phosphor based LEDs when state-of-the-art QDs are used.

  16. Development of a kilowatt-class, joule-level ultrafast laser for driving compact high average power coherent EUV/soft x-ray sources

    NASA Astrophysics Data System (ADS)

    Reagan, Brendan A.; Baumgarten, Cory M.; Pedicone, Michael A.; Bravo, Herman; Yin, Liang; Woolston, Mark; Wang, Hanchen; Menoni, Carmen S.; Rocca, Jorge J.

    2016-03-01

    Our recent progress in the development of high energy / high average power, chirped pulse amplification laser systems based on diode-pumped, cryogenically-cooled Yb:YAG amplifiers is discussed, including the demonstration of a laser that produces 1 Joule, sub-10 picosecond duration, λ = 1.03μm pulses at 500 Hz repetition rate. This compact, all-diodepumped laser combines a mode-locked Yb:KYW oscillator and a water-cooled Yb:YAG preamplifer with two cryogenic power amplification stages to produce 1.5 Joule pulses with high beam quality which are subsequently compressed. This laser system occupies an optical table area of less than 1.5x3m2. This laser was employed to pump plasma-based soft x-ray lasers at λ = 10-20nm at repetition rates >=100 Hz. To accomplish this, temporally-shaped pulses were focused at grazing incidence into a high aspect ratio line focus using cylindrical optics on a high shot capacity rotating metal target. This results in an elongated plasma amplifier that produces microjoule pulses at several narrow-linewidth EUV wavelengths between λ = 109Å and 189Å. The resulting fraction of a milliwatt average powers are the highest reported to date for a compact, coherent source operating at these wavelengths, to the best of our knowledge.

  17. Channeling of high-power radio waves under conditions of strong anomalous absorption in the presence of an averaged electron heating source

    SciTech Connect

    Vas'kov, V. V.; Ryabova, N. A.

    2010-02-15

    Strong anomalous absorption of a high-power radio wave by small-scale plasma inhomogeneities in the Earth's ionosphere can lead to the formation of self-consistent channels (solitons) in which the wave propagates along the magnetic field, but has a soliton-like intensity distribution across the field. The structure of a cylindrical soliton as a function of the wave intensity at the soliton axis is analyzed. Averaged density perturbations leading to wave focusing were calculated using the model proposed earlier by Vas'kov and Gurevich (Geomagn. Aeron. 16, 1112 (1976)), in which an averaged electron heating source was used. It is shown that, under conditions of strong electron recombination, the radii of individual solitons do not exceed 650 m.

  18. High average power nonlinear compression to 4  GW, sub-50  fs pulses at 2  μm wavelength.

    PubMed

    Gebhardt, M; Gaida, C; Stutzki, F; Hädrich, S; Jauregui, C; Limpert, J; Tünnermann, A

    2017-02-15

    The combination of high-repetition-rate ultrafast thulium-doped fiber laser systems and gas-based nonlinear pulse compression in waveguides offers promising opportunities for the development of high-performance few-cycle laser sources at 2 μm wavelength. In this Letter, we report on a nonlinear pulse compression stage delivering 252 μJ, sub-50 fs-pulses at 15.4 W of average power. This performance level was enabled by actively mitigating ultrashort pulse propagation effects induced by the presence of water vapor absorptions.

  19. Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE).

    PubMed

    Pilar, Jan; Slezak, Ondrej; Sikocinski, Pawel; Divoky, Martin; Sawicka, Magdalena; Bonora, Stefano; Lucianetti, Antonio; Mocek, Tomas; Jelinkova, Helena

    2014-05-20

    We report numerical and experimental results obtained with an optical setup that simulates the heating and cooling processes expected in a multi-slab high-average-power laser head. We have tested the performance of an adaptive optics system consisting of a photo-controlled deformable mirror (PCDM) and a Shack-Hartmann wavefront sensor for the effective correction of the generated wavefront aberrations. The performance of the adaptive optics system is characterized for different layouts of the actuator array and for different configurations of the heating mechanisms. The numerical results are benchmarked using a PCDM, which allowed us to experimentally compare the performances of different deformable mirrors.

  20. The Mercury Laser System: An Average power, gas-cooled, Yb:S-FAP based system with frequency conversion and wavefront correction

    SciTech Connect

    Bibeau, C; Bayramian, A; Armstrong, P; Ault, E; Beach, R; Benapfl, M; Campbell, R; Dawson, J; Ebbers, C; Freitas, B; Kent, R; Liao, Z; Ladran, T; Menapace, J; Molander, B; Moses, E; Oberhelman, S; Payne, S; Peterson, N; Schaffers, K; Stolz, C; Sutton, S; Tassano, J; Telford, S; Utterback, E; Randles, M

    2005-08-31

    We report on the operation of the Mercury laser with fourteen 4 x 6 cm{sup 2} Yb:S-FAP amplifier slabs pumped by eight 100 kW peak power diode arrays. The system was continuously run at 55 J and 10 Hz for several hours, (2 x 10{sup 5} cumulative shots) with over 80% of the energy in a 6 times diffraction limited spot at 1.047 um. Improved optical quality was achieved in Yb:S-FAP amplifiers with magneto-rheological finishing, a deterministic polishing method. In addition, average power frequency conversion employing YCOB was demonstrated at 50% conversion efficiency or 22.6 J at 10 Hz.

  1. Residual thermal stress of a mounted KDP crystal after cooling and its effects on second harmonic generation of a high-average-power laser

    NASA Astrophysics Data System (ADS)

    Su, Ruifeng; Liu, Haitao; Liang, Yingchun; Yu, Fuli

    2017-01-01

    Thermal problems are huge challenges for solid state lasers that are interested in high output power, cooling of the nonlinear optics is insufficient to completely solve the problem of thermally induced stress, as residual thermal stress remains after cooling, which is first proposed, to the best of our knowledge. In this paper a comprehensive model incorporating principles of thermodynamics, mechanics and optics is proposed, and it is used to study the residual thermal stress of a mounted KDP crystal after cooling process from mechanical perspective, along with the effects of the residual thermal stress on the second harmonic generation (SHG) efficiency of a high-average-power laser. Effects of the structural parameters of the mounting configuration of the KDP crystal on the residual thermal stress are characterized, as well as the SHG efficiency. The numerical results demonstrate the feasibility of solving the problems of residual thermal stress from the perspective on structural design of mounting configuration.

  2. Peak-to-average power ratio mitigation and adaptive bit assignment in single-carrier frequency division multiplexing access via hierarchical modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Lijia; Liu, Bo; Xin, Xiangjun; Wang, Yongjun

    2014-11-01

    A hierarchical modulation with multilevels is proposed for an optical single-carrier frequency division multiplexing access (SC-FDMA) system. It can mitigate the nonlinearity by reducing the peak-to-average power ratio (PAPR) of the SC-FDM signal. According to different optical signal-to-noise ratio requirements, the adaptive bit allocation can be implemented on different levels during hierarchical modulation. In the experiment, the PAPR of the hierarchical-modulated SC-FDM signal outperforms the conventional SC-FDM signal by 0.7 dB. Signals with 4- and 6-bit hierarchical modulation are successfully demodulated by the optical network unit with power penalties less than 0.2 and 0.45 dB, respectively.

  3. Measurement techniques for high-power semiconductor materials and devices. Annual report, October 1, 1980-December 31, 1981. [For calculating excess-carrier lifetime in silicon

    SciTech Connect

    Thurber, W R; Phillips, W E; Larrabee, R D

    1982-08-01

    This annual report describes results of NBS research directed toward the development of measurement methods for semiconductor materials and devices which will lead to more effective use of high-power semiconductor devices in applications for energy generation, transmission, conversion, and conservation. Emphasis is on the development of measurement methods for power-device-grade silicon. Major accomplishments during this reporting period were : (1) characterizing by deep level transient spectroscopy (DLTS) the energy levels in silicon power rectifier diodes, (2) writing of a computer program to predict lifetime-related parameters using as input the measured properties of the deep energy levels, (3) developing a novel method to detect nonexponential transients using a conventional double-boxcar DLTS system, (4) analyzing transient capacitance measurements to extend the techniques to nonexponential decays, (5) using a platinum resistance thermometer to calibrate temperature sensing diodes to obtain the precision needed for careful isothermal capacitance measurements, and (6) utilizing trap changing time as a technique to resolve overlapping DLTS peaks in sulfur-doped silicon.

  4. Performance of MgO:PPLN, KTA, and KNbO₃ for mid-wave infrared broadband parametric amplification at high average power.

    PubMed

    Baudisch, M; Hemmer, M; Pires, H; Biegert, J

    2014-10-15

    The performance of potassium niobate (KNbO₃), MgO-doped periodically poled lithium niobate (MgO:PPLN), and potassium titanyl arsenate (KTA) were experimentally compared for broadband mid-wave infrared parametric amplification at a high repetition rate. The seed pulses, with an energy of 6.5 μJ, were amplified using 410 μJ pump energy at 1064 nm to a maximum pulse energy of 28.9 μJ at 3 μm wavelength and at a 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study revealed average power-induced processes that limit the scaling of optical parametric amplification in MgO:PPLN; the pump peak intensity was limited to 3.8  GW/cm² due to nonpermanent beam reshaping, whereas in KNbO₃ an absorption-induced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4  GW/cm².

  5. An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg.

    PubMed

    Zhai, Teng; Lu, Xihong; Wang, Hanyu; Wang, Gongming; Mathis, Tyler; Liu, Tianyu; Li, Cheng; Tong, Yexiang; Li, Yat

    2015-05-13

    Electrochemical capacitors represent a new class of charge storage devices that can simultaneously achieve high energy density and high power density. Previous reports have been primarily focused on the development of high performance capacitor electrodes. Although these electrodes have achieved excellent specific capacitance based on per unit mass of active materials, the gravimetric energy densities calculated based on the weight of entire capacitor device were fairly small. This is mainly due to the large mass ratio between current collector and active material. We aimed to address this issue by a 2-fold approach of minimizing the mass of current collector and increasing the electrode performance. Here we report an electrochemical capacitor using 3D graphene hollow structure as current collector, vanadium sulfide and manganese oxide as anode and cathode materials, respectively. 3D graphene hollow structure provides a lightweight and highly conductive scaffold for deposition of pseudocapacitive materials. The device achieves an excellent active material ratio of 24%. Significantly, it delivers a remarkable energy density of 7.4 Wh/kg (based on the weight of entire device) at the average power density of 3000 W/kg. This is the highest gravimetric energy density reported for asymmetric electrochemical capacitors at such a high power density.

  6. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-01

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition.

  7. Merged beam laser design for reduction of gain-saturation and two-photon absorption in high power single mode semiconductor lasers.

    PubMed

    Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C

    2013-04-08

    In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.

  8. Optical-cell model based on the lasing competition of mode structures with different Q-factors in high-power semiconductor lasers

    SciTech Connect

    Podoskin, A. A. Shashkin, I. S.; Slipchenko, S. O.; Pikhtin, N. A.; Tarasov, I. S.

    2015-08-15

    A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching between mode structures with various Q-factors are considered.

  9. High average power difference-frequency generation of picosecond mid-IR pulses at 80MHz using an Yb-fiber laser pumped optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Michel, Julia; Beutler, Marcus; Rimke, Ingo; Büttner, Edlef; Farinello, Paolo; Agnesi, Antonio; Petrov, Valentin P.

    2015-02-01

    We present an efficient coherent source widely tunable in the mid-infrared spectral range consisting of a commercial picosecond Yb-fiber laser operating at 80 MHz repetition rate, a synchronously-pumped OPO (SPOPO) and differencefrequency generation (DFG) in AgGaSe2. With an average input pump power of 7.8 W at 1032 nm and at 80 MHz, the SPOPO outputs are tunable from 1380 to 1980 nm (Signal) and from 2.1 to ~4 μm (Idler) with pulse durations between 2.1 and 2.6 ps over the entire tuning range. After temporally overlapping Signal and Idler through a delay line, the two beams are spatially recombined with a dichroic mirror (reflecting for the Signal in s-polarization and transmitting for the Idler in p-polarization), and focused by a 150 mm CaF2 lens to a common focus. For DFG we employ an AR-coated 10- mm thick AgGaSe2 nonlinear crystal cut for type-I interaction at θ =52°. The generated mid-infrared picosecond pulses are continuously tunable between 5 and 18 μm with average power up to 130 mW at 6 μm and more than 1 mW at 18 μm. Their spectra and autocorrelation traces are measured up to 15 μm and 11 μm, respectively, and indicate that the input spectral bandwidth and pulse duration are maintained to a great extent in the nonlinear frequency conversion processes. The pulse duration slightly decreases from 2.1 to 1.9 ps at 6.7 μm while the spectral bandwidth supports ~1.5 ps (~10 cm-1)durations across the entire mid-infrared tuning range. For the first time narrow-band mid-infrared pulses with energy exceeding 1 nJ are generated at such high repetition rates.

  10. Nondestructive measurement of thermal contact resistance for the power vertical double-diffused metal-oxide-semiconductor

    NASA Astrophysics Data System (ADS)

    Li, Rui; Guo, Chun-Sheng; Feng, Shi-Wei; Shi, Lei; Zhu, Hui; Wang, Lin

    2015-07-01

    To obtain thermal contact resistance (TCR) between the vertical double-diffused metal-oxide-semiconductor (VDMOS) and the heat sink, we derived the relationship between the total thermal resistance and the contact force imposed on the VDMOS. The total thermal resistance from the chip to the heat sink is measured under different contact forces, and the TCR can be extracted nondestructively from the derived relationship. Finally, the experimental results are compared with the simulation results. Project supported by the National Natural Science Foundation of China (Grant No. 61204081).

  11. New hybrid peak-to-average power ratio reduction technique based on carrier interferometry codes and companding technique for optical direct-detection orthogonal frequency division multiplexing system

    NASA Astrophysics Data System (ADS)

    Maivan, Lap; He, Jing; Chen, Ming; Mangone, Fall; Chen, Lin

    2014-08-01

    In direct-detection optical orthogonal frequency division multiplexing (OFDM) systems, the high peak-to-average power ratio (PAPR) will cause nonlinear effects in both electrical and optical devices and optical fiber transmission when the nonlinear amplifiers are employed. A new hybrid technique based on carrier interferometry codes and companding transform has been proposed and experimentally demonstrated to reduce the high PAPR in an optical direct-detection optical OFDM system. The proposed technique is then experimentally demonstrated and the results show the effectiveness of the new method. The PAPR of the hybrid signal has been reduced by about 5.7 dB when compared to the regular system at a complementary cumulative distribution function of 10-4. At a bit error rate of 10-4, after transmission over 100-km single-mode fiber with a μ of 2, the receiver sensitivity is improved by 3.7, 4.2, and 5 dB with launch powers of 3, 6, and 9 dBm, respectively.

  12. Yb-fiber-MOPA based high energy and average power uplink laser beacon for deep space communication operating under Nested PPM format

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Burton, John; Darab, Ibraheem; Kimpel, Frank; Gupta, Shantanu

    2015-05-01

    A Yb LMA fiber amplifier based 1030nm laser transmitter capable of operating with high average power and peak power (~500W, 9kW) is presented. The prototype, all-fiber, high TRL level laser transmitter is designed to meet all the single aperture requirements of a multi aperture deep space laser beacon system including operation with Nested pulse position modulation (PPM) format. Nested PPM format consist of an inner modulation PPM- (8,4) with 128nsec slot size and an outer modulation PPM-(2, 2) 65.5usec slot size. Here, nested PPM operation is presented for the first time. In implementing inner modulation strong pre-pulse shaping is required where PPM pattern dependent pulse energy variation (PEV) is minimized. Outer modulation is implemented by directly modulating VBG locked pump lasers for the final two gain. A sophisticated multi-stage, ultra-fast loss of signal (LOS) and backward Raman/lasing monitoring algorithm is implemented for ensuring reliable operation. Mechanical and electrical design of the delivered laser is scalable to multiple apertures.

