Shifting the focus to practice quality improvement in radiation oncology.
Crozier, Cheryl; Erickson-Wittmann, Beth; Movsas, Benjamin; Owen, Jean; Khalid, Najma; Wilson, J Frank
2011-09-01
To demonstrate how the American College of Radiology, Quality Research in Radiation Oncology (QRRO) process survey database can serve as an evidence base for assessing quality of care in radiation oncology. QRRO has drawn a stratified random sample of radiation oncology facilities in the USA and invited those facilities to participate in a Process Survey. Information from a prior QRRO Facilities Survey has been used along with data collected under the current National Process Survey to calculate national averages and make statistically valid inferences for national process measures for selected cancers in which radiation therapy plays a major role. These measures affect outcomes important to patients and providers and measure quality of care. QRRO's survey data provides national benchmark data for numerous quality indicators. The Process Survey is "fully qualified" as a Practice Quality Improvement project by the American Board of Radiology under its Maintenance of Certification requirements for radiation oncology and radiation physics. © 2011 National Association for Healthcare Quality.
Ajmani, Gaurav S; Wang, Chi-Hsiung; Kim, Ki Wan; Howington, John A; Krantz, Seth B
2018-07-01
Very few studies have examined the quality of wedge resection in patients with non-small cell lung cancer. Using the National Cancer Database, we evaluated whether the quality of wedge resection affects overall survival in patients with early disease and how these outcomes compare with those of patients who receive stereotactic radiation. We identified 14,328 patients with cT1 to T2, N0, M0 disease treated with wedge resection (n = 10,032) or stereotactic radiation (n = 4296) from 2005 to 2013 and developed a subsample of propensity-matched wedge and radiation patients. Wedge quality was grouped as high (negative margins, >5 nodes), average (negative margins, ≤5 nodes), and poor (positive margins). Overall survival was compared between patients who received wedge resection of different quality and those who received radiation, adjusting for demographic and clinical variables. Among patients who underwent wedge resection, 94.6% had negative margins, 44.3% had 0 nodes examined, 17.1% had >5 examined, and 3.0% were nodally upstaged; 16.7% received a high-quality wedge, which was associated with a lower risk of death compared with average-quality resection (adjusted hazard ratio [aHR], 0.74; 95% confidence interval [CI], 0.67-0.82). Compared with stereotactic radiation, wedge patients with negative margins had significantly reduced hazard of death (>5 nodes: aHR, 0.50; 95% CI, 0.43-0.58; ≤5 nodes: aHR, 0.65; 95% CI, 0.60-0.70). There was no significant survival difference between margin-positive wedge and radiation. Lymph nodes examined and margins obtained are important quality metrics in wedge resection. A high-quality wedge appears to confer a significant survival advantage over lower-quality wedge and stereotactic radiation. A margin-positive wedge appears to offer no benefit compared with radiation. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Morsbach, Fabian; Gordic, Sonja; Desbiolles, Lotus; Husarik, Daniela; Frauenfelder, Thomas; Schmidt, Bernhard; Allmendinger, Thomas; Wildermuth, Simon; Alkadhi, Hatem; Leschka, Sebastian
2014-08-01
To evaluate image quality, maximal heart rate allowing for diagnostic imaging, and radiation dose of turbo high-pitch dual-source coronary computed tomographic angiography (CCTA). First, a cardiac motion phantom simulating heart rates (HRs) from 60-90 bpm in 5-bpm steps was examined on a third-generation dual-source 192-slice CT (prospective ECG-triggering, pitch 3.2; rotation time, 250 ms). Subjective image quality regarding the presence of motion artefacts was interpreted by two readers on a four-point scale (1, excellent; 4, non-diagnostic). Objective image quality was assessed by calculating distortion vectors. Thereafter, 20 consecutive patients (median, 50 years) undergoing clinically indicated CCTA were included. In the phantom study, image quality was rated diagnostic up to the HR75 bpm, with object distortion being 1 mm or less. Distortion increased above 1 mm at HR of 80-90 bpm. Patients had a mean HR of 66 bpm (47-78 bpm). Coronary segments were of diagnostic image quality for all patients with HR up to 73 bpm. Average effective radiation dose in patients was 0.6 ± 0.3 mSv. Our combined phantom and patient study indicates that CCTA with turbo high-pitch third-generation dual-source 192-slice CT can be performed at HR up to 75 bpm while maintaining diagnostic image quality, being associated with an average radiation dose of 0.6 mSv. • CCTA is feasible with the turbo high-pitch mode. • Turbo high-pitch CCTA provides diagnostic image quality up to 73 bpm. • The radiation dose of high-pitch CCTA is 0.6 mSv on average.
Endo, Akira; Sato, Tatsuhiko
2013-04-01
Absorbed doses, linear energy transfers (LETs) and quality factors of secondary charged particles in organs and tissues, generated via the interactions of the spontaneous fission neutrons from (252)Cf and (244)Pu within the human body, were studied using the Particle and Heavy Ion Transport Code System (PHITS) coupled with the ICRP Reference Phantom. Both the absorbed doses and the quality factors in target organs generally decrease with increasing distance from the source organ. The analysis of LET distributions of secondary charged particles led to the identification of the relationship between LET spectra and target-source organ locations. A comparison between human body-averaged mean quality factors and fluence-averaged radiation weighting factors showed that the current numerical conventions for the radiation weighting factors of neutrons, updated in ICRP103, and the quality factors for internal exposure are valid.
NASA Technical Reports Server (NTRS)
Tighe, R. J.; Shen, M. Y. H.
1984-01-01
The Nimbus 7 ERB MATRIX Tape is a computer program in which radiances and irradiances are converted into fluxes which are used to compute the basic scientific output parameters, emitted flux, albedo, and net radiation. They are spatially averaged and presented as time averages over one-day, six-day, and monthly periods. MATRIX data for the period November 16, 1978 through October 31, 1979 are presented. Described are the Earth Radiation Budget experiment, the Science Quality Control Report, Items checked by the MATRIX Science Quality Control Program, and Science Quality Control Data Analysis Report. Additional material from the detailed scientific quality control of the tapes which may be very useful to a user of the MATRIX tapes is included. Known errors and data problems and some suggestions on how to use the data for further climatologic and atmospheric physics studies are also discussed.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Konradi, A.; Atwell, W.; Golightly, M. J.; Cucinotta, F. A.; Wilson, J. W.; Petrov, V. M.; Tchernykh, I. V.; Shurshakov, V. A.; Lobakov, A. P.
1996-01-01
A tissue equivalent proportional counter designed to measure the linear energy transfer spectra (LET) in the range 0.2-1250 keV/micrometer was flown in the Kvant module on the Mir orbital station during September 1994. The spacecraft was in a 51.65 degrees inclination, elliptical (390 x 402 km) orbit. This is nearly the lower limit of its flight altitude. The total absorbed dose rate measured was 411.3 +/- 4.41 microGy/day with an average quality factor of 2.44. The galactic cosmic radiation (GCR) dose rate was 133.6 microGy/day with a quality factor of 3.35. The trapped radiation belt dose rate was 277.7 microGy/day with an average quality factor of 1.94. The peak rate through the South Atlantic Anomaly was approximately 12 microGy/min and nearly constant from one pass to another. A detailed comparison of the measured LET spectra has been made with radiation transport models. The GCR results are in good agreement with model calculations; however, this is not the case for radiation belt particles and again points to the need for improving the AP8 omni-directional trapped proton models.
Deviation Value for Conventional X-ray in Hospitals in South Sulawesi Province from 2014 to 2016
NASA Astrophysics Data System (ADS)
Bachtiar, Ilham; Abdullah, Bualkar; Tahir, Dahlan
2018-03-01
This paper describes the conventional X-ray machine parameters tested in the region of South Sulawesi from 2014 to 2016. The objective of this research is to know deviation of every parameter of conventional X-ray machine. The testing parameters were analyzed by using quantitative methods with participatory observational approach. Data collection was performed by testing the output of conventional X-ray plane using non-invasive x-ray multimeter. The test parameters include tube voltage (kV) accuracy, radiation output linearity, reproducibility and radiation beam value (HVL) quality. The results of the analysis show four conventional X-ray test parameters have varying deviation spans, where the tube voltage (kV) accuracy has an average value of 4.12%, the average radiation output linearity is 4.47% of the average reproducibility of 0.62% and the averaged of the radiation beam (HVL) is 3.00 mm.
Comfort and quality of life in patients with breast cancer undergoing radiation therapy.
Pehlivan, Seda; Kuzhan, Abdurrahman; Yildirim, Yasemin; Fadiloglu, Cicek
2016-01-01
Radiation therapy is generally applied after surgery for the treatment of breast cancer, which is among the most frequently observed types of cancer in females. Radiation therapy may have some negative effects on the quality of life due to various side effects such as changes in the skin, mucositis and fatigue. Our study was planned as a descriptive study, in order to examine the relationship between comfort and quality of life in breast cancer patients undergoing radiation therapy. This study involved 61 patients with breast cancer undergoing radiation therapy. Data were collected using "Patient Information Form", "Radiation Therapy Comfort Questionnaire" and "EORTC QLQ-BR23". The scales were applied twice, before the start and at the end of treatment. Data were evaluated via Wilcoxon test and Spearman correlation analyses. No statistically significant difference was determined between comfort and quality of life average score before and after radiotherapy (p>0.05). A positive relationship was determined between the pain and symptom quality of life (p<0.05). Although a positive relationship was determined between comfort score and the functional and general quality of life areas, a negative relationship was detected with the symptom quality of life (p<0.01). Radiation therapy applied to breast cancer patients did not affect comfort and quality of life, On the contrary, the quality of life of patients increased along with their comfort levels and that comfort levels decreased as the experienced symptoms increased.
Paediatric x-ray radiation dose reduction and image quality analysis.
Martin, L; Ruddlesden, R; Makepeace, C; Robinson, L; Mistry, T; Starritt, H
2013-09-01
Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%-55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children.
Gyssels, Elodie; Bohy, Pascale; Cornil, Arnaud; van Muylem, Alain; Howarth, Nigel; Gevenois, Pierre A; Tack, Denis
2016-01-01
The aim of the study was to compare radiation dose and image quality between the "average" and the "very strong" automatic exposure control (AEC) strength curves. Images reconstructed with filtered back-projection techniques and radiation dose data of unenhanced helical chest computed tomography (CT) examinations obtained at 2 hospitals (hospital A, hospital B) using the same scanner devices and acquisition protocols but different AEC strength curves were evaluated over a 3-month period. The selected AEC strength curve applied to "slim" patients (diameter <32 cm estimated from the attenuation automatically measured on the topogram) was "average" and "very strong" in hospital A and hospital B, respectively. Two radiologists with 13 and 24 years of experience scored the image quality of the lung parenchyma and the mediastinum on a 5-point scale. The patients' effective diameter, the delivered CT dose index volume, and dose-length products were recorded. A total of 410 patients were included. The average body mass index was 24.0 kg/m in hospital A and 24.8 kg/m in hospital B. There was no significant difference between hospitals with respect to age, sex ratio, weight, height, body mass index, effective diameters, and image quality scores for each radiologist (P ranging from 0.050 to 1.000). The mean CT dose index volume for the entire population was 2.0 mGy and was significantly lower in hospital B with the "very strong" AEC curve as compared with hospital A (-11%, P=0.001). The mean dose-length product delivered in this 70 kg-weight population was 68 mGy cm, corresponding to an effective dose of 0.95 mSv. Changing the AEC strength curve from "average" to "very strong" for slim patients maintains image quality and reduces the radiation dose to <1 mSv in routine chest CT examinations reconstructed with filtered back-projection techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohler, Racquel E.; Sheets, Nathan C.; Wheeler, Stephanie B.
2013-11-15
Purpose: To assess the cost-effectiveness of intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of head-and neck-cancer (HNC). Methods and Materials: We used a Markov model to simulate radiation therapy-induced xerostomia and dysphagia in a hypothetical cohort of 65-year-old HNC patients. Model input parameters were derived from PARSPORT (CRUK/03/005) patient-level trial data and quality-of-life and Medicare cost data from published literature. We calculated average incremental cost-effectiveness ratios (ICERs) from the US health care perspective as cost per quality-adjusted life-year (QALY) gained and compared our ICERs with current cost-effectiveness standards whereby treatment comparators less thanmore » $50,000 per QALY gained are considered cost-effective. Results: In the first 2 years after initial treatment, IMRT is not cost-effective compared with 3D-CRT, given an average ICER of $101,100 per QALY gained. However, over 15 years (remaining lifetime on the basis of average life expectancy of a 65-year-old), IMRT is more cost-effective at $34,523 per QALY gained. Conclusion: Although HNC patients receiving IMRT will likely experience reduced xerostomia and dysphagia symptoms, the small quality-of-life benefit associated with IMRT is not cost-effective in the short term but may be cost-effective over a patient's lifetime, assuming benefits persist over time and patients are healthy and likely to live for a sustained period. Additional data quantifying the long-term benefits of IMRT, however, are needed.« less
Comparisons of Integrated Radiation Transport Models with Microdosimetry Data in Spaceflight
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Nikjoo, H.; Kim, M. Y.; Hu, X.; Dicello, J. F.; Pisacane, V. L.
2006-01-01
Astronauts are exposed to galactic cosmic rays (GCR), trapped protons, and possible solar particle events (SPE) during spaceflight. For such complicated mixtures of radiation types and kinetic energies, tissue equivalent proportional counters (TEPC's) represent a simple time-dependent approach for radiation monitoring. Of interest in radiation protection is the average quality factor of a radiation field defined as a function of linear energy transfer, LET, Q(sub ave)(LET). However TEPC's measure the average quality factors as a function of lineal energy (y), Q(sub ave)(y) defined as the average energy deposition in a volume divided by the average chord length of the volume. Lineal energy, y deviates from LET due to energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector. Using integrated space radiation models that includes the transport code HZETRN/BRYNTRN, the quantum nuclear interaction model, QMSFRG, and results from Monte-Carlo track simulations of TEPC's response to ions, we consider comparisons of model calculations to TEPC results from NASA missions in low Earth orbit and make predictions for lunar and Mars missions. Good agreement between the model and measured spectra from past NASA missions is found. A finding of this work is that TEPC's values for trapped or solar protons of Q(sub ave)(y) range from 1.9-2.5, overestimating Q(sub ave)(LET), which ranges from 1.4-1.6 with both quantities increasing with shielding depth due to nuclear secondaries Comparisons for the complete GCR spectra show that Q(sub ave)(LET) for GCR is approximately 3.5-4.5, while TEPC's measure 2.9-3.4 for Q(sub ave)(y) with the GCR values decreasing with depth as heavy ions are absorbed in shielding material. Our results support the use of TEPC's for space radiation environmental monitoring when computational analysis is used for proper data interpretation.
NASA Astrophysics Data System (ADS)
Barufaldi, Bruno; Borges, Lucas R.; Bakic, Predrag R.; Vieira, Marcelo A. C.; Schiabel, Homero; Maidment, Andrew D. A.
2017-03-01
Automatic exposure control (AEC) is used in mammography to obtain acceptable radiation dose and adequate image quality regardless of breast thickness and composition. Although there are physics methods for assessing the AEC, it is not clear whether mammography systems operate with optimal dose and image quality in clinical practice. In this work, we propose the use of a normalized anisotropic quality index (NAQI), validated in previous studies, to evaluate the quality of mammograms acquired using AEC. The authors used a clinical dataset that consists of 561 patients and 1,046 mammograms (craniocaudal breast views). The results show that image quality is often maintained, even at various radiation levels (mean NAQI = 0.14 +/- 0.02). However, a more careful analysis of NAQI reveals that the average image quality decreases as breast thickness increases. The NAQI is reduced by 32% on average, when the breast thickness increases from 31 to 71 mm. NAQI also decreases with lower breast density. The variation in breast parenchyma alone cannot fully account for the decrease of NAQI with thickness. Examination of images shows that images of large, fatty breasts are often inadequately processed. This work shows that NAQI can be applied in clinical mammograms to assess mammographic image quality, and highlights the limitations of the automatic exposure control for some images.
Interpretation of TEPC Measurements in Space Flights for Radiation Monitoring
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Nikjoo, Hooshang; Dicello, John F.; Pisacane, Vincent; Cucinotta, Francis A.
2007-01-01
For the proper interpretation of radiation data measured in space, the results of integrated radiation transport models were compared with the tissue equivalent proportional counter (TEPC) measurements. TEPC is a simple, time-dependent approach to radiation monitoring for astronauts on board the International Space Station. Another and a newer approach to microdosimetry is the use of silicon-on-insulator (SOI) technology launched on the MidSTAR-1 mission in low Earth orbit (LEO). In the radiation protection practice, the average quality factor of a radiation field is defined as a function of linear energy transfer (LET), Qave(LET). However, TEPC measures the average quality factor as a function of the lineal energy y, Qave(y), defined as the average energy deposition in a volume divided by the average chord length of the volume. The deviation of y from LET is caused by energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector volume. The response distribution functions of the wall-less and walled TEPCs were calculated from Monte-Carlo track simulations. Using an integrated space radiation model (which includes the transport codes HZETRN and BRYNTRN, and the quantum nuclear interaction model QMSFRG) and the resultant response distribution functions from Monte-Carlo track simulations, we compared model calculations with the walled-TEPC measurements from NASA missions in LEO and made predictions for the lunar and the Mars missions. Good agreement was found for Qave(y) between the model and measured spectra from past NASA missions. The Qave(y) values for the trapped or the solar protons ranged from 1.9-2.5. This over-estimates the Qave(LET) values which ranged from 1.4-1.6. Both quantities increase with shield thickness due to nuclear fragmentation. The Qave(LET) for the complete GCR spectra was found to be 3.5-4.5, while flight TEPCs measured 2.9-3.4 for Qave(y). The GCR values are decreasing with the shield thickness. Our analysis of the measurements of TEPCs can be used for a proper interpretation of observed data of monitoring the space radiation environment.
Number of Radiation Oncologists in Korea, Adequate or Surplus?
2006-01-01
Purpose The purpose of this research is to discern and address the issues related to the radiation oncology manpower supply and its distribution. Materials and Methods The statistical data of the Annual Report of the Korea Central Cancer Registry (KCCR) from 1997 to 2002 and the Annual Report of the Korean Society of Radiation Oncology (KOSTRO) from 1997 to 2004 were used to predict the status of the human resources in 2015. The estimated demand and supply were calculated with the Microsoft Excel® program (Microsoft, Redmond, WA). Results The demand for radiation oncologists is estimated to be 161 in 2015 and about 4.9 radiation oncologists will be in demand annually. In contrast, an average of 15 new radiation oncologists will be supplied annually so that the accumulated surplus of radiation oncologists until 2015 is estimated to be 74.1. The main reason for the surplus comes from the discrepancy between the increased number of radiation therapy patients and the need for radiation oncologists. When there is an increase of 1,000 radiation therapy patients, the demand for radiation oncologists increases only by 2.4. This phenomenon is especially evident in the top 10 hospitals where the average number of radiation therapy patients per radiation oncologist is 341, which is 58% higher than the average number (215) of other 46 hospitals. Conclusion To prevent a surplus and to maintain the quality of management, the number of radiation therapy patients per radiation oncologist should be limited. Furthermore, coordinate control of the number of residency positions should be seriously considered. PMID:19771261
NASA Astrophysics Data System (ADS)
Passey, C. A.; Roy, D.; Savoie, L.; Malo, R.; Wilson, J.
No significant differences were observed in the net birth rate of kits/female between the 7 breeding groups. However, there was reduced incidence (P = 0.05) of kit deaths among the females receiving irradiated feed, and larger kit size (P < 0.0001) at birth particularly for the litter size of 5-8 kits. The second generation minks born to parents receiving feed irradiated to a planned dose of 1 kGy weighed on average about 2.5 % more, and their fur was on average about 1 ± 0.26 cm longer (12 % more males making the top length grade). Moreover, there was no effect of irradiated feed on fur quality. Irradiation of mink feed with subsequent frozen storage of the meat component improved the microbiological quality by decreasing the incidence of Pseudomonas sp. and Salmonella sp. Radiation pasteurization of mink feed (frozen meat to 1 kGy, and dry feed to 2 kGy or more) should therefore help improve feed utilization, keep the animals healthier, and reproducing better without affecting fur quality.
NASA Technical Reports Server (NTRS)
Sakaguchi, T.; Doke, T.; Hayashi, T.; Kikuchi, J.; Hasebe, N.; Kashiwagi, T.; Takashima, T.; Takahashi, K.; Nakano, T.; Nagaoka, S.;
1997-01-01
The real-time measurement of radiation environment was made with an improved real-time radiation monitoring device (RRMD)-II onboard Space Shuttle STS-79 (S/MM#4: 4th Shuttle MIR Mission, at an inclination angle of 51.6 degrees and an altitude of 250-400km) for 199 h during 17-25 September, 1996. The observation of the detector covered the linear energy transfer (LET) range of 3.5-6000 keV/micrometer. The Shuttle orbital profile in this mission was equivalent to that of the currently planned Space Station, and provided an opportunity to investigate variations in count rate and dose equivalent rate depending on altitude, longitude, and latitude in detail. Particle count rate and dose equivalent rate were mapped geographically during the mission. Based on the map of count rate, an analysis was made by dividing whole region into three regions: South Atlantic Anomaly (SAA) region, high latitude region and other regions. The averaged absorbed dose rate during the mission was 39.3 microGy/day for a LET range of 3.5-6000 keV/micrometer. The corresponding average dose equivalent rates during the mission are estimated to be 293 microSv/day with quality factors from International Commission on Radiological Protection (ICRP)-Pub. 60 and 270 microSv/day with quality factors from ICRP-Pub. 26. The effective quality factors for ICRP-Pub. 60 and 26 are 7.45 and 6.88, respectively. From the present data for particles of LET > 3.5keV/micrometer, we conclude that the average dose equivalent rate is dominated by the contribution of galactic cosmic ray (GCR) particles. The dose-detector depth dependence was also investigated.
NASA Astrophysics Data System (ADS)
Espinar, B.; Blanc, P.; Wald, L.; Hoyer-Klick, C.; Schroedter-Homscheidt, M.; Wanderer, T.
2012-04-01
Meteorological data measured by ground stations are often a key element in the development and validation of methods exploiting satellite images. These data are considered as a reference against which satellite-derived estimates are compared. Long-term radiation and meteorological measurements are available from a large number of measuring stations. However, close examination of the data often reveals a lack of quality, often for extended periods of time. This lack of quality has been the reason, in many cases, of the rejection of large amount of available data. The quality data must be checked before their use in order to guarantee the inputs for the methods used in modelling, monitoring, forecast, etc. To control their quality, data should be submitted to several conditions or tests. After this checking, data that are not flagged by any of the test is released as a plausible data. In this work, it has been performed a bibliographical research of quality control tests for the common meteorological variables (ambient temperature, relative humidity and wind speed) and for the usual solar radiometrical variables (horizontal global and diffuse components of the solar radiation and the beam normal component). The different tests have been grouped according to the variable and the average time period (sub-hourly, hourly, daily and monthly averages). The quality test may be classified as follows: • Range checks: test that verify values are within a specific range. There are two types of range checks, those based on extrema and those based on rare observations. • Step check: test aimed at detecting unrealistic jumps or stagnation in the time series. • Consistency checks: test that verify the relationship between two or more time series. The gathered quality tests are applicable for all latitudes as they have not been optimized regionally nor seasonably with the aim of being generic. They have been applied to ground measurements in several geographic locations, what result in the detection of some control tests that are no longer adequate, due to different reasons. After the modification of some test, based in our experience, a set of quality control tests is now presented, updated according to technology advances and classified. The presented set of quality tests allows radiation and meteorological data to be tested in order to know their plausibility to be used as inputs in theoretical or empirical methods for scientific research. The research leading to those results has partly receive funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 262892 (ENDORSE project).
Ionizing Radiation: The issue of radiation quality
NASA Astrophysics Data System (ADS)
Prise, Kevin; Schettino, Giuseppe
Types of Ionising radiations are differentiated from each other by fundamental characteristics of their energy deposition patterns when they interact with biological materials. At the level of the DNA these non-random patterns drive differences in the yields and distributions of DNA damage patterns and specifically the production of clustered damage or complex lesions. The complex radiation fields found in space bring significant challenges for developing a mechanistic understanding of radiation effects from the perspective of radiation quality as these consist of a diverse range of particle and energy types unique to the space environment. Linear energy transfer, energy deposited per unit track length in units of keV per micron, has long been used as a comparator for different types of radiation but has limitations in that it is an average value. Difference in primary core ionizations relative to secondary delta ray ranges vary significantly with particle mass and energy leading to complex interrelationships with damage production at the cellular level. At the cellular level a greater mechanistic understanding is necessary, linking energy deposition patterns to DNA damage patterns and cellular response, to build appropriate biophysical models that are predictive for different radiation qualities and mixed field exposures. Defined studies using monoenergetic beams delivered under controlled conditions are building quantitative data sets of both initial and long term changes in cells as a basis for a great mechanistic understanding of radiation quality effects of relevance to not only space exposures but clinical application of ion-beams.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Nikjoo, Hooshang; Dicello, John F.; Pisacane, Vincent; Cucinotta, Francis A.
2007-01-01
The purpose of this work is to test our theoretical model for the interpretation of radiation data measured in space. During the space missions astronauts are exposed to the complex field of radiation type and kinetic energies from galactic cosmic rays (GCR), trapped protons, and sometimes solar particle events (SPEs). The tissue equivalent proportional counter (TEPC) is a simple time-dependent approach for radiation monitoring for astronauts on board the International Space Station. Another and a newer approach to Microdosimetry is the use of silicon-on-insulator (SOI) technology launched on the MidSTAR-1 mission in low Earth orbit (LEO). In the radiation protection practice, the average quality factor of a radiation field is defined as a function of linear energy transfer (LET), Q(sub ave)(LET). However, TEPC measures the average quality factor as a function of the lineal energy y, Q(sub ave)(y), defined as the average energy deposition in a volume divided by the average chord length of the volume. Lineal energy, y, deviates from LET due to energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector volume. Monte Carlo track structure simulation was employed to obtain the response of a TEPC irradiated with charged particle for an equivalent site diameter of 1 micron of wall-less counter. The calculated data of the energy absorption in the wall-less counter were compiled for various y values for several ion types at various discrete projectile energy levels. For the simulation of TEPC response from the mixed radiation environments inside a spacecraft, such as, Space Shuttle and International Space Station, the complete microdosimetric TEPC response, f( y, E, Z), were calculated with the Monte Carlo theoretical results by using the first order Lagrangian interpolation for a monovariate function at a given y value (y = 0.1 keV/micron 5000 keV/micron) at any projectile energy level (E = 0.01 MeV/u to 50,000 MeV/u) of each specific radiation type (Z = 1 to 28). Because the anomalous response has been observed at large event sizes in the experiment due to the escape of energy out of sensitive volume by delta-rays and the entry of delta-rays from the high-density wall into the low-density gas-volume cavity, Monte Carlo simulation was also made for the response of a walled-TEPC with wall thickness 2 mm and density 1 g/cm(exp 3). The radius of cavity was set to 6.35 mm and a gas density 7.874 x 10(exp -5) g/cm(exp 3). The response of the walled- and the wall-less counters were compared. The average quality factor Q(sub ave)(y) for trapped protons on STS-89 demonstrated the good agreement between the model calculations and flight TEPC data as shown. Using an integrated space radiation model (this includes the transport codes HZETRN and BRYNTRN, the quantum nuclear interaction model QMSFRG) and the resultant response distribution functions of walled-TEPC from Monte-Carlo track simulations, we compared model calculations with walled-TEPC measurements from NASA missions in LEO and made predictions for the lunar and the Mars missions. The Q(sub ave)(y) values for the trapped or the solar protons ranged from 1.9-2.5. This over-estimates the Qave(LET) values which ranged from 1.4-1.6. Both quantities increase with shield thickness due to nuclear fragmentation. The Q(sub ave)(LET) for the complete GCR spectra was found to be 3.5-4.5, while flight TEPCs measured 2.9-3.4 for Q(sub ave)(y). The GCR values are decreasing with the shield thickness. Our analysis for a proper interpretation of data supports the use of TEPCs for monitoring space radiation environment.
Mermershtain, Wilmosh; Cohen, Yoram; Krutman, Yanai
2003-06-01
The aim of this study was to assess portal imaging for quality assurance of patient positioning in external beam radiotherapy. We present a retrospective study of the variability of patient position in the treatment of 34 prostate cancer patients who were treated with whole pelvic irradiation followed by arc therapy or boost field (Series I) and 25 patients treated by 'small' pelvic 4-field box technique (Series II). Weekly anteroposterior-posteranterior (AP-PA) and left-lateral portal images were compared to simulation films by using a fiducial point-pair registration technique based on the computer-assisted portal imaging quality assurance program PIPSpro, developed specifically for the verification of treatment positioning in radiation therapy. Series I consisted of 34 patients and 194 portal films (97 AP-PA and 97 left-lateral). Overirradiated (OA) and underirradiated (UA) areas were computed in terms of percentage of the reference field size. For the AP-PA portals, the average OA was 2.75% and average UA was 2.74%. For left-lateral portals, an average OA of 2.49% and UA of 2.78% were measured. Series II consisted of 25 patients and 194 portal films (98 AP-PA and 96 left-lateral). The average OA was 0.88% and average UA was 0.86% in AP-PA portals, and 1.03 and 0.82% for left-lateral portals, respectively. The accuracy of patient positioning in irradiation of prostate cancer in our institution is in the range of 2.69% for whole pelvic fields and 1.0% for small fields. We conclude that PIPSpro is an effective and useful tool for quality assurance in radiotherapy.
Oliver, C P; Butler, D J; Webb, D V
2012-03-01
The Australian radiation protection and nuclear safety agency (ARPANSA) has continuously provided a level 1 mailed thermoluminescence dosimetry audit service for megavoltage photons since 2007. The purpose of the audit is to provide an independent verification of the reference dose output of a radiotherapy linear accelerator in a clinical environment. Photon beam quality measurements can also be made as part of the audit in addition to the output measurements. The results of all audits performed between 2007 and 2010 are presented. The average of all reference beam output measurements calculated as a clinically stated dose divided by an ARPANSA measured dose is 0.9993. The results of all beam quality measurements calculated as a clinically stated quality divided by an ARPANSA measured quality is 1.0087. Since 2011 the provision of all auditing services has been transferred from the Ionizing Radiation Standards section to the Australian Clinical Dosimetry Service (ACDS) which is currently housed within ARPANSA.
High average-power 2 μm radiation generated by intracavity KTP OPO
NASA Astrophysics Data System (ADS)
He, Guangyuan; Guo, Jing; Jiao, Zhongxing; Wang, Biao
2015-09-01
A high average-power 2 μm laser with good beam quality based on an intracavity potassium titanium oxide phosphate (KTP) optical parametric oscillator (OPO) is demonstrated. A concave lens is used in the 1064 nm Nd:YAG pumped laser cavity to compensate for the thermal lensing of the laser rod. The cavity length of the KTP OPO is enlarged to improve the 2 μm beam quality. The maximum average output of the 2 μm laser is up to 18 W at 7 kHz with M 2 less than 6 and pulse width of 70 ns. The FWHM of the signal and idle lights are both less than 3 nm.
Comparison of Data Quality of NOAA's ISIS and SURFRAD Networks to NREL's SRRL-BMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderberg, M.; Sengupta, M.
2014-11-01
This report provides analyses of broadband solar radiometric data quality for the National Oceanic and Atmospheric Administration's Integrated Surface Irradiance Study and Surface Radiation Budget Network (SURFRAD) solar measurement networks. The data quality of these networks is compared to that of the National Renewable Energy Laboratory's Solar Radiation Research Laboratory Baseline Measurement System (SRRL-BMS) native data resolutions and hourly averages of the data from the years 2002 through 2013. This report describes the solar radiometric data quality testing and flagging procedures and the method used to determine and tabulate data quality statistics. Monthly data quality statistics for each network weremore » plotted by year against the statistics for the SRRL-BMS. Some of the plots are presented in the body of the report, but most are in the appendix. These plots indicate that the overall solar radiometric data quality of the SURFRAD network is superior to that of the Integrated Surface Irradiance Study network and can be comparable to SRRL-BMS.« less
Park, Jong Min; Park, So-Yeon; Chun, Minsoo; Kim, Sang-Tae
2017-08-01
To investigate and improve the domestic standard of radiation therapy in the Republic of Korea. On-site audits were performed for 13 institutions in the Republic of Korea. Six items were investigated by on-site visits of each radiation therapy institution, including collimator, gantry, and couch rotation isocenter check; coincidence between light and radiation fields; photon beam flatness and symmetry; electron beam flatness and symmetry; physical wedge transmission factors; and photon beam and electron beam outputs. The average deviations of mechanical collimator, gantry, and couch rotation isocenter were less than 1mm. Those of radiation isocenter were also less than 1mm. The average difference between light and radiation fields was 0.9±0.6mm for the field size of 20cm×20cm. The average values of flatness and symmetry of the photon beams were 2.9%±0.6% and 1.1%±0.7%, respectively. Those of electron beams were 2.5%±0.7% and 0.6%±1.0%, respectively. Every institutions showed wedge transmission factor deviations less than 2% except one institution. The output deviations of both photon and electron beams were less than ±3% for every institution. Through the on-site audit program, we could effectively detect an inappropriately operating linacs and provide some recommendations. The standard of radiation therapy in Korea is expected to improve through such on-site audits. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Wood, T J; Moore, C S; Stephens, A; Saunderson, J R; Beavis, A W
2015-09-01
Given the increasing use of computed tomography (CT) in the UK over the last 30 years, it is essential to ensure that all imaging protocols are optimised to keep radiation doses as low as reasonably practicable, consistent with the intended clinical task. However, the complexity of modern CT equipment can make this task difficult to achieve in practice. Recent results of local patient dose audits have shown discrepancies between two Philips CT scanners that use the DoseRight 2.0 automatic exposure control (AEC) system in the 'automatic' mode of operation. The use of this system can result in drifting dose and image quality performance over time as it is designed to evolve based on operator technique. The purpose of this study was to develop a practical technique for configuring examination protocols on four CT scanners that use the DoseRight 2.0 AEC system in the 'manual' mode of operation. This method used a uniform phantom to generate reference images which form the basis for how the AEC system calculates exposure factors for any given patient. The results of this study have demonstrated excellent agreement in the configuration of the CT scanners in terms of average patient dose and image quality when using this technique. This work highlights the importance of CT protocol harmonisation in a modern Radiology department to ensure both consistent image quality and radiation dose. Following this study, the average radiation dose for a range of CT examinations has been reduced without any negative impact on clinical image quality.
NASA Astrophysics Data System (ADS)
Sato, T.; Endo, A.; Niita, K.
2013-07-01
For the estimation of the radiation risk for astronauts, not only the organ absorbed doses but also their mean quality factors must be evaluated. Three functions have been proposed by different organizations for expressing the radiation quality, including the Q(L), Q(y), and QNASA(Z, E) relationships as defined in International Committee of Radiological Protection (ICRP) Publication 60, International Commission on Radiation Units and Measurements (ICRU) Report 40, and National Aeronautics and Space Administration (NASA) TP-2011-216155, respectively. The Q(L) relationship is the most simple and widely used for space dosimetry, but the use of the latter two functions enables consideration of the difference in the track structure of various charged particles during the risk estimation. Therefore, we calculated the mean quality factors in organs and tissues in ICRP/ICRU reference voxel phantoms for the isotropic exposure to various mono-energetic particles using the three Q-functions. The Particle and Heavy Ion Transport code System PHITS was employed to simulate the particle motions inside the phantoms. The effective dose equivalents and the phantom-averaged effective quality factors for the astronauts were then estimated from the calculated mean quality factors multiplied by the fluence-to-dose conversion coefficients and cosmic-ray fluxes inside a spacecraft. It was found from the calculations that QNASA generally gives the largest values for the phantom-averaged effective quality factors among the three Q-functions for neutron, proton, and lighter-ion irradiation, whereas Q(L) provides the largest values for heavier-ion irradiation. Overall, the introduction of QNASA instead of Q(L) or Q(y) in astronaut dosimetry results in the increase the effective dose equivalents because the majority of the doses are composed of the contributions from protons and neutrons, although this tendency may change by the calculation conditions.
SU-E-P-49: Evaluation of Image Quality and Radiation Dose of Various Unenhanced Head CT Protocols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L; Khan, M; Alapati, K
2015-06-15
Purpose: To evaluate the diagnostic value of various unenhanced head CT protocols and predicate acceptable radiation dose level for head CT exam. Methods: Our retrospective analysis included 3 groups, 20 patients per group, who underwent clinical routine unenhanced adult head CT examination. All exams were performed axially with 120 kVp. Three protocols, 380 mAs without iterative reconstruction and automAs, 340 mAs with iterative reconstruction without automAs, 340 mAs with iterative reconstruction and automAs, were applied on each group patients respectively. The images were reconstructed with H30, J30 for brain window and H60, J70 for bone window. Images acquired with threemore » protocols were randomized and blindly reviewed by three radiologists. A 5 point scale was used to rate each exam The percentage of exam score above 3 and average scores of each protocol were calculated for each reviewer and tissue types. Results: For protocols without automAs, the average scores of bone window with iterative reconstruction were higher than those without iterative reconstruction for each reviewer although the radiation dose was 10 percentage lower. 100 percentage exams were scored 3 or higher and the average scores were above 4 for both brain and bone reconstructions. The CTDIvols are 64.4 and 57.8 mGy of 380 and 340 mAs, respectively. With automAs, the radiation dose varied with head size, resulting in 47.5 mGy average CTDIvol between 39.5 and 56.5 mGy. 93 and 98 percentage exams were scored great than 3 for brain and bone windows, respectively. The diagnostic confidence level and image quality of exams with AutomAs were less than those without AutomAs for each reviewer. Conclusion: According to these results, the mAs was reduced to 300 with automAs OFF for head CT exam. The radiation dose was 20 percentage lower than the original protocol and the CTDIvol was reduced to 51.2 mGy.« less
Restoration of low-dose digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Borges, Lucas R.; Azzari, Lucio; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.; Foi, Alessandro
2018-06-01
In breast cancer screening, the radiation dose must be kept to the minimum necessary to achieve the desired diagnostic objective, thus minimizing risks associated with cancer induction. However, decreasing the radiation dose also degrades the image quality. In this work we restore digital breast tomosynthesis (DBT) projections acquired at low radiation doses with the goal of achieving a quality comparable to that obtained from current standard full-dose imaging protocols. A multiframe denoising algorithm was applied to low-dose projections, which are filtered jointly. Furthermore, a weighted average was used to inject a varying portion of the noisy signal back into the denoised one, in order to attain a signal-to-noise ratio comparable to that of standard full-dose projections. The entire restoration framework leverages a signal-dependent noise model with quantum gain which varies both upon the projection angle and on the pixel position. A clinical DBT system and a 3D anthropomorphic breast phantom were used to validate the proposed method, both on DBT projections and slices from the 3D reconstructed volume. The framework is shown to attain the standard full-dose image quality from data acquired at 50% lower radiation dose, whereas progressive loss of relevant details compromises the image quality if the dosage is further decreased.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Chappell, Lori J.; Wang, Minli; Kim, Myung-Hee
2011-01-01
The uncertainties in estimating the health risks from galactic cosmic rays (GCR) and solar particle events (SPE) are a major limitation to the length of space missions and the evaluation of potential risk mitigation approaches. NASA limits astronaut exposures to a 3% risk of exposure induced cancer death (REID), and protects against uncertainties in risks projections using an assessment of 95% confidence intervals after propagating the error from all model factors (environment and organ exposure, risk coefficients, dose-rate modifiers, and quality factors). Because there are potentially significant late mortality risks from diseases of the circulatory system and central nervous system (CNS) which are less well defined than cancer risks, the cancer REID limit is not necessarily conservative. In this report, we discuss estimates of lifetime risks from space radiation and new estimates of model uncertainties are described. The key updates to the NASA risk projection model are: 1) Revised values for low LET risk coefficients for tissue specific cancer incidence, with incidence rates transported to an average U.S. population to estimate the probability of Risk of Exposure Induced Cancer (REIC) and REID. 2) An analysis of smoking attributable cancer risks for never-smokers that shows significantly reduced lung cancer risk as well as overall cancer risks from radiation compared to risk estimated for the average U.S. population. 3) Derivation of track structure based quality functions depends on particle fluence, charge number, Z and kinetic energy, E. 4) The assignment of a smaller maximum in quality function for leukemia than for solid cancers. 5) The use of the ICRP tissue weights is shown to over-estimate cancer risks from SPEs by a factor of 2 or more. Summing cancer risks for each tissue is recommended as a more accurate approach to estimate SPE cancer risks. 6) Additional considerations on circulatory and CNS disease risks. Our analysis shows that an individual s history of smoking exposure has a larger impact on GCR risk estimates than amounts of radiation shielding or age at exposure (amongst adults). Risks for never-smokers compared to the average U.S. population are estimated to be reduced between 30% and 60% dependent on model assumptions. Lung cancer is the major contributor to the reduction for never-smokers, with additional contributions from circulatory diseases and cancers of the stomach, liver, bladder, oral cavity and esophagus, and leukemia. The relative contribution of CNS risks to the overall space radiation detriment is potentially increased for never-smokers such as most astronauts. Problems in estimating risks for former smokers and the influence of second-hand smoke are discussed. Compared to the LET approximation, the new track structure derived radiation quality functions lead to a reduced risk for relativistic energy particles and increased risks for intermediate energy particles. Revised estimates for the number of safe days in space at solar minimum for heavy shielding conditions are described for never-smokers and the average U.S. population. Results show that missions to near Earth asteroids (NEA) or Mars violate NASA's radiation safety standards with the current levels of uncertainties. Greater improvements in risk estimates for never-smokers are possible, and would be dependent on improved understanding of risk transfer models, and elucidating the role of space radiation on the various stages of disease formation (e.g. initiation, promotion, and progression).
NASA Technical Reports Server (NTRS)
Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.
2012-01-01
Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.
Anesthesia Practice in Pediatric Radiation Oncology: Mayo Clinic Arizona's Experience 2014-2016.
Khurmi, Narjeet; Patel, Perene; Koushik, Sarang; Daniels, Thomas; Kraus, Molly
2018-02-01
Understanding the goals of targeted radiation therapy in pediatrics is critical to developing high quality and safe anesthetic plans in this patient population. An ideal anesthetic plan includes allaying anxiety and achieving optimal immobilization, while ensuring rapid and efficient recovery. We conducted a retrospective chart review of children receiving anesthesia for radiation oncology procedures from 1/1/2014 to 7/31/2016. No anesthetics were excluded from the analysis. The electronic anesthesia records were analyzed for perianesthetic complications along with efficiency data. To compare our results to past and current data, we identified relevant medical literature covering a period from 1984-2017. A total of 997 anesthetic procedures were delivered in 58 unique patients. The vast majority of anesthetics were single-agent anesthesia with propofol. The average duration of radiation treatment was 13.24 min. The average duration of anesthesia was 37.81 min, and the average duration to meet discharge criteria in the recovery room was 29.50 min. There were seven instances of perianesthetic complications (0.7%) and no complications noted for the 80 CT simulations. Two of the seven complications occurred in patients receiving total body irradiation. The 5-year survival rate for pediatric cancers has improved greatly in part due to more effective and targeted radiation therapy. Providing an anesthetic with minimal complications is critical for successful daily radiation treatment. The results of our data analysis corroborate other contemporary studies showing minimal risk to patients undergoing radiation therapy under general anesthesia with propofol. Our data reveal that single-agent anesthesia with propofol administered by a dedicated anesthesia team is safe and efficient and should be considered for patients requiring multiple radiation treatments under anesthesia.
Famiglietti, Robin M; Norboge, Emily C; Boving, Valentine; Langabeer, James R; Buchholz, Thomas A; Mikhail, Osama
To meet demand for radiation oncology services and ensure patient-centered safe care, management in an academic radiation oncology department initiated quality improvement efforts using discrete-event simulation (DES). Although the long-term goal was testing and deploying solutions, the primary aim at the outset was characterizing and validating a computer simulation model of existing operations to identify targets for improvement. The adoption and validation of a DES model of processes and procedures affecting patient flow and satisfaction, employee experience, and efficiency were undertaken in 2012-2013. Multiple sources were tapped for data, including direct observation, equipment logs, timekeeping, and electronic health records. During their treatment visits, patients averaged 50.4 minutes in the treatment center, of which 38% was spent in the treatment room. Patients with appointments between 10 AM and 2 PM experienced the longest delays before entering the treatment room, and those in the clinic in the day's first and last hours, the shortest (<5 minutes). Despite staffed for 14.5 hours daily, the clinic registered only 20% of patients after 2:30 PM. Utilization of equipment averaged 58%, and utilization of staff, 56%. The DES modeling quantified operations, identifying evidence-based targets for next-phase remediation and providing data to justify initiatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Ghorabie, Fayez H.H.
2005-06-01
This paper describes measurements of external gamma radiation dose rate from terrestrial gamma-rays 1 m above the ground in three different mountainous locations in the western region of the Kingdom of Saudi Arabia. These locations are At-Taif city, Al-Hada village, and Ash-Shafa village. CaSO{sub 4}:Dy (TLD-900) thermoluminescent dosimeters were used for the detection of terrestrial gamma radiation at 40 different places in the three locations. The values of terrestrial gamma radiation dose rate measured ranged between 14 and 279 nGy h{sup -1} for the time interval from June 2001 to June 2002. The measured dose rate varied with the seasonmore » of the year. The average gamma radiation dose rates were 468, 541, and 781 {mu}Gy y{sup -1} for At-Taif city, Al-Hada village, and Ash-Shafa village, respectively. The corresponding average absorbed doses to the population of the three locations were 328, 379, and 547 {mu}Sv y{sup -1}, respectively. The quality factor of 0.7 Sv Gy{sup -1} was applied in the calculations of the absorbed dose to humans.« less
Cornfeld, Daniel; Israel, Gary; Detroy, Ezra; Bokhari, Jamal; Mojibian, Hamid
2011-03-01
The purpose of the study was to quantify the radiation dose reduction achieved when imaging the aorta using Adaptive Statistical Iterative Reconstruction (ASIR) and to determine if this has an effect on image quality. We retrospectively reviewed 31 CT angiography examinations of the thoracic and abdominal aorta performed with ASIR and 32 consecutive similar examinations performed without ASIR. Volume CT dose index (CTDI(vol)), dose-length product (DLP), aortic enhancement at multiple levels, aorta-to-muscle contrast-to-noise ratio at multiple levels, and subjective image quality were compared between the two groups. The mean CTDI(vol) and DLP were significantly lower for the studies performed with ASIR versus studies without ASIR (15.6 vs 21.5 mGy, with an average difference of 5.8 mGy [95% CI 2.3-9.4 mGy] and 818 vs 1075 mGy × cm with an average difference of -257 mGy × cm [54-460 mGy × cm], respectively). Aortic enhancement, aortic signal-to-noise ratio, and aortic to muscle contrast-to-noise ratio were not different between the two groups. Subjectively, one reviewer preferred the non-ASIR images and one found the images equivalent. Both reviewers believed the images were of diagnostic quality. A 29% decrease in CTDI(vol) and a 20% decrease in DLP were obtained in scans with ASIR compared with scans without ASIR, without a quantitative loss of image quality.
Choi, Won Hoon
2016-01-01
Radiotherapy, which is one of three major cancer treatment methods in modern medicine, has continued to develop for a long period, more than a century. The development of radiotherapy means allowing the administration of higher doses to tumors to improve tumor control rates while minimizing the radiation doses absorbed by surrounding normal tissues through which radiation passes for administration to tumors, thereby reducing or removing the incidence of side effects. Such development of radiotherapy was accomplished by the development of clinical radiation oncology, the development of computers and machine engineering, the introduction of cutting-edge imaging technology, a deepened understanding of biological studies on the effects of radiation on human bodies, and the development of quality assurance (QA) programs in medical physics. The development of radiotherapy over the last two decades has been quite dazzling. Due to continuous improvements in cancer treatment, the average five-year survival rate of cancer patients has been close to 70%. The increases in cancer patients’ complete cure rates and survival periods are making patients’ quality of life during or after treatment a vitally important issue. Radiotherapy is implemented in approximately 1/3 to 2/3s of all cancer patients; and has improved the quality of life of cancer patients in the present age. Over the last century, as a noninvasive treatment, radiotherapy has unceasingly enhanced complete tumor cure rates and the side effects of radiotherapy have been gradually decreasing, resulting in a tremendous improvement in the quality of life of cancer patients. PMID:26908993
Ding, Yao; Mohamed, Abdallah S R; Yang, Jinzhong; Colen, Rivka R; Frank, Steven J; Wang, Jihong; Wassal, Eslam Y; Wang, Wenjie; Kantor, Michael E; Balter, Peter A; Rosenthal, David I; Lai, Stephen Y; Hazle, John D; Fuller, Clifton D
2015-01-01
The purpose of this study was to investigate the potential of a head and neck magnetic resonance simulation and immobilization protocol on reducing motion-induced artifacts and improving positional variance for radiation therapy applications. Two groups (group 1, 17 patients; group 2, 14 patients) of patients with head and neck cancer were included under a prospective, institutional review board-approved protocol and signed informed consent. A 3.0-T magnetic resonance imaging (MRI) scanner was used for anatomic and dynamic contrast-enhanced acquisitions with standard diagnostic MRI setup for group 1 and radiation therapy immobilization devices for group 2 patients. The impact of magnetic resonance simulation/immobilization was evaluated qualitatively by 2 observers in terms of motion artifacts and positional reproducibility and quantitatively using 3-dimensional deformable registration to track intrascan maximum motion displacement of voxels inside 7 manually segmented regions of interest. The image quality of group 2 (29 examinations) was significantly better than that of group 1 (50 examinations) as rated by both observers in terms of motion minimization and imaging reproducibility (P < .0001). The greatest average maximum displacement was at the region of the larynx in the posterior direction for patients in group 1 (17 mm; standard deviation, 8.6 mm), whereas the smallest average maximum displacement was at the region of the posterior fossa in the superior direction for patients in group 2 (0.4 mm; standard deviation, 0.18 mm). Compared with group 1, maximum regional motion was reduced in group 2 patients in the oral cavity, floor of mouth, oropharynx, and larynx regions; however, the motion reduction reached statistical significance only in the regions of the oral cavity and floor of mouth (P < .0001). The image quality of head and neck MRI in terms of motion-related artifacts and positional reproducibility was greatly improved by use of radiation therapy immobilization devices. Consequently, immobilization with external and intraoral fixation in MRI examinations is required for radiation therapy application. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Wilkins, Ruth; Flegal, Farrah; Knoll, Joan H.M.; Rogan, Peter K.
2017-01-01
Accurate digital image analysis of abnormal microscopic structures relies on high quality images and on minimizing the rates of false positive (FP) and negative objects in images. Cytogenetic biodosimetry detects dicentric chromosomes (DCs) that arise from exposure to ionizing radiation, and determines radiation dose received based on DC frequency. Improvements in automated DC recognition increase the accuracy of dose estimates by reclassifying FP DCs as monocentric chromosomes or chromosome fragments. We also present image segmentation methods to rank high quality digital metaphase images and eliminate suboptimal metaphase cells. A set of chromosome morphology segmentation methods selectively filtered out FP DCs arising primarily from sister chromatid separation, chromosome fragmentation, and cellular debris. This reduced FPs by an average of 55% and was highly specific to these abnormal structures (≥97.7%) in three samples. Additional filters selectively removed images with incomplete, highly overlapped, or missing metaphase cells, or with poor overall chromosome morphologies that increased FP rates. Image selection is optimized and FP DCs are minimized by combining multiple feature based segmentation filters and a novel image sorting procedure based on the known distribution of chromosome lengths. Applying the same image segmentation filtering procedures to both calibration and test samples reduced the average dose estimation error from 0.4 Gy to <0.2 Gy, obviating the need to first manually review these images. This reliable and scalable solution enables batch processing for multiple samples of unknown dose, and meets current requirements for triage radiation biodosimetry of high quality metaphase cell preparations. PMID:29026522
Influence of tropospheric ozone control on exposure to ultraviolet radiation at the surface.
Madronich, Sasha; Wagner, Mark; Groth, Philip
2011-08-15
Improving air quality by reducing ambient ozone (O(3)) will likely lower O(3) concentrations throughout the troposphere and increase the transmission of solar ultraviolet (UV) radiation to the surface. The changes in surface UV radiation between two control scenarios (nominally 84 and 70 ppb O(3) for summer 2020) in the Eastern two-thirds of the contiguous U.S. are estimated, using tropospheric O(3) profiles calculated with a chemistry-transport model (Community Multi-Scale Air Quality, CMAQ) as inputs to a detailed model of the transfer of solar radiation through the atmosphere (tropospheric ultraviolet-visible, TUV) for clear skies, weighed for the wavelengths known to induce sunburn and skin cancer. Because the incremental emission controls differ according to region, strong spatial variability in O(3) reductions and in corresponding UV radiation increments is seen. The geographically averaged UV increase is 0.11 ± 0.03%, whereas the population-weighted increase is larger, 0.19 ± 0.06%, because O(3) reductions are greater in more densely populated regions. These relative increments in exposure are non-negligible given the already high incidence of UV-related health effects, but are lower by an order of magnitude or more than previous estimates.
Yoon, Haesung; Kim, Myung-Joon; Yoon, Choon-Sik; Choi, Jiin; Shin, Hyun Joo; Kim, Hyun Gi; Lee, Mi-Jung
2015-03-01
New CT reconstruction techniques may help reduce the burden of ionizing radiation. To quantify radiation dose reduction when performing pediatric chest CT using a low-dose protocol and 50% adaptive statistical iterative reconstruction (ASIR) compared with age/gender-matched chest CT using a conventional dose protocol and reconstructed with filtered back projection (control group) and to determine its effect on image quality in normal weight and overweight children. We retrospectively reviewed 40 pediatric chest CT (M:F = 21:19; range: 0.1-17 years) in both groups. Radiation dose was compared between the two groups using paired Student's t-test. Image quality including noise, sharpness, artifacts and diagnostic acceptability was subjectively assessed by three pediatric radiologists using a four-point scale (superior, average, suboptimal, unacceptable). Eight children in the ASIR group and seven in the control group were overweight. All radiation dose parameters were significantly lower in the ASIR group (P < 0.01) with a greater than 57% dose reduction in overweight children. Image noise was higher in the ASIR group in both normal weight and overweight children. Only one scan in the ASIR group (1/40, 2.5%) was rated as diagnostically suboptimal and there was no unacceptable study. In both normal weight and overweight children, the ASIR technique is associated with a greater than 57% mean dose reduction, without significantly impacting diagnostic image quality in pediatric chest CT examinations. However, CT scans in overweight children may have a greater noise level, even when using the ASIR technique.
Stein, Sherman C; Hurst, Robert W; Sonnad, Seema S
2008-01-01
We aimed to estimate the risks of radiation exposure from a single head CT scan to children of different ages. We constructed a multistate time-dependent Markov model to simulate the course of children exposed to a head CT. The relevant literature was reviewed for probabilities, which were used to calculate tumor types, latencies after exposure and outcomes in the model. Where multiple approximations of the same probability had been reported, meta-analytic techniques were employed to compute pooled estimates. The model was then used to calculate the effect of the radiation exposure on life expectancy and quality of life for children following head CT at different ages. The tumors likely to be induced by low-level cranial irradiation include thyroid carcinoma (47%), meningioma (34%) and glioma (19%). According to the model, a single head CT is likely to cause one of these tumors in 0.22% of 1-year-olds, 30% of whom will consequently die. The exposure will shorten the life expectancy of all exposed 1-year-olds by an average of 0.04 years and their expected quality of life by 0.02 quality-adjusted life years. The risks of radiation exposure diminish for older children. The model predicts that the effective radiation dose from a single head CT is capable of inducing a thyroid or brain tumor in an infant or child. These tumors can severely impact both quality of life and life expectancy. Care should be taken before ordering CT scans in children, particularly in infants and toddlers. Copyright 2008 S. Karger AG, Basel.
Multicentre dose audit for clinical trials of radiation therapy in Asia.
Mizuno, Hideyuki; Fukuda, Shigekazu; Fukumura, Akifumi; Nakamura, Yuzuru-Kutsutani; Jianping, Cao; Cho, Chul-Koo; Supriana, Nana; Dung, To Anh; Calaguas, Miriam Joy; Devi, C R Beena; Chansilpa, Yaowalak; Banu, Parvin Akhter; Riaz, Masooma; Esentayeva, Surya; Kato, Shingo; Karasawa, Kumiko; Tsujii, Hirohiko
2017-05-01
A dose audit of 16 facilities in 11 countries has been performed within the framework of the Forum for Nuclear Cooperation in Asia (FNCA) quality assurance program. The quality of radiation dosimetry varies because of the large variation in radiation therapy among the participating countries. One of the most important aspects of international multicentre clinical trials is uniformity of absolute dose between centres. The National Institute of Radiological Sciences (NIRS) in Japan has conducted a dose audit of participating countries since 2006 by using radiophotoluminescent glass dosimeters (RGDs). RGDs have been successfully applied to a domestic postal dose audit in Japan. The authors used the same audit system to perform a dose audit of the FNCA countries. The average and standard deviation of the relative deviation between the measured and intended dose among 46 beams was 0.4% and 1.5% (k = 1), respectively. This is an excellent level of uniformity for the multicountry data. However, of the 46 beams measured, a single beam exceeded the permitted tolerance level of ±5%. We investigated the cause for this and solved the problem. This event highlights the importance of external audits in radiation therapy. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Report of China's innovation increase and research growth in radiation oncology.
Zhu, Hongcheng; Yang, Xi; Qin, Qin; Bian, Kangqi; Zhang, Chi; Liu, Jia; Cheng, Hongyan; Sun, Xinchen
2014-06-01
To investigate the research status of radiation oncology in China through survey of literature in international radiation oncology journals and retrospectively compare the outputs of radiation oncology articles of the three major regions of China-Mainland (ML), Taiwan (TW) and Hong Kong (HK). Radiation oncology journals were selected from "oncology" and "radiology, nuclear & medical image" category from Science Citation Index Expand (SCIE). Articles from the ML, TW and HK were retrieved from MEDLINE. The number of total articles, clinical trials, case reports, impact factors (IF), institutions and articles published in each journals were conducted for quantity and quality comparisons. A total 818 articles from 13 radiation oncology journals were searched, of which 427 are from ML, 259 from TW, and 132 from HK. Ninety-seven clinical trials and 5 case reports are reported in China. Accumulated IF of articles from ML (1,417.11) was much higher than that of TW (1,003.093) and HK (544.711), while the average IF of articles from ML is the lowest. The total number of articles from China especially ML increased significantly in the last decade. The number of articles published from the ML has exceeded those from TW and HK. However, the quality of articles from TW and HK is better than that from ML.
Nieder, C
2012-10-01
Tight budgets and increasing competition for research funding pose challenges for highly specialized medical disciplines such as radiation oncology. Therefore, a systematic review was performed of successfully completed research that had a high impact on clinical practice. These data might be helpful when preparing new projects. Different measures of impact, visibility, and quality of published research are available, each with its own pros and cons. For this study, the article citation rate was chosen (minimum 15 citations per year on average). Highly cited German contributions to the fields of radiation oncology, biology, and physics (published between 1990 and 2010) were identified from the Scopus database. Between 1990 and 2010, 106 articles published in 44 scientific journals met the citation requirement. The median average of yearly citations was 21 (maximum 167, minimum 15). All articles with ≥ 40 citations per year were published between 2003 and 2009, consistent with the assumption that the citation rate gradually increases for up to 2 years after publication. Most citations per year were recorded for meta-analyses and randomized phase III trials, which typically were performed by collaborative groups. A large variety of clinical radiotherapy, biology, and physics topics achieved high numbers of citations. However, areas such as quality of life and side effects, palliative radiotherapy, and radiotherapy for nonmalignant disorders were underrepresented. Efforts to increase their visibility might be warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Numasaki, Hodaka; Shibuya, Hitoshi; Nishio, Masamichi
2012-01-01
Purpose: To evaluate the actual work environment of radiation oncologists (ROs) in Japan in terms of working pattern, patient load, and quality of cancer care based on the relative time spent on patient care. Methods and Materials: In 2008, the Japanese Society of Therapeutic Radiology and Oncology produced a questionnaire for a national structure survey of radiation oncology in 2007. Data for full-time ROs were crosschecked with data for part-time ROs by using their identification data. Data of 954 ROs were analyzed. The relative practice index for patients was calculated as the relative value of care time per patient onmore » the basis of Japanese Blue Book guidelines (200 patients per RO). Results: The working patterns of RO varied widely among facility categories. ROs working mainly at university hospitals treated 189.2 patients per year on average, with those working in university hospitals and their affiliated facilities treating 249.1 and those working in university hospitals only treating 144.0 patients per year on average. The corresponding data were 256.6 for cancer centers and 176.6 for other facilities. Geographically, the mean annual number of patients per RO per quarter was significantly associated with population size, varying from 143.1 to 203.4 (p < 0.0001). There were also significant differences in the average practice index for patients by ROs working mainly in university hospitals between those in main and affiliated facilities (1.07 vs 0.71: p < 0.0001). Conclusions: ROs working in university hospitals and their affiliated facilities treated more patients than the other ROs. In terms of patient care time only, the quality of cancer care in affiliated facilities might be worse than that in university hospitals. Under the current national medical system, working patterns of ROs of academic facilities in Japan appear to be problematic for fostering true specialization of radiation oncologists.« less
Numasaki, Hodaka; Shibuya, Hitoshi; Nishio, Masamichi; Ikeda, Hiroshi; Sekiguchi, Kenji; Kamikonya, Norihiko; Koizumi, Masahiko; Tago, Masao; Ando, Yutaka; Tsukamoto, Nobuhiro; Terahara, Atsuro; Nakamura, Katsumasa; Mitsumori, Michihide; Nishimura, Tetsuo; Hareyama, Masato; Teshima, Teruki
2012-01-01
To evaluate the actual work environment of radiation oncologists (ROs) in Japan in terms of working pattern, patient load, and quality of cancer care based on the relative time spent on patient care. In 2008, the Japanese Society of Therapeutic Radiology and Oncology produced a questionnaire for a national structure survey of radiation oncology in 2007. Data for full-time ROs were crosschecked with data for part-time ROs by using their identification data. Data of 954 ROs were analyzed. The relative practice index for patients was calculated as the relative value of care time per patient on the basis of Japanese Blue Book guidelines (200 patients per RO). The working patterns of RO varied widely among facility categories. ROs working mainly at university hospitals treated 189.2 patients per year on average, with those working in university hospitals and their affiliated facilities treating 249.1 and those working in university hospitals only treating 144.0 patients per year on average. The corresponding data were 256.6 for cancer centers and 176.6 for other facilities. Geographically, the mean annual number of patients per RO per quarter was significantly associated with population size, varying from 143.1 to 203.4 (p < 0.0001). There were also significant differences in the average practice index for patients by ROs working mainly in university hospitals between those in main and affiliated facilities (1.07 vs 0.71: p < 0.0001). ROs working in university hospitals and their affiliated facilities treated more patients than the other ROs. In terms of patient care time only, the quality of cancer care in affiliated facilities might be worse than that in university hospitals. Under the current national medical system, working patterns of ROs of academic facilities in Japan appear to be problematic for fostering true specialization of radiation oncologists. Copyright © 2012 Elsevier Inc. All rights reserved.
[Wireless digital radiography detectors in the emergency area: an efficacious solution].
Garrido Blázquez, M; Agulla Otero, M; Rodríguez Recio, F J; Torres Cabrera, R; Hernando González, I
2013-01-01
To evaluate the implementation of a flat panel digital radiolography (DR) system with WiFi technology in an emergency radiology area in which a computed radiography (CR) system was previously used. We analyzed aspects related to image quality, radiation dose, workflow, and ergonomics. We analyzed the results obtained with the CR and WiFi DR systems related with the quality of images analyzed in images obtained using a phantom and after radiologists' evaluation of radiological images obtained in real patients. We also analyzed the time required for image acquisition and the workflow with the two technological systems. Finally, we analyzed the data related to the dose of radiation in patients before and after the implementation of the new equipment. Image quality improved in both the tests carried out with a phantom and in radiological images obtained in patients, which increased from 3 to 4.5 on a 5-point scale. The average time required for image acquisition decreased by 25 seconds per image. The flat panel required less radiation to be delivered in practically all the techniques carried out using automatic dosimetry, although statistically significant differences were found in only some of the techniques (chest, thoracic spine, and lumbar spine). Implementing the WiFi DR system has brought benefits. Image quality has improved and the dose of radiation to patients has decreased. The new system also has advantages in terms of functionality, ergonomics, and performance. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Jeon, P.-H.; Lee, C.-L.; Kim, D.-H.; Lee, Y.-J.; Jeon, S.-S.; Kim, H.-J.
2014-03-01
Multi-detector computed tomography (MDCT) can be used to easily and rapidly perform numerous acquisitions, possibly leading to a marked increase in the radiation dose to individual patients. Technical options dedicated to automatically adjusting the acquisition parameters according to the patient's size are of specific interest in pediatric radiology. A constant tube potential reduction can be achieved for adults and children, while maintaining a constant detector energy fluence. To evaluate radiation dose, the weighted CT dose index (CTDIw) was calculated based on the CT dose index (CTDI) measured using an ion chamber, and image noise and image contrast were measured from a scanned image to evaluate image quality. The dose-weighted contrast-to-noise ratio (CNRD) was calculated from the radiation dose, image noise, and image contrast measured from a scanned image. The noise derivative (ND) is a quality index for dose efficiency. X-ray spectra with tube voltages ranging from 80 to 140 kVp were used to compute the average photon energy. Image contrast and the corresponding contrast-to-noise ratio (CNR) were determined for lesions of soft tissue, muscle, bone, and iodine relative to a uniform water background, as the iodine contrast increases at lower energy (i.e., k-edge of iodine is 33 keV closer to the beam energy) using mixed water-iodine contrast normalization (water 0, iodine 25, 100, 200, and 1000 HU, respectively). The proposed values correspond to high quality images and can be reduced if only high-contrast organs are assessed. The potential benefit of lowering the tube voltage is an improved CNRD, resulting in a lower radiation dose and optimization of image quality. Adjusting the tube potential in abdominal CT would be useful in current pediatric radiography, where the choice of X-ray techniques generally takes into account the size of the patient as well as the need to balance the conflicting requirements of diagnostic image quality and radiation dose optimization.
GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation
Jiang, Bo; Liang, Shunlin; Ma, Han; ...
2016-03-09
Mapping surface all-wave net radiation (R n) is critically needed for various applications. Several existing R n products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime R n product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS R n product based on high-quality in situ measurementsmore » in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm -2, and an average bias of 17.59 Wm -2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS R n product is satisfactory. The GLASS R n product from 2000 to the present is operational and freely available to the public.« less
GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Bo; Liang, Shunlin; Ma, Han
Mapping surface all-wave net radiation (R n) is critically needed for various applications. Several existing R n products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime R n product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS R n product based on high-quality in situ measurementsmore » in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm -2, and an average bias of 17.59 Wm -2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS R n product is satisfactory. The GLASS R n product from 2000 to the present is operational and freely available to the public.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menczer, L.F.
A study of 41 x-ray machines in 31 private dental offices in the Greater Hartford area showed that every x-ray unit permitted gonadal radiation exposure, ranging from 8 to 88 Mr. With few exceptions, the timing devices on all units were inaccurate by as much as 1/2 sec. About 20% of the units needed some mechanical repair, and 7 units demonstrated excessive lealcage radiation. In 50% of the dental offices, x-ray film was purchased on a cost basis rather than on a quality basis. The average length of exposure per film ranged from 3/4 to 4 sec; the usual exposuremore » was from 12/4 to 21/4 sec. No x-ray unit was on an independent electrical supply. Timer cords were usually no more than 5 ft long and did not permit the operator to get into a more protected position when exposing dental roentgenograms. In several instances the x-ray unit was close to business offices or to treatment rooms. The attitude of the average dentist in the study toward the potential hazards of x-ray radiation to his office personnel and patients was poor or showed lack of concern. Recommendations for reduction of gonadal radiation exposure are given. (TCO)« less
Analysis of the solar radiation data for Beer Sheva, Israel, and its environs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudish, A.I.; Ianetz, A.
The solar radiation climate of Beer Sheva, Israel, is reported upon in detail. The database utilized in this analysis consisted of global radiation on a horizontal surface, normal incidence beam radiation, and global radiation on a south-facing surface tilted at 40{degree}. Monthly-average hourly and daily values are reported for each of these three types of measured radiations, together with the calculated monthly-average daily values for the components of the global radiation, viz. the horizontal beam and diffuse radiations. The monthly-average hourly and daily clearness index values have also been calculated and analyzed. Monthly-average daily frequency distributions of the clearness indexmore » values are reported for each month. The solar radiation climate of Beer Sheva has also been compared to those reported for a number of countries in this region. The annual-average daily global radiation incident on a horizontal surface is 18.91 MG/m{sup 2} and that for normal incidence beam radiation is 21.17 MG/m{sup 2}. The annual-average daily fraction of the horizontal global radiation that is beam is 0.72. The annual-average daily value for the clearness index is 0.587 and the average frequency of clear days annually is 58.6%. The authors conclude, based upon the above analysis, that Beer Sheva and its environs are characterized by relatively high, average-daily irradiation rates, both global and beam, and a relatively high frequency of clear days.« less
den Boer, A; de Feyter, P J; Hummel, W A; Keane, D; Roelandt, J R
1994-06-01
Radiographic technology plays an integral role in interventional cardiology. The number of interventions continues to increase, and the associated radiation exposure to patients and personnel is of major concern. This study was undertaken to determine whether a newly developed x-ray tube deploying grid-switched pulsed fluoroscopy and extra beam filtering can achieve a reduction in radiation exposure while maintaining fluoroscopic images of high quality. Three fluoroscopic techniques were compared: continuous fluoroscopy, pulsed fluoroscopy, and a newly developed high-output pulsed fluoroscopy with extra filtering. To ascertain differences in the quality of images and to determine differences in patient entrance and investigator radiation exposure, the radiated volume curve was measured to determine the required high voltage levels (kVpeak) for different object sizes for each fluoroscopic mode. The fluoroscopic data of 124 patient procedures were combined. The data were analyzed for radiographic projections, image intensifier field size, and x-ray tube kilovoltage levels (kVpeak). On the basis of this analysis, a reference procedure was constructed. The reference procedure was tested on a phantom or dummy patient by all three fluoroscopic modes. The phantom was so designed that the kilovoltage requirements for each projection were comparable to those needed for the average patient. Radiation exposure of the operator and patient was measured during each mode. The patient entrance dose was measured in air, and the operator dose was measured by 18 dosimeters on a dummy operator. Pulsed compared with continuous fluoroscopy could be performed with improved image quality at lower kilovoltages. The patient entrance dose was reduced by 21% and the operator dose by 54%. High-output pulsed fluoroscopy with extra beam filtering compared with continuous fluoroscopy improved the image quality, lowered the kilovoltage requirements, and reduced the patient entrance dose by 55% and the operator dose by 69%. High-output pulsed fluoroscopy with a grid-switched tube and extra filtering improves the image quality and significantly reduces both the operator dose and patient dose.