  13. A 1.33 µm picosecond pulse generator based on semiconductor disk mode-locked laser and bismuth fiber amplifier.

    PubMed

    Heikkinen, Juuso; Gumenyuk, Regina; Rantamäki, Antti; Leinonen, Tomi; Melkumov, Mikhail; Dianov, Evgeny M; Okhotnikov, Oleg G

    2014-05-19

    We demonstrate that a combination of ultrafast wafer bonded semiconductor disk laser and a bismuth-doped fiber amplifier provides an attractive design for high power 1.33 µm tandem hybrid systems. Over 0.5 W of average output power was achieved at a repetition rate of 827 MHz that corresponds to a pulse energy of 0.62 nJ.

  14. High temperature heat source generation with quasi-continuous wave semiconductor lasers at power levels of 6 W for medical use.

    PubMed

    Fujimoto, Takahiro; Imai, Yusuke; Tei, Kazuyoku; Ito, Shinobu; Kanazawa, Hideko; Yamaguchi, Shigeru

    2014-01-01

    We investigate a technology to create a high temperature heat source on the tip surface of the glass fiber proposed for medical surgery applications. Using 4 to 6 W power level semiconductor lasers at a wavelength of 980 nm, a laser coupled fiber tip was preprocessed to contain a certain amount of titanium oxide powder with a depth of 100 μm from the tip surface so that the irradiated low laser energy could be perfectly absorbed to be transferred to thermal energy. Thus, the laser treatment can be performed without suffering from any optical characteristic of the material. A semiconductor laser was operated quasi-continuous wave mode pulse time duration of 180 ms and >95% of the laser energy was converted to thermal energy in the fiber tip. Based on two-color thermometry, by using a gated optical multichannel analyzer with a 0.25 m spectrometer in visible wavelength region, the temperature of the fiber tip was analyzed. The temperature of the heat source was measured to be in excess 3100 K.

  15. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices

    PubMed Central

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines. PMID:25763152

  16. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices.

    PubMed

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines.

  17. Diode having trenches in a semiconductor region

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2016-03-22

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  18. Semiconductor devices having a recessed electrode structure

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2015-05-26

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  19. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  20. Semiconductor photoelectrochemistry

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.

    1983-01-01

    Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.

  1. Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma accelerators

    SciTech Connect

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2014-05-15

    The wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e., without constraining the pulse phases) is studied analytically and by means of fully self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region, the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structures in the laser energy density produced by the combined pulses exist on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators, and associated applications.

  2. Optimization of x-ray sources for proximity lithography produced by a high average power Nd:glass laser. Revision 1

    SciTech Connect

    Celliers, P.; DaSilva, L.B.; Dane, C.B.

    1995-07-01

    We measured the conversion efficiency of laser pulse energy into keV x-rays from a variety of solid planar targets and a Xe gas puff target irradiated using a high average power Nd:glass slab laser capable of delivering 13 ns FWHM pulses at up to 20 J at 1.053 {mu}m and 12 J at 0.53 {mu}m. Targets where chosen to optimize emission in the l0--15 {angstrom} wavelength band, including L-shell emission from materials with atomic numbers in the range Z=24-30 and M-shell emission from Xe (Z=54). With 1.053 {mu}m a maximum conversion of 11% into 2{pi} sr was measured from solid Xe targets. At 0.527 {mu}m efficiencies of 12--18%/(2{pi}sr) were measured for all of the solid targets in the same wavelength band. The x-ray conversion efficiency from the Xe gas puff target was considerably lower, at about 3%/(2{pi}sr) when irradiated with 1.053 {mu}m.

  3. Optimization of X-ray sources from a high-average-power ND:Glass laser-produced plasma for proximity lithography

    SciTech Connect

    Celliers, P.; Da Silva, L.B.; Dane, C.B.

    1996-06-01

    The concept of a laser-based proximity lithography system for electronic microcircuit production has advanced to the point where a detailed design of a prototype system capable of exposing wafers at 40 wafer levels per hr is technically feasible with high-average-power laser technology. In proximity x-ray lithography, a photoresist composed of polymethyl- methacrylate (PMMA) or similar material is exposed to x rays transmitted through a mask placed near the photoresist, a procedure which is similar to making a photographic contact print. The mask contains a pattern of opaque metal features, with line widths as small as 0.12 {mu}m, placed on a thin (1-{mu}m thick) Si membrane. During the exposure, the shadow of the mask projected onto the resist produces in the physical and chemical properties of the resist a pattern of variation with the same size and shape as the features contained in the metal mask. This pattern can be further processed to produce microscopic structures in the Si substrate. The main application envisioned for this technology is the production of electronic microcircuits with spatial features significantly smaller than currently achievable with conventional optical lithographic techniques (0.12 {micro}m vs 0.25 {micro}m). This article describes work on optimizing a laser-produced plasma x-ray source intended for microcircuit production by proximity lithography.

  4. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    SciTech Connect

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  5. Combined peak-to-average power ratio reduction and physical layer security enhancement in optical orthogonal frequency division multiplexing visible-light communication systems

    NASA Astrophysics Data System (ADS)

    Wang, Zhongpeng; Chen, Shoufa

    2016-07-01

    A physical encryption scheme for discrete Hartley transform (DHT) precoded orthogonal frequency division multiplexing (OFDM) visible-light communication (VLC) systems using frequency domain chaos scrambling is proposed. In the scheme, the chaos scrambling, which is generated by a modified logistic mapping, is utilized to enhance the physical layer of security, and the DHT precoding is employed to reduce of OFDM signal for OFDM-based VLC. The influence of chaos scrambling on peak-to-average power ratio (PAPR) and bit error rate (BER) of systems is studied. The experimental simulation results prove the efficiency of the proposed encryption method for DHT-precoded, OFDM-based VLC systems. Furthermore, the influence of the proposed encryption to the PAPR and BER of systems is evaluated. The experimental results show that the proposed security scheme can protect the DHT-precoded, OFDM-based VLC from eavesdroppers, while keeping the good BER performance of DHT-precoded systems. The BER performance of the encrypted and DHT-precoded system is almost the same as that of the conventional DHT-precoded system without encryption.

  6. Simple way to engineer metal-semiconductor interface for enhanced performance of perovskite organic lead iodide solar cells.

    PubMed

    Xu, Yuzhuan; Shi, Jiangjian; Lv, Songtao; Zhu, Lifeng; Dong, Juan; Wu, Huijue; Xiao, Yin; Luo, Yanhong; Wang, Shirong; Li, Dongmei; Li, Xianggao; Meng, Qingbo

    2014-04-23

    A thin wide band gap organic semiconductor N,N,N',N'-tetraphenyl-benzidine layer has been introduced by spin-coating to engineer the metal-semiconductor interface in the hole-conductor-free perovskite solar cells. The average cell power conversion efficiency (PCE) has been enhanced from 5.26% to 6.26% after the modification and a highest PCE of 6.71% has been achieved. By the aid of electrochemical impedance spectroscopy and dark current analysis, it is revealed that this modification can increase interfacial resistance of CH3NH3PbI3/Au interface and retard electron recombination process in the metal-semiconductor interface.

  7. Experiment Safety Assurance Package for Mixed Oxide Fuel Irradiation in an Average Power Position (I-24) in the Advanced Test Reactor

    SciTech Connect

    J. M . Ryskamp; R. C. Howard; R. C. Pedersen; S. T. Khericha

    1998-10-01

    The Fissile Material Disposition Program Light Water Reactor Mixed Oxide Fuel Irradiation Test Project Plan details a series of test irradiations designed to investigate the use of weapons-grade plutonium in MOX fuel for light water reactors (LWR) (Cowell 1996a, Cowell 1997a, Thoms 1997a). Commercial MOX fuel has been successfully used in overseas reactors for many years; however, weapons-derived test fuel contains small amounts of gallium (about 2 parts per million). A concern exists that the gallium may migrate out of the fuel and into the clad, inducing embrittlement. For preliminary out-of-pile experiments, Wilson (1997) states that intermetallic compound formation is the principal interaction mechanism between zircaloy cladding and gallium. This interaction is very limited by the low mass of gallium, so problems are not expected with the zircaloy cladding, but an in-pile experiment is needed to confirm the out-of-pile experiments. Ryskamp (1998) provides an overview of this experiment and its documentation. The purpose of this Experiment Safety Assurance Package (ESAP) is to demonstrate the safe irradiation and handling of the mixed uranium and plutonium oxide (MOX) Fuel Average Power Test (APT) experiment as required by Advanced Test Reactor (ATR) Technical Safety Requirement (TSR) 3.9.1 (LMITCO 1998). This ESAP addresses the specific operation of the MOX Fuel APT experiment with respect to the operating envelope for irradiation established by the Upgraded Final Safety Analysis Report (UFSAR) Lockheed Martin Idaho Technologies Company (LMITCO 1997a). Experiment handling activities are discussed herein.

  8. SEMICONDUCTOR INTEGRATED CIRCUITS: A low power 8-bit successive approximation register A/D for a wireless body sensor node

    NASA Astrophysics Data System (ADS)

    Liyuan, Liu; Dongmei, Li; Liangdong, Chen; Chun, Zhang; Shaojun, Wei; Zhihua, Wang

    2010-06-01

    A power efficient 8-bit successive approximation register (SAR) A/D for the vital sign monitoring of a wireless body sensor network (WBSN) is presented. A charge redistribution architecture is employed. The prototype A/D is fabricated in 0.18 μm CMOS. The A/D achieves 7.5 ENOB with sampling rate varying from 64 kHz to 1.5 MHz. The power consumption varies from 10.8 to 225.7 μW.

  9. SEMICONDUCTOR INTEGRATED CIRCUITS: A low power cyclic ADC design for a wireless monitoring system for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Yi, Chen; Fule, Li; Hong, Chen; Chun, Zhang; Zhihua, Wang

    2009-08-01

    This paper presents a low power cyclic analog-to-digital convertor (ADC) design for a wireless monitoring system for orthopedic implants. A two-stage cyclic structure including a single to differential converter, two multiplying DAC functional blocks (MDACs) and some comparators is adopted, which brings moderate speed and moderate resolution with low power consumption. The MDAC is implemented with the common switched capacitor method. The 1.5-bit stage greatly simplifies the design of the comparator. The operational amplifier is carefully optimized both in schematic and layout for low power and offset. The prototype chip has been fabricated in a United Microelectronics Corporation (UMC) 0.18-μm 1P6M CMOS process. The core of the ADC occupies only 0.12 mm2. With a 304.7-Hz input and 4-kHz sampling rate, the measured peak SNDR and SFDR are 47.1 dB and 57.8 dBc respectively and its DNL and INL are 0.27 LSB and 0.3 LSB, respectively. The power consumption of the ADC is only 12.5 μW in normal working mode and less than 150 nW in sleep mode.

  10. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process

    SciTech Connect

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-15

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga{sub 0.97}N{sub 0.9}O{sub 0.09} is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga{sub 0.97}N{sub 0.9}O{sub 0.09} of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4 M HCl, 100 °C and pulp density of 100 kg/m{sup 3,} respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. - Highlights: • Waste MOCVD dust is treated through mechanochemical leaching. • GaN is hardly leached, and converted to NaGaO{sub 2} through ball milling and annealing. • Process for gallium recovery from waste MOCVD dust has been developed. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} is revealed. • Solid-state chemistry involved in this process is reported.

  11. High-Performance electronics at ultra-low power consumption for space applications: From superconductor to nanoscale semiconductor technology

    NASA Technical Reports Server (NTRS)

    Duncan, Robert V.; Simmons, Jerry; Kupferman, Stuart; McWhorter, Paul; Dunlap, David; Kovanis, V.

    1995-01-01

    A detailed review of Sandia's work in ultralow power dissipation electronics for space flight applications, including superconductive electronics, new advances in quantum well structures, and ultra-high purity 3-5 materials, and recent advances in micro-electro-optical-mechanical systems (MEMS) is presented. The superconductive electronics and micromechanical devices are well suited for application in micro-robotics, micro-rocket engines, and advanced sensors.

  12. Nonlinear optical compression of high-power 10-μm CO2 laser pulses in gases and semiconductors

    NASA Astrophysics Data System (ADS)

    Pigeon, Jeremy; Tochitsky, Sergei; Joshi, Chan

    2017-03-01

    We review a series of experiments on nonlinear optical compression of high-power, picosecond, 10-µm CO2 laser pulses. Presented schemes include self-phase modulation in a Xe-filled hollow glass waveguide, self-phase modulation in GaAs followed by compression, and multiple four-wave mixing compression of a laser beat-wave in GaAs. The novel nonlinear optics and technical challenges uncovered through these experiments are discussed.

  13. Theory of direct and indirect effect of two-photon absorption on nonlinear optical losses in high power semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Avrutin, E. A.; Ryvkin, B. S.

    2017-01-01

    The effect of the transverse laser structure on two-photon absorption (TPA) related effects in high-power diode lasers is analysed theoretically. The direct effect of TPA is found to depend significantly on the transverse waveguide structure, and predicted to be weaker in broad and asymmetric waveguide designs. The indirect effect of TPA, via carrier generation in the waveguide and free-carrier absorption, is analysed for the case of a symmetric laser waveguide and shown to be strongly dependent on the active layer position. With the active layer near the mode peak, the indirect effect is weaker than the direct effect due to the population of TPA-created carriers being efficiently depleted by their diffusion and capture into the active layer, whereas for the active layer position strongly shifted towards the p-cladding, the indirect effect can become the dominant power limitation at very high currents. It is shown that for optimizing a laser design for pulsed high power operation, both TPA related effects and the inhomogeneous carrier accumulation in the waveguide caused by diffusive current need to be taken into account.

  14. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Behavior of gain-guided lasers generating high-power nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Erbert, G.

    1988-11-01

    Computer-controlled apparatus was used in an investigation of gain-guided narrow-stripe AlGaAs double heterostructure lasers. These lasers were excited with current pulses of 10 ns duration and amplitudes up to 3 A. The watt-ampere characteristics together with near- and far-field radiation patterns were considered using an analytic model of the lasers. The results showed that the values of the gain under a stripe contact or of the absorption outside this region varied with the output power.

  15. Transmission electron microscopy characterization of Au/Pt/Ti/Pt/GaAs ohmic contacts for high power GaAs/InGaAs semiconductor lasers.

    PubMed

    Łaszcz, A; Czerwinski, A; Ratajczak, J; Szerling, A; Phillipp, F; Van Aken, P A; Katcki, J

    2010-03-01

    We report on transmission electron microscopy studies of Au/Pt/Ti/Pt(10-30 nm) contact structures for high power GaAs/InGaAs semiconductor lasers. The studies showed that annealing at 450 degrees C of contact structures causes the reaction of whole Pt with substrate components (Ga and As) and the formation of Pt-GaAs interlayers with smooth interfaces as required for such structures. Annealing of the structures at 470 and 490 degrees C unfavourably affects the contact structure. At this condition, the strong downward diffusion of Au and Pt from the top layers causes a formation of Au-Pt pits, which break the Ti barrier. Transmission electron microscopy observation revealed that Au/Pt/Ti/Pt(10-30 nm) system annealed at 450 degrees C is appropriate for practical applications. The EDS technique used to identify the phase composition in the Pt(30 nm)/GaAs structure (specially produced for the EDS analysis) annealed at 450 degrees C showed that two layers were formed as a result of the reaction of the whole Pt layer with GaAs, and they consist of Ga, Pt and As. The top layer has the highest concentration of Ga. However, the bottom layer, which is close to the substrate, has the highest concentration of As.

  16. Molecular beam epitaxy engineered III-V semiconductor structures for low-power optically addressed spatial light modulators

    NASA Technical Reports Server (NTRS)

    Larsson, Anders G.; Maserjian, Joseph

    1992-01-01

    Device approaches are investigated for optically addressed SLMs based on molecular-beam epitaxy (MBE) engineered III-V materials and structures. Strong photooptic effects can be achieved in periodically delta-doped multiple-quantum-well structures, but are still insufficient for high-contrast modulation with only single- or double-pass absorption through active layers of practical thickness. The asymmetric Fabry-Perot cavity approach is employed to permit extinction of light due to interference of light reflected from the front and back surfaces of the cavity. This approach is realized with an all-MBE-grown structure consisting of GaAs/AlAs quarter-wave stack reflector grown over the GaAs substrate as the high reflectance mirror and the GaAs surface as the low reflectance mirror. High-contrast modulation is achieved using a low-power InGaAs/GaAs quantum well laser for the control signal.

  17. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  18. Americans' Average Radiation Exposure

    SciTech Connect

    NA

    2000-08-11

    We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each year in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body.

  19. Longitudinal temperature distribution in an end-pumped solid-state amplifier medium: application to a high average power diode pumped Yb:YAG thin disk amplifier.

    PubMed

    Bourdet, Gilbert L; Yu, Haiwu

    2007-08-10

    We propose a simple analytical derivation making it possible to compute a one-dimensional temperature variation in an end-pumped solid-state laser. This derivation takes into account the pump intensity variation along the crystal, the doping concentration, and temperature dependence of the thermal conductivity. We then compare this simulation with the one usually used, which does not take into account any of these dependences. The results show that, at room temperature, the two methods are in good agreement, but at a cryogenic temperature where the thermal conductivity varies fast with temperature, a large discrepancy is found, and the conventional computations underestimate both the average temperature and the longitudinal gradient.

  20. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Hardening of aluminium by YAG : Nd laser radiation with an average power of 0.8 kW

    NASA Astrophysics Data System (ADS)

    Kovsh, Ivan B.; Strekalova, M. S.

    1994-02-01

    An investigation is reported of the effects of a surface heat treatment of aluminium by a YAG : Nd laser beam with a power up to 0.8 kW. In particular, a study was made of the influence of the treatment conditions on the microhardness, as well as on the residual stresses and their sign in hardened surface layers of aluminium. The efficiency of aluminium hardening by radiation from a cw YAG : Nd laser was found to be considerably higher than in the case of a cw CO2 laser.

  1. New Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Balestra, F.

    2008-11-01

    A review of recently emerging semiconductor devices for nanoelectronic applications is given. For the end of the international technology roadmap for semiconductors, very innovative materials, technologies and nanodevice architectures will be needed. Silicon on insulator-based devices seem to be the best candidates for the ultimate integration of integrated circuits on silicon. The flexibility of the silicon on insulator-based structure and the possibility to realize new device architectures allow to obtain optimum electrical properties for low power and high performance circuits. These transistors are also very interesting for high frequency and memory applications. The performance and physical mechanisms are addressed in single- and multi-gate thin film Si, SiGe and Ge metal-oxide-semiconductor field-effect-transistors. The impact of tensile or compressive uniaxial and biaxial strains in the channel, of high k materials and metal gates as well as metallic Schottky source-drain architectures are discussed. Finally, the interest of advanced beyond-CMOS (complementary MOS) nanodevices for long term applications, based on nanowires, carbon electronics or small slope switch structures are presented.

  2. Direct generation of 2  W average-power and 232  nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser.

    PubMed

    Huang, Yizhong; Luo, Zhengqian; Xiong, Fengfu; Li, Yingyue; Zhong, Min; Cai, Zhiping; Xu, Huiying; Fu, Hongyan

    2015-03-15

    We report the generation of 2.06 W average-power and 232 nJ picosecond mode-locked pulses directly from an ultra-simple Yb-doped fiber laser. A section of Yb-doped double-clad fiber pumped by a 976 nm laser diode provides the large gain, and the linear cavity is simply formed by a 1064 nm highly reflective fiber Bragg grating and a fiber loop mirror (FLM) using a 5/95 optical coupler. The asymmetric FLM not only acts as the output mirror for providing ∼20% optical feedback, but also equivalently behaves as a nonlinear optical loop mirror (NOLM) to initiate the mode-locking operation in this cavity. Stable mode-locking is therefore achieved over a pump power of 3.76 W. The mode-locked pulses show the dissipative soliton resonance (DSR), which has the pulse duration of 695 ps to ∼1  ns, and the almost unchanged peak power of ∼200  W as increasing the pump power. In particular, this laser can emit 232 nJ high-energy DSR pulses with an average output power of >2  W. This is, to the best of our knowledge, the first demonstration of such an ultra-simple, mode-locked fiber laser that enables watt-level, high energy, picosecond DSR pulses.

  3. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that...

  4. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where...

  5. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where...

  6. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that...

  7. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that...

  8. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where...

  9. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where...

  10. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where...

  11. Microwave semiconductor devices

    NASA Astrophysics Data System (ADS)

    Sitch, J. E.

    1985-03-01

    The state of the art of microwave semiconductor design is reviewed, with emphasis on developments of the past 10-12 years. Consideration is given to: varistor diodes; varactor diodes; and transit time negative diodes. The design principles of bipolar and unipolar transistors are discussed, with reference to power FETs, traveling-wave FETs, and camel or planar-doped barrier transistors. Recent innovations in the field of fabrication technology are also considered, including: crystal growth; doping; and packaging. Several schematic drawings and photographs of the different devices are provided.

  12. NEW ACTIVE MEDIA AND ELEMENTS OF LASER SYSTEMS: Selection of the discharge-tube material for a nitrogen longitudinal-discharge ultraviolet laser to ensure the maximum average radiation power

    NASA Astrophysics Data System (ADS)

    Il'yushko, V. G.; Kravchenko, Viktor F.

    1987-11-01

    A theoretical and experimental analysis was made of the influence of the material of the surface of a discharge tube on the frequency characteristics of a molecular nitrogen laser emitting ultraviolet radiation under conditions when the influence of the translational temperature of the gas could be ignored. The experimental dependences of the average output power on the repetition frequency of the excitation pulses yielded the rate constants of the deactivation of vibrationally excited molecules and the accommodation coefficients of different surfaces. It was found that the discharge tube materials ensuring the maximum average output power and the highest repetition frequency of the excitation pulses in the case of lasers utilizing ultraviolet transitions in nitrogen molecules are substances with the highest accommodation coefficients and thermal diffusivity. These requirements were satisfied best by copper, aluminum, and graphite. The advantages of these materials were utilized in segmented metal discharge tubes.

  13. 500 kHz OPCPA delivering tunable sub-20 fs pulses with 15 W average power based on an all-ytterbium laser.

    PubMed

    Puppin, Michele; Deng, Yunpei; Prochnow, Oliver; Ahrens, Jan; Binhammer, Thomas; Morgner, Uwe; Krenz, Marcel; Wolf, Martin; Ernstorfer, Ralph

    2015-01-26

    An optical parametric chirped pulse amplifier fully based on Yb lasers at 500 kHz is described. Passive optical-synchronization is achieved between a fiber laser-pumped white-light and a 515 nm pump produced with a 200 W picosecond Yb:YAG InnoSlab amplifier. An output power up to 19.7 W with long-term stability of 0.3% is demonstrated for wavelength tunable pulses between 680 nm and 900 nm and spectral stability of 0.2%; 16.5 W can be achieved with a bandwidth supporting 5.4 fs pulses. We demonstrate compression of 30 µJ pulses to sub-20 fs duration with a prism compressor, suitable for high harmonic generation.

  14. Wide-Bandgap Semiconductors

    SciTech Connect

    Chinthavali, M.S.

    2005-11-22

    With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters

  15. 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser.

    PubMed

    Oh, W Y; Yun, S H; Tearney, G J; Bouma, B E

    2005-12-01

    We demonstrate an ultrahigh-speed wavelength-swept semiconductor laser using a polygon-based wavelength scanning filter. With a polygon rotational speed of 900 revolutions per second, a continuous wavelength tuning rate of 9200 nm/ms and a tuning repetition rate of 115 kHz were achieved. The wavelength tuning range of the laser was 80 nm centered at 1325 nm, and the average polarized output power was 23 mW.

  16. Nonlinear fibre-optic devices pumped by semiconductor disk lasers

    SciTech Connect

    Chamorovskiy, A Yu; Okhotnikov, Oleg G

    2012-11-30

    Semiconductor disk lasers offer a unique combination of characteristics that are particularly attractive for pumping Raman lasers and amplifiers. The advantages of disk lasers include a low relative noise intensity (-150 dB Hz{sup -1}), scalable (on the order of several watts) output power, and nearly diffraction-limited beam quality resulting in a high ({approx}70 % - 90 %) coupling efficiency into a single-mode fibre. Using this technology, low-noise fibre Raman amplifiers operating at 1.3 {mu}m in co-propagation configuration are developed. A hybrid Raman-bismuth doped fibre amplifier is proposed to further increase the pump conversion efficiency. The possibility of fabricating mode-locked picosecond fibre lasers operating under both normal and anomalous dispersion is shown experimentally. We demonstrate the operation of 1.38-{mu}m and 1.6-{mu}m passively mode-locked Raman fibre lasers pumped by 1.29-{mu}m and 1.48-{mu}m semiconductor disk lasers and producing 1.97- and 2.7-ps pulses, respectively. Using a picosecond semiconductor disk laser amplified with an ytterbium-erbium fibre amplifier, the supercontinuum generation spanning from 1.35 {mu}m to 2 {mu}m is achieved with an average power of 3.5 W. (invited paper)

  17. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror

    PubMed Central

    Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Huang, Ke; Tao, Mengmeng; Chen, Hongwei; Yi, Aiping; Feng, Guobin; Si, Jinhai

    2016-01-01

    A diode-cladding pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) is demonstrated. Stable pulse train was produced at a slope efficiency of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ, from which the maximum peak power was calculated to be 21.9 W. To the best of our knowledge, the average power and the peak power are the highest in 3 μm region passively Q-switched fiber lasers. The influence of gain fiber length on the operation regime of the fiber laser has been investigated in detail. PMID:27225029

  18. Neutron resonance averaging

    SciTech Connect

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  19. FY2005 Progress Summary and FY2006 Program Plan Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers, and Complementary Technologies, for Applications in Energy and Defense

    SciTech Connect

    Ebbers, C

    2006-03-24

    The primary focus this year was to operate the system with two amplifiers populated with and pumped by eight high power diode arrays. The system was operated for extended run periods which enabled average power testing of components, diagnostics, and controls. These tests were highly successful, with a demonstrated energy level of over 55 joules for 4 cumulative hours at a repetition rate of 10 Hz (average power 0.55 kW). In addition, high average power second harmonic generation was demonstrated, achieving 227 W of 523.5 nm light (22.7 J, 10 Hz, 15 ns, 30 minutes) Plans to achieve higher energy levels and average powers are in progress. The dual amplifier system utilizes a 4-pass optical arrangement. The Yb:S-FAP slabs were mounted in aerodynamic aluminum vane structures to allow turbulent helium gas flow across the faces. Diagnostic packages that monitored beam performance were deployed during operation. The laser experiments involved injecting a seed beam from the front end into the system and making four passes through both amplifiers. Beam performance diagnostics monitored the beam on each pass to assess system parameters such as gain and nearfield intensity profiles. This year, an active mirror and wavefront sensor were procured and demonstrated in an off-line facility. The active mirror technology can correct for low order phase distortions at user specified operating conditions (such as repetition rates different than 10 Hz) and is a complementary technology to the static phase plates used in the system for higher order distortions. A picture of the laser system with amplifier No.2 (foreground) and amplifier No.1 (background) is shown in Fig. 1.0.1.1. The control system and diagnostics were recently enhanced for faster processing and allow remote operation of the system. The growth and fabrication of the Yb:S-FAP slabs constituted another major element of our program objectives. Our goal was to produce at least fourteen 4x6 cm2 crystalline slabs. These

  20. Areal Average Albedo (AREALAVEALB)

    DOE Data Explorer

    Riihimaki, Laura; Marinovici, Cristina; Kassianov, Evgueni

    2008-01-01

    he Areal Averaged Albedo VAP yields areal averaged surface spectral albedo estimates from MFRSR measurements collected under fully overcast conditions via a simple one-line equation (Barnard et al., 2008), which links cloud optical depth, normalized cloud transmittance, asymmetry parameter, and areal averaged surface albedo under fully overcast conditions.

  1. High-Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Hole-Transporting Material

    DOE PAGES

    Jung, Jae Woong; Chueh, Chu-Chen; Jen, Alex K. -Y.

    2015-07-06

    High-performance planar heterojunction perovskite (CH3NH3PbI3) solar cell (PVSC) is demonstrated by utilizing CuSCN as a hole-transporting layer. Efficient hole-transport and hole-extraction at the CuSCN/CH3NH3PbI3 interface facilitate the PVSCs to reach 16% power conversion efficiency (PCE). In addition, excellent transparency of CuSCN enables high-performance semitransparent PVSC (10% PCE and 25% average visible transmittance) to be realized.

  2. Semiconductor Laser Low Frequency Noise Characterization

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Logan, Ronald T.

    1996-01-01

    This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.

  3. A 3000W 808nm QCW G-stack semiconductor laser array

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Wang, Jingwei; Hou, Dong; Wang, Zhenfu; Xiong, Lingling; Liu, Hui; Nie, Zhiqiang; Liu, Xingsheng

    2015-02-01

    With the improvement of output power, efficiency and reliability, high power semiconductor lasers have been applied in more and more fields. In this paper, a conduction-cooled, high peak output power semiconductor laser array was studied and developed. The structure and operation parameters of G-Stack semiconductor laser array were designed and optimized using finite element method (FEM). A Quasi-continuous-wave (QCW) conduction-cooled G-Stack semiconductor laser array with a narrow spectrum width was fabricated successfully.

  4. Spatial filters for high average power lasers

    DOEpatents

    Erlandson, Alvin C

    2012-11-27

    A spatial filter includes a first filter element and a second filter element overlapping with the first filter element. The first filter element includes a first pair of cylindrical lenses separated by a first distance. Each of the first pair of cylindrical lenses has a first focal length. The first filter element also includes a first slit filter positioned between the first pair of cylindrical lenses. The second filter element includes a second pair of cylindrical lenses separated by a second distance. Each of the second pair of cylindrical lenses has a second focal length. The second filter element also includes a second slit filter positioned between the second pair of cylindrical lenses.

  5. States' Average College Tuition.

    ERIC Educational Resources Information Center

    Eglin, Joseph J., Jr.; And Others

    This report presents statistical data on trends in tuition costs from 1980-81 through 1995-96. The average tuition for in-state undergraduate students of 4-year public colleges and universities for academic year 1995-96 was approximately 8.9 percent of median household income. This figure was obtained by dividing the students' average annual…

  6. Anomalous Charge Transport in Disordered Organic Semiconductors

    SciTech Connect

    Muniandy, S. V.; Woon, K. L.; Choo, K. Y.

    2011-03-30

    Anomalous charge carrier transport in disordered organic semiconductors is studied using fractional differential equations. The connection between index of fractional derivative and dispersion exponent is examined from the perspective of fractional Fokker-Planck equation and its link to the continuous time random walk formalism. The fractional model is used to describe the bi-scaling power-laws observed in the time-of flight photo-current transient data for two different types of organic semiconductors.

  7. Photoelectrosynthesis at semiconductor electrodes

    SciTech Connect

    Nozik, A. J.

    1980-12-01

    The general principles of photoelectrochemistry and photoelectrosynthesis are reviewed and some new developments in photoelectrosynthesis are discussed. Topics include energetics of semiconductor-electrolyte interfaces(band-edge unpinning); hot carrier injection at illuminated semiconductor-electrolyte junctions; derivatized semiconductor electrodes; particulate photoelectrochemical systems; layered compounds and other new materials; and dye sensitization. (WHK)

  8. FY2002 Progress Summary Program Plan, Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers, and Complementary Technologies, for Applications in Energy and Defense

    SciTech Connect

    Bayramian, A; Bibeau, C; Beach, R; Behrendt, B; Ebbers, C; Latkowski, J; Meier, W; Payne, S; Perkins, J; Schaffers, K; Skulina, K; Ditmire, T; Kelly, J; Waxer, L; Rudi, P; Randles, M; Witter, D; Meissner, H; Merissner, O

    2001-12-13

    The High Average Power Laser Program (HAPL) is a multi-institutional, coordinated effort to develop a high-energy, repetitively pulsed laser system for Inertial Fusion Energy and other DOE and DOD applications. This program is building a laser-fusion energy base to complement the laser-fusion science developed by DOE Defense programs over the past 25 years. The primary institutions responsible for overseeing and coordinating the research activities are the Naval Research Laboratory (NRL) and LLNL. The current LLNL proposal is a companion proposal to that submitted by NRL, for which the driver development element is focused on the krypton fluoride excimer laser option. Aside from the driver development aspect, the NRL and LLNL companion proposals pursue complementary activities with the associated rep-rated laser technologies relating to target fabrication, target injection, final optics, fusion chamber, materials and power plant economics. This report requests continued funding in FY02 to support LLNL in its program to build a 1kW, 100J, diode-pumped, crystalline laser. In addition, research in high gain laser target design, fusion chamber issues and survivability of the final optic element will be pursued. These technologies are crucial to the feasibility of inertial fusion energy power plants and also have relevance in rep-rated stewardship experiments.