Pan, Yu-Ning; Li, Ai-Jing; Chen, Xiao-Min; Wang, Jian; Ren, Da-Wei; Huang, Qiu-Li
2016-04-01
Using lower tube voltage can reduce the exposure to radiation and the dose of contrast agent. However, lower tube voltage is often linked to more noise and poor image quality, which create a need for more effective technology to resolve this problem. To explore the feasibility of coronary computed tomographic angiography (CCTA) in patients with obesity at low tube voltage (100 kV) and low contrast agent concentration (270 mg/mL) using iterative reconstruction. A total of 48 patients with body mass index greater than 30 kg/m(2) were included and randomly divided into two groups. Group A received a traditional protocol (iopromide 370 mg/mL + 120 kV); group B received a protocol with low tube voltage (100 kV), low contrast agent concentration (270 mg/mL), and iterative reconstruction. The effective dose (ED), average attenuation values, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), the figure of merit (FOM), image quality scores, and the total iodine intake were compared. No significant differences in average CT attenuations, SNR, CNR, and subjective scores were noticed between the two groups (P > 0.05), whereas the FOM of group B was significantly higher than that of group A. Effective radiation dose, total iodine, and iodine injection rate in group B were lower than those of group A (P <0.01). In patients with obesity, isotonic contrast agent with low iodine concentration and low-dose CCTA were feasible. Substantial reduction in radiation dose and the iodine intake could be achieved without compromising the image quality. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sreenivasulu, Tupakula; Bhowmick, Kaustav; Samad, Shafeek A.; Yadunath, Thamerassery Illam R.; Badrinarayana, Tarimala; Hegde, Gopalkrishna; Srinivas, Talabattula
2018-04-01
A micro/nanofabrication feasible compact photonic crystal (PC) ring-resonator-based channel drop filter has been designed and analyzed for operation in C and L bands of communication window. The four-channel demultiplexer consists of ring resonators of holes in two-dimensional PC slab. The proposed assembly design of dense wavelength division multiplexing setup is shown to achieve optimal quality factor, without altering the lattice parameters or resonator size or inclusion of scattering holes. Transmission characteristics are analyzed using the three-dimensional finite-difference time-domain simulation approach. The radiation loss of the ring resonator was minimized by forced cancelation of radiation fields by fine-tuning the air holes inside the ring resonator. An average cross talk of -34 dB has been achieved between the adjacent channels maintaining an average quality factor of 5000. Demultiplexing is achieved by engineering only the air holes inside the ring, which makes it a simple and tolerant design from the fabrication perspective. Also, the device footprint of 500 μm2 on silicon on insulator platform makes it easy to fabricate the device using e-beam lithography technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malkoske, Kyle; Nielsen, Michelle; Brown, Erika
A close partnership between the Canadian Partnership for Quality Radiotherapy (CPQR) and the Canadian Organization of Medical Physicist’s (COMP) Quality Assurance and Radiation Safety Advisory Committee (QARSAC) has resulted in the development of a suite of Technical Quality Control (TQC) Guidelines for radiation treatment equipment, that outline specific performance objectives and criteria that equipment should meet in order to assure an acceptable level of radiation treatment quality. The framework includes consolidation of existing guidelines and/or literature by expert reviewers, structured stages of public review, external field-testing and ratification by COMP. The adopted framework for the development and maintenance of themore » TQCs ensures the guidelines incorporate input from the medical physics community during development, measures the workload required to perform the QC tests outlined in each TQC, and remain relevant (i.e. “living documents”) through subsequent planned reviews and updates. This presentation will show the Multi-Leaf Linear Accelerator document as an example of how feedback and cross-national work to achieve a robust guidance document. During field-testing, each technology was tested at multiple centres in a variety of clinic environments. As part of the defined feedback, workload data was captured. This lead to average time associated with testing as defined in each TQC document. As a result, for a medium-sized centre comprising 6 linear accelerators and a comprehensive brachytherapy program, we evaluate the physics workload to 1.5 full-time equivalent physicist per year to complete all QC tests listed in this suite.« less
Dosimetric measurements and comparison studies in digital imaging system
NASA Astrophysics Data System (ADS)
Jung, Ji-Young; Kim, Hee-Joung; Lee, Chang-Lae; Cho, Hyo-Min; Nam, Sora
2008-03-01
Number of radiologic exams using digital imaging systems has rapidly increased with advanced imaging technologies. However, it has not been paid attention to the radiation dose in clinical situations. It was the motivation to study radiation dosimetry in the DR system. The objective of this study was to measure beam quality and patient's dose using DR system and to compare them to both IEC standard and IAEA guidelines. The measured average dose for chest and abdomen was 1.376 mGy and 9.501 mGy, respectively, compared to 0.4 mGy and 10.0 mGy in IAEA guidelines. The results also indicated that the DR system has a lower radiation beam quality than that of the IEC standard. The results showed that the patients may be exposed higher radiation for chest exams and lower radiation for abdomen exams using DR system. IAEA Guidelines were prepared based on western people which may be different weight and height for patients compared them to Korean. In conclusion, a new guideline for acceptable DR dosimetry for Korean patients may need to be developed with further studies for large populations. We believe that this research greatly help to introduce the importance of the dosimetry in diagnostic radiology in Korea. And, a development of database for dosimetry in diagnostic radiology will become an opportunity of making aware of radiation safety of medical examination to patient.
Multicentre dose audit for clinical trials of radiation therapy in Asia
Fukuda, Shigekazu; Fukumura, Akifumi; Nakamura, Yuzuru-Kutsutani; Jianping, Cao; Cho, Chul-Koo; Supriana, Nana; Dung, To Anh; Calaguas, Miriam Joy; Devi, C.R. Beena; Chansilpa, Yaowalak; Banu, Parvin Akhter; Riaz, Masooma; Esentayeva, Surya; Kato, Shingo; Karasawa, Kumiko; Tsujii, Hirohiko
2017-01-01
Abstract A dose audit of 16 facilities in 11 countries has been performed within the framework of the Forum for Nuclear Cooperation in Asia (FNCA) quality assurance program. The quality of radiation dosimetry varies because of the large variation in radiation therapy among the participating countries. One of the most important aspects of international multicentre clinical trials is uniformity of absolute dose between centres. The National Institute of Radiological Sciences (NIRS) in Japan has conducted a dose audit of participating countries since 2006 by using radiophotoluminescent glass dosimeters (RGDs). RGDs have been successfully applied to a domestic postal dose audit in Japan. The authors used the same audit system to perform a dose audit of the FNCA countries. The average and standard deviation of the relative deviation between the measured and intended dose among 46 beams was 0.4% and 1.5% (k = 1), respectively. This is an excellent level of uniformity for the multicountry data. However, of the 46 beams measured, a single beam exceeded the permitted tolerance level of ±5%. We investigated the cause for this and solved the problem. This event highlights the importance of external audits in radiation therapy. PMID:27864507
Helical prospective ECG-gating in cardiac computed tomography: radiation dose and image quality.
DeFrance, Tony; Dubois, Eric; Gebow, Dan; Ramirez, Alex; Wolf, Florian; Feuchtner, Gudrun M
2010-01-01
Helical prospective ECG-gating (pECG) may reduce radiation dose while maintaining the advantages of helical image acquisition for coronary computed tomography angiography (CCTA). Aim of this study was to evaluate helical pECG-gating in CCTA in regards to radiation dose and image quality. 86 patients undergoing 64-multislice CCTA were enrolled. pECG-gating was performed in patients with regular heart rates (HR) < 65 bpm; with the gating window set at 70-85% of the cardiac cycle. All patients received oral and some received additional IV beta-blockers to achieve HR < 65 bpm. In patients with higher or irregular HR, or for functional evaluation, retrospective ECG-gating (rECG) was performed. The average X-ray dose was estimated from the dose length product. Each arterial segment (modified AHA/ACC 17-segment-model) was evaluated on a 4-point image quality scale (4 = excellent; 3 = good, mild artefact; 2 = acceptable, some artefact, 1 = uninterpretable). pECG-gating was applied in 57 patients, rECG-gating in 29 patients. There was no difference in age, gender, body mass index, scan length or tube output settings between both groups. HR in the pECG-group was 54.7 bpm (range, 43-64). The effective radiation dose was significantly lower for patients scanned with pECG-gating with mean 6.9 mSv +/- 1.9 (range, 2.9-10.7) compared to rECG with 16.9 mSv +/- 4.1 (P < 0.001), resulting in a mean dose reduction of 59.2%. For pECG-gating, out of 969 coronary segments, 99.3% were interpretable. Image quality was excellent in 90.2%, good in 7.8%, acceptable in 1.3% and non-interpretable in 0.7% (n = 7 segments). For patients with steady heart rates <65 bpm, helical prospective ECG-gating can significantly lower the radiation dose while maintaining high image quality.
Monitoring radiation use in cardiac fluoroscopy imaging procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Nathaniel T.; Steiner, Stefan H.; Smith, Ian R.
2011-01-15
Purpose: Timely identification of systematic changes in radiation delivery of an imaging system can lead to a reduction in risk for the patients involved. However, existing quality assurance programs involving the routine testing of equipment performance using phantoms are limited in their ability to effectively carry out this task. To address this issue, the authors propose the implementation of an ongoing monitoring process that utilizes procedural data to identify unexpected large or small radiation exposures for individual patients, as well as to detect persistent changes in the radiation output of imaging platforms. Methods: Data used in this study were obtainedmore » from records routinely collected during procedures performed in the cardiac catheterization imaging facility at St. Andrew's War Memorial Hospital, Brisbane, Australia, over the period January 2008-March 2010. A two stage monitoring process employing individual and exponentially weighted moving average (EWMA) control charts was developed and used to identify unexpectedly high or low radiation exposure levels for individual patients, as well as detect persistent changes in the radiation output delivered by the imaging systems. To increase sensitivity of the charts, we account for variation in dose area product (DAP) values due to other measured factors (patient weight, fluoroscopy time, and digital acquisition frame count) using multiple linear regression. Control charts are then constructed using the residual values from this linear regression. The proposed monitoring process was evaluated using simulation to model the performance of the process under known conditions. Results: Retrospective application of this technique to actual clinical data identified a number of cases in which the DAP result could be considered unexpected. Most of these, upon review, were attributed to data entry errors. The charts monitoring the overall system radiation output trends demonstrated changes in equipment performance associated with relocation of the equipment to a new department. When tested under simulated conditions, the EWMA chart was capable of detecting a sustained 15% increase in average radiation output within 60 cases (<1 month of operation), while a 33% increase would be signaled within 20 cases. Conclusions: This technique offers a valuable enhancement to existing quality assurance programs in radiology that rely upon the testing of equipment radiation output at discrete time frames to ensure performance security.« less
White, Shane A; Reniers, Brigitte; de Jong, Evelyn E C; Rusch, Thomas; Verhaegen, Frank
2016-01-07
Electronic brachytherapy sources use low energy photons to treat the tumor bed during or after breast-conserving surgery. The relative biological effectiveness of two electronic brachytherapy sources was explored to determine if spectral differences due to source design influenced radiation quality and if radiation quality decreased with distance in the breast. The RBE was calculated through the number of DNA double strand breaks (RBEDSB) using the Monte Carlo damage simulator (MCDS) in combination with other Monte Carlo electron/photon spectrum calculations. 50kVp photons from the Intrabeam (Carl Zeiss Surgical) and Axxent (Xoft) through 40-mm spherical applicators were simulated to account for applicator and tissue attenuation in a variety of breast tissue compositions. 40kVp Axxent photons were also simulated. Secondary electrons (known to be responsible for most DNA damage) spectra at different distance were inputted into MCDS to calculate the RBEDSB. All RBEDSB used a cobalt-60 reference. RBEDSB data was combined with corresponding average photon spectrum energy for the Axxent and applied to model-based average photon energy distributions to produce an RBEDSB map of an accelerated partial breast irradiation (APBI) patient. Both Axxent and Intrabeam 50kVp spectra were shown to have a comparable RBEDSB of between 1.4 and 1.6 at all distances in spite of progressive beam hardening. The Axxent 40kVp also demonstrated a similar RBEDSB at distances. Most RBEDSB variability was dependent on the tissue type as was seen in rib (RBEDSB ≈ 1.4), gland (≈1.55), adipose (≈1.59), skin (≈1.52) and lung (≈1.50). RBEDSB variability between both sources was within 2%. A correlation was shown between RBEDSB and average photon energy and used to produce an RBEDSB map of a dose distribution in an APBI patient dataset. Radiation quality is very similar between electronic brachytherapy sources studied. No significant reductions in RBEDSB were observed with increasing distance from the source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milickovic, Natasa; Mavroidis, Panayiotis; Tselis, Nikolaos
2011-09-15
Purpose: Modern HDR brachytherapy treatment for prostate cancer based on the 3D ultrasound (U/S) plays increasingly important role. The purpose of this study is to investigate possible patient movement and anatomy alteration between the clinical image set acquisition, made after the needle implantation, and the patient irradiation and their influence on the quality of treatment. Methods: The authors used 3D U/S image sets and the corresponding treatment plans based on a 4D-treatment planning procedure: plans of 25 patients are obtained right after the needle implantation (clinical plan is based on this 3D image set) and just before and after themore » treatment delivery. The authors notice the slight decrease of treatment quality with increase of time gap between the clinical image set acquisition and the patient irradiation. 4D analysis of dose-volume-histograms (DVHs) for prostate: CTV1 = PTV, and urethra, rectum, and bladder as organs at risk (OARs) and conformity index (COIN) is presented, demonstrating the effect of prostate, OARs, and needles displacement. Results: The authors show that in the case that the patient body movement/anatomy alteration takes place, this results in modification of DVHs and radiobiological parameters, hence the plan quality. The observed average displacement of needles (1 mm) and of prostate (0.57 mm) is quite small as compared with the average displacement noted in several other reports [A. A. Martinez et al., Int. J. Radiat. Oncol., Biol., Phys. 49(1), 61-69 (2001); S. J. Damore et al., Int. J. Radiat. Oncol., Biol., Phys. 46(5), 1205-1211 (2000); P. J. Hoskin et al., Radiotherm. Oncol. 68(3), 285-288 (2003); E. Mullokandov et al., Int. J. Radiat. Oncol., Biol., Phys. 58(4), 1063-1071 (2004)] in the literature. Conclusions: Although the decrease of quality of dosimetric and radiobiological parameters occurs, this does not cause clinically unacceptable changes to the 3D dose distribution, according to our clinical protocol.« less
Wallace, Adam N; Vyhmeister, Ross; Bagade, Swapnil; Chatterjee, Arindam; Hicks, Brandon; Ramirez-Giraldo, Juan Carlos; McKinstry, Robert C
2015-06-01
Cerebrospinal fluid shunts are primarily used for the treatment of hydrocephalus. Shunt complications may necessitate multiple non-contrast head CT scans resulting in potentially high levels of radiation dose starting at an early age. A new head CT protocol using automatic exposure control and automated tube potential selection has been implemented at our institution to reduce radiation exposure. The purpose of this study was to evaluate the reduction in radiation dose achieved by this protocol compared with a protocol with fixed parameters. A retrospective sample of 60 non-contrast head CT scans assessing for cerebrospinal fluid shunt malfunction was identified, 30 of which were performed with each protocol. The radiation doses of the two protocols were compared using the volume CT dose index and dose length product. The diagnostic acceptability and quality of each scan were evaluated by three independent readers. The new protocol lowered the average volume CT dose index from 15.2 to 9.2 mGy representing a 39 % reduction (P < 0.01; 95 % CI 35-44 %) and lowered the dose length product from 259.5 to 151.2 mGy/cm representing a 42 % reduction (P < 0.01; 95 % CI 34-50 %). The new protocol produced diagnostically acceptable scans with comparable image quality to the fixed parameter protocol. A pediatric shunt non-contrast head CT protocol using automatic exposure control and automated tube potential selection reduced patient radiation dose compared with a fixed parameter protocol while producing diagnostic images of comparable quality.
Creating "Intelligent" Ensemble Averages Using a Process-Based Framework
NASA Astrophysics Data System (ADS)
Baker, Noel; Taylor, Patrick
2014-05-01
The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is used to add value to individual model projections and construct a consensus projection. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, individual models reproduce certain climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. The intention is to produce improved ("intelligent") unequal-weight ensemble averages. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Several climate process metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument in combination with surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing the equal-weighted ensemble average and an ensemble weighted using the process-based metric. Additionally, this study investigates the dependence of the metric weighting scheme on the climate state using a combination of model simulations including a non-forced preindustrial control experiment, historical simulations, and several radiative forcing Representative Concentration Pathway (RCP) scenarios. Ultimately, the goal of the framework is to advise better methods for ensemble averaging models and create better climate predictions.
Assessment of radiation protection practices among radiographers in Lagos, Nigeria.
Eze, Cletus Uche; Abonyi, Livinus Chibuzo; Njoku, Jerome; Irurhe, Nicholas Kayode; Olowu, Oluwabola
2013-11-01
Use of ionising radiation in diagnostic radiography could lead to hazards such as somatic and genetic damages. Compliance to safe work and radiation protection practices could mitigate such risks. The aim of the study was to assess the knowledge and radiation protection practices among radiographers in Lagos, Nigeria. The study was a prospective cross sectional survey. Convenience sampling technique was used to select four x-ray diagnostic centres in four tertiary hospitals in Lagos metropolis. Data were analysed with Epi- info software, version 3.5.1. Average score on assessment of knowledge was 73%. Most modern radiation protection instruments were lacking in all the centres studied. Application of shielding devices such as gonad shield for protection was neglected mostly in government hospitals. Most x-ray machines were quite old and evidence of quality assurance tests performed on such machines were lacking. Radiographers within Lagos metropolis showed an excellent knowledge of radiation protection within the study period. Adherence to radiation protection practices among radiographers in Lagos metropolis during the period studied was, however, poor. Radiographers in Lagos, Nigeria should embrace current trends in radiation protection and make more concerted efforts to apply their knowledge in protecting themselves and patients from harmful effects of ionising radiation.
Radiation Hardened, Modulator ASIC for High Data Rate Communications
NASA Technical Reports Server (NTRS)
McCallister, Ron; Putnam, Robert; Andro, Monty; Fujikawa, Gene
2000-01-01
Satellite-based telecommunication services are challenged by the need to generate down-link power levels adequate to support high quality (BER approx. equals 10(exp 12)) links required for modem broadband data services. Bandwidth-efficient Nyquist signaling, using low values of excess bandwidth (alpha), can exhibit large peak-to-average-power ratio (PAPR) values. High PAPR values necessitate high-power amplifier (HPA) backoff greater than the PAPR, resulting in unacceptably low HPA efficiency. Given the high cost of on-board prime power, this inefficiency represents both an economical burden, and a constraint on the rates and quality of data services supportable from satellite platforms. Constant-envelope signals offer improved power-efficiency, but only by imposing a severe bandwidth-efficiency penalty. This paper describes a radiation- hardened modulator which can improve satellite-based broadband data services by combining the bandwidth-efficiency of low-alpha Nyquist signals with high power-efficiency (negligible HPA backoff).
NASA Astrophysics Data System (ADS)
Labin, N. A.; Bulychev, N. A.; Kazaryan, M. A.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.
2015-12-01
Research on CVL installations with an average power of 20-25 W of cutting and drilling has shown wide range of applications of these lasers for micromachining of metals and a wide range of non-metallic materials up to 1-2 mm. From the analysis indicated that peak power density in the focused light spot of 10-30 μm diameter must be 109 -1012 W/cm2 the productivity and quality micromachining, when the treatment material is preferably in the evaporative mode micro explosions, followed by the expansion of the superheated vapor and the liquid. To achieve such levels of power density, a minimum heat affected zone (5- 10 μm) and a minimum surface roughness of the cut (1-2 μm), the quality of the output beam of radiation should be as high. Ideally, to ensure the quality of the radiation, the structure of CVL output beam must be single-beam, diffraction divergence and have at duration pulses τi = 20-40 ns. The pulse energy should have low values of 0.1-1 mJ at pulse repetition rates of 10-20 kHz. Axis of the radiation beam instability of the pattern to be three orders of magnitude smaller than the diffraction limit of the divergence. The spot of the focused radiation beam must have a circular shape with clear boundary, and a Gaussian intensity distribution.
Lindner, Oliver; Pascual, Thomas N B; Mercuri, Mathew; Acampa, Wanda; Burchert, Wolfgang; Flotats, Albert; Kaufmann, Philipp A; Kitsiou, Anastasia; Knuuti, Juhani; Underwood, S Richard; Vitola, João V; Mahmarian, John J; Karthikeyan, Ganesan; Better, Nathan; Rehani, Madan M; Kashyap, Ravi; Dondi, Maurizio; Paez, Diana; Einstein, Andrew J
2016-04-01
Nuclear cardiology is widely used to diagnose coronary artery disease and to guide patient management, but data on current practices, radiation dose-related best practices, and radiation doses are scarce. To address these issues, the IAEA conducted a worldwide study of nuclear cardiology practice. We present the European subanalysis. In March 2013, the IAEA invited laboratories across the world to document all SPECT and PET studies performed in one week. The data included age, gender, weight, radiopharmaceuticals, injected activities, camera type, positioning, hardware and software. Radiation effective dose was calculated for each patient. A quality score was defined for each laboratory as the number followed of eight predefined best practices with a bearing on radiation exposure (range of quality score 0 - 8). The participating European countries were assigned to regions (North, East, South, and West). Comparisons were performed between the four European regions and between Europe and the rest-of-the-world (RoW). Data on 2,381 European patients undergoing nuclear cardiology procedures in 102 laboratories in 27 countries were collected. A cardiac SPECT study was performed in 97.9 % of the patients, and a PET study in 2.1 %. The average effective dose of SPECT was 8.0 ± 3.4 mSv (RoW 11.4 ± 4.3 mSv; P < 0.001) and of PET was 2.6 ± 1.5 mSv (RoW 3.8 ± 2.5 mSv; P < 0.001). The mean effective doses of SPECT and PET differed between European regions (P < 0.001 and P = 0.002, respectively). The mean quality score was 6.2 ± 1.2, which was higher than the RoW score (5.0 ± 1.1; P < 0.001). Adherence to best practices did not differ significantly among the European regions (range 6 to 6.4; P = 0.73). Of the best practices, stress-only imaging and weight-adjusted dosing were the least commonly used. In Europe, the mean effective dose from nuclear cardiology is lower and the average quality score is higher than in the RoW. There is regional variation in effective dose in relation to the best practice quality score. A possible reason for the differences between Europe and the RoW could be the safety culture fostered by actions under the Euratom directives and the implementation of diagnostic reference levels. Stress-only imaging and weight-adjusted activity might be targets for optimization of European nuclear cardiology practice.
An analysis of interplanetary space radiation exposure for various solar cycles
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Cucinotta, F. A.; O'Neill, P. M.; Wilson, J. W. (Principal Investigator)
1994-01-01
The radiation dose received by crew members in interplanetary space is influenced by the stage of the solar cycle. Using the recently developed models of the galactic cosmic radiation (GCR) environment and the energy-dependent radiation transport code, we have calculated the dose at 0 and 5 cm water depth; using a computerized anatomical man (CAM) model, we have calculated the skin, eye and blood-forming organ (BFO) doses as a function of aluminum shielding for various solar minima and maxima between 1954 and 1989. These results show that the equivalent dose is within about 15% of the mean for the various solar minima (maxima). The maximum variation between solar minimum and maximum equivalent dose is about a factor of three. We have extended these calculations for the 1976-1977 solar minimum to five practical shielding geometries: Apollo Command Module, the least and most heavily shielded locations in the U.S. space shuttle mid-deck, center of the proposed Space Station Freedom cluster and sleeping compartment of the Skylab. These calculations, using the quality factor of ICRP 60, show that the average CAM BFO equivalent dose is 0.46 Sv/year. Based on an approach that takes fragmentation into account, we estimate a calculation uncertainty of 15% if the uncertainty in the quality factor is neglected.
Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts
NASA Technical Reports Server (NTRS)
George, K.; Cucinotta, F. A.
2008-01-01
Cytogenetic analysis of astronauts blood lymphocytes provides a direct in vivo measurement of space radiation damage, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times beginning directly after return from space to several years after flight. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and the Relative Biological Effect (RBE) was estimated by comparison with individually measured physically absorbed doses. Values for average RBE were compared to the average quality factor (Q), from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. Results prove that cytogenetic biodosimetry analyses on blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk after protracted exposure to space radiation of a few months or more. However, data collected several months or years after flight suggests that the yield of chromosome translocations may decline with time after the mission, indicating that retrospective doses may be more difficult to estimate. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember, who has participated in two separate long-duration space missions and has been followed up for over 10 years, provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.
NASA Technical Reports Server (NTRS)
Vonderhaar, T. H.; Stephens, G. L.; Campbell, G. G.
1980-01-01
The annual and seasonal averaged Earth atmosphere radiation budgets derived from the most complete set of satellite observations available are presented. The budgets were derived from a composite of 48 monthly mean radiation budget maps. Annually and seasonally averaged radiation budgets are presented as global averages and zonal averages. The geographic distribution of the various radiation budget quantities is described. The annual cycle of the radiation budget was analyzed and the annual variability of net flux was shown to be largely dominated by the regular semi and annual cycles forced by external Earth-Sun geometry variations. Radiative transfer calculations were compared to the observed budget quantities and surface budgets were additionally computed with particular emphasis on discrepancies that exist between the present computations and previous surface budget estimates.
NASA Astrophysics Data System (ADS)
Stoffel, Thomas L.; Myers, Daryl R.
2010-08-01
Measurement stations for solar radiation resource assessment data are expensive and labor intensive. For this reason, long-term solar radiation measurements are not widely available. Growing interest in solar renewable energy systems has generated a great number of questions about the quality of data obtained from inexpensive silicon photodiode radiometers versus costly thermopile radiometers. We analyze a year of daily total and monthly mean global horizontal irradiance measurements derived from 1-minute averages of 3-second samples of pyranometer signals. The data were collected simultaneously from both types of radiometers at the Solar Radiation Research Laboratory (SRRL) operated by the National Renewable Energy Laboratory in Golden, Colorado. All broadband radiometers in service at SRRL are calibrated annually using an outdoor method with reference radiometers traceable to the World Radiometric Reference. We summarized the data by daily total and monthly mean daily total amounts of solar radiation. Our results show that systematic and random errors (identified in our outdoor calibration process) in each type of radiometer cancel out over periods of one day or more. Daily total and mean monthly daily total solar energy measured by the two pyranometer types compare within 1% to 2%. The individual daily variations among different models of thermopile radiometers may be up to twice as large, up to +/-5%, being highest in the winter (higher average solar zenith angle conditions) and lowest in summer, consistent with the lower solar zenith angle conditions.
Medical physics aspects of cancer care in the Asia Pacific region
Kron, T; Cheung, KY; Dai, J; Ravindran, P; Soejoko, D; Inamura, K; Song, JY; Bold, L; Srivastava, R; Rodriguez, L; Wong, TJ; Kumara, A; Lee, CC; Krisanachinda, A; Nguyen, XC; Ng, KH
2008-01-01
Medical physics plays an essential role in modern medicine. This is particularly evident in cancer care where medical physicists are involved in radiotherapy treatment planning and quality assurance as well as in imaging and radiation protection. Due to the large variety of tasks and interests, medical physics is often subdivided into specialties such as radiology, nuclear medicine and radiation oncology medical physics. However, even within their specialty, the role of radiation oncology medical physicists (ROMPs) is diverse and varies between different societies. Therefore, a questionnaire was sent to leading medical physicists in most countries/areas in the Asia/Pacific region to determine the education, role and status of medical physicists. Answers were received from 17 countries/areas representing nearly 2800 radiation oncology medical physicists. There was general agreement that medical physicists should have both academic (typically at MSc level) and clinical (typically at least 2 years) training. ROMPs spent most of their time working in radiotherapy treatment planning (average 17 hours per week); however radiation protection and engineering tasks were also common. Typically, only physicists in large centres are involved in research and teaching. Most respondents thought that the workload of physicists was high, with more than 500 patients per year per physicist, less than one ROMP per two oncologists being the norm, and on average, one megavoltage treatment unit per medical physicist. There was also a clear indication of increased complexity of technology in the region with many countries/areas reporting to have installed helical tomotherapy, IMRT (Intensity Modulated Radiation Therapy), IGRT (Image Guided Radiation Therapy), Gamma-knife and Cyber-knife units. This and the continued workload from brachytherapy will require growing expertise and numbers in the medical physics workforce. Addressing these needs will be an important challenge for the future. PMID:21611001
A LiF and BeO TLD based microdosimeter for space radiation risk assessment of astronauts
NASA Astrophysics Data System (ADS)
Mukherjee, B.
2018-06-01
The ratio of thermoluminescence glow curve area of BeO and LiF dosimeters was found to be proportional to average LET and quality factor (Q) of impinging mixed radiations. Using this phenomenon and widely available Thermoluminescence Dosimeter TLD-700 (7LiF: Mg,Ti) and BeO (Thermolux 995) chips a TLD-Microdosimeter (LiBe-14) emulating a much larger gas-filled Tissue Equivalent Proportional Counter (TEPC) was developed. The TEPC is an essential device of space radiation dosimetry widely used by international space agencies. The LiBe-14 is capable of assessing the LETTissue (5–300 keV/μm), quality factor Q (1–30) and associated dose equivalent H (0.1–1000 mSv) of any mixed radiation fields of interest, including space radiations predominant in Low Earth Orbit (LEO) environment. The TLD microdosimeter was calibrated using the secondary radiation fields produced by bombarding a 25 cm × 25 cm × 35 cm polystyrene phantom with 81, 119, 150, 177, 201 and 231 MeV protons from a Proton Therapy Medical Cyclotron. The TLD pair (BeO/LiF) was attached to the TEPC and placed lateral to the proton beam. The characteristics of space radiation inside the spacecraft are complex. Hence, personal dosimetry of astronauts in the space habitat is performed using "multi-element" dosimeters made of different types of TLD and CR-39 plastic nuclear track detector (PNTD). The TLD and PNTD are used to assess the sparsely (low LET) and densely (high LET) ionising radiation component respectively. This report elucidates the feasibility of LiBe-14 microdosimeter for the estimation of overall dose equivalent and "risk of exposure induced death" (REID) of astronauts working in LEO space stations.
NASA Astrophysics Data System (ADS)
Hall, C. C.; Biedron, S. G.; Edelen, A. L.; Milton, S. V.; Benson, S.; Douglas, D.; Li, R.; Tennant, C. D.; Carlsten, B. E.
2015-03-01
In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with the measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.
Hall, C C.; Biedron, S G.; Edelen, A L.; ...
2015-03-09
In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with themore » measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.« less
Downward Atmospheric Longwave Radiation in the City of Sao Paulo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbaro, Eduardo W.; Oliveira, Amauri P.; Soares, Jacyra
2009-03-11
This work evaluates objectively the consistency and quality of a 9 year dataset based on 5 minute average values of downward longwave atmospheric (LW) emission, shortwave radiation, temperature and relative humidity. All these parameters were observed simultaneously and continuously from 1997 to 2006 in the IAG micrometeorological platform, located at the top of the IAG-USP building. The pyrgeometer dome emission effect was removed using neural network technique reducing the downward long wave atmospheric emission error to 3.5%. The comparison, between the monthly average values of LW emission observed in Sao Paulo and satellite estimates from SRB-NASA project, indicated a verymore » good agreement. Furthermore, this work investigates the performance of 10 empirical expressions to estimate the LW emission at the surface. The comparison between the models indicates that Brunt's one presents the better results, with smallest ''MBE,''''RMSE'' and biggest ''d'' index of agreement, therefore Brunt is the most indicated model to estimate LW emission under clear sky conditions in the city of Sao Paulo.« less
Ristova, Mimoza M; Radiceska, Pavlina; Bozinov, Igorco; Barandovski, Lambe
2016-05-01
One of the crucial factors determining the cyanoacrylate deposit quality over latent fingerprints appeared to be the extent of the humidity. This work focuses on the enhancement/refreshment of age-degraded latent fingerprints by irradiating the samples with UV, X-ray, or thermal neutrons prior to the cyanoacrylate (CA) fuming. Age degradation of latent fingerprints deposited on glass surfaces was examined through the decrease in the number of characteristic minutiae counts over time. A term "critical day" was introduced for the time at which the average number of identifiable minutiae definitions drops to one-half. Fingerprints older than their "critical day" were exposed to either UV, X-ray, or thermal neutrons. Identical reference samples were kept unexposed. All samples, both reference and irradiated, were developed during a single CA fuming procedure. Comparative latent fingerprint analysis showed that exposure to ionizing radiation enhances the CA fuming, yielding a 20-30% increase in average minutiae count. © 2015 American Academy of Forensic Sciences.
Elizabeth City State University: Elizabeth City, North Carolina (Data)
Stoffel, T.; Andreas, A.
1985-09-25
The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from July 1985 through December 1996. Funded by DOE, the six-station network provided 5-minute averaged measurements of direct normal, global, and diffuse horizontal solar irradiance. The data were processed at NREL to improve the assessment of the solar radiation resources in the southeastern United States. Historical HBCU data available online include quality assessed 5-min data, monthly reports, and plots. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network and data from the two remaining active stations, Bluefield State College and Elizabeth City State University, are collected by the NREL Measurement & Instrumentation Data Center (MIDC).
Bluefield State College: Bluefield, West Virginia (Data)
Stoffel, T.; Andreas, A.
1985-11-06
The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from July 1985 through December 1996. Funded by DOE, the six-station network provided 5-minute averaged measurements of direct normal, global, and diffuse horizontal solar irradiance. The data were processed at NREL to improve the assessment of the solar radiation resources in the southeastern United States. Historical HBCU data available online include quality assessed 5-min data, monthly reports, and plots. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network and data from the two remaining active stations, Bluefield State College and Elizabeth City State University, are collected by the NREL Measurement & Instrumentation Data Center (MIDC).
Chromosome aberrations in the blood lymphocytes of astronauts after space flight
NASA Technical Reports Server (NTRS)
George, K.; Durante, M.; Wu, H.; Willingham, V.; Badhwar, G.; Cucinotta, F. A.
2001-01-01
Cytogenetic analysis of the lymphocytes of astronauts provides a direct measurement of space radiation damage in vivo, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. Chromosome exchanges were measured in the blood lymphocytes of eight crew members after their respective space missions, using fluorescence in situ hybridization (FISH) with chromosome painting probes. Significant increases in aberrations were observed after the long-duration missions. The in vivo dose was derived from the frequencies of translocations and total exchanges using calibration curves determined before flight, and the RBE was estimated by comparison with individually measured physical absorbed doses. The values for average RBE were compared to the average quality factor (Q) from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. The ratio of aberrations identified as complex was slightly higher after flight, which is thought to be an indication of exposure to high-LET radiation. To determine whether the frequency of complex aberrations measured in metaphase spreads after exposure to high-LET radiation was influenced by a cell cycle delay, chromosome damage was analyzed in prematurely condensed chromosome samples collected from two crew members before and after a short-duration mission. The frequency of complex exchanges after flight was higher in prematurely condensed chromosomes than in metaphase cells for one crew member.
Chromosome aberrations in the blood lymphocytes of astronauts after space flight.
George, K; Durante, M; Wu, H; Willingham, V; Badhwar, G; Cucinotta, F A
2001-12-01
Cytogenetic analysis of the lymphocytes of astronauts provides a direct measurement of space radiation damage in vivo, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. Chromosome exchanges were measured in the blood lymphocytes of eight crew members after their respective space missions, using fluorescence in situ hybridization (FISH) with chromosome painting probes. Significant increases in aberrations were observed after the long-duration missions. The in vivo dose was derived from the frequencies of translocations and total exchanges using calibration curves determined before flight, and the RBE was estimated by comparison with individually measured physical absorbed doses. The values for average RBE were compared to the average quality factor (Q) from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. The ratio of aberrations identified as complex was slightly higher after flight, which is thought to be an indication of exposure to high-LET radiation. To determine whether the frequency of complex aberrations measured in metaphase spreads after exposure to high-LET radiation was influenced by a cell cycle delay, chromosome damage was analyzed in prematurely condensed chromosome samples collected from two crew members before and after a short-duration mission. The frequency of complex exchanges after flight was higher in prematurely condensed chromosomes than in metaphase cells for one crew member.
Durmus, Tahir; Luhur, Reny; Daqqaq, Tareef; Schwenke, Carsten; Knobloch, Gesine; Huppertz, Alexander; Hamm, Bernd; Lembcke, Alexander
2016-05-01
To evaluate a software tool that claims to maintain a constant contrast-to-noise ratio (CNR) in high-pitch dual-source computed tomography coronary angiography (CTCA) by automatically selecting both X-ray tube voltage and current. A total of 302 patients (171 males; age 61±12years; body weight 82±17kg, body mass index 27.3±4.6kg/cm(2)) underwent CTCA with a topogram-based, automatic selection of both tube voltage and current using dedicated software with quality reference values of 100kV and 250mAs/rotation (i.e., standard values for an average adult weighing 75kg) and an injected iodine load of 222mg/kg. The average radiation dose was estimated to be 1.02±0.64mSv. All data sets had adequate contrast enhancement. Average CNR in the aortic root, left ventricle, and left and right coronary artery was 15.7±4.5, 8.3±2.9, 16.1±4.3 and 15.3±3.9 respectively. Individual CNR values were independent of patients' body size and radiation dose. However, individual CNR values may vary considerably between subjects as reflected by interquartile ranges of 12.6-18.6, 6.2-9.9, 12.8-18.9 and 12.5-17.9 respectively. Moreover, average CNR values were significantly lower in males than females (15.1±4.1 vs. 16.6±11.7 and 7.9±2.7 vs. 8.9±3.0, 15.5±3.9 vs. 16.9±4.6 and 14.7±3.6 vs. 16.0±4.1 respectively). A topogram-based automatic selection of X-ray tube settings in CTCA provides diagnostic image quality independent of patients' body size. Nevertheless, considerable variation of individual CNR values between patients and significant differences of CNR values between males and females occur which questions the reliability of this approach. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Park, Clara; Gruber-Rouh, Tatjana; Leithner, Doris; Zierden, Amelie; Albrecht, Mortiz H; Wichmann, Julian L; Bodelle, Boris; Elsabaie, Mohamed; Scholtz, Jan-Erik; Kaup, Moritz; Vogl, Thomas J; Beeres, Martin
2016-10-10
Evaluation of latest generation automated attenuation-based tube potential selection (ATPS) impact on image quality and radiation dose in contrast-enhanced chest-abdomen-pelvis computed tomography examinations for gynaecologic cancer staging. This IRB approved single-centre, observer-blinded retrospective study with a waiver for informed consent included a total of 100 patients with contrast-enhanced chest-abdomen-pelvis CT for gynaecologic cancer staging. All patients were examined with activated ATPS for adaption of tube voltage to body habitus. 50 patients were scanned on a third-generation dual-source CT (DSCT), and another 50 patients on a second-generation DSCT. Predefined image quality setting remained stable between both groups at 120 kV and a current of 210 Reference mAs. Subjective image quality assessment was performed by two blinded readers independently. Attenuation and image noise were measured in several anatomic structures. Signal-to-noise ratio (SNR) was calculated. For the evaluation of radiation exposure, CT dose index (CTDI vol ) values were compared. Diagnostic image quality was obtained in all patients. The median CTDI vol (6.1 mGy, range 3.9-22 mGy) was 40 % lower when using the algorithm compared with the previous ATCM protocol (median 10.2 mGy · cm, range 5.8-22.8 mGy). A reduction in potential to 90 kV occurred in 19 cases, a reduction to 100 kV in 23 patients and a reduction to 110 kV in 3 patients of our experimental cohort. These patients received significantly lower radiation exposure compared to the former used protocol. Latest generation automated ATPS on third-generation DSCT provides good diagnostic image quality in chest-abdomen-pelvis CT while average radiation dose is reduced by 40 % compared to former ATPS protocol on second-generation DSCT.
Thomas, Christoph; Heuschmid, Martin; Schilling, David; Ketelsen, Dominik; Tsiflikas, Ilias; Stenzl, Arnulf; Claussen, Claus D; Schlemmer, Heinz-Peter
2010-11-01
To retrospectively evaluate radiation dose, image quality, and the ability to differentiate urinary calculi of differing compositions by using low-dose dual-energy computed tomography (CT). The institutional review board approved this retrospective study; informed consent was waived. A low-dose dual-energy CT protocol (tube voltage and reference effective tube current-time product, 140 kV and 23 mAs and 80 kV and 105 mAs; collimation, 64 × 0.6 mm; pitch, 0.7) for the detection of urinary calculi was implemented into routine clinical care. All patients (n = 112) who were examined with this protocol from July 2008 to August 2009 were included. The composition of urinary calculi was assessed by using commercially available postprocessing software and was compared with results of the reference standard (ex vivo infrared spectroscopy) in 40 patients for whom the reference standard was available. Effective doses were calculated. Image quality was rated subjectively and objectively and was correlated with patient size expressed as body cross-sectional area at the level of acquisition by using Spearman correlation coefficients. One calcified concrement in the distal ureter of an obese patient was mistakenly interpreted as mixed calcified and uric acid. One struvite calculus was falsely interpreted as cystine. All other uric acid, cystine, and calcium-containing calculi were correctly identified by using dual-energy CT. The mean radiation dose was 2.7 mSv. The average image quality was rated as acceptable, with a decrease in image quality in larger patients. Low-dose unenhanced dual-source dual-energy CT can help differentiate between calcified, uric acid, and cystine calculi at a radiation dose comparable to that of conventional intravenous pyelography. Because of decreased image quality in obese patients, only nonobese patients should be examined with this protocol. © RSNA, 2010.
Faught, Austin M; Davidson, Scott E; Popple, Richard; Kry, Stephen F; Etzel, Carol; Ibbott, Geoffrey S; Followill, David S
2017-09-01
The Imaging and Radiation Oncology Core-Houston (IROC-H) Quality Assurance Center (formerly the Radiological Physics Center) has reported varying levels of compliance from their anthropomorphic phantom auditing program. IROC-H studies have suggested that one source of disagreement between institution submitted calculated doses and measurement is the accuracy of the institution's treatment planning system dose calculations and heterogeneity corrections used. In order to audit this step of the radiation therapy treatment process, an independent dose calculation tool is needed. Monte Carlo multiple source models for Varian flattening filter free (FFF) 6 MV and FFF 10 MV therapeutic x-ray beams were commissioned based on central axis depth dose data from a 10 × 10 cm 2 field size and dose profiles for a 40 × 40 cm 2 field size. The models were validated against open-field measurements in a water tank for field sizes ranging from 3 × 3 cm 2 to 40 × 40 cm 2 . The models were then benchmarked against IROC-H's anthropomorphic head and neck phantom and lung phantom measurements. Validation results, assessed with a ±2%/2 mm gamma criterion, showed average agreement of 99.9% and 99.0% for central axis depth dose data for FFF 6 MV and FFF 10 MV models, respectively. Dose profile agreement using the same evaluation technique averaged 97.8% and 97.9% for the respective models. Phantom benchmarking comparisons were evaluated with a ±3%/2 mm gamma criterion, and agreement averaged 90.1% and 90.8% for the respective models. Multiple source models for Varian FFF 6 MV and FFF 10 MV beams have been developed, validated, and benchmarked for inclusion in an independent dose calculation quality assurance tool for use in clinical trial audits. © 2017 American Association of Physicists in Medicine.
Risk cross sections and their application to risk estimation in the galactic cosmic-ray environment
NASA Technical Reports Server (NTRS)
Curtis, S. B.; Nealy, J. E.; Wilson, J. W.; Chatterjee, A. (Principal Investigator)
1995-01-01
Radiation risk cross sections (i.e. risks per particle fluence) are discussed in the context of estimating the risk of radiation-induced cancer on long-term space flights from the galactic cosmic radiation outside the confines of the earth's magnetic field. Such quantities are useful for handling effects not seen after low-LET radiation. Since appropriate cross-section functions for cancer induction for each particle species are not yet available, the conventional quality factor is used as an approximation to obtain numerical results for risks of excess cancer mortality. Risks are obtained for seven of the most radiosensitive organs as determined by the ICRP [stomach, colon, lung, bone marrow (BFO), bladder, esophagus and breast], beneath 10 g/cm2 aluminum shielding at solar minimum. Spectra are obtained for excess relative risk for each cancer per LET interval by calculating the average fluence-LET spectrum for the organ and converting to risk by multiplying by a factor proportional to R gamma L Q(L) before integrating over L, the unrestricted LET. Here R gamma is the risk coefficient for low-LET radiation (excess relative mortality per Sv) for the particular organ in question. The total risks of excess cancer mortality obtained are 1.3 and 1.1% to female and male crew, respectively, for a 1-year exposure at solar minimum. Uncertainties in these values are estimated to range between factors of 4 and 15 and are dominated by the biological uncertainties in the risk coefficients for low-LET radiation and in the LET (or energy) dependence of the risk cross sections (as approximated by the quality factor). The direct substitution of appropriate risk cross sections will eventually circumvent entirely the need to calculate, measure or use absorbed dose, equivalent dose and quality factor for such a high-energy charged-particle environment.
Kincl, Vladimír; Kamínek, Milan; Vašina, Jiří; Panovský, Roman; Havel, Martin
2016-09-01
High efficiency cadmium-zinc-telluride (CZT) cameras provide an opportunity to lower the injected activities of radiopharmaceuticals for single photon emission tomography (SPECT) myocardial perfusion imaging (MPI). The limits for reducing activities of thallium have not been determined, particularly in obese patients. After an injection of 0.7 megabecquerel (MBq) of thallium/kg, we collected an average 1.5 million counts for the 10-min acquisition in a pilot cohort of ten patients. After extrapolation, we reduced the administered activity to 0.5 MBq/kg to obtain the expected 1 million counts. We studied the image quality in 124 patients (86 men, 43 obese with body mass index over 30 kg/m 2 ) referred for MPI. The quality of images was assessed by a number of recorded counts and visually by a four-grade scale (one-poor quality, four-excellent quality). In non-obese and obese patients, the average number of recorded counts was 1.1 vs. 1.07 million counts for the 10-min stress acquisition, 1.04 vs. 1.06 million counts for the 13-min rest acquisition, and the average quality score was 3.97 vs. 3.90, respectively (p = NS).The mean administered activity was 39.2 ± 7 MBq for non-obese and 48.7 ± 6 for obese patients (p < 0.0001), and the calculated effective dose was 4.0 ± 0.7 and 4.9 ± 0.6 mSv respectively (p < 0.0001). The ultra-low-dose thallium stress-redistribution protocol, including post-stress prone imaging, provides good quality of images with a low radiation burden, even in obese patients.
Wakefield, Daniel V; Manole, Bogdan A; Jethanandani, Amit; May, Michael E; Marcrom, Samuel R; Farmer, Michael R; Ballo, Matthew T; VanderWalde, Noam A
2016-01-01
Radiation oncology (RO) residency applicants commonly use Internet resources for information on residency programs. The purpose of this study is to assess the accessibility, availability, and quality of online information for RO graduate medical education. Accessibility of online information was determined by surveying databases for RO residency programs within the Fellowship Residency Electronic Interactive Data Access System (FREIDA) of the American Medical Association, the Accreditation Council for Graduate Medical Education (ACGME), and Google search. As of June 30, 2015, websites were assessed for presence, accessibility, and overall content availability based on a 55-item list of desired features based on 13 program features important to previously surveyed applicants. Quality scoring of available content was performed based on previously published Likert scale variables deemed desirable to RO applicants. Quality score labels were given based on percentage of desired information presented. FREIDA and ACGME databases listed 89% and 98% of program websites, respectively, but only 56% and 52% of links routed to a RO department-specific website, respectively. Google search obtained websites for 98% of programs and 95% of links routed to RO department-specific websites. The majority of websites had program descriptions (98%) and information on staff. However, resident information was more limited (total number [42%], education [47%], previous residents [28%], positions available [35%], contact information [13%]). Based on quality scoring, program websites contained only 47% of desired information on average. Only 13% of programs had superior websites containing 80% or more of desired information. Compared with Google, the FREIDA and ACGME program databases provide limited access to RO residency websites. The overall information availability and quality of information within RO residency websites varies widely. Applicants and programs may benefit from improved content accessibility and quality from US RO program websites in the residency application process. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shavers, Mark Randall
1999-12-01
High-energy protons in the galactic cosmic rays (GCR)-or generated by nuclear interactions of GCR heavy-ions with material-are capable of penetrating great thicknesses of shielding to irradiate humans in spacecraft or in lunar or Martian habitats. As protons interact with the nuclei of the elemental constituents of soft tissue and bone, low energy nuclei-target fragments-are emitted into the cells responsible for bone development and maintenance and for hematopoiesis. Leukemogenesis is the principal endpoint of concern because it is the most likely deleterious effect, and it has a short latency period and comparatively low survival rate, although other myelo- proliferative disorders and osteosarcoma also may be induced. A one-dimensional proton-target fragment transport model was used to calculate the energy spectra of fragments produced in bone and soft tissue, and present in marrow cavities at distances from a bone interface. In terms of dose equivalent, the target fragments are as significant as the incident protons. An average radiation quality factor was found to be between 1.8 and 2.6. Biological response to the highly non- uniform energy deposition of the target fragments is such that an alternative approach to conventional predictive risk assessment is needed. Alternative procedures are presented. In vitro cell response and relative biological effectiveness were calculated from the radial dose distribution of each fragment produced by 1-GeV protons using parameters of a modified Ion-Gamma- Kill (IGK) model of radiation action. The modelled endpoints were survival of C3H10t 1/2 and V79 cells, neoplastic transformation of C3H10t1/2 cells, and mutation of the X-linked hypoxanthine phosphoribosyltransferase (HPRT) locus in V79 cells. The dose equivalent and cell responses increased by 10% or less near the interface. Since RBE increases with decreasing dose in the IGK model, comparisons with quality factors were made at dose levels 0.01 <= D [Gy] <= 2. Applying average quality factors derived herein to GCR exposures results in a <= 5% increase of in average quality. Calculated RBEs indicate that accepted quality factors for high-energy protons may be too low due to the relatively high effectiveness of the low-charged target fragments. Derived RBEs for target fragments increase the calculated biological effectiveness of GCR by 20% to 180%.
McKnight, Colin D; Watcharotone, Kuanwong; Ibrahim, Mohannad; Christodoulou, Emmanuel; Baer, Aaron H; Parmar, Hemant A
2014-08-01
Over the last decade there has been escalating concern regarding the increasing radiation exposure stemming from CT exams, particularly in children. Adaptive statistical iterative reconstruction (ASIR) is a relatively new and promising tool to reduce radiation dose while preserving image quality. While encouraging results have been found in adult head and chest and body imaging, validation of this technique in pediatric population is limited. The objective of our study was to retrospectively compare the image quality and radiation dose of pediatric head CT examinations obtained with ASIR compared to pediatric head CT examinations without ASIR in a large patient population. Retrospective analysis was performed on 82 pediatric head CT examinations. This group included 33 pediatric head CT examinations obtained with ASIR and 49 pediatric head CT examinations without ASIR. Computed tomography dose index (CTDIvol) was recorded on all examinations. Quantitative analysis consisted of standardized measurement of attenuation and the standard deviation at the bilateral centrum semiovale and cerebellar white matter to evaluate objective noise. Qualitative analysis consisted of independent assessment by two radiologists in a blinded manner of gray-white differentiation, sharpness and overall diagnostic quality. The average CTDIvol value of the ASIR group was 21.8 mGy (SD = 4.0) while the average CTDIvol for the non-ASIR group was 29.7 mGy (SD = 13.8), reflecting a statistically significant reduction in CTDIvol in the ASIR group (P < 0.01). There were statistically significant reductions in CTDI for the 3- to 12-year-old ASIR group as compared to the 3- to 12-year-old non-ASIR group (21.5 mGy vs. 30.0 mGy; P = 0.004) as well as statistically significant reductions in CTDI for the >12-year-old ASIR group as compared to the >12-year-old non-ASIR group (29.7 mGy vs. 49.9 mGy; P = 0.0002). Quantitative analysis revealed no significant difference in the homogeneity of variance in the ASIR group compared to the non-ASIR group. Radiologist assessment of gray-white differentiation, sharpness and overall diagnostic quality in ASIR examinations was not substantially different compared to non-ASIR examinations. The use of ASIR in pediatric head CT examinations allows for a 28% CTDIvol reduction in the 3- to 12-year-old age group and a 48% reduction in the >12-year-old age group without substantially affecting image quality.
Space radiation absorbed dose distribution in a human phantom
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.
2002-01-01
The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose-rate predictions are 20% lower than the observations. Assuming that the trapped-belt models lead to a correct orbit-averaged energy spectrum, the measurements of dose rates inside the phantom cannot be fully understood. Passive measurements using 6Li- and 7Li-based detectors on the astronauts and inside the brain and thyroid of the phantom show the presence of a significant contribution due to thermal neutrons, an area requiring additional study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Kristina; Lemon, Jennifer A.; Phan, Nghi
There is considerable interest in the health effects associated with low-level radiation exposure from medical imaging procedures. Concerns in the medical community that increased radiation exposure from imaging procedures may increase cancer risk among patients are confounded by research showing that low-dose radiation exposure can extend lifespan by increasing the latency period of some types of cancer. The most commonly used radiopharmaceutical for positron emission tomography (PET) scans is 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), which exposes tissue to a low-dose, mixed radiation quality: 634 keV β+ and 511 keV γ-rays. The goal of this research was to investigate how modificationmore » of cancer risk associated with exposure to low-dose ionising radiation in cancer-prone Trp53+/- mice is influenced by radiation quality from PET. At 7-8 weeks of age, Trp53+/- female mice were exposed to one of five treatments: 0 Gy, 10 mGy γ-rays, 10 mGy 18F-FDG, 4 Gy γ-rays, 10 mGy 18F-FDG + 4 Gy γ-rays (n > 185 per group). The large 4-Gy radiation dose significantly reduced the lifespan by shortening the latency period of cancer and significantly increasing the number of mice with malignancies, compared with unirradiated controls. The 10 mGy γ-rays and 10 mGy PET doses did not significantly modify the frequency or latency period of cancer relative to unirradiated mice. Similarly, the PET scan administered prior to a large 4-Gy dose did not significantly modify the latency or frequency of cancer relative to mice receiving a dose of only 4 Gy. The relative biological effectiveness of radiation quality from 18F-FDG, with respect to malignancy, is approximately 1. Furthermore, when non-cancer endpoints were studied, it was found that the 10-mGy PET group had a significant reduction in kidney lesions (P < 0.021), indicating that a higher absorbed dose (20 ± 0.13 mGy), relative to the whole-body average, which occurs in specific tissues, may not be detrimental.« less
Taylor, Kristina; Lemon, Jennifer A.; Phan, Nghi; ...
2014-05-28
There is considerable interest in the health effects associated with low-level radiation exposure from medical imaging procedures. Concerns in the medical community that increased radiation exposure from imaging procedures may increase cancer risk among patients are confounded by research showing that low-dose radiation exposure can extend lifespan by increasing the latency period of some types of cancer. The most commonly used radiopharmaceutical for positron emission tomography (PET) scans is 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), which exposes tissue to a low-dose, mixed radiation quality: 634 keV β+ and 511 keV γ-rays. The goal of this research was to investigate how modificationmore » of cancer risk associated with exposure to low-dose ionising radiation in cancer-prone Trp53+/- mice is influenced by radiation quality from PET. At 7-8 weeks of age, Trp53+/- female mice were exposed to one of five treatments: 0 Gy, 10 mGy γ-rays, 10 mGy 18F-FDG, 4 Gy γ-rays, 10 mGy 18F-FDG + 4 Gy γ-rays (n > 185 per group). The large 4-Gy radiation dose significantly reduced the lifespan by shortening the latency period of cancer and significantly increasing the number of mice with malignancies, compared with unirradiated controls. The 10 mGy γ-rays and 10 mGy PET doses did not significantly modify the frequency or latency period of cancer relative to unirradiated mice. Similarly, the PET scan administered prior to a large 4-Gy dose did not significantly modify the latency or frequency of cancer relative to mice receiving a dose of only 4 Gy. The relative biological effectiveness of radiation quality from 18F-FDG, with respect to malignancy, is approximately 1. Furthermore, when non-cancer endpoints were studied, it was found that the 10-mGy PET group had a significant reduction in kidney lesions (P < 0.021), indicating that a higher absorbed dose (20 ± 0.13 mGy), relative to the whole-body average, which occurs in specific tissues, may not be detrimental.« less
NASA Astrophysics Data System (ADS)
Lobit, P.; Gómez Tagle, A.; Bautista, F.; Lhomme, J. P.
2017-07-01
We evaluated two methods to estimate evapotranspiration (ETo) from minimal weather records (daily maximum and minimum temperatures) in Mexico: a modified reduced set FAO-Penman-Monteith method (Allen et al. 1998, Rome, Italy) and the Hargreaves and Samani (Appl Eng Agric 1(2): 96-99, 1985) method. In the reduced set method, the FAO-Penman-Monteith equation was applied with vapor pressure and radiation estimated from temperature data using two new models (see first and second articles in this series): mean temperature as the average of maximum and minimum temperature corrected for a constant bias and constant wind speed. The Hargreaves-Samani method combines two empirical relationships: one between diurnal temperature range ΔT and shortwave radiation Rs, and another one between average temperature and the ratio ETo/Rs: both relationships were evaluated and calibrated for Mexico. After performing a sensitivity analysis to evaluate the impact of different approximations on the estimation of Rs and ETo, several model combinations were tested to predict ETo from daily maximum and minimum temperature alone. The quality of fit of these models was evaluated on 786 weather stations covering most of the territory of Mexico. The best method was found to be a combination of the FAO-Penman-Monteith reduced set equation with the new radiation estimation and vapor pressure model. As an alternative, a recalibration of the Hargreaves-Samani equation is proposed.
Novak, Avrey; Nyflot, Matthew J; Ermoian, Ralph P; Jordan, Loucille E; Sponseller, Patricia A; Kane, Gabrielle M; Ford, Eric C; Zeng, Jing
2016-05-01
Radiation treatment planning involves a complex workflow that has multiple potential points of vulnerability. This study utilizes an incident reporting system to identify the origination and detection points of near-miss errors, in order to guide their departmental safety improvement efforts. Previous studies have examined where errors arise, but not where they are detected or applied a near-miss risk index (NMRI) to gauge severity. From 3/2012 to 3/2014, 1897 incidents were analyzed from a departmental incident learning system. All incidents were prospectively reviewed weekly by a multidisciplinary team and assigned a NMRI score ranging from 0 to 4 reflecting potential harm to the patient (no potential harm to potential critical harm). Incidents were classified by point of incident origination and detection based on a 103-step workflow. The individual steps were divided among nine broad workflow categories (patient assessment, imaging for radiation therapy (RT) planning, treatment planning, pretreatment plan review, treatment delivery, on-treatment quality management, post-treatment completion, equipment/software quality management, and other). The average NMRI scores of incidents originating or detected within each broad workflow area were calculated. Additionally, out of 103 individual process steps, 35 were classified as safety barriers, the process steps whose primary function is to catch errors. The safety barriers which most frequently detected incidents were identified and analyzed. Finally, the distance between event origination and detection was explored by grouping events by the number of broad workflow area events passed through before detection, and average NMRI scores were compared. Near-miss incidents most commonly originated within treatment planning (33%). However, the incidents with the highest average NMRI scores originated during imaging for RT planning (NMRI = 2.0, average NMRI of all events = 1.5), specifically during the documentation of patient positioning and localization of the patient. Incidents were most frequently detected during treatment delivery (30%), and incidents identified at this point also had higher severity scores than other workflow areas (NMRI = 1.6). Incidents identified during on-treatment quality management were also more severe (NMRI = 1.7), and the specific process steps of reviewing portal and CBCT images tended to catch highest-severity incidents. On average, safety barriers caught 46% of all incidents, most frequently at physics chart review, therapist's chart check, and the review of portal images; however, most of the incidents that pass through a particular safety barrier are not designed to be capable of being captured at that barrier. Incident learning systems can be used to assess the most common points of error origination and detection in radiation oncology. This can help tailor safety improvement efforts and target the highest impact portions of the workflow. The most severe near-miss events tend to originate during simulation, with the most severe near-miss events detected at the time of patient treatment. Safety barriers can be improved to allow earlier detection of near-miss events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novak, Avrey; Nyflot, Matthew J.; Ermoian, Ralph P.
Purpose: Radiation treatment planning involves a complex workflow that has multiple potential points of vulnerability. This study utilizes an incident reporting system to identify the origination and detection points of near-miss errors, in order to guide their departmental safety improvement efforts. Previous studies have examined where errors arise, but not where they are detected or applied a near-miss risk index (NMRI) to gauge severity. Methods: From 3/2012 to 3/2014, 1897 incidents were analyzed from a departmental incident learning system. All incidents were prospectively reviewed weekly by a multidisciplinary team and assigned a NMRI score ranging from 0 to 4 reflectingmore » potential harm to the patient (no potential harm to potential critical harm). Incidents were classified by point of incident origination and detection based on a 103-step workflow. The individual steps were divided among nine broad workflow categories (patient assessment, imaging for radiation therapy (RT) planning, treatment planning, pretreatment plan review, treatment delivery, on-treatment quality management, post-treatment completion, equipment/software quality management, and other). The average NMRI scores of incidents originating or detected within each broad workflow area were calculated. Additionally, out of 103 individual process steps, 35 were classified as safety barriers, the process steps whose primary function is to catch errors. The safety barriers which most frequently detected incidents were identified and analyzed. Finally, the distance between event origination and detection was explored by grouping events by the number of broad workflow area events passed through before detection, and average NMRI scores were compared. Results: Near-miss incidents most commonly originated within treatment planning (33%). However, the incidents with the highest average NMRI scores originated during imaging for RT planning (NMRI = 2.0, average NMRI of all events = 1.5), specifically during the documentation of patient positioning and localization of the patient. Incidents were most frequently detected during treatment delivery (30%), and incidents identified at this point also had higher severity scores than other workflow areas (NMRI = 1.6). Incidents identified during on-treatment quality management were also more severe (NMRI = 1.7), and the specific process steps of reviewing portal and CBCT images tended to catch highest-severity incidents. On average, safety barriers caught 46% of all incidents, most frequently at physics chart review, therapist’s chart check, and the review of portal images; however, most of the incidents that pass through a particular safety barrier are not designed to be capable of being captured at that barrier. Conclusions: Incident learning systems can be used to assess the most common points of error origination and detection in radiation oncology. This can help tailor safety improvement efforts and target the highest impact portions of the workflow. The most severe near-miss events tend to originate during simulation, with the most severe near-miss events detected at the time of patient treatment. Safety barriers can be improved to allow earlier detection of near-miss events.« less
A modern depleted uranium manufacturing facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zagula, T.A.
1995-07-01
The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout themore » DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.« less
Laser irradiation of penile blood as treatment of sexual dysfunctions
NASA Astrophysics Data System (ADS)
Koultchavenia, Ekaterina V.; Khomyakov, Victor T.
2001-05-01
40-60% of the men of average age suffer from the violations of sexual functions. Impotence doesn't make direct threat to life; nevertheless this disease essentially reduces quality of life, and consequently deserves the most steadfast attention. There are many methods of treatment of erectile dysfunction. However they are connected with a reception of medicines, which is expensive and has a number of contraindications, or with invasive procedures, or with surgical intervention, that also not always is desirable. We have developed the original device permitting to cause passive erection by creation of a local decompression. The second stage is the effect by an infrared laser radiation (denseness of a potency 4.2 mWt/sm2, continuous radiation with length of a wave 0.89 microns, exposition 5 minutes) on erection glans penis. We observed 24 patients with the complaints on insufficient erection (18), premature ejaculation (6); 2 patients in addition presented the complaint on small sizes of the penis. Age of the patients was 24-46 years, on the average 34.3 years. All have received treatment from 15 sessions in day.
Organic matter in central California radiation fogs.
Herckes, Pierre; Lee, Taehyoung; Trenary, Laurie; Kang, Gongunn; Chang, Hui; Collett, Jeffrey L
2002-11-15
Organic matter was studied in radiation fogs in the San Joaquin Valley of California during the California Regional Particulate Air Quality Study (CRPAQS). Total organic carbon (TOC) concentrations ranged from 2 to 40 ppm of C. While most organic carbon was found in solution as dissolved organic carbon (DOC), 23% on average was not dissolved inside the fog drops. We observe a clear variation of organic matter concentration with droplet size. TOC concentrations in small fog drops (<17 microm) were a factor of 3, on average, higher than TOC concentrations in larger drops. As much as half of the dissolved organic matter was determined to have a molecular weight higher than 500 Da. Deposition fluxes of organic matter in fog drops were high (0.5-4.3 microg of C m(-2) min(-1)), indicating the importance of fog processing as a vector for removal of organic matter from the atmosphere. Deposition velocities of organic matter, however, were usually found to be lower than deposition velocities for fogwater, consistent with the enrichment of the organic matter in smaller fog drops with lower terminal settling velocities.
Konermann, A; Appel, T; Wenghoefer, M; Sirokay, S; Dirk, C; Jäger, A; Götz, W
2015-05-01
Stability of orthodontic miniscrew implants is prerequisite to their success and durability in orthodontic treatment. As investigations revealed a positive correlation of miniscrew stability to periimplant bone quality, it has been the aim of this study to analyze the bone structure of resection preparations of human mandibles histologically by investigating the samples according to age, gender and exposure to radiotherapy. Inflammation- and tumor-free alveolar bone sections from human mandibles (n = 31) with previously diagnosed carcinoma, chronic osteomyelitis or cysts were analyzed histomorphologically and histomorphometrically as to the dimension of trabeculae in cancellous areas. Group A investigated the impact of a history of radiation therapy, group B of gender and group C contrasted biopsies from individuals aging under 60 or over 60 years. Statistics were performed using the Kruskal-Wallis-test. Radiation, gender and age did not significantly influence bone density. The mean bone density averaged 40.7 ± 15.0% of spongiosa for the total collective with a median age of 58.4 years ± 14.7 years. Our findings provide new information on bone quality, thus contributing to a more precise evaluation of the parameters affecting and those not affecting miniscrew implant stability. On the basis of these results, the formulation of clinical guidelines for risk assessment of therapeutic approaches in patients prior to insertion of orthodontic skeletal anchorage devices seems to be conceivable. Copyright © 2014 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolae, A; Department of Physics, Ryerson University, Toronto, ON; Lu, L
Purpose: A novel, automated, algorithm for permanent prostate brachytherapy (PPB) treatment planning has been developed. The novel approach uses machine-learning (ML), a form of artificial intelligence, to substantially decrease planning time while simultaneously retaining the clinical intuition of plans created by radiation oncologists. This study seeks to compare the ML algorithm against expert-planned PPB plans to evaluate the equivalency of dosimetric and clinical plan quality. Methods: Plan features were computed from historical high-quality PPB treatments (N = 100) and stored in a relational database (RDB). The ML algorithm matched new PPB features to a highly similar case in the RDB;more » this initial plan configuration was then further optimized using a stochastic search algorithm. PPB pre-plans (N = 30) generated using the ML algorithm were compared to plan variants created by an expert dosimetrist (RT), and radiation oncologist (MD). Planning time and pre-plan dosimetry were evaluated using a one-way Student’s t-test and ANOVA, respectively (significance level = 0.05). Clinical implant quality was evaluated by expert PPB radiation oncologists as part of a qualitative study. Results: Average planning time was 0.44 ± 0.42 min compared to 17.88 ± 8.76 min for the ML algorithm and RT, respectively, a significant advantage [t(9), p = 0.01]. A post-hoc ANOVA [F(2,87) = 6.59, p = 0.002] using Tukey-Kramer criteria showed a significantly lower mean prostate V150% for the ML plans (52.9%) compared to the RT (57.3%), and MD (56.2%) plans. Preliminary qualitative study results indicate comparable clinical implant quality between RT and ML plans with a trend towards preference for ML plans. Conclusion: PPB pre-treatment plans highly comparable to those of an expert radiation oncologist can be created using a novel ML planning model. The use of an ML-based planning approach is expected to translate into improved PPB accessibility and plan uniformity.« less
Air pollution and climate response to aerosol direct radiative ...
Decadal hemispheric Weather Research and Forecast-Community Multiscale Air Quality simulations from 1990 to 2010 were conducted to examine the meteorology and air quality responses to the aerosol direct radiative effects. The model's performance for the simulation of hourly surface temperature, relative humidity, wind speed, and direction was evaluated through comparison with observations from NOAA's National Climatic Data Center Integrated Surface Data. The inclusion of aerosol direct radiative effects improves the model's ability to reproduce the trend in daytime temperature range which over the past two decades was increasing in eastern China but decreasing in eastern U.S. and Europe. Trends and spatial and diurnal variations of the surface-level gaseous and particle concentrations to the aerosol direct effect were analyzed. The inclusion of aerosol direct radiative effects was found to increase the surface-level concentrations of SO2, NO2, O3, SO42−, NO3−, and particulate matter 2.5 in eastern China, eastern U.S., and Europe by 1.5–2.1%, 1–1.5%, 0.1–0.3%, 1.6–2.3%, 3.5–10.0%, and 2.2–3.2%, respectively, on average over the entire 21 year period. However, greater impacts are noted during polluted days with increases of 7.6–10.6%, 6.2–6.7%, 2.0–3.0%, 7.8–9.5%, 11.1–18.6%, and 7.2–10.1%, respectively. Due to the aerosol direct radiative effects, stabilizing of the atmosphere associated with reduced planetary boundary layer height a
Implementation of a "No Fly" safety culture in a multicenter radiation medicine department.
Potters, Louis; Kapur, Ajay
2012-01-01
The safe delivery of radiation therapy requires multiple disciplines and interactions to perform flawlessly for each patient. Because treatment is individualized and every aspect of the patient's care is unique, it is difficult to regiment a delivery process that works flawlessly. The purpose of this study is to describe one safety-directed component of our quality program called the "No Fly Policy" (NFP). Our quality assurance program for radiation therapy reviewed the entire process of care prior, during, and after a patient's treatment course. Each component of care was broken down and rebuilt within a matrix of multidisciplinary safety quality checklists (QCL). The QCL process map was subsequently streamlined with revised task due dates and stopping rules. The NFP was introduced to place a holding pattern on treatment initiation pending reconciliation of associated stopping events. The NFP was introduced in a pilot phase using a Six-Sigma process improvement approach. Quantitative analysis on the performance of the new QCLs was performed using crystal reports in the Oncology Information Systems. Root cause analysis was conducted. Notable improvements in QCL performance were observed. The variances among staff in completing tasks reduced by a factor of at least 3, suggesting better process control. Steady improvements over time indicated an increasingly compliant and controlled adoption of the new safety-oriented process map. Stopping events led to rescheduling treatments with average and maximum delays of 2 and 4 days, respectively, with no reported adverse effects. The majority of stopping events were due to incomplete plan approvals stemming from treatment planning delays. Whereas these may have previously solicited last-minute interventions, including intensity modulated radiation therapy quality assurance, the NFP enabled nonpunitive, reasonable schedule adjustments to mitigate compromises in safe delivery. Implementation of the NFP has helped to mitigate risk from expedited care, convert reactive to proactive delays, and created a checklist, process driven, and variance-reducing culture in a large, multicenter department. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Evaluating Surface Flux Results from CERES-FLASHFlux
NASA Astrophysics Data System (ADS)
Wilber, A. C.; Stackhouse, P. W., Jr.; Kratz, D. P.; Gupta, S. K.; Sawaengphokhai, P.
2016-12-01
The Clouds and Earth's Radiant Energy System (CERES) mission provides TOA (Top-of-Atmosphere) and surface radiative flux products for each CERES footprint (Single Scanner Footprint) and also time integrated and spatially averaged (TISA) to provide 1ox1o fluxes at various temporal averages. The CERES TISA products are available to the public within 3-6 months of observation. The CERES Fast Longwave and SHortwave radiative Flux (FLASHFlux) data products were developed to provide a rapid release version of the CERES data products. FLASHFlux data products are made available to the research and applications communities within one week of the satellite observations. Over the last several years, the CERES team has contributed to a section on the variability of radiation budget at the Top-of-Atmosphere in the annual "State of the Climate Report" published in BAMS using CERES TISA and FLASHFlux data products. Recently, the FLASHFlux data were used to investigate the radiative impacts of the intense 2015-2016 El Nino event. In addition FLASHFlux date are routinely used by applied science in energy related and agricultural sectors. The current version of FLASHFlux is being upgraded to FLASHFlux Version4A to improve consistency with the climate quality Edition 4 CERES data products. This presentation will describe the planned changes including the change to the latest meteorological product from Global Modeling and Assimilation Office (GMAO), GEOS FP-IT (5.12.4). GEOS 5.12.4 is an assimilation that is consistent with MERRA-2. We present comparisons of global and regional changes in the TOA and surface radiative fluxes as a result of the upgrade for both longwave (LW) and shortwave (SW) surface fluxes. We also compare the data products against ground measurements using data from the Baseline Surface Radiation Network (BSRN) - including NOAA SURFRAD, Atmospheric Radiation Measurement (ARM) and Ocean buoy measurements from Woods Hole Oceanographic Institute (WHOI).