  9. Experimental study and chemical application of GaAs semiconductor laser treating trigeminal neuralgia

    NASA Astrophysics Data System (ADS)

    Qiu, Ke-Qum; Cao, Shu-Chen; Wang, Hu-Zhong; Wang, Ke-Ning; Xiao, Ton-Ha; Shen, Ke-Wei

    1993-03-01

    GaAs semiconductor laser was used to treat trigeminal neuralgia with an effective rate of 91.1%, and no side effects were found in 67 cases. Changes in and the recovery of the trigeminal nerve cell were studied with light and electromicroscope. Discussed in this article are the time length and quantity of laser treatment with low power. Experimental study and clinical application of the GaAs semiconductor laser have been carried out in our department since 1987. One-hundred-fifteen patients with various diseases in the maxillofacial region (including 67 cases of trigeminal neuralgia) have been treated with satisfactory effects and without any side-effects. The wavelength of the laser is 904 mu, the largest pulse length is 200 mu, and the average power is 2000 HZ.

  10. Aggregation and Averaging.

    ERIC Educational Resources Information Center

    Siegel, Irving H.

    The arithmetic processes of aggregation and averaging are basic to quantitative investigations of employment, unemployment, and related concepts. In explaining these concepts, this report stresses need for accuracy and consistency in measurements, and describes tools for analyzing alternative measures. (BH)

  11. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  12. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  13. Threaded average temperature thermocouple

    NASA Technical Reports Server (NTRS)

    Ward, Stanley W. (Inventor)

    1990-01-01

    A threaded average temperature thermocouple 11 is provided to measure the average temperature of a test situs of a test material 30. A ceramic insulator rod 15 with two parallel holes 17 and 18 through the length thereof is securely fitted in a cylinder 16, which is bored along the longitudinal axis of symmetry of threaded bolt 12. Threaded bolt 12 is composed of material having thermal properties similar to those of test material 30. Leads of a thermocouple wire 20 leading from a remotely situated temperature sensing device 35 are each fed through one of the holes 17 or 18, secured at head end 13 of ceramic insulator rod 15, and exit at tip end 14. Each lead of thermocouple wire 20 is bent into and secured in an opposite radial groove 25 in tip end 14 of threaded bolt 12. Resulting threaded average temperature thermocouple 11 is ready to be inserted into cylindrical receptacle 32. The tip end 14 of the threaded average temperature thermocouple 11 is in intimate contact with receptacle 32. A jam nut 36 secures the threaded average temperature thermocouple 11 to test material 30.

  14. Semiconductor technology program. Progress briefs

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1979-01-01

    The current status of NBS work on measurement technology for semiconductor materials, process control, and devices is reported. Results of both in-house and contract research are covered. Highlighted activities include modeling of diffusion processes, analysis of model spreading resistance data, and studies of resonance ionization spectroscopy, resistivity-dopant density relationships in p-type silicon, deep level measurements, photoresist sensitometry, random fault measurements, power MOSFET thermal characteristics, power transistor switching characteristics, and gross leak testing. New and selected on-going projects are described. Compilations of recent publications and publications in press are included.

  15. Physical and electrical properties of induced high-k ZrHfO crystallization with ZrN cap by high power impulse magnetron sputtering for metal-gate metal-insulator-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Ruey; Juan, Pi-Chun; Lin, Cheng-Li; Lin, Guo-Cheng

    2017-01-01

    Metal-gate TiN/ZrN/ZrHfO/p-Si metal-insulator-semiconductor (MIS) structures have been fabricated in this work. The physical and electrical properties were characterized. The crystallization of high-k ZrHfO thin-film is induced by high power impulse magnetron sputtering (HIPIMS) during the deposition of ZrN capping layer. The binding energies and depth profiles were investigated by X-ray photoelectron spectroscopy (XPS). It is found that Zr and Hf out-diffusion from high-k dielectric in samples with HIPIMS is lesser than those in samples with the conventional DC magnetron sputtering (DCMS). The dielectric constant which strongly relates to the tetragonal phase becomes higher and the flatband voltage shift shows smaller by using the HIPIMS method than by the conventional DCMS. The cation and anion vacancies have been investigated by the defect reaction model.

  16. The average enzyme principle

    PubMed Central

    Reznik, Ed; Chaudhary, Osman; Segrè, Daniel

    2013-01-01

    The Michaelis-Menten equation for an irreversible enzymatic reaction depends linearly on the enzyme concentration. Even if the enzyme concentration changes in time, this linearity implies that the amount of substrate depleted during a given time interval depends only on the average enzyme concentration. Here, we use a time re-scaling approach to generalize this result to a broad category of multi-reaction systems, whose constituent enzymes have the same dependence on time, e.g. they belong to the same regulon. This “average enzyme principle” provides a natural methodology for jointly studying metabolism and its regulation. PMID:23892076

  17. Averaging of TNTC counts.

    PubMed Central

    Haas, C N; Heller, B

    1988-01-01

    When plate count methods are used for microbial enumeration, if too-numerous-to-count results occur, they are commonly discarded. In this paper, a method for consideration of such results in computation of an average microbial density is developed, and its use is illustrated by example. PMID:3178211

  18. April 25, 2003, FY2003 Progress Summary and FY2002 Program Plan, Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers,and Complementary Technologies, for Applications in Energy and Defense

    SciTech Connect

    Meier, W; Bibeau, C

    2005-10-25

    The High Average Power Laser Program (HAPL) is a multi-institutional, synergistic effort to develop inertial fusion energy (IFE). This program is building a physics and technology base to complement the laser-fusion science being pursued by DOE Defense programs in support of Stockpile Stewardship. The primary institutions responsible for overseeing and coordinating the research activities are the Naval Research Laboratory (NRL) and Lawrence Livermore National Laboratory (LLNL). The current LLNL proposal is a companion document to the one submitted by NRL, for which the driver development element is focused on the krypton fluoride excimer laser option. The NRL and LLNL proposals also jointly pursue complementary activities with the associated rep-rated laser technologies relating to target fabrication, target injection, final optics, fusion chamber, target physics, materials and power plant economics. This proposal requests continued funding in FY03 to support LLNL in its program to build a 1 kW, 100 J, diode-pumped, crystalline laser, as well as research into high gain fusion target design, fusion chamber issues, and survivability of the final optic element. These technologies are crucial to the feasibility of inertial fusion energy power plants and also have relevance in rep-rated stewardship experiments. The HAPL Program pursues technologies needed for laser-driven IFE. System level considerations indicate that a rep-rated laser technology will be needed, operating at 5-10 Hz. Since a total energy of {approx}2 MJ will ultimately be required to achieve suitable target gain with direct drive targets, the architecture must be scaleable. The Mercury Laser is intended to offer such an architecture. Mercury is a solid state laser that incorporates diodes, crystals and gas cooling technologies.

  19. Ultrafast Modulation of Semiconductor Lasers Through a Terahertz Field

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Hughes, Steven; Citrin, David

    1998-01-01

    We demonstrate, by means of numerical simulation, a new mechanism to modulate and switch semiconductor lasers at THz and sub-THz frequency rates. A sinusoidal terahertz field applied to a semiconductor laser heats the electron-hole plasma and consequently modifies the optical susceptibility. This allows an almost linear modulation of the output power of tile semiconductor laser and leads to a faithful reproduction of the terahertz-field waveform in the emitted laser intensity.

  20. Dispersion, High-Frequency and Power Characteristics of AlN/GaN Metal Insulator Semiconductor Field Effect Transistors with in-situ MOCVD Deposited Si3N4

    NASA Astrophysics Data System (ADS)

    Seo, Sanghyun; Cho, Eunjung; Aroshvili, Giorgi; Jin, Chong; Pavlidis, Dimitris; Considine, Laurence

    The paper presents a systematic study of in-situ passivated AlN/GaN Metal Insulator Semiconductor Field Effect Transistors (MISFETs) with submicron gates. DC, high frequency small signal, large signal and low frequency dispersion effects are reported. The DC characteristics are analyzed in conjunction with the power performance of the device at high frequencies. Studies of the low frequency characteristics are presented and the results are compared with those of AlGaN/GaN High Electron Mobility Transistors (HEMTs). Small signal measurements showed a current gain cutoff frequency and maximum oscillation frequency of 49.9GHz and 102.3GHz respectively. The overall characteristics of the device include a peak current density of 335mA/mm, peak extrinsic transconductance of 130mS/mm, a maximum output power density of 533mW/mm with peak power added efficiency (P.A.E.) of 41.3% and linear gain of 17dB. The maximum frequency dispersion of transconductance and output resistance of the fabricated MISFETs is 20% and 21% respectively.

  1. Coherent spectroscopy of semiconductors.

    PubMed

    Cundiff, Steven T

    2008-03-31

    The coherent optical response of semiconductors has been the subject of substantial research over the last couple of decades. The interest has been motivated by unique aspects of the interaction between light and semiconductors that are revealed by coherent techniques. The ability to probe the dynamics of charge carriers has been a significant driver. This paper presents a review of selected results in coherent optical spectroscopy of semiconductors.

  2. Semiconductor microcavity lasers

    SciTech Connect

    Gourley, P.L.; Wendt, J.R.; Vawter, G.A.; Warren, M.E.; Brennan, T.M.; Hammons, B.E.

    1994-02-01

    New kinds of semiconductor microcavity lasers are being created by modern semiconductor technologies like molecular beam epitaxy and electron beam lithography. These new microcavities exploit 3-dimensional architectures possible with epitaxial layering and surface patterning. The physical properties of these microcavities are intimately related to the geometry imposed on the semiconductor materials. Among these microcavities are surface-emitting structures which have many useful properties for commercial purposes. This paper reviews the basic physics of these microstructured lasers.

  3. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  4. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  5. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  6. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a)...

  7. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor...

  8. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a)...

  9. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor...

  10. Optical correlators with fast updating speed using photorefractive semiconductor materials

    NASA Technical Reports Server (NTRS)

    Gheen, Gregory; Cheng, Li-Jen

    1988-01-01

    The performance of an updatable optical correlator which uses a photorefractive semiconductor to generate real-time matched filters is discussed. The application of compound semiconductors makes possible high-speed operation and low optical input intensities. The Bragg diffraction is considered, along with the speed and power characteristics of these materials. Experimental results on photorefractive GaAs are presented.

  11. Production of 35S for a Liquid Semiconductor Betavoltaic

    SciTech Connect

    Meier, David E.; Garnov, A. Y.; Robertson, J. D.; Kwon, J. W.; Wacharasindhu, T.

    2009-10-01

    The specific energy density from radioactive decay is five to six orders of magnitude greater than the specific energy density in conventional chemical battery and fuel cell technologies. We are currently investigating the use of liquid semiconductor based betavoltaics as a way to directly convert the energy of radioactive decay into electrical power and potentially avoid the radiation damage that occurs in solid state semiconductor devices due to non-ionizing energy loss. Sulfur-35 was selected as the isotope for the liquid semiconductor demonstrations because it can be produced in high specific activity and it is chemically compatible with known liquid semiconductor media.

  12. Modeling of ferromagnetic semiconductor devices for spintronics

    NASA Astrophysics Data System (ADS)

    Lebedeva, N.; Kuivalainen, P.

    2003-06-01

    We develop physical models for magnetic semiconductor devices, where a part of the device structure consists of a ferromagnetic semiconductor layer. First we calculate the effect of the exchange interaction between the charge carrier spins and the spins of the localized magnetic electrons on the electronic states, recombination processes, and charge transport in ferromagnetic semiconductors such as (Ga,Mn)As. Taking into account, e.g., the splitting of the conduction and valence bands due to the exchange interaction, we model the electrical characteristics of the basic magnetic semiconductor devices such as Schottky diodes consisting of a nonmagnetic metal/ferromagnetic semiconductor interface, pn diodes consisting of a ferromagnetic/nonmagnetic junction and bipolar transistors having a ferromagnetic emitter. The models predict that at temperatures close to the Curie temperature TC the electrical properties of the magnetic semiconductor devices become strongly dependent on the average spin polarization of the magnetic atoms. A feature in the models is that many device parameters such as diffusion lengths or potential barriers become spin dependent in magnetic semiconductor devices. In a ferromagnetic Schottky diode the sensitivity of the device current I to the external magnetic field may be as large as (∂I/∂B)I-1≈1/T at temperatures close to TC. In a ferromagnetic pn diode both the ideal and recombination currents become magnetic field dependent. In a ferromagnetic bipolar transistor the current gain shows the same sensitivity to the spin polarization as the dc current in the ferromagnetic pn diodes. According to our model calculations optimal structures showing the largest magnetization dependence of the electrical characteristics in III-V ferromagnetic semiconductor devices would be those where the magnetic side of the junction is of n type.

  13. Above 2-μm emitting GaSb-based semiconductor disk laser with <100-kHz linewidth at 1000-mW output power

    NASA Astrophysics Data System (ADS)

    Kaspar, Sebastian; Rattunde, Marcel; Töpper, Tino; Rösener, Benno; Manz, Christian; Köhler, Klaus; Wagner, Joachim

    2012-03-01

    In this paper we report on the development of narrow-linewidth vertical-external-cavity surface-emitting laser (VECSEL) at a wavelength of >2 μm. Starting from a laboratory setup, we designed a highly stable VECSEL module machined from a solid block of aluminum. For linewidth precise measurements, heterodyne beatnote measurements were employed. For this firstgeneration module a linewidth of 9 kHz was achieved when actively stabilizing the laser wavelength, whereas without stabilization the linewidth amounted to 45 kHz at an output power of 100 mW, both data referring to a 100-μs sampling time. To further increase the output power, a second-generation module was fabricated, for which the on-chip mode diameter was increased. This allowed operation at a larger pump-spot diameter and still maintaining TEM00 operation, while increasing the maximum pump power and hence the output power. This module yielded an output power above 1 W in single-mode operation at a linewidth of 60 kHz (100 μs sampling time) without active wavelength stabilization. Modehop-free single-mode operation could be maintained for more than 18 hours. This new multiple-Watt, narrow-linewidth VECSEL module is apt for plane-to-ground communications without the necessity of amplifiers.

  14. Comparative analysis of the effects of electron and hole capture on the power characteristics of a semiconductor quantum-well laser

    SciTech Connect

    Sokolova, Z. N. Pikhtin, N. A.; Tarasov, I. S.; Asryan, L. V.

    2015-11-15

    The operating characteristics of a semiconductor quantum-well laser calculated using three models are compared. These models are (i) a model not taking into account differences between the electron and hole parameters and using the electron parameters for both types of charge carriers; (ii) a model, which does not take into account differences between the electron and hole parameters and uses the hole parameters for both types of charge carriers; and (iii) a model taking into account the asymmetry between the electron and hole parameters. It is shown that, at the same velocity of electron and hole capture into an unoccupied quantum well, the laser characteristics, obtained using the three models, differ considerably. These differences are due to a difference between the filling of the electron and hole subbands in a quantum well. The electron subband is more occupied than the hole subband. As a result, at the same velocities of electron and hole capture into an empty quantum well, the effective electron-capture velocity is lower than the effective hole-capture velocity. Specifically, it is shown that for the laser structure studied the hole-capture velocity of 5 × 10{sup 5} cm/s into an empty quantum well and the corresponding electron-capture velocity of 3 × 10{sup 6} cm/s into an empty quantum well describe the rapid capture of these carriers, at which the light–current characteristic of the laser remains virtually linear up to high pump-current densities. However, an electron-capture velocity of 5 × 10{sup 5} cm/s and a corresponding hole-capture velocity of 8.4 × 10{sup 4} cm/s describe the slow capture of these carriers, causing significant sublinearity in the light–current characteristic.