Taylor, Carolyn W; Wang, Zhe; Macaulay, Elizabeth; Jagsi, Reshma; Duane, Frances; Darby, Sarah C
2015-11-15
Breast cancer radiation therapy cures many women, but where the heart is exposed, it can cause heart disease. We report a systematic review of heart doses from breast cancer radiation therapy that were published during 2003 to 2013. Eligible studies were those reporting whole-heart dose (ie, dose averaged over the whole heart). Analyses considered the arithmetic mean of the whole-heart doses for the CT plans for each regimen in each study. We termed this "mean heart dose." In left-sided breast cancer, mean heart dose averaged over all 398 regimens reported in 149 studies from 28 countries was 5.4 Gy (range, <0.1-28.6 Gy). In regimens that did not include the internal mammary chain (IMC), average mean heart dose was 4.2 Gy and varied with the target tissues irradiated. The lowest average mean heart doses were from tangential radiation therapy with either breathing control (1.3 Gy; range, 0.4-2.5 Gy) or treatment in the lateral decubitus position (1.2 Gy; range, 0.8-1.7 Gy), or from proton radiation therapy (0.5 Gy; range, 0.1-0.8 Gy). For intensity modulated radiation therapy mean heart dose was 5.6 Gy (range, <0.1-23.0 Gy). Where the IMC was irradiated, average mean heart dose was around 8 Gy and varied little according to which other targets were irradiated. Proton radiation therapy delivered the lowest average mean heart dose (2.6 Gy, range, 1.0-6.0 Gy), and tangential radiation therapy with a separate IMC field the highest (9.2 Gy, range, 1.9-21.0 Gy). In right-sided breast cancer, the average mean heart dose was 3.3 Gy based on 45 regimens in 23 studies. Recent estimates of typical heart doses from left breast cancer radiation therapy vary widely between studies, even for apparently similar regimens. Maneuvers to reduce heart dose in left tangential radiation therapy were successful. Proton radiation therapy delivered the lowest doses. Inclusion of the IMC doubled typical heart dose. Copyright © 2015 Elsevier Inc. All rights reserved.
Quality Indicators in Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Jeffrey M.; Das, Prajnan, E-mail: prajdas@mdanderson.org
Oncologic specialty societies and multidisciplinary collaborative groups have dedicated considerable effort to developing evidence-based quality indicators (QIs) to facilitate quality improvement, accreditation, benchmarking, reimbursement, maintenance of certification, and regulatory reporting. In particular, the field of radiation oncology has a long history of organized quality assessment efforts and continues to work toward developing consensus quality standards in the face of continually evolving technologies and standards of care. This report provides a comprehensive review of the current state of quality assessment in radiation oncology. Specifically, this report highlights implications of the healthcare quality movement for radiation oncology and reviews existing efforts tomore » define and measure quality in the field, with focus on dimensions of quality specific to radiation oncology within the “big picture” of oncologic quality assessment efforts.« less
Nijman, Jessica L; Sixma, Herman; van Triest, Baukelien; Keus, Ronald B; Hendriks, Michelle
2012-01-01
In this study, we explore the quality aspects of radiation care from the patient's perspective in order to develop a draft Consumer Quality Index (CQI) Radiation Care instrument. Four focus group discussions with (former) cancer patients were held to explore the aspects determining the quality of radiation care. The list of aspects generated was categorised based on similarity and importance in a concept mapping procedure. Four focus group discussions revealed seven main themes related to the quality of radiation care: information provision, a patient-centred approach, professional competence, planning and waiting times, accessibility, cooperation and communication, and follow-up care. Results of concept mapping procedures revealed which items the patients considered to be most important. A radiation oncologist who is up to date about the patient's file is of paramount importance for cancer patients receiving radiotherapy. The quality aspects found through focus group discussions provided useful insight into how patients experience radiation care. Furthermore, concept mapping made these results more solid. To evaluate the quality of radiation care from the patient's perspective, these quality aspects will be guiding in the development of a CQI Radiation Care. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
The nature of pulsar radio emission
NASA Astrophysics Data System (ADS)
Dyks, J.; Rudak, B.; Demorest, P.
2010-01-01
High-quality averaged radio profiles of some pulsars exhibit double, highly symmetric features both in emission and in absorption. It is shown that both types of feature are produced by a split fan beam of extraordinary-mode curvature radiation that is emitted/absorbed by radially extended streams of magnetospheric plasma. With no emissivity in the plane of the stream, such a beam produces bifurcated emission components (BFCs) when our line of sight passes through the plane. An example of a double component created in this way is present in the averaged profile of the 5-ms pulsar J1012+5307. We show that the component can indeed be very well fitted by the textbook formula for the non-coherent beam of curvature radiation in the polarization state that is orthogonal to the plane of electron trajectory. The observed width of the BFC decreases with increasing frequency at a rate that confirms the curvature origin. Likewise, the double absorption features (double notches) are produced by the same beam of the extraordinary-mode curvature radiation, when it is eclipsed by thin plasma streams. The intrinsic property of curvature radiation to create bifurcated fan beams explains the double features in terms of a very natural geometry and implies the curvature origin of pulsar radio emission. Similarly, the `double conal' profiles of class D result from a cut through a wider stream with finite extent in magnetic azimuth. Therefore, their width reacts very slowly to changes of viewing geometry resulting from geodetic precession. The stream-cut interpretation implies a highly non-orthodox origin of both the famous S-swing of polarization angle and the low-frequency pulse broadening in D profiles. The azimuthal structure of polarization modes in the curvature radiation beam provides an explanation for the polarized `multiple imaging' and the edge depolarization of pulsar profiles.
Induction and quantification of gammma-H2AX foci following cx- and gamma-irradiaton
NASA Technical Reports Server (NTRS)
Leatherbarrow, E. L.; Cucinotta, F. A.; O'Neill, Peter
2004-01-01
Following DNA damage the histone H2AX becomes phosphorylated and can be visualised by immunofluorescence as an indicator of DSBs in individual cells. Using a wild type hamster cell line (V79-4) exposed to either a-particles or to Co-60 gamma-rays to induce DNA DSBs at different doses (20-200OmGy), the dose dependent induction of gamma-H2AX foci were scored both manually (by eye) and using image analysis. A linearly dependence on dose was found for both radiations. The number of DSBs determined by image analysis after a post-irradiation period of 30 minutes at 37 C, is 16.6 foci/cell/Gy for alpha-irradiation and 12.2 foci/cell/Gy for gamma-irradiation; the latter being 3-4 times the levels observed by eye and comparable to gamma-radiation-induced levels of prompt DSBs more recently reported using pulse field gel electrophoresis (approx. 16 DSBs/Gy). The average size of the gamma-H2AX foci induced by alpha-irradiation (0.30 square micrometers) is approximately 1.5 times larger than those induced by gamma-irradiation (0.19 square micrometers). The timescale of induction and removal of DSBs up to 24 hours post-irradiation, was investigated with gamma-H2AX foci levels found to remain significantly higher than controls for 4 or 6 hours in gamma-irradiated samples or alpha irradiated samples, respectively. These results demonstrate that not only gamma radiation but also alpha-radiation induce phosphorylation of the H2AX histone in response to DSBs even at low doses (20mGy for gamma-rays, 1 track/cell on average for alpha-particles) and the variation in size and dephosphorylation of the induced foci is dependent on radiation quality (LET).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendall, E; Higby, C; Algan, O
2016-06-15
Purpose: To compare the treatment plan quality and dose gradient near the hippocampus between VMAT (RapidArc) and IMRT delivery techniques for whole brain radiation therapy. Methods: Fifteen patients were evaluated in this retrospective study. All treatments were planned on Varian Eclipse TPS, using 3-Arc VMAT and 9-Field IMRT, following NRG Oncology protocol NRG-CC001 guidelines evaluated by a single radiation oncologist. Prescribed doses in all plans were 30 Gy delivered over 10 fractions normalized to a minimum of 100% of the dose covering 95% of the target volume. Identical contour sets and dose-volume constraints following protocol guidelines were also applied inmore » all plans. A paired t-test analysis was used to compare VMAT and IMRT plans. Results: NRG-CC001 protocol dose-volume constraints were met for all VMAT and IMRT plans. For the planning target volume (PTV), the average values for D2% and D98% were 6% lower and 4% higher in VMAT than in IMRT, respectively. The average mean and maximum hippocampus doses in Gy for VMAT vs IMRT plans were (11.85±0.81 vs. 12.24±0.56, p=0.10) and (16.27±0.78 vs. 16.59±0.71, p=0.24), respectively. In VMAT, the average mean and maximum chiasm doses were 3% and 1% higher than in IMRT plans, respectively. For the left optic nerve, the average mean and maximum doses were 10% and 5% higher in VMAT than in IMRT plans, respectively. These values were 12% and 3% for the right optic nerve. The average percentage of dose gradient around the hippocampus in the 0–5mm and 5–10mm abutted regions for VMAT vs. IMRT were (4.42%±2.22% /mm vs. 3.95%±2.61% /mm, p=0.43) and (4.54%±1.50% /mm vs. 4.39%±1.28% /mm, p=0.73), respectively. Conclusion: VMAT plans can achieve higher hippocampus sparing with a faster dose fall-off than IMRT plans. Though statistically insignificant, VMAT offers better PTV coverage with slightly higher doses to OARs.« less
Spatially Refined Aerosol Direct Radiative Forcing Efficiencies
NASA Technical Reports Server (NTRS)
Henze, Daven K.; Shindell, Drew Todd; Akhtar, Farhan; Spurr, Robert J. D.; Pinder, Robert W.; Loughlin, Dan; Kopacz, Monika; Singh, Kumaresh; Shim, Changsub
2012-01-01
Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary to assess realistic policy options. To address this challenge, here we show how adjoint model sensitivities can be used to provide highly spatially resolved estimates of the DRF from emissions of black carbon (BC), primary organic carbon (OC), sulfur dioxide (SO2), and ammonia (NH3), using the example of emissions from each sector and country following multiple Representative Concentration Pathway (RCPs). The radiative forcing efficiencies of many individual emissions are found to differ considerably from regional or sectoral averages for NH3, SO2 from the power sector, and BC from domestic, industrial, transportation and biomass burning sources. Consequently, the amount of emissions controls required to attain a specific DRF varies at intracontinental scales by up to a factor of 4. These results thus demonstrate both a need and means for incorporating spatially refined aerosol DRF into analysis of future emissions scenario and design of air quality and climate change mitigation policies.
Zhou, Yunfeng; Wang, Juan; Dassarath, Meera; Wang, Minhong; Zhang, Qiang; Xiong, Yuwei; Yuan, Quan
2015-01-01
To prospectively compare the new computed tomographic angiography (CTA) protocol (NCP) using 80-kV and dual-phase scanning with the routine CTA protocol (RCP) using 120-kV and single-phase scanning in patients with peripheral arterial disease. A total of 60 patients were randomized to undergo the NCP (30 patients) or RCP (30 patients) scan. We compared the arterial attenuation values, overriding of the contrast bolus, signal-to-noise ratio, and radiation dose between 2 groups. The occurrence rate of contrast bolus overriding was not statistically significant (P = 0.69). The average arterial attenuation value in the NCP group was significantly higher (P < 0.05) than that in the RCP group. The radiation dose in the RCP group was significantly higher (P < 0.001) than that in the NCP group. The mean signal-to-noise ratio in the NCP group was significantly lower (P < 0.001). Sixty-four-slice CTA with the NCP can significantly reduce the radiation dose and improve the arterial enhancement and calf arteries imaging.
Radiation measurements on the Mir Orbital Station.
Badhwar, G D; Atwell, W; Reitz, G; Beaujean, R; Heinrich, W
2002-10-01
Radiation measurements made onboard the MIR Orbital Station have spanned nearly a decade and covered two solar cycles, including one of the largest solar particle events, one of the largest magnetic storms, and a mean solar radio flux level reaching 250 x 10(4) Jansky that has been observed in the last 40 years. The cosmonaut absorbed dose rates varied from about 450 microGy day-1 during solar minimum to approximately half this value during the last solar maximum. There is a factor of about two in dose rate within a given module, and a similar variation from module to module. The average radiation quality factor during solar minimum, using the ICRP-26 definition, was about 2.4. The drift of the South Atlantic Anomaly was measured to be 6.0 +/- 0.5 degrees W, and 1.6 +/- 0.5 degrees N. These measurements are of direct applicability to the International Space Station. This paper represents a comprehensive review of Mir Space Station radiation data available from a variety of sources. c2002 Elsevier Science Ltd. All rights reserved.
Koplay, M; Kizilca, O; Cimen, D; Sivri, M; Erdogan, H; Guvenc, O; Oc, M; Oran, B
2016-11-01
The goal of this study was to investigate the radiation dose and diagnostic efficacy of cardiac computed tomography angiography (CCTA) using prospective ECG-gated high-pitch dual-source computed tomography (DSCT) in the diagnosis of congenital cardiovascular abnormalities in pediatric population. One hundred five pediatric patients who were clinically diagnosed with congenital heart disease with suspected extracardiac vascular abnormalities were included in the study. All CCTAs were performed on a 128×2-section DSCT scanner. CCTA findings were compared with surgical and/or conventional cardiac angiography findings. Dose-length product (DLP) and effective doses (ED) were calculated for each patient. Patients were divided into 4 groups by age, and ED and DLP values were compared among groups. The image quality was evaluated using a five-point scale. CCTA showed 173 abnormalities in 105 patients. There were 2 patients with false positive and 3 with false negative findings. The sensitivity and specificity of CCTA were 98.3% and 99.9%, respectively. The positive predictive value and negative predictive value of CCT were 98.9% and 99.9%, respectively. The average DLP and ED values were 15.6±9.6 (SD) mGy.cm and 0.34±0.10 (SD) mSv, respectively. The mean image quality score was 4.8±0.5 (SD) in all patients. The inter-observer agreement for the image quality scores was good (κ=0.80). CCTA is an excellent imaging modality for evaluation of cardiovascular abnormalities and provides excellent image quality with very low radiation exposure when low-dose prospective ECG-triggered high-pitch DSCT is used. Copyright © 2016 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Atar, Eli; Kornowski, Ran; Bachar, Gil N
2010-11-01
Coronary CTangiography is an accurate imaging modality; however, its main drawback is the radiation dose. A new technology, the "step and shoot," which reduces the radiation up to one-eighth, is now available. To assess our initial experience using the "step-and-shoot" technology for various vascular pathologies. During a 10 month period 125 consecutive asymptomatic patients (111 men and 14 women aged 25-82, average age 54.9 years) with various clinical indications that were appropriate for step-and-shoot CCTA (regular heart rate < 65 beats/minute and body weight < 115 kg) were scanned with a 64-slice multidetector computed tomography Brilliance scanner (Philips, USA). The preparation protocol for the scan was the same as for regular coronary CTA. All examinations were interpreted by at least one experienced radiologist and one experienced interventional cardiologist. The quality of the examinations was graded from 1 (excellent imaging quality of all coronary segments) to 4 (poor quality, not diagnostic). There were 99 patients without a history of coronary intervention, 13 after coronary stent deployment (19 stents) and 3 after coronary artery bypass graft. Coronary interpretation was obtained in 122 examinations (97.6%). The imaging quality obtained was as follows: 103 patients scored 1 (82.4%), 15 scored 2 (12%), 4 scored 3 (3.2%) and 3 scored 4 (2.4%). The grades were unrelated to cardiac history or type of previous examinations. Poor image quality occurred because of sudden heart rate acceleration during the scan (one patient), movement and respiration (one patient), and arrhythmia and poor scan timing (in one). Two patients were referred to percutaneous coronary intervention based on the CCTA findings, which correlated perfectly. Step-and-shoot CCTA is a reliable technique and CCTA algorithm comparable to regular CCTA. This technique requires the lowest radiation dose, as compared to other coronary imaging modalities, that can be used for all CCTA indications based on the inclusion criteria of low (> 65 bpm) and stable heart rate.
NASA Astrophysics Data System (ADS)
Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.
2016-08-01
The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 μg m-3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere's near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth's surface with a global average reduction in shortwave radiation of 1.2 W m-2. This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR's CCSM simulation, which does not include the advanced chemistry and aerosol treatment of GU-WRF/Chem and cannot simulate the impacts of changing climate and emissions with the same level of detailed treatments. This study indicates that effective climate mitigation and emission control strategies are needed to prevent future health impact and ecosystem stress. Further, studies that are used to develop these strategies should use fully coupled models with sophisticated chemical and aerosol-interaction treatments that can provide a more realistic representation of the atmosphere.
NASA Technical Reports Server (NTRS)
Shinn, J. L.; Wilson, J. W.
2003-01-01
The tissue equivalent proportional counter had the purpose of providing the energy absorbed from a radiation field and an estimate of the corresponding linear energy transfer (LET) for evaluation of radiation quality to convert to dose equivalent. It was the recognition of the limitations in estimating LET which lead to a new approach to dosimetry, microdosimetry, and the corresponding emphasis on energy deposit in a small tissue volume as the driver of biological response with the defined quantity of lineal energy. In many circumstances, the average of the lineal energy and LET are closely related and has provided a basis for estimating dose equivalent. Still in many cases the lineal is poorly related to LET and brings into question the usefulness as a general purpose device. These relationships are examined in this paper.
Does temperature nudging overwhelm aerosol radiative effects in regional integrated climate models?
NASA Astrophysics Data System (ADS)
He, Jian; Glotfelty, Timothy; Yahya, Khairunnisa; Alapaty, Kiran; Yu, Shaocai
2017-04-01
Nudging (data assimilation) is used in many regional integrated meteorology-air quality models to reduce biases in simulated climatology. However, in such modeling systems, temperature changes due to nudging could compete with temperature changes induced by radiatively active and hygroscopic short-lived tracers leading to two interesting dilemmas: when nudging is continuously applied, what are the relative sizes of these two radiative forces at regional and local scales? How do these two forces present in the free atmosphere differ from those present at the surface? This work studies these two issues by converting temperature changes due to nudging into pseudo radiative effects (PRE) at the surface (PRE_sfc), in troposphere (PRE_atm), and at the top of atmosphere (PRE_toa), and comparing PRE with the reported aerosol radiative effects (ARE). Results show that the domain-averaged PRE_sfc is smaller than ARE_sfc estimated in previous studies and this work, but could be significantly larger than ARE_sfc at local scales. PRE_atm is also much smaller than ARE_atm. These results indicate that appropriate nudging methodology could be applied to the integrated models to study aerosol radiative effects at continental/regional scales, but it should be treated with caution for local scale applications.
RADECS Short Course Session I: The Space Radiation Environment
NASA Technical Reports Server (NTRS)
Xapsos, Michael; Bourdarie, Sebastien
2007-01-01
The presented slides and accompanying paper focus on radiation in the space environment. Since space exploration has begun it has become evident that the space environment is a highly aggressive medium. Beyond the natural protection provided by the Earth's atmosphere, various types of radiation can be encountered. Their characteristics (energy and nature), origins and distributions in space are extremely variable. This environment degrades electronic systems and on-board equipment in particular and creates radiobiological hazards during manned space flights. Based on several years of space exploration, a detailed analysis of the problems on satellites shows that the part due to the space environment is not negligible. It appears that the malfunctions are due to problems linked to the space environment, electronic problems, design problems, quality problems, other issues, and unexplained reasons. The space environment is largely responsible for about 20% of the anomalies occurring on satellites and a better knowledge of that environment could only increase the average lifetime of space vehicles. This naturally leads to a detailed study of the space environment and of the effects that it induces on space vehicles and astronauts. Sources of radiation in the space environment are discussed here and include the solar activity cycle, galactic cosmic rays, solar particle events, and Earth radiation belts. Future challenges for space radiation environment models are briefly addressed.
Radiation Force Caused by Scattering, Absorption, and Emission of Light by Nonspherical Particles
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)
2001-01-01
General formulas for computing the radiation force exerted on arbitrarily oriented and arbitrarily shaped nonspherical particles due to scattering, absorption, and emission of electromagnetic radiation are derived. For randomly oriented particles with a plane of symmetry, the formula for the average radiation force caused by the particle response to external illumination reduces to the standard Debye formula derived from the Lorenz-Mie theory, whereas the average radiation force caused by emission vanishes.
Kapur, Ajay; Adair, Nilda; O'Brien, Mildred; Naparstek, Nikoleta; Cangelosi, Thomas; Zuvic, Petrina; Joseph, Sherin; Meier, Jason; Bloom, Beatrice; Potters, Louis
Modern external beam radiation therapy treatment delivery processes potentially increase the number of tasks to be performed by therapists and thus opportunities for errors, yet the need to treat a large number of patients daily requires a balanced allocation of time per treatment slot. The goal of this work was to streamline the underlying workflow in such time-interval constrained processes to enhance both execution efficiency and active safety surveillance using a Kaizen approach. A Kaizen project was initiated by mapping the workflow within each treatment slot for 3 Varian TrueBeam linear accelerators. More than 90 steps were identified, and average execution times for each were measured. The time-consuming steps were stratified into a 2 × 2 matrix arranged by potential workflow improvement versus the level of corrective effort required. A work plan was created to launch initiatives with high potential for workflow improvement but modest effort to implement. Time spent on safety surveillance and average durations of treatment slots were used to assess corresponding workflow improvements. Three initiatives were implemented to mitigate unnecessary therapist motion, overprocessing of data, and wait time for data transfer defects, respectively. A fourth initiative was implemented to make the division of labor by treating therapists as well as peer review more explicit. The average duration of treatment slots reduced by 6.7% in the 9 months following implementation of the initiatives (P = .001). A reduction of 21% in duration of treatment slots was observed on 1 of the machines (P < .001). Time spent on safety reviews remained the same (20% of the allocated interval), but the peer review component increased. The Kaizen approach has the potential to improve operational efficiency and safety with quick turnaround in radiation therapy practice by addressing non-value-adding steps characteristic of individual department workflows. Higher effort opportunities are identified to guide continual downstream quality improvements. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buehler, M.T.; Hrejsa, A.F.
X-raying the entire spinal column in the standing position in a single exposure (mainly the AP projection) is an often-used chiropractic radiography procedure which has also found some application in medical scoliosis screening program. Aside from any controversy of clinical objectives or medical necessity, the primary agreed-upon requisite for such procedure is twofold; achieving the best possible film image quality with the least amount of radiation exposure to the patient. A popular method of accomplishing this objective is by the use of collimator-attached devices designed to selectively filter the primary x-ray beam in accordance with regional variations of body thicknessmore » and/or density. This study was conducted to evaluate the use of a new lead-acrylic filter system under specialized chiropractic conditions. In comparison to other available systems, it was concluded that this new system; a) is generally equivalent in its radiation dose reduction capabilities; b) is capable of producing full spine radiographs with good to above average image quality; and c) is appreciably easier to use.« less
[CLINICAL BACKGROUND ANALYSIS ABOUT TRANSURETHRAL ELECTROCOAGULATION].
Katsui, Masahiro; Kikuchi, Eiji; Yazawa, Satoshi; Hagiwara, Masayuki; Morita, Shinya; Shinoda, Kazunobu; Kosaka, Takeo; Mizuno, Ryuichi; Shinojima, Toshiaki; Asanuma, Hiroshi; Miyajima, Akira; Oya, Mototsugu
2015-10-01
Transurethral electrocoagulation (TUC) is a rare event but occurs in a constant manner with various causes or disorders and reduces patient quality of life. So far there have been no reports focusing on the details of TUC. We focused on the clinical background and related causes in cases of TUC in our institution. We identified 76 cases (65 patients) who underwent TUC at Keio University Hospital between April 2001 and March 2011. We focused on patient background, especially with respect to the primary disease, treatment modality, use of antiplatelet or anticoagulant agent, timing of TUC, type of electrosurgical device, and the incidence of transfusion. The primary disease for TUC included bladder tumor (BT) in 31 cases, benign prostate hyperplasia (BPH) in 13, prostate cancer (PCa) in 13, idiopathic bladder bleeding in 4, periarteritis nodosa in 3, uterine cervical cancer in 3, and others in 9. TUC after transurethral resection (TUR) was found in 38 cases, including transurethral resection of bladder tumor (TURBT) in 26 of 31 BT cases and transurethral resection of prostate (TURP) in 12 of 13 BPH cases. After TURBT, TUC was performed before removal of a urethral catheter in 7 cases, and after removal of a urethral catheter in 19 cases. With regard to TUC associated with TURP, the average estimated prostate volume in TUC cases before removal of the urethral catheter was 66.2 ml, which was significantly larger than that in TUC cases after removal of the urethral catheter (46.1 ml, p = 0.045). TUC after the radiation therapy was observed in 21 cases, and the average time from the radiation therapy to TUC was 3.4 years (7 months-10 years). TUC was caused by multiple causes or disorders, and 75% of our TUC was associated with BT, BPH or PCa. TUC associated with TURBT frequently occurred within 1 week after TURBT but was still observed after 1 month following the operation. All TUC associated with TURP occurred within 3 weeks after operation. The average period from radiation therapy to TUC was 3.4 years (7 months-10 years) and TUC associated with radiation cystitis could occur beyond 5 years after radiation.
Thermal Investigation of Interaction between High-power CW-laser Radiation and a Water-jet
NASA Astrophysics Data System (ADS)
Brecher, Christian; Janssen, Henning; Eckert, Markus; Schmidt, Florian
The technology of a water guided laser beam has been industrially established for micro machining. Pulsed laser radiation is guided via a water jet (diameter: 25-250 μm) using total internal reflection. Due to the cylindrical jet shape the depth of field increases to above 50 mm, enabling parallel kerfs compared to conventional laser systems. However higher material thicknesses and macro geometries cannot be machined economically viable due to low average laser powers. Fraunhofer IPT has successfully combined a high-power continuous-wave (CW) fiber laser (6 kW) and water jet technology. The main challenge of guiding high-power laser radiation in water is the energy transferred to the jet by absorption, decreasing its stability. A model of laser water interaction in the water jet has been developed and validated experimentally. Based on the results an upscaling of system technology to 30 kW is discussed, enabling a high potential in cutting challenging materials at high qualities and high speeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Carolyn W., E-mail: carolyn.taylor@ctsu.ox.ac.uk; Wang, Zhe; Macaulay, Elizabeth
Purpose: Breast cancer radiation therapy cures many women, but where the heart is exposed, it can cause heart disease. We report a systematic review of heart doses from breast cancer radiation therapy that were published during 2003 to 2013. Methods and Materials: Eligible studies were those reporting whole-heart dose (ie, dose averaged over the whole heart). Analyses considered the arithmetic mean of the whole-heart doses for the CT plans for each regimen in each study. We termed this “mean heart dose.” Results: In left-sided breast cancer, mean heart dose averaged over all 398 regimens reported in 149 studies from 28more » countries was 5.4 Gy (range, <0.1-28.6 Gy). In regimens that did not include the internal mammary chain (IMC), average mean heart dose was 4.2 Gy and varied with the target tissues irradiated. The lowest average mean heart doses were from tangential radiation therapy with either breathing control (1.3 Gy; range, 0.4-2.5 Gy) or treatment in the lateral decubitus position (1.2 Gy; range, 0.8-1.7 Gy), or from proton radiation therapy (0.5 Gy; range, 0.1-0.8 Gy). For intensity modulated radiation therapy mean heart dose was 5.6 Gy (range, <0.1-23.0 Gy). Where the IMC was irradiated, average mean heart dose was around 8 Gy and varied little according to which other targets were irradiated. Proton radiation therapy delivered the lowest average mean heart dose (2.6 Gy, range, 1.0-6.0 Gy), and tangential radiation therapy with a separate IMC field the highest (9.2 Gy, range, 1.9-21.0 Gy). In right-sided breast cancer, the average mean heart dose was 3.3 Gy based on 45 regimens in 23 studies. Conclusions: Recent estimates of typical heart doses from left breast cancer radiation therapy vary widely between studies, even for apparently similar regimens. Maneuvers to reduce heart dose in left tangential radiation therapy were successful. Proton radiation therapy delivered the lowest doses. Inclusion of the IMC doubled typical heart dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Raymond Javan, E-mail: email.rchan@gmail.com; School of Nursing, Queensland University of Technology, Kelvin Grove; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove
Purpose: To investigate the effects of a natural oil-based emulsion containing allantoin versus aqueous cream for preventing and managing radiation-induced skin reactions. Methods and Materials: A total of 174 patients were randomized and participated in the study. Patients received either cream 1 (the natural oil-based emulsion containing allantoin) or cream 2 (aqueous cream). Skin toxicity, pain, itching, and skin-related quality of life scores were collected for up to 4 weeks after radiation treatment. Results: Patients who received cream 1 had a significantly lower average level of Common Terminology Criteria for Adverse Events at week 3 (P<.05) but had statistically higher averagemore » levels of skin toxicity at weeks 7, 8, and 9 (all P<.001). Similar results were observed when skin toxicity was analyzed by grades. With regards to pain, patients in the cream 2 group had a significantly higher average level of worst pain (P<.05) and itching (P=.046) compared with the cream 1 group at week 3; however, these differences were not observed at other weeks. In addition, there was a strong trend for cream 2 to reduce the incidence of grade 2 or more skin toxicity in comparison with cream 1 (P=.056). Overall, more participants in the cream 1 group were required to use another topical treatment at weeks 8 (P=.049) and 9 (P=.01). Conclusion: The natural oil-based emulsion containing allantoin seems to have similar effects for managing skin toxicity compared with aqueous cream up to week 5; however, it becomes significantly less effective at later weeks into the radiation treatment and beyond treatment completion (week 6 and beyond). There were no major differences in pain, itching, and skin-related quality of life. In light of these results, clinicians and patients can base their decision on costs and preferences. Overall, aqueous cream seems to be a more preferred option.« less
Intercomparison of radiation measurements on STS-63.
Badhwar, G D; Atwell, W; Cash, B; Weyland, M; Petrov, V M; Tchernykh, I V; Akatov YuA; Shurshakov, V A; Arkhangelsky, V V; Kushin, V V; Klyachin, N A; Benton, E V; Frank, A L; Benton, E R; Frigo, L A; Dudkin, V E; Potapov YuV; Vana, N; Schoner, W; Fugger, M
1996-11-01
A joint NASA Russia study of the radiation environment inside the Space Shuttle was performed on STS-63. This was the second flight under the Shuttle-Mir Science Program (Phase 1). The Shuttle was launched on 2 February 1995, in a 51.65 degrees inclination orbit and landed at Kennedy Space Center on 11 February 1995, for a total flight duration of 8.27 days. The Shuttle carried a complement of both passive and active detectors distributed throughout the Shuttle volume. The crew exposure varied from 1962 to 2790 microGy with an average of 2265.8 microGy or 273.98 microGy/day. Crew exposures varied by a factor of 1.4, which is higher than usual for STS mission. The flight altitude varied from 314 to 395 km and provided a unique opportunity to obtain dose variation with altitude. Measurements of the average east-west dose variation were made using two active solid state detectors. The dose rate in the Spacehab locker, measured using a tissue equivalent proportional counter (TEPC), was 413.3 microGy/day, consistent with measurements made using thermoluminescent detectors (TLDs) in the same locker. The average quality factor was 2.33, and although it was higher than model calculations, it was consistent with values derived from high temperature peaks in TLDs. The dose rate due to galactic cosmic radiation was 110.6 microGy/day and agreed with model calculations. The dose rate from trapped particles was 302.7 microGy/day, nearly a factor of 2 lower than the prediction of the AP8 model. The neutrons in the intermediate energy range of 1-20 MeV contributed 13 microGy/day and 156 microSv/day, respectively. Analysis of data from the charged particle spectrometer has not yet been completed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masi, K; Ditman, M; Marsh, R
Purpose: There is potentially a wide variation in plan quality for a certain disease site, even for clinics located in the same system of hospitals. We have used a prostate-specific knowledge-based planning (KBP) model as a quality control tool to investigate the variation in prostate treatment planning across a network of affiliated radiation oncology departments. Methods: A previously created KBP model was applied to 10 patients each from 4 community-based clinics (Clinics A, B, C, and D). The KBP model was developed using RapidPlan (Eclipse v13.5, Varian Medical Systems) from 60 prostate/prostate bed IMRT plans that were originally planned usingmore » an in-house treatment planning system at the central institution of the community-based clinics. The dosimetric plan quality (target coverage and normal-tissue sparing) of each model-generated plan was compared to the respective clinically-used plan. Each community-based clinic utilized the same planning goals to develop the clinically-used plans that were used at the main institution. Results: Across all 4 clinics, the model-generated plans decreased the mean dose to the rectum by varying amounts (on average, 12.5, 2.6, 4.5, and 2.7 Gy for Clinics A, B, C, and D, respectively). The mean dose to the bladder also decreased with the model-generated plans (5.4, 2.3, 3.0, and 4.1 Gy, respectively). The KBP model also identified that target coverage (D95%) improvements were possible for for Clinics A, B, and D (0.12, 1.65, and 2.75%) while target coverage decreased by 0.72% for Clinic C, demonstrating potentially different trade-offs made in clinical plans at different institutions. Conclusion: Quality control of dosimetric plan quality across a system of radiation oncology practices is possible with knowledge-based planning. By using a quality KBP model, smaller community-based clinics can potentially identify the areas of their treatment plans that may be improved, whether it be in normal-tissue sparing or improved target coverage. M. Matuszak has research funding for KBP from Varian Medical Systems.« less
Koplay, Mustafa; Celik, Mahmut; Avcı, Ahmet; Erdogan, Hasan; Demir, Kenan; Sivri, Mesut; Nayman, Alaaddin
2015-01-01
We aimed to report the image quality, relationship between heart rate and image quality, amount of contrast agent given to the patients and radiation doses in coronary CT angiography (CTA) obtained by using high-pitch prospectively ECG-gated "Flash Spiral" technique (method A) or retrospectively ECG-gated technique (method B) using 128×2-slice dual-source CT. A total of 110 patients who were evaluated with method A and method B technique with a 128×2-detector dual-source CT device were included in the study. Patients were divided into three groups based on their heart rates during the procedure, and a relationship between heart rate and image quality were evaluated. The relationship between heart rate, gender and radiation dose received by the patients was compared. A total of 1760 segments were evaluated in terms of image quality. Comparison of the relationship between heart rate and image quality revealed a significant difference between heart rate <60 beats/min group and >75 beats/min group whereas <60 beats/min and 60-75 beats/min groups did not differ significantly. The average effective dose for coronary CTA was calculated as 1.11 mSv (0.47-2.01 mSv) for method A and 8.22 mSv (2.19-12.88 mSv) for method B. Method A provided high quality images with doses as low as <1 mSv in selected patients who have low heart rates with a high negative predictive value to rule out coronary artery disease. Although method B increases the amount of effective dose, it provides high diagnostic quality images for patients who have a high heart rate and arrhythmia which makes it is difficult to obtain images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagata, Yasushi; Hiraoka, Masahiro; Mizowaki, Takashi
2009-10-01
Purpose: To recognize the current status of stereotactic body radiotherapy (SBRT) in Japan, using a nationwide survey conducted by the Japan 3-D Conformal External Beam Radiotherapy Group. Methods and Materials: The questionnaire was sent by mail to 117 institutions. Ninety-four institutions (80%) responded by the end of November 2005. Fifty-three institutions indicated that they have already started SBRT, and 38 institutions had been reimbursed by insurance. Results: A total of 1111 patients with histologically confirmed lung cancer were treated. Among these patients, 637 had T1N0M0 and 272 had T2N0M0 lung cancer. Metastatic lung cancer was found in 702 and histologicallymore » unconfirmed lung tumor in 291 patients. Primary liver cancer was found in 207 and metastatic liver cancer in 76 patients. The most frequent schedule used for primary lung cancer was 48Gy in 4 fractions at 22 institutions (52%), followed by 50Gy in 5 fractions at 11 institutions (26%) and 60Gy in 8 fractions at 4 institutions (10%). The tendency was the same for metastatic lung cancer. The average number of personnel involved in SBRT was 1.8 radiation oncologists, including 1.1 certified radiation oncologists, 2.8 technologists, 0.7 nurses, and 0.6 certified quality assurance personnel and 0.3 physicists. The most frequent amount of time for treatment planning was 61-120min, for quality assurance was 50-60min, and for treatment was 30min. There were 14 (0.6% of all cases) reported Grade 5 complications: 11 cases of radiation pneumonitis, 2 cases of hemoptysis, and 1 case of radiation esophagitis. Conclusion: The current status of SBRT in Japan was surveyed.« less
A case study of the radiative effect of aerosols over Europe: EUCAARI-LONGREX
NASA Astrophysics Data System (ADS)
Esteve, Anna R.; Highwood, Eleanor J.; Ryder, Claire L.
2016-06-01
The radiative effect of anthropogenic aerosols over Europe during the 2008 European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions Long Range Experiment (EUCAARI-LONGREX) campaign has been calculated using measurements collected by the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft and radiative transfer modelling. The aircraft sampled anthropogenically perturbed air masses across north-western Europe under anticyclonic conditions with aerosol optical depths ranging from 0.047 to 0.357. For one specially designed "radiative closure" flight, simulated irradiances have been compared to radiation measurements for a case of aged European aerosol in order to explore the validity of model assumptions and the degree of radiative closure that can be attained given the spatial and temporal variability of the observations and their measurement uncertainties. Secondly, the diurnally averaged aerosol radiative effect throughout EUCAARI-LONGREX has been calculated. The surface radiative effect ranged between -3.9 and -22.8 W m-2 (mean -11 ± 5 W m-2), whilst top-of-the-atmosphere (TOA) values were between -2.1 and -12.0 W m-2 (mean -5 ± 3 W m-2). We have quantified the uncertainties in our calculations due to the way in which aerosols and other parameters are represented in a radiative transfer model. The largest uncertainty in the aerosol radiative effect at both the surface and the TOA comes from the spectral resolution of the information used in the radiative transfer model (˜ 17 %) and the aerosol description (composition and size distribution) used in the Mie calculations of the aerosol optical properties included in the radiative transfer model (˜ 7 %). The aerosol radiative effect at the TOA is also highly sensitive to the surface albedo (˜ 12 %).
Industrial 2-kW TEA CO2 laser for paint stripping of aircraft
NASA Astrophysics Data System (ADS)
Schweizer, Gerhard; Werner, L.
1995-03-01
Paint stripping of aircraft with pulsed laser radiation has several advantages compared to traditional methods of depainting: selective removal of individual layers possible, suitable for sensitive surfaces, workpiece ready for immediate repainting, and considerable reduction of contaminated waste. For paint stripping of large aircraft pulsed lasers with average power of at least 2 kW are required. Amongst the various types of pulsed lasers technical and economical considerations clearly favor TEA CO2 lasers for this application. The first commercially available TEA CO2 laser with an average power in excess of 2 kW, especially designed for depainting, has been developed by Urenco. The key data of this laser are: pulse energy up to 9 J, repetition rate up to 330 Hz, and beam quality: `flat top'.
Creating "Intelligent" Climate Model Ensemble Averages Using a Process-Based Framework
NASA Astrophysics Data System (ADS)
Baker, N. C.; Taylor, P. C.
2014-12-01
The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is often used to add value to model projections: consensus projections have been shown to consistently outperform individual models. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, certain models reproduce climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument and surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing weighted and unweighted model ensembles. For example, one tested metric weights the ensemble by how well models reproduce the time-series probability distribution of the cloud forcing component of reflected shortwave radiation. The weighted ensemble for this metric indicates lower simulated precipitation (up to .7 mm/day) in tropical regions than the unweighted ensemble: since CMIP5 models have been shown to overproduce precipitation, this result could indicate that the metric is effective in identifying models which simulate more realistic precipitation. Ultimately, the goal of the framework is to identify performance metrics for advising better methods for ensemble averaging models and create better climate predictions.
Cosmic Radiation | RadTown USA | US EPA
2017-08-07
Radiation from space is constantly hitting the Earth. Radiation from space is called cosmic radiation. Cosmic radiation makes up about five percent of annual radiation exposure of an average person in the United States.
Satellite-based climate data records of surface solar radiation from the CM SAF
NASA Astrophysics Data System (ADS)
Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe
2017-04-01
The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface radiation also the longwave surface radiation as well as surface albedo and numerous cloud properties are provided in CLARA. Here we provide an overview of the climate data records of the surface solar radiation and present the results of the quality assessment of both climate data records against available surface reference observations, e.g., from the BSRN and the GEBA data archive.
[Highly quality-controlled radiation therapy].
Shirato, Hiroki
2005-04-01
Advanced radiation therapy for intracranial disease has focused on set-up accuracy for the past 15 years. However, quality control in the prescribed dose is actually as important as the tumor set-up in radiation therapy. Because of the complexity of the three-dimensional radiation treatment planning system in recent years, the highly quality-controlled prescription of the dose has now been reappraised as the mainstream to improve the treatment outcome of radiation therapy for intracranial disease. The Japanese Committee for Quality Control of Radiation Therapy has developed fundamental requirements such as a QC committee in each hospital, a medical physicist, dosimetrists (QC members), and an external audit.
Impact on dose and image quality of a software-based scatter correction in mammography.
Monserrat, Teresa; Prieto, Elena; Barbés, Benigno; Pina, Luis; Elizalde, Arlette; Fernández, Belén
2018-06-01
Background In 2014, Siemens developed a new software-based scatter correction (Progressive Reconstruction Intelligently Minimizing Exposure [PRIME]), enabling grid-less digital mammography. Purpose To compare doses and image quality between PRIME (grid-less) and standard (with anti-scatter grid) modes. Material and Methods Contrast-to-noise ratio (CNR) was measured for various polymethylmethacrylate (PMMA) thicknesses and dose values provided by the mammograph were recorded. CDMAM phantom images were acquired for various PMMA thicknesses and inverse Image Quality Figure (IQF inv ) was calculated. Values of incident entrance surface air kerma (ESAK) and average glandular dose (AGD) were obtained from the DICOM header for a total of 1088 pairs of clinical cases. Two experienced radiologists compared subjectively the image quality of a total of 149 pairs of clinical cases. Results CNR values were higher and doses were lower in PRIME mode for all thicknesses. IQF inv values in PRIME mode were lower for all thicknesses except for 40 mm of PMMA equivalent, in which IQF inv was slightly greater in PRIME mode. A mean reduction of 10% in ESAK and 12% in AGD in PRIME mode with respect to standard mode was obtained. The clinical image quality in PRIME and standard acquisitions resulted to be similar in most of the cases (84% for the first radiologist and 67% for the second one). Conclusion The use of PRIME software reduces, in average, the dose of radiation to the breast without affecting image quality. This reduction is greater for thinner and denser breasts.
NASA Astrophysics Data System (ADS)
Opálková, Marie; Navrátil, Martin; Špunda, Vladimír; Blanc, Philippe; Wald, Lucien
2018-04-01
A database containing 10 min means of solar irradiance measured on a horizontal plane in several ultraviolet and visible bands from July 2014 to December 2016 at three stations in the area of the city of Ostrava (Czech Republic) is presented. The database contains time series of 10 min average irradiances or photosynthetic photon flux densities measured in the following spectral bands: 280-315 nm (UVB); 315-380 nm (UVA); and 400-700 nm (photosynthetically active radiation, PAR); 510-700 nm; 600-700 nm; 610-680 nm; 690-780 nm; 400-1100 nm. A series of meteorological variables including relative air humidity and air temperature at surface is also provided at the same 10 min time step at all three stations, and precipitation is provided for two stations. Air pressure, wind speed, wind direction, and concentrations of air pollutants PM10, SO2, NOx, NO, NO2 were measured at the 1 h time step at the fourth station owned by the Public Health Institute of Ostrava. The details of the experimental sites and instruments used for the measurements are given. Special attention is given to the data quality, and the original approach to the data quality which was established is described in detail. About 130 000 records for each of the three stations are available in the database. This database offers a unique ensemble of variables having a high temporal resolution and it is a reliable source for radiation in relation to environment and vegetation in highly polluted areas of industrial cities in the of northern mid-latitudes. The database has been placed on the PANGAEA repository (https://doi.org/10.1594/PANGAEA.879722) and contains individual data files for each station.
The IHS diagnostic X-ray equipment radiation protection program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapp, A.; Byrns, G.; Suleiman, O.
The Indian Health Service (IHS) operates or contracts with Tribal groups to operate 50 hospitals and approximately 165 primary ambulatory care centers. These facilities contain approximately 275 medical and 800 dental diagnostic x-ray machines. IHS environmental health personnel in collaboration with the Food and Drug Administration's (FDA) Center for Devices and Radiological Health (CDRH) developed a diagnostic x-ray protection program including standard survey procedures and menu-driven calculations software. Important features of the program include the evaluation of equipment performance collection of average patient entrance skin exposure (ESE) measurements for selected procedures, and quality assurance. The ESE data, collected using themore » National Evaluation of X-ray Trends (NEXT) protocol, will be presented. The IHS Diagnostic X-ray Radiation Protection Program is dynamic and is adapting to changes in technology and workload.« less
Evolution of the Southern Oscillation as observed by the Nimbus-7 ERB experiment
NASA Technical Reports Server (NTRS)
Ardanuy, Philip E.; Kyle, H. Lee; Chang, Hyo-Duck
1987-01-01
The Nimbus-7 satellite has been in a 955-km, sun-synchronous orbit since October 1978. The Earth Radiation Budget (ERB) experiment has taken approximately 8 years of high-quality data during this time, of which seven complete years have been archived at the National Space Science Data Center. A final reprocessing of the wide-field-of-view channel dataset is underway. Error analyses indicate a long-term stability of 1 percent better over the length of the data record. As part of the validation of the ERB measurements, the archived 7-year Nimbus-7 ERB dataset is examined for the presence and accuracy of interannual variations including the Southern Oscillation signal. Zonal averages of broadband outgoing longwave radiation indicate a terrestrial response of more than 2 years to the oceanic and atmospheric manifestations of the 1982-83 El Nino/Southern Oscillation (ENSO) event, especially in the tropics. This signal is present in monthly and seasonal averages and is shown here to derive primarily from atmospheric responses to adjustments in the Pacific Ocean. The calibration stability of this dataset thus provides a powerful new tool to examine the physics of the ENSO phenomena.
NASA Astrophysics Data System (ADS)
Wang, Kai; Zhang, Yang; Zhang, Xin; Fan, Jiwen; Leung, L. Ruby; Zheng, Bo; Zhang, Qiang; He, Kebin
2018-03-01
An advanced online-coupled meteorology and chemistry model WRF-CAM5 has been applied to East Asia using triple-nested domains at different grid resolutions (i.e., 36-, 12-, and 4-km) to simulate a severe dust storm period in spring 2010. Analyses are performed to evaluate the model performance and investigate model sensitivity to different horizontal grid sizes and aerosol activation parameterizations and to examine aerosol-cloud interactions and their impacts on the air quality. A comprehensive model evaluation of the baseline simulations using the default Abdul-Razzak and Ghan (AG) aerosol activation scheme shows that the model can well predict major meteorological variables such as 2-m temperature (T2), water vapor mixing ratio (Q2), 10-m wind speed (WS10) and wind direction (WD10), and shortwave and longwave radiation across different resolutions with domain-average normalized mean biases typically within ±15%. The baseline simulations also show moderate biases for precipitation and moderate-to-large underpredictions for other major variables associated with aerosol-cloud interactions such as cloud droplet number concentration (CDNC), cloud optical thickness (COT), and cloud liquid water path (LWP) due to uncertainties or limitations in the aerosol-cloud treatments. The model performance is sensitive to grid resolutions, especially for surface meteorological variables such as T2, Q2, WS10, and WD10, with the performance generally improving at finer grid resolutions for those variables. Comparison of the sensitivity simulations with an alternative (i.e., the Fountoukis and Nenes (FN) series scheme) and the default (i.e., AG scheme) aerosol activation scheme shows that the former predicts larger values for cloud variables such as CDNC and COT across all grid resolutions and improves the overall domain-average model performance for many cloud/radiation variables and precipitation. Sensitivity simulations using the FN series scheme also have large impacts on radiations, T2, precipitation, and air quality (e.g., decreasing O3) through complex aerosol-radiation-cloud-chemistry feedbacks. The inclusion of adsorptive activation of dust particles in the FN series scheme has similar impacts on the meteorology and air quality but to lesser extent as compared to differences between the FN series and AG schemes. Compared to the overall differences between the FN series and AG schemes, impacts of adsorptive activation of dust particles can contribute significantly to the increase of total CDNC (∼45%) during dust storm events and indicate their importance in modulating regional climate over East Asia.
Evaluating average and atypical response in radiation effects simulations
NASA Astrophysics Data System (ADS)
Weller, R. A.; Sternberg, A. L.; Massengill, L. W.; Schrimpf, R. D.; Fleetwood, D. M.
2003-12-01
We examine the limits of performing single-event simulations using pre-averaged radiation events. Geant4 simulations show the necessity, for future devices, to supplement current methods with ensemble averaging of device-level responses to physically realistic radiation events. Initial Monte Carlo simulations have generated a significant number of extremal events in local energy deposition. These simulations strongly suggest that proton strikes of sufficient energy, even those that initiate purely electronic interactions, can initiate device response capable in principle of producing single event upset or microdose damage in highly scaled devices.
NASA Astrophysics Data System (ADS)
Wang, Kaicun; Ma, Qian; Li, Zhijun; Wang, Jiankai
2015-07-01
Existing studies have shown that observed surface incident solar radiation (Rs) over China may have important inhomogeneity issues. This study provides metadata and reference data to homogenize observed Rs, from which the decadal variability of Rs over China can be accurately derived. From 1958 to 1990, diffuse solar radiation (Rsdif) and direct solar radiation (Rsdir) were measured separately, and Rs was calculated as their sum. The pyranometers used to measure Rsdif had a strong sensitivity drift problem, which introduced a spurious decreasing trend into the observed Rsdif and Rs data, whereas the observed Rsdir did not suffer from this sensitivity drift problem. From 1990 to 1993, instruments and measurement methods were replaced and measuring stations were restructured in China, which introduced an abrupt increase in the observed Rs. Intercomparisons between observation-based and model-based Rs performed in this research show that sunshine duration (SunDu)-derived Rs is of high quality and can be used as reference data to homogenize observed Rs data. The homogenized and adjusted data of observed Rs combines the advantages of observed Rs in quantifying hourly to monthly variability and SunDu-derived Rs in depicting decadal variability and trend. Rs averaged over 105 stations in China decreased at -2.9 W m-2 per decade from 1961 to 1990 and remained stable afterward. This decadal variability is confirmed by the observed Rsdir and diurnal temperature ranges, and can be reproduced by high-quality Earth System Models. However, neither satellite retrievals nor reanalyses can accurately reproduce such decadal variability over China.
Abdul Rahim, Mohamad R; James, Melissa L; Hickey, Brigid E
2017-10-01
The aim of this study was to maximise the benefits from clinical trials involving technological interventions such as radiation therapy. High compliance to the quality assurance protocols is crucial. We assessed whether the quality of radiation therapy intervention was evaluated in Cochrane systematic reviews. We searched 416 published Cochrane systematic reviews and identified 67 Cochrane systematic reviews that investigated radiation therapy or radiotherapy as an intervention. For each systematic review, either quality assurance or quality control for the intervention was identified by a description of such processes in the published systematic reviews. Of the 67 Cochrane systematic reviews studied, only two mentioned quality assurance or quality control. Our findings revealed that 65 of 67 (97%) Cochrane systematic reviews of radiation therapy interventions failed to consider the quality of the intervention. We suggest that advice about the evaluation of intervention quality be added to author support materials. © 2017 The Royal Australian and New Zealand College of Radiologists.
NASA Astrophysics Data System (ADS)
Dinh, Tra; Fueglistaler, Stephan
2016-04-01
Thin cirrus clouds in the tropical tropopause layer (TTL) are of great interest due to their role in the control of water vapor and temperature in the TTL. Previous research on TTL cirrus clouds has focussed mainly on microphysical processes, specifically the ice nucleation mechanism and dehydration efficiency. Here, we use a cloud resolving model to analyse the sensitivity of TTL cirrus characteristics and impacts with respect to microphysical and radiative processes. A steady-state TTL cirrus cloud field is obtained in the model forced with dynamical conditions typical for the TTL (2-dimensional setup with a Kelvin-wave temperature perturbation). Our model results show that the dehydration efficiency (as given by the domain average relative humidity in the layer of cloud occurrence) is relatively insensitive to the ice nucleation mechanism, i.e. homogeneous versus heterogeneous nucleation. Rather, TTL cirrus affect the water vapor entering the stratosphere via an indirect effect associated with the cloud radiative heating and dynamics. Resolving the cloud radiative heating and the radiatively induced circulations approximately doubles the domain average ice mass. The cloud radiative heating is proportional to the domain average ice mass, and the observed increase in domain average ice mass induces a domain average temperature increase of a few Kelvin. The corresponding increase in water vapor entering the stratosphere is estimated to be about 30 to 40%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Hua; Noel, Camille; Chen, Haijian
Purpose: Severe artifacts in kilovoltage-CT simulation images caused by large metallic implants can significantly degrade the conspicuity and apparent CT Hounsfield number of targets and anatomic structures, jeopardize the confidence of anatomical segmentation, and introduce inaccuracies into the radiation therapy treatment planning process. This study evaluated the performance of the first commercial orthopedic metal artifact reduction function (O-MAR) for radiation therapy, and investigated its clinical applications in treatment planning. Methods: Both phantom and clinical data were used for the evaluation. The CIRS electron density phantom with known physical (and electron) density plugs and removable titanium implants was scanned on amore » Philips Brilliance Big Bore 16-slice CT simulator. The CT Hounsfield numbers of density plugs on both uncorrected and O-MAR corrected images were compared. Treatment planning accuracy was evaluated by comparing simulated dose distributions computed using the true density images, uncorrected images, and O-MAR corrected images. Ten CT image sets of patients with large hip implants were processed with the O-MAR function and evaluated by two radiation oncologists using a five-point score for overall image quality, anatomical conspicuity, and CT Hounsfield number accuracy. By utilizing the same structure contours delineated from the O-MAR corrected images, clinical IMRT treatment plans for five patients were computed on the uncorrected and O-MAR corrected images, respectively, and compared. Results: Results of the phantom study indicated that CT Hounsfield number accuracy and noise were improved on the O-MAR corrected images, especially for images with bilateral metal implants. The {gamma} pass rates of the simulated dose distributions computed on the uncorrected and O-MAR corrected images referenced to those of the true densities were higher than 99.9% (even when using 1% and 3 mm distance-to-agreement criterion), suggesting that dose distributions were clinically identical. In all patient cases, radiation oncologists rated O-MAR corrected images as higher quality. Formerly obscured critical structures were able to be visualized. The overall image quality and the conspicuity in critical organs were significantly improved compared with the uncorrected images: overall quality score (1.35 vs 3.25, P= 0.0022); bladder (2.15 vs 3.7, P= 0.0023); prostate and seminal vesicles/vagina (1.3 vs 3.275, P= 0.0020); rectum (2.8 vs 3.9, P= 0.0021). The noise levels of the selected ROIs were reduced from 93.7 to 38.2 HU. On most cases (8/10), the average CT Hounsfield numbers of the prostate/vagina on the O-MAR corrected images were closer to the referenced value (41.2 HU, an average measured from patients without metal implants) than those on the uncorrected images. High {gamma} pass rates of the five IMRT dose distribution pairs indicated that the dose distributions were not significantly affected by the CT image improvements. Conclusions: Overall, this study indicated that the O-MAR function can remarkably reduce metal artifacts and improve both CT Hounsfield number accuracy and target and critical structure visualization. Although there was no significant impact of the O-MAR algorithm on the calculated dose distributions, we suggest that O-MAR corrected images are more suitable for the entire treatment planning process by offering better anatomical structure visualization, improving radiation oncologists' confidence in target delineation, and by avoiding subjective density overrides of artifact regions on uncorrected images.« less
Li, Hua; Noel, Camille; Chen, Haijian; Harold Li, H.; Low, Daniel; Moore, Kevin; Klahr, Paul; Michalski, Jeff; Gay, Hiram A.; Thorstad, Wade; Mutic, Sasa
2012-01-01
Purpose: Severe artifacts in kilovoltage-CT simulation images caused by large metallic implants can significantly degrade the conspicuity and apparent CT Hounsfield number of targets and anatomic structures, jeopardize the confidence of anatomical segmentation, and introduce inaccuracies into the radiation therapy treatment planning process. This study evaluated the performance of the first commercial orthopedic metal artifact reduction function (O-MAR) for radiation therapy, and investigated its clinical applications in treatment planning. Methods: Both phantom and clinical data were used for the evaluation. The CIRS electron density phantom with known physical (and electron) density plugs and removable titanium implants was scanned on a Philips Brilliance Big Bore 16-slice CT simulator. The CT Hounsfield numbers of density plugs on both uncorrected and O-MAR corrected images were compared. Treatment planning accuracy was evaluated by comparing simulated dose distributions computed using the true density images, uncorrected images, and O-MAR corrected images. Ten CT image sets of patients with large hip implants were processed with the O-MAR function and evaluated by two radiation oncologists using a five-point score for overall image quality, anatomical conspicuity, and CT Hounsfield number accuracy. By utilizing the same structure contours delineated from the O-MAR corrected images, clinical IMRT treatment plans for five patients were computed on the uncorrected and O-MAR corrected images, respectively, and compared. Results: Results of the phantom study indicated that CT Hounsfield number accuracy and noise were improved on the O-MAR corrected images, especially for images with bilateral metal implants. The γ pass rates of the simulated dose distributions computed on the uncorrected and O-MAR corrected images referenced to those of the true densities were higher than 99.9% (even when using 1% and 3 mm distance-to-agreement criterion), suggesting that dose distributions were clinically identical. In all patient cases, radiation oncologists rated O-MAR corrected images as higher quality. Formerly obscured critical structures were able to be visualized. The overall image quality and the conspicuity in critical organs were significantly improved compared with the uncorrected images: overall quality score (1.35 vs 3.25, P = 0.0022); bladder (2.15 vs 3.7, P = 0.0023); prostate and seminal vesicles/vagina (1.3 vs 3.275, P = 0.0020); rectum (2.8 vs 3.9, P = 0.0021). The noise levels of the selected ROIs were reduced from 93.7 to 38.2 HU. On most cases (8/10), the average CT Hounsfield numbers of the prostate/vagina on the O-MAR corrected images were closer to the referenced value (41.2 HU, an average measured from patients without metal implants) than those on the uncorrected images. High γ pass rates of the five IMRT dose distribution pairs indicated that the dose distributions were not significantly affected by the CT image improvements. Conclusions: Overall, this study indicated that the O-MAR function can remarkably reduce metal artifacts and improve both CT Hounsfield number accuracy and target and critical structure visualization. Although there was no significant impact of the O-MAR algorithm on the calculated dose distributions, we suggest that O-MAR corrected images are more suitable for the entire treatment planning process by offering better anatomical structure visualization, improving radiation oncologists’ confidence in target delineation, and by avoiding subjective density overrides of artifact regions on uncorrected images. PMID:23231300
A Study of Aerosol Direct Radiative Effect and Its Impacts on Global Terrestrial Ecosystem Cycles
NASA Astrophysics Data System (ADS)
Zhang, J.; Shao, S.; Zhou, L.
2017-12-01
Aerosols can absorb and scatter solar radiation, thus cause the total solar radiation reaching the surface to drop and the fraction of diffuse radiation to increase, which influence the surface radiation budget. The global surface radiation with and without consideration of aerosols are calculated by the Fu-Liou atmospheric radiative transfer model based on the MODIS aerosol products, CERES cloud products and other remote sensing data. The aerosol direct radiative effect is calculated based on the two scenarios of aerosols. Our calculation showed that in 2007, aerosols decreased the global total radiation by 9.16 W m-2 on average. Large decrease generally occurred in places with high AOD. As for the diffuse radiation, aerosol-induced changes were either positive or negative. Large increase generally occurred in places with high surface albedo, while large decrease generally occurred in places with high cloud fraction. The global aerosol-induced diffuse radiation change averaged 8.17 W m-2 in 2007. The aerosol direct radiative effect causes the photosynthetic active radiation to increase, and its influences on the global carbon cycle of terrestrial ecosystem are studied by using the Community Land Model (CLM). Calculations show that the aerosol direct radiative effects caused the global averages of terrestrial gross primary productivity (GPP), net primary productivity (NPP), heterotrophic respiration (RH), autotrophic respiration (RA), and net ecosystem productivity (Reco) to increase in 2007, with significant spatial variations however. The global average changes of GPP, NPP, NEP, RA, RH and Reco in 2007 were +6.47 gC m-2, +2.23 gC m-2, +0.34 gC m-2, +4.24 gC m-2, +1.89 gC m-2, +6.13 gC m-2, respectively. Examinations of the carbon fluxes show that the aerosol direct radiative effects influence the terrestrial ecosystem carbon cycles via the following two approaches: First, the diffuse fertilization effect, i.e. more diffuse radiation absorbed by vegetation shade leaves (photosynthetic active radiation, PAR) results in higher photosynthetic rates; Second, the radiation changes lead to changes in temperature and humidity, thereby changing the rates of the plant biophysical and chemical processes.
Assessment of BSRN radiation records for the computation of monthly means
NASA Astrophysics Data System (ADS)
Roesch, A.; Wild, M.; Ohmura, A.; Dutton, E. G.; Long, C. N.; Zhang, T.
2011-02-01
The integrity of the Baseline Surface Radiation Network (BSRN) radiation monthly averages are assessed by investigating the impact on monthly means due to the frequency of data gaps caused by missing or discarded high time resolution data. The monthly statistics, especially means, are considered to be important and useful values for climate research, model performance evaluations and for assessing the quality of satellite (time- and space-averaged) data products. The study investigates the spread in different algorithms that have been applied for the computation of monthly means from 1-min values. The paper reveals that the computation of monthly means from 1-min observations distinctly depends on the method utilized to account for the missing data. The intra-method difference generally increases with an increasing fraction of missing data. We found that a substantial fraction of the radiation fluxes observed at BSRN sites is either missing or flagged as questionable. The percentage of missing data is 4.4%, 13.0%, and 6.5% for global radiation, direct shortwave radiation, and downwelling longwave radiation, respectively. Most flagged data in the shortwave are due to nighttime instrumental noise and can reasonably be set to zero after correcting for thermal offsets in the daytime data. The study demonstrates that the handling of flagged data clearly impacts on monthly mean estimates obtained with different methods. We showed that the spread of monthly shortwave fluxes is generally clearly higher than for downwelling longwave radiation. Overall, BSRN observations provide sufficient accuracy and completeness for reliable estimates of monthly mean values. However, the value of future data could be further increased by reducing the frequency of data gaps and the number of outliers. It is shown that two independent methods for accounting for the diurnal and seasonal variations in the missing data permit consistent monthly means to within less than 1 W m-2 in most cases. The authors suggest using a standardized method for the computation of monthly means which addresses diurnal variations in the missing data in order to avoid a mismatch of future published monthly mean radiation fluxes from BSRN. The application of robust statistics would probably lead to less biased results for data records with frequent gaps and/or flagged data and outliers. The currently applied empirical methods should, therefore, be completed by the development of robust methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Quality and safety in healthcare are inextricably linked. There are compelling data that link poor quality radiation therapy to inferior patient survival. Radiation Oncology clinical trial protocol deviations often involve incorrect target volume delineation or dosing, akin to radiotherapy incidents which also often involve partial geometric miss or improper radiation dosing. When patients with radiation protocol variations are compared to those without significant protocol variations, clinical outcome is negatively impacted. Traditionally, quality assurance in radiation oncology has been driven largely by new technological advances, and safety improvement has been driven by reactive responses to past system failures and prescriptive mandatesmore » recommended by professional organizations and promulgated by regulators. Prescriptive approaches to quality and safety alone often do not address the huge variety of process and technique used in radiation oncology. Risk-based assessments of radiotherapy processes provide a mechanism to enhance quality and safety, both for new and for established techniques. It is imperative that we explore such a paradigm shift at this time, when expectations from patients as well as providers are rising while available resources are falling. There is much we can learn from our past experiences to be applied towards the new risk-based assessments. Learning Objectives: Understand the impact of clinical and technical quality on outcomes Understand the importance of quality care in radiation oncology Learn to assess the impact of quality on clinical outcomes D. Followill, NIH Grant CA180803.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibert, J; Imbergamo, P
The expansion and integration of diagnostic imaging technologies such as On Board Imaging (OBI) and Cone Beam Computed Tomography (CBCT) into radiation oncology has required radiation oncology physicists to be responsible for and become familiar with assessing image quality. Unfortunately many radiation oncology physicists have had little or no training or experience in measuring and assessing image quality. Many physicists have turned to automated QA analysis software without having a fundamental understanding of image quality measures. This session will review the basic image quality measures of imaging technologies used in the radiation oncology clinic, such as low contrast resolution, highmore » contrast resolution, uniformity, noise, and contrast scale, and how to measure and assess them in a meaningful way. Additionally a discussion of the implementation of an image quality assurance program in compliance with Task Group recommendations will be presented along with the advantages and disadvantages of automated analysis methods. Learning Objectives: Review and understanding of the fundamentals of image quality. Review and understanding of the basic image quality measures of imaging modalities used in the radiation oncology clinic. Understand how to implement an image quality assurance program and to assess basic image quality measures in a meaningful way.« less
Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations
NASA Astrophysics Data System (ADS)
Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.
2011-10-01
In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.
NASA Astrophysics Data System (ADS)
Niu, Kai
Cardiovascular disease and stroke are the leading health problems and causes of death in the US. Due to the minimally invasive nature of the evolution of image guided techniques, interventional radiological procedures are becoming more common and are preferred in treating many cardiovascular diseases and strokes. In addition, with the recent advances in hardware and device technology, the speed and efficacy of interventional treatment has significantly improved. This implies that more image modalities can be developed based on the current C-arm system and patients treated in interventional suites can potentially experience better health outcomes. However, during the treatment patients are irradiated with substantial amounts of ionizing radiation with a high dose rate (digital subtraction angiography (DSA) with 3muGy/frame and 3D cone beam CT image with 0.36muGy/frame for a Siemens Artis Zee biplane system) and/or a long irradiation time (a roadmapping image sequence can be as long as one hour during aneurysm embolization). As a result, the patient entrance dose is extremely high. Despite the fact that the radiation dose is already substantial, image quality is not always satisfactory. By default a temporal average is used in roadmapping images to overcome poor image quality, but this technique can result in motion blurred images. Therefore, reducing radiation dose while maintaining or even improving the image quality is an important area for continued research. This thesis is focused on improving the clinical applications of C-arm cone beam CT systems in two ways: (1) Improve the performance of current image modalities on the C-arm system. (2) Develop new image modalities based on the current system. To be more specific, the objectives are to reduce radiation dose for current modalities (e.g., DSA, fluoroscopy, roadmapping, and cone beam CT) and enable cone beam CT perfusion and time resolved cone beam CT angiography that can be used to diagnose and triage acute ischemic stroke patients more efficiently compared with the current clinical work-flow. The animal and patient cases presented in this thesis are focused towards but not limited to neurointerventional applications.
Notohamiprodjo, S; Deak, Z; Meurer, F; Maertz, F; Mueck, F G; Geyer, L L; Wirth, S
2015-01-01
The purpose of this study was to compare cranial CT (CCT) image quality (IQ) of the MBIR algorithm with standard iterative reconstruction (ASiR). In this institutional review board (IRB)-approved study, raw data sets of 100 unenhanced CCT examinations (120 kV, 50-260 mAs, 20 mm collimation, 0.984 pitch) were reconstructed with both ASiR and MBIR. Signal-to-noise (SNR) and contrast-to-noise (CNR) were calculated from attenuation values measured in caudate nucleus, frontal white matter, anterior ventricle horn, fourth ventricle, and pons. Two radiologists, who were blinded to the reconstruction algorithms, evaluated anonymized multiplanar reformations of 2.5 mm with respect to depiction of different parenchymal structures and impact of artefacts on IQ with a five-point scale (0: unacceptable, 1: less than average, 2: average, 3: above average, 4: excellent). MBIR decreased artefacts more effectively than ASiR (p < 0.01). The median depiction score for MBIR was 3, whereas the median value for ASiR was 2 (p < 0.01). SNR and CNR were significantly higher in MBIR than ASiR (p < 0.01). MBIR showed significant improvement of IQ parameters compared to ASiR. As CCT is an examination that is frequently required, the use of MBIR may allow for substantial reduction of radiation exposure caused by medical diagnostics. • Model-Based iterative reconstruction (MBIR) effectively decreased artefacts in cranial CT. • MBIR reconstructed images were rated with significantly higher scores for image quality. • Model-Based iterative reconstruction may allow reduced-dose diagnostic examination protocols.
Gabriel, Peter E; Volz, Edna; Bergendahl, Howard W; Burke, Sean V; Solberg, Timothy D; Maity, Amit; Hahn, Stephen M
2015-04-01
Incident learning programs have been recognized as cornerstones of safety and quality assurance in so-called high reliability organizations in industries such as aviation and nuclear power. High reliability organizations are distinguished by their drive to continuously identify and proactively address a broad spectrum of latent safety issues. Many radiation oncology institutions have reported on their experience in tracking and analyzing adverse events and near misses but few have incorporated the principles of high reliability into their programs. Most programs have focused on the reporting and retrospective analysis of a relatively small number of significant adverse events and near misses. To advance a large, multisite radiation oncology department toward high reliability, a comprehensive, cost-effective, electronic condition reporting program was launched to enable the identification of a broad spectrum of latent system failures, which would then be addressed through a continuous quality improvement process. A comprehensive program, including policies, work flows, and information system, was designed and implemented, with use of a low reporting threshold to focus on precursors to adverse events. In a 46-month period from March 2011 through December 2014, a total of 8,504 conditions (average, 185 per month, 1 per patient treated, 3.9 per 100 fractions [individual treatments]) were reported. Some 77.9% of clinical staff members reported at least 1 condition. Ninety-eight percent of conditions were classified in the lowest two of four severity levels, providing the opportunity to address conditions before they contribute to adverse events. Results after approximately four years show excellent employee engagement, a sustained rate of reporting, and a focus on low-level issues leading to proactive quality improvement interventions.
De Cock, Jens; Zanca, Federica; Canning, John; Pauwels, Ruben; Hermans, Robert
2015-07-01
To evaluate image quality and radiation dose of a state of the art cone beam computed tomography (CBCT) system and a multislice computed tomography (MSCT) system in patients with sinonasal poliposis. In this retrospective study two radiologists evaluated 57 patients with sinonasal poliposis who underwent a CBCT or MSCT sinus examination, along with a control group of 90 patients with normal radiological findings. Tissue doses were measured using a phantom model with thermoluminescent dosimeters (TLD). Overall image quality in CBCT was scored significantly higher than in MSCT in patients with normal radiologic findings (p-value: 0.00001). In patients with sinonasal poliposis, MSCT scored significantly higher than CBCT (p-value: 0.00001). The average effective dose for MSCT was 42% higher compared to CBCT (108 μSv vs 63 μSv). CBCT and MSCT are both suited for the evaluation of sinonasal poliposis. In patients with sinonasal poliposis, clinically important structures of the paranasal sinuses can be better delineated with MSCT, whereas in patients without sinonasal poliposis, CBCT turns out to define the important structures of the sinonasal region better. However, given the lower radiation dose, CBCT can be considered for the evaluation of the sinonasal structures in patients with sinonasal poliposis. • CBCT and MSCT are both suited for evaluation of sinonasal poliposis. • Effective dose for MSCT was 42% higher compared to CBCT. • In patients with sinonasal poliposis, clinically important anatomical structures are better delineated with MSCT. • In patients with normal radiological findings, clinically important anatomical structures are better delineated with CBCT.
Mahalingam, Harshavardhan; Lal, Anupam; Mandal, Arup K; Singh, Shrawan Kumar; Bhattacharyya, Shalmoli; Khandelwal, Niranjan
2015-08-01
This study aimed to assess the accuracy of low-dose dual-energy computed tomography (DECT) in predicting the composition of urinary calculi. A total of 52 patients with urinary calculi were scanned with a 128-slice dual-source DECT scanner by use of a low-dose protocol. Dual-energy (DE) ratio, weighted average Hounsfield unit (HU) of calculi, radiation dose, and image noise levels were recorded. Two radiologists independently rated study quality. Stone composition was assessed after extraction by Fourier transform infrared spectroscopy (FTIRS). Analysis of variance was used to determine if the differences in HU values and DE ratios between the various calculus groups were significant. Threshold cutoff values to classify the calculi into separate groups were identified by receiver operating characteristic curve analysis. A total of 137 calculi were detected. FTIRS analysis differentiated the calculi into five groups: uric acid (n=17), struvite (n=3), calcium oxalate monohydrate and dihydrate (COM-COD, n=84), calcium oxalate monohydrate (COM, n=28), and carbonate apatite (n=5). The HU value could differentiate only uric acid calculi from calcified calculi (p<0.001). The DE ratio could confidently differentiate uric acid, struvite, calcium oxalate, and carbonate apatite calculi (p<0.001) with cutoff values of 1.12, 1.34, and 1.66, respectively, giving >80% sensitivity and specificity to differentiate them. The DE ratio could not differentiate COM from COM-COD calculi. No study was rated poor in quality by either of the observers. The mean radiation dose was 1.8 mSv. Low-dose DECT accurately predicts urinary calculus composition in vivo while simultaneously reducing radiation exposure without compromising study quality.
Mahalingam, Harshavardhan; Mandal, Arup K; Singh, Shrawan Kumar; Bhattacharyya, Shalmoli; Khandelwal, Niranjan
2015-01-01
Purpose This study aimed to assess the accuracy of low-dose dual-energy computed tomography (DECT) in predicting the composition of urinary calculi. Materials and Methods A total of 52 patients with urinary calculi were scanned with a 128-slice dual-source DECT scanner by use of a low-dose protocol. Dual-energy (DE) ratio, weighted average Hounsfield unit (HU) of calculi, radiation dose, and image noise levels were recorded. Two radiologists independently rated study quality. Stone composition was assessed after extraction by Fourier transform infrared spectroscopy (FTIRS). Analysis of variance was used to determine if the differences in HU values and DE ratios between the various calculus groups were significant. Threshold cutoff values to classify the calculi into separate groups were identified by receiver operating characteristic curve analysis. Results A total of 137 calculi were detected. FTIRS analysis differentiated the calculi into five groups: uric acid (n=17), struvite (n=3), calcium oxalate monohydrate and dihydrate (COM-COD, n=84), calcium oxalate monohydrate (COM, n=28), and carbonate apatite (n=5). The HU value could differentiate only uric acid calculi from calcified calculi (p<0.001). The DE ratio could confidently differentiate uric acid, struvite, calcium oxalate, and carbonate apatite calculi (p<0.001) with cutoff values of 1.12, 1.34, and 1.66, respectively, giving >80% sensitivity and specificity to differentiate them. The DE ratio could not differentiate COM from COM-COD calculi. No study was rated poor in quality by either of the observers. The mean radiation dose was 1.8 mSv. Conclusions Low-dose DECT accurately predicts urinary calculus composition in vivo while simultaneously reducing radiation exposure without compromising study quality. PMID:26279828
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Peng, J; Xie, J
2015-06-15
Purpose: The purpose of this study is to investigate the sensitivity of the planar quality assurance to MLC errors with different beam complexities in intensity-modulate radiation therapy. Methods: sixteen patients’ planar quality assurance (QA) plans in our institution were enrolled in this study, including 10 dynamic MLC (DMLC) IMRT plans measured by Portal Dosimetry and 6 static MLC (SMLC) IMRT plans measured by Mapcheck. The gamma pass rate was calculated using vender’s software. The field numbers were 74 and 40 for DMLC and SMLC, respectively. A random error was generated and introduced to these fields. The modified gamma pass ratemore » was calculated by comparing the original measured fluence and modified fields’ fluence. A decreasing gamma pass rate was acquired using the original gamma pass rate minus the modified gamma pass rate. Eight complexity scores were calculated in MATLAB based on the fluence and MLC sequence of these fields. The complexity scores include fractal dimension, monitor unit of field, modulation index, fluence map complexity, weighted average of field area, weighted average of field perimeter, and small aperture ratio ( <5cm{sup 2} and <50cm{sup 2}). The Spearman’s rank correlation coefficient was implemented to analyze the correlation between these scores and decreasing gamma rate. Results: The relation between the decreasing gamma pass rate and field complexity was insignificant for most complexity scores. The most significant complexity score was fluence map complexity for SMLC, which have ρ =0.4274 (p-value=0.0063). For DMLC, the most significant complex score was fractal dimension, which have ρ=−0.3068 (p-value=0.0081). Conclusions: According to the primarily Result of this study, the sensitivity gamma pass rate was not strongly relate to the field complexity.« less
Uncertainty Analysis in Space Radiation Protection
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2011-01-01
Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions.
Korop, Oleg A; Lenskykh, Sergiy V
2018-01-01
Introduction: Modern changes in the health care system of Ukraine are focused on financial support in providing medical and diagnostic care to the population and are based on deep and consistent structural and functional transformations. They are aimed at providing adequate quality care, which is the main target function and a principal criterion for operation of health care system. The urgency of this problem is increasing in the context of reforming the health care system and global changes in the governmental financial guarantees for the provision of medical services to the population. The aim of the work is to provide theoretical grounds for a structural and functional model of quality assurance of radiation diagnostics at all levels of medical care given to the population under the current health care reform in Ukraine. Materials and methods: The object of the study is organizing the operation of the radiation diagnostic service; the information is based on the actual data on the characteristics of radiation diagnosis at different levels of medical care provision. Methods of systematic approach, system analysis and structural and functional analysis of the operating system of radiation diagnostics are used. Review: The basis of the quality assurance model is the cyclical process, which includes the stages of the problem identifition, planning of its solution, organization of the system for implementation of decisions, monitoring the quality management process of the radiation diagnostics, and factors influencing the quality of the radiation diagnostics service. These factors include the quality of the structure, process, results, organization of management and control of current processes and the results of radiation diagnostics management. Conclusions: The advantages of the proposed model for ensuring the quality of the radiation diagnostics service are its systemacy and complexity, elimination of identified defects and deficiencies, and achievement of profitability through modern redistribution and use of existing resources of the health care system. The results of adequate service quality management activities in radiation diagnostics are the improvement of organizational and economic principles along with legislative regulation, the implementation of a modern system of radiation diagnostics in the state health care at the national and regional levels, the increase of the accessibility, quality and efficiency of the radiation diagnostics service.
Evaluation of the National Solar Radiation Database (NSRDB): 1998-2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Lopez, Anthony
This paper validates the performance of the physics-based Physical Solar Model (PSM) data set in the National Solar Radiation Data Base (NSRDB) to quantify the accuracy of the magnitude and the spatial and temporal variability of the solar radiation data. Achieving higher penetrations of solar energy on the electric grid and reducing integration costs requires accurate knowledge of the available solar resource. Understanding the impacts of clouds and other meteorological constituents on the solar resource and quantifying intra-/inter-hour, seasonal, and interannual variability are essential for accurately designing utility-scale solar energy projects. Solar resource information can be obtained from ground-based measurementmore » stations and/or from modeled data sets. The availability of measurements is scarce, both temporally and spatially, because it is expensive to maintain a high-density solar radiation measurement network that collects good quality data for long periods of time. On the other hand, high temporal and spatial resolution gridded satellite data can be used to estimate surface radiation for long periods of time and is extremely useful for solar energy development. Because of the advantages of satellite-based solar resource assessment, the National Renewable Energy Laboratory developed the PSM. The PSM produced gridded solar irradiance -- global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance -- for the NSRDB at a 4-km by 4-km spatial resolution and half-hourly temporal resolution covering the 18 years from 1998-2015. The NSRDB also contains additional ancillary meteorological data sets, such as temperature, relative humidity, surface pressure, dew point, and wind speed. Details of the model and data are available at https://nsrdb.nrel.gov. The results described in this paper show that the hourly-averaged satellite-derived data have a systematic (bias) error of approximately +5% for GHI and less than +10% for DNI; however, the scatter (root mean square error [RMSE]) difference is higher for the hourly averages.« less
In-flight radiation measurements on STS-60
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Golightly, M. J.; Konradi, A.; Atwell, W.; Kern, J. W.; Cash, B.; Benton, E. V.; Frank, A. L.; Sanner, D.; Keegan, R. P.;
1996-01-01
A joint investigation between the United States and Russia to study the radiation environment inside the Space Shuttle flight STS-60 was carried out as part of the Shuttle-Mir Science Program (Phase 1). This is the first direct comparison of a number of different dosimetric measurement techniques between the two countries. STS-60 was launched on 3 February 1994 in a nearly circular 57 degrees x 353 km orbit with five U.S. astronauts and one Russian cosmonaut for 8.3 days. A variety of instruments provided crew radiation exposure, absorbed doses at fixed locations, neutron fluence and dose equivalent, linear energy transfer (LET) spectra of trapped and galactic cosmic radiation, and energy spectra and angular distribution of trapped protons. In general, there is good agreement between the U.S. and Russian measurements. The AP8 Min trapped proton model predicts an average of 1.8 times the measured absorbed dose. The average quality factor determined from measured lineal energy, y, spectra using a tissue equivalent proportional counter (TEPC), is in good agreement with that derived from the high temperature peak in the 6LiF thermoluminescent detectors (TLDs). The radiation exposure in the mid-deck locker from neutrons below 1 MeV was 2.53 +/- 1.33 microSv/day. The absorbed dose rates measured using a tissue equivalent proportional counter, were 171.1 +/- 0.4 and 127.4 +/- 0.4 microGy/day for trapped particles and galactic cosmic rays, respectively. The combined dose rate of 298.5 +/- 0.82 microGy/day is about a factor of 1.4 higher than that measured using TLDs. The westward longitude drift of the South Atlantic Anomaly (SAA) is estimated to be 0.22 +/- 0.02 degrees/y. We evaluated the effects of spacecraft attitudes on TEPC dose rates due to the highly anisotropic low-earth orbit proton environment. Changes in spacecraft attitude resulted in dose-rate variations by factors of up to 2 at the location of the TEPC.
The enerMENA meteorological network - Solar radiation measurements in the MENA region
NASA Astrophysics Data System (ADS)
Schüler, D.; Wilbert, S.; Geuder, N.; Affolter, R.; Wolfertstetter, F.; Prahl, C.; Röger, M.; Schroedter-Homscheidt, M.; Abdellatif, G.; Guizani, A. Allah; Balghouthi, M.; Khalil, A.; Mezrhab, A.; Al-Salaymeh, A.; Yassaa, N.; Chellali, F.; Draou, D.; Blanc, P.; Dubranna, J.; Sabry, O. M. K.
2016-05-01
For solar resource assessment of solar power plants and adjustment of satellite data, high accuracy measurement data of irradiance and ancillary meteorological data is needed. For the MENA region (Middle East and Northern Africa), which is of high importance for concentrating solar power applications, so far merely 2 publicly available ground measurement stations existed (BSRN network). This gap has been filled by ten stations in Morocco, Algeria, Tunisia, Egypt and Jordan. In this publication the data quality is analyzed by evaluating data completeness and the cleanliness of irradiance sensors in comparison for all of the stations. The pyrheliometers have an average cleanliness of 99.2 % for week-daily cleaning. This is a 5 times higher effort than for Rotating Shadowband Irradiometer (RSI) stations which even have a slightly higher average cleanliness of 99.3 % for weekly cleaning. Furthermore, RSI stations show a data completeness of 99.4 % compared to 93.6 % at the stations equipped with thermal sensors. The results of this analysis are used to derive conclusions concerning instrument choice and are hence also applicable to other solar radiation measurements outside the enerMENA network. It turns out that RSIs are the more reliable and robust choice in cases of high soiling, rare station visits for cleaning and maintenance, as usual in desert sites. Furthermore, annual direct normal and global horizontal irradiation as well as average meteorological parameters are calculated for all of the stations.
Kim, Jung-In; Lee, Hanyoung; Wu, Hong-Gyun; Chie, Eui Kyu; Kang, Hyun-Cheol; Park, Jong Min
2017-09-01
The aim of this study is to develop a visual guidance patient-controlled (VG-PC) respiratory gating system for respiratory-gated magnetic-resonance image-guided radiation therapy (MR-IGRT) and to evaluate the performance of the developed system. The near-real-time cine planar MR image of a patient acquired during treatment was transmitted to a beam projector in the treatment room through an optical fiber cable. The beam projector projected the cine MR images inside the bore of the ViewRay system in order to be visible to a patient during treatment. With this visual information, patients voluntarily controlled their respiration to put the target volume into the gating boundary (gating window). The effect of the presence of the beam projector in the treatment room on the image quality of the MRI was investigated by evaluating the signal-to-noise ratio (SNR), uniformity, low-contrast detectability, high-contrast spatial resolution, and spatial integrity with the VG-PC gating system. To evaluate the performance of the developed system, we applied the VG-PC gating system to a total of seven patients; six patients received stereotactic ablative radiotherapy (SABR) and one patient received conventional fractionated radiation therapy. The projected cine MR images were visible even when the room light was on. No image data loss or additional time delay during delivery of image data were observed. Every indicator representing MRI quality, including SNR, uniformity, low-contrast detectability, high-contrast spatial resolution, and spatial integrity exhibited values higher than the tolerance levels of the manufacturer with the VG-PC gating system; therefore, the presence of the VG-PC gating system in the treatment room did not degrade the MR image quality. The average beam-off times due to respiratory gating with and without the VG-PC gating system were 830.3 ± 278.2 s and 1264.2 ± 302.1 s respectively (P = 0.005). Consequently, the total treatment times excluding the time for patient setup with and without the VG-PC gating system were 1453.3 ± 297.3 s and 1887.2 ± 469.6 s, respectively, on average (P = 0.005). The average number of beam-off events during whole treatment session was reduced from 457 ± 154 times to 195 ± 90 times by using the VG-PC gating system (P < 0.001). The developed system could improve treatment efficiency when performing respiratory-gated MR-IGRT. The VG-PC gating system could be applied to any kind of bore-type radiotherapy machine. © 2017 American Association of Physicists in Medicine.
Meghzifene, A
2017-02-01
The importance of quality assurance in radiation therapy, as well as its positive consequences on patient treatment outcome, is well known to radiation therapy professionals. In low- and middle-income countries, the implementation of quality assurance in radiation therapy is especially challenging, due to a lack of staff training, a lack of national guidelines, a lack of quality assurance equipment and high patient daily throughput. According to the International Atomic Energy Agency (IAEA) Directory of Radiotherapy Centres, the proportion of linear accelerators compared with Co-60 machines has increased significantly in recent years in low- and middle-income countries. However, this increase in the proportion of relatively more demanding technology is not always accompanied with the necessary investment in staff training and quality assurance. The IAEA provides supports to low- and middle-income countries to develop and strengthen quality assurance programmes at institutional and national level. It also provides guidance, through its publications, on quality assurance and supports implementation of comprehensive clinical audits to identify gaps and makes recommendations for quality improvement in radiation therapy. The new AAPM TG100 report suggests a new approach to quality management in radiation therapy. If implemented, it will lead to improved cost-effectiveness of radiation therapy in all income settings. Low- and middle-income countries could greatly benefit from this new approach as it will help direct their scarce resources to areas where they can produce the optimum impact on patient care, without compromising patient safety. Copyright © 2016. Published by Elsevier Ltd.
Quasi-analytical treatment of spatially averaged radiation transfer in complex terrain
NASA Astrophysics Data System (ADS)
LöWe, H.; Helbig, N.
2012-10-01
We provide a new quasi-analytical method to compute the subgrid topographic influences on the shortwave radiation fluxes and the effective albedo in complex terrain as required for large-scale meteorological, land surface, or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain-averaged fluxes of direct, diffuse, and terrain radiation and the sky view factor. Domain-averaged quantities can be related to a type of level-crossing probability of the random field, which is approximated by long-standing results developed for acoustic scattering at ocean boundaries. This allows us to express all nonlocal horizon effects in terms of a local terrain parameter, namely, the mean-square slope. Emerging integrals are computed numerically, and fit formulas are given for practical purposes. As an implication of our approach, we provide an expression for the effective albedo of complex terrain in terms of the Sun elevation angle, mean-square slope, the area-averaged surface albedo, and the ratio of atmospheric direct beam to diffuse radiation. For demonstration we compute the decrease of the effective albedo relative to the area-averaged albedo in Switzerland for idealized snow-covered and clear-sky conditions at noon in winter. We find an average decrease of 5.8% and spatial patterns which originate from characteristics of the underlying relief. Limitations and possible generalizations of the method are discussed.
NASA Astrophysics Data System (ADS)
Vargas, William E.; Amador, Alvaro; Niklasson, Gunnar A.
2006-05-01
Diffuse reflectance spectra of paint coatings with different pigment concentrations, normally illuminated with unpolarized radiation, have been measured. A four-flux radiative transfer approach is used to model the diffuse reflectance of TiO2 (rutile) pigmented coatings through the solar spectral range. The spectral dependence of the average pathlength parameter and of the forward scattering ratio for diffuse radiation, are explicitly incorporated into this four-flux model from two novel approximations. The size distribution of the pigments has been taken into account to obtain the averages of the four-flux parameters: scattering and absorption cross sections, forward scattering ratios for collimated and isotropic diffuse radiation, and coefficients involved in the expansion of the single particle phase function in terms of Legendre polynomials.
Krishnan, Kripa; Vijayalakshmi, N R
2005-12-01
A group of villages in Kollam district of Kerala, southern part of India are exposed to a higher dose of natural radiation than global average. Yet no adverse health effects have been found in humans, animals and plants in these areas. The present study was carried out to understand whether radiation affects the quantity and quality of flavonoids in plants grown in this area of high radiation, and to assess the effect of feeding flavonoid rich fraction (FRF) of the two varieties of banana to rats on their biochemical parameters like lipids, lipid peroxides and antioxidant enzyme levels. A total of 42 albino rats were equally divided into 7 groups. Rats fed laboratory diet alone were grouped under group I (normal control). Groups II and V received flavonoid rich fraction (FRF) from the fruits of two varieties of Musa paradisiaca, Palayamkodan and Rasakadali respectively from normal background radiation area (Veli) and treated as controls. Rats of groups III and IV received FRF of Palayamkodan from high background radiation areas (HBRAs) - Neendakara and Karunagappally respectively while groups VI and VII received FRF of Rasakadali from HBRAs. At the end of the experimental period of 45 days, lipids, lipid peroxides and antioxidant enzymes from liver, heart and kidney were analyzed. FRF of Palayamkodan and Rasakadali varieties showed significant hypolipidaemic and antioxidant activities. But these activities were found to be lowered in plants grown in HBRAs, particularly in Karunagappally area. Of the two, Palayamkodan variety was more effective in reducing lipids and lipid peroxides. MDA and hydroperoxides were significantly diminished in rats given FRF of banana from Veli (control area) only. FRF from plants grown in HBRAs exerted inhibition in the activities of antioxidant enzymes in the liver of rats and this inhibitory effect was maximum in rats fed FRF from Karunagappally. Banana grown in HBRAs is of lower quality with less efficient antioxidant system. Palayamkodan was superior with its effect on hypolipidaemic and antioxidant activities. High background radiation seems to have no enhancing effect on the radioprotective action of flavonoids of banana and thereby to those consuming these fruits.
Hartford, Alan C; Davis, Thomas H; Buckey, Jay C; Foote, Robert L; Sinesi, Mark S; Williams, Benjamin B; Fariss, Anna K; Schaner, Philip E; Claus, Paul L; Okuno, Scott H; Hussey, James R; Clarke, Richard E
2017-03-01
To explore, in a dose-escalation study, the feasibility of hyperbaric oxygen (HBO) treatments immediately before intensity modulated radiation therapy in conjunction with cisplatinum chemotherapy for squamous cell carcinoma of the head and neck (SCCHN). Eligible patients presented with SCCHN (stage III-IV [M0]), life expectancy >6 months, and Karnofsky performance status ≥70. Enrollees received intensity modulated radiation therapy, 70 Gy in 35 fractions over 7 weeks with weekly cisplatinum. Patients received HBO-100% oxygen, 2.4 atmospheres absolute (ATA) for 30 minutes-twice per week initially. Subsequent patients were escalated to 3 and then 5 times per week. Intensity modulated radiation therapy began within 15 minutes after HBO. Patients were followed for 2 years after RT with quality-of-life questionnaires (Performance Status Scale-Head and Neck Cancer and the Functional Assessment of Cancer Therapy-Head and Neck Cancer) and for 5+ years for local recurrence, distant metastases, disease-specific survival, and overall survival. Twelve subjects enrolled from 3 centers. Two withdrew during radiation therapy and 1 within 14 weeks after radiation therapy. The remaining 9 had primary oropharyngeal disease and were stage IVA (7) or IVB (2). No dose-limiting toxicities were observed with daily HBO. Two patients (22%) required pressure equalization tubes. The average time between HBO and radiation therapy was 8.5 minutes, with 2 of 231 administrations delivered beyond 15 minutes (0.5%). Per-protocol analysis showed a clinical complete response in 7 and a pathologic complete response without tumor in salvage neck dissections in 2. With minimum follow-up of 61 months, per-protocol 5-year overall survival was 100%, local recurrence 0%, and distant metastases 11%. Patient-reported outcomes for quality of life (Functional Assessment of Cancer Therapy-Head and Neck Cancer) were comparable to published results for chemoradiotherapy without HBO. While acknowledging the study's small size and early attrition of 3 patients, our in-depth review of the acquired data indicates the feasibility of combining HBO with chemoradiation. Copyright © 2016 Elsevier Inc. All rights reserved.
Piippo-Huotari, Oili; Norrman, Eva; Anderzén-Carlsson, Agneta; Geijer, Håkan
2018-05-01
The radiation dose for patients can be reduced with many methods and one way is to use abdominal compression. In this study, the radiation dose and image quality for a new patient-controlled compression device were compared with conventional compression and compression in the prone position . To compare radiation dose and image quality of patient-controlled compression compared with conventional and prone compression in general radiography. An experimental design with quantitative approach. After obtaining the approval of the ethics committee, a consecutive sample of 48 patients was examined with the standard clinical urography protocol. The radiation doses were measured as dose-area product and analyzed with a paired t-test. The image quality was evaluated by visual grading analysis. Four radiologists evaluated each image individually by scoring nine criteria modified from the European quality criteria for diagnostic radiographic images. There was no significant difference in radiation dose or image quality between conventional and patient-controlled compression. Prone position resulted in both higher dose and inferior image quality. Patient-controlled compression gave similar dose levels as conventional compression and lower than prone compression. Image quality was similar with both patient-controlled and conventional compression and was judged to be better than in the prone position.
Moran, Jean M; Feng, Mary; Benedetti, Lisa A; Marsh, Robin; Griffith, Kent A; Matuszak, Martha M; Hess, Michael; McMullen, Matthew; Fisher, Jennifer H; Nurushev, Teamour; Grubb, Margaret; Gardner, Stephen; Nielsen, Daniel; Jagsi, Reshma; Hayman, James A; Pierce, Lori J
A database in which patient data are compiled allows analytic opportunities for continuous improvements in treatment quality and comparative effectiveness research. We describe the development of a novel, web-based system that supports the collection of complex radiation treatment planning information from centers that use diverse techniques, software, and hardware for radiation oncology care in a statewide quality collaborative, the Michigan Radiation Oncology Quality Consortium (MROQC). The MROQC database seeks to enable assessment of physician- and patient-reported outcomes and quality improvement as a function of treatment planning and delivery techniques for breast and lung cancer patients. We created tools to collect anonymized data based on all plans. The MROQC system representing 24 institutions has been successfully deployed in the state of Michigan. Since 2012, dose-volume histogram and Digital Imaging and Communications in Medicine-radiation therapy plan data and information on simulation, planning, and delivery techniques have been collected. Audits indicated >90% accurate data submission and spurred refinements to data collection methodology. This model web-based system captures detailed, high-quality radiation therapy dosimetry data along with patient- and physician-reported outcomes and clinical data for a radiation therapy collaborative quality initiative. The collaborative nature of the project has been integral to its success. Our methodology can be applied to setting up analogous consortiums and databases. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Patel, Zarana S.; Kidane, Yared H.; Huff, Janice L.
2014-01-01
In this work, we evaluated the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Current risk models for assessment of space radiation-induced cancer have large uncertainties because the models for adverse health effects following radiation exposure are founded on epidemiological analyses of human populations exposed to low-LET radiation. Reducing these uncertainties requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. In order to better quantify these radiation quality effects in biological systems, we are utilizing novel 3-D organotypic human tissue models for space radiation research. These models hold promise for risk assessment as they provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information.
Einstein, Andrew J; Pascual, Thomas N B; Mercuri, Mathew; Karthikeyan, Ganesan; Vitola, João V; Mahmarian, John J; Better, Nathan; Bouyoucef, Salah E; Hee-Seung Bom, Henry; Lele, Vikram; Magboo, V Peter C; Alexánderson, Erick; Allam, Adel H; Al-Mallah, Mouaz H; Flotats, Albert; Jerome, Scott; Kaufmann, Philipp A; Luxenburg, Osnat; Shaw, Leslee J; Underwood, S Richard; Rehani, Madan M; Kashyap, Ravi; Paez, Diana; Dondi, Maurizio
2015-07-07
To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiation-optimizing 'best practices' worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March-April 2013. Eight 'best practices' relating to radiation exposure were identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more 'best practices' had lower EDs. Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
Einstein, Andrew J.; Pascual, Thomas N. B.; Mercuri, Mathew; Karthikeyan, Ganesan; Vitola, João V.; Mahmarian, John J.; Better, Nathan; Bouyoucef, Salah E.; Hee-Seung Bom, Henry; Lele, Vikram; Magboo, V. Peter C.; Alexánderson, Erick; Allam, Adel H.; Al-Mallah, Mouaz H.; Flotats, Albert; Jerome, Scott; Kaufmann, Philipp A.; Luxenburg, Osnat; Shaw, Leslee J.; Underwood, S. Richard; Rehani, Madan M.; Kashyap, Ravi; Paez, Diana; Dondi, Maurizio
2015-01-01
Aims To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiation-optimizing ‘best practices’ worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. Methods and results We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March–April 2013. Eight ‘best practices’ relating to radiation exposure were identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more ‘best practices’ had lower EDs. Conclusion Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally. PMID:25898845
Wooten, H Omar; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H Harold; Mutic, Sasa
2015-07-15
This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The (60)Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. All (60)Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for (60)Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all (60)Co plan OARs were within clinical tolerances. A commercial (60)Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system. Copyright © 2015 Elsevier Inc. All rights reserved.
Pahn, Gregor; Skornitzke, Stephan; Schlemmer, Hans-Peter; Kauczor, Hans-Ulrich; Stiller, Wolfram
2016-01-01
Based on the guidelines from "Report 87: Radiation Dose and Image-quality Assessment in Computed Tomography" of the International Commission on Radiation Units and Measurements (ICRU), a software framework for automated quantitative image quality analysis was developed and its usability for a variety of scientific questions demonstrated. The extendable framework currently implements the calculation of the recommended Fourier image quality (IQ) metrics modulation transfer function (MTF) and noise-power spectrum (NPS), and additional IQ quantities such as noise magnitude, CT number accuracy, uniformity across the field-of-view, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of simulated lesions for a commercially available cone-beam phantom. Sample image data were acquired with different scan and reconstruction settings on CT systems from different manufacturers. Spatial resolution is analyzed in terms of edge-spread function, line-spread-function, and MTF. 3D NPS is calculated according to ICRU Report 87, and condensed to 2D and radially averaged 1D representations. Noise magnitude, CT numbers, and uniformity of these quantities are assessed on large samples of ROIs. Low-contrast resolution (CNR, SNR) is quantitatively evaluated as a function of lesion contrast and diameter. Simultaneous automated processing of several image datasets allows for straightforward comparative assessment. The presented framework enables systematic, reproducible, automated and time-efficient quantitative IQ analysis. Consistent application of the ICRU guidelines facilitates standardization of quantitative assessment not only for routine quality assurance, but for a number of research questions, e.g. the comparison of different scanner models or acquisition protocols, and the evaluation of new technology or reconstruction methods. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Miéville, Frédéric A; Gudinchet, François; Rizzo, Elena; Ou, Phalla; Brunelle, Francis; Bochud, François O; Verdun, Francis R
2011-09-01
Radiation dose exposure is of particular concern in children due to the possible harmful effects of ionizing radiation. The adaptive statistical iterative reconstruction (ASIR) method is a promising new technique that reduces image noise and produces better overall image quality compared with routine-dose contrast-enhanced methods. To assess the benefits of ASIR on the diagnostic image quality in paediatric cardiac CT examinations. Four paediatric radiologists based at two major hospitals evaluated ten low-dose paediatric cardiac examinations (80 kVp, CTDI(vol) 4.8-7.9 mGy, DLP 37.1-178.9 mGy·cm). The average age of the cohort studied was 2.6 years (range 1 day to 7 years). Acquisitions were performed on a 64-MDCT scanner. All images were reconstructed at various ASIR percentages (0-100%). For each examination, radiologists scored 19 anatomical structures using the relative visual grading analysis method. To estimate the potential for dose reduction, acquisitions were also performed on a Catphan phantom and a paediatric phantom. The best image quality for all clinical images was obtained with 20% and 40% ASIR (p < 0.001) whereas with ASIR above 50%, image quality significantly decreased (p < 0.001). With 100% ASIR, a strong noise-free appearance of the structures reduced image conspicuity. A potential for dose reduction of about 36% is predicted for a 2- to 3-year-old child when using 40% ASIR rather than the standard filtered back-projection method. Reconstruction including 20% to 40% ASIR slightly improved the conspicuity of various paediatric cardiac structures in newborns and children with respect to conventional reconstruction (filtered back-projection) alone.
Occurrence features of simultaneous H+- and He+-band EMIC emissions in the outer radiation belt
NASA Astrophysics Data System (ADS)
Fu, Song; He, Fengming; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Liu, Jiang
2018-04-01
As an important loss mechanism of radiation belt electrons, electromagnetic ion cyclotron (EMIC) waves show up as three distinct frequency bands below the hydrogen (H+), helium (He+), and oxygen (O+) ion gyrofrequencies. Compared to O+-band EMIC waves, H+- and He+-band emissions generally occur more frequently and result in more efficient scattering removal of <∼5 MeV relativistic electrons. Therefore, knowledge about the occurrence of these two bands is important for understanding the evolution of the relativistic electron population. To evaluate the occurrence pattern and wave properties of H+- and He+-band EMIC waves when they occur concurrently, we investigate 64 events of multi-band EMIC emissions identified from high quality Van Allen Probes wave data. Our quantitative results demonstrate a strong occurrence dependence of the multi-band EMIC emissions on magnetic local time (MLT) and L-shell to mainly concentrate on the dayside region of L = ∼4-6. We also find that the average magnetic field amplitude of H+-band waves is larger than that of He+-band waves only when L < 4.5 and AE∗ < 300 nT, and He+-band emissions are more intense under all other conditions. In contrast to 5 events that have average H+-band amplitude over 2 nT, 19 events exhibit >2 nT He+-band amplitude, indicating that the He+-band waves can be more easily amplified than the H+-band waves under the same circumstances. For simultaneous occurrences of the two EMIC wave bands, their frequencies vary with L-shell and geomagnetic activity: the peak wave frequency of H+-band emissions varies between 0.25 and 0.8 fcp with the average between 0.25 and 0.6 fcp, while that of He+-band emissions varies between 0.03 and 0.23 fcp with the average between 0.05 and 0.15 fcp. These newly observed occurrence features of simultaneous H+- and He+-band EMIC emissions provide improved information to quantify the overall contribution of multi-band EMIC waves to the loss processes of radiation belt electrons.
Dosimetric Consistency of Co-60 Teletherapy Unit- a ten years Study.
Baba, Misba H; Mohib-Ul-Haq, M; Khan, Aijaz A
2013-01-01
The goal of the Radiation standards and Dosimetry is to ensure that the output of the Teletherapy Unit is within ±2% of the stated one and the output of the treatment dose calculation methods are within ±5%. In the present paper, we studied the dosimetry of Cobalt-60 (Co-60) Teletherapy unit at Sher-I-Kashmir Institute of Medical Sciences (SKIMS) for last 10 years. Radioactivity is the phenomenon of disintegration of unstable nuclides called radionuclides. Among these radionuclides, Cobalt-60, incorporated in Telecobalt Unit, is commonly used in therapeutic treatment of cancer. Cobalt-60 being unstable decays continuously into Ni-60 with half life of 5.27 years thereby resulting in the decrease in its activity, hence dose rate (output). It is, therefore, mandatory to measure the dose rate of the Cobalt-60 source regularly so that the patient receives the same dose every time as prescribed by the radiation oncologist. The under dosage may lead to unsatisfactory treatment of cancer and over dosage may cause radiation hazards. Our study emphasizes the consistency between actual output and output obtained using decay method. The methodology involved in the present study is the calculations of actual dose rate of Co-60 Teletherapy Unit by two techniques i.e. Source to Surface Distance (SSD) and Source to Axis Distance (SAD), used for the External Beam Radiotherapy, of various cancers, using the standard methods. Thereby, a year wise comparison has been made between average actual dosimetric output (dose rate) and the average expected output values (obtained by using decay method for Co-60.). The present study shows that there is a consistency in the average output (dose rate) obtained by the actual dosimetry values and the expected output values obtained using decay method. The values obtained by actual dosimetry are within ±2% of the expected values. The results thus obtained in a year wise comparison of average output by actual dosimetry done regularly as a part of Quality Assurance of the Telecobalt Radiotherapy Unit and its deviation from the expected output data is within the permissible limits. Thus our study shows a trend towards uniformity and a better dose delivery.
WE-A-BRC-01: Introduction to the Certificate Course
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palta, J.
Quality and safety in healthcare are inextricably linked. There are compelling data that link poor quality radiation therapy to inferior patient survival. Radiation Oncology clinical trial protocol deviations often involve incorrect target volume delineation or dosing, akin to radiotherapy incidents which also often involve partial geometric miss or improper radiation dosing. When patients with radiation protocol variations are compared to those without significant protocol variations, clinical outcome is negatively impacted. Traditionally, quality assurance in radiation oncology has been driven largely by new technological advances, and safety improvement has been driven by reactive responses to past system failures and prescriptive mandatesmore » recommended by professional organizations and promulgated by regulators. Prescriptive approaches to quality and safety alone often do not address the huge variety of process and technique used in radiation oncology. Risk-based assessments of radiotherapy processes provide a mechanism to enhance quality and safety, both for new and for established techniques. It is imperative that we explore such a paradigm shift at this time, when expectations from patients as well as providers are rising while available resources are falling. There is much we can learn from our past experiences to be applied towards the new risk-based assessments. Learning Objectives: Understand the impact of clinical and technical quality on outcomes Understand the importance of quality care in radiation oncology Learn to assess the impact of quality on clinical outcomes D. Followill, NIH Grant CA180803.« less
WE-A-BRC-03: Lessons Learned: IROC Audits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Followill, D.
Quality and safety in healthcare are inextricably linked. There are compelling data that link poor quality radiation therapy to inferior patient survival. Radiation Oncology clinical trial protocol deviations often involve incorrect target volume delineation or dosing, akin to radiotherapy incidents which also often involve partial geometric miss or improper radiation dosing. When patients with radiation protocol variations are compared to those without significant protocol variations, clinical outcome is negatively impacted. Traditionally, quality assurance in radiation oncology has been driven largely by new technological advances, and safety improvement has been driven by reactive responses to past system failures and prescriptive mandatesmore » recommended by professional organizations and promulgated by regulators. Prescriptive approaches to quality and safety alone often do not address the huge variety of process and technique used in radiation oncology. Risk-based assessments of radiotherapy processes provide a mechanism to enhance quality and safety, both for new and for established techniques. It is imperative that we explore such a paradigm shift at this time, when expectations from patients as well as providers are rising while available resources are falling. There is much we can learn from our past experiences to be applied towards the new risk-based assessments. Learning Objectives: Understand the impact of clinical and technical quality on outcomes Understand the importance of quality care in radiation oncology Learn to assess the impact of quality on clinical outcomes D. Followill, NIH Grant CA180803.« less
WE-A-BRC-02: Lessons Learned: Clinical Trials and Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, S.
Quality and safety in healthcare are inextricably linked. There are compelling data that link poor quality radiation therapy to inferior patient survival. Radiation Oncology clinical trial protocol deviations often involve incorrect target volume delineation or dosing, akin to radiotherapy incidents which also often involve partial geometric miss or improper radiation dosing. When patients with radiation protocol variations are compared to those without significant protocol variations, clinical outcome is negatively impacted. Traditionally, quality assurance in radiation oncology has been driven largely by new technological advances, and safety improvement has been driven by reactive responses to past system failures and prescriptive mandatesmore » recommended by professional organizations and promulgated by regulators. Prescriptive approaches to quality and safety alone often do not address the huge variety of process and technique used in radiation oncology. Risk-based assessments of radiotherapy processes provide a mechanism to enhance quality and safety, both for new and for established techniques. It is imperative that we explore such a paradigm shift at this time, when expectations from patients as well as providers are rising while available resources are falling. There is much we can learn from our past experiences to be applied towards the new risk-based assessments. Learning Objectives: Understand the impact of clinical and technical quality on outcomes Understand the importance of quality care in radiation oncology Learn to assess the impact of quality on clinical outcomes D. Followill, NIH Grant CA180803.« less
Disinfestation of different cereal products by irradiation
NASA Astrophysics Data System (ADS)
Kovács, E.; Kiss, I.; Boros, A.; Horváth, Ny.; Tóth, J.; Gyulai, P.; Szalma, Á.
The sensitivity of overlineTribolium confusum - small flour beetle - to radiation was studied in a dose range of 0-0.8 kGy. We found that the insect egg was the most sensitive to radiation, then larvae and pupae followed it. 0.2 kGy dose of irradiation kills these forms or their further development is inhibited. Imagoes do not immediately die after 0.8 kGy dose of irradiation; the young imagoes are more sensitive to radiation than the aged ones. 0.4 kGy average dose of irradiation is a suitable protection against overlineTribolium confusum. Disinfestation experiments were performed with wheat-germ and wheat-bran and parallelly the most important ingredients of the two products were analysed. The vitamin E content and the rate of lipid-oxidation of wheat germ were determined. The vitamin E content decreased after radiation treatment, however, during storage of at least 6 months, it remained at a level specified by food quality standards (higher than 10 mg%). Carbohydrate content of wheat-bran (water soluble carbohydrate content, crude-fibre and dietary fibre content) did not change at all. Storability of radiation disinfested wheat-germ was 8 months, wheat-bran 3-4 months. On the base of the results 2-2 tons of wheat-germ and wheat-bran were irradiated and trial marked in 1985. In 1986 the irradiation of 10 tons of wheat-germ is planned.
Radiation risk estimation and its application to human beings in space.
Sinclair, W K
1984-01-01
The number of human beings likely to spend time in space will increase as time goes on. While exposures vary according to missions, orbits, shielding, etc., an average space radiation fluence (ignoring solar flares, radiation belts and anomalous regions in space) in locations close to earth is about 10 rad/year with a quality factor of about 5.5. The potential effects of exposure to these fluences include both non-stochastic effects and stochastic effects (cancer and genetic damage). Non-stochastic effects, damage to the lens of the eye, bone marrow or gonads, can be avoided by keeping radiation limits below threshold values. Stochastic effects imply risk at all levels. The magnitude of these risks has been discussed in a number of reports by the UNSCEAR Committee and the BEIR Committee in the USA during 1970-1980. The uncertainties associated with these risks and information which has become available since the last BEIR report is discussed. In considering reasonable limits for exposure in space, acceptable levels for stochastic risks must be based on appropriate comparisons. In view of the limited term of duty of most space workers, a lifetime limit may be appropriate. This lifetime limit might be comparable in terms of risks with limits for radiation workers on the ground but received at a higher annual rate for a shorter time. These and other approaches are expected to be considered by an NCRP Committee currently examining the problem of space radiation hazards.
Medical Malpractice Claims in Radiation Oncology: A Population-Based Study 1985-2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Deborah C.; Punglia, Rinaa S.; Fox, Dov
Purpose: The purpose of this study was to determine trends in radiation oncology malpractice claims and expenses during the last 28 years and to compare radiation oncology malpractice claims to those of other specialties. Methods and Materials: We performed a retrospective analysis of closed malpractice claims filed from 1985 to 2012, collected by a nationwide medical liability insurance trade association. We analyzed characteristics and trends among closed claims, indemnity payments (payments to plaintiff), and litigation expenses. We also compared radiation oncology malpractice claims to those of 21 other medical specialties. Time series dollar amounts were adjusted for inflation (2012 was themore » index year). Results: There were 1517 closed claims involving radiation oncology, of which 342 (22.5%) were paid. Average and median indemnity payments were $276,792 and $122,500, respectively, ranking fifth and eighth, respectively, among the 22 specialty groups. Linear regression modeling of time trends showed decreasing total numbers of claims (β = −1.96 annually, P=.003), increasing average litigation expenses paid (β = +$1472 annually, P≤.001), and no significant changes in average indemnity payments (β = −$681, P=.89). Conclusions: Medical professional liability claims filed against radiation oncologists are not common and have declined in recent years. However, indemnity payments in radiation oncology are large relative to those of many other specialties. In recent years, the average indemnity payment has been stable, whereas litigation expenses have increased.« less
A new method to estimate average hourly global solar radiation on the horizontal surface
NASA Astrophysics Data System (ADS)
Pandey, Pramod K.; Soupir, Michelle L.
2012-10-01
A new model, Global Solar Radiation on Horizontal Surface (GSRHS), was developed to estimate the average hourly global solar radiation on the horizontal surfaces (Gh). The GSRHS model uses the transmission function (Tf,ij), which was developed to control hourly global solar radiation, for predicting solar radiation. The inputs of the model were: hour of day, day (Julian) of year, optimized parameter values, solar constant (H0), latitude, and longitude of the location of interest. The parameter values used in the model were optimized at a location (Albuquerque, NM), and these values were applied into the model for predicting average hourly global solar radiations at four different locations (Austin, TX; El Paso, TX; Desert Rock, NV; Seattle, WA) of the United States. The model performance was assessed using correlation coefficient (r), Mean Absolute Bias Error (MABE), Root Mean Square Error (RMSE), and coefficient of determinations (R2). The sensitivities of parameter to prediction were estimated. Results show that the model performed very well. The correlation coefficients (r) range from 0.96 to 0.99, while coefficients of determination (R2) range from 0.92 to 0.98. For daily and monthly prediction, error percentages (i.e. MABE and RMSE) were less than 20%. The approach we proposed here can be potentially useful for predicting average hourly global solar radiation on the horizontal surface for different locations, with the use of readily available data (i.e. latitude and longitude of the location) as inputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Ganesh, H; Weir, V
Purpose: CARE kV is a tool that automatically recommends optimal kV setting for individual patient for specific CT examination. The use of CARE kV depends on topogram and the user-selected contrast behavior. CARE kV is expected to reduce radiation dose while improving image quality. However, this may work only for certain groups of patients and/or certain CT examinations. This study is to investigate the effects of CARE kV on radiation dose of non-contrast examination of CT abdomen/pelvis. Methods: Radiation dose (CTDIvol and DLP) from patients who underwent abdomen/pelvis non-contrast examination with and without CARE kV were retrospectively reviewed. All patientsmore » were scanned in the same scanner (Siemens Somatom AS64). To mitigate any possible influences due to technologists’ unfamiliarity with the CARE kV, the data with CARE kV were retrieved 1.5 years after the start of CARE kV usage. T-test was used for significant difference in radiation dose. Results: Volume CTDIs and DLPs from 18 patients before and 24 patients after the use of CARE kV were obtained in a duration of one month. There is a slight increase in both average CTDIvol and average DLP with CARE kV compared to those without CARE kV (25.52 mGy vs. 22.65 mGy for CTDIvol; 1265.81 mGy-cm vs. 1199.19 mGy-cm). Statistically there was no significant difference. Without CARE kV, 140 kV was used in 9 of 18 patients, while with CARE KV, 140 kV was used in 15 of 24 patients. 80kV was not used in either group. Conclusion: The use of CARE kV may save time for protocol optimization and minimize variability among technologists. Radiation dose reduction was not observed in non-contrast examinations of CT abdomen/pelvis. This was partially because our CT protocols were tailored according to patient size before CARE kV and partially because of large size patients.« less
Multicentre knowledge sharing and planning/dose audit on flattening filter free beams for SBRT lung
NASA Astrophysics Data System (ADS)
Hansen, C. R.; Sykes, J. R.; Barber, J.; West, K.; Bromley, R.; Szymura, K.; Fisher, S.; Sim, J.; Bailey, M.; Chrystal, D.; Deshpande, S.; Franji, I.; Nielsen, T. B.; Brink, C.; Thwaites, D. I.
2015-01-01
When implementing new technology into clinical practice, there will always be a need for large knowledge gain. The aim of this study was twofold, (I) audit the treatment planning and dose delivery of Flattening Filter Free (FFF) beam technology for Stereotactic Body Radiation Therapy (SBRT) of lung tumours across a range of treatment planning systems compared to the conventional Flatting Filter (FF) beams, (II) investigate how sharing knowledge between centres of different experience can improve plan quality. All vendor/treatment planning system (TPS) combinations investigated were able to produce acceptable treatment plans and the dose accuracy was clinically acceptable for all plans. By sharing knowledge between the different centres, the minor protocol violations (MPV) could be significantly reduced, from an average of 1.9 MPV per plan to 0.6 after such sharing of treatment planning knowledge. In particular, for the centres with less SBRT and/or volumetric- modulated arc therapy (VMAT) experience the MPV average per plan improved. All vendor/TPS combinations were also able to successfully deliver the FF and FFF SBRT VMAT plans. The plan quality and dose accuracy were found to be clinically acceptable.
NASA Astrophysics Data System (ADS)
White, Warren B.; Cayan, Daniel R.; Lean, Judith
1998-09-01
We constructed gridded fields of diabatic heat storage changes in the upper ocean from 20°S to 60°N from historical temperature profiles collected from 1955 to 1996. We filtered these 42 year records for periods of 8 to 15 years and 15 to 30 years, producing depth-weighted vertical average temperature (DVT) changes from the sea surface to the top of the main pycnocline. Basin and global averages of these DVT changes reveal decadal and interdecadal variability in phase across the Indian, Pacific, Atlantic, and Global Oceans, each significantly correlated with changing surface solar radiative forcing at a lag of 0+/-2 years. Decadal and interdecadal changes in global average DVT are 0.06°+/-0.01°K and 0.04°K+/-0.01°K, respectively, the same as those expected from consideration of the Stefan-Boltzmann radiation balance (i.e., 0.3°K per Wm-2) in response to 0.1% changes in surface solar radiative forcing of 0.2 Wm-2 and 0.15 Wm-2, respectively. Global spatial patterns of DVT changes are similar to temperature changes simulated in coupled ocean-atmosphere models, suggesting that natural modes of Earth's variability are phase-locked to the solar irradiance cycle. A trend in global average DVT of 0.15°K over this 42 year record cannot be explained by changing surface solar radiative forcing. But when we consider the 0.5 Wm-2 increase in surface radiative forcing estimated from the increase in atmospheric greenhouse gas and aerosol (GGA) concentrations over this period [Intergovernmental Panel on Climate Change, 1995], the Stefan-Boltzmann radiation balance yields this observed change. Moreover, the sum of solar and GGA surface radiative forcing can explain the relatively sharp increase in global and basin average DVT in the late 1970's.
Effects of temporal averaging on short-term irradiance variability under mixed sky conditions
NASA Astrophysics Data System (ADS)
Lohmann, Gerald M.; Monahan, Adam H.
2018-05-01
Characterizations of short-term variability in solar radiation are required to successfully integrate large numbers of photovoltaic power systems into the electrical grid. Previous studies have used ground-based irradiance observations with a range of different temporal resolutions and a systematic analysis of the effects of temporal averaging on the representation of variability is lacking. Using high-resolution surface irradiance data with original temporal resolutions between 0.01 and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. In this analysis, we condition all data to states of mixed skies, which are the most potentially problematic in terms of local PV power volatility. Statistics of clear-sky index k* and its increments Δk*τ (i.e., normalized surface irradiance and changes therein over specified intervals of time) are considered separately. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability. Higher-resolution data increase the complexity of data management and quality control without appreciably improving the representation of variability. The results do not show any substantial discrepancies between locations or seasons.
Mean glandular dose to patients from stereotactic breast biopsy procedures.
Paixão, Lucas; Chevalier, Margarita; Hurtado-Romero, Antonio E; Garayoa, Julia
2018-06-07
The aim of this work is to study the radiation doses delivered to a group of patients that underwent a stereotactic breast biopsy (SBB) procedure. Mean glandular doses (MGD) were estimated from the air-kerma measured at the breast surface entrance multiplying by specific conversion coefficients (DgN) that were estimated using Monte Carlo simulations. DgN were calculated for the 0º and ±15º projections used in SBB and for the particular beam quality. Data on 61 patients were collected showing that a typical SBB procedure is composed by 10 images. MGD was on average (4 ± 2) mGy with (0.38 ± 0.06) mGy per image. The use of specific conversion coefficients instead of typical DgN for mammography/tomosynthesis yields to obtain MGD values for SBB that are around a 65% lower on average. © 2018 Institute of Physics and Engineering in Medicine.
A method for estimating the performance of photovoltaic systems
NASA Astrophysics Data System (ADS)
Clark, D. R.; Klein, S. A.; Beckman, W. A.
A method is presented for predicting the long-term average performance of photovoltaic systems having storage batteries and subject to any diurnal load profile. The monthly-average fraction of the load met by the system is estimated from array parameters and monthly-average meteorological data. The method is based on radiation statistics, and utilizability, and can account for variability in the electrical demand as well as for the variability in solar radiation.
Gamma radiation combined with cinnamon oil to maintain fish quality
NASA Astrophysics Data System (ADS)
Lyu, Fei; Zhang, Jing; Wei, Qianqian; Gao, Fei; Ding, Yuting; Liu, Shulai
2017-12-01
Effects of gamma radiation combined with cinnamon oil on quality of Northern Snakehead fish fillets were observed during storage at 4 °C. Fish fillets were treated with 1-5 kGy gamma radiation, 0.05-0.5% cinnamon oil or the combination of radiation and cinnamon oil. The antimicrobial activity increased with radiation dose and cinnamon oil concentration. During storage, the combination of 1 kGy radiation and 0.5% cinnamon oil displayed better inhibiting activities on aerobic plate counts, total volatile basic nitrogen, thiobarbituric acid reaction substances than 1 kGy radiation or 0.5% cinnamon oil used alone. Moreover, the combination could arrive at the similar inhibiting activities of cinnamon oil with higher concentration of 0.5% or radiation with higher dose of 5 kGy. Thus, the combination could decrease the radiation dose and cinnamon oil concentration without decreasing the effect of them on maintaining fish quality.
Tarrasch, Ricardo; Carmel-Neiderman, Narin N; Ben-Ami, Sarah; Kaufman, Bella; Pfeffer, Raphi; Ben-David, Merav; Gamus, Dorit
2018-01-01
To evaluate the effects of reflexology treatment on quality of life, sleep disturbances, and fatigue in breast cancer patients during radiation therapy. A total of 72 women with breast cancer (stages 1-3) scheduled for radiation therapy were recruited. Women were allocated upon their preference either to the group receiving reflexology treatments once a week concurrently with radiotherapy and continued for 10 weeks or to the control group (usual care). The Lee Fatigue Scale, General Sleep Disturbance Scale, and Multidimensional Quality of Life Scale Cancer were completed by each patient in both arms at the beginning of the radiation treatment, after 5 weeks, and after 10 weeks of reflexology treatment. The final analysis included 58 women. The reflexology treated group demonstrated statistically significant lower levels of fatigue after 5 weeks of radiation therapy (p < 0.001), compared to the control group. It was also detected that although the quality of life in the control group deteriorated after 5 and 10 weeks of radiation therapy (p < 0.01 and p < 0.05, respectively), it was preserved in the reflexology group, which also demonstrated a significant improvement in the quality of sleep after 10 weeks of radiation treatment (p < 0.05). Similar patterns were obtained in the assessment of the pain levels experienced by the patients. The results of the present study indicate that reflexology may have a positive effect on fatigue, quality of sleep, pain, and quality of life in breast cancer patients during radiation therapy. Reflexology prevented the decline in quality of life and significantly ameliorated the fatigue and quality of sleep of these patients. An encouraging trend was also noted in amelioration of pain levels.
A new CM SAF Solar Surface Radiation Climate Data Set derived from Meteosat Satellite Observations
NASA Astrophysics Data System (ADS)
Trentmann, J.; Mueller, R. W.; Pfeifroth, U.; Träger-Chatterjee, C.; Cremer, R.
2014-12-01
The incoming surface solar radiation has been defined as an essential climate variable by GCOS. It is mandatory to monitor this part of the earth's energy balance, and thus gain insights on the state and variability of the climate system. In addition, data sets of the surface solar radiation have received increased attention over the recent years as an important source of information for the planning of solar energy applications. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. Here we present SARAH (Solar Surface Radiation Dataset - Heliosat), i.e. the new CM SAF Solar Surface Radiation data set based on Meteosat satellite observations. SARAH provides instantaneous, daily- and monthly-averaged data of the effective cloud albedo (CAL), the direct normalized solar radiation (DNI) and the solar irradiance (SIS) from 1983 to 2013 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05 deg allowing for detailed regional studies, and are available in netcdf-format at no cost without restrictions at www.cmsaf.eu. We provide an overview of the data sets, including a validation against reference measurements from the BSRN and GEBA surface station networks.
Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica.
Singh, Jaswant; Singh, Rudra P
2014-01-01
This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased.
Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica
Singh, Jaswant; Singh, Rudra P.
2014-01-01
This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased. PMID:24748743
Decadal Variability of Surface Incident Solar Radiation over China
NASA Astrophysics Data System (ADS)
Wang, Kaicun
2015-04-01
Observations have reported a widespread dimming of surface incident solar radiation (Rs) from the 1950s to the 1980s and a brightening afterwards. However, none of the state-of-the-art earth system models, including those from the Coupled Model Intercomparison Project phase 5 (CMIP5), could successfully reproduce the dimming/brightening rates over China. This study provides metadata and reference data to investigate the observed variability of Rs in China. From 1958 to 1990, diffuse solar radiation (Rsdif) and direct solar radiation (Rsdir) was measured separately in China, from which Rs was calculated a sum. However, pyranometers used to measure Rsdif had a strong sensitivity drift problem, which introduced a spurious decreasing trend to Rsdif and Rs measurements. The observed Rsdir did not suffer from such sensitivity drift problem. From 1990 to 1993, the old instruments were replaced and measuring stations were relocated in China, which introduced an abrupt increase in the observed Rs. After 1993, Rs was measured by solid black thermopile pyranometers. Comprehensive comparisons between observation-based and model-based Rs performed in this research have shown that sunshine duration (SunDu)-derived Rs is of high quality and provide accurate estimate of decadal variability of Rs over China. SunDu-derived Rs averaged over 105 stations in China decreased at -2.9 W m-2 per decade from 1961 to 1990 and remained stable afterward. This decadal variability has been confirmed by the observed Rsdir, independent studies on aerosols and diurnal temperature range, and can be reproduced by certain high-quality earth system models. However, neither satellite retrievals (the Global Energy and Water Exchanges Project Surface Radiation Budget (GEWEX SRB)) nor reanalyses (ERA-Interim and Modern-Era Retrospective analysis for Research and Applications (MERRA)) can accurately reproduce such decadal variability of Rs over China for their exclusion of annual variability of tropospheric aerosols.
Starmer, Heather M; Abrams, Rina; Webster, Kimberly; Kizner, Jennifer; Beadle, Beth; Holsinger, F Christopher; Quon, Harry; Richmon, Jeremy
2018-04-01
Dysphagia following treatment for head and neck cancer is one of the most significant morbidities impacting quality of life. Despite the value of prophylactic exercises to mitigate the impact of radiation on long-term swallowing function, adherence to treatment is limited. The purpose of this investigation was to explore the feasibility of a mobile health application to support patient adherence to swallowing therapy during radiation-based treatment. 36 patients undergoing radiation therapy were provided with the Vibrent™ mobile application as an adjunct to standard swallowing therapy. The application included exercise videos, written instructions, reminders, exercise logging, and educational content. 80% of participants used the app during treatment and logged an average of 102 exercise sessions over the course of treatment. 25% of participants logged at least two exercise sessions per day over the 7-week treatment period, and 53% recorded at least one session per day. Exit interviews regarding the patient experience with the Vibrent™ mobile application were largely positive, but also provided actionable strategies to improve future versions of the application. The Vibrent™ mobile application appears to be a tool that can be feasibly integrated into existing patient care practices and may assist patients in adhering to treatment recommendations and facilitate communication between patients and providers between encounters.
NASA Astrophysics Data System (ADS)
Hahn, Marc Benjamin; Meyer, Susann; Kunte, Hans-Jörg; Solomun, Tihomir; Sturm, Heinz
2017-05-01
The determination of the microscopic dose-damage relationship for DNA in an aqueous environment is of a fundamental interest for dosimetry and applications in radiation therapy and protection. We combine geant4 particle-scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We juxtaposition these results to the experimentally determined damage to obtain the dose-damage relationship at a molecular level. This approach is tested for an experimentally challenging system concerning the direct irradiation of plasmid DNA (pUC19) in water with electrons as primary particles. Here a microscopic target model for the plasmid DNA based on the relation of lineal energy and radiation quality is used to calculate the effective target volume. It was found that on average fewer than two ionizations within a 7.5-nm radius around the sugar-phosphate backbone are sufficient to cause a single strand break, with a corresponding median lethal energy deposit being E1 /2=6 ±4 eV. The presented method is applicable for ionizing radiation (e.g., γ rays, x rays, and electrons) and a variety of targets, such as DNA, proteins, or cells.
NASA Astrophysics Data System (ADS)
Gabderakhmanova, T. S.; Kiseleva, S. V.; Frid, S. E.; Tarasenko, A. B.
2016-11-01
This paper is devoted to calculation of yearly energy production, demanded area and capital costs for first Russian 5 MW grid-tie photovoltaic (PV) plant in Altay Republic that is named Kosh-Agach. Simple linear calculation model, involving average solar radiation and temperature data, grid-tie inverter power-efficiency dependence and PV modules parameters is proposed. Monthly and yearly energy production, equipment costs and demanded area for PV plant are estimated for mono-, polycrystalline and amorphous modules. Calculation includes three types of initial radiation and temperature data—average day for every month from NASA SSE, average radiation and temperature for each day of the year from NASA POWER and typical meteorology year generated from average data for every month. The peculiarities for each type of initial data and their influence on results are discussed.
Imaging and Data Acquisition in Clinical Trials for Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
FitzGerald, Thomas J., E-mail: Thomas.Fitzgerald@umassmed.edu; Bishop-Jodoin, Maryann; Followill, David S.
2016-02-01
Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy qualitymore » assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials.« less
[Radiation dose evaluation in a photon-counting digital mammography unit].
Matsubara, Kosuke; Matsumoto, China; Mochiya, Yuko; Toda, Kanako; Noto, Kimiya; Koshida, Kichiro
2014-05-01
The purpose of our study was to evaluate radiation dose and beam quality in photon-counting digital mammography (PCDM) and compare them with those in a full-field digital mammography (FFDM) unit. Dose variation in the X-ray tube axis direction, aluminum half-value layer, average glandular and skin doses, and contrast-to-noise ratio (CNR) were evaluated for the PCDM and FFDM units. In PCDM, the dose variation in the X-ray tube axis direction was greater than that in FFDM. At a tube voltage of 28 kV, the first half-value layers were 0.407 mmAl for PCDM, 0.357 mmAl for FFDM with a molybdenum target and molybdenum filter (Mo/Mo), and 0.579 mmAl for FFDM with a tungsten target and rhodium filter (W/Rh). The average glandular doses with 45-mm-equivalent breast thickness were 0.723 mGy for the PCDM, 1.55 mGy for the FFDM with Mo/Mo in low-dose mode, and 0.835 mGy for the FFDM with W/Rh in low-dose mode. In PCDM, the skin dose was equivalent to or lower than that in FFDM. The CNR was 2.65±0.04, 2.35±0.04, and 2.52±0.03 for the PCDM, FFDM with Mo/Mo, and that with W/Rh, respectively. The CNR for PCDM was significantly higher than that for FFDM (p<0.001). It is therefore possible to reduce the radiation dose to the patient by using a PCDM unit while maintaining a significantly higher CNR than with the FFDM unit.
NASA Astrophysics Data System (ADS)
Boers, Reinout; Brandsma, Theo; Pier Siebesma, A.
2017-07-01
A 50-year hourly data set of global shortwave radiation, cloudiness and visibility over the Netherlands was used to quantify the contribution of aerosols and clouds to the trend in yearly-averaged all-sky radiation (1.81 ± 1.07 W m-2 decade-1). Yearly-averaged clear-sky and cloud-base radiation data show large year-to-year fluctuations caused by yearly changes in the occurrence of clear and cloudy periods and cannot be used for trend analysis. Therefore, proxy clear-sky and cloud-base radiations were computed. In a proxy analysis hourly radiation data falling within a fractional cloudiness value are fitted by monotonic increasing functions of solar zenith angle and summed over all zenith angles occurring in a single year to produce an average. Stable trends can then be computed from the proxy radiation data. A functional expression is derived whereby the trend in proxy all-sky radiation is a linear combination of trends in fractional cloudiness, proxy clear-sky radiation and proxy cloud-base radiation. Trends (per decade) in fractional cloudiness, proxy clear-sky and proxy cloud-base radiation were, respectively, 0.0097 ± 0.0062, 2.78 ± 0.50 and 3.43 ± 1.17 W m-2. To add up to the all-sky radiation the three trends have weight factors, namely the difference between the mean cloud-base and clear-sky radiation, the clear-sky fraction and the fractional cloudiness, respectively. Our analysis clearly demonstrates that all three components contribute significantly to the observed trend in all-sky radiation. Radiative transfer calculations using the aerosol optical thickness derived from visibility observations indicate that aerosol-radiation interaction (ARI) is a strong candidate to explain the upward trend in the clear-sky radiation. Aerosol-cloud interaction (ACI) may have some impact on cloud-base radiation, but it is suggested that decadal changes in cloud thickness and synoptic-scale changes in cloud amount also play an important role.
Albuquerque, Kevin; Tell, Dina; Lobo, Philip; Millbrandt, Linda; Mathews, Herbert L; Janusek, Linda Witek
2012-06-18
This pilot study used a prospective longitudinal design to compare the effect of adjuvant whole breast radiation therapy (WBRT) versus partial breast radiation therapy (PBRT) on fatigue, perceived stress, quality of life and natural killer cell activity (NKCA) in women receiving radiation after breast cancer surgery. Women (N = 30) with early-stage breast cancer received either PBRT, Mammosite brachytherapy at dose of 34 Gy 10 fractions/5 days, (N = 15) or WBRT, 3-D conformal techniques at dose of 50 Gy +10 Gy Boost/30 fractions, (N = 15). Treatment was determined by the attending oncologist after discussion with the patient and the choice was based on tumor stage and clinical need. Women were assessed prior to initiation of radiation therapy and twice after completion of radiation therapy. At each assessment, blood was obtained for determination of NKCA and the following instruments were administered: Perceived Stress Scale (PSS), Functional Assessment of Cancer Therapy-Fatigue (FACT-F), and Functional Assessment of Cancer Therapy-General (FACT-G). Hierarchical linear modeling (HLM) was used to evaluate group differences in initial outcomes and change in outcomes over time. Fatigue (FACT-F) levels, which were similar prior to radiation therapy, demonstrated a significant difference in trajectory. Women who received PBRT reported progressively lower fatigue; conversely fatigue worsened over time for women who received WBRT. No difference in perceived stress was observed between women who received PBRT or WBRT. Both groups of women reported similar levels of quality of life (FACT-G) prior to initiation of radiation therapy. However, HLM analysis revealed significant group differences in the trajectory of quality of life, such that women receiving PBRT exhibited a linear increase in quality of life over time after completion of radiation therapy; whereas women receiving WBRT showed a decreasing trajectory. NKCA was also similar between therapy groups but additional post hoc analysis revealed that better quality of life significantly predicted higher NKCA regardless of therapy. Compared to WBRT, PBRT results in more rapid recovery from cancer-related fatigue with improved restoration of quality of life after radiation therapy. Additionally, better quality of life predicts higher NKCA against tumor targets, emphasizing the importance of fostering quality of life for women undergoing adjuvant radiation therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley
2015-01-15
Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps)more » using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An average error of <4 Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration, with the majority of points yielding dose-mapping error <2 Gy (approximately 3% of the total prescribed dose). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, resulting in the smallest errors in mapped dose. Dose differences following registration increased significantly with increasing spatial registration errors, dose, and dose gradient (i.e., SD{sub dose}). This model provides a measurement of the uncertainty in the radiation dose when points are mapped between serial CT scans through deformable registration.« less
Task-based measures of image quality and their relation to radiation dose and patient risk
Barrett, Harrison H.; Myers, Kyle J.; Hoeschen, Christoph; Kupinski, Matthew A.; Little, Mark P.
2015-01-01
The theory of task-based assessment of image quality is reviewed in the context of imaging with ionizing radiation, and objective figures of merit (FOMs) for image quality are summarized. The variation of the FOMs with the task, the observer and especially with the mean number of photons recorded in the image is discussed. Then various standard methods for specifying radiation dose are reviewed and related to the mean number of photons in the image and hence to image quality. Current knowledge of the relation between local radiation dose and the risk of various adverse effects is summarized, and some graphical depictions of the tradeoffs between image quality and risk are introduced. Then various dose-reduction strategies are discussed in terms of their effect on task-based measures of image quality. PMID:25564960
Faculty of Radiation Oncology 2014 workforce census.
Leung, John; Munro, Philip L; James, Melissa
2015-12-01
This paper reports the key findings of the Faculty of Radiation Oncology 2014 workforce census and compares the results with earlier surveys. The census was conducted in mid-2014 with distribution to all radiation oncologists, educational affiliates and trainees listed on the college database. There were six email reminders and responses were anonymous. The overall response rate was 76.1%. The age range of fellows was 32-96 (mean = 49 years, median = 47 years). The majority of the radiation oncologists were male (n = 263, 63%). The minority of radiation oncologists were of Asian descent (n = 43, 13.4%). Radiation oncologists graduated from medical school on average 23 years ago (median = 22 years). A minority of fellows (n = 66, 20%) held another postgraduate qualification. Most radiation oncologists worked, on average, at two practices (median = 2, range 1-7). Practising radiation oncologists worked predominantly in the public sector (n = 131, 49%), but many worked in both the public and private sectors (n = 94, 37%), and a minority worked in the private sector only (n = 38, 14%). The largest proportion of the workforce was from New South Wales accounting for 29% of radiation oncologists. Radiation oncologists worked an average of 43 h/week (median = 43 h, range 6-80). Radiation oncologists who worked in the private sector worked less hours than their public sector or public/private sector colleagues. (38.3 vs. 42.9 vs. 44.3 h, P = 0.042). Victorians worked the fewest average hours per week at 38 h and West Australians the most at 46 h/week. Radiation oncologists averaged 48 min for each new case, 17 min per follow up and 11 min for a treatment review. Radiation oncologists averaged 246 new patients per year (median = 250, range = 20-600) with men (average = 268), Western Australians (average = 354) and those in private practice seeing more (average = 275). Most radiation oncologists considered themselves as specialists (n = 151, 60%), but nearly all those from South Australia were generalists (n = 15, 94%) as were three-quarters of those from private practice. A minority of radiation oncologist respondents (10%) intended to retire within 5 years with a further 16% within 10 years.There was a stabilisation of trainee numbers in Australia and New Zealand with no increase compared with 2010 (142 in 2014 vs. 143 in 2010). The most common age bracket for trainees remained 31-35 years. One-third of trainees were of Asian descent and nearly half held other degrees. The majority of trainees were satisfied with their career, but 30% were not entirely satisfied. Nearly half of trainee respondents would have reconsidered their choice of specialty had they known about the possible oversupply in the workforce with 12.4% undecided about continuing their career in radiation oncology. There were still 16% of trainees with no protected time during the working week, and a further 21% with only 1 h. Only one trainee respondent preferred to work in private practice, and job availability remained a concern for 89% of respondents. The radiation oncologist workforce numbers have increased at a much slower rate, and unemployment remained low. Many parameters remained similar to the 2010 survey. However, there has been a decrease in the average number of new patients seen per year, working hours and also a slight decrease in the time spent per new patient. The trainee numbers have stabilised, but job availability remained a concern. A significant proportion of trainees were not satisfied with their career. © 2015 The Authors. Journal of Medical Imaging and Radiation Oncology published by Wiley Publishing Asia Pty Ltd on behalf of Royal Australian and New Zealand College of Radiologists.
Radiation safety audit of a high volume Nuclear Medicine Department.
Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh
2014-10-01
Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure.
Sea Ice, Clouds, Sunlight, and Albedo: The Umbrella Versus the Blanket
NASA Astrophysics Data System (ADS)
Perovich, D. K.
2017-12-01
The Arctic sea ice cover has undergone a major decline in recent years, with reductions in ice extent, ice thickness, and ice age. Understanding the feedbacks and forcing driving these changes is critical in improving predictions. The surface radiation budget plays a central role in summer ice melt and is governed by clouds and surface albedo. Clouds act as an umbrella reducing the downwelling shortwave, but also serve as a blanket increasing the downwelling longwave, with the surface albedo also determining the net balance. Using field observations from the SHEBA program, pairs of clear and cloudy days were selected for each month from May through September and the net radiation flux was calculated for different surface conditions and albedos. To explore the impact of albedo we calculated a break even albedo, where the net radiation for cloudy skies is the same as clear skies. For albedos larger than the break-even value the net radiation flux is smaller under clear skies compared to cloudy skies. Break-even albedos ranged from 0.30 in September to 0.58 in July. For snow covered or bare ice, clear skies always resulted in less radiative heat input. In contrast, leads always had, and ponds usually had, more radiative heat input under clear skies than cloudy skies. Snow covered ice had a net radiation flux that was negative or near zero under clear skies resulting in radiative cooling. We combined the albedo of individual ice types with the area of those ice types to calculate albedos averaged over a 50 km x 50 km area. The July case had the smallest areally averaged albedo of 0.50. This was less than the breakeven albedo, so cloudy skies had a smaller net radiation flux than clear skies. For the cases from the other four months, the areally averaged albedo was greater than the break-even albedo. The areally averaged net radiation flux was negative under clear skies for the May and September cases.
High mortality of Red Sea zooplankton under ambient solar radiation.
Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M
2014-01-01
High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.
A brachytherapy photon radiation quality index Q(BT) for probe-type dosimetry.
Quast, Ulrich; Kaulich, Theodor W; Álvarez-Romero, José T; Carlsson Tedgren, Sa; Enger, Shirin A; Medich, David C; Mourtada, Firas; Perez-Calatayud, Jose; Rivard, Mark J; Zakaria, G Abu
2016-06-01
In photon brachytherapy (BT), experimental dosimetry is needed to verify treatment plans if planning algorithms neglect varying attenuation, absorption or scattering conditions. The detector's response is energy dependent, including the detector material to water dose ratio and the intrinsic mechanisms. The local mean photon energy E¯(r) must be known or another equivalent energy quality parameter used. We propose the brachytherapy photon radiation quality indexQ(BT)(E¯), to characterize the photon radiation quality in view of measurements of distributions of the absorbed dose to water, Dw, around BT sources. While the external photon beam radiotherapy (EBRT) radiation quality index Q(EBRT)(E¯)=TPR10(20)(E¯) is not applicable to BT, the authors have applied a novel energy dependent parameter, called brachytherapy photon radiation quality index, defined as Q(BT)(E¯)=Dprim(r=2cm,θ0=90°)/Dprim(r0=1cm,θ0=90°), utilizing precise primary absorbed dose data, Dprim, from source reference databases, without additional MC-calculations. For BT photon sources used clinically, Q(BT)(E¯) enables to determine the effective mean linear attenuation coefficient μ¯(E) and thus the effective energy of the primary photons Eprim(eff)(r0,θ0) at the TG-43 reference position Pref(r0=1cm,θ0=90°), being close to the mean total photon energy E¯tot(r0,θ0). If one has calibrated detectors, published E¯tot(r) and the BT radiation quality correction factor [Formula: see text] for different BT radiation qualities Q and Q0, the detector's response can be determined and Dw(r,θ) measured in the vicinity of BT photon sources. This novel brachytherapy photon radiation quality indexQ(BT) characterizes sufficiently accurate and precise the primary photon's penetration probability and scattering potential. Copyright © 2016. Published by Elsevier Ltd.
Ma, Yifei; He, Shaohui; Liu, Tielong; Yang, Xinghai; Zhao, Jian; Yu, Hongyu; Feng, Jiaojiao; Xu, Wei; Xiao, Jianru
2017-10-04
Patients with spinal metastasis from cancer of unknown primary origin have limited life expectancy and poor quality of life. Surgery and radiation therapy remain the main treatment options, but, to our knowledge, there are limited data concerning quality-of-life improvement after surgery and radiation therapy and even fewer data on whether surgical intervention would affect quality of life. Patients were enrolled between January 2009 and January 2014 at the Changzheng Hospital, Shanghai, People's Republic of China. The quality of life of 2 patient groups (one group that underwent surgery followed by postoperative radiation therapy and one group that underwent radiation therapy only) was assessed by the Functional Assessment of Cancer Therapy-General (FACT-G) questionnaire during a 6-month period. A subgroup analysis of quality of life was performed to compare different surgical strategies in the surgical group. A total of 287 patients, including 191 patients in the group that underwent surgery and 96 patients in the group that underwent radiation therapy only, were enrolled in the prospective study; 177 patients completed all 5 checkpoints and 110 patients had died by the final checkpoint. The surgery group had significantly higher adjusted quality-of-life scores than the radiation therapy group in each domain of the FACT-G questionnaire (all p < 0.05). Subgroup analysis showed that adjusted functional and physical well-being scores were higher in the circumferential surgical decompression group. Surgery followed by postoperative radiation therapy improved and maintained quality of life in patients with spinal metastasis from cancer of unknown primary origin in the 6-month assessment. In terms of surgical strategies, circumferential decompression seems better than laminectomy alone in quality-of-life improvement. Therapeutic Level II. See Instructions for Authors for a complete description of levels of evidence.