  15. Fabrication and optimization of 1.55-μm InGaAsP/InP high-power semiconductor diode laser

    NASA Astrophysics Data System (ADS)

    Qing, Ke; Shaoyang, Tan; Songtao, Liu; Dan, Lu; Ruikang, Zhang; Wei, Wang; Chen, Ji

    2015-09-01

    A comprehensive design optimization of 1.55-μm high power InGaAsP/InP board area lasers is performed aiming at increasing the internal quantum efficiency (ηi) while maintaining the low internal loss (αi) of the device, thereby achieving high power operation. Four different waveguide structures of broad area lasers were fabricated and characterized in depth. Through theoretical analysis and experiment verifications, we show that laser structures with stepped waveguide and thin upper separate confinement layer will result in high ηi and overall slope efficiency. A continuous wave (CW) single side output power of 160 mW was obtained for an uncoated laser with a 50-μm active area width and 1 mm cavity length. Project supported by the National Natural Science Foundation of China (Nos. 61274046, 61201103) and the National High Technology Research and Development Program of China (No. 2013AA014202).

  16. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  17. Molecular Semiconductors: An Introduction

    NASA Astrophysics Data System (ADS)

    de Mello, John; Halls, Jonathan James Michael

    2005-10-01

    Introducing the fundamental ideas and concepts behind organic semiconductors, this book provides a clear impression of the broad range of research activities currently underway. Aimed specifically at new entrant doctoral students from a wide variety of backgrounds, including chemistry, physics, electrical engineering and materials science, it also represents an ideal companion text to undergraduate courses in organic semiconductors.

  18. Temperature averaging thermal probe

    NASA Technical Reports Server (NTRS)

    Kalil, L. F.; Reinhardt, V. (Inventor)

    1985-01-01

    A thermal probe to average temperature fluctuations over a prolonged period was formed with a temperature sensor embedded inside a solid object of a thermally conducting material. The solid object is held in a position equidistantly spaced apart from the interior surfaces of a closed housing by a mount made of a thermally insulating material. The housing is sealed to trap a vacuum or mass of air inside and thereby prevent transfer of heat directly between the environment outside of the housing and the solid object. Electrical leads couple the temperature sensor with a connector on the outside of the housing. Other solid objects of different sizes and materials may be substituted for the cylindrically-shaped object to vary the time constant of the probe.

  19. Temperature averaging thermal probe

    NASA Astrophysics Data System (ADS)

    Kalil, L. F.; Reinhardt, V.

    1985-12-01

    A thermal probe to average temperature fluctuations over a prolonged period was formed with a temperature sensor embedded inside a solid object of a thermally conducting material. The solid object is held in a position equidistantly spaced apart from the interior surfaces of a closed housing by a mount made of a thermally insulating material. The housing is sealed to trap a vacuum or mass of air inside and thereby prevent transfer of heat directly between the environment outside of the housing and the solid object. Electrical leads couple the temperature sensor with a connector on the outside of the housing. Other solid objects of different sizes and materials may be substituted for the cylindrically-shaped object to vary the time constant of the probe.

  20. Analogue Divider by Averaging a Triangular Wave

    NASA Astrophysics Data System (ADS)

    Selvam, Krishnagiri Chinnathambi

    2017-03-01

    A new analogue divider circuit by averaging a triangular wave using operational amplifiers is explained in this paper. The triangle wave averaging analog divider using operational amplifiers is explained here. The reference triangular waveform is shifted from zero voltage level up towards positive power supply voltage level. Its positive portion is obtained by a positive rectifier and its average value is obtained by a low pass filter. The same triangular waveform is shifted from zero voltage level to down towards negative power supply voltage level. Its negative portion is obtained by a negative rectifier and its average value is obtained by another low pass filter. Both the averaged voltages are combined in a summing amplifier and the summed voltage is given to an op-amp as negative input. This op-amp is configured to work in a negative closed environment. The op-amp output is the divider output.

  1. A hybrid magnetic/complementary metal oxide semiconductor process design kit for the design of low-power non-volatile logic circuits

    NASA Astrophysics Data System (ADS)

    Di Pendina, G.; Prenat, G.; Dieny, B.; Torki, K.

    2012-04-01

    Since the advent of the MOS transistor, the performance of microelectronic circuits has followed Moore's law, stating that their speed and density would double every 18 months. Today, this trend tends to get out of breath: the continuously decreasing size of devices and increasing operation frequency result in power consumption and heating issues. Among the solutions investigated to circumvent these limitations, the use of non-volatile devices appears particularly promising. It allows easing, for example, the power gating technique, which consists in cutting-off the power supply of inactive blocks without losing information, drastically reducing the standby power consumption. In this approach, the advantages of magnetic tunnel junctions (MTJs) compared with other non-volatile devices allow one to design hybrid CMOS/magnetic circuits with high performance and new functionalities. Designing such circuits requires integrating MTJs in standard microelectronics design suites. This is performed by means of a process design kit (PDK) for the hybrid CMOS/magnetic technology. We present here a full magnetic PDK, which contains a compact model of the MTJ for electrical simulation, technology files for layout and physical verifications, and standard cells for the design of complex logic circuits and which is compatible with standard design suites. This PDK allows designers to accurately and comfortably design high-performance hybrid CMOS/magnetic logic circuits in the same way as standard CMOS circuits.

  2. 157 W all-fiber high-power picosecond laser.

    PubMed

    Song, Rui; Hou, Jing; Chen, Shengping; Yang, Weiqiang; Lu, Qisheng

    2012-05-01

    An all-fiber high-power picosecond laser is constructed in a master oscillator power amplifier configuration. The self-constructed fiber laser seed is passively mode locked by a semiconductor saturable absorber mirror. Average output power of 157 W is obtained after three stages of amplification at a fundamental repetition rate of 60 MHz. A short length of ytterbium double-clad fiber with a high doping level is used to suppress nonlinear effects. However, a stimulated Raman scattering (SRS) effect occurs owing to the 78 kW high peak power. A self-made all-fiber repetition rate increasing system is used to octuple the repetition rate and decrease the high peak power. Average output power of 156.6 W is obtained without SRS under the same pump power at a 480 MHz repetition rate with 0.6 nm line width.

  3. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  4. Stable dissipative solitons in semiconductor optical amplifiers.

    PubMed

    Ultanir, Erdem A; Stegeman, George I; Michaelis, Dirk; Lange, Christoph H; Lederer, Falk

    2003-06-27

    We have observed for the first time stable spatial solitons in semiconductor optical amplifiers. Soliton destabilization due to the growth of background noise was suppressed by using patterned electrodes on the device. Numerical simulations fit very well with the experiment results. We show that it is possible to excite these solitons with about 60 mW input power.

  5. Power electronics cooling apparatus

    DOEpatents

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  6. Ballistic-electron-emission Microscopy of Semiconductor Heterostructures

    NASA Technical Reports Server (NTRS)

    Bell, L. Douglas; Narayanamurti, Venkatesh

    1997-01-01

    Balistic-electron-emission microscopy has developed from its beginning as a probe of Schottky barriers into a powerful nanometer-scale method for characterizing semiconductor interfaces and hot-electron transport.

  7. Ultra-low power high temperature and radiation hard complementary metal-oxide-semiconductor (CMOS) silicon-on-insulator (SOI) voltage reference.

    PubMed

    Boufouss, El Hafed; Francis, Laurent A; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis

    2013-12-13

    This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40-200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage V(REF) depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of V(REF) and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.

  8. Ultra-Low Power High Temperature and Radiation Hard Complementary Metal-Oxide-Semiconductor (CMOS) Silicon-on-Insulator (SOI) Voltage Reference

    PubMed Central

    Boufouss, El Hafed; Francis, Laurent A.; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis

    2013-01-01

    This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of −40–200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage VREF depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of VREF and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2. PMID:24351635

  9. Dielectric screening in semiconductors

    NASA Astrophysics Data System (ADS)

    Harrison, Walter A.; Klepeis, John E.

    1988-01-01

    Intra-atomic and interatomic Coulomb interactions are incorporated into bond-orbital theory, based upon universal tight-binding parameters, in order to treat the effects of charge redistribution in semiconductor bonds. The dielectric function ɛ(q) is obtained for wave numbers in a [100] direction. The screening of differences in average hybrid energy across a heterojunction is calculated in detail, indicating that the decay length for the potential depends upon the relative values of Madelung and intra-atomic Coulomb terms. The parameters used here predict an imaginary decay length and thus an oscillating potential near the interface. The same theory is applied to point defects by imbedding a cluster in a matrix lattice, taking charges in that lattice to be consistent with continuum theory. Illustrating the theory with a phosphorus impurity in silicon, it is seen that the impurity and its neighboring atoms have charges on the order of only one-tenth of an electronic charge, alternating in sign from neighbor to neighbor as for planar defects. Although there are shifts in the term values on the order of a volt, the difference in these shifts for neighboring atoms is much smaller so that the effect on the bonds is quite small. This behavior is analogous to the response of a dielectric continuum to a point charge: The medium is locally neutral except at the center of the cluster and there are slowly varying potentials e2/ɛr. Because of this slow variation, free-atom term values should ordinarily suffice for the calculation of bond properties and bond lengths at impurities. Corrections are larger for homovalent substitutions such as carbon in silicon.

  10. Co-integration of nano-scale vertical- and horizontal-channel metal-oxide-semiconductor field-effect transistors for low power CMOS technology.

    PubMed

    Sun, Min-Chul; Kim, Garam; Kim, Sang Wan; Kim, Hyun Woo; Kim, Hyungjin; Lee, Jong-Ho; Shin, Hyungcheol; Park, Byung-Gook

    2012-07-01

    In order to extend the conventional low power Si CMOS technology beyond the 20-nm node without SOI substrates, we propose a novel co-integration scheme to build horizontal- and vertical-channel MOSFETs together and verify the idea using TCAD simulations. From the fabrication viewpoint, it is highlighted that this scheme provides additional vertical devices with good scalability by adding a few steps to the conventional CMOS process flow for fin formation. In addition, the benefits of the co-integrated vertical devices are investigated using a TCAD device simulation. From this study, it is confirmed that the vertical device shows improved off-current control and a larger drive current when the body dimension is less than 20 nm, due to the electric field coupling effect at the double-gated channel. Finally, the benefits from the circuit design viewpoint, such as the larger midpoint gain and beta and lower power consumption, are confirmed by the mixed-mode circuit simulation study.

  11. Dissociating Averageness and Attractiveness: Attractive Faces Are Not Always Average

    ERIC Educational Resources Information Center

    DeBruine, Lisa M.; Jones, Benedict C.; Unger, Layla; Little, Anthony C.; Feinberg, David R.

    2007-01-01

    Although the averageness hypothesis of facial attractiveness proposes that the attractiveness of faces is mostly a consequence of their averageness, 1 study has shown that caricaturing highly attractive faces makes them mathematically less average but more attractive. Here the authors systematically test the averageness hypothesis in 5 experiments…

  12. Semiconductor Solar Superabsorbers

    PubMed Central

    Yu, Yiling; Huang, Lujun; Cao, Linyou

    2014-01-01

    Understanding the maximal enhancement of solar absorption in semiconductor materials by light trapping promises the development of affordable solar cells. However, the conventional Lambertian limit is only valid for idealized material systems with weak absorption, and cannot hold for the typical semiconductor materials used in solar cells due to the substantial absorption of these materials. Herein we theoretically demonstrate the maximal solar absorption enhancement for semiconductor materials and elucidate the general design principle for light trapping structures to approach the theoretical maximum. By following the principles, we design a practical light trapping structure that can enable an ultrathin layer of semiconductor materials, for instance, 10 nm thick a-Si, absorb > 90% sunlight above the bandgap. The design has active materials with one order of magnitude less volume than any of the existing solar light trapping designs in literature. This work points towards the development of ultimate solar light trapping techniques. PMID:24531211

  13. Isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  14. Novel High-Performance Analog Devices for Advanced Low-Power High-k Metal Gate Complementary Metal-Oxide-Semiconductor Technology

    NASA Astrophysics Data System (ADS)

    Han, Jin-Ping; Shimizu, Takashi; Pan, Li-Hong; Voelker, Moritz; Bernicot, Christophe; Arnaud, Franck; Mocuta, Anda; Stahrenberg, Knut; Azuma, Atsushi; Eller, Manfred; Yang, Guoyong; Jaeger, Daniel; Zhuang, Haoren; Miyashita, Katsura; Stein, Kenneth; Nair, Deleep; Hoo Park, Jae; Kohler, Sabrina; Hamaguchi, Masafumi; Li, Weipeng; Kim, Kisang; Chanemougame, Daniel; Kim, Nam Sung; Uchimura, Sadaharu; Tsutsui, Gen; Wiedholz, Christian; Miyake, Shinich; van Meer, Hans; Liang, Jewel; Ostermayr, Martin; Lian, Jenny; Celik, Muhsin; Donaton, Ricardo; Barla, Kathy; Na, MyungHee; Goto, Yoshiro; Sherony, Melanie; Johnson, Frank S.; Wachnik, Richard; Sudijono, John; Kaste, Ed; Sampson, Ron; Ku, Ja-Hum; Steegen, An; Neumueller, Walter

    2011-04-01

    High performance analog (HPA) devices in high-k metal gate (HKMG) scheme with innovative halo engineering have been successfully demonstrated to produce superior analog and digital performance for low power applications. HPA device was processed “freely” with no extra mask, no extra litho, and no extra process step. This paper details a comprehensive study of the analog and digital characteristics of these HPA devices in comparison with analog control (conventional digital devices with matched geometry). Analog properties such as output voltage gain (also called self-gain), trans-conductance Gm, conductance Gds, Gm/Id, mismatching (MM) behavior, flicker noise (1/f noise) and current linearity have clearly reflected the advantage of HPA devices over analog control, while DC performance (e.g., Ion-Ioff, Ioff-Vtsat, DIBL, Cjswg) and reliability (HCI) have also shown the comparability of HPA devices over control.

  15. 47 CFR 95.667 - CB transmitter power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... transmitter power. The dissipation rating of all the semiconductors or electron tubes which supply RF power to the antenna terminals of each CB transmitter must not exceed 10 W. For semiconductors, the...

  16. 47 CFR 95.667 - CB transmitter power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transmitter power. The dissipation rating of all the semiconductors or electron tubes which supply RF power to the antenna terminals of each CB transmitter must not exceed 10 W. For semiconductors, the...

  17. 47 CFR 95.667 - CB transmitter power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... transmitter power. The dissipation rating of all the semiconductors or electron tubes which supply RF power to the antenna terminals of each CB transmitter must not exceed 10 W. For semiconductors, the...

  18. 47 CFR 95.667 - CB transmitter power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transmitter power. The dissipation rating of all the semiconductors or electron tubes which supply RF power to the antenna terminals of each CB transmitter must not exceed 10 W. For semiconductors, the...

  19. 47 CFR 95.667 - CB transmitter power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... transmitter power. The dissipation rating of all the semiconductors or electron tubes which supply RF power to the antenna terminals of each CB transmitter must not exceed 10 W. For semiconductors, the...

  20. Semiconductor Nanocrystal Photonics

    DTIC Science & Technology

    2005-08-31

    D. Krauss, C. B. Poitras, and M. Lipson, " Energy transfer between colloidal semiconductor quantum dots in an optical microcavity," (submitted, 2006...Phys. Lett. 82, 4032 (2003). J. J. Peterson and T. D. Krauss, "Fluorescence Spectroscopy of Single Lead Sulfide Quantum Dots ," Nano Lett. (in press...Guo, Xiaowei Teng, Hong Yang, Todd D. Krauss, Carl B. Poitras, and Michal Lipson, "Enhanced Energy Transfer between Colloidal Semiconductor Quantum

  1. SILICON CARBIDE FOR SEMICONDUCTORS

    DTIC Science & Technology

    This state-of-the-art survey on silicon carbide for semiconductors includes a bibliography of the most important references published as of the end...of 1964. The various methods used for growing silicon carbide single crystals are reviewed, as well as their properties and devices fabricated from...them. The fact that the state of-the-art of silicon carbide semiconductors is not further advanced may be attributed to the difficulties of growing

  2. Semimetal/Semiconductor Nanocomposites for Thermoelectrics

    SciTech Connect

    Lu, Hong; Burke, Peter G.; Gossard, Arthur C.; Zeng, Gehong; Ramu, Ashok T.; Bahk, Je-Hyeong; Bowers, John E.