Favazza, Christopher P.; Duan, Xinhui; Zhang, Yi; Yu, Lifeng; Leng, Shuai; Kofler, James M.; Bruesewitz, Michael R.; McCollough, Cynthia H.
2015-01-01
Through this investigation we developed a methodology to evaluate and standardize CT image quality from routine abdomen protocols across different manufacturers and models. The influence of manufacturer-specific automated exposure control systems on image quality was directly assessed to standardize performance across a range of patient sizes. We evaluated 16 CT scanners across our health system, including Siemens, GE, and Toshiba models. Using each practice’s routine abdomen protocol, we measured spatial resolution, image noise, and scanner radiation output (CTDIvol). Axial and in-plane spatial resolutions were assessed through slice sensitivity profile (SSP) and modulation transfer function (MTF) measurements, respectively. Image noise and CTDIvol values were obtained for three different phantom sizes. SSP measurements demonstrated a bimodal distribution in slice widths: an average of 6.2 ± 0.2 mm using GE’s “Plus” mode reconstruction setting and 5.0 ± 0.1 mm for all other scanners. MTF curves were similar for all scanners. Average spatial frequencies at 50%, 10%, and 2% MTF values were 3.24 ± 0.37, 6.20 ± 0.34, and 7.84 ± 0.70 lp/cm, respectively. For all phantom sizes, image noise and CTDIvol varied considerably: 6.5–13.3 HU (noise) and 4.8–13.3 mGy (CTDIvol) for the smallest phantom; 9.1–18.4 HU and 9.3–28.8 mGy for the medium phantom; and 7.8–23.4 HU and 16.0–48.1 mGy for the largest phantom. Using these measurements and benchmark SSP, MTF, and image noise targets, CT image quality can be standardized across a range of patient sizes. PMID:26459751
Quasi-analytical treatment of spatially averaged radiation transfer in complex terrain
NASA Astrophysics Data System (ADS)
Löwe, H.; Helbig, N.
2012-04-01
We provide a new quasi-analytical method to compute the topographic influence on the effective albedo of complex topography as required for meteorological, land-surface or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain averages of direct, diffuse and terrain radiation and the sky view factor. Domain averaged quantities are related to a type of level-crossing probability of the random field which is approximated by longstanding results developed for acoustic scattering at ocean boundaries. This allows us to express all non-local horizon effects in terms of a local terrain parameter, namely the mean squared slope. Emerging integrals are computed numerically and fit formulas are given for practical purposes. As an implication of our approach we provide an expression for the effective albedo of complex terrain in terms of the sun elevation angle, mean squared slope, the area averaged surface albedo, and the direct-to-diffuse ratio of solar radiation. As an application, we compute the effective albedo for the Swiss Alps and discuss possible generalizations of the method.
NASA Technical Reports Server (NTRS)
Bergstrom, Robert W.; Russell, P. B.
2000-01-01
We estimate solar radiative flux changes due to aerosols over the mid-latitude North Atlantic by combining optical depths from AVHRR measurements with aerosol properties from the recent TARFOX program. Results show that, over the ocean the aerosol decreases the net radiative flux at the tropopause and therefore has a cooling effect. Cloud-free, 24-hour average flux changes range from -9 W/sq m near the eastern US coast in summer to -1 W/sq m in the mid-Atlantic during winter. Cloud-free North Atlantic regional averages range from -5.1 W/sq m in summer to -1.7 W/sq m in winter, with an annual average of -3.5 W/sq m. Cloud effects estimated from ISCCP data, reduce the regional annual average to -0.8 W/sq m. All values are for the moderately absorbing TARFOX aerosol (omega(0.55 microns) = 0.9); values for a nonabsorbing aerosol are approx. 30% more negative. We compare our results to a variety of other calculations of aerosol radiative effects.
Miura, Miwa; Ono, Koji; Yamauchi, Motohiro; Matsuda, Naoki
2016-06-01
From October to December 2010, just before the radiological accident at the Fukushima Daiichi nuclear power plant, 71 radiation professionals from radiation facilities in Japan were asked what they considered as a "safe dose" of radiation for themselves, their partners, parents, children, siblings, and friends. Although the 'safe dose' they noted varied widely, from less than 1 mSv y to more than 100 mSv y, the average dose was 35.6 mSv y, which is around the middle point between the legal exposure dose limits for the annual average and for any single year. Similar results were obtained from other surveys of members of the Japan Radioisotope Association (36.9 mSv y) and of the Oita Prefectural Hospital (36.8 mSv y). Among family members and friends, the minimum average "safe" dose was 8.5 mSv y for children, for whom 50% of the responders claimed a "safe dose" of less than 1 mSv. Gender, age and specialty of the radiation professional also affected their notion of a "safe dose." These findings suggest that the perception of radiation risk varies widely even for radiation professionals and that the legal exposure dose limits derived from regulatory science may act as an anchor of safety. The different levels of risk perception for different target groups among radiation professionals appear similar to those in the general population. The gap between these characteristics of radiation professionals and the generally accepted picture of radiation professionals might have played a role in the state of confusion after the radiological accident.
Noel, Camille E; Gutti, Veerarajesh; Bosch, Walter; Mutic, Sasa; Ford, Eric; Terezakis, Stephanie; Santanam, Lakshmi
2014-04-01
To quantify the potential impact of the Integrating the Healthcare Enterprise-Radiation Oncology Quality Assurance with Plan Veto (QAPV) on patient safety of external beam radiation therapy (RT) operations. An institutional database of events (errors and near-misses) was used to evaluate the ability of QAPV to prevent clinically observed events. We analyzed reported events that were related to Digital Imaging and Communications in Medicine RT plan parameter inconsistencies between the intended treatment (on the treatment planning system) and the delivered treatment (on the treatment machine). Critical Digital Imaging and Communications in Medicine RT plan parameters were identified. Each event was scored for importance using the Failure Mode and Effects Analysis methodology. Potential error occurrence (frequency) was derived according to the collected event data, along with the potential event severity, and the probability of detection with and without the theoretical implementation of the QAPV plan comparison check. Failure Mode and Effects Analysis Risk Priority Numbers (RPNs) with and without QAPV were compared to quantify the potential benefit of clinical implementation of QAPV. The implementation of QAPV could reduce the RPN values for 15 of 22 (71%) of evaluated parameters, with an overall average reduction in RPN of 68 (range, 0-216). For the 6 high-risk parameters (>200), the average reduction in RPN value was 163 (range, 108-216). The RPN value reduction for the intermediate-risk (200 > RPN > 100) parameters was (0-140). With QAPV, the largest RPN value for "Beam Meterset" was reduced from 324 to 108. The maximum reduction in RPN value was for Beam Meterset (216, 66.7%), whereas the maximum percentage reduction was for Cumulative Meterset Weight (80, 88.9%). This analysis quantifies the value of the Integrating the Healthcare Enterprise-Radiation Oncology QAPV implementation in clinical workflow. We demonstrate that although QAPV does not provide a comprehensive solution for error prevention in RT, it can have a significant impact on a subset of the most severe clinically observed events. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash
The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality ismore » projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O 3 level and of 0.3 mg m 3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO 2, H 2O 2, and the nitrate radical and increasing the atmosphere’s near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O 3, and increases in CH 4 and VOCs. Increasing NO x and O 3 levels enhances the nitrogen and O 3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth’s surface with a global average reduction in shortwave radiation of 1.2 W m 2 . This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR’s CCSM simulation, which does not include the advanced chemistry and aerosol treatment of GU-WRF/Chem and cannot simulate the impacts of changing climate and emissions with the same level of detailed treatments. This study indicates that effective climate mitigation and emission control strategies are needed to prevent future health impact and ecosystem stress. Further, studies that are used to develop these strategies should use fully coupled models with sophisticated chemical and aerosol-interaction treatments that can provide a more realistic representation of the atmosphere.« less
NASA Astrophysics Data System (ADS)
Griessbach, Sabine; Hoffmann, Lars; Höpfner, Michael; Riese, Martin; Spang, Reinhold
2013-09-01
The viability of a spectrally averaging model to perform radiative transfer calculations in the infrared including scattering by atmospheric particles is examined for the application of infrared limb remote sensing measurements. Here we focus on the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European Space Agency's Envisat. Various spectra for clear air and cloudy conditions were simulated with a spectrally averaging radiative transfer model and a line-by-line radiative transfer model for three atmospheric window regions (825-830, 946-951, 1224-1228 cm-1) and compared to each other. The results are rated in terms of the MIPAS noise equivalent spectral radiance (NESR). The clear air simulations generally agree within one NESR. The cloud simulations neglecting the scattering source term agree within two NESR. The differences between the cloud simulations including the scattering source term are generally below three and always below four NESR. We conclude that the spectrally averaging approach is well suited for fast and accurate infrared radiative transfer simulations including scattering by clouds. We found that the main source for the differences between the cloud simulations of both models is the cloud edge sampling. Furthermore we reasoned that this model comparison for clouds is also valid for atmospheric aerosol in general.
Kirkwood, Melissa L; Guild, Jeffrey B; Arbique, Gary M; Tsai, Shirling; Modrall, J Gregory; Anderson, Jon A; Rectenwald, John; Timaran, Carlos
2016-11-01
A new proprietary image-processing system known as AlluraClarity, developed by Philips Healthcare (Best, The Netherlands) for radiation-based interventional procedures, claims to lower radiation dose while preserving image quality using noise-reduction algorithms. This study determined whether the surgeon and patient radiation dose during complex endovascular procedures (CEPs) is decreased after the implementation of this new operating system. Radiation dose to operators, procedure type, reference air kerma, kerma area product, and patient body mass index were recorded during CEPs on two Philips Allura FD 20 fluoroscopy systems with and without Clarity. Operator dose during CEPs was measured using optically stimulable, luminescent nanoDot (Landauer Inc, Glenwood, Ill) detectors placed outside the lead apron at the left upper chest position. nanoDots were read using a microStar ii (Landauer Inc) medical dosimetry system. For the CEPs in the Clarity group, the radiation dose to surgeons was also measured by the DoseAware (Philips Healthcare) personal dosimetry system. Side-by-side measurements of DoseAware and nanoDots allowed for cross-calibration between systems. Operator effective dose was determined using a modified Niklason algorithm. To control for patient size and case complexity, the average fluoroscopy dose rate and the dose per radiographic frame were adjusted for body mass index differences and then compared between the groups with and without Clarity by procedure. Additional factors, for example, physician practice patterns, that may have affected operator dose were inferred by comparing the ratio of the operator dose to procedural kerma area product with and without Clarity. A one-sided Wilcoxon rank sum test was used to compare groups for radiation doses, reference air kermas, and operating practices for each procedure type. The analysis included 234 CEPs; 95 performed without Clarity and 139 with Clarity. Practice patterns of operators during procedures with and without Clarity were not significantly different. For all cases, procedure radiation dose to the patient and the primary and assistant operators were significantly decreased in the Clarity group by 60% compared with the non-Clarity group. By procedure type, fluorography dose rates decreased from 44% for fenestrated endovascular repair and up to 70% with lower extremity interventions. Fluoroscopy dose rates also significantly decreased, from about 37% to 47%, depending on procedure type. The AlluraClarity system reduces the patient and primary operator's radiation dose by more than half during CEPs. This feature appears to be an effective tool in lowering the radiation dose while maintaining image quality. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Rout, John; Brown, Jackie
2012-06-01
This is the last in a series of three articles on X-ray dose reduction and covers aspects of quality assurance. The first outlined radiation physics and protection and the second the legislation relating to radiation safety. Quality assurance is an essential part of dental radiography and is required to produce images of a consistently high standard, necessary for accurate diagnosis.
Inaniwa, T; Kanematsu, N
2015-01-07
In scanned carbon-ion (C-ion) radiotherapy, some primary C-ions undergo nuclear reactions before reaching the target and the resulting particles deliver doses to regions at a significant distance from the central axis of the beam. The effects of these particles on physical dose distribution are accounted for in treatment planning by representing the transverse profile of the scanned C-ion beam as the superposition of three Gaussian distributions. In the calculation of biological dose distribution, however, the radiation quality of the scanned C-ion beam has been assumed to be uniform over its cross-section, taking the average value over the plane at a given depth (monochrome model). Since these particles, which have relatively low radiation quality, spread widely compared to the primary C-ions, the radiation quality of the beam should vary with radial distance from the central beam axis. To represent its transverse distribution, we propose a trichrome beam model in which primary C-ions, heavy fragments with atomic number Z ≥ 3, and light fragments with Z ≤ 2 are assigned to the first, second, and third Gaussian components, respectively. Assuming a realistic beam-delivery system, we performed computer simulations using Geant4 Monte Carlo code for analytical beam modeling of the monochrome and trichrome models. The analytical beam models were integrated into a treatment planning system for scanned C-ion radiotherapy. A target volume of 20 × 20 × 40 mm(3) was defined within a water phantom. A uniform biological dose of 2.65 Gy (RBE) was planned for the target with the two beam models based on the microdosimetric kinetic model (MKM). The plans were recalculated with Geant4, and the recalculated biological dose distributions were compared with the planned distributions. The mean target dose of the recalculated distribution with the monochrome model was 2.72 Gy (RBE), while the dose with the trichrome model was 2.64 Gy (RBE). The monochrome model underestimated the RBE within the target due to the assumption of no radial variations in radiation quality. Conversely, the trichrome model accurately predicted the RBE even in a small target. Our results verify the applicability of the trichrome model for clinical use in C-ion radiotherapy treatment planning.
NASA Astrophysics Data System (ADS)
Inaniwa, T.; Kanematsu, N.
2015-01-01
In scanned carbon-ion (C-ion) radiotherapy, some primary C-ions undergo nuclear reactions before reaching the target and the resulting particles deliver doses to regions at a significant distance from the central axis of the beam. The effects of these particles on physical dose distribution are accounted for in treatment planning by representing the transverse profile of the scanned C-ion beam as the superposition of three Gaussian distributions. In the calculation of biological dose distribution, however, the radiation quality of the scanned C-ion beam has been assumed to be uniform over its cross-section, taking the average value over the plane at a given depth (monochrome model). Since these particles, which have relatively low radiation quality, spread widely compared to the primary C-ions, the radiation quality of the beam should vary with radial distance from the central beam axis. To represent its transverse distribution, we propose a trichrome beam model in which primary C-ions, heavy fragments with atomic number Z ≥ 3, and light fragments with Z ≤ 2 are assigned to the first, second, and third Gaussian components, respectively. Assuming a realistic beam-delivery system, we performed computer simulations using Geant4 Monte Carlo code for analytical beam modeling of the monochrome and trichrome models. The analytical beam models were integrated into a treatment planning system for scanned C-ion radiotherapy. A target volume of 20 × 20 × 40 mm3 was defined within a water phantom. A uniform biological dose of 2.65 Gy (RBE) was planned for the target with the two beam models based on the microdosimetric kinetic model (MKM). The plans were recalculated with Geant4, and the recalculated biological dose distributions were compared with the planned distributions. The mean target dose of the recalculated distribution with the monochrome model was 2.72 Gy (RBE), while the dose with the trichrome model was 2.64 Gy (RBE). The monochrome model underestimated the RBE within the target due to the assumption of no radial variations in radiation quality. Conversely, the trichrome model accurately predicted the RBE even in a small target. Our results verify the applicability of the trichrome model for clinical use in C-ion radiotherapy treatment planning.
Faculty of Radiation Oncology 2014 workforce census
Munro, Philip L.; James, Melissa
2015-01-01
Abstract Introduction This paper reports the key findings of the Faculty of Radiation Oncology 2014 workforce census and compares the results with earlier surveys. Methods The census was conducted in mid‐2014 with distribution to all radiation oncologists, educational affiliates and trainees listed on the college database. There were six email reminders and responses were anonymous. The overall response rate was 76.1%. Results The age range of fellows was 32–96 (mean = 49 years, median = 47 years). The majority of the radiation oncologists were male (n = 263, 63%). The minority of radiation oncologists were of Asian descent (n = 43, 13.4%). Radiation oncologists graduated from medical school on average 23 years ago (median = 22 years). A minority of fellows (n = 66, 20%) held another postgraduate qualification. Most radiation oncologists worked, on average, at two practices (median = 2, range 1–7). Practising radiation oncologists worked predominantly in the public sector (n = 131, 49%), but many worked in both the public and private sectors (n = 94, 37%), and a minority worked in the private sector only (n = 38, 14%). The largest proportion of the workforce was from New South Wales accounting for 29% of radiation oncologists. Radiation oncologists worked an average of 43 h/week (median = 43 h, range 6–80). Radiation oncologists who worked in the private sector worked less hours than their public sector or public/private sector colleagues. (38.3 vs. 42.9 vs. 44.3 h, P = 0.042). Victorians worked the fewest average hours per week at 38 h and West Australians the most at 46 h/week. Radiation oncologists averaged 48 min for each new case, 17 min per follow up and 11 min for a treatment review. Radiation oncologists averaged 246 new patients per year (median = 250, range = 20–600) with men (average = 268), Western Australians (average = 354) and those in private practice seeing more (average = 275). Most radiation oncologists considered themselves as specialists (n = 151, 60%), but nearly all those from South Australia were generalists (n = 15, 94%) as were three‐quarters of those from private practice. A minority of radiation oncologist respondents (10%) intended to retire within 5 years with a further 16% within 10 years.There was a stabilisation of trainee numbers in Australia and New Zealand with no increase compared with 2010 (142 in 2014 vs. 143 in 2010). The most common age bracket for trainees remained 31–35 years. One‐third of trainees were of Asian descent and nearly half held other degrees. The majority of trainees were satisfied with their career, but 30% were not entirely satisfied. Nearly half of trainee respondents would have reconsidered their choice of specialty had they known about the possible oversupply in the workforce with 12.4% undecided about continuing their career in radiation oncology. There were still 16% of trainees with no protected time during the working week, and a further 21% with only 1 h. Only one trainee respondent preferred to work in private practice, and job availability remained a concern for 89% of respondents. Conclusions The radiation oncologist workforce numbers have increased at a much slower rate, and unemployment remained low. Many parameters remained similar to the 2010 survey. However, there has been a decrease in the average number of new patients seen per year, working hours and also a slight decrease in the time spent per new patient. The trainee numbers have stabilised, but job availability remained a concern. A significant proportion of trainees were not satisfied with their career. PMID:26511456
SU-E-T-617: Plan Quality Estimation of Intensity-Modulated Radiotherapy Cases for Lung Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koo, J; Yoon, M; Chung, W
Purpose: To estimate the planning quality of intensity-modulated radiotherapy in lung cancer cases and to provide preliminary data for the development of a planning quality assurance algorithm. Methods: 42 IMRT plans previously used in cases of solitary lung cancers were collected. Organs in or near the thoracic cavity, such as lung (ipsilateral, contralateral), heart, liver, esophagus, cord and bronchus were considered as organs at risk (OARs) in this study. The coverage index (CVI), conformity index (CI), homogeneity index (HI), volume, irregularity (standard deviation of center-surface distance) were used to compare PTV dose characteristics. The effective uniform dose (EUD), V10Gy, andmore » V20Gy of the OARs were used to compare OAR dose characteristics. Results: Average CVI, CI, HI values were 0.9, 0.8, 0.1, respectively. CVI and CI had narrow Gaussian distribution curves without a singular value, but one case had a relatively high (0.25) HI because of location and irregular shape (Irregularity of 18.5 when average was 12.5) of PTV. EUDs tended to decrease as OAR-PTV distance increased and OAR-PTV overlap volume decreased. Conclusion: This work indicates the potential for significant plan quality deviation of similar lung cancer cases. Considering that this study were from a single department, differences in the treatment results for a given patient would be much more pronounced if multiple departments (and therefore more planners) were involved. Therefore, further examination of QA protocols is needed to reduce deviations in radiation treatment planning.« less
Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires
Guo, Song; Leighton, H.
2008-01-01
The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.
Effects of radiation quality, intensity, and duration on photosynthesis and growth
NASA Technical Reports Server (NTRS)
Bugbee, Bruce
1994-01-01
Differences in radiation quality from the six most common electric lamps have little effect on photosynthetic rate. Radiation quality primarily alters growth because of changes in branching or internode elongation, which change radiation absorption. Growth and yield in wheat appear to be insensitive to radiation quality. Growth and yield in soybeans can be slightly increased under high pressure sodium (HPS) lamps compared to metal halide lamps, in spite of greatly reduced chlorophyll concentrations under HPS lamps. Daily integrated photosynthetic photon flux (mol m(exp -2)d(exp -1)) most directly determines leaf anatomy and growth. Photosynthetic photon flux (PPF) levels of 800 (mu)mol m(exp -2)s(exp -1) are adequate to simulate field daily-integrated PPF levels for both short and long day plants, but plant canopies can benefit from much higher PPF levels.
Effects of radiation quality, intensity, and duration on photosynthesis and growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugbee, B.
1994-12-31
Differences in radiation quality from the six most common electric lamps have little effect on photosynthetic rate. Radiation quality primarily alters growth because of changes in branching or internode elongation, which change radiation absorption. Growth and yield in wheat appear to be insensitive to radiation quality. Growth and yield in soybeans can be slightly increased under high pressure sodium lamps compared to metal halide lamps, in spite of greatly reduced chlorophyll concentrations under HPS lamps. Daily integrated photosynthetic photon flux (mol m{sup -2} d{sup -1}) most directly determines leaf anatomy and growth. Photosynthetic photon flux levels of 800 {mu}mol m{supmore » -2} s{sup -1} are adequate to simulate field daily-integrated PPF levels for both short and long day plants, but plant canopies can benefit from much higher PPF levels.« less
Vainshtein, Jeffrey M; Griffith, Kent A; Feng, Felix Y; Vineberg, Karen A; Chepeha, Douglas B; Eisbruch, Avraham
2014-08-01
To describe voice and speech quality changes and their predictors in patients with locally advanced oropharyngeal cancer treated on prospective clinical studies of organ-preserving chemotherapy-intensity modulated radiation therapy (chemo-IMRT). Ninety-one patients with stage III/IV oropharyngeal cancer were treated on 2 consecutive prospective studies of definitive chemoradiation using whole-field IMRT from 2003 to 2011. Patient-reported voice and speech quality were longitudinally assessed from before treatment through 24 months using the Communication Domain of the Head and Neck Quality of Life (HNQOL-C) instrument and the Speech question of the University of Washington Quality of Life (UWQOL-S) instrument, respectively. Factors associated with patient-reported voice quality worsening from baseline and speech impairment were assessed. Voice quality decreased maximally at 1 month, with 68% and 41% of patients reporting worse HNQOL-C and UWQOL-S scores compared with before treatment, and improved thereafter, recovering to baseline by 12-18 months on average. In contrast, observer-rated larynx toxicity was rare (7% at 3 months; 5% at 6 months). Among patients with mean glottic larynx (GL) dose ≤20 Gy, >20-30 Gy, >30-40 Gy, >40-50 Gy, and >50 Gy, 10%, 32%, 25%, 30%, and 63%, respectively, reported worse voice quality at 12 months compared with before treatment (P=.011). Results for speech impairment were similar. Glottic larynx dose, N stage, neck dissection, oral cavity dose, and time since chemo-IMRT were univariately associated with either voice worsening or speech impairment. On multivariate analysis, mean GL dose remained independently predictive for both voice quality worsening (8.1%/Gy) and speech impairment (4.3%/Gy). Voice quality worsening and speech impairment after chemo-IMRT for locally advanced oropharyngeal cancer were frequently reported by patients, underrecognized by clinicians, and independently associated with GL dose. These findings support reducing mean GL dose to as low as reasonably achievable, aiming at ≤20 Gy when the larynx is not a target. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainshtein, Jeffrey M.; Griffith, Kent A.; Feng, Felix Y.
Purpose: To describe voice and speech quality changes and their predictors in patients with locally advanced oropharyngeal cancer treated on prospective clinical studies of organ-preserving chemotherapy–intensity modulated radiation therapy (chemo-IMRT). Methods and Materials: Ninety-one patients with stage III/IV oropharyngeal cancer were treated on 2 consecutive prospective studies of definitive chemoradiation using whole-field IMRT from 2003 to 2011. Patient-reported voice and speech quality were longitudinally assessed from before treatment through 24 months using the Communication Domain of the Head and Neck Quality of Life (HNQOL-C) instrument and the Speech question of the University of Washington Quality of Life (UWQOL-S) instrument, respectively.more » Factors associated with patient-reported voice quality worsening from baseline and speech impairment were assessed. Results: Voice quality decreased maximally at 1 month, with 68% and 41% of patients reporting worse HNQOL-C and UWQOL-S scores compared with before treatment, and improved thereafter, recovering to baseline by 12-18 months on average. In contrast, observer-rated larynx toxicity was rare (7% at 3 months; 5% at 6 months). Among patients with mean glottic larynx (GL) dose ≤20 Gy, >20-30 Gy, >30-40 Gy, >40-50 Gy, and >50 Gy, 10%, 32%, 25%, 30%, and 63%, respectively, reported worse voice quality at 12 months compared with before treatment (P=.011). Results for speech impairment were similar. Glottic larynx dose, N stage, neck dissection, oral cavity dose, and time since chemo-IMRT were univariately associated with either voice worsening or speech impairment. On multivariate analysis, mean GL dose remained independently predictive for both voice quality worsening (8.1%/Gy) and speech impairment (4.3%/Gy). Conclusions: Voice quality worsening and speech impairment after chemo-IMRT for locally advanced oropharyngeal cancer were frequently reported by patients, underrecognized by clinicians, and independently associated with GL dose. These findings support reducing mean GL dose to as low as reasonably achievable, aiming at ≤20 Gy when the larynx is not a target.« less
Faught, Jacqueline Tonigan; Balter, Peter A; Johnson, Jennifer L; Kry, Stephen F; Court, Laurence E; Stingo, Francesco C; Followill, David S
2017-11-01
The objective of this work was to assess both the perception of failure modes in Intensity Modulated Radiation Therapy (IMRT) when the linac is operated at the edge of tolerances given in AAPM TG-40 (Kutcher et al.) and TG-142 (Klein et al.) as well as the application of FMEA to this specific section of the IMRT process. An online survey was distributed to approximately 2000 physicists worldwide that participate in quality services provided by the Imaging and Radiation Oncology Core - Houston (IROC-H). The survey briefly described eleven different failure modes covered by basic quality assurance in step-and-shoot IMRT at or near TG-40 (Kutcher et al.) and TG-142 (Klein et al.) tolerance criteria levels. Respondents were asked to estimate the worst case scenario percent dose error that could be caused by each of these failure modes in a head and neck patient as well as the FMEA scores: Occurrence, Detectability, and Severity. Risk probability number (RPN) scores were calculated as the product of these scores. Demographic data were also collected. A total of 181 individual and three group responses were submitted. 84% were from North America. Most (76%) individual respondents performed at least 80% clinical work and 92% were nationally certified. Respondent medical physics experience ranged from 2.5 to 45 yr (average 18 yr). A total of 52% of individual respondents were at least somewhat familiar with FMEA, while 17% were not familiar. Several IMRT techniques, treatment planning systems, and linear accelerator manufacturers were represented. All failure modes received widely varying scores ranging from 1 to 10 for occurrence, at least 1-9 for detectability, and at least 1-7 for severity. Ranking failure modes by RPN scores also resulted in large variability, with each failure mode being ranked both most risky (1st) and least risky (11th) by different respondents. On average MLC modeling had the highest RPN scores. Individual estimated percent dose errors and severity scores positively correlated (P < 0.01) for each FM as expected. No universal correlations were found between the demographic information collected and scoring, percent dose errors or ranking. Failure modes investigated overall were evaluated as low to medium risk, with average RPNs less than 110. The ranking of 11 failure modes was not agreed upon by the community. Large variability in FMEA scoring may be caused by individual interpretation and/or experience, reflecting the subjective nature of the FMEA tool. © 2017 American Association of Physicists in Medicine.
Morimoto, Masahiro; Yoshioka, Yasuo; Kotsuma, Tadayuki; Adachi, Kana; Shiomi, Hiroya; Suzuki, Osamu; Seo, Yuji; Koizumi, Masahiko; Kagawa, Naoki; Kinoshita, Manabu; Hashimoto, Naoya; Ogawa, Kazuhiko
2013-08-01
To retrospectively examine the outcomes of hypofractionated stereotactic radiation therapy in three to five fractions for vestibular schwannomas. Twenty-five patients with 26 vestibular schwannomas were treated with hypofractionated stereotactic radiation therapy using a CyberKnife. The vestibular schwannomas of 5 patients were associated with type II neurofibromatosis. The median follow-up time was 80 months (range: 6-167); the median planning target volume was 2.6 cm(3) (0.3-15.4); and the median prescribed dose (≥D90) was 21 Gy in three fractions (18-25 Gy in three to five fractions). Progression was defined as ≥2 mm 3-dimensional post-treatment tumor enlargement excluding transient expansion. Progression or any death was counted as an event in progression-free survival rates, whereas only progression was counted in progression-free rates. The 7-year progression-free survival and progression-free rates were 78 and 95%, respectively. Late adverse events (≥3 months) with grades based on Common Terminology Criteria for Adverse Events, v4.03 were observed in 6 patients: Grade 3 hydrocephalus in one patient, Grade 2 facial nerve disorders in two and Grade 1-2 tinnitus in three. In total, 12 out of 25 patients maintained pure tone averages ≤50 dB before hypofractionated stereotactic radiation therapy, and 6 of these 12 patients (50%) maintained pure tone averages at this level at the final audiometric follow-up after hypofractionated stereotactic radiation therapy. However, gradient deterioration of pure tone average was observed in 11 of these 12 patients. The mean pure tone averages before hypofractionated stereotactic radiation therapy and at the final follow-up for the aforementioned 12 patients were 29.8 and 57.1 dB, respectively. Treating vestibular schwannomas with hypofractionated stereotactic radiation therapy in three to five fractions may prevent tumor progression with tolerable toxicity. However, gradient deterioration of pure tone average was observed.
TU-F-9A-01: Balancing Image Quality and Dose in Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peck, D; Pasciak, A
2014-06-15
Emphasis is often placed on minimizing radiation dose in diagnostic imaging without a complete consideration of the effect on image quality, especially those that affect diagnostic accuracy. This session will include a patient image-based review of diagnostic quantities important to radiologists in conventional radiography, including the effects of body habitus, age, positioning, and the clinical indication of the exam. The relationships between image quality, radiation dose, and radiation risk will be discussed, specifically addressing how these factors are affected by image protocols and acquisition parameters and techniques. This session will also discuss some of the actual and perceived radiation riskmore » associated with diagnostic imaging. Regardless if the probability for radiation-induced cancer is small, the fear associated with radiation persists. Also when a risk has a benefit to an individual or to society, the risk may be justified with respect to the benefit. But how do you convey the risks and the benefits to people? This requires knowledge of how people perceive risk and how to communicate the risk and the benefit to different populations. In this presentation the sources of errors in estimating risk from radiation and some methods used to convey risks are reviewed. Learning Objectives: Understand the image quality metrics that are clinically relevant to radiologists. Understand how acquisition parameters and techniques affect image quality and radiation dose in conventional radiology. Understand the uncertainties in estimates of radiation risk from imaging exams. Learn some methods for effectively communicating radiation risk to the public.« less
Microdosimetry in ion-beam therapy
NASA Astrophysics Data System (ADS)
Magrin, Giulio; Mayer, Ramona
2015-06-01
The information of the dose is not sufficiently describing the biological effects of ions on tissue since it does not express the radiation quality, i.e. the heterogeneity of the processes due to the slowing-down and the fragmentation of the particles when crossing a target. Depending on different circumstances, the radiation quality can be determined using measurements, calculations, or simulations. Microdosimeters are the primary tools used to provide the experimental information of the radiation quality and their role is becoming crucial for the recent clinical developments in particular with carbon ion therapy. Microdosimetry is strongly linked to the biological effectiveness of the radiation since it provides the physical parameters which explicitly distinguish the radiation for its capability of damaging cells. In the framework of ion-beam therapy microdosimetry can be used in the preparation of the treatment to complement radiobiological experiments and to analyze the modification of the radiation quality in phantoms. A more ambitious goal is to perform the measurements during the irradiation procedure to determine the non-targeted radiation and, more importantly, to monitor the modification of the radiation quality inside the patient. These procedures provide the feedback of the treatment directly beneficial for the single patient but also for the characterization of the biological effectiveness in general with advantages for all future treatment. Traditional and innovative tools are currently under study and an outlook of present experience and future development is presented here.
NASA Astrophysics Data System (ADS)
Londt, John H.; Shreter, Uri; Vass, Melissa; Hsieh, Jiang; Ge, Zhanyu; Adda, Olivier; Dowe, David A.; Sabllayrolles, Jean-Louis
2007-03-01
We present the results of dose and image quality performance evaluation of a novel, prospective ECG-gated Coronary CT Angiography acquisition mode (SnapShot Pulse, LightSpeed VCT-XT scanner, GE Healthcare, Waukesha, WI), and compare it to conventional retrospective ECG gated helical acquisition in clinical and phantom studies. Image quality phantoms were used to measure noise, slice sensitivity profile, in-plane resolution, low contrast detectability and dose, using the two acquisition modes. Clinical image quality and diagnostic confidence were evaluated in a study of 31 patients scanned with the two acquisition modes. Radiation dose reduction in clinical practice was evaluated by tracking 120 consecutive patients scanned with the prospectively gated scan mode. In the phantom measurements, the prospectively gated mode resulted in equivalent or better image quality measures at dose reductions of up to 89% compared to non-ECG modulated conventional helical scans. In the clinical study, image quality was rated excellent by expert radiologist reviewing the cases, with pathology being identical using the two acquisition modes. The average dose to patients in the clinical practice study was 5.6 mSv, representing 50% reduction compared to a similar patient population scanned with the conventional helical mode.
Papadakis, Antonios E; Perisinakis, Kostas; Raissaki, Maria; Damilakis, John
2013-04-01
The aim of the present phantom study was to investigate the effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral computed tomographic (CT) angiographic examinations of pediatric and adult individuals. Four physical anthropomorphic phantoms that represent the average individual as neonate, 1-year-old, 5-year-old, and 10-year-old children and the RANDO phantom that simulates the average adult individual were used. Cylindrical vessels were bored along the brain-equivalent plugs of each physical phantom. To simulate the brain vasculature, vessels of 0.6, 1, 2, and 3 mm in diameter were created. These vessels were filled with contrast medium (CM) solutions at different iodine concentrations, that is, 5.6, 4.2, 2.7, and 1.4 mg I/mL. The phantom heads were scanned at 120, 100, and 80 kV. The applied quality reference tube current-time product values ranged from a minimum of 45 to a maximum of 680. The CT acquisitions were performed on a 16-slice CT scanner using the automatic exposure control system. Image quality was evaluated on the basis of image noise and contrast-to-noise ratio (CNR) between the contrast-enhanced iodinated vessels and the unenhanced regions of interest. Dose reduction was calculated as the percentage difference of the CT dose index value at the quality reference tube current-time product and the CT dose index at the mean modulated tube current-time product. Image noise that was measured using the preset tube current-time product settings varied significantly among the different phantoms (P < 0.0001). Hounsfield unit number of iodinated vessels was linearly related to CM concentration (r² = 0.907) and vessel diameter (r² = 0.918). The Hounsfield unit number of iodinated vessels followed a decreasing trend from the neonate phantom to the adult phantom at all kilovoltage settings. For the same image noise level, a CNR improvement of up to 69% and a dose reduction of up to 61% may be achieved when CT acquisition is performed at 80 kV compared with 120 kV. For the same CNR, a reduction by 25% of the administered CM concentration may be achieved when CT acquisition is performed at 80 kV compared with 120 kV. In cerebral CT angiographic studies, appropriate adjustment of the preset tube current-time product settings is required to achieve the same image noise level among participants of different age. Cerebral CT angiography at 80 kV significantly improves CNR and significantly reduces radiation dose. Moreover, at 80 kV, a considerable reduction of the administered amount of the CM may be reached, thus reducing potential risks for contrast-induced nephropathy.
Aaltonen, Leena-Maija; Rautiainen, Noora; Sellman, Jaana; Saarilahti, Kauko; Mäkitie, Antti; Rihkanen, Heikki; Laranne, Jussi; Kleemola, Leenamaija; Wigren, Tuija; Sala, Eeva; Lindholm, Paula; Grenman, Reidar; Joensuu, Heikki
2014-10-01
Early laryngeal cancer is usually treated with either transoral laser surgery or radiation therapy. The quality of voice achieved with these treatments has not been compared in a randomized trial. Male patients with carcinoma limited to 1 mobile vocal cord (T1aN0M0) were randomly assigned to receive either laser surgery (n=32) or external beam radiation therapy (n=28). Surgery consisted of tumor excision with a CO2 laser with the patient under general anaesthesia. External beam radiation therapy to the larynx was delivered to a cumulative dose of 66 Gy in 2-Gy daily fractions over 6.5 weeks. Voice quality was assessed at baseline and 6 and 24 months after treatment. The main outcome measures were expert-rated voice quality on a grade, roughness, breathiness, asthenia, and strain (GRBAS) scale, videolaryngostroboscopic findings, and the patients' self-rated voice quality and its impact on activities of daily living. Overall voice quality between the groups was rated similar, but voice was more breathy and the glottal gap was wider in patients treated with laser surgery than in those who received radiation therapy. Patients treated with radiation therapy reported less hoarseness-related inconvenience in daily living 2 years after treatment. Three patients in each group had local cancer recurrence within 2 years from randomization. Radiation therapy may be the treatment of choice for patients whose requirements for voice quality are demanding. Overall voice quality was similar in both treatment groups, however, indicating a need for careful consideration of patient-related factors in the choice of a treatment option. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaltonen, Leena-Maija, E-mail: leena-maija.aaltonen@hus.fi; Rautiainen, Noora; Sellman, Jaana
Objective: Early laryngeal cancer is usually treated with either transoral laser surgery or radiation therapy. The quality of voice achieved with these treatments has not been compared in a randomized trial. Methods and Materials: Male patients with carcinoma limited to 1 mobile vocal cord (T1aN0M0) were randomly assigned to receive either laser surgery (n=32) or external beam radiation therapy (n=28). Surgery consisted of tumor excision with a CO{sub 2} laser with the patient under general anaesthesia. External beam radiation therapy to the larynx was delivered to a cumulative dose of 66 Gy in 2-Gy daily fractions over 6.5 weeks. Voice quality wasmore » assessed at baseline and 6 and 24 months after treatment. The main outcome measures were expert-rated voice quality on a grade, roughness, breathiness, asthenia, and strain (GRBAS) scale, videolaryngostroboscopic findings, and the patients' self-rated voice quality and its impact on activities of daily living. Results: Overall voice quality between the groups was rated similar, but voice was more breathy and the glottal gap was wider in patients treated with laser surgery than in those who received radiation therapy. Patients treated with radiation therapy reported less hoarseness-related inconvenience in daily living 2 years after treatment. Three patients in each group had local cancer recurrence within 2 years from randomization. Conclusions: Radiation therapy may be the treatment of choice for patients whose requirements for voice quality are demanding. Overall voice quality was similar in both treatment groups, however, indicating a need for careful consideration of patient-related factors in the choice of a treatment option.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chofor, N; Poppe, B; Nebah, F
Purpose: In a brachytherapy photon field in water the fluence-averaged mean photon energy Em at the point of measurement correlates with the radiation quality correction factor kQ of a non water-equivalent detector. To support the experimental assessment of Em, we show that the normalized signal ratio NSR of a pair of radiation detectors, an unshielded silicon diode and a diamond detector can serve to measure quantity Em in a water phantom at a Ir-192 unit. Methods: Photon fluence spectra were computed in EGSnrc based on a detailed model of the GammaMed source. Factor kQ was calculated as the ratio ofmore » the detector's spectrum-weighted responses under calibration conditions at a 60Co unit and under brachytherapy conditions at various radial distances from the source. The NSR was investigated for a pair of a p-type unshielded silicon diode 60012 and a synthetic single crystal diamond detector 60019 (both PTW Freiburg). Each detector was positioned according to its effective point of measurement, with its axis facing the source. Lateral signal profiles were scanned under complete scatter conditions, and the NSR was determined as the quotient of the signal ratio under application conditions x and that at position r-ref = 1 cm. Results: The radiation quality correction factor kQ shows a close correlation with the mean photon energy Em. The NSR of the diode/diamond pair changes by a factor of two from 0–18 cm from the source, while Em drops from 350 to 150 keV. Theoretical and measured NSR profiles agree by ± 2 % for points within 5 cm from the source. Conclusion: In the presence of the close correlation between radiation quality correction factor kQ and photon mean energy Em, the NSR provides a practical means of assessing Em under clinical conditions. Precise detector positioning is the major challenge.« less
The JLab high power ERL light source
NASA Astrophysics Data System (ADS)
Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.
2006-02-01
A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source.
From nuclear power to coal power: Aerosol-induced health and radiative effects
NASA Astrophysics Data System (ADS)
Mielonen, Tero; Laakso, Anton; Karhunen, Anni; Kokkola, Harri; Partanen, Antti-Ilari; Korhonen, Hannele; Romakkaniemi, Sami; Lehtinen, Kari E. J.
2015-12-01
We have investigated what would be the climate and PM-induced air quality consequences if all nuclear reactors worldwide were closed down and replaced by coal combustion. In a way, this presents a "worst-case scenario" since less polluting energy sources are available. We studied simultaneously the radiative and health effects of coal power emissions using a global 3-D aerosol-climate model (ECHAM-HAMMOZ). This approach allowed us to estimate the effects of a major global energy production change from low carbon source to a high carbon one using detailed spatially resolved population density information. We included the radiative effects of both CO2 and PM2.5 but limited the study of health effects to PM2.5 only. Our results show that the replacement of nuclear power with coal power would have globally caused an average of 150,000 premature deaths per year during the period 2005-2009 with two thirds of them in Europe. For 37 years the aerosol emissions from the additional coal power plants would cool the climate but after that the accumulating CO2 emissions would accelerate the warming of the climate.
Tuning of automatic exposure control strength in lumbar spine CT.
D'Hondt, A; Cornil, A; Bohy, P; De Maertelaer, V; Gevenois, P A; Tack, D
2014-05-01
To investigate the impact of tuning the automatic exposure control (AEC) strength curve (specific to Care Dose 4D®; Siemens Healthcare, Forchheim, Germany) from "average" to "strong" on image quality, radiation dose and operator dependency during lumbar spine CT examinations. Two hospitals (H1, H2), both using the same scanners, were considered for two time periods (P1 and P2). During P1, the AEC curve was "average" and radiographers had to select one of two protocols according to the body mass index (BMI): "standard" if BMI <30.0 kg m(-2) (120 kV-330 mAs) or "large" if BMI >30.0 kg m(-2) (140 kV-280 mAs). During P2, the AEC curve was changed to "strong", and all acquisitions were obtained with one protocol (120 kV and 270 mAs). Image quality was scored and patients' diameters calculated for both periods. 497 examinations were analysed. There was no significant difference in mean diameters according to hospitals and periods (p > 0.801) and in quality scores between periods (p > 0.172). There was a significant difference between hospitals regarding how often the "large" protocol was assigned [13 (10%)/132 patients in H1 vs 37 (28%)/133 in H2] (p < 0.001). During P1, volume CT dose index (CTDIvol) was higher in H2 (+13%; p = 0.050). In both hospitals, CTDIvol was reduced between periods (-19.2% in H1 and -29.4% in H2; p < 0.001). An operator dependency in protocol selection, unexplained by patient diameters or highlighted by image quality scores, has been observed. Tuning the AEC curve from average to strong enables suppression of the operator dependency in protocol selection and related dose increase, while preserving image quality. CT acquisition protocols based on weight are responsible for biases in protocol selection. Using an appropriate AEC strength curve reduces the number of protocols to one. Operator dependency of protocol selection is thereby eliminated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S; Zhang, H; Zhang, B
2015-06-15
Purpose: To clinically evaluate the differences in volumetric modulated arc therapy (VMAT) treatment plan and delivery between two commercial treatment planning systems. Methods: Two commercial VMAT treatment planning systems with different VMAT optimization algorithms and delivery approaches were evaluated. This study included 16 clinical VMAT plans performed with the first system: 2 spine, 4 head and neck (HN), 2 brain, 4 pancreas, and 4 pelvis plans. These 16 plans were then re-optimized with the same number of arcs using the second treatment planning system. Planning goals were invariant between the two systems. Gantry speed, dose rate modulation, MLC modulation, planmore » quality, number of monitor units (MUs), VMAT quality assurance (QA) results, and treatment delivery time were compared between the 2 systems. VMAT QA results were performed using Mapcheck2 and analyzed with gamma analysis (3mm/3% and 2mm/2%). Results: Similar plan quality was achieved with each VMAT optimization algorithm, and the difference in delivery time was minimal. Algorithm 1 achieved planning goals by highly modulating the MLC (total distance traveled by leaves (TL) = 193 cm average over control points per plan), while maintaining a relatively constant dose rate (dose-rate change <100 MU/min). Algorithm 2 involved less MLC modulation (TL = 143 cm per plan), but greater dose-rate modulation (range = 0-600 MU/min). The average number of MUs was 20% less for algorithm 2 (ratio of MUs for algorithms 2 and 1 ranged from 0.5-1). VMAT QA results were similar for all disease sites except HN plans. For HN plans, the average gamma passing rates were 88.5% (2mm/2%) and 96.9% (3mm/3%) for algorithm 1 and 97.9% (2mm/2%) and 99.6% (3mm/3%) for algorithm 2. Conclusion: Both VMAT optimization algorithms achieved comparable plan quality; however, fewer MUs were needed and QA results were more robust for Algorithm 2, which more highly modulated dose rate.« less
Monroe, James I; Boparai, Karan; Xiao, Ying; Followill, David; Galvin, James M; Klein, Eric E; Low, Daniel A; Moran, Jean M; Zhong, Haoyu; Sohn, Jason W
2018-02-04
A survey was created by NRG to assess a medical physicists' percent full time equivalent (FTE) contribution to multi-institutional clinical trials. A 2012 American Society for Radiation Oncology report, "Safety Is No Accident," quantified medical physics staffing contributions in FTE factors for clinical departments. No quantification of FTE effort associated with clinical trials was included. To address this lack of information, the NRG Medical Physics Subcommittee decided to obtain manpower data from the medical physics community to quantify the amount of time medical physicists spent supporting clinical trials. A survey, consisting of 16 questions, was designed to obtain information regarding physicists' time spent supporting clinical trials. The survey was distributed to medical physicists at 1996 radiation therapy institutions included on the membership rosters of the 5 National Clinical Trials Network clinical trial groups. Of the 451 institutions who responded, 50% (226) reported currently participating in radiation therapy trials. On average, the designated physicist at each institution spent 2.4 hours (standard deviation [SD], 5.5) per week supervising or interacting with clinical trial staff. On average, 1.2 hours (SD, 3.1), 1.8 hours (SD, 3.9), and 0.6 hours (SD, 1.1) per week were spent on trial patient simulations, treatment plan reviews, and maintaining a Digital Imaging and Communications in Medicine server, respectively. For all trial credentialing activities, physicists spent an average of 32 hours (SD, 57.2) yearly. Reading protocols and supporting dosimetrists, clinicians, and therapists took an average of 2.1 hours (SD, 3.4) per week. Physicists also attended clinical trial meetings, on average, 1.2 hours (SD, 1.9) per month. On average, physicist spent a nontrivial total of 9 hours per week (0.21 FTE) supporting an average of 10 active clinical trials. This time commitment indicates the complexity of radiation therapy clinical trials and should be taken into account when staffing radiation therapy institutions. Copyright © 2018 Elsevier Inc. All rights reserved.
Quality Assurance: Patient Chart Reviews
NASA Astrophysics Data System (ADS)
Oginni, B. M.; Odero, D. O.
2009-07-01
Recent developments in radiation therapy have immensely impacted the way the radiation dose is delivered to patients undergoing radiation treatments. However, the fundamental quality assurance (QA) issues underlying the radiation therapy still remain the accuracy of the radiation dose and the radiation safety. One of the major duties of clinical medical physicists in the radiation therapy departments still revolves around ensuring the accuracy of dose delivery to the planning target volume (PTV), the reduction of unintended radiation to normal organs and minimization of the radiation exposure to the medical personnel based on ALARA (as low as reasonably achievable) principle. Many of the errors in radiation therapy can be minimized through a comprehensive program of periodic checks. One of the QA procedures on the patient comes in the form of chart reviews which could be in either electronic or paper-based format. We present the quality assurance procedures that have to be performed on the patient records from the beginning and periodically to the end of the treatment, based on the guidelines from the American Association of Physicists in Medicine (AAPM) and American College of Physicians (ACP).
Chen, Jiang-Hong; Jin, Er-Hu; He, Wen; Zhao, Li-Qin
2014-01-01
Objective To reduce radiation dose while maintaining image quality in low-dose chest computed tomography (CT) by combining adaptive statistical iterative reconstruction (ASIR) and automatic tube current modulation (ATCM). Methods Patients undergoing cancer screening (n = 200) were subjected to 64-slice multidetector chest CT scanning with ASIR and ATCM. Patients were divided into groups 1, 2, 3, and 4 (n = 50 each), with a noise index (NI) of 15, 20, 30, and 40, respectively. Each image set was reconstructed with 4 ASIR levels (0% ASIR, 30% ASIR, 50% ASIR, and 80% ASIR) in each group. Two radiologists assessed subjective image noise, image artifacts, and visibility of the anatomical structures. Objective image noise and signal-to-noise ratio (SNR) were measured, and effective dose (ED) was recorded. Results Increased NI was associated with increased subjective and objective image noise results (P<0.001), and SNR decreased with increasing NI (P<0.001). These values improved with increased ASIR levels (P<0.001). Images from all 4 groups were clinically diagnosable. Images with NI = 30 and 50% ASIR had average subjective image noise scores and nearly average anatomical structure visibility scores, with a mean objective image noise of 23.42 HU. The EDs for groups 1, 2, 3 and 4 were 2.79±1.17, 1.69±0.59, 0.74±0.29, and 0.37±0.22 mSv, respectively. Compared to group 1 (NI = 15), the ED reductions were 39.43%, 73.48%, and 86.74% for groups 2, 3, and 4, respectively. Conclusions Using NI = 30 with 50% ASIR in the chest CT protocol, we obtained average or above-average image quality but a reduced ED. PMID:24691208
Chen, Jiang-Hong; Jin, Er-Hu; He, Wen; Zhao, Li-Qin
2014-01-01
To reduce radiation dose while maintaining image quality in low-dose chest computed tomography (CT) by combining adaptive statistical iterative reconstruction (ASIR) and automatic tube current modulation (ATCM). Patients undergoing cancer screening (n = 200) were subjected to 64-slice multidetector chest CT scanning with ASIR and ATCM. Patients were divided into groups 1, 2, 3, and 4 (n = 50 each), with a noise index (NI) of 15, 20, 30, and 40, respectively. Each image set was reconstructed with 4 ASIR levels (0% ASIR, 30% ASIR, 50% ASIR, and 80% ASIR) in each group. Two radiologists assessed subjective image noise, image artifacts, and visibility of the anatomical structures. Objective image noise and signal-to-noise ratio (SNR) were measured, and effective dose (ED) was recorded. Increased NI was associated with increased subjective and objective image noise results (P<0.001), and SNR decreased with increasing NI (P<0.001). These values improved with increased ASIR levels (P<0.001). Images from all 4 groups were clinically diagnosable. Images with NI = 30 and 50% ASIR had average subjective image noise scores and nearly average anatomical structure visibility scores, with a mean objective image noise of 23.42 HU. The EDs for groups 1, 2, 3 and 4 were 2.79 ± 1.17, 1.69 ± 0.59, 0.74 ± 0.29, and 0.37 ± 0.22 mSv, respectively. Compared to group 1 (NI = 15), the ED reductions were 39.43%, 73.48%, and 86.74% for groups 2, 3, and 4, respectively. Using NI = 30 with 50% ASIR in the chest CT protocol, we obtained average or above-average image quality but a reduced ED.
Continuous Activity Monitoring During Concurrent Chemoradiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohri, Nitin, E-mail: ohri.nitin@gmail.com; Kabarriti, Rafi; Bodner, William R.
Purpose: To perform a prospective trial testing the feasibility and utility of acquiring activity data as a measure of health status during concurrent chemoradiotherapy. Methods and Materials: Ambulatory patients who were planned for treatment with concurrent chemoradiotherapy with curative intent for cancers of the head and neck, lung, or gastrointestinal tract were provided with activity monitors before treatment initiation. Patients were asked to wear the devices continuously throughout the radiation therapy course. Step count data were downloaded weekly during radiation therapy and 2 and 4 weeks after radiation therapy completion. The primary objective was to demonstrate feasibility, defined as collection ofmore » step counts for 80% of the days during study subjects' radiation therapy courses. Secondary objectives included establishing step count as a dynamic predictor of unplanned hospitalization risk. Results: Thirty-eight enrolled patients were treated with concurrent chemoradiotherapy. Primary diagnoses included head and neck cancer (n=11), lung cancer (n=13), and a variety of gastrointestinal cancers (n=14). Step data were collected for 1524 of 1613 days (94%) during patients' radiation therapy courses. Fourteen patients were hospitalized during radiation therapy or within 4 weeks of radiation therapy completion. Cox regression modeling demonstrated a significant association between recent step counts (3-day average) and hospitalization risk, with a 38% reduction in the risk of hospitalization for every 1000 steps taken each day (hazard ratio 0.62, 95% confidence interval 0.46-0.83, P=.002). Inferior quality of life scores and impaired performance status were not associated with increased hospitalization risk. Conclusion: Continuous activity monitoring during concurrent chemoradiotherapy is feasible and well-tolerated. Step counts may serve as powerful, objective, and dynamic indicators of hospitalization risk.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Lopez, Anthony
This paper validates the performance of the physics-based Physical Solar Model (PSM) data set in the National Solar Radiation Data Base (NSRDB) to quantify the accuracy of the magnitude and the spatial and temporal variability of the solar radiation data. Achieving higher penetrations of solar energy on the electric grid and reducing integration costs requires accurate knowledge of the available solar resource. Understanding the impacts of clouds and other meteorological constituents on the solar resource and quantifying intra-/inter-hour, seasonal, and interannual variability are essential for accurately designing utility-scale solar energy projects. Solar resource information can be obtained from ground-based measurementmore » stations and/or from modeled data sets. The availability of measurements is scarce, both temporally and spatially, because it is expensive to maintain a high-density solar radiation measurement network that collects good quality data for long periods of time. On the other hand, high temporal and spatial resolution gridded satellite data can be used to estimate surface radiation for long periods of time and is extremely useful for solar energy development. Because of the advantages of satellite-based solar resource assessment, the National Renewable Energy Laboratory developed the PSM. The PSM produced gridded solar irradiance -- global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance -- for the NSRDB at a 4-km by 4-km spatial resolution and half-hourly temporal resolution covering the 18 years from 1998-2015. The NSRDB also contains additional ancillary meteorological data sets, such as temperature, relative humidity, surface pressure, dew point, and wind speed. Details of the model and data are available at https://nsrdb.nrel.gov. The results described in this paper show that the hourly-averaged satellite-derived data have a systematic (bias) error of approximately +5% for GHI and less than +10% for DNI; however, the scatter (root mean square error [RMSE]) difference is higher for the hourly averages.« less
Entropy/information flux in Hawking radiation
NASA Astrophysics Data System (ADS)
Alonso-Serrano, Ana; Visser, Matt
2018-01-01
Blackbody radiation contains (on average) an entropy of 3.9 ± 2.5 bits per photon. If the emission process is unitary, then this entropy is exactly compensated by "hidden information" in the correlations. We extend this argument to the Hawking radiation from GR black holes, demonstrating that the assumption of unitarity leads to a perfectly reasonable entropy/information budget. The key technical aspect of our calculation is a variant of the "average subsystem" approach developed by Page, which we extend beyond bipartite pure systems, to a tripartite pure system that considers the influence of the environment.
A proposed new handbook for the Federal Emergency Management Agency: Radiation safety in shelters
NASA Astrophysics Data System (ADS)
Haaland, C. M.
1981-09-01
A proposed replacement for the portion of the current Handbook for Radiological Monitoring that deals with protection of people in shelters from radiation from fallout resulting from nuclear war is presented. Basic information at a high school level is given on how to detect nuclear radiation, how to find and improve the safest places in a shelter, the necessity for and how to keep records on individual radiation exposures, and how to minimize exposures. Several procedures are introduced, some of which are based more on theoretical considerations than on actual experiments. These procedures include: (1) the method of time averaging radiation readings taken with one instrument in different locations of a large shelter while fallout is coming down and radiation levels ar climbing too rapidly for direct comparison of readings to determine the safest location; (2) the method of using one's own body to obtain directionality in radiation readings taken with a standard Civil Defense survey meter; (3) the method of using mutual shielding to reduce the average radiation exposure to shelter occupants; and (4) the ratio method for estimating radiation levels in hazardous areas.
The radiation balance of the earth-atmosphere system from Nimbus 3 radiation measurements
NASA Technical Reports Server (NTRS)
Raschke, E.; Vonderhaar, T. H.; Pasternak, M.; Bandeen, W. R.
1973-01-01
The radiation balance of the earth-atmosphere system and its components was computed from global measurements of radiation reflected and emitted from the earth to space. These measurements were made from the meteorological satellite Nimbus 3 during the periods from April 16 to August 15, 1969; October 3 to 17, 1969; and January 21 to February 3, 1970. Primarily the method of evaluation, its inherent assumptions, and possible error sources were discussed. Results are presented by various methods: (1) global, hemispherical, and zonal averages obtained from measurements in all semimonthly periods and (2) global maps of the absorbed solar radiation, the albedo, the outgoing longwave radiation, and the radiation balance obtained from measurements during semimonthly periods in each season (May 1 to 15, July 16 to 31, and October 3 to 17, 1969, and January 21 to February 3, 1970). Annual global averages of the albedo and of the outgoing longwave radiation were determined. These values balance to within 1 percent the annual global energy input by solar radiation that was computed for a solar constant.
Radiation safety audit of a high volume Nuclear Medicine Department
Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh
2014-01-01
Introduction: Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. Aim and Objectives: The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. Materials and Methods: We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. Results: We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Conclusion: Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure. PMID:25400361
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.; Gaufridy de Dortan, F. de
A collisional-radiative model describing nonlocal-thermodynamic-equilibrium plasmas is developed. It is based on the HULLAC (Hebrew University Lawrence Livermore Atomic Code) suite for the transitions rates, in the zero-temperature radiation field hypothesis. Two variants of the model are presented: the first one is configuration averaged, while the second one is a detailed level version. Comparisons are made between them in the case of a carbon plasma; they show that the configuration-averaged code gives correct results for an electronic temperature T{sub e}=10 eV (or higher) but fails at lower temperatures such as T{sub e}=1 eV. The validity of the configuration-averaged approximation ismore » discussed: the intuitive criterion requiring that the average configuration-energy dispersion must be less than the electron thermal energy turns out to be a necessary but far from sufficient condition. Another condition based on the resolution of a modified rate-equation system is proposed. Its efficiency is emphasized in the case of low-temperature plasmas. Finally, it is shown that near-threshold autoionization cascade processes may induce a severe failure of the configuration-average formalism.« less
Podkowinski, Dominika; Sharian Varnousfaderani, Ehsan; Simader, Christian; Bogunovic, Hrvoje; Philip, Ana-Maria; Gerendas, Bianca S.
2017-01-01
Background and Objective To determine optimal image averaging settings for Spectralis optical coherence tomography (OCT) in patients with and without cataract. Study Design/Material and Methods In a prospective study, the eyes were imaged before and after cataract surgery using seven different image averaging settings. Image quality was quantitatively evaluated using signal-to-noise ratio, distinction between retinal layer image intensity distributions, and retinal layer segmentation performance. Measures were compared pre- and postoperatively across different degrees of averaging. Results 13 eyes of 13 patients were included and 1092 layer boundaries analyzed. Preoperatively, increasing image averaging led to a logarithmic growth in all image quality measures up to 96 frames. Postoperatively, increasing averaging beyond 16 images resulted in a plateau without further benefits to image quality. Averaging 16 frames postoperatively provided comparable image quality to 96 frames preoperatively. Conclusion In patients with clear media, averaging 16 images provided optimal signal quality. A further increase in averaging was only beneficial in the eyes with senile cataract. However, prolonged acquisition time and possible loss of details have to be taken into account. PMID:28630764
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolly, S; Mutic, S; Anastasio, M
Purpose: Traditionally, image quality in radiation therapy is assessed subjectively or by utilizing physically-based metrics. Some model observers exist for task-based medical image quality assessment, but almost exclusively for diagnostic imaging tasks. As opposed to disease diagnosis, the task for image observers in radiation therapy is to utilize the available images to design and deliver a radiation dose which maximizes patient disease control while minimizing normal tissue damage. The purpose of this study was to design and implement a new computer simulation model observer to enable task-based image quality assessment in radiation therapy. Methods: A modular computer simulation framework wasmore » developed to resemble the radiotherapy observer by simulating an end-to-end radiation therapy treatment. Given images and the ground-truth organ boundaries from a numerical phantom as inputs, the framework simulates an external beam radiation therapy treatment and quantifies patient treatment outcomes using the previously defined therapeutic operating characteristic (TOC) curve. As a preliminary demonstration, TOC curves were calculated for various CT acquisition and reconstruction parameters, with the goal of assessing and optimizing simulation CT image quality for radiation therapy. Sources of randomness and bias within the system were analyzed. Results: The relationship between CT imaging dose and patient treatment outcome was objectively quantified in terms of a singular value, the area under the TOC (AUTOC) curve. The AUTOC decreases more rapidly for low-dose imaging protocols. AUTOC variation introduced by the dose optimization algorithm was approximately 0.02%, at the 95% confidence interval. Conclusion: A model observer has been developed and implemented to assess image quality based on radiation therapy treatment efficacy. It enables objective determination of appropriate imaging parameter values (e.g. imaging dose). Framework flexibility allows for incorporation of additional modules to include any aspect of the treatment process, and therefore has great potential for both assessment and optimization within radiation therapy.« less
Acoustic-radiation stress in solids. I - Theory
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.
1984-01-01
The general case of acoustic-radiation stress associated with quasi-compressional and quasi-shear waves propagating in infinite and semiinfinite lossless solids of arbitrary crystalline symmetry is studied. The Boussinesq radiation stress is defined and found to depend directly on an acoustic nonlinearity parameter which characterizes the radiation-induced static strain, a stress-generalized nonlinearity parameter which characterizes the stress nonlinearity, and the energy density of the propagating wave. Application of the Boltzmann-Ehrenfest principle of adiabatic invariance to a self-constrained system described by the nonlinear equations of motion allows the acoustic-radiation-induced static strain to be identified with a self-constrained variation in the time-averaged product of the internal energy density and displacement gradient. The time-averaged product is scaled by the acoustic nonlinearity parameter and represents the first-order nonlinearity in the virial theorem. Finally, the relationship between the Boussinesq and the Cauchy radiation stress is obtained in a closed three-dimensional form.
A new high quality X-ray source for Cultural Heritage
NASA Astrophysics Data System (ADS)
Walter, Philippe; Variola, Alessandro; Zomer, Fabian; Jaquet, Marie; Loulergue, Alexandre
2009-09-01
Compton based photon sources have generated much interest since the rapid advance in laser and accelerator technologies has allowed envisaging their utilisation for ultra-compact radiation sources. These should provide X-ray short pulses with a relatively high average flux. Moreover, the univocal dependence between the scattered photon energy and its angle gives the possibility of obtaining a quasi-monochromatic beam with a simple diaphragm system. For the most ambitious projects the expected performance takes into account a rate of 10-10 photons/s, with an angular divergence of few mrad, an X-ray energy cut-off of few tens of keV and a bandwidth ΔE/E˜1-10%. Even if the integrated rate cannot compete with synchrotron radiation sources, the cost and the compactness of these Compton based machines make them attractive for a wide spectrum of applications. We explore here the interest of these systems for Cultural Heritage preservation. To cite this article: P. Walter et al., C. R. Physique 10 (2009).
MO-A-16A-01: QA Procedures and Metrics: In Search of QA Usability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathiaseelan, V; Thomadsen, B
Radiation therapy has undergone considerable changes in the past two decades with a surge of new technology and treatment delivery methods. The complexity of radiation therapy treatments has increased and there has been increased awareness and publicity about the associated risks. In response, there has been proliferation of guidelines for medical physicists to adopt to ensure that treatments are delivered safely. Task Group recommendations are copious, and clinical physicists' hours are longer, stretched to various degrees between site planning and management, IT support, physics QA, and treatment planning responsibilities.Radiation oncology has many quality control practices in place to ensure themore » delivery of high-quality, safe treatments. Incident reporting systems have been developed to collect statistics about near miss events at many radiation oncology centers. However, tools are lacking to assess the impact of these various control measures. A recent effort to address this shortcoming is the work of Ford et al (2012) who recently published a methodology enumerating quality control quantification for measuring the effectiveness of safety barriers. Over 4000 near-miss incidents reported from 2 academic radiation oncology clinics were analyzed using quality control quantification, and a profile of the most effective quality control measures (metrics) was identified.There is a critical need to identify a QA metric to help the busy clinical physicists to focus their limited time and resources most effectively in order to minimize or eliminate errors in the radiation treatment delivery processes. In this symposium the usefulness of workflows and QA metrics to assure safe and high quality patient care will be explored.Two presentations will be given:Quality Metrics and Risk Management with High Risk Radiation Oncology ProceduresStrategies and metrics for quality management in the TG-100 Era Learning Objectives: Provide an overview and the need for QA usability metrics: Different cultures/practices affecting the effectiveness of methods and metrics. Show examples of quality assurance workflows, Statistical process control, that monitor the treatment planning and delivery process to identify errors. To learn to identify and prioritize risks and QA procedures in radiation oncology. Try to answer the question: Can a quality assurance program aided by quality assurance metrics help minimize errors and ensure safe treatment delivery. Should such metrics be institution specific.« less
Ryska, Pavel; Kvasnicka, Tomas; Jandura, Jiri; Klzo, Ludovit; Grepl, Jakub; Zizka, Jan
2014-06-01
To compare the effective and eye lens radiation dose in helical MDCT brain examinations using automatic tube current modulation in conjunction with either standard filtered back projection (FBP) technique or iterative reconstruction in image space (IRIS). Of 400 adult brain MDCT examinations, 200 were performed using FBP and 200 using IRIS with the following parameters: tube voltage 120 kV, rotation period 1 second, pitch factor 0.55, automatic tube current modulation in both transverse and longitudinal planes with reference mAs 300 (FBP) and 200 (IRIS). Doses were calculated from CT dose index and dose length product values utilising ImPACT software; the organ dose to the lens was derived from the actual tube current-time product value applied to the lens. Image quality was assessed by two independent readers blinded to the type of image reconstruction technique. The average effective scan dose was 1.47±0.26 mSv (FBP) and 0.98±0.15 mSv (IRIS), respectively (33.3% decrease). The average organ dose to the eye lens decreased from 40.0±3.3 mGy (FBP) to 26.6±2.0 mGy (IRIS, 33.5% decrease). No significant change in diagnostic image quality was noted between IRIS and FBP scans (P=0.17). Iterative reconstruction of cerebral MDCT examinations enables reduction of both effective and organ eye lens dose by one third without signficant loss of image quality.
Effect of bevacizumab on radiation necrosis of the brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Javier; Kumar, Ashok J.; Conrad, Charles A.
Purpose: Because blocking vascular endothelial growth factor (VEGF) from reaching leaky capillaries is a logical strategy for the treatment of radiation necrosis, we reasoned that bevacizumab might be an effective treatment of radiation necrosis. Patients and Methods: Fifteen patients with malignant brain tumors were treated with bevacizumab or bevacizumab combination for their tumor on either a 5 mg/kg/2-week or 7.5 mg/kg/3-week schedule. Radiation necrosis was diagnosed in 8 of these patients on the basis of magnetic resonance imaging (MRI) and biopsy. MRI studies were obtained before treatment and at 6-week to 8-week intervals. Results: Of the 8 patients with radiationmore » necrosis, posttreatment MRI performed an average of 8.1 weeks after the start of bevacizumab therapy showed a reduction in all 8 patients in both the MRI fluid-attenuated inversion-recovery (FLAIR) abnormalities and T1-weighted post-Gd-contrast abnormalities. The average area change in the T1-weighted post-Gd-contrast abnormalities was 48% ({+-}22 SD), and the average change in the FLAIR images was 60% ({+-}18 SD). The average reduction in daily dexamethasone requirements was 8.6 mg ({+-}3.6). Conclusion: Bevacizumab, alone and in combination with other agents, can reduce radiation necrosis by decreasing capillary leakage and the associated brain edema. Our findings will need to be confirmed in a randomized trial to determine the optimal duration of treatment.« less
Radiation protection program for early detection of breast cancer in a mammography facility
NASA Astrophysics Data System (ADS)
Villagomez Casimiro, Mariana; Ruiz Trejo, Cesar; Espejo Fonseca, Ruby
2014-11-01
Mammography is the best tool for early detection of Breast Cancer. In this diagnostic radiology modality it is necessary to establish the criteria to ensure the proper use and operation of the equipment used to obtain mammographic images in order to contribute to the safe use of ionizing radiation. The aim of the work was to implement at FUCAM-AC the radiation protection program which must be established for patients and radiation workers according to Mexican standards [1-4]. To achieve this goal, radiation protection and quality control manuals were elaborated [5]. Furthermore, a quality control program (QCP) in the mammography systems (analog/digital), darkroom included, has been implemented. Daily sensitometry, non-variability of the image quality, visualizing artifacts, revision of the equipment mechanical stability, compression force and analysis of repetition studies are some of the QCP routine tests that must be performed by radiological technicians of this institution as a set of actions to ensure the protection of patients. Image quality and patients dose assessment were performed on 4 analog equipment installed in 2 mobile units. In relation to dose assessment, all equipment passed the acceptance criteria (<3 mGy per projection). The image quality test showed that most images (70%)- presented artifacts. A brief summary of the results of quality control tests applied to the equipment and film processor are presented. To maintain an adequate level of quality and safety at FUCAM-AC is necessary that the proposed radiation protection program in this work is applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudish, A.I.; Ianetz, A.
1993-12-01
The authors have utilized concurrently measured global, normal incidence beam, and diffuse radiation data, the latter measured by means of a shadow ring pyranometer to study the relative magnitude of the anisotropic contribution (circumsolar region and nonuniform sky conditions) to the diffuse radiation. In the case of Beer Sheva, the monthly average hourly anisotropic correction factor varies from 2.9 to 20.9%, whereas the [open quotes]standard[close quotes] geometric correction factor varies from 5.6 to 14.0%. The monthly average hourly overall correction factor (combined anisotropic and geometric factors) varies from 8.9 to 37.7%. The data have also been analyzed using a simplemore » model of sky radiance developed by Steven in 1984. His anisotropic correction factor is a function of the relative strength and angular width of the circumsolar radiation region. The results of this analysis are in agreement with those previously reported for Quidron on the Dead Sea, viz. the anisotropy and relative strength of the circumsolar radiation are significantly greater than at any of the sites analyzed by Steven. In addition, the data have been utilized to validate a model developed by LeBaron et al. in 1990 for correcting shadow ring diffuse radiation data. The monthly average deviation between the corrected and true diffuse radiation values varies from 4.55 to 7.92%.« less
NASA Astrophysics Data System (ADS)
Ulizio, Vincent Michael
With the advancement of technology there is an increasing ability for lesions to be treated with higher radiation doses each fraction. This also allows for low fractionated treatments. Because the patient is receiving a higher dose of radiation per fraction and because of the fast dose falloff in these targets there must be extreme accuracy in the delivery. The 6 DOF couch allows for extra rotational corrections and for a more accurate set-up. The movement of the couch needs to be verified to be accurate and because of this, end to end quality assurance tests for the couch have been made. After the set-up is known to be accurate then different treatment techniques can be studied. SBRT of the Spine has a very fast dose falloff near the spinal cord and was typically treated with IMRT. Treatment plans generated using this technique tend to have streaks of low dose radiation, so VMAT is being studied to determine if this treatment technique can reduce the low dose radiation volume as well as improve OAR sparing. For the 6 DOF couch QA, graph paper is placed on the anterior and right lateral sides of the VisionRT OSMS Cube Phantom. Each rotational shift is then applied individually, with a 3 degree shift in the positive and negative directions for pitch and roll. A mark is drawn on the paper to record each shift. A CBCT is then taken of the Cube and known shifts are applied and then an additional CBCT is taken to return the Cube to isocenter. The original IMRT plans for SBRT of the Spine are evaluated and then a plan is made utilizing VMAT. These plans are then compared for low dose radiation, OAR sparing, and conformity. If the original IMRT plan is determined to be an inferior treatment to what is acceptable, then this will be re-planned and compared to the VMAT plan. The 6 DOF couch QA tests have proven to be accurate and reproducible. The average deviations in the 3 degree and -3 degree pitch and roll directions were 0.197, 0.068, 0.091, and 0.110 degrees, respectively. The average CBCT shift errors all came out less than 0.05 cm in translational directions and less than 0.05 degrees in all rotational directions. The VMAT plans had similar OAR sparing, target coverage, and conformity. In all cases the 50% isodose volume was lower for the VMAT plans. All of the tests for the 6 DOF couch are accurate and good to use in our monthly tests. VMAT has shown to be better than IMRT for Spine SBRT and should be used in all cases, when treating the Spine.
Mendelsohn, Daniel; Strelzow, Jason; Dea, Nicolas; Ford, Nancy L; Batke, Juliet; Pennington, Andrew; Yang, Kaiyun; Ailon, Tamir; Boyd, Michael; Dvorak, Marcel; Kwon, Brian; Paquette, Scott; Fisher, Charles; Street, John
2016-03-01
Imaging modalities used to visualize spinal anatomy intraoperatively include X-ray studies, fluoroscopy, and computed tomography (CT). All of these emit ionizing radiation. Radiation emitted to the patient and the surgical team when performing surgeries using intraoperative CT-based spine navigation was compared. This is a retrospective cohort case-control study. Seventy-three patients underwent CT-navigated spinal instrumentation and 73 matched controls underwent spinal instrumentation with conventional fluoroscopy. Effective doses of radiation to the patient when the surgical team was inside and outside of the room were analyzed. The number of postoperative imaging investigations between navigated and non-navigated cases was compared. Intraoperative X-ray imaging, fluoroscopy, and CT dosages were recorded and standardized to effective doses. The number of postoperative imaging investigations was compared with the matched cohort of surgical cases. A literature review identified historical radiation exposure values for fluoroscopic-guided spinal instrumentation. The 73 navigated operations involved an average of 5.44 levels of instrumentation. Thoracic and lumbar instrumentations had higher radiation emission from all modalities (CT, X-ray imaging, and fluoroscopy) compared with cervical cases (6.93 millisievert [mSv] vs. 2.34 mSv). Major deformity and degenerative cases involved more radiation emission than trauma or oncology cases (7.05 mSv vs. 4.20 mSv). On average, the total radiation dose to the patient was 8.7 times more than the radiation emitted when the surgical team was inside the operating room. Total radiation exposure to the patient was 2.77 times the values reported in the literature for thoracolumbar instrumentations performed without navigation. In comparison, the radiation emitted to the patient when the surgical team was inside the operating room was 2.50 lower than non-navigated thoracolumbar instrumentations. The average total radiation exposure to the patient was 5.69 mSv, a value less than a single routine lumbar CT scan (7.5 mSv). The average radiation exposure to the patient in the present study was approximately one quarter the recommended annual occupational radiation exposure. Navigation did not reduce the number of postoperative X-rays or CT scans obtained. Intraoperative CT navigation increases the radiation exposure to the patient and reduces the radiation exposure to the surgeon when compared with values reported in the literature. Intraoperative CT navigation improves the accuracy of spine instrumentation with acceptable patient radiation exposure and reduced surgical team exposure. Surgeons should be aware of the implications of radiation exposure to both the patient and the surgical team when using intraoperative CT navigation. Copyright © 2016 Elsevier Inc. All rights reserved.
Study on electromagnetic radiation and mechanical characteristics of coal during an SHPB test
NASA Astrophysics Data System (ADS)
Chengwu, Li; Qifei, Wang; Pingyang, Lyu
2016-06-01
Dynamic loads provided by a Split Hopkinson pressure bar are applied in the impact failure experiment on coal with an impact velocity of 4.174-17.652 m s-1. The mechanical property characteristics of coal and an electromagnetic radiation signal can be detected and measured during the experiment. The variation of coal stress, strain, incident energy, dissipated energy and other mechanical parameters are analyzed by the unidimensional stress wave theory. It suggests that with an increase of the impact velocity, the mechanical parameters and electromagnetic radiation increased significantly and the dissipated energy of the coal sample has a high discrete growing trend during the failure process of coal impact. Combined with the received energy of the electromagnetic radiation signal, the relationship between these mechanical parameters and electromagnetic radiation during the failure process of coal burst could be analyzed by the grey correlation model. The results show that the descending order of the gray correlation degree between the mechanical characteristics and electromagnetic radiation energy are impact velocity, maximum stress, the average stress, incident energy, the average strain, maximum strain, the average strain rate and dissipation energy. Due to the correlation degree, the impact velocity and incident energy are relatively large, and the main factor affecting the electromagnetic radiation energy of coal is the energy magnitude. While the relationship between extreme stress and the radiation energy change trend is closed, the stress state of coal has a greater impact on electromagnetic radiation than the strain and destruction which can deepen the research of the coal-rock dynamic disaster electromagnetic monitoring technique.
NASA Astrophysics Data System (ADS)
Li, H.; Xiao, Z.; Wei, J.
2016-12-01
Characteristics of the Surface Turbulent Flux and the Components of Radiation Balance over the Grasslands in the Southeastern Tibetan PlateauHongyi Li 1, Ziniu Xiao 2 and Junhong Wei31 China Meteorological Administration Training Centre, Beijing, China2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 3Theory of Atmospheric Dynamics and Climate, Institute for Atmospheric and Environmental Sciences, Goethe University of Frankfurt, Campus Riedberg, GermanyAbstract:Based on the field observation data over the grasslands in the southeastern Tibetan Plateau and the observational datasets in Nyingchi weather station for the period from May 20 to July 9, 2013, the variation characteristics of the basic meteorological elements in Nyingchi weather station, the surface turbulent fluxes and the components of radiation balance over the grasslands, as well as their relationships, are analyzed in this paper. The results show that in Nyingchi weather station, the daily variations of relative humidity and average total cloud cover are consistent with that of precipitation, but that those of daily average air temperature, daily average ground temperature, daily average wind speed and daily sunshine duration have an opposite change to that of precipitation. During the observation period, latent heat exchange is greater than sensible heat exchange, and latent heat flux is significantly higher when there is rainfall, but sensible heat flux and soil heat flux are lower. The daily variation of the total solar radiation (DR) is synchronous with that of sensible heat flux, and the daily variations of reflective solar radiation (UR), long wave radiation by earth (ULR), net radiation (Rn) and surface albedo are consistent with DR, but that of the long wave radiation by atmosphere (DLR) has an opposite change. The diurnal variations of sensible heat flux, latent heat flux, soil heat flux and the components of surface radiation balance over the grasslands are characterized by higher values at noon and lower values in the morning and evening. Keywords: surface turbulent flux, components of radiation balance, grasslands, southeastern Tibetan Plateau
Gosch, D; Ratzmer, A; Berauer, P; Kahn, T
2007-09-01
The objective of this study was to examine the extent to which the image quality on mobile C-arms can be improved by an innovative exposure rate control system (grid control). In addition, the possible dose reduction in the pulsed fluoroscopy mode using 25 pulses/sec produced by automatic adjustment of the pulse rate through motion detection was to be determined. As opposed to conventional exposure rate control systems, which use a measuring circle in the center of the field of view, grid control is based on a fine mesh of square cells which are overlaid on the entire fluoroscopic image. The system uses only those cells for exposure control that are covered by the object to be visualized. This is intended to ensure optimally exposed images, regardless of the size, shape and position of the object to be visualized. The system also automatically detects any motion of the object. If a pulse rate of 25 pulses/sec is selected and no changes in the image are observed, the pulse rate used for pulsed fluoroscopy is gradually reduced. This may decrease the radiation exposure. The influence of grid control on image quality was examined using an anthropomorphic phantom. The dose reduction achieved with the help of object detection was determined by evaluating the examination data of 146 patients from 5 different countries. The image of the static phantom made with grid control was always optimally exposed, regardless of the position of the object to be visualized. The average dose reduction when using 25 pulses/sec resulting from object detection and automatic down-pulsing was 21 %, and the maximum dose reduction was 60 %. Grid control facilitates C-arm operation, since optimum image exposure can be obtained independently of object positioning. Object detection may lead to a reduction in radiation exposure for the patient and operating staff.
Qi, Zhihua; Gates, Erica L; O'Brien, Maureen M; Trout, Andrew T
2018-02-01
Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (P<0.0001). Average dose savings with the combined approach was 24.8±17.8% (2.60±2.51 mSv [range: 0.32-4.72 mSv]) of total CT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations.
Jílek, K; Timková, J
2015-06-01
During the Eighth International Conference on High Levels of Natural Radiation and Radon Areas held in autumn 2014 at Prague, the third intercomparison of radon/thoron gas and radon short-lived decay products measurement instruments was organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI; SÚRO v.v.i.) in Prague. The intercomparison was newly focussed also on continuous monitors with active sampling adapters capable to distinguish radon/thoron gas in their mix field.The results of radon gas measurements carried out in the big NRPI radon chamber indicated very well an average deviation of up to 5 % from the reference NRPI value for 80 % of all the exposed instruments. The results of equilibrium equivalent concentration continuous monitors indicated an average deviation of up to 5 % from the reference NRPI value for 40 % of all the exposed instruments and their ~8-10 % shift compared with the NRPI. The results of investigated ambient conditions upon response of exposed continuous monitors indicated influence of aerosol changes upon response of radon monitors with an active air sampling adapters through the filter, only. The exposures of both radon/thoron gas discriminative continuous monitors and passive detectors have been indicated inconsistent results: on one hand, their excellent agreement up to several per cent for both the gases, and on the other hand, systematic unsatisfactory differences up to 40 %. Additional radon/thoron exercises are recommended to improve both the instruments themselves and quality of their operators. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Predictions of Leukemia Risks to Astronauts from Solar Particle Events
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Atwell, W.; Kim, M. Y.; George, K. A.; Ponomarev, A.; Nikjoo, H.; Wilson, J. W.
2006-01-01
Leukemias consisting of acute and chronic myeloid leukemia and acute lymphatic lymphomas represent the earliest cancers that appear after radiation exposure, have a high lethality fraction, and make up a significant fraction of the overall fatal cancer risk from radiation for adults. Several considerations impact the recommendation of a preferred model for the estimation of leukemia risks from solar particle events (SPE's): The BEIR VII report recommends several changes to the method of calculation of leukemia risk compared to the methods recommended by the NCRP Report No. 132 including the preference of a mixture model with additive and multiplicative components in BEIR VII compared to the additive transfer model recommended by NCRP Report No. 132. Proton fluences and doses vary considerably across marrow regions because of the characteristic spectra of primary solar protons making the use of an average dose suspect. Previous estimates of bone marrow doses from SPE's have used an average body-shielding distribution for marrow based on the computerized anatomical man model (CAM). We have developed an 82-point body-shielding distribution that faithfully reproduces the mean and variance of SPE doses in the active marrow regions (head and neck, chest, abdomen, pelvis and thighs) allowing for more accurate estimation of linear- and quadratic-dose components of the marrow response. SPE's have differential dose-rates and a pseudo-quadratic dose response term is possible in the peak-flux period of an event. Also, the mechanistic basis for leukemia risk continues to improve allowing for improved strategies in choosing dose-rate modulation factors and radiation quality descriptors. We make comparisons of the various choices of the components in leukemia risk estimates in formulating our preferred model. A major finding is that leukemia could be the dominant risk to astronauts for a major solar particle event.
Park, Jong Min; Park, So-Yeon; Choi, Chang Heon; Chun, Minsoo; Kim, Jin Ho; Kim, Jung-In
2017-01-01
To investigate the plan quality of tri-Co-60 intensity-modulated radiation therapy (IMRT) with magnetic-resonance image-guided radiation therapy compared with volumetric-modulated arc therapy (VMAT) for prostate cancer. Twenty patients with intermediate-risk prostate cancer, who received radical VMAT were selected. Additional tri-Co-60 IMRT plans were generated for each patient. Both primary and boost plans were generated with tri-Co-60 IMRT and VMAT techniques. The prescription doses of the primary and boost plans were 50.4 Gy and 30.6 Gy, respectively. The primary and boost planning target volumes (PTVs) of the tri-Co-60 IMRT were generated with 3 mm margins from the primary clinical target volume (CTV, prostate + seminal vesicle) and a boost CTV (prostate), respectively. VMAT had a primary planning target volume (primary CTV + 1 cm or 2 cm margins) and a boost PTV (boost CTV + 0.7 cm margins), respectively. For both tri-Co-60 IMRT and VMAT, all the primary and boost plans were generated that 95% of the target volumes would be covered by the 100% of the prescription doses. Sum plans were generated by summation of primary and boost plans. In sum plans, the average values of V70 Gy of the bladder of tri-Co-60 IMRT vs. VMAT were 4.0% ± 3.1% vs. 10.9% ± 6.7%, (p < 0.001). Average values of V70 Gy of the rectum of tri-Co-60 IMRT vs. VMAT were 5.2% ± 1.8% vs. 19.1% ± 4.0% (p < 0.001). The doses of tri-Co-60 IMRT delivered to the bladder and rectum were smaller than those of VMAT while maintaining identical target coverage in both plans. PMID:29207634
Aspermy, Sperm Quality and Radiation in Chernobyl Birds
Møller, Anders Pape; Bonisoli-Alquati, Andrea; Mousseau, Timothy A.; Rudolfsen, Geir
2014-01-01
Background Following the Chernobyl nuclear power plant accident, large amounts of radionuclides were emitted and spread in the environment. Animals living in such contaminated areas are predicted to suffer fitness costs including reductions in the quality and quantity of gametes. Methodology/Principal Findings We studied whether aspermy and sperm quality were affected by radioactive contamination by examining ejaculates from wild caught birds breeding in areas varying in background radiation level by more than three orders of magnitude around Chernobyl, Ukraine. The frequency of males with aspermy increased logarithmically with radiation level. While 18.4% of males from contaminated areas had no sperm that was only the case for 3.0% of males from uncontaminated control areas. Furthermore, there were negative relationships between sperm quality as reflected by reduced sperm velocity and motility, respectively, and radiation. Conclusions/Significance Our results suggest that radioactive contamination around Chernobyl affects sperm production and quality. We are the first to report an interspecific difference in sperm quality in relation to radioactive contamination. PMID:24963711
An Insightful Problem Involving the Electromagnetic Radiation from a Pair of Dipoles
ERIC Educational Resources Information Center
Smith, Glenn S.
2010-01-01
The time-average power radiated by a pair of infinitesimal dipoles is examined as their spacing is varied. The results elucidate the effect of the interaction of the dipoles on their radiation. (Contains 4 figures.)
Solar radiation at Parsons, West Virginia
James H. Patric; Stanley Caruso
1978-01-01
Twelve years of solar radiation data, measured with a Kipp-Zonen pyranometer, were recorded near Parsons, West Virginia. The data agree well with calculated values of potential and average radiation for the vicinity and are applicable to the central Appalachian region.
The national survey of natural radioactivity in concrete produced in Israel.
Kovler, Konstantin
2017-03-01
The main goal of the current survey was to collect the results of the natural radiation tests of concrete produced in the country, to analyze the results statistically and make recommendations for further regulation on the national scale. Totally 109 concrete mixes produced commercially during the years 2012-2014 by concrete plants in Israel were analyzed. The average concentrations of NORM did not exceed the values recognized in the EU and were close to the values obtained from the Mediterranean countries such as Greece, Spain and Italy. It was also found that although the average value of the radon emanation coefficient of concrete containing coal fly ash (FA) was lower, than that of concrete mixes without FA, there was no significant difference between the indexes of both total radiation (addressing gamma radiation and radon together), and gamma radiation only, of the averages of the two sub-populations of concrete mixes: with and without FA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Niumsawatt, Vachara; Debrotwir, Andrew N; Rozen, Warren Matthew
2014-01-01
Computed tomographic angiography (CTA) has become a mainstay in preoperative perforator flap planning in the modern era of reconstructive surgery. However, the increased use of CTA does raise the concern of radiation exposure to patients. Several techniques have been developed to decrease radiation dosage without compromising image quality, with varying results. The most recent advance is in the improvement of image reconstruction using an adaptive statistical iterative reconstruction (ASIR) algorithm. We sought to evaluate the image quality of ASIR in preoperative deep inferior epigastric perforator (DIEP) flap surgery, through a direct comparison with conventional filtered back projection (FBP) images. A prospective review of 60 consecutive ASIR and 60 consecutive FBP CTA images using similar protocol (except for radiation dosage) was undertaken, analyzed by 2 independent reviewers. In both groups, we were able to accurately identify axial arteries and their perforators. Subjective analysis of image quality demonstrated no statistically significant difference between techniques. ASIR can thus be used for preoperative imaging with similar image quality to FBP, but with a 60% reduction in radiation delivery to patients.
NASA Astrophysics Data System (ADS)
Sarapata, Sonia
2014-09-01
The country's energy security risk, as well as a desire to protect the environment from the pollution and degradation which are the results of conventional fuels acquisition - these was a motivation for intensive researches on the use of renewable energy sources in eco - innovative installations. Solar radiation is one of the self - renewable energy sources which can be used both as a source of electricity and heat. The area of research is Sosnowiec city located in the south of Poland in the eastern part of Silesia voivodeship. The solar radiation data covering the years 2003 to 2013 was used. The intra - annual variability of daily averaged solar radiation hesitated in a wide range from 0.6 kWh/m2 (December) to 5.2 kWh/m2 (June). Day duration varies on average from 10 hours in January, November and December to 17 hours in May, June and July. Day occupies 56% of the 8767 hours in year. On average the largest amount of energy reached the analyzed area in July: 157 kWh/m2 (15% of the annual average), while the smallest in December: 18 kWh/m2 (less than 2% of the annual average). The 75% of the average annual total of energy falls on the period from 1st March to 31th August (spring - summer). The range of the annual solar radiation was determined by the minimum of 980 kWh/m2 and the maximum of 1094 kWh/m2. In Sosnowiec the average annual irradiation total on the horizontal surface amounts to 1052 kWh/m2 (2003 - 2013)
... through a clinical facility’s quality assurance program, are fundamental to radiation protection. More information about the principles ... as part of quality assurance program emphasizing radiation management. Health care providers who use fluoroscopy should be ...
Effect of ionizing radiation on some quality attributes of nutraceutically valued lotus seeds.
Bhat, Rajeev; Karim, A A
2009-01-01
Radiation processing has been employed successfully for value addition of food and agricultural products. Preliminary studies were undertaken to evaluate the changes induced by ionizing radiation (up to 30 kGy), in the form of gamma irradiation and electron beam irradiation, on some quality attributes and nutritive values of nutraceutically valued lotus seeds. Significant loss in seed firmness was recorded between control and irradiated seeds, irrespective of radiation source. Similarly, the specific viscosity of irradiated lotus seeds decreased significantly up to a dose of 7.5 kGy. Starch increased after exposure to gamma or electron beam irradiation, whereas the total phenolic contents were decreased. Gamma irradiation revealed an enhancement in protein, while the electron beam showed a decrease. Partial oxidation of the seeds during radiation treatments might have occurred as evidenced from the decomposition profiles (thermogravimetry) during heating. It is evident that ionizing radiation brought about significant and variable changes in the quality and nutritive values of lotus seed. Further exploration of this technology for safety and quality is warranted.
Comparison of Solar UVA and UVB Radiation Measured in Selangor, Malaysia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamarudin, S. U.; Gopir, G.; Yatim, B.
The solar ultraviolet A (UVA) radiation data was measured at Physics Building, Universiti Kebangsaan Malaysia (2 degree sign 55' N, 101 degree sign 46' E, 50m asl) by the Xplorer GLX Pasco that connected to UVA Light sensor. The measured solar UVA data were compared with the total daily solar ultraviolet B (UVB) radiation data recorded by the Malaysian Metrological Department at Petaling Jaya, Malaysia (3 degree sign 06' N, 101 degree sign 39' E, 50m asl) for 18 days in year 2007. The daily total average of UVA radiation received is (298{+-}105) kJm{sup -2} while the total daily maximummore » is (600{+-}56) kJm{sup -2}. From the analysis, it shows that the values of UVA radiation data were higher than UVB radiation data with the average ratio of 6.41% between 3-14%. A weak positive correlation was found (the correlation coefficient, r, is 0.22). The amount of UVA radiation that reached the earth surface is less dependence on UVB radiation and the factors were discussed.« less
Vorwerk, H; Zink, K; Schiller, R; Budach, V; Böhmer, D; Kampfer, S; Popp, W; Sack, H; Engenhart-Cabillic, R
2014-05-01
A number of national and international societies published recommendations regarding the required equipment and manpower assumed to be necessary to treat a number of patients with radiotherapy. None of these recommendations were based on actual time measurements needed for specific radiotherapy procedures. The German Society of Radiation Oncology (DEGRO) was interested in substantiating these recommendations by prospective evaluations of all important core procedures of radiotherapy in the most frequent cancers treated by radiotherapy. The results of the examinations of radiotherapy with intensity-modulated radiation therapy (IMRT) in patients with different tumor entities are presented in this manuscript. Four radiation therapy centers [University Hospital of Marburg, University Hospital of Giessen, University Hospital of Berlin (Charité), Klinikum rechts der Isar der Technischen Universität München] participated in this prospective study. The workload of the different occupational groups and room occupancies for the core procedures of radiotherapy were prospectively documented during a 2-month period per center and subsequently statistically analyzed. The time needed per patient varied considerably between individual patients and between centers for all the evaluated procedures. The technical preparation (contouring of target volume and organs at risk, treatment planning, and approval of treatment plan) was the most time-consuming process taking 3 h 54 min on average. The time taken by the medical physicists for this procedure amounted to about 57%. The training part of the preparation time was 87% of the measured time for the senior physician and resident. The total workload for all involved personnel comprised 74.9 min of manpower for the first treatment, 39.7 min for a routine treatment with image guidance, and 22.8 min without image guidance. The mean room occupancy varied between 10.6 min (routine treatment without image guidance) and 23.7 min (first treatment with image guidance). The prospective data presented here allow for an estimate of the required machine time and manpower needed for the core procedures of radiotherapy in an average radiation treatment with IMRT. However, one should be aware that a number of necessary and time-consuming activities were not evaluated in the present study.
Estimation of global radiation for Sri Lanka
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuel, T.D.M.A.
1991-01-01
There are several formulae that relate global radiation to other climatological parameters such as sunshine hours, relative humidity, maximum temperature, and average temperature. In this paper a generally accepted modified form of the formula first introduced by Angstrom is used. It relates global radiation to hours of sunshine that have been measured for several years in many of the meteorological stations in Sri Lanka. The annual average of the ratio of the hours of sunshine to the length of the day, i.e., annual average of (S/Z), is found to vary considerably and to lie in the range 0.42-0.66. Fre're etmore » al., have found, using data from many parts of the world, a general graphical representation for the variation of a and b with annual average (S/Z) lying in the range 0.28 to 0.75. This variation of a and b can be expressed as quadratic functions are modified and used to determine a and b values for stations in Sri Lanka.« less
Alekseeva, N P; Alekseev, A O; Vakhtin, Iu B; Kravtsov, V Iu; Kuzovatov, S N; Skorikova, T I
2008-01-01
Distributions of nuclear morphology anomalies in transplantable rabdomiosarcoma RA-23 cell populations were investigated under effect of ionizing radiation from 0 to 45 Gy. Internuclear bridges, nuclear protrusions and dumbbell-shaped nuclei were accepted for morphological anomalies. Empirical distributions of the number of anomalies per 100 nuclei were used. The adequate model of reentrant binomial distribution has been found. The sum of binomial random variables with binomial number of summands has such distribution. Averages of these random variables were named, accordingly, internal and external average reentrant components. Their maximum likelihood estimations were received. Statistical properties of these estimations were investigated by means of statistical modeling. It has been received that at equally significant correlation between the radiation dose and the average of nuclear anomalies in cell populations after two-three cellular cycles from the moment of irradiation in vivo the irradiation doze significantly correlates with internal average reentrant component, and in remote descendants of cell transplants irradiated in vitro - with external one.
Dosimetric Consistency of Co-60 Teletherapy Unit- a ten years Study
Baba, Misba H; Mohib-ul-Haq, M.; Khan, Aijaz A.
2013-01-01
Objective The goal of the Radiation standards and Dosimetry is to ensure that the output of the Teletherapy Unit is within ±2% of the stated one and the output of the treatment dose calculation methods are within ±5%. In the present paper, we studied the dosimetry of Cobalt-60 (Co-60) Teletherapy unit at Sher-I-Kashmir Institute of Medical Sciences (SKIMS) for last 10 years. Radioactivity is the phenomenon of disintegration of unstable nuclides called radionuclides. Among these radionuclides, Cobalt-60, incorporated in Telecobalt Unit, is commonly used in therapeutic treatment of cancer. Cobalt-60 being unstable decays continuously into Ni-60 with half life of 5.27 years thereby resulting in the decrease in its activity, hence dose rate (output). It is, therefore, mandatory to measure the dose rate of the Cobalt-60 source regularly so that the patient receives the same dose every time as prescribed by the radiation oncologist. The under dosage may lead to unsatisfactory treatment of cancer and over dosage may cause radiation hazards. Our study emphasizes the consistency between actual output and output obtained using decay method. Methodology The methodology involved in the present study is the calculations of actual dose rate of Co-60 Teletherapy Unit by two techniques i.e. Source to Surface Distance (SSD) and Source to Axis Distance (SAD), used for the External Beam Radiotherapy, of various cancers, using the standard methods. Thereby, a year wise comparison has been made between average actual dosimetric output (dose rate) and the average expected output values (obtained by using decay method for Co-60.) Results The present study shows that there is a consistency in the average output (dose rate) obtained by the actual dosimetry values and the expected output values obtained using decay method. The values obtained by actual dosimetry are within ±2% of the expected values. Conclusion The results thus obtained in a year wise comparison of average output by actual dosimetry done regularly as a part of Quality Assurance of the Telecobalt Radiotherapy Unit and its deviation from the expected output data is within the permissible limits. Thus our study shows a trend towards uniformity and a better dose delivery. PMID:23559901
SU-F-T-99: Data Visualization From a Treatment Planning Tracking System for Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cline, K; Kabat, C; Li, Y
2016-06-15
Purpose: A treatment planning process tracker database with input forms and a TV-viewable display webpage was developed and implemented in our clinic to collect time data points throughout the process. Tracking plan times is important because it directly affects the patient quality of care. Simply, the longer a patient waits after their initial simulation CT for treatment to begin, the more time the cancer has to progress. The tracker helps to drive workflow through the clinic, while the data collected can be used to understand and manage the process to find and eliminate inefficiencies. Methods: The overall process steps trackedmore » are CT-simulation, mark patient, draw normal contours, draw target volumes, create plan, and review/approve plan. Time stamps for task completion were extracted and used to generate a set of clinic metrics, among which include average time for each step in the process split apart by type of treatment, average time to completion for plans started in a given week, and individual overall completion time per plan. Results: Trends have been tracked for fourteen weeks of clinical data (196 plans). On average, drawing normal contours and target volumes is taking 2–5 times as long as creating the plan itself. This is potentially an issue because it could mean the process is taking too long initially, and it could be forcing the planning step to be done in a short amount of time. We also saw from our graphs that there appears to be no clear trend on the average amount of time per plan week-to-week. Conclusion: A tracker of this type has the potential to provide insight into how time is utilized in our clinic. By equipping our dosimetrists, radiation oncologists, and physicists with individualized metric sets, the tracker can help provide visibility and drive workflow. Funded in part by CPRIT (RP140105).« less
Iatrogenic radiation exposure to patients with early onset spine and chest wall deformities.
Khorsand, Derek; Song, Kit M; Swanson, Jonathan; Alessio, Adam; Redding, Gregory; Waldhausen, John
2013-08-01
Retrospective cohort series. Characterize average iatrogenic radiation dose to a cohort of children with thoracic insufficiency syndrome (TIS) during assessment and treatment at a single center with vertically expandable prosthetic titanium rib. Children with TIS undergo extensive evaluations to characterize their deformity. No standardized radiographical evaluation exists, but all reports use extensive imaging. The source and level of radiation these patients receive is not currently known. We evaluated a retrospective consecutive cohort of 62 children who had surgical treatment of TIS at our center from 2001-2011. Typical care included obtaining serial radiographs, spine and chest computed tomographic (CT) scans, ventilation/perfusion scans, and magnetic resonance images. Epochs of treatment were divided into time of initial evaluation to the end of initial vertically expandable prosthetic titanium rib implantation with each subsequent epoch delineated by the next surgical intervention. The effective dose for each examination was estimated within millisieverts (mSv). Plain radiographs were calculated from references. Effective dose was directly estimated for CT scans since 2007 and an average of effective dose from 2007-2011 was used for scans before 2007. Effective dose from fluoroscopy was directly estimated. All doses were reported in mSv. A cohort of 62 children had a total of 447 procedures. There were a total of 290 CT scans, 4293 radiographs, 147 magnetic resonance images, and 134 ventilation/perfusion scans. The average accumulated effective dose was 59.6 mSv for children who had completed all treatment, 13.0 mSv up to initial surgery, and 3.2 mSv for each subsequent epoch of treatment. CT scans accounted for 74% of total radiation dose. Children managed for TIS using a consistent protocol received iatrogenic radiation doses that were on average 4 times the estimated average US background radiation exposure of 3 mSv/yr. CT scans comprised 74% of the total dose. 3.
A new Faraday rotator for high average power lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khazanov, E A
2001-04-30
The new design of a Faraday rotator is proposed which allows one to compensate partially the radiation depolarisation in magneto-optical elements induced by heating due to the laser radiation absorption. The new design is compared analytically and numerically with a conventional design for the cases of glass and crystal magneto-optical media. It is shown that a rotator, which provides the compensation for birefringence in active elements with the accuracy up to 1 % at the average laser radiation power of 1 kW in the rotator, can be created. (laser applications and other topics in quantum electronics)
NASA Astrophysics Data System (ADS)
Idriss, Hajo; Salih, Isam; Alaamer, Abdulaziz S.; AL-Rajhi, M. A.; Osman, Alshfia; Adreani, Tahir Elamin; Abdelgalil, M. Y.; Ali, Nagi I.
2018-06-01
This study shows the assessment of radiation hazard parameters due to terrestrial radionuclides in the soil around artisanal gold mining for addressing the issue of natural radioactivity in mining areas. Hence, the levels 238U, 232Th, 40K and 226Ra in soil (using gamma spectrometry), 222Rn in soil and 222Rn in air were determined. Radiation hazard parameters were then computed. These include absorbed dose D, annual effective dose E, radium equivalent activity Raeq, external hazard H ex, annual gonadal dose equivalent hazard index AGDE and excess lifetime cancer risk ELCR due to the inhalation of radon (222Rn) and consumption of radium (226Ra) in vegetation. Uranium (238U), thorium (232Th) and potassium (40K) averages were, respectively, 26, 36 and 685 Becquerel per kilogram (Bq kg-1). Soil radon (4671 Bq m-3) and radon in air (14.77 Bq m-3) were found to be less than worldwide data. Nevertheless, the average 40K concentration was 685 Bq kg-1. This is slightly higher than the United Nations Scientific Committee on the Effects of Atomic Radiation average value of 412 Bq kg-1. The obtained result indicates that some of the radiation hazard parameters seem unsavory. The mean value of absorbed dose rate (62.49 nGy h-1) was slightly higher than average value of 57 nGy h-1 ( 45% from 40K), and that of AGDE (444 μSv year-1) was higher than worldwide average reported value (300 μSv year-1). This study highlights the necessity to launch extensive nationwide radiation protection program in the mining areas for regulatory control.
Automated IMRT planning in Pinnacle : A study in head-and-neck cancer.
Kusters, J M A M; Bzdusek, K; Kumar, P; van Kollenburg, P G M; Kunze-Busch, M C; Wendling, M; Dijkema, T; Kaanders, J H A M
2017-12-01
This study evaluates the performance and planning efficacy of the Auto-Planning (AP) module in the clinical version of Pinnacle 9.10 (Philips Radiation Oncology Systems, Fitchburg, WI, USA). Twenty automated intensity-modulated radiotherapy (IMRT) plans were compared with the original manually planned clinical IMRT plans from patients with oropharyngeal cancer. Auto-Planning with IMRT offers similar coverage of the planning target volume as the original manually planned clinical plans, as well as better sparing of the contralateral parotid gland, contralateral submandibular gland, larynx, mandible, and brainstem. The mean dose of the contralateral parotid gland and contralateral submandibular gland could be reduced by 2.5 Gy and 1.7 Gy on average. The number of monitor units was reduced with an average of 143.9 (18%). Hands-on planning time was reduced from 1.5-3 h to less than 1 h. The Auto-Planning module was able to produce clinically acceptable head and neck IMRT plans with consistent quality.
A Comparison of Image Quality and Radiation Exposure Between the Mini C-Arm and the Standard C-Arm.
van Rappard, Juliaan R M; Hummel, Willy A; de Jong, Tijmen; Mouës, Chantal M
2018-04-01
The use of intraoperative fluoroscopy has become mandatory in osseous hand surgery. Due to its overall practicality, the mini C-arm has gained popularity among hand surgeons over the standard C-arm. This study compares image quality and radiation exposure for patient and staff between the mini C-arm and the standard C-arm, both with flat panel technology. An observer-based subjective image quality study was performed using a contrast detail (CD) phantom. Five independent observers were asked to determine the smallest circles discernable to them. The results were plotted in a graph, forming a CD curve. From each curve, an image quality figure (IQF) was derived. A lower IQF equates to a better image quality. The patients' entrance skin dose was measured, and to obtain more information about the staff exposure dose, a perspex hand phantom was used. The scatter radiation was measured at various distances and angles relative to a central point on the detector. The IQF was significantly lower for the mini C-arm resulting in a better image quality. The patients' entrance dose was 10 times higher for the mini C-arm as compared with the standard C-arm, and the scatter radiation threefold. Due to its improved image quality and overall practicality, the mini C-arm is recommended for hand surgical procedures. To ensure that the surgeons' radiation exposure is not exceeding the safety limits, monitoring radiation exposure using mini C-arms with flat panel technology during surgery should be done in a future clinical study.
Radiation protection program for early detection of breast cancer in a mammography facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariana, Villagomez Casimiro, E-mail: marjim10-66@ciencias.unam.mx, E-mail: cesar@fisica.unam.mx; Cesar, Ruiz Trejo, E-mail: marjim10-66@ciencias.unam.mx, E-mail: cesar@fisica.unam.mx; Ruby, Espejo Fonseca
Mammography is the best tool for early detection of Breast Cancer. In this diagnostic radiology modality it is necessary to establish the criteria to ensure the proper use and operation of the equipment used to obtain mammographic images in order to contribute to the safe use of ionizing radiation. The aim of the work was to implement at FUCAM-AC the radiation protection program which must be established for patients and radiation workers according to Mexican standards [1–4]. To achieve this goal, radiation protection and quality control manuals were elaborated [5]. Furthermore, a quality control program (QCP) in the mammography systemsmore » (analog/digital), darkroom included, has been implemented. Daily sensitometry, non-variability of the image quality, visualizing artifacts, revision of the equipment mechanical stability, compression force and analysis of repetition studies are some of the QCP routine tests that must be performed by radiological technicians of this institution as a set of actions to ensure the protection of patients. Image quality and patients dose assessment were performed on 4 analog equipment installed in 2 mobile units. In relation to dose assessment, all equipment passed the acceptance criteria (<3 mGy per projection). The image quality test showed that most images (70%)– presented artifacts. A brief summary of the results of quality control tests applied to the equipment and film processor are presented. To maintain an adequate level of quality and safety at FUCAM-AC is necessary that the proposed radiation protection program in this work is applied.« less
NASA Astrophysics Data System (ADS)
Efstathopoulos, E. P.; Kelekis, N. L.; Pantos, I.; Brountzos, E.; Argentos, S.; Grebáč, J.; Ziaka, D.; Katritsis, D. G.; Seimenis, I.
2009-09-01
Computed tomography (CT) coronary angiography has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but high radiation doses have been reported. Prospective ECG-gating using a 'step-and-shoot' axial scanning protocol has been shown to reduce radiation exposure effectively while maintaining diagnostic accuracy. 256-slice scanners with 80 mm detector coverage have been currently introduced into practice, but their impact on radiation exposure has not been adequately studied. The aim of this study was to assess radiation doses associated with CT coronary angiography using a 256-slice CT scanner. Radiation doses were estimated for 25 patients scanned with either prospective or retrospective ECG-gating. Image quality was assessed objectively in terms of mean CT attenuation at selected regions of interest on axial coronary images and subjectively by coronary segment quality scoring. It was found that radiation doses associated with prospective ECG-gating were significantly lower than retrospective ECG-gating (3.2 ± 0.6 mSv versus 13.4 ± 2.7 mSv). Consequently, the radiogenic fatal cancer risk for the patient is much lower with prospective gating (0.0176% versus 0.0737%). No statistically significant differences in image quality were observed between the two scanning protocols for both objective and subjective quality assessments. Therefore, prospective ECG-gating using a 'step-and-shoot' protocol that covers the cardiac anatomy in two axial acquisitions effectively reduces radiation doses in 256-slice CT coronary angiography without compromising image quality.
Celestial bodies macroscopic movement is due to the radiation
NASA Astrophysics Data System (ADS)
Yongquan, Han
2016-03-01
The star is radiate, also as the planet. In fact, all the real objects are radiate, but the strength of the radiation is different. Radiation will reduce the quality of the object, but time is not long enough to reduce the mass of the subject, so it is difficult for us to observe. Due to the large object lifecycle, to study the changing rule of the object, we must consider the radiation on the quality of the celestial bodies, and the outer space radiate particles' motion, also consider objects interact with objects of radiation. The reason Celestial bodies moves is that the radiation of those Celestial bodies Interact with each other, Celestial bodies macroscopic movement is due to the radiation. The earth's rotation and revolution is a measure of the survive ability. Author: hanyongquan TEL: 15611860790
Discrimination of radiation quality through second harmonic out-of-phase cw-ESR detection.
Marrale, Maurizio; Longo, Anna; Brai, Maria; Barbon, Antonio; Brustolon, Marina
2014-02-01
The ability to discriminate the quality of ionizing radiation is important because the biological effects produced in tissue strongly depends on both absorbed dose and linear energy transfer (LET) of ionizing particles. Here we present an experimental electron spin resonance (ESR) analysis aimed at discriminating the effective LETs of various radiation beams (e.g., 19.3 MeV protons, (60)Co photons and thermal neutrons). The measurement of the intensities of the continuous wave spectrometer signal channel first harmonic in-phase and the second harmonic out-of-phase components are used to distinguish the radiation quality. A computational analysis, was carried out to evaluate the dependence of the first harmonic in-phase and second harmonic out-of-phase components on microwave power, modulation amplitude and relaxation times, and highlights that these components could be used to point out differences in the relaxation times. On the basis of this numerical analysis the experimental results are discussed. The methodology described in this study has the potential to provide information on radiation quality.
A photon recycling approach to the denoising of ultra-low dose X-ray sequences.
Hariharan, Sai Gokul; Strobel, Norbert; Kaethner, Christian; Kowarschik, Markus; Demirci, Stefanie; Albarqouni, Shadi; Fahrig, Rebecca; Navab, Nassir
2018-06-01
Clinical procedures that make use of fluoroscopy may expose patients as well as the clinical staff (throughout their career) to non-negligible doses of radiation. The potential consequences of such exposures fall under two categories, namely stochastic (mostly cancer) and deterministic risks (skin injury). According to the "as low as reasonably achievable" principle, the radiation dose can be lowered only if the necessary image quality can be maintained. Our work improves upon the existing patch-based denoising algorithms by utilizing a more sophisticated noise model to exploit non-local self-similarity better and this in turn improves the performance of low-rank approximation. The novelty of the proposed approach lies in its properly designed and parameterized noise model and the elimination of initial estimates. This reduces the computational cost significantly. The algorithm has been evaluated on 500 clinical images (7 patients, 20 sequences, 3 clinical sites), taken at ultra-low dose levels, i.e. 50% of the standard low dose level, during electrophysiology procedures. An average improvement in the contrast-to-noise ratio (CNR) by a factor of around 3.5 has been found. This is associated with an image quality achieved at around 12 (square of 3.5) times the ultra-low dose level. Qualitative evaluation by X-ray image quality experts suggests that the method produces denoised images that comply with the required image quality criteria. The results are consistent with the number of patches used, and they demonstrate that it is possible to use motion estimation techniques and "recycle" photons from previous frames to improve the image quality of the current frame. Our results are comparable in terms of CNR to Video Block Matching 3D-a state-of-the-art denoising method. But qualitative analysis by experts confirms that the denoised ultra-low dose X-ray images obtained using our method are more realistic with respect to appearance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooten, H. Omar, E-mail: hwooten@radonc.wustl.edu; Green, Olga; Yang, Min
2015-07-15
Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated bymore » attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all {sup 60}Co plan OARs were within clinical tolerances. Conclusions: A commercial {sup 60}Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system.« less
Expanding the scope of practice for radiology managers: radiation safety duties.
Orders, Amy B; Wright, Donna
2003-01-01
In addition to financial responsibilities and patient care duties, many medical facilities also expect radiology department managers to wear "safety" hats and complete fundamental quality control/quality assurance, conduct routine safety surveillance in the department, and to meet regulatory demands in the workplace. All managers influence continuous quality improvement initiatives, from effective utilization of resource and staffing allocations, to efficacy of patient scheduling tactics. It is critically important to understand continuous quality improvement (CQI) and its relationship with the radiology manager, specifically quality assurance/quality control in routine work, as these are the fundamentals of institutional safety, including radiation safety. When an institution applies for a registration for radiation-producing devices or a license for the use of radioactive materials, the permit granting body has specific requirements, policies and procedures that must be satisfied in order to be granted a permit and to maintain it continuously. In the 32 U.S. Agreement states, which are states that have radiation safety programs equivalent to the Nuclear Regulatory Commission programs, individual facilities apply for permits through the local governing body of radiation protection. Other states are directly licensed by the Nuclear Regulatory Commission and associated regulatory entities. These regulatory agencies grant permits, set conditions for use in accordance with state and federal laws, monitor and enforce radiation safety activities, and audit facilities for compliance with their regulations. Every radiology department and associated areas of radiation use are subject to inspection and enforcement policies in order to ensure safety of equipment and personnel. In today's business practice, department managers or chief technologists may actively participate in the duties associated with institutional radiation safety, especially in smaller institutions, while other facilities may assign the duties and title of "radiation safety officer" to a radiologist or other management, per the requirements of regulatory agencies in that state. Radiation safety in a medical setting can be delineated into two main categories--equipment and personnel requirements--each having very specific guidelines. The literature fails to adequately address the blatant link between radiology department managers and radiation safety duties. The breadth and depth of this relationship is of utmost concern and warrants deeper insight as the demands of the regulatory agencies increase with the new advances in technology, procedures and treatments associated with radiation-producing devices and radioactive materials.
Soliton evolution and radiation loss for the sine-Gordon equation.
Smyth, N F; Worthy, A L
1999-08-01
An approximate method for describing the evolution of solitonlike initial conditions to solitons for the sine-Gordon equation is developed. This method is based on using a solitonlike pulse with variable parameters in an averaged Lagrangian for the sine-Gordon equation. This averaged Lagrangian is then used to determine ordinary differential equations governing the evolution of the pulse parameters. The pulse evolves to a steady soliton by shedding dispersive radiation. The effect of this radiation is determined by examining the linearized sine-Gordon equation and loss terms are added to the variational equations derived from the averaged Lagrangian by using the momentum and energy conservation equations for the sine-Gordon equation. Solutions of the resulting approximate equations, which include loss, are found to be in good agreement with full numerical solutions of the sine-Gordon equation.
NASA Astrophysics Data System (ADS)
Lee, Y. H.; Shindell, D. T.; Faluvegi, G.; Pinder, R. W.
2015-11-01
We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that reduces 2050 CO2 emissions to be 50 % below 2005 emissions. Using NASA GISS ModelE2, we look at the impacts in year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL for the Purpose of Scenario Exploration), and other US emissions and the rest of the world emissions are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in the future but result in positive radiative forcing. Surface PM2.5 is reduced by ~ 2 μg m-3 on average over the US, and surface ozone by ~ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the US, mainly due to the PM2.5 reduction (~ 74 200 lives saved). The air quality regulations reduces the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading a strong positive radiative forcing (RF) by both aerosols direct and indirect forcing: total RF is ~ 0.04 W m-2 over the globe; ~ 0.8 W m-2 over the US. Under the hypothetical climate policy, future US energy relies less on coal and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it leads to climate dis-benefits over the US. In 2055, the US mean total RF is +0.22 W m-2 due to positive aerosol direct and indirect forcing, while the global mean total RF is -0.06 W m-2 due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multi-national efforts to reduce GHGs emissions and (2) to target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the resulting climate benefit occurs faster and provides co-benefits to air quality and public health.
Overview of the ISS Radiation Environment Observed during the ESA EXPOSE-R2 Mission in 2014-2016
NASA Astrophysics Data System (ADS)
Dachev, T. P.; Bankov, N. G.; Tomov, B. T.; Matviichuk, Yu. N.; Dimitrov, Pl. G.; Häder, D.-P.; Horneck, G.
2017-11-01
The radiation risk radiometer-dosimeter (R3D)-R2 solid-state detector performed radiation measurements at the European Space Agency EXPOSE-R2 platform outside of the Russian "Zvezda" module at the International Space Station (ISS) from 24 October 2014 to 11 January 2016. The ISS orbital parameters were average altitude of 415 km and 51.6° inclination. We developed special software and used experimentally obtained formulas to determine the radiation flux-to-dose ratio from the R3DR2 Liulin-type deposited-energy spectrometer. We provide for the first time simultaneous, long-term estimates of radiation dose external to the ISS for four source categories: (i) galactic cosmic ray particles and their secondary products; (ii) protons in the South Atlantic Anomaly region of the inner radiation belt (IRB); (iii) relativistic electrons and/or bremsstrahlung in the outer radiation belt (ORB); and (iv) solar energetic particle (SEP) events. The latter category is new in this study. Additionally, in this study, secondary particles (SP) resulting from energetic particle interaction with the detector and nearby materials are identified. These are observed continuously at high latitudes. The detected SPs are identified using the same sorting requirements as SEP protons. The IRB protons provide the highest consistent hourly dose, while the ORB electrons and SEPs provide the most extreme hourly doses. SEPs were observed 11 times during the study interval. The R3DR2 data support calculation of average equivalent doses. The 30 day and 1 year average equivalent doses are much smaller than the skin and eyes doses recommendations by the National Council on Radiation Protection (Report 132), which provides radiation protection guidance for Low Earth Orbit.
[Possibilities and perspectives of quality management in radiation oncology].
Seegenschmiedt, M H; Zehe, M; Fehlauer, F; Barzen, G
2012-11-01
The medical discipline radiation oncology and radiation therapy (treatment with ionizing radiation) has developed rapidly in the last decade due to new technologies (imaging, computer technology, software, organization) and is one of the most important pillars of tumor therapy. Structure and process quality play a decisive role in the quality of outcome results (therapy success, tumor response, avoidance of side effects) in this field. Since 2007 all institutions in the health and social system are committed to introduce and continuously develop a quality management (QM) system. The complex terms of reference, the complicated technical instruments, the highly specialized personnel and the time-consuming processes for planning, implementation and assessment of radiation therapy made it logical to introduce a QM system in radiation oncology, independent of the legal requirements. The Radiation Center Hamburg (SZHH) has functioned as a medical care center under medical leadership and management since 2009. The total QM and organization system implemented for the Radiation Center Hamburg was prepared in 2008 and 2009 and certified in June 2010 by the accreditation body (TÜV-Süd) for DIN EN ISO 9001:2008. The main function of the QM system of the SZHH is to make the basic principles understandable for insiders and outsiders, to have clear structures, to integrate management principles into the routine and therefore to organize the learning processes more effectively both for interior and exterior aspects.
Eslamy, Hedieh K; Newman, Beverley; Weinberger, Ed
2014-12-01
A quality improvement (QI) program may be implemented using the plan-do-study-act cycle (as a model for making improvements) and the basic QI tools (used to visually display and analyze variation in data). Managing radiation dose has come to the forefront as a safety goal for radiology departments. This is especially true in the pediatric population, which is more radiosensitive than the adult population. In this article, we use neonatal digital radiography to discuss developing a QI program with the principle goals of decreasing the radiation dose, decreasing variation in radiation dose, and optimizing image quality. Copyright © 2014 Elsevier Inc. All rights reserved.
Marks, Lawrence B.; Adams, Robert D.; Pawlicki, Todd; Blumberg, Albert L.; Hoopes, David; Brundage, Michael D.; Fraass, Benedick A.
2013-01-01
This report is part of a series of white papers commissioned for the American Society for Radiation Oncology (ASTRO) Board of Directors as part of ASTRO's Target Safely Campaign, focusing on the role of peer review as an important component of a broad safety/quality assurance (QA) program. Peer review is one of the most effective means for assuring the quality of qualitative, and potentially controversial, patient-specific decisions in radiation oncology. This report summarizes many of the areas throughout radiation therapy that may benefit from the application of peer review. Each radiation oncology facility should evaluate the issues raised and develop improved ways to apply the concept of peer review to its individual process and workflow. This might consist of a daily multidisciplinary (eg, physicians, dosimetrists, physicists, therapists) meeting to review patients being considered for, or undergoing planning for, radiation therapy (eg, intention to treat and target delineation), as well as meetings to review patients already under treatment (eg, adequacy of image guidance). This report is intended to clarify and broaden the understanding of radiation oncology professionals regarding the meaning, roles, benefits, and targets for peer review as a routine quality assurance tool. It is hoped that this work will be a catalyst for further investigation, development, and study of the efficacy of peer review techniques and how these efforts can help improve the safety and quality of our treatments. PMID:24175002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui Yunfeng; Galvin, James M.; Radiation Therapy Oncology Group, American College of Radiology, Philadelphia, Pennsylvania
2013-01-01
Purpose: To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Methods and Materials: Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is establishedmore » at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. Results: The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. Conclusion: This first experience indicated that remote review for 3D IGRT as part of QA for RTOG clinical trials is feasible and effective. The magnitude of registration discrepancy between institution and reviewer was presented, and the major issues were investigated to further improve this remote evaluation process.« less
Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology.
Bibault, Jean-Emmanuel; Zapletal, Eric; Rance, Bastien; Giraud, Philippe; Burgun, Anita
2018-01-01
Leveraging Electronic Health Records (EHR) and Oncology Information Systems (OIS) has great potential to generate hypotheses for cancer treatment, since they directly provide medical data on a large scale. In order to gather a significant amount of patients with a high level of clinical details, multicenter studies are necessary. A challenge in creating high quality Big Data studies involving several treatment centers is the lack of semantic interoperability between data sources. We present the ontology we developed to address this issue. Radiation Oncology anatomical and target volumes were categorized in anatomical and treatment planning classes. International delineation guidelines specific to radiation oncology were used for lymph nodes areas and target volumes. Hierarchical classes were created to generate The Radiation Oncology Structures (ROS) Ontology. The ROS was then applied to the data from our institution. Four hundred and seventeen classes were created with a maximum of 14 children classes (average = 5). The ontology was then converted into a Web Ontology Language (.owl) format and made available online on Bioportal and GitHub under an Apache 2.0 License. We extracted all structures delineated in our department since the opening in 2001. 20,758 structures were exported from our "record-and-verify" system, demonstrating a significant heterogeneity within a single center. All structures were matched to the ROS ontology before integration into our clinical data warehouse (CDW). In this study we describe a new ontology, specific to radiation oncology, that reports all anatomical and treatment planning structures that can be delineated. This ontology will be used to integrate dosimetric data in the Assistance Publique-Hôpitaux de Paris CDW that stores data from 6.5 million patients (as of February 2017).
Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology
Zapletal, Eric; Rance, Bastien; Giraud, Philippe; Burgun, Anita
2018-01-01
Purpose Leveraging Electronic Health Records (EHR) and Oncology Information Systems (OIS) has great potential to generate hypotheses for cancer treatment, since they directly provide medical data on a large scale. In order to gather a significant amount of patients with a high level of clinical details, multicenter studies are necessary. A challenge in creating high quality Big Data studies involving several treatment centers is the lack of semantic interoperability between data sources. We present the ontology we developed to address this issue. Methods Radiation Oncology anatomical and target volumes were categorized in anatomical and treatment planning classes. International delineation guidelines specific to radiation oncology were used for lymph nodes areas and target volumes. Hierarchical classes were created to generate The Radiation Oncology Structures (ROS) Ontology. The ROS was then applied to the data from our institution. Results Four hundred and seventeen classes were created with a maximum of 14 children classes (average = 5). The ontology was then converted into a Web Ontology Language (.owl) format and made available online on Bioportal and GitHub under an Apache 2.0 License. We extracted all structures delineated in our department since the opening in 2001. 20,758 structures were exported from our “record-and-verify” system, demonstrating a significant heterogeneity within a single center. All structures were matched to the ROS ontology before integration into our clinical data warehouse (CDW). Conclusion In this study we describe a new ontology, specific to radiation oncology, that reports all anatomical and treatment planning structures that can be delineated. This ontology will be used to integrate dosimetric data in the Assistance Publique—Hôpitaux de Paris CDW that stores data from 6.5 million patients (as of February 2017). PMID:29351341
Safety Strategies in an Academic Radiation Oncology Department and Recommendations for Action
Terezakis, Stephanie A.; Pronovost, Peter; Harris, Kendra; DeWeese, Theodore; Ford, Eric
2013-01-01
Background Safety initiatives in the United States continue to work on providing guidance as to how the average practitioner might make patients safer in the face of the complex process by which radiation therapy (RT), an essential treatment used in the management of many patients with cancer, is prepared and delivered. Quality control measures can uncover certain specific errors such as machine dose mis-calibration or misalignments of the patient in the radiation treatment beam. However, they are less effective at uncovering less common errors that can occur anywhere along the treatment planning and delivery process, and even when the process is functioning as intended, errors still occur. Prioritizing Risks and Implementing Risk-Reduction Strategies Activities undertaken at the radiation oncology department at the Johns Hopkins Hospital (Baltimore) include Failure Mode and Effects Analysis (FMEA), risk-reduction interventions, and voluntary error and near-miss reporting systems. A visual process map portrayed 269 RT steps occurring among four subprocesses—including consult, simulation, treatment planning, and treatment delivery. Two FMEAs revealed 127 and 159 possible failure modes, respectively. Risk-reduction interventions for 15 “top-ranked” failure modes were implemented. Since the error and near-miss reporting system’s implementation in the department in 2007, 253 events have been logged. However, the system may be insufficient for radiation oncology, for which a greater level of practice-specific information is required to fully understand each event. Conclusions The “basic science” of radiation treatment has received considerable support and attention in developing novel therapies to benefit patients. The time has come to apply the same focus and resources to ensuring that patients safely receive the maximal benefits possible. PMID:21819027
Yu, Dong; Zhang, Ruoyu; Liu, Qian
2012-09-01
To investigate the influence of dentures on electromagnetic energy absorption during the daily use of a mobile phone, a high-resolution head phantom based on the Visible Chinese Human dataset was reconstructed. Simulations on phantoms with various dentures were performed by using the finite-difference time-domain method with a 0.47 wavelength dipole antenna and a mobile phone model as radiation sources at 900 and 1800 MHz. The Specific energy Absorption Rate (SAR) values including 1 and 10 g average SAR values were assessed. When the metallic dental crowns with resonance lengths of approximately one-third to one-half wavelength in the tissue nearby are parallel to the radiation source, up to 121.6% relative enhancement for 1 g average SAR and 17.1% relative enhancement for 10 g average SAR are observed due to the resonance effect in energy absorption. When the radiation sources operate in the normal configuration, the 10 g average SAR values are still in compliance with the basic restrictions established by the Institute of Electrical and Electronic Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP), indicating that the safety limits will not be challenged by the usage of dentures. Copyright © 2012 Wiley Periodicals, Inc.
1982-09-15
u, the assumption Iy I << I no longer holds. As a rough approximation, however, we can average the exponent in Eq. (68) over y rather than the...averaging the exponent in Eq. sions usually produce a shift as well as a broadening (68), it is easier to perform the averaging in the ex- of the profiles...in the second term in the exponent in transitions which enter (see Refs. 2 and 3). Eq. (A4) of this reference and that, in Eq. 0 8), one should
NASA Astrophysics Data System (ADS)
Helge Østerås, Bjørn; Skaane, Per; Gullien, Randi; Catrine Trægde Martinsen, Anne
2018-02-01
The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra™). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra™. AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.
Østerås, Bjørn Helge; Skaane, Per; Gullien, Randi; Martinsen, Anne Catrine Trægde
2018-01-25
The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra ™ ). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra ™ . AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.
Shoemaker, W. Barclay; Lopez, Christian D.; Duever, Michael J.
2011-01-01
Net radiation and available energy explained most of the variability in ET observed at all five sites. Mean annual and monthly net radiation varied among the sites in response to cloud cover and the albedo of the land surface and plant community. Net radiation was greatest at the Cypress Swamp site, averaging about 130 W/m2 (watts per square meter) during the 3-year study. Net radiation was generally less at the Dwarf Cypress site, averaging about 115 W/m2 over 3 years. The Dwarf Cypress site apparently has the largest albedo, which likely is due to the sparse canopy and a highly reflective, calcareous, periphyton-covered land surface. Furthermore, mean annual net radiation was least in the first year of the study, which likely was due to greater cloud cover during a relatively wet year. In contrast, net radiation was greatest in the second year of the study, which likely was due to less cloud cover during a relatively dry year.
Medical physics staffing for radiation oncology: a decade of experience in Ontario, Canada
Battista, Jerry J.; Patterson, Michael S.; Beaulieu, Luc; Sharpe, Michael B.; Schreiner, L. John; MacPherson, Miller S.; Van Dyk, Jacob
2012-01-01
The January 2010 articles in The New York Times generated intense focus on patient safety in radiation treatment, with physics staffing identified frequently as a critical factor for consistent quality assurance. The purpose of this work is to review our experience with medical physics staffing, and to propose a transparent and flexible staffing algorithm for general use. Guided by documented times required per routine procedure, we have developed a robust algorithm to estimate physics staffing needs according to center‐specific workload for medical physicists and associated support staff, in a manner we believe is adaptable to an evolving radiotherapy practice. We calculate requirements for each staffing type based on caseload, equipment inventory, quality assurance, educational programs, and administration. Average per‐case staffing ratios were also determined for larger‐scale human resource planning and used to model staffing needs for Ontario, Canada over the next 10 years. The workload specific algorithm was tested through a survey of Canadian cancer centers. For center‐specific human resource planning, we propose a grid of coefficients addressing specific workload factors for each staff group. For larger scale forecasting of human resource requirements, values of 260, 700, 300, 600, 1200, and 2000 treated cases per full‐time equivalent (FTE) were determined for medical physicists, physics assistants, dosimetrists, electronics technologists, mechanical technologists, and information technology specialists, respectively. PACS numbers: 87.55.N‐, 87.55.Qr PMID:22231223
Medical physics staffing for radiation oncology: a decade of experience in Ontario, Canada.
Battista, Jerry J; Clark, Brenda G; Patterson, Michael S; Beaulieu, Luc; Sharpe, Michael B; Schreiner, L John; MacPherson, Miller S; Van Dyk, Jacob
2012-01-05
The January 2010 articles in The New York Times generated intense focus on patient safety in radiation treatment, with physics staffing identified frequently as a critical factor for consistent quality assurance. The purpose of this work is to review our experience with medical physics staffing, and to propose a transparent and flexible staffing algorithm for general use. Guided by documented times required per routine procedure, we have developed a robust algorithm to estimate physics staffing needs according to center-specific workload for medical physicists and associated support staff, in a manner we believe is adaptable to an evolving radiotherapy practice. We calculate requirements for each staffing type based on caseload, equipment inventory, quality assurance, educational programs, and administration. Average per-case staffing ratios were also determined for larger-scale human resource planning and used to model staffing needs for Ontario, Canada over the next 10 years. The workload specific algorithm was tested through a survey of Canadian cancer centers. For center-specific human resource planning, we propose a grid of coefficients addressing specific workload factors for each staff group. For larger scale forecasting of human resource requirements, values of 260, 700, 300, 600, 1200, and 2000 treated cases per full-time equivalent (FTE) were determined for medical physicists, physics assistants, dosimetrists, electronics technologists, mechanical technologists, and information technology specialists, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X; Schott, D; Song, Y
Purpose: In an effort of early assessment of treatment response, we investigate radiation induced changes in CT number histogram of GTV during the delivery of chemoradiation therapy (CRT) for pancreatic cancer. Methods: Diagnostic-quality CT data acquired daily during routine CT-guided CRT using a CT-on-rails for 20 pancreatic head cancer patients were analyzed. All patients were treated with a radiation dose of 50.4 in 28 fractions. On each daily CT set, the contours of the pancreatic head and the spinal cord were delineated. The Hounsfiled Units (HU) histogram in these contourswere extracted and processed using MATLAB. Eight parameters of the histogrammore » including the mean HU over all the voxels, peak position, volume, standard deviation (SD), skewness, kurtosis, energy, and entropy were calculated for each fraction. The significances were inspected using paired two-tailed t-test and the correlations were analyzed using Spearman rank correlation tests. Results: In general, HU histogram in pancreatic head (but not in spinal cord) changed during the CRT delivery. Changes from the first to the last fraction in mean HU in pancreatic head ranged from −13.4 to 3.7 HU with an average of −4.4 HU, which was significant (P<0.001). Among other quantities, the volume decreased, the skewness increased (less skewed), and the kurtosis decreased (less sharp) during the CRT delivery. The changes of mean HU, volume, skewness, and kurtosis became significant after two weeks of treatment. Patient pathological response status is associated with the changes of SD (ΔSD), i.e., ΔSD= 1.85 (average of 7 patients) for good reponse, −0.08 (average of 6 patients) for moderate and poor response. Conclusion: Significant changes in HU histogram and the histogram-based metrics (e.g., meam HU, skewness, and kurtosis) in tumor were observed during the course of chemoradiation therapy for pancreas cancer. These changes may be potentially used for early assessment of treatment response.« less
Jung, Jinsang; Lee, Hanlim; Kim, Young J; Liu, Xingang; Zhang, Yuanhang; Gu, Jianwei; Fan, Shaojia
2009-08-01
Optical and chemical aerosol measurements were obtained from 2 to 31 July 2006 at an urban site in the metropolitan area of Guangzhou (China) as part of the Program of Regional Integrated Experiment of Air Quality over Pearl River Delta (PRIDE-PRD2006) to investigate aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing. During the PRIDE-PRD2006 campaign, the average contributions of ammonium sulfate, organic mass by carbon (OMC), elemental carbon (EC), and sea salt (SS) to total PM(2.5) mass were measured to be 36.5%, 5.7%, 27.1%, 7.8%, and 3.7%, respectively. Compared with the clean marine period, (NH(4))(2)SO(4), NH(4)NO(3), and OMC were all greatly enhanced (by up to 430%) during local haze periods via the accumulation of a secondary aerosol component. The OMC dominance increased when high levels of biomass burning influenced the measurement site while (NH(4))(2)SO(4) and OMC did when both biomass burning and industrial emissions influenced it. The effect of aerosol water content on the total light-extinction coefficient was estimated to be 34.2%, of which 25.8% was due to aerosol water in (NH(4))(2)SO(4), 5.1% that in NH(4)NO(3), and 3.3% that in SS. The average mass-scattering efficiency (MSE) of PM(10) particles was determined to be 2.2+/-0.6 and 4.6+/-1.7m(2)g(-1) under dry (RH<40%) and ambient conditions, respectively. The average single-scattering albedo (SSA) was 0.80+/-0.08 and 0.90+/-0.04 under dry and ambient conditions, respectively. Not only are the extinction and scattering coefficients greatly enhanced by aerosol water content, but MSE and SSA are also highly sensitive. It can be concluded that sulfate and carbonaceous aerosol, as well as aerosol water content, play important roles in the processes that determine visibility impairment and radiative forcing in the ambient atmosphere of the Guangzhou urban area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pohar, Surjeet, E-mail: spohar@iuhealth.org; Fung, Claire Y.; Hopkins, Shane
Purpose: The American Society for Radiation Oncology (ASTRO) conducted the 2012 Radiation Oncology Workforce Survey to obtain an up-to-date picture of the workforce, assess its needs and concerns, and identify quality and safety improvement opportunities. The results pertaining to radiation oncologists (ROs) and residents (RORs) are presented here. Methods: The ASTRO Workforce Subcommittee, in collaboration with allied radiation oncology professional societies, conducted a survey study in early 2012. An online survey questionnaire was sent to all segments of the radiation oncology workforce. Respondents who were actively working were included in the analysis. This manuscript describes the data for ROs andmore » RORs. Results: A total of 3618 ROs and 568 RORs were surveyed. The response rate for both groups was 29%, with 1047 RO and 165 ROR responses. Among ROs, the 2 most common racial groups were white (80%) and Asian (15%), and the male-to-female ratio was 2.85 (74% male). The median age of ROs was 51. ROs averaged 253.4 new patient consults in a year and 22.9 on-treatment patients. More than 86% of ROs reported being satisfied or very satisfied overall with their career. Close to half of ROs reported having burnout feelings. There was a trend toward more frequent burnout feelings with increasing numbers of new patient consults. ROs' top concerns were related to documentation, reimbursement, and patients' health insurance coverage. Ninety-five percent of ROs felt confident when implementing new technology. Fifty-one percent of ROs thought that the supply of ROs was balanced with demand, and 33% perceived an oversupply. Conclusions: This study provides a current snapshot of the 2012 radiation oncology physician workforce. There was a predominance of whites and men. Job satisfaction level was high. However a substantial fraction of ROs reported burnout feelings. Perceptions about supply and demand balance were mixed. ROs top concerns reflect areas of attention for the healthcare sector as a whole.« less
Cloud types and the tropical Earth radiation budget, revised
NASA Technical Reports Server (NTRS)
Dhuria, Harbans L.; Kyle, H. Lee
1989-01-01
Nimbus-7 cloud and Earth radiation budget data are compared in a study of the effects of clouds on the tropical radiation budget. The data consist of daily averages over fixed 500 sq km target areas, and the months of July 1979 and January 1980 were chosen to show the effect of seasonal changes. Six climate regions, consisting of 14 to 24 target areas each, were picked for intensive analysis because they exemplified the range in the tropical cloud/net radiation interactions. The normal analysis was to consider net radiation as the independent variable and examine how cloud cover, cloud type, albedo and emitted radiation varied with the net radiation. Two recurring themes keep repeating on a local, regional, and zonal basis: the net radiation is strongly influenced by the average cloud type and amount present, but most net radiation values could be produced by several combinations of cloud types and amount. The regions of highest net radiation (greater than 125 W/sq m) tend to have medium to heavy cloud cover. In these cases, thin medium altitude clouds predominate. Their cloud tops are normally too warm to be classified as cirrus by the Nimbus cloud algorithm. A common feature in the tropical oceans are large regions where the total regional cloud cover varies from 20 to 90 percent, but with little regional difference in the net radiation. The monsoon and rain areas are high net radiation regions.
Radiographic trends of dental offices and dental schools.
Suleiman, O H; Spelic, D C; Conway, B; Hart, J C; Boyce, P R; Antonsen, R G
1999-07-01
A survey of private practice facilities in the United States that perform dental radiography was conducted in 1993 and repeated in dental schools in 1995-1996. Both surveys were conducted as part of the Nationwide Evaluation of X-ray Trends, or NEXT, survey program. A representative sample of dental facilities from each participating state were surveyed, and data on patient radiation exposure, radiographic technique, film-image quality, film-processing quality and darkroom fog were collected. The authors found that dental schools use E-speed film more frequently than do private practice facilities. The use of E-speed film and better film processing by dental schools resulted in lower patient radiation exposures without sacrificing image quality. The authors also found that dental school darkrooms had lower ambient fog levels than did those of private practice facilities. The distribution for the 1993 NEXT survey facilities was greater than that observed for dental schools for radiation exposure, film-processing quality and darkroom fog. Dental schools, in general, had better film quality and lower radiation exposures than did private practice facilities. Facilities need to emphasize better quality processing and the use of E-speed film to reduce patient exposure and improve image quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbique, G; Anderson, J; Guild, J
Purpose: The National Lung Screening Trial mandated manual low dose CT technique factors, where up to a doubling of radiation output could be used over a regular to large patient size range. Recent guidance from the AAPM and ACR for lung cancer CT screening recommends radiation output adjustment for patient size either through AEC or a manual technique chart. This study evaluated the use of AEC for output control and dose reduction. Methods: The study was performed on a multidetector helical CT scanner (Aquillion ONE, Toshiba Medical) equipped with iterative reconstruction (ADIR-3D), AEC was adjusted with a standard deviation (SD)more » image quality noise index. The protocol SD parameter was incrementally increased to reduce patient population dose while image quality was evaluated by radiologist readers scoring the clinical utility of images on a Likert scale. Results: Plots of effective dose vs. body size (water cylinder diameter reported by the scanner) demonstrate monotonic increase in patient dose with increasing patient size. At the initial SD setting of 19 the average CTDIvol for a standard size patient was ∼ 2.0 mGy (1.2 mSv effective dose). This was reduced to ∼1.0 mGy (0.5 mSv) at an SD of 25 with no noticeable reduction in clinical utility of images as demonstrated by Likert scoring. Plots of effective patient diameter and BMI vs body size indicate that these metrics could also be used for manual technique charts. Conclusion: AEC offered consistent and reliable control of radiation output in this study. Dose for a standard size patient was reduced to one-third of the 3 mGy CTDIvol limit required for ACR accreditation of lung cancer CT screening. Gary Arbique: Research Grant, Toshiba America Medical Systems; Cecelia Brewington: Research Grant, Toshiba America Medical Systems; Di Zhang: Employee, Toshiba America Medical Systems.« less
Economic technology of laser cutting
NASA Astrophysics Data System (ADS)
Fedin, Alexander V.; Shilov, Igor V.; Vassiliev, Vladimir V.; Malov, Dmitri V.; Peskov, Vladimir N.
2000-02-01
The laser cutting of color metals and alloys by a thickness more than 2 mm has significant difficulties due to high reflective ability and large thermal conduction. We made it possible to raise energy efficiency and quality of laser cutting by using a laser processing system (LPS) consisting both of the YAG:Nd laser with passive Q-switching on base of LiF:F2- crystals and the CO2 laser. A distinctive feature of the LPS is that the radiation of different lasers incorporated in a coaxial beam has simultaneously high level of peak power (more than 400 kW in a TEM00 mode) and significant level of average power (up to 800 W in a TEM01 mode of the CO2 laser). The application of combined radiation for cutting of an aluminum alloy of D16 type made it possible to decrease the cutting energy threshold in 1.7 times, to increase depth of treatment from 2 up to 4 mm, and velocity from 0.015 up to 0.7 m/min, and also to eliminate application of absorptive coatings. At cutting of steels the velocity of treatment was doubled, and also an oxygen flow was eliminated from the technological process and replaced by the air. The obtained raise of energy efficiency and quality of cutting is explained by an essential size reducing of a formed penetration channel and by the shifting of a thermal cutting mode from melting to evaporation. The evaluation of interaction efficiency of a combined radiation was produced on the basis of non-stationary thermal-hydrodynamic model of a heating source moving as in the cutting direction, and also into the depth of material.
Usmani, Muhammad Nauman; Takegawa, Hideki; Takashina, Masaaki; Numasaki, Hodaka; Suga, Masaki; Anetai, Yusuke; Kurosu, Keita; Koizumi, Masahiko; Teshima, Teruki
2014-11-01
Technical developments in radiotherapy (RT) have created a need for systematic quality assurance (QA) to ensure that clinical institutions deliver prescribed radiation doses consistent with the requirements of clinical protocols. For QA, an ideal dose verification system should be independent of the treatment-planning system (TPS). This paper describes the development and reproducibility evaluation of a Monte Carlo (MC)-based standard LINAC model as a preliminary requirement for independent verification of dose distributions. The BEAMnrc MC code is used for characterization of the 6-, 10- and 15-MV photon beams for a wide range of field sizes. The modeling of the LINAC head components is based on the specifications provided by the manufacturer. MC dose distributions are tuned to match Varian Golden Beam Data (GBD). For reproducibility evaluation, calculated beam data is compared with beam data measured at individual institutions. For all energies and field sizes, the MC and GBD agreed to within 1.0% for percentage depth doses (PDDs), 1.5% for beam profiles and 1.2% for total scatter factors (Scps.). Reproducibility evaluation showed that the maximum average local differences were 1.3% and 2.5% for PDDs and beam profiles, respectively. MC and institutions' mean Scps agreed to within 2.0%. An MC-based standard LINAC model developed to independently verify dose distributions for QA of multi-institutional clinical trials and routine clinical practice has proven to be highly accurate and reproducible and can thus help ensure that prescribed doses delivered are consistent with the requirements of clinical protocols. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Control of energy sweep and transverse beam motion in induction linacs
NASA Astrophysics Data System (ADS)
Turner, W. C.