    2011-04-15

    In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:InxGa1-xSb as a promising p-type thermoelectric material. Nano­structures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By codoping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 μm thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.

  3. Semimetal/semiconductor nanocomposites for thermoelectrics.

    PubMed

    Lu, Hong; Burke, Peter G; Gossard, Arthur C; Zeng, Gehong; Ramu, Ashok T; Bahk, Je-Hyeong; Bowers, John E

    2011-05-24

    In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:In(x)Ga(1−x)Sb as a promising p-type thermoelectric material. Nanostructures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By co-doping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 μ m thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.

  4. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  5. Graphene/semiconductor silicon modified BiFeO{sub 3}/indium tin oxide ferroelectric photovoltaic device for transparent self-powered windows

    SciTech Connect

    Gupta, Surbhi; Medwal, Rohit Limbu, Tej B.; Katiyar, Rajesh K.; Pavunny, Shojan P.; Morell, G.; Katiyar, R. S.; Tomar, Monika; Gupta, Vinay

    2015-08-10

    We report photovoltaic response of highly transparent graphene/BiFe{sub 0.95}Si{sub 0.05}O{sub 3} (BFSiO)/ITO/glass derived from bottom-up spin coating technique. The device exhibits short-circuit-current (I{sub SC} 0.75 mA) with 1000 fold upsurge and open-circuit-voltage (V{sub OC} ∼ 0.45 V) under standard AM 1.5 illumination through graphene. In combination, I{sub SC} of 0.63 mA and V{sub OC} of 0.35 V for same illumination through ITO, reveals the prospects of harvesting indoor light. Also, crystallographic structure, red shift in band gap, leakage behavior, and ferroelectric characteristics of BFSiO thin films are reported. Reproducible transient response of I{sub SC} and V{sub OC} with quick switching (<100 ms) for 20 consecutive cycles and stability (95%) over test period of 16 weeks signifies high endurance and retentivity, promising for building integrated self-powered windows.

  6. Will Future Measurement Needs of the Semiconductor Industry Be Met?

    PubMed Central

    Bennett, Herbert S.

    2007-01-01

    We discuss the ability of the nation’s measurement system to meet future metrology needs of the semiconductor industry. Lacking an acceptable metric for assessing the health of metrology for the semiconductor industry, we identify a limited set of unmet measurement needs. Assuming that this set of needs may serve as proxy for the galaxy of semiconductor measurement needs, we examine it from the perspective of what will be required to continue the semiconductor industry’s powerful impact in the world’s macro-economy and maintain its exceptional record of numerous technological innovations. This paper concludes with suggestions about ways to strengthen the measurement system for the semiconductor industry. PMID:27110452

  7. Where the chips fall: environmental health in the semiconductor industry.

    PubMed

    Chepesiuk, R

    1999-09-01

    Three recent lawsuits are focusing public attention on the environmental and occupational health effects of the world's largest and fastest growing manufacturing sector-the $150 billion semiconductor industry. The suits allege that exposure to toxic chemicals in semiconductor manufacturing plants led to adverse health effects such as miscarriage and cancer among workers. To manufacture computer components, the semiconductor industry uses large amounts of hazardous chemicals including hydrochloric acid, toxic metals and gases, and volatile solvents. Little is known about the long-term health consequences of exposure to chemicals by semiconductor workers. According to industry critics, the semiconductor industry also adversely impacts the environment, causing groundwater and air pollution and generating toxic waste as a by-product of the semiconductor manufacturing process. In contrast, the U.S. Bureau of Statistics shows the semiconductor industry as having a worker illness rate of about one-third of the average of all manufacturers, and advocates defend the industry, pointing to recent research collaborations and product replacement as proof that semiconductor manufacturers adequately protect both their employees and the environment.

  8. Where the chips fall: environmental health in the semiconductor industry.

    PubMed Central

    Chepesiuk, R

    1999-01-01

    Three recent lawsuits are focusing public attention on the environmental and occupational health effects of the world's largest and fastest growing manufacturing sector-the $150 billion semiconductor industry. The suits allege that exposure to toxic chemicals in semiconductor manufacturing plants led to adverse health effects such as miscarriage and cancer among workers. To manufacture computer components, the semiconductor industry uses large amounts of hazardous chemicals including hydrochloric acid, toxic metals and gases, and volatile solvents. Little is known about the long-term health consequences of exposure to chemicals by semiconductor workers. According to industry critics, the semiconductor industry also adversely impacts the environment, causing groundwater and air pollution and generating toxic waste as a by-product of the semiconductor manufacturing process. In contrast, the U.S. Bureau of Statistics shows the semiconductor industry as having a worker illness rate of about one-third of the average of all manufacturers, and advocates defend the industry, pointing to recent research collaborations and product replacement as proof that semiconductor manufacturers adequately protect both their employees and the environment. PMID:10464084

  9. Towards Prognostics of Power MOSFETs: Accelerated Aging and Precursors of Failure

    DTIC Science & Technology

    2010-10-01

    Annual Conference of the Prognostics and Health Management Society, 2010 Towards Prognostics of Power MOSFETs : Accelerated Aging and Precursors of...research results dealing with power MOSFETs (metal oxide semiconductor field effect tran- sistor) within the prognostics and health management of...electronics. Gate controlled power transistors like power MOSFETs (metal oxide semiconductor field effect tran- sistor) are power semiconductor

  10. Semiconductor nanowire optical antenna solar absorbers.

    PubMed

    Cao, Linyou; Fan, Pengyu; Vasudev, Alok P; White, Justin S; Yu, Zongfu; Cai, Wenshan; Schuller, Jon A; Fan, Shanhui; Brongersma, Mark L

    2010-02-10

    Photovoltaic (PV) cells can serve as a virtually unlimited clean source of energy by converting sunlight into electrical power. Their importance is reflected in the tireless efforts that have been devoted to improving the electrical and structural properties of PV materials. More recently, photon management (PM) has emerged as a powerful additional means to boost energy conversion efficiencies. Here, we demonstrate an entirely new PM strategy that capitalizes on strong broad band optical antenna effects in one-dimensional semiconductor nanostructures to dramatically enhance absorption of sunlight. We show that the absorption of sunlight in Si nanowires (Si NWs) can be significantly enhanced over the bulk. The NW's optical properties also naturally give rise to an improved angular response. We propose that by patterning the silicon layer in a thin film PV cell into an array of NWs, one can boost the absorption for solar radiation by 25% while utilizing less than half of the semiconductor material (250% increase in the light absorption per unit volume of material). These results significantly advance our understanding of the way sunlight is absorbed by one-dimensional semiconductor nanostructures and provide a clear, intuitive guidance for the design of efficient NW solar cells. The presented approach is universal to any semiconductor and a wide range of nanostructures; as such, it provides a new PV platform technology.

  11. Method of doping a semiconductor

    DOEpatents

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  12. Low-timing-jitter high-power mode-locked 1063 nm Nd:GdVO₄ master oscillator power amplifier.

    PubMed

    Wang, Zhi-min; Zhang, Feng-feng; Zuo, Jun-wei; Yang, Jing; Yuan, Lei; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2015-10-01

    A low-timing-jitter high-power semiconductor saturable absorber mirror mode-locked picosecond (ps) 1063 nm Nd:GdVO4 master oscillator power amplifier is presented. Using a single-pass Nd:GdVO4 amplifier, an amplified laser with 21.5 W output power and 8.3 ps pulsewidth was achieved at 250 MHz repetition rate. Employing a servo control, an average RMS timing jitter of ∼222  fs was realized. This laser can be used as a drive laser for photocathode injectors in free-electron lasers.

  13. Special Issue featuring invited articles arising from UK Semiconductors 2012

    NASA Astrophysics Data System (ADS)

    Clarke, Edmund; Wada, Osamu

    2013-07-01

    Semiconductor research has formed the basis of many technological advances over the past 50 years, and the field is still highly active, as new material systems and device concepts are developed to address new applications or operating conditions. In addition to the development of traditional semiconductor devices, the wealth of experience with these materials also allows their use as an ideal environment for testing new physics, leading to new classes of devices exploiting quantum mechanical effects that can also benefit from the advantages of existing semiconductor technology in scalability, compactness and ease of mass production. This special issue features papers arising from the UK Semiconductors 2012 Conference, held at the University of Sheffield. The annual conference covers all aspects of semiconductor research, from crystal growth, through investigations of the physics of semiconductor structures to realization of semiconductor devices and their application in emerging technologies. The 2012 conference featured over 150 presentations, including plenary sessions on interband cascade lasers for the 3-6 µm spectral band, efficient single photon sources based on InAs quantum dots embedded in GaAs photonic nanowires, nitride-based quantum dot visible lasers and single photon sources, and engineering of organic light-emitting diodes. The seven papers collected here highlight current research advances, taken from across the scope of the conference. The papers feature growth of novel nitride-antimonide material systems for mid-infrared sources and detectors, use of semiconductor nanostructures for charge-based memory and visible lasers, optimization of device structures either to reduce losses in solar cells or achieve low noise amplification in transistors, design considerations for surface-emitting lasers incorporating photonic crystals and an assessment of laser power convertors for power transfer. The editors of this special issue and the conference

  14. Semiconductor surface protection material

    NASA Technical Reports Server (NTRS)

    Packard, R. D. (Inventor)

    1973-01-01

    A method and a product for protecting semiconductor surfaces is disclosed. The protective coating material is prepared by heating a suitable protective resin with an organic solvent which is solid at room temperature and converting the resulting solution into sheets by a conventional casting operation. Pieces of such sheets of suitable shape and thickness are placed on the semiconductor areas to be coated and heat and vacuum are then applied to melt the sheet and to drive off the solvent and cure the resin. A uniform adherent coating, free of bubbles and other defects, is thus obtained exactly where it is desired.

  15. Quantum Transport in Semiconductors

    DTIC Science & Technology

    1991-10-01

    SRS i 91 4. TITLE AND SUBTITLE Quantum Transport in Semiconductors 5. FUNDING NUMBER söMtos-rizk-ooss 6. AUTHOR(S) D. K. Ferry ©fte ELECTE...OF ABSTRACT UL NSN 7540-01-280-5500 O 1 9 Standard Form 298 (Rev. 2-89) Presented by ANSI Std «9-18 298-102 Final Report Quantum Transport in... Quantum Transport in Semiconductor Devices This final report describes a program of research investigating quantum effects which become important in

  16. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  17. New unorthodox semiconductor devices

    NASA Astrophysics Data System (ADS)

    Board, K.

    1985-12-01

    A range of new semiconductor devices, including a number of structures which rely entirely upon new phenomena, are discussed. Unipolar two-terminal devices, including impurity-controlled barriers and graded composition barriers, are considered, as are new transistor structures, including the hot-electron camel transistor, the planar-doped barrier transistor, the thermionic emission transistor, and the permeable base transistor. Regenerative switching devices are addressed, including the metal-tunnel insulator-semiconductor switch, the polysilicon switch, MIS, and MISIM switching structures, and the triangular-barrier switch. Heterostructure devices are covered, including the heterojunction bipolar transistor, the selectively doped heterojunction transistor, heterojunction lasers, and quantum-well structures.

  18. Plasma model of carrier transportation in photoelectric semiconductor detectors

    NASA Astrophysics Data System (ADS)

    Ma, L. Q.; Lu, Q. S.; Du, S. J.

    2006-02-01

    A new model, called the plasma model, describing carrier transportation in photoelectric semiconductor detectors is proposed. Semiconductor material under laser irradiation is regarded as a plasma of low temperature with high carrier density, and it is considered that the carrier temperature is different from the lattice temperature when the irradiating laser power is high but lower than the damage threshold of the detectors. Equations for the carrier density, velocity and temperature are established. According to the model, numerical simulations of a photoconductive semiconductor detector were carried out by programming. The instantaneous change behaviors of the photoconductive detector are obtained. The results of the numerical calculation match well with the experimental results.

  19. Radial averages of astigmatic TEM images.

    PubMed

    Fernando, K Vince

    2008-10-01

    The Contrast Transfer Function (CTF) of an image, which modulates images taken from a Transmission Electron Microscope (TEM), is usually determined from the radial average of the power spectrum of the image (Frank, J., Three-dimensional Electron Microscopy of Macromolecular Assemblies, Oxford University Press, Oxford, 2006). The CTF is primarily defined by the defocus. If the defocus estimate is accurate enough then it is possible to demodulate the image, which is popularly known as the CTF correction. However, it is known that the radial average is somewhat attenuated if the image is astigmatic (see Fernando, K.V., Fuller, S.D., 2007. Determination of astigmatism in TEM images. Journal of Structural Biology 157, 189-200) but this distortion due to astigmatism has not been fully studied or understood up to now. We have discovered the exact mathematical relationship between the radial averages of TEM images with and without astigmatism. This relationship is determined by a zeroth order Bessel function of the first kind and hence we can exactly quantify this distortion in the radial averages of signal and power spectra of astigmatic images. The argument to this Bessel function is similar to an aberration function (without the spherical aberration term) except that the defocus parameter is replaced by the differences of the defoci in the major and minor axes of astigmatism. The ill effects due this Bessel function are twofold. Since the zeroth order Bessel function is a decaying oscillatory function, it introduces additional zeros to the radial average and it also attenuates the CTF signal in the radial averages. Using our analysis, it is possible to simulate the effects of astigmatism in radial averages by imposing Bessel functions on idealized radial averages of images which are not astigmatic. We validate our theory using astigmatic TEM images.

  20. Developments in space power components for power management and distribution

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1984-01-01

    Advanced power electronic components development for space applications is discussed. The components described include transformers, inductors, semiconductor devices such as transistors and diodes, remote power controllers, and transmission lines.

  1. Method of plasma etching GA-based compound semiconductors

    DOEpatents

    Qiu, Weibin; Goddard, Lynford L.

    2013-01-01

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.

  2. High Current, Multi-Filament Photoconductive Semiconductor Switching

    DTIC Science & Technology

    2011-06-01

    linear PCSS triggered with a 100 fs laser pulse . Figure 1. A generic photoconductive semiconductor switch rapidly discharges a charged capacitor...switching is the most critical challenge remaining for photoconductive semiconductor switch (PCSS) applications in Pulsed Power. Many authors have...isolation and control, pulsed or DC charging, and long device lifetime, provided the current per filament is limited to 20-30A for short pulse (10

  3. Integrated three-dimensional module heat exchanger for power electronics cooling

    DOEpatents

    Bennion, Kevin; Lustbader, Jason

    2013-09-24

    Embodiments discussed herein are directed to a power semiconductor packaging that removes heat from a semiconductor package through one or more cooling zones that are located in a laterally oriented position with respect to the semiconductor package. Additional embodiments are directed to circuit elements that are constructed from one or more modular power semiconductor packages.

  4. Semiconductor Laser With Multilayer Dielectric Reflector

    NASA Technical Reports Server (NTRS)

    Lang, Robert J.

    1991-01-01

    Multilayer dielectric reflector included in proposed surface-emitting, distributed-feedback, grating semiconductor laser (e.g., a GaAlAs device). Contributes to efficiency and output power of laser by reducing amount of light entering substrate, where wasted by absorption. Index of refraction in reflector sublayers alternates between higher and lower value. Higher value less than effective index of refraction of waveguide layer.