1991-05-01
Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.
Radiative capture reactions in astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brune, Carl R.; Davids, Barry
Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.
Radiative capture reactions in astrophysics
Brune, Carl R.; Davids, Barry
2015-08-07
Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.
Zheng, Xiaoming
2017-12-01
The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.
TH-A-BRF-08: Deformable Registration of MRI and CT Images for MRI-Guided Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, H; Wen, N; Gordon, J
2014-06-15
Purpose: To evaluate the quality of a commercially available MRI-CT image registration algorithm and then develop a method to improve the performance of this algorithm for MRI-guided prostate radiotherapy. Methods: Prostate contours were delineated on ten pairs of MRI and CT images using Eclipse. Each pair of MRI and CT images was registered with an intensity-based B-spline algorithm implemented in Velocity. A rectangular prism that contains the prostate volume was partitioned into a tetrahedral mesh which was aligned to the CT image. A finite element method (FEM) was developed on the mesh with the boundary constraints assigned from the Velocitymore » generated displacement vector field (DVF). The resultant FEM displacements were used to adjust the Velocity DVF within the prism. Point correspondences between the CT and MR images identified within the prism could be used as additional boundary constraints to enforce the model deformation. The FEM deformation field is smooth in the interior of the prism, and equal to the Velocity displacements at the boundary of the prism. To evaluate the Velocity and FEM registration results, three criteria were used: prostate volume conservation and center consistence under contour mapping, and unbalanced energy of their deformation maps. Results: With the DVFs generated by the Velocity and FEM simulations, the prostate contours were warped from MRI to CT images. With the Velocity DVFs, the prostate volumes changed 10.2% on average, in contrast to 1.8% induced by the FEM DVFs. The average of the center deviations was 0.36 and 0.27 cm, and the unbalance energy was 2.65 and 0.38 mJ/cc3 for the Velocity and FEM registrations, respectively. Conclusion: The adaptive FEM method developed can be used to reduce the error of the MIbased registration algorithm implemented in Velocity in the prostate region, and consequently may help improve the quality of MRI-guided radiation therapy.« less
A safety radiation marker in the cardiac catheterization lab.
Kostakou, Peggy M; Damaskos, Dimitris S; Dagre, Anna G; Makavos, Georgios A; Olympios, Christophoros D
2016-04-01
Nowadays, in order to deal with cardiovascular disease, coronary angiography (CRA) is the best tool and gold standard for diagnosis and assessment. CRA inevitably exposes both patient and operator to radiation. The purpose of this study was to calculate the radiation exposure in association with the radiation absorbed by interventional cardiologists, in order to estimate a safety radiation marker in the catheterization laboratory. In 794 successive patients undergoing CRA and in three interventional cardiologists the following parameters were examined: radioscopy duration, radiation exposure during fluoroscopy, total radiation exposure and the number of stents per procedure. Every interventional cardiologist was exposed to 562,936 μGym2 of total radiation during CRA procedures, to 833,371 μGym2 during elective CRA + percutaneous coronary intervention (PCI) procedures and to 328,250 μGym2 during primary CRA + PCI. Hence, the total amount of radiation that every angiographer was exposed to amounted to 1,724,557.5 μGym2 (median values). During the same period, the average radiation that every angiographer absorbed was 15,253 while the average dose of radiation absorbed during one procedure was 0.06 mSv for each operator. Therefore, the ratio between radiation exposure and the radiation finally absorbed by every operator was 113:1 μGym2/mSv. The present study, indicating the ratio above, offers a safety marker in order to realistically estimate the dose absorbed by interventional cardiologists, suggesting a specified number of permitted procedures and an effective level of radiation use protection tools.
Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time.
Wild, Esther; Bangert, Mark; Nill, Simeon; Oelfke, Uwe
2015-05-01
The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directions and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable treatment plan quality. The authors' study reconfirms the dosimetric benefits of noncoplanar irradiation of nasopharyngeal tumors. Both SnS using optimized noncoplanar beam ensembles and VMAT using an optimized, arbitrary, noncoplanar trajectory enabled dose reductions in organs at risk compared to coplanar SnS and VMAT. Using great circles or simple couch rotations to implement noncoplanar VMAT, however, was not sufficient to yield meaningful improvements in treatment plan quality. The authors estimate that noncoplanar VMAT using arbitrary optimized irradiation trajectories comes at an increased delivery time compared to coplanar VMAT yet at a decreased delivery time compared to noncoplanar SnS IMRT.
Thermal and optical modeling of "blackened" tips for diode laser surgery
NASA Astrophysics Data System (ADS)
Belikov, Andrey V.; Skrypnik, Alexei V.; Kurnyshev, Vadim Y.
2016-04-01
This paper presents the results of thermal and optical modeling of "blackened" tips (fiber-optic thermal converter) with different structures: film and volumetric. Film converter is created by laser radiation action on a cork or paper and it is a one-step process. As a result, a carbonized cork or paper adhered to the distal end of the optical fiber absorbs light that leads to heating of the distal end of the optical fiber. We considered the peculiarities of volumetric converters formed by sintering (second step) of the target material transferred to the tip, at irradiating the target with laser radiation (first step). We investigated the interaction between 980 nm laser radiation and converters in the air and water. As a result of experiments and modeling, it was obtain, that converter temperature and power of converter destruction depend on the environment in which it is placed. We found that film converter in the air at average power of laser radiation of 0.30+/-0.05 W is heated to 900+/-50°C and destructed, and volumetric converter in the air at average power of laser radiation of 1.0+/-0.1 W is heated to 1000+/-50°C and destructed at reaching of 4.0+/-0.1 W only. We found that film converter in the water at average power of laser radiation of 1.0+/-0.1 W is heated to 550+/-50°C and destructed at reaching of 4.0+/-0.1 W only. Volumetric converter at average power of laser radiation of4.0+/-0.1 W is heated to 450+/-50°C and is not destructed up to 7.5+/-0.1 W, it is heated to 500+/-50°C in this case. Thus, volumetric converter is more resistant to action of laser heating.
Current status of radiological protection at nuclear power stations in Japan.
Suzuki, Akira; Hori, Shunsuke
2011-07-01
The radiation dose to workers at nuclear power stations (NPSs) in Japan was drastically reduced between the late-1970s and the early-1990s by continuous dose-reduction programmes. The total collective dose of radiation workers in FY 2008 was 84.04 person Sv, while the average collective dose was 1.5 person Sv per reactor. The average annual individual dose was 1.1 mSv and the maximum annual individual dose was 19.5 mSv. These values are sufficiently lower than the regulatory dose limits. Radioactive effluent released from NPSs is already so trivial that additional protective measures will not be necessary. Experience in radiation protection at NPSs has been accumulated over 40 y and will be very useful in establishing a rational radiation control system in the future.
NASA Technical Reports Server (NTRS)
Parinussa, Robert M.; de Jeu, Richard A. M.; van Der Schalie, Robin; Crow, Wade T.; Lei, Fangni; Holmes, Thomas R. H.
2016-01-01
Passive microwave observations from various spaceborne sensors have been linked to the soil moisture of the Earth's surface layer. A new generation of passive microwave sensors are dedicated to retrieving this variable and make observations in the single theoretically optimal L-band frequency (1-2 GHz). Previous generations of passive microwave sensors made observations in a range of higher frequencies, allowing for simultaneous estimation of additional variables required for solving the radiative transfer equation. One of these additional variables is land surface temperature, which plays a unique role in the radiative transfer equation and has an influence on the final quality of retrieved soil moisture anomalies. This study presents an optimization procedure for soil moisture retrievals through a quasi-global precipitation-based verification technique, the so-called Rvalue metric. Various land surface temperature scenarios were evaluated in which biases were added to an existing linear regression, specifically focusing on improving the skills to capture the temporal variability of soil moisture. We focus on the relative quality of the day-time (01:30 pm) observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), as these are theoretically most challenging due to the thermal equilibrium theory, and existing studies indicate that larger improvements are possible for these observations compared to their night-time (01:30 am) equivalent. Soil moisture data used in this study were retrieved through the Land Parameter Retrieval Model (LPRM), and in line with theory, both satellite paths show a unique and distinct degradation as a function of vegetation density. Both the ascending (01:30 pm) and descending (01:30 am) paths of the publicly available and widely used AMSR-E LPRM soil moisture products were used for benchmarking purposes. Several scenarios were employed in which the land surface temperature input for the radiative transfer was varied by imposing a bias on an existing regression. These scenarios were evaluated through the Rvalue technique, resulting in optimal bias values on top of this regression. In a next step, these optimal bias values were incorporated in order to re-calibrate the existing linear regression, resulting in a quasi-global uniform LST relation for day-time observations. In a final step, day-time soil moisture retrievals using the re-calibrated land surface temperature relation were again validated through the Rvalue technique. Results indicate an average increasing Rvalue of 16.5%, which indicates a better performance obtained through the re-calibration. This number was confirmed through an independent Triple Collocation verification over the same domain, demonstrating an average root mean square error reduction of 15.3%. Furthermore, a comparison against an extensive in situ database (679 stations) also indicates a generally higher quality for the re-calibrated dataset. Besides the improved day-time dataset, this study furthermore provides insights on the relative quality of soil moisture retrieved from AMSR-E's day- and night-time observations.
Experimental research of digital image correlation system in high temperature test
NASA Astrophysics Data System (ADS)
Chen, Li; Wang, Yonghong; Dan, Xizuo; Xiao, Ying; Yang, Lianxiang
2016-01-01
Digital Image Correlation (DIC) is a full-field technique based on white-light illumination for displacement and strain measurement. But radiation on the specimen surface at high temperature affects the quality of acquired speckle pattern images for traditional DIC measurement. In order to minimize the radiation effect in high temperature measurement, this paper proposes a two-dimensional ultraviolet digital image correlation system (2D UV-DIC) containing UV LED and UV band-pass filter. It is confirmed by experiments that images acquired by this system saturate at higher temperature in comparison with DIC using filtered blue light imaging system. And the UV-DIC remains minimally affected by radiation at the temperature which is nearing the specimen's maximum working temperature (about 1250°C). In addition, considering the heat disturbance that can't be ignored in actual high temperature measurement, this paper also proposes a method using an air controller in combination with image average algorithm, and the method was then used to obtain the thermal expansion coefficient of the Austenitic chromium-nickel stainless steel specimen at different temperatures. By comparing the coefficients with the results calculated by other method, it shows that this comprehensive method has the advantages of strong anti-interference ability and high precision.
Thommen, P J; Emery, R J
2006-05-01
In an effort to reveal the possible underlying causes of radiation-related health care complaints in the State of Texas, complaint data were evaluated using historical Texas Department of Health-Bureau of Radiation Control (TDH-BRC) reports. A major aim of the study was to generate a summary of the most commonly reported complaints that might be generalized to health care providers using sources of radiation across Texas. A generalizable list of common complaints would be a valuable tool for education and prevention programs, serving to possibly reduce the overall incidence of radiation-related medical complaints. Descriptive text summary reports of complaints were obtained from the TDH-BRC for the 20-y period inclusive of 1981 to 2001. The information was systematically coded into a computerized database. During the 20-y period of study, 481 health care-related complaints were identified, with approximately 74% consisting of claims of an "uncredentialed technician" (39%), "overexposure" (21%), or "regulatory violation" (14%). The most common categories of complaints imply some patient understanding or knowledge of the credentialing requirements of workers, the applicable dose limits, or the regulatory requirements associated with medical procedures. Since it is unlikely that an average patient would be aware of such issues, the findings suggest the complaints are not actually indications of the inappropriate uses of radiation, but are rather based on the patient's broader perception of services rendered. Most of the complaints levied during the period of study were done so anonymously (58%) and were levied against a generic facility (61%) rather than a specific technician (5%), doctor (4%), or student (1%). Approximately 61% of the complaints resulted in the issuance of a notice of violation upon investigation by the TDH-BRC, but the available data did not permit definitive linkage between the initial complaint and the violation issued. Taken in aggregate, the analysis suggests that improved communications between health care providers and the patients they serve could possibly serve to prevent future complaints. Although the analysis was limited to the data from a single state, the results may be of use to quality assurance programs on a broader scale because of the objective identification of likely common issues. Possible options for improving the means of systematically collecting initial compliant data in the future are also discussed.
NASA Technical Reports Server (NTRS)
Murphy, Kyle R.; Mann, Ian R.; Rae, I. Jonathan; Sibeck, David G.; Watt, Clare E. J.
2016-01-01
Wave-particle interactions play a crucial role in energetic particle dynamics in the Earths radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm-time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm-time wave power.
NASA Technical Reports Server (NTRS)
Johnson, F. S.; Mo, T.; Green, A. E. S.
1976-01-01
Tabulated values are presented for ultraviolet radiation at the earth's surface as a function of wavelength, latitude, and season, for clear sky and seasonally and latitudinally averaged ozone amounts. These tabulations can be combined with any biological sensitivity function in order to obtain the seasonal and latitudinal variation of the corresponding effective doses. The integrated dosages, based on the erythemal sensitivity curve and on the Robertson-Berger sunburn-meter sensitivity curve, have also been calculated, and these are found to vary with latitude and season in very nearly the same way as 307 and 314 nm radiation, respectively.
NASA Technical Reports Server (NTRS)
Randel, D. L.; Campbell, G. G.; Vonder Haar, T. H.; Smith, L.
1986-01-01
Scale factors and assumptions which were applied in calculations of global radiation budget parameters based on ERB data are discussed. The study was performed to examine the relationship between the composite global ERB map that can be generated every six days using all available data and the actual average global ERB. The wide field of view ERB instrument functioned for the first 19 months of the Nimbus-7 life, and furnished sufficient data for calculating actual ERB averages. The composite was most accurate in regions with the least variation in radiation budget.
Radiation mapping on Spacelab 1: Experiment no. INS006
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A.; Cassou, R.; Henke, R.; Rowe, V.
1985-01-01
The first attempt at mapping the radiation environment inside Spacelab is described. Measurements were made by a set of passive radiation detectors distributed throughout the volume inside the Spacelab 1 module, in the access tunnel and outside on the pallet. Measurements of the low linear energy transfer (LET) component obtained from the TLD thermoluminescent detectors (TLD) ranged from 92 to 134 mrad, yielding an average low LET dose rate of 10.0 mrads/day inside the module. Because of the higher inclination orbit, substantial fluxes of highly ionizing (HZE particles) high charge and energy galactic cosmic rays were observed for the first time on an STS flight, yielding an overall average mission dose-equivalent of 295 mrem, or 29.5 mrem/day, which is about three times higher than that measured on previous STS missions. Little correlation is found between measured average dose rates or HZE fluences and the estimates shielding throughout the volume of the module.
An Earth longwave radiation climate model
NASA Technical Reports Server (NTRS)
Yang, S. K.
1984-01-01
An Earth outgoing longwave radiation (OLWR) climate model was constructed for radiation budget study. Required information is provided by on empirical 100mb water vapor mixing ratio equation of the mixing ratio interpolation scheme. Cloud top temperature is adjusted so that the calculation would agree with NOAA scanning radiometer measurements. Both clear sky and cloudy sky cases are calculated and discussed for global average, zonal average and world-wide distributed cases. The results agree well with the satellite observations. The clear sky case shows that the OLWR field is highly modulated by water vapor, especially in the tropics. The strongest longitudinal variation occurs in the tropics. This variation can be mostly explained by the strong water vapor gradient. Although in the zonal average case the tropics have a minimum in OLWR, the minimum is essentially contributed by a few very low flux regions, such as the Amazon, Indonesian and the Congo.
Novel, full 3D scintillation dosimetry using a static plenoptic camera.
Goulet, Mathieu; Rilling, Madison; Gingras, Luc; Beddar, Sam; Beaulieu, Luc; Archambault, Louis
2014-08-01
Patient-specific quality assurance (QA) of dynamic radiotherapy delivery would gain from being performed using a 3D dosimeter. However, 3D dosimeters, such as gels, have many disadvantages limiting to quality assurance, such as tedious read-out procedures and poor reproducibility. The purpose of this work is to develop and validate a novel type of high resolution 3D dosimeter based on the real-time light acquisition of a plastic scintillator volume using a plenoptic camera. This dosimeter would allow for the QA of dynamic radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). A Raytrix R5 plenoptic camera was used to image a 10 × 10 × 10 cm(3) EJ-260 plastic scintillator embedded inside an acrylic phantom at a rate of one acquisition per second. The scintillator volume was irradiated with both an IMRT and VMAT treatment plan on a Clinac iX linear accelerator. The 3D light distribution emitted by the scintillator volume was reconstructed at a 2 mm resolution in all dimensions by back-projecting the light collected by each pixel of the light-field camera using an iterative reconstruction algorithm. The latter was constrained by a beam's eye view projection of the incident dose acquired using the portal imager integrated with the linac and by physical consideration of the dose behavior as a function of depth in the phantom. The absolute dose difference between the reconstructed 3D dose and the expected dose calculated using the treatment planning software Pinnacle(3) was on average below 1.5% of the maximum dose for both integrated IMRT and VMAT deliveries, and below 3% for each individual IMRT incidences. Dose agreement between the reconstructed 3D dose and a radiochromic film acquisition in the same experimental phantom was on average within 2.1% and 1.2% of the maximum recorded dose for the IMRT and VMAT delivery, respectively. Using plenoptic camera technology, the authors were able to perform millimeter resolution, water-equivalent dosimetry of an IMRT and VMAT plan over a whole 3D volume. Since no moving parts are required in the dosimeter, the incident dose distribution can be acquired as a function of time, thus enabling the validation of static and dynamic radiation delivery with photons, electrons, and heavier ions.
Novel, full 3D scintillation dosimetry using a static plenoptic camera
Goulet, Mathieu; Rilling, Madison; Gingras, Luc; Beddar, Sam; Beaulieu, Luc; Archambault, Louis
2014-01-01
Purpose: Patient-specific quality assurance (QA) of dynamic radiotherapy delivery would gain from being performed using a 3D dosimeter. However, 3D dosimeters, such as gels, have many disadvantages limiting to quality assurance, such as tedious read-out procedures and poor reproducibility. The purpose of this work is to develop and validate a novel type of high resolution 3D dosimeter based on the real-time light acquisition of a plastic scintillator volume using a plenoptic camera. This dosimeter would allow for the QA of dynamic radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). Methods: A Raytrix R5 plenoptic camera was used to image a 10 × 10 × 10 cm3 EJ-260 plastic scintillator embedded inside an acrylic phantom at a rate of one acquisition per second. The scintillator volume was irradiated with both an IMRT and VMAT treatment plan on a Clinac iX linear accelerator. The 3D light distribution emitted by the scintillator volume was reconstructed at a 2 mm resolution in all dimensions by back-projecting the light collected by each pixel of the light-field camera using an iterative reconstruction algorithm. The latter was constrained by a beam's eye view projection of the incident dose acquired using the portal imager integrated with the linac and by physical consideration of the dose behavior as a function of depth in the phantom. Results: The absolute dose difference between the reconstructed 3D dose and the expected dose calculated using the treatment planning software Pinnacle3 was on average below 1.5% of the maximum dose for both integrated IMRT and VMAT deliveries, and below 3% for each individual IMRT incidences. Dose agreement between the reconstructed 3D dose and a radiochromic film acquisition in the same experimental phantom was on average within 2.1% and 1.2% of the maximum recorded dose for the IMRT and VMAT delivery, respectively. Conclusions: Using plenoptic camera technology, the authors were able to perform millimeter resolution, water-equivalent dosimetry of an IMRT and VMAT plan over a whole 3D volume. Since no moving parts are required in the dosimeter, the incident dose distribution can be acquired as a function of time, thus enabling the validation of static and dynamic radiation delivery with photons, electrons, and heavier ions. PMID:25086549
Passive dosimetry aboard the Mir Orbital Station: internal measurements.
Benton, E R; Benton, E V; Frank, A L
2002-10-01
Passive radiation dosimeters were exposed aboard the Mir Orbital Station over a substantial portion of the solar cycle in order to measure the change in dose and dose equivalent rates as a function of time. During solar minimum, simultaneous measurements of the radiation environment throughout the habitable volume of the Mir were made using passive dosimeters in order to investigate the effect of localized shielding on dose and dose equivalent. The passive dosimeters consisted of a combination of thermoluminescent detectors to measure absorbed dose and CR-39 PNTDs to measure the linear energy transfer (LET) spectrum from charged particles of LET infinity H2O > or = 5 keV/micrometers. Results from the two detector types were then combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Contrary to expectations, both dose and dose equivalent rates measured during May-October 1991 near solar maximum were higher than similar measurements carried out in 1996-1997 during solar minimum. The elevated dose and dose equivalent rates measured in 1991 were probably due to a combination of intense solar activity, including a large solar particle event on 9 June 1991, and the temporary trapped radiation belt created in the slot region by the solar particle event and ensuing magnetic storm of 24 March 1991. During solar minimum, mean dose and dose equivalent rates were found to vary by factors of 1.55 and 1.37, respectively, between different locations through the interior of Mir. More heavily shielded locations tended to yield lower total dose and dose equivalent rates, but higher average quality factor than did more lightly shielding locations. However, other factors such as changes in the immediate shielding environment surrounding a given detector location, changes in the orientation of the Mir relative to its velocity vector, and changes in the altitude of the station also contributed to the variation. Proton and neutron-induced target fragment secondaries, not primary galactic cosmic rays, were found to dominate the LET spectrum above 100 keV/micrometers. This indicates that in low earth orbit, trapped protons in the South Atlantic Anomaly are responsible for the major fraction of the total dose equivalent. c2002 Elsevier Science Ltd. All rights reserved.
Optimisation of radiation dose and image quality in mobile neonatal chest radiography.
Hinojos-Armendáriz, V I; Mejía-Rosales, S J; Franco-Cabrera, M C
2018-05-01
To optimise the radiation dose and image quality for chest radiography in the neonatal intensive care unit (NICU) by increasing the mean beam energy. Two techniques for the acquisition of NICU AP chest X-ray images were compared for image quality and radiation dose. 73 images were acquired using a standard technique (56 kV, 3.2 mAs and no additional filtration) and 90 images with a new technique (62 kV, 2 mAs and 2 mm Al filtration). The entrance surface air kerma (ESAK) was measured using a phantom and compared between the techniques and against established diagnostic reference levels (DRL). Images were evaluated using seven image quality criteria independently by three radiologists. Images quality and radiation dose were compared statistically between the standard and new techniques. The maximum ESAK for the new technique was 40.20 μGy, 43.7% of the ESAK of the standard technique. Statistical evaluation demonstrated no significant differences in image quality between the two acquisition techniques. Based on the techniques and acquisition factors investigated within this study, it is possible to lower the radiation dose without any significant effects on image quality by adding filtration (2 mm Al) and increasing the tube potential. Such steps are relatively simple to undertake and as such, other departments should consider testing and implementing this dose reduction strategy within clinical practice where appropriate. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
[Application of THz technology to nondestructive detection of agricultural product quality].
Jiang, Yu-ying; Ge, Hong-yi; Lian, Fei-yu; Zhang, Yuan; Xia, Shan-hong
2014-08-01
With recent development of THz sources and detector, applications of THz radiation to nondestructive testing and quality control have expanded in many fields, such as agriculture, safety inspection and quality control, medicine, biochemistry, communication etc. Compared with other detection technique, being a new kind of technique, THz radiation has low energy, good perspectivity, and high signal-to-noise ratio, and thus can obtain physical, chemical and biological information. This paper first introduces the basic concept of THz radiation and the major properties, then gives an extensive review of recent research progress in detection of the quality of agricultural products via THz technique, analyzes the existing shortcomings of THz detection and discusses the outlook of potential application, finally proposes the new application of THz technique to detection of quality of stored grain.
Yin, Jian; Han, Zhengfeng; Guo, Baofeng; Guo, Han; Zhang, Tongtong; Zeng, Yanjun; Ren, Longxi
2015-07-01
To compare the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation. Goat spine specimen (GSS) was radiated using Nd:YAG laser and 980 nm diode laser and then divided into five groups based on the final energy--200, 400, 600, 800 and 1,000 J groups. The ablation quality of nucleus pulposus after radiation was recorded. The ablation quality of GSS was greater at higher radiation energies in both lasers. When compared at the same energy level, the ablation quality of GSS was greater in 980 nm diode laser than in 1,064 nm Nd:YAG laser. Statistical significance was observed in 200 and 400 J groups (P < 0.05) and in 600, 800 and 1,000 J groups (P < 0.01). Radiation with 980 nm diode laser showed better ablation ability than 1,064 nm Nd:YAG laser.
Healy, R.W.; DeVries, M.P.; Sturrock, A.M.
1987-01-01
From July 1982 through June 1984, a study was made of the microclimate and evapotranspiration at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy-budget with the Bowen ratio, (2) an aerodynamic-profile, and (3) a soil-based water-budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data, then summed by days and months. Yearly estimates for March through November, by these methods, were quite close--648 and 626 millimeters, respectively. Daily estimates range up to a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soil-moisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) were virtually identical to long-term averages from nearby National Weather Service stations. Solar radiation averaged 65 percent of that normally expected under clear skies. Net radiation averaged 70.1 watts per square meter and was highest in July and negative during some winter months. Wind direction varied but was predominately out of the south-southeast. Wind speed at the 2-meter height averaged 3.5 meters per second and was slightly higher in winter months than the rest of the year. The amount of water stored within the soil zone was greatest in early spring and least in late summer. Seasonal and diurnal trends in evapotranspiration rates mirrored those in net radiation; July was usually the month with the highest rate. The ratio of sensible- to latent-heat fluxes (commonly called the Bowen ratio) for the 2-year period was 0.38, as averaged from the three methods. Monthly Bowen ratios fluctuated somewhat but averaged about 0.35 for late spring through summer. In fall, the ratio declined to zero or to slightly negative values. When the ratio was negative, the latent-heat flux was slightly greater than the net radiation because of additional energy supplied by the cooling soil and air. Evapotranspiration calculated by the three methods averaged 75 percent of potential evapotranspiration, as estimated by the Penman equation. There was no apparent seasonal trend in the relation between actual and potential evapotranspiration rates.
Correlated Uncertainties in Radiation Shielding Effectiveness
NASA Technical Reports Server (NTRS)
Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.
2013-01-01
The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.
Favazza, Christopher P; Duan, Xinhui; Zhang, Yi; Yu, Lifeng; Leng, Shuai; Kofler, James M; Bruesewitz, Michael R; McCollough, Cynthia H
2015-11-07
Through this investigation we developed a methodology to evaluate and standardize CT image quality from routine abdomen protocols across different manufacturers and models. The influence of manufacturer-specific automated exposure control systems on image quality was directly assessed to standardize performance across a range of patient sizes. We evaluated 16 CT scanners across our health system, including Siemens, GE, and Toshiba models. Using each practice's routine abdomen protocol, we measured spatial resolution, image noise, and scanner radiation output (CTDIvol). Axial and in-plane spatial resolutions were assessed through slice sensitivity profile (SSP) and modulation transfer function (MTF) measurements, respectively. Image noise and CTDIvol values were obtained for three different phantom sizes. SSP measurements demonstrated a bimodal distribution in slice widths: an average of 6.2 ± 0.2 mm using GE's 'Plus' mode reconstruction setting and 5.0 ± 0.1 mm for all other scanners. MTF curves were similar for all scanners. Average spatial frequencies at 50%, 10%, and 2% MTF values were 3.24 ± 0.37, 6.20 ± 0.34, and 7.84 ± 0.70 lp cm(-1), respectively. For all phantom sizes, image noise and CTDIvol varied considerably: 6.5-13.3 HU (noise) and 4.8-13.3 mGy (CTDIvol) for the smallest phantom; 9.1-18.4 HU and 9.3-28.8 mGy for the medium phantom; and 7.8-23.4 HU and 16.0-48.1 mGy for the largest phantom. Using these measurements and benchmark SSP, MTF, and image noise targets, CT image quality can be standardized across a range of patient sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Avillez, Miguel A.; Breitschwerdt, Dieter, E-mail: mavillez@galaxy.lca.uevora.pt
Tracking the thermal evolution of plasmas, characterized by an n -distribution, using numerical simulations, requires the determination of the emission spectra and of the radiative losses due to free–free emission from the corresponding temperature-averaged and total Gaunt factors. Detailed calculations of the latter are presented and associated with n -distributed electrons with the parameter n ranging from 1 (corresponding to the Maxwell–Boltzmann distribution) to 100. The temperature-averaged and total Gaunt factors with decreasing n tend toward those obtained with the Maxwell–Boltzmann distribution. Radiative losses due to free–free emission in a plasma evolving under collisional ionization equilibrium conditions and composed bymore » H, He, C, N, O, Ne, Mg, Si, S, and Fe ions, are presented. These losses decrease with a decrease in the parameter n , reaching a minimum when n = 1, and thus converge with the loss of thermal plasma. Tables of the thermal-averaged and total Gaunt factors calculated for n -distributions, and a wide range of electron and photon energies, are presented.« less
Investigation of natural effective gamma dose rates case study: Ardebil Province in Iran
2012-01-01
Gamma rays pose enough energy to induce chemical changes that may be biologically important for the normal functioning of body cells. The external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined. In this research natural background gamma dose rates and corresponding annual effective doses were determined for selected cities of Ardebil province. Outdoor gamma dose rates were measured using an Ion Chamber Survey Meter in 105 locations in selected districts. Average absorbed doses for Ardebil, Sar-Ein, Germy, Neer, Shourabil Recreational Lake, and Kosar were determined as 265, 219, 344, 233, 352, and 358 nSv/h, respectively. Although dose rates recorded for Germi and Kosar are comparable with some areas with high natural radiation background, however, the dose rates in other districts are well below the levels reported for such locations. Average annual effective dose due to indoor and outdoor gamma radiation for Ardebil province was estimated as 1.73 (1.35–2.39) mSv, which is on average 2 times higher than the world population weighted average. PMID:23369115
Guziński, Maciej; Waszczuk, Łukasz; Sąsiadek, Marek J
2016-10-01
To evaluate head CT protocol developed to improve visibility of the brainstem and cerebellum, lower bone-related artefacts in the posterior fossa and maintain patient radioprotection. A paired comparison of head CT performed without Adaptive Statistical Iterative Reconstruction (ASiR) and a clinically indicated follow-up with 40 % ASiR was acquired in one group of 55 patients. Patients were scanned in the axial mode with different scanner settings for the brain and the posterior fossa. Objective image quality analysis was performed with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality analysis was based on brain structure visibility and evaluation of the artefacts. We achieved 19 % reduction of total DLP and significantly better image quality of posterior fossa structures. SNR for white and grey matter in the cerebellum were 34 % to 36 % higher, respectively, CNR was improved by 142 % and subjective analyses were better for images with ASiR. When imaging parameters are set independently for the brain and the posterior fossa imaging, ASiR has a great potential to improve CT performance: image quality of the brainstem and cerebellum is improved, and radiation dose for the brain as well as total radiation dose are reduced. •With ASiR it is possible to lower radiation dose or improve image quality •Sequentional imaging allows setting scan parameters for brain and posterior-fossa independently •We improved visibility of brainstem structures and decreased radiation dose •Total radiation dose (DLP) was decreased by 19.
Chevrollier, Guillaume S.; Greaney, Patrick J.; Jenkins, Matthew P.; Copit, Steven E.
2017-01-01
Objective: Postmastectomy radiation therapy is a well-established risk factor for complications after breast reconstruction. Even if the surgeon has a suspicion that radiation therapy may be needed, it may be beneficial to place tissue expanders during the mastectomy procedure as a temporizing measure, complete radiation therapy, and then reconstruct the breast with a latissimus flap. The purpose of this study was to examine the complication rates of the latissimus dorsi flap as compared with the complication rates of implant-based reconstruction in the setting of radiation therapy. Methods: A 16-year retrospective chart review from 2000 to 2016 was conducted. All patients who underwent temporizing tissue expander placement for radiotherapy with subsequent latissimus flap reconstruction were included in the study. Patients who did not follow up for implant exchange were excluded from the study. Results: Fifty-five patients were identified with an average age of 46.0 years (range, 27-67 years) and an average body mass index of 24.2 (range, 18.9-31.9). Five patients (9.1%) developed capsular contractures amenable to surgical intervention. One patient (1.8%) developed infection of the tissue expander, requiring removal. There were no incidences of flap failure or wound dehiscence. The average follow-up after latissimus flap reconstruction was 25.3 months (range, 3.7-121.6 months). Conclusions: We feel that the latissimus dorsi flap after postmastectomy radiation therapy represents the preferred implant-based reconstruction option to consider when the need for postmastectomy radiation therapy is anticipated. The latissimus dorsi flap remains a safe, effective solution to postmastectomy radiation therapy that every plastic surgeon should offer. PMID:29308108
Mohiuddin, Waseem; Chevrollier, Guillaume S; Greaney, Patrick J; Jenkins, Matthew P; Copit, Steven E
2017-01-01
Objective: Postmastectomy radiation therapy is a well-established risk factor for complications after breast reconstruction. Even if the surgeon has a suspicion that radiation therapy may be needed, it may be beneficial to place tissue expanders during the mastectomy procedure as a temporizing measure, complete radiation therapy, and then reconstruct the breast with a latissimus flap. The purpose of this study was to examine the complication rates of the latissimus dorsi flap as compared with the complication rates of implant-based reconstruction in the setting of radiation therapy. Methods: A 16-year retrospective chart review from 2000 to 2016 was conducted. All patients who underwent temporizing tissue expander placement for radiotherapy with subsequent latissimus flap reconstruction were included in the study. Patients who did not follow up for implant exchange were excluded from the study. Results: Fifty-five patients were identified with an average age of 46.0 years (range, 27-67 years) and an average body mass index of 24.2 (range, 18.9-31.9). Five patients (9.1%) developed capsular contractures amenable to surgical intervention. One patient (1.8%) developed infection of the tissue expander, requiring removal. There were no incidences of flap failure or wound dehiscence. The average follow-up after latissimus flap reconstruction was 25.3 months (range, 3.7-121.6 months). Conclusions: We feel that the latissimus dorsi flap after postmastectomy radiation therapy represents the preferred implant-based reconstruction option to consider when the need for postmastectomy radiation therapy is anticipated. The latissimus dorsi flap remains a safe, effective solution to postmastectomy radiation therapy that every plastic surgeon should offer.
Brundage, Michael D; Hart, Margaret; O'Donnell, Jennifer; Reddeman, Lindsay; Gutierrez, Eric; Foxcroft, Sophie; Warde, Padraig
Peer review of radiation oncology treatment plans is increasingly recognized as an important component of quality assurance in radiation treatment planning and delivery. Peer review of treatment plans can directly improve the quality of those plans and can also have indirect effects on radiation treatment programs. We undertook a systematic, qualitative approach to describing the indirect benefits of peer review, factors that were seen to facilitate or act as barriers to the implementation of peer review, and strategies to address these barriers across a provincial jurisdiction of radiation oncology programs (ROPs). Semistructured qualitative interviews were held with radiation oncology department heads and radiation therapy managers (or delegates) in all 14 ROPs in Ontario, Canada. We used a theoretically guided phenomenological qualitative approach to design and analyze the interview content. Themes were recorded by 2 independent reviewers, and any discordance was resolved by consensus. A total of 28 interviews were completed with 32 interviewees. Twenty-two unique themes addressed perceived benefits of peer review, relating to either peer review structure (n = 3), process (n = 9), or outcome (n = 10). Of these 22 themes, 19 related to indirect benefits to ROPs. In addition, 18 themes related to factors that facilitated peer review activities and 30 themes related to key barriers to implementing peer review were identified. Findings were consistent with, and enhanced the understanding of, previous survey-based assessments of the benefits and challenges of implementing peer review programs. Although challenges and concerns regarding the implementation of peer review were evident, the indirect benefits to radiation programs are numerous, far outweigh the implementation challenges, and strongly complement the direct individual-patient benefits that result from peer review quality assurance of radiation treatment plans. Copyright © 2016. Published by Elsevier Inc.
Investigation of terahertz radiation influence on rat glial cells
Borovkova, Mariia; Serebriakova, Maria; Fedorov, Viacheslav; Sedykh, Egor; Vaks, Vladimir; Lichutin, Alexander; Salnikova, Alina; Khodzitsky, Mikhail
2016-01-01
We studied an influence of continuous terahertz (THz) radiation (0.12 – 0.18 THz, average power density of 3.2 mW/cm2) on a rat glial cell line. A dose-dependent cytotoxic effect of THz radiation is demonstrated. After 1 minute of THz radiation exposure a relative number of apoptotic cells increased in 1.5 times, after 3 minutes it doubled. This result confirms the concept of biological hazard of intense THz radiation. Diagnostic applications of THz radiation can be restricted by the radiation power density and exposure time. PMID:28101417
Zhou, D D; Hao, J L; Guo, K M; Lu, C W; Liu, X D
2016-03-22
Long-term radiation exposure affects human health. Ionizing radiation has long been known to raise the risk of cancer. In addition to high doses of radiation, low-dose ionizing radiation might increase the risk of cardiovascular disease, lens opacity, and some other non-cancerous diseases. Low- and high-dose exposures to ionizing radiation elicit different signaling events at the molecular level, and may involve different response mechanisms. The health risks arising from exposure to low doses of ionizing radiation should be re-evaluated. Health workers exposed to ionizing radiation experience low-dose radiation and have an increased risk of hematological malignancies. Reproductive function is sensitive to changes in the physical environment, including ionizing radiation. However, data is scarce regarding the association between occupational radiation exposure and risk to human fertility. Sperm DNA integrity is a functional parameter of male fertility evaluation. Hence, we aimed to report sperm quality and DNA damage in men from Jilin Province, China, who were occupationally exposed to ionizing radiation. Sperm motility and normal morphology were significantly lower in the exposed compared with the non-exposed men. There was no statistically significant difference in sperm concentration between exposed and non-exposed men. The sperm DNA fragmentation index was significantly higher in the exposed than the non-exposed men. Chronic long-term exposure to low doses of ionizing radiation could affect sperm motility, normal morphology, and the sperm DNA fragmentation index in the Chinese population. Sperm quality and DNA integrity are functional parameters that could be used to evaluate occupational exposure to ionizing radiation.
Hand and body radiation exposure with the use of mini C-arm fluoroscopy.
Tuohy, Christopher J; Weikert, Douglas R; Watson, Jeffry T; Lee, Donald H
2011-04-01
To determine whole body and hand radiation exposure to the hand surgeon wearing a lead apron during routine intraoperative use of the mini C-arm fluoroscope. Four surgeons (3 hand attending surgeons and 1 hand fellow) monitored their radiation exposure for a total of 200 consecutive cases (50 cases per surgeon) requiring mini C-arm fluoroscopy. Each surgeon measured radiation exposure with a badge dosimeter placed on the outside breast pocket of the lead apron (external whole body exposure), a second badge dosimeter under the lead apron (shielded whole body exposure), and a ring dosimeter (hand exposure). Completed records were noted in 198 cases, with an average fluoroscopy time of 133.52 seconds and average cumulative dose of 19,260 rem-cm(2) per case. The total measured radiation exposures for the (1) external whole body exposure dosimeters were 16 mrem (for shallow depth), 7 mrem (for eye depth), and less than 1 mrem (for deep depth); (2) shielded whole body badge dosimeters recorded less than 1 mrem; and (3) ring dosimeters totaled 170 mrem. The total radial exposure for 4 ring dosimeters that had registered a threshold of 30 mrem or more of radiation exposure was 170 mrem at the skin level, for an average of 42.5 mrem per dosimeter ring or 6.3 mrem per case. This study of whole body and hand radiation exposure from the mini C-arm includes the largest number of surgical cases in the published literature. The measured whole body and hand radiation exposure received by the hand surgeon from the mini C-arm represents a minimal risk of radiation, based on the current National Council on Radiation Protection and Management standards of annual dose limits (5,000 mrem per year for whole body and 50,000 mrem per year to the extremities). Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Levy, Robert Carroll
Aerosols are major components of the Earth's global climate system, affecting the radiation budget and cloud processes of the atmosphere. When located near the surface, high concentrations lead to lowered visibility, increased health problems and generally reduced quality of life for the human population. Over the United States mid-Atlantic region, aerosol pollution is a problem mainly during the summer. Satellites, such as the MODerate Imaging Spectrometer (MODIS), from their vantage point above the atmosphere, provide unprecedented coverage of global and regional aerosols over land. During MODIS' eight-year operation, exhaustive data validation and analyses have shown how the algorithm should be improved. This dissertation describes the development of the 'second-generation' operational algorithm for retrieval of global tropospheric aerosol properties over dark land surfaces, from MODIS-observed spectral reflectance. New understanding about global aerosol properties, land surface reflectance characteristics, and radiative transfer properties were learned in the process. This new operational algorithm performs a simultaneous inversion of reflectance in two visible channels (0.47 and 0.66 mum) and one shortwave infrared channel (2.12 mum), thereby having increased sensitivity to coarse aerosol. Inversion of the three channels retrieves the aerosol optical depth (tau) at 0.55 mum, the percentage of non-dust (fine model) aerosol (eta) and the surface reflectance. This algorithm is applied globally, and retrieves tau that is highly correlated (y = 0.02 + 1.0x, R=0.9) with ground-based sunphotometer measurements. The new algorithm estimates the global, over-land, long-term averaged tau ˜ 0.21, a 25% reduction from previous MODIS estimates. This leads to reducing estimates of global, non-desert, over-land aerosol direct radiative effect (all aerosols) by 1.7 W·m-2 (0.5 W·m-2 over the entire globe), which significantly impacts assessment of aerosol direct radiative forcing (contribution from anthropogenic aerosols only). Over the U.S. mid-Atlantic region, validated retrievals of tau (an integrated column property) can help to estimate surface PM2.5 concentration, a monitored criteria air quality property. The 3-dimensional aerosol loading in the region is characterized using aircraft measurements and the Community Multi-scale Air Quality Model (CMAQ) model, leading to some convergence of observed quantities and modeled processes.
Hersh, Cheryl; Wentland, Carissa; Sally, Sarah; de Stadler, Marie; Hardy, Steven; Fracchia, M Shannon; Liu, Bob; Hartnick, Christopher
2016-10-01
Radiation exposure is recognized as having long term consequences, resulting in increased risks over the lifetime. Children, in particular, have a projected lifetime risk of cancer, which should be reduced if within our capacity. The objective of this study is to quantify the amount of ionizing radiation in care for children being treated for aspiration secondary to a type 1 laryngeal cleft. With this baseline data, strategies can be developed to create best practice pathways to maintain quality of care while minimizing radiation exposure. Retrospective review of 78 children seen in a tertiary pediatric aerodigestive center over a 5 year period from 2008 to 2013 for management of a type 1 laryngeal cleft. The number of videofluoroscopic swallow studies (VFSS) per child was quantified, as was the mean effective dose of radiation exposure. The 78 children reviewed were of mean age 19.9 mo (range 4 mo-12 years). All children were evaluated at the aerodigestive center with clinical symptomatology and subsequent diagnosis of a type 1 laryngeal cleft. Aspiration was assessed via VFSS and exposure data collected. Imaging exams where dose parameters were not available were excluded. The mean number of VFSS each child received during the total course of treatment was 3.24 studies (range 1-10). The average effective radiation dose per pediatric VFSS was 0.16 mSv (range: 0.03 mSv-0.59 mSv) per study. Clinical significance was determined by comparison to a pediatric CXR. At our facility a CXR yields an effective radiation dose of 0.017 mSv. Therefore, a patient receives an equivalent total of 30.6 CXR over the course of management. Radiation exposure has known detrimental effects particularly in pediatric patients. The total ionizing radiation from VFSS exams over the course of management of aspiration has heretofore not been reported in peer reviewed literature. With this study's data in mind, future developments are indicated to create innovative clinical pathways and limit radiation exposure. Copyright © 2016. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Budiyono, T.; Budi, W. S.; Hidayanto, E.
2016-03-01
Radiation therapy for brain malignancy is done by giving a dose of radiation to a whole volume of the brain (WBRT) followed by a booster at the primary tumor with more advanced techniques. Two external radiation fields given from the right and left side. Because the shape of the head, there will be an unavoidable hotspot radiation dose of greater than 107%. This study aims to optimize planning of radiation therapy using field in field multi-leaf collimator technique. A study of 15 WBRT samples with CT slices is done by adding some segments of radiation in each field of radiation and delivering appropriate dose weighting using a TPS precise plan Elekta R 2.15. Results showed that this optimization a more homogeneous radiation on CTV target volume, lower dose in healthy tissue, and reduced hotspots in CTV target volume. Comparison results of field in field multi segmented MLC technique with standard conventional technique for WBRT are: higher average minimum dose (77.25% ± 0:47%) vs (60% ± 3:35%); lower average maximum dose (110.27% ± 0.26%) vs (114.53% ± 1.56%); lower hotspot volume (5.71% vs 27.43%); and lower dose on eye lenses (right eye: 9.52% vs 18.20%); (left eye: 8.60% vs 16.53%).
Shashidhar, Ravindranath; Dhokane, Varsha S; Hajare, Sachin N; Sharma, Arun; Bandekar, Jayant R
2007-04-01
The microbiological quality of market samples of minimally processed (MP) pineapple was examined. The effectiveness of radiation treatment in eliminating Salmonella Typhimurium from laboratory inoculated ready-to-eat pineapple slices was also studied. Microbiological quality of minimally processed pineapple samples from Mumbai market was poor; 8.8% of the samples were positive for Salmonella. D(10) (the radiation dose required to reduce bacterial population by 90%) value for S. Typhimurium inoculated in pineapple was 0.242 kGy. Inoculated pack studies in minimally processed pineapple showed that the treatment with a 2-kGy dose of gamma radiation could eliminate 5 log CFU/g of S. Typhimurium. The pathogen was not detected from radiation-processed samples up to 12 d during storage at 4 and 10 degrees C. The processing of market samples with 1 and 2 kGy was effective in improving the microbiological quality of these products.
NASA Astrophysics Data System (ADS)
Gao, M.; Saide, P. E.; Xin, J.; Wang, Y.; Liu, Z.; Wang, Z.; Pagowski, M.; Guttikunda, S. K.; Carmichael, G. R.
2016-12-01
The Gridpoint Statistical Interpolation (GSI) Three-Dimensional Variational (3DVAR) data assimilation system is extended to treat the MOSAIC aerosol model in WRF-Chem, and to be capable of assimilating surface PM2.5 concentrations. The coupled GSI-WRF-Chem system is applied to reproduce aerosol levels over China during an extremely polluted winter month, January 2013. After assimilating surface PM2.5 concentrations, the correlation coefficients between observations and model results averaged over the assimilated sites are improved from 0.67 to 0.94. At non-assimilated sites, improvements are also found in PM2.5, PM10 and AOD predictions. Using the constrained aerosol fields, we estimate that the PM2.5 concentrations in January 2013 might cause 7550 premature deaths in Jing-Jin-Ji areas, and 113.9 million (92.1% of Jing-Jin-Ji population) people in Jing-Jin-Ji are exposed to unhealthy air (monthly averaged PM2.5 concentration over 75µg/m3). We also estimate that the daytime monthly mean anthropogenic aerosol radiative forcing (ARF) to be -29.9W/m2 at the surface, 27.0W/m2 inside the atmosphere, and -2.9W/m2 at the top of the atmosphere. Our estimates reduce the previously reported overestimations along Yangtze River region and underestimations in North China. This system will also be beneficial for more reliable air quality forecasts in China.
The RTOG Outcomes Model: economic end points and measures.
Konski, Andre; Watkins-Bruner, Deborah
2004-03-01
Recognising the value added by economic evaluations of clinical trials and the interaction of clinical, humanistic and economic end points, the Radiation Therapy Oncology Group (RTOG) has developed an Outcomes Model that guides the comprehensive assessment of this triad of end points. This paper will focus on the economic component of the model. The Economic Impact Committee was founded in 1994 to study the economic impact of clinical trials of cancer care. A steep learning curve ensued with considerable time initially spent understanding the methodology of economic analysis. Since then, economic analyses have been performed on RTOG clinical trials involving treatments for patients with non-small cell lung cancer, locally-advanced head and neck cancer and prostate cancer. As the care of cancer patients evolves with time, so has the economic analyses performed by the Economic Impact Committee. This paper documents the evolution of the cost-effectiveness analyses of RTOG from performing average cost-utility analysis to more technically sophisticated Monte Carlo simulation of Markov models, to incorporating prospective economic analyses as an initial end point. Briefly, results indicated that, accounting for quality-adjusted survival, concurrent chemotherapy and radiation for the treatment of non-small cell lung cancer, more aggressive radiation fractionation schedules for head and neck cancer and the addition of hormone therapy to radiation for prostate cancer are within the range of economically acceptable recommendations. The RTOG economic analyses have provided information that can further inform clinicians and policy makers of the value added of new or improved treatments.
Variations in Daily Sleep Quality and Type 1 Diabetes Management in Late Adolescents
Queen, Tara L.; Butner, Jonathan; Wiebe, Deborah; Berg, Cynthia A.
2016-01-01
Objective To determine how between- and within-person variability in perceived sleep quality were associated with adolescent diabetes management. Methods A total of 236 older adolescents with type 1 diabetes reported daily for 2 weeks on sleep quality, self-regulatory failures, frequency of blood glucose (BG) checks, and BG values. Average, inconsistent, and daily deviations in sleep quality were examined. Results Hierarchical linear models indicated that poorer average and worse daily perceived sleep quality (compared with one’s average) was each associated with more self-regulatory failures. Sleep quality was not associated with frequency of BG checking. Poorer average sleep quality was related to greater risk of high BG. Furthermore, inconsistent and daily deviations in sleep quality interacted to predict higher BG, with more consistent sleepers benefitting more from a night of high-quality sleep. Conclusions Good, consistent sleep quality during late adolescence may benefit diabetes management by reducing self-regulatory failures and risk of high BG. PMID:26994852
Lee, Anthony J; Mitchem, Dorian G; Wright, Margaret J; Martin, Nicholas G; Keller, Matthew C; Zietsch, Brendan P
2016-01-01
Popular theory suggests that facial averageness is preferred in a partner for genetic benefits to offspring. However, whether facial averageness is associated with genetic quality is yet to be established. Here, we computed an objective measure of facial averageness for a large sample ( N = 1,823) of identical and nonidentical twins and their siblings to test two predictions from the theory that facial averageness reflects genetic quality. First, we use biometrical modelling to estimate the heritability of facial averageness, which is necessary if it reflects genetic quality. We also test for a genetic association between facial averageness and facial attractiveness. Second, we assess whether paternal age at conception (a proxy of mutation load) is associated with facial averageness and facial attractiveness. Our findings are mixed with respect to our hypotheses. While we found that facial averageness does have a genetic component, and a significant phenotypic correlation exists between facial averageness and attractiveness, we did not find a genetic correlation between facial averageness and attractiveness (therefore, we cannot say that the genes that affect facial averageness also affect facial attractiveness) and paternal age at conception was not negatively associated with facial averageness. These findings support some of the previously untested assumptions of the 'genetic benefits' account of facial averageness, but cast doubt on others.
Kang, Hee-Chung; Hong, Jae-Seok
2017-08-01
If cost reductions produce a cost-quality trade-off, healthcare policy makers need to be more circumspect about the use of cost-effective initiatives. Additional empirical evidence about the relationship between cost and quality is needed to design a value-based payment system. We examined the association between cost and quality performances for acute myocardial infarction (AMI) care at the hospital level.In 2008, this cross-sectional study examined 69 hospitals with 6599 patients hospitalized under the Korea National Health Insurance (KNHI) program. We separately estimated hospital-specific effects on cost and quality using the fixed effect models adjusting for average patient risk. The analysis examined the association between the estimated hospital effects against the treatment cost and quality. All hospitals were distributed over the 4 cost × quality quadrants rather than concentrated in only the trade-off quadrants (i.e., above-average cost and above-average quality, below-average cost and below-average quality). We found no significant trade-off between cost and quality among hospitals providing AMI care in Korea.Our results further contribute to formulating a rationale for value-based hospital-level incentive programs by supporting the necessity of different approaches depending on the quality location of a hospital in these 4 quadrants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollom, Erqi L.; Fujimoto, Dylann; Wynne, Jacob
Purpose: We report a longitudinal assessment of health-related quality of life (HRQOL) in patients with glioblastoma (GBM) treated on a prospective dose escalation trial of 5-fraction stereotactic radiosurgery (25-40 Gy in 5 fractions) with concurrent and adjuvant temozolomide. Methods: HRQOL was assessed using the European Organization for Research and Treatment of Cancer (EORTC) quality of life questionnaire core-30 (QLQ-C30) general, the EORTC quality of life questionnaire-brain cancer specific module (QLQ-BN20), and the M.D. Anderson Symptom Inventory–Brain Tumor (MDASI-BT). Questionnaires were completed at baseline and at every follow-up visit after completion of radiosurgery. Changes from baseline for 9 predefined HRQOL measures (globalmore » quality of life, physical functioning, social functioning, emotional functioning, motor dysfunction, communication deficit, fatigue, insomnia, and future uncertainty) were calculated at every time point. Results: With a median follow-up time of 10.4 months (range, 0.4-52 months), 139 total HRQOL questionnaires were completed by the 30 patients on trial. Compliance with HRQOL assessment was 76% at 12 months. Communication deficit significantly worsened over time, with a decline of 1.7 points per month (P=.008). No significant changes over time were detected in the other 8 scales of our primary analysis, including global quality of life. Although 8 patients (27%) experienced adverse radiation effects (ARE) on this dose escalation trial, it was not associated with a statistically significant decline in any of the primary HRQOL scales. Disease progression was associated with communication deficit, with patients experiencing an average worsening of 13.9 points per month after progression compared with 0.7 points per month before progression (P=.01). Conclusion: On this 5-fraction dose escalation protocol for newly diagnosed GBM, overall HRQOL remained stable and appears similar to historical controls of 30 fractions of radiation therapy. Tumor recurrence was associated with worsening communication deficit, and ARE did not correlate with a decline in HRQOL.« less
Average crystal structure(s) of the embedded meta stable η‧-phase in the Al-Mg-Zn system
NASA Astrophysics Data System (ADS)
Bøvik Larsen, Helge; Thorkildsen, Gunnar; Natland, Sølvi; Pattison, Philip
2014-05-01
Meta stable embedded nano-sized ?-particles within a single grain extracted from an alloy having the nominal composition ? have been examined with X-ray diffraction. By applying the orientational and metric relationships that exist between the hexagonal unit cell of the ?-particles and the cubic unit cell of the Al-matrix, it has been proven possible to directly collect diffracted intensity data from the ?-particle ensemble. This has been done using synchrotron radiation and a ?-diffractometer having a scintillator point detector setup. The approach has resulted in improved data quality compared to previous experiments. The interpretation of the data set, based on a combination of Patterson syntheses, direct methods and geometrical restraints, yielded two possible average structural representations: one Al-rich with the approximate stoichiometric composition ? and one Al-depleted with approximate stoichiometric composition ?. Both structures are realized in the same space group, ?, and are most probably superimposed in the crystalline system examined. The geometries are discussed within the atomic environment approach where icosahedral or near-icosahedral configurations are encountered. Comparison with previous published models and the equilibrium structure reveals a main difference related to the distribution of the Zn-sites in the unit cell. A possible transformation path is also suggested. Various aspects and challenges regarding data collection, data reduction and data quality are specifically addressed.
Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric
NASA Technical Reports Server (NTRS)
Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)
1997-01-01
Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the range -50 to -190 W sq m per unit inadvisable optical depth. The magnitudes are about 15 to 100 times larger than the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger forcing in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce the actual major radiative forcing events that contribute to any global-average climate effect. Detailed comparisons of calculated and measured forcings for specific events are used for more refined tests of closure.
21 CFR 900.12 - Quality standards.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MAMMOGRAPHY... to mammography. The training shall include instruction in radiation physics, including radiation physics specific to mammography, radiation effects, and radiation protection. The mammographic...
Magnetic field effects on the energy deposition spectra of MV photon radiation.
Kirkby, C; Stanescu, T; Fallone, B G
2009-01-21
Several groups worldwide have proposed various concepts for improving megavoltage (MV) radiotherapy that involve irradiating patients in the presence of a magnetic field-either for image guidance in the case of hybrid radiotherapy-MRI machines or for purposes of introducing tighter control over dose distributions. The presence of a magnetic field alters the trajectory of charged particles between interactions with the medium and thus has the potential to alter energy deposition patterns within a sub-cellular target volume. In this work, we use the MC radiation transport code PENELOPE with appropriate algorithms invoked to incorporate magnetic field deflections to investigate electron energy fluence in the presence of a uniform magnetic field and the energy deposition spectra within a 10 microm water sphere as a function of magnetic field strength. The simulations suggest only very minor changes to the electron fluence even for extremely strong magnetic fields. Further, calculations of the dose-averaged lineal energy indicate that a magnetic field strength of at least 70 T is required before beam quality will change by more than 2%.
Radiation dose to critical body organs for October 1989 proton event
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Atwell, William; Nealy, John E.; Cucinotta, Francis A.
1992-01-01
The Geostationary Operational Environmental Satellite (GOES-7) provides high-quality environmental data about the temporal development and energy characteristics of the protons emitted during a solar particle event. The GOES-7 time history of the hourly averaged integral proton flux for various particle kinetic energies are analyzed for the solar proton event occurring October 19-29, 1989. This event is similar to the August 1972 event that has been widely studied to estimate free-space and planetary radiation-protection requirements. By analyzing the time-history data, the dose rates, which can vary over many orders of magnitude in the early phases of the flare, can be estimated as well as the cumulative dose as a function of time. When basic transport results are coupled with detailed body organ thickness distributions calculated with the Computerized Anatomical Man and Computerized Anatomical Female models, the dose rates and cumulative doses to specific organs can be predicted. With these results, the risks of cancer incidence and mortality are estimated for astronauts in free space protected by various water shield thicknesses.
A model of chromosome aberration induction: applications to space research.
Ballarini, Francesca; Ottolenghi, Andrea
2005-10-01
A mechanistic model and Monte Carlo code simulating chromosome aberration induction in human lymphocytes is presented. The model is based on the assumption that aberrations arise from clustered DNA lesions and that only the free ends of clustered lesions created in neighboring chromosome territories or in the same territory can join and produce exchanges. The lesions are distributed in the cell nucleus according to the radiation track structure. Interphase chromosome territories are modeled as compact intranuclear regions with volumes proportional to the chromosome DNA contents. Both Giemsa staining and FISH painting can be simulated, and background aberrations can be taken into account. The good agreement with in vitro data provides validation of the model in terms of both the assumptions adopted and the simulation techniques. As an application in the field of space research, the model predictions were compared with aberration yields measured among crew members of long-term missions on board Mir and ISS, assuming an average radiation quality factor of 2.4. The agreement obtained also validated the model for in vivo exposure scenarios and suggested possible applications to the prediction of other relevant aberrations, typically translocations.
O’Brien, Michelle; Minniti, Ronaldo; Masinza, Stanslaus Alwyn
2010-01-01
Air kerma calibration coefficients for a reference class ionization chamber from narrow x-ray spectra and cesium 137 gamma-ray beams were compared between the National Institute of Standards and Technology (NIST) and the Kenya Bureau of Standards (KEBS). A NIST reference-class transfer ionization chamber was calibrated by each laboratory in terms of the quantity air kerma in four x-ray reference radiation beams of energies between 80 kV and 150 kV and in a cesium 137 gamma-ray beam. The reference radiation qualities used for this comparison are described in detail in the ISO 4037 publication.[1] The comparison began in September 2008 and was completed in March 2009. The results reveal the degree to which the participating calibration facility can demonstrate proficiency in transferring air kerma calibrations under the conditions of the said facility at the time of the measurements. The comparison of the calibration coefficients is based on the average ratios of calibration coefficients. PMID:27134777
O'Brien, Michelle; Minniti, Ronaldo; Masinza, Stanslaus Alwyn
2010-01-01
Air kerma calibration coefficients for a reference class ionization chamber from narrow x-ray spectra and cesium 137 gamma-ray beams were compared between the National Institute of Standards and Technology (NIST) and the Kenya Bureau of Standards (KEBS). A NIST reference-class transfer ionization chamber was calibrated by each laboratory in terms of the quantity air kerma in four x-ray reference radiation beams of energies between 80 kV and 150 kV and in a cesium 137 gamma-ray beam. The reference radiation qualities used for this comparison are described in detail in the ISO 4037 publication.[1] The comparison began in September 2008 and was completed in March 2009. The results reveal the degree to which the participating calibration facility can demonstrate proficiency in transferring air kerma calibrations under the conditions of the said facility at the time of the measurements. The comparison of the calibration coefficients is based on the average ratios of calibration coefficients.
A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China
Li, Huashan; Cao, Fei; Wang, Xianlong; Ma, Weibin
2014-01-01
Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS) method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model) against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China. PMID:24605046
International collaboration in medical radiation science.
Denham, Gary; Allen, Carla; Platt, Jane
2016-06-01
International collaboration is recognised for enhancing the ability to approach complex problems from a variety of perspectives, increasing development of a wider range of research skills and techniques and improving publication and acceptance rates. The aim of this paper is to describe the current status of international collaboration in medical radiation science and compare this to other allied health occupations. This study utilised a content analysis approach where co-authorship of a journal article was used as a proxy for research collaboration and the papers were assigned to countries based on the corporate address given in the by-line of the publication. A convenience sample method was employed and articles published in the professional medical radiation science journals in the countries represented within our research team - Australia, the United Kingdom (UK) and the United States of America (USA) were sampled. Physiotherapy, speech pathology, occupational therapy and nursing were chosen for comparison. Rates of international collaboration in medical radiation science journals from Australia, the UK and the USA have steadily increased over the 3-year period sampled. Medical radiation science demonstrated lower average rates of international collaboration than the other allied health occupations sampled. The average rate of international collaboration in nursing was far below that of the allied health occupations sampled. Overall, the UK had the highest average rate of international collaboration, followed by Australia and the USA, the lowest. Overall, medical radiation science is lagging in international collaboration in comparison to other allied health fields.
Fundamentals of health physics for the radiation-protection officer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.
1983-03-01
The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)
NASA Astrophysics Data System (ADS)
El-Wakil, S. A.; Sallah, M.; El-Hanbaly, A. M.
2015-10-01
The stochastic radiative transfer problem is studied in a participating planar finite continuously fluctuating medium. The problem is considered for specular- and diffusly-reflecting boundaries with linear anisotropic scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions, that are represented by the probability-density function (PDF) of the solution process. In the RVT algorithm, a simple integral transformation to the input stochastic process (the extinction function of the medium) is applied. This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the transport equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity and transmissivity at the medium boundaries. In terms of the average reflectivity and transmissivity, the average of the partial heat fluxes for the generalized problem with internal source of radiation are obtained and represented graphically.
TH-D-204-00: The Pursuit of Radiation Oncology Performance Excellence
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance U.S. business competitiveness and economic growth. Administered by the National Institute of Standards and Technology NIST, the Act created the Baldrige National Quality Program, now renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact based knowledge driven system for improving quality of care,more » increasing patient satisfaction, building employee engagement, and boosting organizational innovation. The methodology also provides a valuable framework for benchmarking an individual radiation oncology practice against guidelines defined by accreditation and professional organizations and regulatory agencies. Learning Objectives: To gain knowledge of the Baldrige Performance Excellence Program as it relates to Radiation Oncology. To appreciate the value of a multidisciplinary self-assessment approach in the pursuit of Radiation Oncology quality care, patient satisfaction, and workforce commitment. To acquire a set of useful measurement tools with which an individual Radiation Oncology practice can benchmark its performance against guidelines defined by accreditation and professional organizations and regulatory agencies.« less
TH-D-204-01: The Pursuit of Radiation Oncology Performance Excellence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sternick, E.
The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance U.S. business competitiveness and economic growth. Administered by the National Institute of Standards and Technology NIST, the Act created the Baldrige National Quality Program, now renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact based knowledge driven system for improving quality of care,more » increasing patient satisfaction, building employee engagement, and boosting organizational innovation. The methodology also provides a valuable framework for benchmarking an individual radiation oncology practice against guidelines defined by accreditation and professional organizations and regulatory agencies. Learning Objectives: To gain knowledge of the Baldrige Performance Excellence Program as it relates to Radiation Oncology. To appreciate the value of a multidisciplinary self-assessment approach in the pursuit of Radiation Oncology quality care, patient satisfaction, and workforce commitment. To acquire a set of useful measurement tools with which an individual Radiation Oncology practice can benchmark its performance against guidelines defined by accreditation and professional organizations and regulatory agencies.« less
Photonic Crystal Microchip Laser.
Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis
2016-09-29
The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M 2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial quality high brightness radiation.
Hasan, Haroon; Muhammed, Taaha; Yu, Jennifer; Taguchi, Kelsi; Samargandi, Osama A; Howard, A Fuchsia; Lo, Andrea C; Olson, Robert; Goddard, Karen
2017-10-01
The objective of our study was to evaluate the methodological quality of systematic reviews and meta-analyses in Radiation Oncology. A systematic literature search was conducted for all eligible systematic reviews and meta-analyses in Radiation Oncology from 1966 to 2015. Methodological characteristics were abstracted from all works that satisfied the inclusion criteria and quality was assessed using the critical appraisal tool, AMSTAR. Regression analyses were performed to determine factors associated with a higher score of quality. Following exclusion based on a priori criteria, 410 studies (157 systematic reviews and 253 meta-analyses) satisfied the inclusion criteria. Meta-analyses were found to be of fair to good quality while systematic reviews were found to be of less than fair quality. Factors associated with higher scores of quality in the multivariable analysis were including primary studies consisting of randomized control trials, performing a meta-analysis, and applying a recommended guideline related to establishing a systematic review protocol and/or reporting. Systematic reviews and meta-analyses may introduce a high risk of bias if applied to inform decision-making based on AMSTAR. We recommend that decision-makers in Radiation Oncology scrutinize the methodological quality of systematic reviews and meta-analyses prior to assessing their utility to inform evidence-based medicine and researchers adhere to methodological standards outlined in validated guidelines when embarking on a systematic review. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radiation and Maxwell Stress Stabilization of Liquid Bridges
NASA Technical Reports Server (NTRS)
Marr-Lyon, M. J.; Thiessen, D. B.; Blonigen, F. J.; Marston, P. L.
1999-01-01
The use of both acoustic radiation stress and the Maxwell stress to stabilize liquid bridges is reported. Acoustic radiation stress arises from the time-averaged acoustic pressure at the surface of an object immersed in a sound field. Both passive and active acoustic stabilization schemes as well as an active electrostatic method are examined.
Evaluation of low-dose irradiation on microbiological quality of white carrots and string beans
NASA Astrophysics Data System (ADS)
Koike, Amanda C. R.; Santillo, Amanda G.; Rodrigues, Flávio T.; Duarte, Renato C.; Villavicencio, Anna Lucia C. H.
2012-08-01
The minimally processed food provided the consumer with a product quality, safety and practicality. However, minimal processing of food does not reduce pathogenic population of microorganisms to safe levels. Ionizing radiation used in low doses is effective to maintain the quality of food, reducing the microbiological load but rather compromising the nutritional values and sensory property. The association of minimal processing with irradiation could improve the quality and safety of product. The purpose of this study was to evaluate the effectiveness of low-doses of ionizing radiation on the reduction of microorganisms in minimally processed foods. The results show that the ionizing radiation of minimally processed vegetables could decontaminate them without several changes in its properties.
NASA Technical Reports Server (NTRS)
Pope, Shelly K.; Valero, Francisco P. J.; Collins, William D.; Minnis, Patrick
2002-01-01
Data obtained by the Scanner for Radiation Budget (ScaRaB) instrument on the Meteor 3 satellite have been analyzed and compared to satellite (GOES 8), aircraft (Radiation Measurement System, RAMS), and surface (Baseline Solar Radiation Network (BSRN), Solar and Infrared Observations System (SIROS), and RAMS) measurements of irradiance obtained during the Atmospheric Radiation Measurements Enhanced Shortwave Experiment (ARESE). It is found that the ScaRaB data covering the period from March 1994 to February 1995 (the instrument's operational lifetime) indicate excess absorption of solar radiation by the cloudy atmosphere in agreement with previous aircraft, surface, and GOES 8 results. The full ScaRaB data set combined with BSRN and SIROS surface observations gives an average all-sky absorptance of 0.28. The GOES 8 data set combined with RAMS surface observations gives an average all-sky absorptance of 0.26. The aircraft data set (RAMS) gives a mean all-sky absorptance of 0.24 (for the column between 0.5 and 13 km).
3D conformal planning using low segment multi-criteria IMRT optimization
Khan, Fazal; Craft, David
2014-01-01
Purpose To evaluate automated multicriteria optimization (MCO) – designed for intensity modulated radiation therapy (IMRT), but invoked with limited segmentation – to efficiently produce high quality 3D conformal radiation therapy (3D-CRT) plans. Methods Ten patients previously planned with 3D-CRT to various disease sites (brain, breast, lung, abdomen, pelvis), were replanned with a low-segment inverse multicriteria optimized technique. The MCO-3D plans used the same beam geometry of the original 3D plans, but were limited to an energy of 6 MV. The MCO-3D plans were optimized using fluence-based MCO IMRT and then, after MCO navigation, segmented with a low number of segments. The 3D and MCO-3D plans were compared by evaluating mean dose for all structures, D95 (dose that 95% of the structure receives) and homogeneity indexes for targets, D1 and clinically appropriate dose volume objectives for individual organs at risk (OARs), monitor units (MUs), and physician preference. Results The MCO-3D plans reduced the OAR mean doses (41 out of a total of 45 OARs had a mean dose reduction, p<<0.01) and monitor units (seven out of ten plans have reduced MUs; the average reduction is 17%, p=0.08) while maintaining clinical standards on coverage and homogeneity of target volumes. All MCO-3D plans were preferred by physicians over their corresponding 3D plans. Conclusion High quality 3D plans can be produced using MCO-IMRT optimization, resulting in automated field-in-field type plans with good monitor unit efficiency. Adopting this technology in a clinic could improve plan quality, and streamline treatment plan production by utilizing a single system applicable to both IMRT and 3D planning. PMID:25413405
On charged particle equilibrium violation in external photon fields.
Bouchard, Hugo; Seuntjens, Jan; Palmans, Hugo
2012-03-01
In a recent paper by Bouchard et al. [Med. Phys. 36(10), 4654-4663 (2009)], a theoretical model of quality correction factors for idealistic so-called plan-class specific reference (PCSR) fields was proposed. The reasoning was founded on the definition of PCSR fields made earlier by Alfonso et al. [Med. Phys. 35(11), 5179-5186 (2008)], requiring the beam to achieve charged particle equilibrium (CPE), in a time-averaged sense, in the reference medium. The relation obtained by Bouchard et al. was derived using Fano's theorem (1954) which states that if CPE is established in a given medium, the dose is independent of point-to-point density variations. A potential misconception on the achievability of the condition required by Fano (1954) might be responsible for false practical conclusions, both in the definition of PCSR fields as well as the theoretical model of quality correction factor. In this paper, the practical achievability of CPE in external beams is treated in detail. The fact that this condition is not achievable in single or composite deliveries is illustrated by an intuitive method and is also formally demonstrated. Fano's theorem is not applicable in external beam radiation dosimetry without (virtually) removing attenuation effects, and therefore, the relation conditionally defined by Bouchard et al. (2009) cannot be valid in practice. A definition of PCSR fields in the recent formalism for nonstandard beams proposed by Alfonso et al. (2008) should be modified, revising the criterion of CPE condition. The authors propose reconsidering the terminology used to describe standard and nonstandard beams. The authors argue that quality correction factors of intensity modulated radiation therapy PCSR fields (i.e., k(Q(pcsr),Q) (f(pcsr),f(ref) )) could be unity under ideal conditions, but it is concluded that further investigation is necessary to confirm that hypothesis.
Automatic detection of DNA double strand breaks after irradiation using an γH2AX assay.