  5. Microwave Semiconductor Equipment Produced in Poland,

    DTIC Science & Technology

    1984-01-20

    beginning of the development of microwave semiconductor electronics in Poland. The second stage of UPP production, between 1968 and 1974, encompassed...750 mW); --two types of Gunn diodes with a constant power in the X band between 50 and 250 mW; also designed were; A--the first models of the...field of the produced types of these devices. Also produced in this field were models of all the necessary types of microwave diodes (avalanche, Gunn

  6. Electron-Beam Controlled Semiconductor Switches

    DTIC Science & Technology

    1993-11-02

    34 Proceedings of the 7th IEEE Pulsed Power Conference (1989) 348- 351. Thomas, B, et al., "Investigation of Surface Flashover in Silicon...Phbs- trolled semiconductor switch. In 1990 he joined the Naval Surface Warfare ical Electronics Research Institute His current research interests...field of 17 depletion region over the entire zone I1. In addition to this kV/cm. At this point, problems with surface flashover prevented depletion

  7. Kansas Advanced Semiconductor Project

    SciTech Connect

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  8. Chemically Derivatized Semiconductor Photoelectrodes.

    ERIC Educational Resources Information Center

    Wrighton, Mark S.

    1983-01-01

    Deliberate modification of semiconductor photoelectrodes to improve durability and enhance rate of desirable interfacial redox processes is discussed for a variety of systems. Modification with molecular-based systems or with metals/metal oxides yields results indicating an important role for surface modification in devices for fundamental study…

  9. Physics of Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Brütting, Wolfgang

    2004-05-01

    Organic semiconductors are of steadily growing interest as active components in electronics and optoelectronics. Due to their flexibility, low cost and ease-of-production they represent a valid alternative to conventional inorganic semiconductor technology in a number of applications, such as flat panel displays and illumination, plastic integrated circuits or solar energy conversion. Although first commercial applications of this technology are being realized nowadays, there is still the need for a deeper scientific understanding in order to achieve optimum device performance.This special issue of physica status solidi (a) tries to give an overview of our present-day knowledge of the physics behind organic semiconductor devices. Contributions from 17 international research groups cover various aspects of this field ranging from the growth of organic layers and crystals, their electronic properties at interfaces, their photophysics and electrical transport properties to the application of these materials in different devices like organic field-effect transistors, photovoltaic cells and organic light-emitting diodes.Putting together such a special issue one soon realizes that it is simply impossible to fully cover the whole area of organic semiconductors. Nevertheless, we hope that the reader will find the collection of topics in this issue useful for getting an up-to-date review of a field which is still developing very dynamically.

  10. Two-dimensional semiconductors for transistors

    NASA Astrophysics Data System (ADS)

    Chhowalla, Manish; Jena, Debdeep; Zhang, Hua

    2016-11-01

    In the quest for higher performance, the dimensions of field-effect transistors (FETs) continue to decrease. However, the reduction in size of FETs comprising 3D semiconductors is limited by the rate at which heat, generated from static power, is dissipated. The increase in static power and the leakage of current between the source and drain electrodes that causes this increase, are referred to as short-channel effects. In FETs with channels made from 2D semiconductors, leakage current is almost eliminated because all electrons are confined in atomically thin channels and, hence, are uniformly influenced by the gate voltage. In this Review, we provide a mathematical framework to evaluate the performance of FETs and describe the challenges for improving the performances of short-channel FETs in relation to the properties of 2D materials, including graphene, transition metal dichalcogenides, phosphorene and silicene. We also describe tunnelling FETs that possess extremely low-power switching behaviour and explain how they can be realized using heterostructures of 2D semiconductors.

  11. Averaging Models: Parameters Estimation with the R-Average Procedure

    ERIC Educational Resources Information Center

    Vidotto, G.; Massidda, D.; Noventa, S.

    2010-01-01

    The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982), can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto &…

  12. Architectures for Improved Organic Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Beck, Jonathan H.

    Advancements in the microelectronics industry have brought increasing performance and decreasing prices to a wide range of users. Conventional silicon-based electronics have followed Moore's law to provide an ever-increasing integrated circuit transistor density, which drives processing power, solid-state memory density, and sensor technologies. As shrinking conventional integrated circuits became more challenging, researchers began exploring electronics with the potential to penetrate new applications with a low price of entry: "Electronics everywhere." The new generation of electronics is thin, light, flexible, and inexpensive. Organic electronics are part of the new generation of thin-film electronics, relying on the synthetic flexibility of carbon molecules to create organic semiconductors, absorbers, and emitters which perform useful tasks. Organic electronics can be fabricated with low energy input on a variety of novel substrates, including inexpensive plastic sheets. The potential ease of synthesis and fabrication of organic-based devices means that organic electronics can be made at very low cost. Successfully demonstrated organic semiconductor devices include photovoltaics, photodetectors, transistors, and light emitting diodes. Several challenges that face organic semiconductor devices are low performance relative to conventional devices, long-term device stability, and development of new organic-compatible processes and materials. While the absorption and emission performance of organic materials in photovoltaics and light emitting diodes is extraordinarily high for thin films, the charge conduction mobilities are generally low. Building highly efficient devices with low-mobility materials is one challenge. Many organic semiconductor films are unstable during fabrication, storage, and operation due to reactions with water, oxygen and hydroxide. A final challenge facing organic electronics is the need for new processes and materials for electrodes

  13. Development of on-line laser power monitoring system

    NASA Astrophysics Data System (ADS)

    Ding, Chien-Fang; Lee, Meng-Shiou; Li, Kuan-Ming

    2016-03-01

    Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.

  14. Interaction of Semiconductor Obstacle with Electromagnetic Wave Propagating in Circular Waveguide

    DTIC Science & Technology

    2008-02-08

    Report 3. DATES COVERED (From – To) 1 February 2007 - 01-Feb-08 4. TITLE AND SUBTITLE Interaction of Semiconductor Obstacle with Electromagnetic...goals, the modeling of the circular waveguide section containing semiconductor obstacle will be performed. To calculate the average electric field in...the semiconductor obstacle the finite difference time domain method will be used. Although, the lowest critical frequency in the circular waveguide

  15. Highly efficient and high-power diode-pumped femtosecond Yb:LYSO laser

    NASA Astrophysics Data System (ADS)

    Tian, Wenlong; Wang, Zhaohua; Zhu, Jiangfeng; Zheng, Lihe; Xu, Jun; Wei, Zhiyi

    2017-04-01

    A diode-pumped high-power femtosecond Yb:LYSO laser with high efficiency is demonstrated. With a semiconductor saturable absorber mirror for passive mode-locking and a Gires–Tournois interferometer mirror for intracavity dispersion compensation, stable mode-locking pulses of 297 fs duration at 1042 nm were obtained. The maximum average power of 3.07 W was realized under 5.17 W absorbed pump power, corresponding to as high as 59.4% opt–opt efficiency. The single pulse energy and peak power are about 35.5 nJ and 119.5 kW, respectively.

  16. Electrical Characterization of Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Deen, M.; Pascal, Fabien

    Semiconductor materials and devices continue to occupy a preeminent technological position due to their importance when building integrated electronic systems used in a wide range of applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnositics and environmental monitoring. Key ingredients of this technological dominance have been the rapid advances made in the quality and processing of materials - semiconductors, conductors and dielectrics - which have given metal oxide semiconductor device technology its important characteristics of negligible standby power dissipation, good input-output isolation, surface potential control and reliable operation. However, when assessing material quality and device reliability, it is important to have fast, nondestructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be determined. This chapter describes some of the more widely employed and popular techniques that are used to determine these important parameters. The techniques presented in this chapter range in both complexity and test structure requirements from simple current-voltage measurements to more sophisticated low-frequency noise, charge pumping and deep-level transient spectroscopy techniques.

  17. Design and optimization of micro-semiconductor bridge used for solid propellant microthrusters array

    NASA Astrophysics Data System (ADS)

    Ru, Chengbo; Dai, Ji; Xu, Jianbing; Ye, Yinghua; Zhu, Peng; Shen, Ruiqi

    2016-06-01

    Igniter is the basic component of MEMS-based solid propellant microthrusters (SPM) array, which should response fast with low dissipated energy. To satisfy the requirements, micro-semiconductor bridge (MSCB) with dual V-angles contributing to the reduction of dissipated energy is introduced into the array. The electrical explosion characteristics of MSCB investigated under constant voltage, in the considerations of the limit of power supply in the micro/nanosatellite, are similar to those under capacitive discharge. The bridge was completely vaporized and burst into the hot plasma under high-level voltage. While under low-level voltage, the bridge was partly vaporized without detected plasma. The 3#SCB (90° V-angle) with the smallest power density resulting in the lowest applied voltage (12.0 V) and the 2#SCB with the smallest narrow width (Wmin) leading to the lowest average power (11.3 W) were chosen to the further optimization. The ignition tests were implemented to examine the ignition reliability of the contractible igniters, which were optimized to satisfy the voltage limitation with sufficient ignition capacity. The results show that the effective SCB with lowest dissipated power is the 3#-3SCB, which function within 100 μ under 7.0 V, and the average power below 5.0 W.

  18. Compact, temperature-stable multi-gigahertz passively modelocked semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Song, Yan-Rong; Guoyu, He-Yang; Zhang, Peng; Tian, Jin-Rong

    2015-08-01

    We present a compact passively mode-locked semiconductor disk laser at 1045 nm. The gain chip without any post processing consists of 16 compressively strained InGaAs symmetrical step quantum wells in the active region. 3-GHz repetition rate, 4.9-ps pulse duration, and 30-mW average output power are obtained with 1.4 W of 808-nm incident pump power. The temperature stability of the laser is demonstrated to have an ideal shift rate of 0.035 nm/K of the lasing wavelength. Project supported by the National Natural Science Foundation of China (Grant No. 61177047) and the Key Project of the National Natural Science Foundation of China (Grant No. 61235010).

  19. High gain GaAs photoconductive semiconductor switches for ground penetrating radar

    SciTech Connect

    Loubriel, G.M.; Aurand, J.F.; Buttram, M.T.; Zutavern, F.J.; Helgeson, W.D.; O`Malley, M.W.; Brown, D.J.

    1996-07-01

    The ability of high gain GaAs Photoconductive Semiconductor switches (PCSS) to deliver high peak power, fast risetime pulses when triggered with small laser diode arrays makes them suitable for their use in radars that rely on fast impulses. This type of direct time domain radar is uniquely suited for observation of large structures under ground because it can operate at low frequencies and at high average power. This paper will summarize the state-of-the-art in high gain GaAs switches and discuss their use in a radar transmitter. We will also present a summary of an analysis of the effectiveness of different pulser geometries that result in transmitted pulses with varying frequency content. To this end we developed a simple model that includes transmit and receive antenna response, attenuation and dispersion of the electromagnetic impulses by the soil, and target cross sections.

  20. Novel room temperature ferromagnetic semiconductors

    SciTech Connect

    Gupta, Amita

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting

  1. The Average of Rates and the Average Rate.

    ERIC Educational Resources Information Center

    Lindstrom, Peter

    1988-01-01

    Defines arithmetic, harmonic, and weighted harmonic means, and discusses their properties. Describes the application of these properties in problems involving fuel economy estimates and average rates of motion. Gives example problems and solutions. (CW)

  2. Advanced Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Shur, Michael S.; Maki, Paul A.; Kolodzey, James

    2007-06-01

    I. Wide band gap devices. Wide-Bandgap Semiconductor devices for automotive applications / M. Sugimoto ... [et al.]. A GaN on SiC HFET device technology for wireless infrastructure applications / B. Green ... [et al.]. Drift velocity limitation in GaN HEMT channels / A. Matulionis. Simulations of field-plated and recessed gate gallium nitride-based heterojunction field-effect transistors / V. O. Turin, M. S. Shur and D. B. Veksler. Low temperature electroluminescence of green and deep green GaInN/GaN light emitting diodes / Y. Li ... [et al.]. Spatial spectral analysis in high brightness GaInN/GaN light emitting diodes / T. Detchprohm ... [et al.]. Self-induced surface texturing of Al2O3 by means of inductively coupled plasma reactive ion etching in Cl2 chemistry / P. Batoni ... [et al.]. Field and termionic field transport in aluminium gallium arsenide heterojunction barriers / D. V. Morgan and A. Porch. Electrical characteristics and carrier lifetime measurements in high voltage 4H-SiC PiN diodes / P. A. Losee ... [et al.]. Geometry and short channel effects on enhancement-mode n-Channel GaN MOSFETs on p and n- GaN/sapphire substrates / W. Huang, T. Khan and T. P. Chow. 4H-SiC Vertical RESURF Schottky Rectifiers and MOSFETs / Y. Wang, P. A. Losee and T. P. Chow. Present status and future Directions of SiGe HBT technology / M. H. Khater ... [et al.]Optical properties of GaInN/GaN multi-quantum Wells structure and light emitting diode grown by metalorganic chemical vapor phase epitaxy / J. Senawiratne ... [et al.]. Electrical comparison of Ta/Ti/Al/Mo/Au and Ti/Al/Mo/Au Ohmic contacts on undoped GaN HEMTs structure with AlN interlayer / Y. Sun and L. F. Eastman. Above 2 A/mm drain current density of GaN HEMTs grown on sapphire / F. Medjdoub ... [et al.]. Focused thermal beam direct patterning on InGaN during molecular beam epitaxy / X. Chen, W. J. Schaff and L. F. Eastman -- II. Terahertz and millimeter wave devices. Temperature-dependent microwave performance of

  3. Semiconductor radiation detector

    DOEpatents

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.; Vilkelis, Gintas

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  4. Three dimensional strained semiconductors

    DOEpatents

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  5. Stretchable Organic Semiconductor Devices.

    PubMed

    Qian, Yan; Zhang, Xinwen; Xie, Linghai; Qi, Dianpeng; Chandran, Bevita K; Chen, Xiaodong; Huang, Wei

    2016-11-01

    Stretchable electronics are essential for the development of intensely packed collapsible and portable electronics, wearable electronics, epidermal and bioimplanted electronics, 3D surface compliable devices, bionics, prosthesis, and robotics. However, most stretchable devices are currently based on inorganic electronics, whose high cost of fabrication and limited processing area make it difficult to produce inexpensive, large-area devices. Therefore, organic stretchable electronics are highly attractive due to many advantages over their inorganic counterparts, such as their light weight, flexibility, low cost and large-area solution-processing, the reproducible semiconductor resources, and the easy tuning of their properties via molecular tailoring. Among them, stretchable organic semiconductor devices have become a hot and fast-growing research field, in which great advances have been made in recent years. These fantastic advances are summarized here, focusing on stretchable organic field-effect transistors, light-emitting devices, solar cells, and memory devices.

  6. Semiconductor optoelectronic devices for free-space optical communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1983-01-01

    The properties of individual injection lasers are reviewed, and devices of greater complexity are described. These either include or are relevant to monolithic integration configurations of the lasers with their electronic driving circuitry, power combining methods of semiconductor lasers, and electronic methods of steering the radiation patterns of semiconductor lasers and laser arrays. The potential of AlGaAs laser technology for free-space optical communications systems is demonstrated. These solid-state components, which can generate and modulate light, combine the power of a number of sources and perform at least part of the beam pointing functions. Methods are proposed for overcoming the main drawback of semiconductor lasers, that is, their inability to emit the needed amount of optical power in a single-mode operation.

  7. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  8. Metal Contacts in Semiconductors.

    DTIC Science & Technology

    1983-11-01

    surfaces, Pnotoelectron spe troscopy, Auger electron spectro- I scopy, Schottky barriers, ohmic contacts, Defects in semiconductors, Cadmium * telluride...Indium phosphide, Gallium arsenide, Gallium Selenide . j 20. ABSTR ACT (roothat ow rees esh " neceay and td..ity by block -. b*w) SThe application of...angstroms. Also, provided one eliminates the systems where cadmium outdiffusion into high work function metals occurs then good agreement between the

  9. Tunable semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.

  10. Thermal runaway in semiconductor laser windows.

    PubMed

    Johnson, R L; O'Keefe, J D

    1972-12-01

    A small perturbation model is used to obtain analytical expressions for the critical or runaway power density for laser windows constructed of semiconductor materials. These equations are used to compute the critical power density for several realistic window installations taking account of the finite value of realizable convection cooling coefficients. Computations were prepared for silicon transmitting 4 .0-micro. radiation and for germanium at 10.6 micro. In this way it is shown that power densities are principally limited by the effectiveness of cooling from the face of the window, that is, the surface perpendicular to the laser beam. Since convection cooling coefficients are small the transmission of high power densities through semiconductor windows is therefore contingent upon finding more effective means to cool the window from the face. Finally, a simplified calculation was made in an attempt to account for nonuniformity of the incident laser beam. a given window, but not severely. The results show the onuniformity reduces the runaway power for a given window, but not severely.

  11. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  12. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  13. Visible-wavelength semiconductor lasers and arrays

    DOEpatents

    Schneider, Jr., Richard P.; Crawford, Mary H.

    1996-01-01

    A visible semiconductor laser. The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1.lambda.) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%.

  14. 18 CFR 301.7 - Average System Cost methodology functionalization.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methodology functionalization. 301.7 Section 301.7 Conservation of Power and Water Resources FEDERAL ENERGY... SYSTEM COST METHODOLOGY FOR SALES FROM UTILITIES TO BONNEVILLE POWER ADMINISTRATION UNDER NORTHWEST POWER ACT § 301.7 Average System Cost methodology functionalization. (a) Functionalization of each...

  15. 1.56 µm 1 watt single frequency semiconductor disk laser.

    PubMed

    Rantamäki, Antti; Rautiainen, Jussi; Sirbu, Alexei; Mereuta, Alexandru; Kapon, Eli; Okhotnikov, Oleg G

    2013-01-28

    A single frequency wafer-fused semiconductor disk laser at 1.56 µm with 1 watt of output power and a coherence length over 5 km in fiber is demonstrated. The result represents the highest output power reported for a narrow-line semiconductor disk laser operating at this spectral range. The study shows the promising potential of the wafer fusion technique for power scaling of single frequency vertical-cavity lasers emitting in the 1.3-1.6 µm range.

  16. Broadly tunable DBR-free semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Yang, Zhou; Albrecht, Alexander R.; Cederberg, Jeffrey G.; Hackett, Shawn; Sheik-Bahae, Mansoor

    2016-03-01

    We report a DBR-free semiconductor disk lasers centered at 1160 nm with a tuning range of 78 nm, and ongoing effort on our DBR-free SDL centered at 1040 nm. Compared with conventional semiconductor disk lasers, DBR-free SDLs have a broader effective gain bandwidth. In CW operation, 2.5 W output power at 1160 nm and 6 W at 1055 nm were collected from the two lasers without thermal-rollover. Intracavity loss mitigation, currently underway, should improve power scaling and efficiency in these systems.

  17. Diode-pumped passively mode-locked Nd:YAG laser at 1338 nm with a semiconductor saturable absorber mirror.

    PubMed

    Yang, Ying; Xu, Jin-Long; He, Jing-Liang; Yang, Xiu-Qin; Zhang, Bing-Yuan; Yang, He; Liu, Shan-De; Zhang, Bai-Tao

    2011-12-20

    We demonstrate a diode-end-pumped passively mode-locked 1338 nm Nd:YAG laser with a semiconductor saturable absorber mirror. At the absorbed pump power of 8.89 W, an average output power of 1.12 W was obtained with a slope efficiency of 14%. The pulse width was 22.4 ps with a repetition rate of 63.9 MHz, corresponding to a peak power of 782 W. In addition, the bandwidth of the mode-locking spectrum is as narrow as 20.44 GHz, which shows the potential application in long-distance ranging and fiber information transmission because of the low dispersion of these ultrashort pulses.

  18. Ultrafast thin-disk multipass amplifier with 1.4 kW average power and 4.7 mJ pulse energy at 1030 nm converted to 820 W and 2.7 mJ at 515 nm

    NASA Astrophysics Data System (ADS)

    Negel, Jan-Philipp; Loescher, André; Voss, Andreas; Bauer, Dominik; Sutter, Dirk H.; Killi, Alexander; Abdou Ahmed, Marwan; Graf, Thomas

    2015-02-01

    In recent years, there has been a growing interest in increasing the output power of ultrafast lasers to the kW-range. This allows higher productivity for laser material processing, e.g. for cutting of carbon-fiber reinforced plastics (CFRP) or for micro-machining. We developed an Yb:YAG thin-disk multipass amplifier delivering sub-8 ps pulses with 1.4 kW average power which is - to the best of our knowledge - the highest output power reported for a sub-100 ps ultrafast laser system so far. The amplifier is seeded by a regenerative amplifier with 6.5 ps pulses and 115 W of average power at a repetition rate of 300 kHz. Taking this repetition rate into account, the energy of the amplified pulses is as high as 4.7 mJ. This was achieved using a scheme with 40 mirrors in an array to geometrically fold the seed beam 40 times over the thin-disk. The beam quality was measured to be better than M2=1.4. This system was used in first experiments to cut CFRP with very good quality and with unprecedented efficiency. Additionally, the output beam of the amplifier was frequency-doubled in an LBO crystal to 820 W (70 % conversion efficiency) output power at the second harmonic wavelength (515 nm) and 106 W (26.5 % conversion efficiency) at the third harmonic wavelength (343 nm). Both results are record output powers for ultrafast laser systems at the respective wavelengths. In the presentation, we will show concepts on further power scaling of the system.

  19. Tunable High Brightness Semiconductor Sources

    DTIC Science & Technology

    2015-05-01

    AFRL-RY-WP-TR-2015-0066 TUNABLE HIGH BRIGHTNESS SEMICONDUCTOR SOURCES Robert Bedford, Saima Husaini, Charles Reyner, and Tuoc Dang...3. DATES COVERED (From - To) May 2015 Final 5 November 2010 – 1 February 2015 4. TITLE AND SUBTITLE TUNABLE HIGH BRIGHTNESS SEMICONDUCTOR SOURCES 5a...included within the Tunable High Brightness Semiconductor Sources work unit includes several technology advancements. First, theoretical advances in mid

  20. Determining GPS average performance metrics

    NASA Technical Reports Server (NTRS)

    Moore, G. V.

    1995-01-01

    Analytic and semi-analytic methods are used to show that users of the GPS constellation can expect performance variations based on their location. Specifically, performance is shown to be a function of both altitude and latitude. These results stem from the fact that the GPS constellation is itself non-uniform. For example, GPS satellites are over four times as likely to be directly over Tierra del Fuego than over Hawaii or Singapore. Inevitable performance variations due to user location occur for ground, sea, air and space GPS users. These performance variations can be studied in an average relative sense. A semi-analytic tool which symmetrically allocates GPS satellite latitude belt dwell times among longitude points is used to compute average performance metrics. These metrics include average number of GPS vehicles visible, relative average accuracies in the radial, intrack and crosstrack (or radial, north/south, east/west) directions, and relative average PDOP or GDOP. The tool can be quickly changed to incorporate various user antenna obscuration models and various GPS constellation designs. Among other applications, tool results can be used in studies to: predict locations and geometries of best/worst case performance, design GPS constellations, determine optimal user antenna location and understand performance trends among various users.

  1. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  2. Electrodes for Semiconductor Gas Sensors.

    PubMed

    Lee, Sung Pil

    2017-03-25

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode-semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode-semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect.

  3. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, Mark W.

    1990-01-01

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  4. High power cw and mode-locked oscillators based on Yb:KYW multi-crystal resonators.

    PubMed

    Calendron, A-L; Wentsch, K S; Lederer, M J

    2008-11-10

    We report on a high power diode-pumped laser using multiple bulk Yb:KY(WO(4))(2) (KYW) crystals in a resonator optimised for this operation. From a dual-crystal resonator we obtain more than 24 W of cw-power in a TEM(00) mode limited by the available pump power. We also present results for semiconductor saturable absorber mirror (SESAM) mode-locking in the soliton as well as positive dispersion regime with average output powers of 14.6 W and 17 W respectively.

  5. Evaluations of average level spacings

    SciTech Connect

    Liou, H.I.

    1980-01-01

    The average level spacing for highly excited nuclei is a key parameter in cross section formulas based on statistical nuclear models, and also plays an important role in determining many physics quantities. Various methods to evaluate average level spacings are reviewed. Because of the finite experimental resolution, to detect a complete sequence of levels without mixing other parities is extremely difficult, if not totally impossible. Most methods derive the average level spacings by applying a fit, with different degrees of generality, to the truncated Porter-Thomas distribution for reduced neutron widths. A method that tests both distributions of level widths and positions is discussed extensivey with an example of /sup 168/Er data. 19 figures, 2 tables.

  6. Vibrational averages along thermal lines

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu

    2016-01-01

    A method is proposed for the calculation of vibrational quantum and thermal expectation values of physical properties from first principles. Thermal lines are introduced: these are lines in configuration space parametrized by temperature, such that the value of any physical property along them is approximately equal to the vibrational average of that property. The number of sampling points needed to explore the vibrational phase space is reduced by up to an order of magnitude when the full vibrational density is replaced by thermal lines. Calculations of the vibrational averages of several properties and systems are reported, namely, the internal energy and the electronic band gap of diamond and silicon, and the chemical shielding tensor of L-alanine. Thermal lines pave the way for complex calculations of vibrational averages, including large systems and methods beyond semilocal density functional theory.

  7. Nanoscale Semiconductor Electronics

    DTIC Science & Technology

    2015-02-25

    MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV-PS-TR-2014-0202 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release...Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSE/Jesse Mee 1 cy ... AFRL -RV-PS- AFRL -RV-PS- TR-2014-0202 TR-2014-0202 NANOSCALE SEMICONDUCTOR ELECTRONICS Steven R. J. Brueck and Ganesh Balakrishnan University of New

  8. Electrowetting on semiconductors

    NASA Astrophysics Data System (ADS)

    Palma, Cesar; Deegan, Robert

    2015-01-01

    Applying a voltage difference between a conductor and a sessile droplet sitting on a thin dielectric film separating it from the conductor will cause the drop to spread. When the conductor is a good metal, the change of the drop's contact angle due to the voltage is given by the Young-Lippmann (YL) equation. Here, we report experiments with lightly doped, single crystal silicon as the conductive electrode. We derive a modified YL equation that includes effects due to the semiconductor and contact line pinning. We show that light induces a non-reversible wetting transition, and that our model agrees well with our experimental results.

  9. Semiconductor cooling apparatus

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Gaier, James R. (Inventor)

    1993-01-01

    Gas derived graphite fibers generated by the decomposition of an organic gas are joined with a suitable binder. This produces a high thermal conductivity composite material which passively conducts heat from a source, such as a semiconductor, to a heat sink. The fibers may be intercalated. The intercalate can be halogen or halide salt, alkaline metal, or any other species which contributes to the electrical conductivity improvement of the graphite fiber. The fibers are bundled and joined with a suitable binder to form a high thermal conductivity composite material device. The heat transfer device may also be made of intercalated highly oriented pyrolytic graphite and machined, rather than made of fibers.

  10. Semiconductor Terahertz Technology

    DTIC Science & Technology

    2009-06-15

    COVERED (From - To) 15-June-2009 Final Report 12 Apr 07 - 15 Apr 09 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER FA8718-07-C-0030 Semiconductor Terahertz ...and the other for the phononic waveguides. 15. SUBJECT TERMS Quantum cascade laser, gennanium, gennanium-tin, terahertz 16. SECURITY CLASStFICATION OF...7 Figure 7 lllustration of a GaAs-based active region waveguide with either Ga or Au as cladding operating in the Restrahlen band of GaN . 10 Figure 8

  11. Chemically Derivatized Semiconductor Photoelectrodes.

    DTIC Science & Technology

    1982-01-04

    as Si, Ge, and GaAs derivatized with reagents based on ferrocene such as those represented by I and II. Work with p-type semiconductor photoelectrode...Concerning n-type Si it was found that EtOH/0.1 M En-Bu4N)C104 solutions containing A = ferrocene and A+ = ferri-- cinium result in a constant output of...electrical energy from an illuminated photoelectrochemical device configured as in Scheme II.(20) The ferrocene captures the photogenerated h+ at a rate -4

  12. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  13. Semiconductor devices incorporating multilayer interference regions

    DOEpatents

    Biefeld, R.M.; Drummond, T.J.; Gourley, P.L.; Zipperian, T.E.

    1987-08-31

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration. 8 figs.

  14. Semiconductor devices incorporating multilayer interference regions

    DOEpatents

    Biefeld, Robert M.; Drummond, Timothy J.; Gourley, Paul L.; Zipperian, Thomas E.

    1990-01-01

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration.

  15. Reliability of IGBT in a STATCOM for Harmonic Compensation and Power Factor Correction

    SciTech Connect

    Gopi Reddy, Lakshmi Reddy; Tolbert, Leon M; Ozpineci, Burak; Xu, Yan; Rizy, D Tom

    2012-01-01

    With smart grid integration, there is a need to characterize reliability of a power system by including reliability of power semiconductors in grid related applications. In this paper, the reliability of IGBTs in a STATCOM application is presented for two different applications, power factor correction and harmonic elimination. The STATCOM model is developed in EMTP, and analytical equations for average conduction losses in an IGBT and a diode are derived and compared with experimental data. A commonly used reliability model is used to predict reliability of IGBT.

  16. High-power diode-seeded thulium-doped fiber MOPA incorporating active pulse shaping

    NASA Astrophysics Data System (ADS)

    Shi, Hongxing; Tan, Fangzhou; Cao, Yi; Wang, Peng; Wang, Pu

    2016-10-01

    A turnkey fiber laser source generating high beam quality pulses with 240 W average power and arbitrary pulse shapes is presented in theory and experiment. It is based on semiconductor laser diode modulated by arbitrary waveform generator as a seed and polarization maintaining (PM) master oscillator power amplifier (MOPA) system to boost the pulse energy. Detailed experimental and theoretical studies are in a very good agreement. The polarization extinction ratio (PER) of system measured at maximum output power is beyond 17 dB with the excellent beam quality factor M 2 of 1.25.

  17. Polyhedral Painting with Group Averaging

    ERIC Educational Resources Information Center

    Farris, Frank A.; Tsao, Ryan

    2016-01-01

    The technique of "group-averaging" produces colorings of a sphere that have the symmetries of various polyhedra. The concepts are accessible at the undergraduate level, without being well-known in typical courses on algebra or geometry. The material makes an excellent discovery project, especially for students with some background in…

  18. Rectification at graphene-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Hebard, Arthur

    2013-03-01

    It is now widely recognized that interface between graphene and many semiconductors forms Schottky barriers with rectifying properties. Our work in this area at the University of Florida began in 2009 with our discovery that bulk semimetal graphite when simply pressed against Si, GaAs and 4H-SiC semiconductor substrates readily formed Schottky barriers. Since graphite comprises Bernal-stacked layers of graphene, then the outermost layer, a single sheet of graphene, in contact with the semiconductor plays a major role in the formation of the Schottky barrier. In this talk we follow up on this early work and report on the unusual physics and promising technical applications associated with the formation of Schottky barriers at the interface of graphene and conventional semiconductors. Much of the phenomenology is similar to what is seen with graphite/semiconductor Schottky barriers but with the additional advantages that graphene is flexible, transparent and has a Fermi energy that can be more easily tuned either positively or negatively with respect to the neutrality point by electric fields or chemical doping. Our junctions are fabricated by mechanically transferring chemical vapor deposited graphene onto n-type Si, GaAs, 4H-SiC or GaN semiconductor substrates and takes advantage of the strong van der Waals attraction that is accompanied by charge transfer across the interface and the formation of a rectifying (Schottky) barrier. Using current-voltage (I-V), capacitance-voltage (C-V) and Raman measurements we find that thermionic emission theory in conjunction with the Schottky-Mott model within the context of bond-polarization theory provides a surprisingly good description of the electrical properties. We will discuss a number of applications including diode operation to temperatures as high as 550 K, hole doping and associated Fermi level shifts induced by overcoating the graphene with a transparent layer of polymer (TFSA), and demonstration of solar cells with

  19. Fibre ring cavity semiconductor laser

    SciTech Connect

    Duraev, V P; Medvedev, S V

    2013-10-31

    This paper presents a study of semiconductor lasers having a polarisation maintaining fibre ring cavity. We examine the operating principle and report main characteristics of a semiconductor ring laser, in particular in single- and multiple-frequency regimes, and discuss its application areas. (lasers)

  20. Process for producing chalcogenide semiconductors

    DOEpatents

    Noufi, Rommel; Chen, Yih-Wen

    1987-01-01

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.