Hohmann, Tim; Kessler, Jacqueline; Grabiec, Urszula; Bache, Matthias; Vordermark, Dyrk; Dehghani, Faramarz
2018-05-01
Radiation therapy belongs to the most common approaches for cancer therapy leading amongst others to DNA damage like double strand breaks (DSB). DSB can be used as a marker for the effect of radiation on cells. For visualization and assessing the extent of DNA damage the γH2AX foci assay is frequently used. The analysis of the γH2AX foci assay remains complicated as the number of γH2AX foci has to be counted. The quantification is mostly done manually, being time consuming and leading to person-dependent variations. Therefore, we present a method to automatically analyze the number of foci inside nuclei, facilitating and quickening the analysis of DSBs with high reliability in fluorescent images. First nuclei were detected in fluorescent images. Afterwards, the nuclei were analyzed independently from each other with a local thresholding algorithm. This approach allowed accounting for different levels of noise and detection of the foci inside the respective nucleus, using Hough transformation searching for circles. The presented algorithm was able to correctly classify most foci in cases of "high" and "average" image quality (sensitivity>0.8) with a low rate of false positive detections (positive predictive value (PPV)>0.98). In cases of "low" image quality the approach had a decreased sensitivity (0.7-0.9), depending on the manual control counter. The PPV remained high (PPV>0.91). Compared to other automatic approaches the presented algorithm had a higher sensitivity and PPV. The used automatic foci detection algorithm was capable of detecting foci with high sensitivity and PPV. Thus it can be used for automatic analysis of images of varying quality.
NASA Technical Reports Server (NTRS)
Ardanuy, Phillip E.; Hucek, Richard R.; Groveman, Brian S.; Kyle, H. Lee
1987-01-01
A deconvolution technique is employed that permits recovery of daily averaged earth radiation budget (ERB) parameters at the top of the atmosphere from a set of the Nimbus 7 ERB wide field of view (WFOV) measurements. Improvements in both the spatial resolution of the resultant fields and in the fidelity of the time averages is obtained. The algorithm is evaluated on a set of months during the period 1980-1983. The albedo, outgoing long-wave radiation, and net radiation parameters are analyzed. The amplitude and phase of the quasi-stationary patterns that appear in the spatially deconvolved fields describe the radiation budget components for 'normal' as well as the El Nino/Southern Oscillation (ENSO) episode years. They delineate the seasonal development of large-scale features inherent in the earth's radiation budget as well as the natural variability of interannual differences. These features are underscored by the powerful emergence of the 1982-1983 ENSO event in the fields displayed. The conclusion is that with this type of resolution enhancement, WFOV radiometers provide a useful tool for the observation of the contemporary climate and its variability.
FDG-PET Assessment of the Effect of Head and Neck Radiotherapy on Parotid Gland Glucose Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Michael C.; Turkington, Timothy G.; Department of Biomedical Engineering, Duke University Medical Center, Duke University, Durham, NC
Purpose: Functional imaging with [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) provides the opportunity to define the physiology of the major salivary glands before and after radiation therapy. The goal of this retrospective study was to identify the radiation dose-response relationship of parotid gland glucose metabolism in patients with head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Forty-nine adults with HNSCC were identified who had curative intent intensity-modulated radiation therapy (IMRT) and FDG-PET imaging before and after treatment. Using a graphical user interface, contours were delineated for the parotid glands on axial CT slices while all authors were blinded tomore » paired PET slices. Average and maximal standard uptake values (SUV) were measured within these anatomic regions. Changes in SUV and volume after radiation therapy were correlated with parotid gland dose-volume histograms from IMRT plans. Results: The average parotid gland volume was 30.7 mL and contracted 3.9 {+-} 1.9% with every increase of 10 Gy in mean dose (p = 0.04). However, within the first 3 months after treatment, there was a uniform reduction of 16.5% {+-} 7.3% regardless of dose. The average SUV{sub mean} of the glands was 1.63 {+-} 0.48 pretreatment and declined by 5.2% {+-} 2.5% for every increase of 10 Gy in mean dose (p = 0.04). The average SUV{sub max} was 4.07 {+-} 2.85 pretreatment and decreased in a sigmoid manner with mean dose. A threshold of 32 Gy for mean dose existed, after which SUV{sub max} declined rapidly. Conclusion: Radiation dose responses of the parotid glands can be measured by integrated CT/FDG-PET scans. Retrospective analysis showed sigmoidal declines in the maximum metabolism but linear declines in the average metabolism of the glands with dose. Future studies should correlate this decline in FDG uptake with saliva production to improve treatment planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunliffe, A; Contee, C; White, B
Purpose: To characterize the effect of deformable registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60Gy, 2Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pre-therapy (4–75 days) CT scan and a treatment planning scan with an associated dose map calculated in Pinnacle were collected. To establish baseline correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pre-therapy scans were co-registered with planning scans (and associated dose maps)more » using the Plastimatch demons and Fraunhofer MEVIS deformable registration algorithms. Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from both registration algorithms. The absolute difference in planned dose (|ΔD|) between manually and automatically mapped landmark points was calculated. Using regression modeling, |ΔD| was modeled as a function of the distance between manually and automatically matched points (registration error, E), the dose standard deviation (SD-dose) in the eight-pixel neighborhood, and the registration algorithm used. Results: 52–92 landmark point pairs (median: 82) were identified in each patient's scans. Average |ΔD| across patients was 3.66Gy (range: 1.2–7.2Gy). |ΔD| was significantly reduced by 0.53Gy using Plastimatch demons compared with Fraunhofer MEVIS. |ΔD| increased significantly as a function of E (0.39Gy/mm) and SD-dose (2.23Gy/Gy). Conclusion: An average error of <4Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration. Dose differences following registration were significantly increased when the Fraunhofer MEVIS registration algorithm was used, spatial registration errors were larger, and dose gradient was higher (i.e., higher SD-dose). To our knowledge, this is the first study to directly compute dose errors following deformable registration of lung CT scans.« less
[Current status and potential perspectives in classical radiotherapy technology].
Dabić-Stanković, Kata M; Stanković, Jovan B; Radosević-Jelić, Ljiljana M
2004-01-01
After purchase of radiotherapy equipment in 2003, classic radiation therapy in Serbia will reach the highest world level. In order to define the highest standards in radiation technology, we analyzed the current status and potential perspectives of radiation therapy. An analysis of present situation in the USA, assumed as the most developed in the world, was done. Available data, collected in the last 3 years (equipment assortment, therapy modalities, workload and manpower) for 284 radiotherapy centers, out of potential 2050, were analyzed. Results were presented as crude percentage and matched to point current status. The analysis showed that CLINAC accelerators are the most popular (82.7%), as well as, ADAC (43.7%) and Focus (CMS) (27.4%) systems for therapy planning. Movement towards virtual simulation is evident (59.3%), although classic "simulation" is not fully eliminated from the radiotherapy chain. The most popular brachytherapy afterloader is Microselectron HDR (71%). About 64.4% centers use IMPAC communication/verification/record system that seems more open than Varis. All centers practice modern radiotherapy modalities and techniques (CPRT, IMRT, SRS/SRT, TBI, IORT, IVBHRT, HDR BHRT, etc.). CT and MRI availability is out of question, but PET is available in 3% of centers, however this percentage is rapidly growing. Up to 350 new patients per year are treated by one accelerator (about 35 pts. a day). Centers are relatively small and utilize 2-3 accelerators on average. Average FTE staffing norm is 4 radiation oncologists, 2-3 medical radiotherapy physicists, about 3 certified medical dosimetrists and about 6 radiotherapy technologists. In the past 5 years relative stagnation in classic radiotherapy has been observed. In spite of substantial investments in technology and consequent improvements, as well as wide introduction of computers in radiotherapy, radiotherapy results have not changed significantly. Vendor developement strategies do not point that this trend will change in the next 5 years. On the other hand, wide introduction of the PET in each radiotherapy chain ring (diagnostics, planning, follow-up), could improve results (local and regional control, as well as quality of patients' life).
Jacob, Sophie; Donadille, Laurent; Maccia, Carlo; Bar, Olivier; Boveda, Serge; Laurier, Dominique; Bernier, Marie-Odile
2013-03-01
Radiation dose to the eye lens is a crucial issue for interventional cardiologists (ICs) who are exposed during the procedures they perform. This paper presents a retrospective assessment of the cumulative eye lens doses of ICs enrolled in the O'CLOC study for Occupational Cataracts and Lens Opacities in interventional Cardiology. Information on the workload in the catheterisation laboratory, radiation protection equipment, eye lens dose per procedure and dose reduction factors associated with eye-protective equipment were considered. For the 129 ICs at an average age of 51 who had worked for an average period of 22 years, the estimated cumulative eye lens dose ranged from 25 mSv to more than 1600 mSv; the mean ± SD was 423 ± 359 mSv. After several years of practice, without eye protection, ICs may exceed the new ICRP lifetime eye dose threshold of 500 mSv and be at high risk of developing early radiation-induced cataracts. Radiation protection equipment can reduce these doses and should be used routinely.
Goren, Arthur D; Bonvento, Michael J; Fernandez, Thomas J; Abramovitch, Kenneth; Zhang, Wenjian; Roe, Nadine; Seltzer, Jared; Steinberg, Mitchell; Colosi, Dan C
2011-03-01
A pilot study to compare radiation exposure with the Tru-Align rectangular collimation system to round collimation exposures was undertaken. Radiation exposure at various points within the cross sections of the collimators and entrance, intraoral and exit dose measurements were measured using InLight OSL dosimeters. Overall dose reduction with the use of the rectangular collimation system was estimated by taking into account the ratios of collimator openings and the average radiation exposure at the measurement points. Use of the Tru-Align system resulted in an average radiation exposure within the perimeter of the projected outline of the rectangular collimator of 36.1 mR, compared to 148.5 mR with the round collimator. Our calculations indicate a dose reduction by a factor of approximately 3.2 in the case of the Tru-Align system compared to round collimation. The Tru-Align system was easy to use, but in some situations failed to allow Xray coverage of the entire surface of the image receptor, leading to cone cuts.
THE NuSTAR X-RAY SPECTRUM OF HERCULES X-1: A RADIATION-DOMINATED RADIATIVE SHOCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, Michael T.; Wood, Kent S.; Becker, Peter A.
2016-11-10
We report on new spectral modeling of the accreting X-ray pulsar Hercules X-1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker and Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase-averaged 4–78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main-on phase of the Her X-1 35 day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters inmore » the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum, but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters.« less
Adleman, Jenna; Gillan, Caitlin; Caissie, Amanda; Davis, Carol-Anne; Liszewski, Brian; McNiven, Andrea; Giuliani, Meredith
2017-06-01
To develop an entry-to-practice quality and safety competency profile for radiation oncology residency. A comprehensive list of potential quality and safety competency items was generated from public and professional resources and interprofessional focus groups. Redundant or out-of-scope items were eliminated through investigator consensus. Remaining items were subjected to an international 2-round modified Delphi process involving experts in radiation oncology, radiation therapy, and medical physics. During Round 1, each item was scored independently on a 9-point Likert scale indicating appropriateness for inclusion in the competency profile. Items indistinctly ranked for inclusion or exclusion were re-evaluated through web conference discussion and reranked in Round 2. An initial 1211 items were compiled from 32 international sources and distilled to 105 unique potential quality and safety competency items. Fifteen of the 50 invited experts participated in round 1: 10 radiation oncologists, 4 radiation therapists, and 1 medical physicist from 13 centers in 5 countries. Round 1 rankings resulted in 80 items included, 1 item excluded, and 24 items indeterminate. Two areas emerged more prominently within the latter group: change management and human factors. Web conference with 5 participants resulted in 9 of these 24 items edited for content or clarity. In Round 2, 12 participants rescored all indeterminate items resulting in 10 items ranked for inclusion. The final 90 enabling competency items were organized into thematic groups consisting of 18 key competencies under headings adapted from Deming's System of Profound Knowledge. This quality and safety competency profile may inform minimum training standards for radiation oncology residency programs. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adleman, Jenna; Gillan, Caitlin; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario
Purpose: To develop an entry-to-practice quality and safety competency profile for radiation oncology residency. Methods and Materials: A comprehensive list of potential quality and safety competency items was generated from public and professional resources and interprofessional focus groups. Redundant or out-of-scope items were eliminated through investigator consensus. Remaining items were subjected to an international 2-round modified Delphi process involving experts in radiation oncology, radiation therapy, and medical physics. During Round 1, each item was scored independently on a 9-point Likert scale indicating appropriateness for inclusion in the competency profile. Items indistinctly ranked for inclusion or exclusion were re-evaluated through webmore » conference discussion and reranked in Round 2. Results: An initial 1211 items were compiled from 32 international sources and distilled to 105 unique potential quality and safety competency items. Fifteen of the 50 invited experts participated in round 1: 10 radiation oncologists, 4 radiation therapists, and 1 medical physicist from 13 centers in 5 countries. Round 1 rankings resulted in 80 items included, 1 item excluded, and 24 items indeterminate. Two areas emerged more prominently within the latter group: change management and human factors. Web conference with 5 participants resulted in 9 of these 24 items edited for content or clarity. In Round 2, 12 participants rescored all indeterminate items resulting in 10 items ranked for inclusion. The final 90 enabling competency items were organized into thematic groups consisting of 18 key competencies under headings adapted from Deming's System of Profound Knowledge. Conclusions: This quality and safety competency profile may inform minimum training standards for radiation oncology residency programs.« less
Park, Ji Eun; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One; Cho, Hyun Suk; Ryu, Young Jin; Kim, Yu Jin
2017-05-01
Computed tomography (CT) has generated public concern associated with radiation exposure, especially for children. Lowering the tube voltage is one strategy to reduce radiation dose. To assess the image quality and radiation dose of non-enhanced brain CT scans acquired at 80 kilo-voltage peak (kVp) compared to those at 120 kVp in children. Thirty children who had undergone both 80- and 120-kVp non-enhanced brain CT were enrolled. For quantitative analysis, the mean attenuation of white and gray matter, attenuation difference, noise, signal-to-noise ratio, contrast-to-noise ratio and posterior fossa artifact index were measured. For qualitative analysis, noise, gray-white matter differentiation, artifact and overall image quality were scored. Radiation doses were evaluated by CT dose index, dose-length product and effective dose. The mean attenuations of gray and white matter and contrast-to-noise ratio were significantly increased at 80 kVp, while parameters related to image noise, i.e. noise, signal-to-noise ratio and posterior fossa artifact index were higher at 80 kVp than at 120 kVp. In qualitative analysis, 80-kVp images showed improved gray-white differentiation but more artifacts compared to 120-kVp images. Subjective image noise and overall image quality scores were similar between the two scans. Radiation dose parameters were significantly lower at 80 kVp than at 120 kVp. In pediatric non-enhanced brain CT scans, a decrease in tube voltage from 120 kVp to 80 kVp resulted in improved gray-white matter contrast, comparable image quality and decreased radiation dose.
Matsutani, Hideyuki; Sano, Tomonari; Kondo, Takeshi; Fujimoto, Shinichiro; Sekine, Takako; Arai, Takehiro; Morita, Hitomi; Takase, Shinichi
2010-12-20
A high radiation dose associated with 64 multidetector-row computed tomography (64-MDCT) is a major concern for physicians and patients alike. A new 320 row area detector computed tomography (ADCT) can obtain a view of the entire heart with one rotation (0.35 s) without requiring the helical method. As such, ADCT is expected to reduce the radiation dose. We studied image quality and radiation dose of ADCT compared to that of 64-MDCT in patients with a low heart rate (HR≤60). Three hundred eighty-five consecutive patients underwent 64-MDCT and 379 patients, ADCT. Patients with an arrhythmia were excluded. Prospective ECG-gated helical scan with high HP (FlashScan) in 64 was used for MDCT and prospective ECG-gated conventional one beat scan, for 320-ADCT. Image quality was visually evaluated by an image quality score. Radiation dose was estimated by DLP (mGy・cm) for 64-MDCT and DLP.e (mGy・cm) for 320-ADCT. Radiation dose of 320-ADCT (208±48 mGy・cm) was significantly (P<0.0001) lower than that of 64-MDCT (484±112 mGy・cm), and image quality score of 320-ADCT (3.0±0.2) was significantly (P=0.0011) higher than that of 64-MDCT (2.9±0.4). Scan time of 320-ADCT (1.4±0.1 s) was also significantly (P<0.0001) shorter than that of 64-MDCT (6.8±0.6 s). 320-ADCT can achieve not only a reduction in radiation dose but also a superior image quality and shortening of scan time compared to 64-MDCT.
Quality competition and hospital mergers-An experiment.
Han, Johann; Kairies-Schwarz, Nadja; Vomhof, Markus
2017-12-01
On the basis of a Salop model with regulated prices, we investigate quality provision behaviour of competing hospitals before and after a merger. For this, we use a controlled laboratory experiment where subjects decided on the level of treatment quality as head of a hospital. We find that the post-merger average quality is significantly lower than the average pre-merger quality. However, for merger insiders and outsiders, average quality choices are significantly higher than predicted for pure profit-maximising hospitals. This upward deviation is potentially driven by altruistic behaviour towards patients. Furthermore, we find that in the case where sufficient cost synergies are realised by the merged hospitals, there is a significant increase in average quality choices compared to the scenario without synergies. Finally, we find that our results do not change when comparing individual decisions to team decisions. Copyright © 2017 John Wiley & Sons, Ltd.
Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown
Mirza, Inam; Bulgakova, Nadezhda M.; Tomáštík, Jan; Michálek, Václav; Haderka, Ondřej; Fekete, Ladislav; Mocek, Tomáš
2016-01-01
In this paper, we establish connections between the thresholds and mechanisms of the damage and white-light generation upon femtosecond laser irradiation of wide-bandgap transparent materials. On the example of Corning Willow glass, evolution of ablation craters, their quality, and white-light emission were studied experimentally for 130-fs, 800-nm laser pulses. The experimental results indicate co-existence of several ablation mechanisms which can be separated in time. Suppression of the phase explosion mechanism of ablation was revealed at the middle of the irradiation spots. At high laser fluences, air ionization was found to strongly influence ablation rate and quality and the main mechanisms of the influence are analysed. To gain insight into the processes triggered by laser radiation in glass, numerical simulations have been performed with accounting for the balance of laser energy absorption and its distribution/redistribution in the sample, including bremsstrahlung emission from excited free-electron plasma. The simulations have shown an insignificant role of avalanche ionization at such short durations of laser pulses while pointing to high average energy of electrons up to several dozens of eV. At multi-pulse ablation regimes, improvement of crater quality was found as compared to single/few pulses. PMID:27991543
Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown
NASA Astrophysics Data System (ADS)
Mirza, Inam; Bulgakova, Nadezhda M.; Tomáštík, Jan; Michálek, Václav; Haderka, Ondřej; Fekete, Ladislav; Mocek, Tomáš
2016-12-01
In this paper, we establish connections between the thresholds and mechanisms of the damage and white-light generation upon femtosecond laser irradiation of wide-bandgap transparent materials. On the example of Corning Willow glass, evolution of ablation craters, their quality, and white-light emission were studied experimentally for 130-fs, 800-nm laser pulses. The experimental results indicate co-existence of several ablation mechanisms which can be separated in time. Suppression of the phase explosion mechanism of ablation was revealed at the middle of the irradiation spots. At high laser fluences, air ionization was found to strongly influence ablation rate and quality and the main mechanisms of the influence are analysed. To gain insight into the processes triggered by laser radiation in glass, numerical simulations have been performed with accounting for the balance of laser energy absorption and its distribution/redistribution in the sample, including bremsstrahlung emission from excited free-electron plasma. The simulations have shown an insignificant role of avalanche ionization at such short durations of laser pulses while pointing to high average energy of electrons up to several dozens of eV. At multi-pulse ablation regimes, improvement of crater quality was found as compared to single/few pulses.
Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown.
Mirza, Inam; Bulgakova, Nadezhda M; Tomáštík, Jan; Michálek, Václav; Haderka, Ondřej; Fekete, Ladislav; Mocek, Tomáš
2016-12-19
In this paper, we establish connections between the thresholds and mechanisms of the damage and white-light generation upon femtosecond laser irradiation of wide-bandgap transparent materials. On the example of Corning Willow glass, evolution of ablation craters, their quality, and white-light emission were studied experimentally for 130-fs, 800-nm laser pulses. The experimental results indicate co-existence of several ablation mechanisms which can be separated in time. Suppression of the phase explosion mechanism of ablation was revealed at the middle of the irradiation spots. At high laser fluences, air ionization was found to strongly influence ablation rate and quality and the main mechanisms of the influence are analysed. To gain insight into the processes triggered by laser radiation in glass, numerical simulations have been performed with accounting for the balance of laser energy absorption and its distribution/redistribution in the sample, including bremsstrahlung emission from excited free-electron plasma. The simulations have shown an insignificant role of avalanche ionization at such short durations of laser pulses while pointing to high average energy of electrons up to several dozens of eV. At multi-pulse ablation regimes, improvement of crater quality was found as compared to single/few pulses.
A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data
NASA Astrophysics Data System (ADS)
Duriscoe, Dan M.; Anderson, Sharolyn J.; Luginbuhl, Christian B.; Baugh, Kimberly E.
2018-07-01
We present a simplified method using geographic analysis tools to predict the average artificial luminance over the hemisphere of the night sky, expressed as a ratio to the natural condition. The VIIRS Day/Night Band upward radiance data from the Suomi NPP orbiting satellite was used for input to the model. The method is based upon a relation between sky glow brightness and the distance from the observer to the source of upward radiance. This relationship was developed using a Garstang radiative transfer model with Day/Night Band data as input, then refined and calibrated with ground-based all-sky V-band photometric data taken under cloudless and low atmospheric aerosol conditions. An excellent correlation was found between observed sky quality and the predicted values from the remotely sensed data. Thematic maps of large regions of the earth showing predicted artificial V-band sky brightness may be quickly generated with modest computing resources. We have found a fast and accurate method based on previous work to model all-sky quality. We provide limitations to this method. The proposed model meets requirements needed by decision makers and land managers of an easy to interpret and understand metric of sky quality.
Radiation dose-reduction strategies in thoracic CT.
Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I
2017-05-01
Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Jupiter's radiation belts: Can Pioneer 10 survive?
NASA Technical Reports Server (NTRS)
Hess, W. N.; Birmingham, T. J.; Mead, G. D.
1973-01-01
Model calculations of Jupiter's electron and proton radiation belts indicate that the Galilean satellites can reduce particle fluxes in certain regions of the inner magnetosphere by as much as six orders of magnitude. Average fluxes should be reduced by a factor of 100 or more along the Pioneer 10 trajectory through the heart of Jupiter's radiation belts in early December. This may be enough to prevent serious radiation damage to the spacecraft.
Jupiter's Radiation Belts: Can Pioneer 10 Survive?
Hess, W N; Birmingham, T J; Mead, G D
1973-12-07
Model calculations of Jupiter's electron and proton radiation belts indicate that the Galilean satellites can reduce particle fluxes in certain regions of the inner magnetosphere by as much as six orders of magnitude. Average fluxes should be reduced by a factor of 100 or more along the Pioneer 10 trajectory through the heart of Jupiter's radiation belts in early December. This may be enough to prevent serious radiation damage to the spacecraft.
Shortwave radiation parameterization scheme for subgrid topography
NASA Astrophysics Data System (ADS)
Helbig, N.; LöWe, H.
2012-02-01
Topography is well known to alter the shortwave radiation balance at the surface. A detailed radiation balance is therefore required in mountainous terrain. In order to maintain the computational performance of large-scale models while at the same time increasing grid resolutions, subgrid parameterizations are gaining more importance. A complete radiation parameterization scheme for subgrid topography accounting for shading, limited sky view, and terrain reflections is presented. Each radiative flux is parameterized individually as a function of sky view factor, slope and sun elevation angle, and albedo. We validated the parameterization with domain-averaged values computed from a distributed radiation model which includes a detailed shortwave radiation balance. Furthermore, we quantify the individual topographic impacts on the shortwave radiation balance. Rather than using a limited set of real topographies we used a large ensemble of simulated topographies with a wide range of typical terrain characteristics to study all topographic influences on the radiation balance. To this end slopes and partial derivatives of seven real topographies from Switzerland and the United States were analyzed and Gaussian statistics were found to best approximate real topographies. Parameterized direct beam radiation presented previously compared well with modeled values over the entire range of slope angles. The approximation of multiple, anisotropic terrain reflections with single, isotropic terrain reflections was confirmed as long as domain-averaged values are considered. The validation of all parameterized radiative fluxes showed that it is indeed not necessary to compute subgrid fluxes in order to account for all topographic influences in large grid sizes.
Characterizing energy budget variability at a Sahelian site: a test of NWP model behaviour
NASA Astrophysics Data System (ADS)
Mackie, Anna; Palmer, Paul I.; Brindley, Helen
2017-12-01
We use observations of surface and top-of-the-atmosphere (TOA) broadband radiation fluxes determined from the Atmospheric Radiation Measurement programme mobile facility, the Geostationary Earth Radiation Budget (GERB) and Spinning Enhanced Visible and Infrared Imager (SEVIRI) instruments and a range of meteorological variables at a site in the Sahel to test the ability of the ECMWF Integrated Forecasting System cycle 43r1 to describe energy budget variability. The model has daily average biases of -12 and 18 W m-2 for outgoing longwave and reflected shortwave TOA radiation fluxes, respectively. At the surface, the daily average bias is 12(13) W m-2 for the longwave downwelling (upwelling) radiation flux and -21(-13) W m-2 for the shortwave downwelling (upwelling) radiation flux. Using multivariate linear models of observation-model differences, we attribute radiation flux discrepancies to physical processes, and link surface and TOA fluxes. We find that model biases in surface radiation fluxes are mainly due to a low bias in ice water path (IWP), poor description of surface albedo and model-observation differences in surface temperature. We also attribute observed discrepancies in the radiation fluxes, particularly during the dry season, to the misrepresentation of aerosol fields in the model from use of a climatology instead of a dynamic approach. At the TOA, the low IWP impacts the amount of reflected shortwave radiation while biases in outgoing longwave radiation are additionally coupled to discrepancies in the surface upwelling longwave flux and atmospheric humidity.
Radiation research society 1952-2002. Physics as an element of radiation research.
Inokuti, Mitio; Seltzer, Stephen M
2002-07-01
Since its inception in 1954, Radiation Research has published an estimated total of about 8700 scientific articles up to August 2001, about 520, or roughly 6%, of which are primarily related to physics. This average of about 11 articles per year indicates steadily continuing contributions by physicists, though there are appreciable fluctuations from year to year. These works of physicists concern radiation sources, dosimetry, instrumentation for measurements of radiation effects, fundamentals of radiation physics, mechanisms of radiation actions, and applications. In this review, we have selected some notable accomplishments for discussion and present an outlook for the future.
Method for inserting noise in digital mammography to simulate reduction in radiation dose
NASA Astrophysics Data System (ADS)
Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Vieira, Marcelo A. C.
2015-03-01
The quality of clinical x-ray images is closely related to the radiation dose used in the imaging study. The general principle for selecting the radiation is ALARA ("as low as reasonably achievable"). The practical optimization, however, remains challenging. It is well known that reducing the radiation dose increases the quantum noise, which could compromise the image quality. In order to conduct studies about dose reduction in mammography, it would be necessary to acquire repeated clinical images, from the same patient, with different dose levels. However, such practice would be unethical due to radiation related risks. One solution is to simulate the effects of dose reduction in clinical images. This work proposes a new method, based on the Anscombe transformation, which simulates dose reduction in digital mammography by inserting quantum noise into clinical mammograms acquired with the standard radiation dose. Thus, it is possible to simulate different levels of radiation doses without exposing the patient to new levels of radiation. Results showed that the achieved quality of simulated images generated with our method is the same as when using other methods found in the literature, with the novelty of using the Anscombe transformation for converting signal-independent Gaussian noise into signal-dependent quantum noise.
NASA Astrophysics Data System (ADS)
O'Reilly, Shannon E.; Plyku, Donika; Sgouros, George; Fahey, Frederic H.; Treves, S. Ted; Frey, Eric C.; Bolch, Wesley E.
2016-03-01
Published guidelines for administered activity to pediatric patients undergoing diagnostic nuclear medicine imaging are currently obtained through expert consensus of the minimum values as a function of body weight as required to yield diagnostic quality images. We have previously shown that consideration of body habitus is also important in obtaining diagnostic quality images at the lowest administered activity. The objective of this study was to create a series of computational phantoms that realistically portray the anatomy of the pediatric patient population which can be used to develop and validate techniques to minimize radiation dose while maintaining adequate image quality. To achieve this objective, we have defined an imaging risk index that may be used in future studies to develop pediatric patient dosing guidelines. A population of 48 hybrid phantoms consisting of non-uniform B-spline surfaces and polygon meshes was generated. The representative ages included the newborn, 1 year, 5 year, 10 year and 15 year male and female. For each age, the phantoms were modeled at their 10th, 50th, and 90th height percentile each at a constant 50th weight percentile. To test the impact of kidney size, the newborn phantoms were modeled with the following three kidney volumes: -15%, average, and +15%. To illustrate the impact of different morphologies on dose optimization, we calculated the effective dose for each phantom using weight-based 99mTc-DMSA activity administration. For a given patient weight, body habitus had a considerable effect on effective dose. Substantial variations were observed in the risk index between the 10th and 90th percentile height phantoms from the 50th percentile phantoms for a given age, with the greatest difference being 18%. There was a dependence found between kidney size and risk of radiation induced kidney cancer, with the highest risk indices observed in newborns with the smallest kidneys. Overall, the phantoms and techniques in this study can be used to provide data to refine dosing guidelines for pediatric nuclear imaging studies while taking into account the effects on both radiation dose and image quality. This work was supported by:R01 EB013558 with the National Institute for Biomedical Imaging and Bioengineering (NIBIB).
Radiation survey in the International Space Station
NASA Astrophysics Data System (ADS)
Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Zaconte, Veronica
2015-12-01
The project ALTEA-shield/survey is part of an European Space Agency (ESA) - ILSRA (International Life Science Research Announcement) program and provides a detailed study of the International Space Station (ISS) (USLab and partly Columbus) radiation environment. The experiment spans over 2 years, from September 20, 2010 to September 30, 2012, for a total of about 1.5 years of effective measurements. The ALTEA detector system measures all heavy ions above helium and, to a limited extent, hydrogen and helium (respectively, in 25 Mev-45 MeV and 25 MeV/n-250 MeV/n energy windows) while tracking every individual particle. It measures independently the radiation along the three ISS coordinate axes. The data presented consist of flux, dose, and dose equivalent over the time of investigation, at the different surveyed locations. Data are selected from the different geographic regions (low and high latitudes and South Atlantic Anomaly, SAA). Even with a limited acceptance window for the proton contribution, the flux/dose/dose equivalent results as well as the radiation spectra provide information on how the radiation risks change in the different surveyed sites. The large changes in radiation environment found among the measured sites, due to the different shield/mass distribution, require a detailed Computer-Aided Design (CAD) model to be used together with these measurements for the validation of radiation models in space habitats. Altitude also affects measured radiation, especially in the SAA. In the period of measurements, the altitude (averaged over each minute) ranged from 339 km to 447 km. Measurements show the significant shielding effect of the ISS truss, responsible for a consistent amount of reduction in dose equivalent (and so in radiation quality). Measured Galactic Cosmic Ray (GCR) dose rates at high latitude range from 0.354 ± 0.002 nGy/s to 0.770 ± 0.006 nGy/s while dose equivalent from 1.21 ± 0.04 nSv/s to 6.05 ± 0.09 nSv/s. The radiation variation over the SAA is studied. Even with the reduced proton sensitivity, the high day-by-day variability, as well as the strong altitude dependence is clearly observed. The ability of filtering out this contribution from the data is presented as a tool to construct a radiation data set well mimicking deep space radiation, useful for model validations and improvements.
Quality planning in Construction Project
NASA Astrophysics Data System (ADS)
Othman, I.; Shafiq, Nasir; Nuruddin, M. F.
2017-12-01
The purpose of this paper is to investigate deeper on the factors that contribute to the effectiveness of quality planning, identifying the common problems encountered in quality planning, practices and ways for improvements in quality planning for construction projects. This paper involves data collected from construction company representatives across Malaysia that are obtained through semi-structured interviews as well as questionnaire distributions. Results shows that design of experiments (average index: 4.61), inspection (average index: 4.45) and quality audit as well as other methods (average index: 4.26) rank first, second and third most important factors respectively.
NASA Astrophysics Data System (ADS)
Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.
2003-04-01
In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average-solar-radiation zones for SWE accuracy assessment. Model simulations did a poor job at estimating the spatial distribution of SWE. Basin clusters where the solar radiative flux dominated the melt flux were simulated more accurately than those dominated by the turbulent fluxes or the longwave radiative flux.
Zonal average earth radiation budget measurements from satellites for climate studies
NASA Technical Reports Server (NTRS)
Ellis, J. S.; Haar, T. H. V.
1976-01-01
Data from 29 months of satellite radiation budget measurements, taken intermittently over the period 1964 through 1971, are composited into mean month, season and annual zonally averaged meridional profiles. Individual months, which comprise the 29 month set, were selected as representing the best available total flux data for compositing into large scale statistics for climate studies. A discussion of spatial resolution of the measurements along with an error analysis, including both the uncertainty and standard error of the mean, are presented.
21 CFR 900.12 - Quality standards.
Code of Federal Regulations, 2014 CFR
2014-04-01
... to mammography. The training shall include instruction in radiation physics, including radiation physics specific to mammography, radiation effects, and radiation protection. The mammographic... ensure that medical physicists certified by the body are competent to perform physics survey; and (B)(1...
21 CFR 900.12 - Quality standards.
Code of Federal Regulations, 2013 CFR
2013-04-01
... to mammography. The training shall include instruction in radiation physics, including radiation physics specific to mammography, radiation effects, and radiation protection. The mammographic... ensure that medical physicists certified by the body are competent to perform physics survey; and (B)(1...
21 CFR 900.12 - Quality standards.
Code of Federal Regulations, 2012 CFR
2012-04-01
... to mammography. The training shall include instruction in radiation physics, including radiation physics specific to mammography, radiation effects, and radiation protection. The mammographic... ensure that medical physicists certified by the body are competent to perform physics survey; and (B)(1...
21 CFR 900.12 - Quality standards.
Code of Federal Regulations, 2011 CFR
2011-04-01
... to mammography. The training shall include instruction in radiation physics, including radiation physics specific to mammography, radiation effects, and radiation protection. The mammographic... ensure that medical physicists certified by the body are competent to perform physics survey; and (B)(1...
To acquire more detailed radiation drive by use of ``quasi-steady'' approximation in atomic kinetics
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin
2012-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM) in NLTE plasma description. However, the detailed experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum- number(nl-level) average atom model is a natural consideration, however the nl-level in-line calculation needs much more computational resource. By distinguishing the rapid bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to build up a more detailed bound electron distribution(nl-level even nlm-level) using in-line n-level calculated plasma conditions(temperature, density, and average ionization degree). We name this method ``quasi-steady approximation'' in atomic kinetics. Using this method, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more fine frequency-denpending spectrum structure which appears only in nl-level transition with same n number(n=0) .
Evaluation and optimization of sampling errors for the Monte Carlo Independent Column Approximation
NASA Astrophysics Data System (ADS)
Räisänen, Petri; Barker, W. Howard
2004-07-01
The Monte Carlo Independent Column Approximation (McICA) method for computing domain-average broadband radiative fluxes is unbiased with respect to the full ICA, but its flux estimates contain conditional random noise. McICA's sampling errors are evaluated here using a global climate model (GCM) dataset and a correlated-k distribution (CKD) radiation scheme. Two approaches to reduce McICA's sampling variance are discussed. The first is to simply restrict all of McICA's samples to cloudy regions. This avoids wasting precious few samples on essentially homogeneous clear skies. Clear-sky fluxes need to be computed separately for this approach, but this is usually done in GCMs for diagnostic purposes anyway. Second, accuracy can be improved by repeated sampling, and averaging those CKD terms with large cloud radiative effects. Although this naturally increases computational costs over the standard CKD model, random errors for fluxes and heating rates are reduced by typically 50% to 60%, for the present radiation code, when the total number of samples is increased by 50%. When both variance reduction techniques are applied simultaneously, globally averaged flux and heating rate random errors are reduced by a factor of #3.
Ray, Saurabh; Bonafede, Machaon M.; Mohile, Nimish A.
2014-01-01
Background Glioblastoma multiforme is the most common malignant primary brain tumor in adults and is associated with poor survival rates. Symptoms often include headaches; nausea and vomiting; and progressive memory, personality, or neurologic deficits. The treatment remains a challenge, and despite the approval of multiple new therapies in the past decade, survival has not improved. Objective To describe treatment patterns, survival, and healthcare costs of patients with incident glioblastoma in a large US population. Methods For this population-based study, adult patients (aged ≥18 years) with incident malignant brain neoplasm who had undergone brain surgery between January 1, 2006, and December 31, 2010, were identified in the Truven Health Analytics MarketScan Research Databases. The patients were stratified into 4 cohorts based on the use of temozolomide and/or external beam radiation therapy within 90 days after brain surgery (ie, the index event). Treatment patterns, survival, and healthcare costs were assessed until patient death, disenrollment, or the end-of-study period. Results A total of 2272 patients met the inclusion criteria; of these, 37% received temozolomide and radiation therapy, 13.8% received radiation alone, 3.9% received temozolomide alone, and 45.3% of patients received neither. The average patient age ranged from 55.3 years to 59.8 years across the study cohorts; between 29.8% and 44% of patients in each cohort were female. The duration of temozolomide use was similar between the temozolomide-only cohort and patients receiving temozolomide with external beam radiation; approximately 76% of patients received temozolomide at least 60 days, dropping to 48.1% and 23% at 180 days and 360 days of follow-up, respectively. The median survival was 456 days, ranging from 331 days in the temozolomide-only cohort to 529 days in the cohort that received neither temozolomide nor external beam radiation. The average total costs in the 6 months postindex were $106,896, from $79,099 for patients who received neither temozolomide nor radiation to $138,767 for those who received both therapies. Conclusion The survival patterns of patients with glioblastoma seen in this real-world study of current treatments in a clinical setting is similar to the survival rate reported in clinical trials. However, further cost-effectiveness and quality-of-life analyses will be critical to better understand the role of temozolomide therapy in this patient population, considering its considerable cost burden and potential negative impact on survival seen in this study. PMID:24991398
Nuclear Technology Series. Course l: Radiation Physics.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…
Nuclear Technology Series. Course 19: Radiation Shielding.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…
Nuclear Technology Series. Course 17: Radiation Protection II.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…
Nuclear Technology Series. Course 2: Radiation Protection I.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…
Posteroanterior versus anteroposterior lumbar spine radiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuno, M.M.; Shu, G.J.
The posteroanterior view of the lumbar spine has important features including radiation protection and image quality; these have been studied by various investigators. Investigators have shown that sensitive tissues receive less radiation dosage in the posteroanterior view of the spine for scoliosis screening and intracranial tomography without altering the image quality. This paper emphasizes the importance of the radiation safety aspect of the posteroanterior view and shows the improvement in shape distortion in the lumbar vertebrae.
Gebhard, Cathérine; Fuchs, Tobias A; Fiechter, Michael; Stehli, Julia; Stähli, Barbara E; Gaemperli, Oliver; Kaufmann, Philipp A
2013-10-01
The accuracy of coronary computed tomography angiography (CCTA) in obese persons is compromised by increased image noise. We investigated CCTA image quality acquired on a high-definition 64-slice CT scanner using modern adaptive statistical iterative reconstruction (ASIR). Seventy overweight and obese patients (24 males; mean age 57 years, mean body mass index 33 kg/m(2)) were studied with clinically-indicated contrast enhanced CCTA. Thirty-five patients underwent a standard definition protocol with filtered backprojection reconstruction (SD-FBP) while 35 patients matched for gender, age, body mass index and coronary artery calcifications underwent a novel high definition protocol with ASIR (HD-ASIR). Segment by segment image quality was assessed using a four-point scale (1 = excellent, 2 = good, 3 = moderate, 4 = non-diagnostic) and revealed better scores for HD-ASIR compared to SD-FBP (1.5 ± 0.43 vs. 1.8 ± 0.48; p < 0.05). The smallest detectable vessel diameter was also improved, 1.0 ± 0.5 mm for HD-ASIR as compared to 1.4 ± 0.4 mm for SD-FBP (p < 0.001). Average vessel attenuation was higher for HD-ASIR (388.3 ± 109.6 versus 350.6 ± 90.3 Hounsfield Units, HU; p < 0.05), while image noise, signal-to-noise ratio and contrast-to noise ratio did not differ significantly between reconstruction protocols (p = NS). The estimated effective radiation doses were similar, 2.3 ± 0.1 and 2.5 ± 0.1 mSv (HD-ASIR vs. SD-ASIR respectively). Compared to a standard definition backprojection protocol (SD-FBP), a newer high definition scan protocol in combination with ASIR (HD-ASIR) incrementally improved image quality and visualization of distal coronary artery segments in overweight and obese individuals, without increasing image noise and radiation dose.
Evaluation of digital radiography practice using exposure index tracking
Zhou, Yifang; Allahverdian, Janet; Nute, Jessica L.; Lee, Christina
2016-01-01
Some digital radiography (DR) detectors and software allow for remote download of exam statistics, including image reject status, body part, projection, and exposure index (EI). The ability to have automated data collection from multiple DR units is conducive to a quality control (QC) program monitoring institutional radiographic exposures. We have implemented such a QC program with the goal to identify outliers in machine radiation output and opportunities for improvement in radiation dose levels. We studied the QC records of four digital detectors in greater detail on a monthly basis for one year. Although individual patient entrance skin exposure varied, the radiation dose levels to the detectors were made to be consistent via phototimer recalibration. The exposure data stored on each digital detector were periodically downloaded in a spreadsheet format for analysis. EI median and standard deviation were calculated for each protocol (by body part) and EI histograms were created for torso protocols. When histograms of EI values for different units were compared, we observed differences up to 400 in average EI (representing 60% difference in radiation levels to the detector) between units nominally calibrated to the same EI. We identified distinct components of the EI distributions, which in some cases, had mean EI values 300 apart. Peaks were observed at the current calibrated EI, a previously calibrated EI, and an EI representing computed radiography (CR) techniques. Our findings in this ongoing project have allowed us to make useful interventions, from emphasizing the use of phototimers instead of institutional memory of manual techniques to improvements in our phototimer calibration. We believe that this QC program can be implemented at other sites and can reveal problems with radiation levels in the aggregate that are difficult to identify on a case‐by‐case basis. PACS number(s): 87.59.bf PMID:27929507
The radiation oncology workforce: A focus on medical dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Gregg F., E-mail: grobinson@medicaldosimetry.org; Mobile, Katherine; Yu, Yan
2014-07-01
The 2012 Radiation Oncology Workforce survey was conducted to assess the current state of the entire workforce, predict its future needs and concerns, and evaluate quality improvement and safety within the field. This article describes the dosimetrist segment results. The American Society for Radiation Oncology (ASTRO) Workforce Subcommittee, in conjunction with other specialty societies, conducted an online survey targeting all segments of the radiation oncology treatment team. The data from the dosimetrist respondents are presented in this article. Of the 2573 dosimetrists who were surveyed, 890 responded, which resulted in a 35% segment response rate. Most respondents were women (67%),more » whereas only a third were men (33%). More than half of the medical dosimetrists were older than 45 years (69.2%), whereas the 45 to 54 years age group represented the highest percentage of respondents (37%). Most medical dosimetrists stated that their workload was appropriate (52%), with respondents working a reported average of 41.7 ± 4 hours per week. Overall, 86% of medical dosimetrists indicated that they were satisfied with their career, and 69% were satisfied in their current position. Overall, 61% of respondents felt that there was an oversupply of medical dosimetrists in the field, 14% reported that supply and demand was balanced, and the remaining 25% felt that there was an undersupply. The medical dosimetrists' greatest concerns included documentation/paperwork (78%), uninsured patients (80%), and insufficient reimbursement rates (87%). This survey provided an insight into the dosimetrist perspective of the radiation oncology workforce. Though an overwhelming majority has conveyed satisfaction concerning their career, the study allowed a spotlight to be placed on the profession's current concerns, such as insufficient reimbursement rates and possible oversupply of dosimetrists within the field.« less
Healy, R.W.; DeVries, M.P.; Sturrock, Alex M.
1989-01-01
From July 1982 through June 1984, a study was made of the evapotranspiration and microclimate at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily awnless brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy budget with the Bowen ratio, (2) an aerodynamic profile, and (3) a soil-based water budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data and then summed by days and months. Yearly estimates (for March through November) by these methods were in close agreement: 648 and 626 millimeters, respectively. Daily estimates reach a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of total precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soilmoisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) at the Sheffield site were virtually identical to long-term averages from nearby National Weather Service stations. Solar radiation averaged 65 percent of that normally expected under clear skies. Net radiation averaged 70.1 watts per square meter and was highest in July and negative during some winter months. Wind direction varied but was predominately south-southeasterly. Wind speed at the 2-meter height averaged 3.5 meters per second and was slightly higher in winter months than the rest of the year. The amount of water stored within the soil zone was greatest in early spring and least in late summer. Seasonal and diurnal trends of evapotranspiration rates mirrored those of net radiation; July was usually the month with the highest evapotranspiration rate. The ratio of sensible- to latentheat fluxes (commonly called the Bowen ratio) for the 2-year study period was 0.38, as averaged from the three methods. Monthly Bowen ratios fluctuated somewhat but averaged about 0.35 for late spring through summer. In fall, the ratio declined to zero or to slightly negative values. When the ratio was negative, the latent-heat flux was slightly greater than the net radiation because of additional energy supplied by' the cooling soil and air. Evapotranspiration calculated by the three methods averaged 75 percent of potential evapotranspiration, as estimated by the Penman equation. There was no apparent seasonal trend in the relation between actual and potential evapotranspiration rates.
NASA Technical Reports Server (NTRS)
Brenner, D. J.; Hall, E. J.
1992-01-01
There is now a substantial body of evidence for end points such as oncogenic transformation in vitro, and carcinogenesis and life shortening in vivo, suggesting that dose protraction leads to an increase in effectiveness relative to a single, acute exposure--at least for radiations of medium linear energy transfer (LET) such as neutrons. Table I contains a summary of the pertinent data from studies in which the effect is seen. [table: see text] This phenomenon has come to be known as the "inverse dose rate effect," because it is in marked contrast to the situation at low LET, where protraction in delivery of a dose of radiation, either by fractionation or low dose rate, results in a decreased biological effect; additionally, at medium and high LET, for radiobiological end points such as clonogenic survival, the biological effectiveness is independent of protraction. The quantity and quality of the published reports on the "inverse dose rate effect" leaves little doubt that the effect is real, but the available evidence indicates that the magnitude of the effect is due to a complex interplay between dose, dose rate, and radiation quality. Here, we first summarize the available data on the inverse dose rate effect and suggest that it follows a consistent pattern in regard to dose, dose rate, and radiation quality; second, we describe a model that predicts these features; and, finally, we describe the significance of the effect for radiation protection.
Dzakovich, Michael P; Ferruzzi, Mario G; Mitchell, Cary A
2016-09-14
Fruits harvested from off-season, greenhouse-grown tomato plants have a poor reputation compared to their in-season, garden-grown counterparts. Presently, there is a gap in knowledge with regard to the role of UV-B radiation (280-315 nm) in determining greenhouse tomato quality. Knowing that UV-B is a powerful elicitor of secondary metabolism and not transmitted through greenhouse glass and some greenhouse plastics, we tested the hypothesis that supplemental UV-B radiation in the greenhouse will impart quality attributes typically associated with garden-grown tomatoes. Environmentally relevant doses of supplemental UV-B radiation did not strongly affect antioxidant compounds of fruits, although the flavonol quercetin-3-O-rutinoside (rutin) significantly increased in response to UV-B. Physicochemical metrics of fruit quality attributes and consumer sensory panels were used to determine if any such differences altered consumer perception of tomato quality. Supplemental UV-A radiation (315-400 nm) pre-harvest treatments enhanced sensory perception of aroma, acidity, and overall approval, suggesting a compelling opportunity to environmentally enhance the flavor of greenhouse-grown tomatoes. The expression of the genes COP1 and HY5 were indicative of adaptation to UV radiation, which explains the lack of marked effects reported in these studies. To our knowledge, these studies represent the first reported use of environmentally relevant doses of UV radiation throughout the reproductive portion of the tomato plant life cycle to positively enhance the sensory and chemical properties of fruits.
NASA Astrophysics Data System (ADS)
Glotfelty, Timothy; Zhang, Yang
2017-03-01
Following a comprehensive evaluation of the Community Earth System Model modified at the North Carolina State University (CESM-NCSU), Part II describes the projected changes in the future state of the atmosphere under the representative concentration partway scenarios (RCP4.5 and 8.5) by 2100 for the 2050 time frame and examine the impact of climate change on future air quality under both scenarios, and the impact of projected emission changes under the RCP4.5 scenario on future climate through aerosol direct and indirect effects. Both the RCP4.5 and RCP8.5 simulations predict similar changes in air quality by the 2050 period due to declining emissions under both scenarios. The largest differences occur in O3, which decreases by global mean of 1.4 ppb under RCP4.5 but increases by global mean of 2.3 ppb under RCP8.5 due to differences in methane levels, and PM10, which decreases by global mean of 1.2 μg m-3 under RCP4.5 and increases by global mean of 0.2 μg m-3 under RCP8.5 due to differences in dust and sea-salt emissions under both scenarios. Enhancements in cloud formation in the Arctic and Southern Ocean and increases of aerosol optical depth (AOD) in central Africa and South Asia dominate the change in surface radiation in both scenarios, leading to global average dimming of 1.1 W m-2 and 2.0 W m-2 in the RCP4.5 and RCP8.5 scenarios, respectively. Declines in AOD, cloud formation, and cloud optical thickness from reductions of emissions of primary aerosols and aerosol precursors under RCP4.5 result in near surface warming of 0.2 °C from a global average increase of 0.7 W m-2 in surface downwelling solar radiation. This warming leads to a weakening of the Walker Circulation in the tropics, leading to significant changes in cloud and precipitation that mirror a shift in climate towards the negative phase of the El Nino Southern Oscillation.
Predicting solar radiation based on available weather indicators
NASA Astrophysics Data System (ADS)
Sauer, Frank Joseph
Solar radiation prediction models are complex and require software that is not available for the household investor. The processing power within a normal desktop or laptop computer is sufficient to calculate similar models. This barrier to entry for the average consumer can be fixed by a model simple enough to be calculated by hand if necessary. Solar radiation modeling has been historically difficult to predict and accurate models have significant assumptions and restrictions on their use. Previous methods have been limited to linear relationships, location restrictions, or input data limits to one atmospheric condition. This research takes a novel approach by combining two techniques within the computational limits of a household computer; Clustering and Hidden Markov Models (HMMs). Clustering helps limit the large observation space which restricts the use of HMMs. Instead of using continuous data, and requiring significantly increased computations, the cluster can be used as a qualitative descriptor of each observation. HMMs incorporate a level of uncertainty and take into account the indirect relationship between meteorological indicators and solar radiation. This reduces the complexity of the model enough to be simply understood and accessible to the average household investor. The solar radiation is considered to be an unobservable state that each household will be unable to measure. The high temperature and the sky coverage are already available through the local or preferred source of weather information. By using the next day's prediction for high temperature and sky coverage, the model groups the data and then predicts the most likely range of radiation. This model uses simple techniques and calculations to give a broad estimate for the solar radiation when no other universal model exists for the average household.
Pozolotina, Vera N; Antonova, Elena V
2017-03-01
The multiple stressors, in different combinations, may impact differently upon seed quality, and low-level doses of radiation may enhance synergistic or antagonistic effects. During 1991-2014 we investigated the quality of the dandelion (Taraxacum officinale s.l.) seed progeny growing under low-level radiation exposure at the East-Ural Radioactive Trace (EURT) area (result of the Kyshtym accident, Russia), and in plants from areas exposed to background radiation. The viability of the dandelion seed progeny was assessed according to chronic radiation exposure, accounting for the variability of weather conditions among years. Environmental factors (temperature, precipitation, and their ratio in different months) can modify the radiobiological effects. We found a wide range of possible responses to multiple stressors: inhibition, stimulation, and indifferent effects in different seasons. The intraspecific variability of the quality of dandelion seed progeny was greatly increased under conditions of low doses of chronic irradiation. Temperature was the most significant factor for seed progeny formation in the EURT zone, whereas the sums of precipitation and ratios of precipitation to temperature dominantly affected organisms from the background population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salgado, M.M.; Benitez, J.C.; Pernas, R.
2007-07-01
The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated, treated, conditioned and stored. A Quality Management System, according to the ISO 9001 Standard has been implemented for the RWM Service at CPHR. The Management System includes the radiation safety requirements established for RWM in national regulations and in themore » Licence's conditions. The role of the Regulatory Body and the Radiation Protection Officer in the Quality Management System, the authorization of practices, training and personal qualification, record keeping, inspections of the Regulatory Body and internal inspection of the Radiation Protection Officer, among other aspects, are described in this paper. The Quality Management System has shown to be an efficient tool to demonstrate that adequate measures are in place to ensure the safety in radioactive waste management activities and their continual improvement. (authors)« less
NASA Astrophysics Data System (ADS)
Stackhouse, Paul; Wong, Takmeng; Kratz, David; Gupta, Shashi; Wiber, Anne; Edwards, Anne
2010-05-01
The FLASHFlux (Fast Longwave and Shortwave radiative Fluxes from CERES and MODIS) project derives daily averaged gridded top-of-atmosphere (TOA) and surface radiative fluxes within one week of observation. Production of CERES based TOA and surface fluxes is achieved by using the latest CERES calibration that is assumed constant in time and by making simplifying assumptions in the computation of time and space averaged quantities. Together these assumptions result in approximately a 1% increase in the uncertainty for FLASHFlux products over CERES. Analysis has clearly demonstrated that the global-annual mean outgoing longwave radiation shows a decrease of ~0.75 Wm-2, from 2007 to 2008, while the global-annual mean reflected shortwave radiation shows a decrease of 0.14 Wm-2 over that same period. Thus, the combined longwave and shortwave changes have resulted in an increase of ~0.89 Wm-2 in net radiation into the Earth climate system in 2008. A time series of TOA fluxes was constructed from CERES EBAF, CERES ERBE-like and FLASHFLUX. Relative to this multi-dataset average from 2001 to 2008, the 2008 global-annual mean anomalies are -0.54/-0.26/+0.80 Wm-2, respectively, for the longwave/shortwave/net radiation. These flux values, which were published in the NOAA 2008 State of the Climate Report, are within their corresponding 2-sigma interannual variabilities for this period. This paper extends these results through 2009, where the net flux is observed to recover. The TOA LW variability is also compared to AIRS OLR showing excellent agreement in the anomalies. The variability appears very well correlated to the to the 2007-2009 La Nina/El Nino cycles, which altered the global distribution of clouds, total column water vapor and temperature. Reassessments of these results are expected when newer Clouds and the Earth's Radiant Energy System (CERES) data are released.
Kushelevsky, A P; Kudish, A I
1996-07-01
Thousands of patients suffering from psoriasis have been treated successfully in the Dead Sea area by climatological methods, without medication. This high rate of success, measured in terms of partial to complete plaque clearance and reported to exceed 85% after 3-4 weeks of treatment, has been assumed to be associated with a unique ultraviolet (UV) radiation environment present in the Dead Sea region. In order to broaden our knowledge of the UV radiation environment at the Dead Sea, continuous monitoring of UV (both B and A) and global radiation has recently been initiated at two sites--Ein Bokek (located in the vicinity of the Dead Sea 375 m below mean sea level) and Beer Sheva (315 m above mean sea level)--to facilitate an intercomparison of their respective radiation intensities. The results of the first year of a detailed study of the global, UVB and UVA radiation intensities measured at both sites are summarized and reported in terms of the monthly average daily, average midday (11:00-13:00) and the corresponding maximum values. The radiation data for clear days (based upon the absolute magnitude of the global radiation) were also analyzed to perform an intercomparison between Ein Bokek and Beer Sheva for a winter month and a summer month for which all three types of radiation data were available at both sites.
Photonic Crystal Microchip Laser
NASA Astrophysics Data System (ADS)
Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis
2016-09-01
The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.
Photonic Crystal Microchip Laser
Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis
2016-01-01
The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation. PMID:27683066
Kapur, Ajay; Potters, Louis
2012-01-01
The purpose of this work was to develop and implement six sigma practices toward the enhancement of patient safety in an electronic, quality checklist-driven, multicenter, paperless radiation medicine department. A quality checklist process map (QPM), stratified into consultation through treatment-completion stages was incorporated into an oncology information systems platform. A cross-functional quality management team conducted quality-function-deployment and define-measure-analyze-improve-control (DMAIC) six sigma exercises with a focus on patient safety. QPM procedures were Pareto-sorted in order of decreasing patient safety risk with failure mode and effects analysis (FMEA). Quantitative metrics for a grouped set of highest risk procedures were established. These included procedural delays, associated standard deviations and six sigma Z scores. Baseline performance of the QPM was established over the previous year of usage. Data-driven analysis led to simplification, standardization, and refinement of the QPM with standard deviation, slip-day reduction, and Z-score enhancement goals. A no-fly policy (NFP) for patient safety was introduced at the improve-control DMAIC phase, with a process map interlock imposed on treatment initiation in the event of FMEA-identified high-risk tasks being delayed or not completed. The NFP was introduced in a pilot phase with specific stopping rules and the same metrics used for performance assessments. A custom root-cause analysis database was deployed to monitor patient safety events. Relative to the baseline period, average slip days and standard deviations for the risk-enhanced QPM procedures improved by over threefold factors in the NFP period. The Z scores improved by approximately 20%. A trend for proactive delays instead of reactive hard stops was observed with no adverse effects of the NFP. The number of computed potential no-fly delays per month dropped from 60 to 20 over a total of 520 cases. The fraction of computed potential no-fly cases that were delayed in NFP compliance rose from 28% to 45%. Proactive delays rose to 80% of all delayed cases. For potential no-fly cases, event reporting rose from 18% to 50%, while for actually delayed cases, event reporting rose from 65% to 100%. With complex technologies, resource-compromised staff, and pressures to hasten treatment initiation, the use of the six sigma driven process interlocks may mitigate potential patient safety risks as demonstrated in this study. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahman, Md Mushfiqur; Lei, Yu; Kalantzis, Georgios
2018-01-01
Quality Assurance (QA) for medical linear accelerator (linac) is one of the primary concerns in external beam radiation Therapy. Continued advancements in clinical accelerators and computer control technology make the QA procedures more complex and time consuming which often, adequate software accompanied with specific phantoms is required. To ameliorate that matter, we introduce QALMA (Quality Assurance for Linac with MATLAB), a MALAB toolkit which aims to simplify the quantitative analysis of QA for linac which includes Star-Shot analysis, Picket Fence test, Winston-Lutz test, Multileaf Collimator (MLC) log file analysis and verification of light & radiation field coincidence test.
Behrens, R
2012-09-01
The International Organization for Standardization (ISO) has issued a standard series on photon reference radiation qualities (ISO 4037). In this series, no conversion coefficients are contained for the quantity personal dose equivalent at a 3 mm depth, H(p)(3). In the past, for this quantity, a slab phantom was recommended as a calibration phantom; however, a cylinder phantom much better approximates the shape of a human head than a slab phantom. Therefore, in this work, the conversion coefficients from air kerma to H(p)(3) for the cylinder phantom are supplied for X- and gamma radiation qualities defined in ISO 4037.
Jim, Heather S.L.; Sutton, Steven K.; Small, Brent J.; Jacobsen, Paul B.; Wood, William A.; Knight, Jennifer M.; Majhail, Navneet S.; Syrjala, Karen L.; Lee, Stephanie J.
2016-01-01
Summary Quality of life is increasingly recognized as an important secondary endpoint of hematopoietic cell transplantation (HCT). The current study examined the extent to which attrition results in biased estimates of patient quality of life. The study also examined whether patients differ in terms of trajectories of quality of life in the first six months post-transplant. A secondary data analysis was conducted of 701 participants who enrolled in the Blood and Marrow Transplantation Clinical Trials Network (BMT CTN) 0902 trial. Participants completed the SF-36, a measure of quality of life, prior to transplant and 100 and 180 days post-transplant. Results indicated that attrition resulted in slightly biased overestimates of quality of life but the amount of overestimation remained stable over time. Patients could be grouped into three distinct classes based on physical quality of life: 1) low and stable; 2) average and declining, then stable; and 3) average and stable. Four classes of patients emerged for mental quality of life: 1) low and stable; 2) average, improving, then stable; 3) higher than average (by almost 1 SD) and stable; and 4) average and stable. Taken together, these data provide a more comprehensive understanding of quality of life that can be used to educate HCT recipients and their caregivers. PMID:27538374
NASA Astrophysics Data System (ADS)
Sidhik, Siraj; Esparza, Diego; Martínez-Benítez, Alejandro; López-Luke, Tzarara; Carriles, Ramón; De la Rosa, Elder
2017-10-01
Highly smooth organo-lead halide perovskite (OHP) films with less intra-granular defects are necessary to minimize the non-radiative carrier recombination in photovoltaic devices. Herein, a simple air-extraction anti-solvent deposition (AAD) technique is proposed to improve the quality of perovskite films. An air extraction process accompanied by anti-solvent washing helps to improve the morphology of perovskite, leading to smooth, homogeneous, compact, pin-hole free and densely packed films. Perovskite films with an average roughness of 5.01 nm, which is the smoothest morphology in mesoscopic-perovskite solar cell to the extent of our knowledge, high crystallinity, and a crystallite size in the range of ∼500 nm to 1 μm have been achieved. Average power conversion efficiency (PCE) of 16.99% for 15 cells and a best PCE of 17.70% with a high open circuit voltage of 1.075 and fill factor of 74.22% were achieved using the AAD approach without a glove box. The cells exhibit virtually no hysteresis. These efficiency values are approximately 37.68% higher than the cells fabricated using anti-solvent process without air-extraction, where an average efficiency of 12.34% was measured. This method demonstrates high reproducibility and can be employed for the large scale production of PSC at reduced cost.
Prasarn, Mark L; Coyne, Ellen; Schreck, Michael; Rodgers, Jamie D; Rechtine, Glenn R
2013-07-15
Cadaveric imaging study. We sought to compare the fluoroscopic images produced by 4 different fluoroscopes for image quality and radiation exposure when used for imaging the spine. There are no previous published studies comparing mobile C-arm machines commonly used in clinical practice for imaging the spine. Anterior-posterior and lateral images of the cervical, thoracic, and lumbar spine were obtained from a cadaver placed supine on a radiolucent table. The fluoroscopy units used for the study included (1) GE OEC 9900 Elite (2010 model; General Electric Healthcare, Waukesha, WI), (2) Philips BV Pulsera (2009 model; Philips Healthcare, Andover, MA), (3) Philips BV Pulsera (2010 model; Philips Healthcare, Andover, MA), and (4) Siemens Arcadis Avantic (2010 model; Siemens Medical Solutions, Malvern, PA). The images were then downloaded, placed into a randomizer program, and evaluated by a group of spine surgeons and neuroradiologists independently. The reviewers, who were blinded to the fluoroscope the images were from, ranked them from best to worst using a numeric system. In addition, the images were rated according to a quality scale from 1 to 5, with 1 representing the best image quality. The radiation exposure level for the fluoroscopy units was also compared and was based on energy emission. According to the mean values for rank, the following order of best to worst was observed: (1) GE OEC > (2) Philips 2010 > (3) Philips 2009 > (4) Siemans. The exact same order was found when examining the image quality ratings. When comparing the radiation exposure level difference, it was observed that the OEC was the lowest, and there was a minimum 30% decrease in energy emission from the OEC versus the other C-arms studied. This is the first time that the spine image quality and radiation exposure of commonly used C-arm machines have been compared. The OEC was ranked the best, produced the best quality images, and had the least amount of radiation.
Schüller, Andreas; Meier, Markus; Selbach, Hans-Joachim; Ankerhold, Ulrike
2015-07-01
The aim of this study was to investigate whether a chamber-type-specific radiation quality correction factor kQ can be determined in order to measure the reference air kerma rate of (60)Co high-dose-rate (HDR) brachytherapy sources with acceptable uncertainty by means of a well-type ionization chamber calibrated for (192)Ir HDR sources. The calibration coefficients of 35 well-type ionization chambers of two different chamber types for radiation fields of (60)Co and (192)Ir HDR brachytherapy sources were determined experimentally. A radiation quality correction factor kQ was determined as the ratio of the calibration coefficients for (60)Co and (192)Ir. The dependence on chamber-to-chamber variations, source-to-source variations, and source strength was investigated. For the PTW Tx33004 (Nucletron source dosimetry system (SDS)) well-type chamber, the type-specific radiation quality correction factor kQ is 1.19. Note that this value is valid for chambers with the serial number, SN ≥ 315 (Nucletron SDS SN ≥ 548) onward only. For the Standard Imaging HDR 1000 Plus well-type chambers, the type-specific correction factor kQ is 1.05. Both kQ values are independent of the source strengths in the complete clinically relevant range. The relative expanded uncertainty (k = 2) of kQ is UkQ = 2.1% for both chamber types. The calibration coefficient of a well-type chamber for radiation fields of (60)Co HDR brachytherapy sources can be calculated from a given calibration coefficient for (192)Ir radiation by using a chamber-type-specific radiation quality correction factor kQ. However, the uncertainty of a (60)Co calibration coefficient calculated via kQ is at least twice as large as that for a direct calibration with a (60)Co source.
Atmospheric Science Data Center
2015-10-28
The NASA/GEWEX Surface Radiation Budget (SRB) project produces and archives global 3-hourly, daily, monthly/3-hourly, and monthly averages of surface and top-of-atmospheric (TOA) longwave and shortwave radiative parameters on a 1°x1° grid....
Nolte, R; Mühlbradt, K-H; Meulders, J P; Stephan, G; Haney, M; Schmid, E
2005-12-01
The production of dicentric chromosomes in human lymphocytes by high-energy neutron radiation was studied using a quasi-monoenergetic 60 MeV neutron beam. The average yield coefficient [see text] of the linear dose-response relationship for dicentric chromosomes was measured to be (0.146+/-0.016) Gy-1. This confirms our earlier observations that above 400 keV, the yield of dicentric chromosomes decreases with increasing neutron energy. Using the linear-quadratic dose-response relationship for dicentric chromosomes established in blood of the same donor for 60Co gamma-rays as a reference radiation, an average maximum low-dose RBE (RBEM) of 14+/-4 for 60 MeV quasi-monoenergetic neutrons with a dose-weighted average energy [see text] of 41.0 MeV is obtained. A correction procedure was applied, to account for the low-energy continuum of the quasi-monoenergetic spectral neutron distribution, and the yield coefficient alpha for 60 MeV neutrons was determined from the measured average yield coefficient [see text]. For alpha, a value of (0.115+/-0.026) Gy-1 was obtained corresponding to an RBEM of 11+/-4. The present experiments extend earlier investigations with monoenergetic neutrons to higher energies.
Background radiation in the Albuquerque, New Mexico, U.S.A., area
NASA Astrophysics Data System (ADS)
Brookins, Douglas G.
1992-01-01
Background radiation levels in the Albuquerque, New Mexico, area are elevated when compared to much of the United States. Soil K, U, and Th are somewhat elevated compared to average values in this country and generate roughly 60 mrem per year to the average resident. Cosmic ray contribution, due to the mean elevation of 5,200 ft above sea level, is 80 mrem/yr—well over the average for the United States. Thirty percent of the homes in Albuquerque contain indoor radon levels over the EPA action level of 4 pCi/ℓ compared to 10 12 percent of homes for the entire United States. Indoor radon contributes about 100 300 mrem/yr. Food, beverages, and x-ray doses are assumed at an average-equivalent for the United States and locally yield 96 mrem/yr. Total contributions from other minor sources (color TV, coal, weapons fallout, etc.) are under 10 mrem/yr. Thus total background radiation received by Albuquerque residents is about 330 530 mrem/yr, well in excess of the rest of the United States. The spread in mrem values is due to variations in the contribution from indoor radon.
A rapid radiative transfer model for reflection of solar radiation
NASA Technical Reports Server (NTRS)
Xiang, X.; Smith, E. A.; Justus, C. G.
1994-01-01
A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin; Institute of Applied Physics; Computional Mathematics Team
2011-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM). However, the experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum-number(nl-level) AAM is a natural consideration but the in-line calculation consumes much more resources. We use a new method to built up a nl-level bound electron distribution using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using the re-built nl-level bound electron distribution (Pnl) , we acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures.
Nuclear Technology Series. Course 11: Radiation Detection and Measurement.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…
Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…
Quality research in radiation oncology: a self-improvement initiative 30 years ahead of its time?
Wilson, J Frank; Owen, Jean
2005-12-01
The quality of cancer care in the United States should be better than it is. Society has demanded improvement, but much work remains to be done to define and measure both the current quality of care and the steps needed to optimize such care. Various public and private organizations are directing early efforts toward attempts to determine the quality of selected oncology services as a first step in a broad-based quality improvement process. In contrast, the ACR Patterns of Care Study (PCS) for over 30 years has relied on exemplary voluntary engagement by American radiation oncologists in critical self-assessment and self-improvement as a highly effective pathway to improved practice quality. This article provides an overview of the documented historical and recent impact of PCS research findings on practice and describes the deliberate adaptation of the PCS identity and methodology to the quality-sensitive national environment with the new project name Quality Research in Radiation Oncology. The article concludes with a discussion of the rationale for continuing this unique quality improvement initiative and some of the challenges to this imperative that are being faced.
NASA Astrophysics Data System (ADS)
Ruslim, S. K.; Purwoto, G.; Widyahening, I. S.; Ramli, I.
2017-08-01
To evaluate the characteristics and overall survival rates of early stage cervical cancer (FIGO IB-IIA) patients who receive definitive radiation therapy and those who are prescribed adjuvant postoperative radiation and to conduct a factors analysis of the variables that affect the overall survival rates in both groups of therapy. The medical records of 85 patients with cervical cancer FIGO stages IB-IIA who were treated at the Department of Radiotherapy of Cipto Mangunkusumo Hospital were reviewed and analyzed to determine their overall survival and the factors that affected it between a definitive radiation group and an adjuvant postoperative radiation group. There were 25 patients in the definitive radiation and 60 patients in the adjuvant radiation group. The overall survival rates in the adjuvant radiation group at years one, two, and three were 96.7%, 95%, and 93.3%, respectively. Negative lymph node metastasis had an average association with overall survival (p < 0.2). In the definitive radiation group, overall survival at years one, two, and three were 96%, 92%, and 92%, respectively. A hemoglobin (Hb) level >12 g/dl was a factor with an average association with the overall survival (p < 0.2). The differences between both groups of therapy were not statistically significant (92% vs. 93.3%; p = 0.138). This study did not show any statistically significant overall survival for cervical cancer FIGO stage IB-IIA patients who received definitive radiation or adjuvant postoperative radiation. Negative lymph node metastasis had an effect on the overall survival rate in the adjuvant postoperative radiation group, while a preradiation Hb level >12 g/dl tended to affect the overall survival in the definitive radiation group patients.
Modelling radiative transfer through ponded first-year Arctic sea ice with a plane-parallel model
NASA Astrophysics Data System (ADS)
Taskjelle, Torbjørn; Hudson, Stephen R.; Granskog, Mats A.; Hamre, Børge
2017-09-01
Under-ice irradiance measurements were done on ponded first-year pack ice along three transects during the ICE12 expedition north of Svalbard. Bulk transmittances (400-900 nm) were found to be on average 0.15-0.20 under bare ice, and 0.39-0.46 under ponded ice. Radiative transfer modelling was done with a plane-parallel model. While simulated transmittances deviate significantly from measured transmittances close to the edge of ponds, spatially averaged bulk transmittances agree well. That is, transect-average bulk transmittances, calculated using typical simulated transmittances for ponded and bare ice weighted by the fractional coverage of the two surface types, are in good agreement with the measured values. Radiative heating rates calculated from model output indicates that about 20 % of the incident solar energy is absorbed in bare ice, and 50 % in ponded ice (35 % in pond itself, 15 % in the underlying ice). This large difference is due to the highly scattering surface scattering layer (SSL) increasing the albedo of the bare ice.
NASA Astrophysics Data System (ADS)
Wright, Robert; Blackett, Matthew; Hill-Butler, Charley
2015-01-01
present satellite measurements of the thermal flux observed from 95 active volcanoes, based on observations made daily over the past 15 years by NASA's Terra and Aqua Moderate Resolution Imaging Spectroradiometer sensors. Excursions from an apparent baseline level of thermal emission are attributable to episodic lava-flow-forming eruptions. Highest average intensity was associated with the July 2001 eruption of Etna, Italy, which radiated an average of 2.5 × 109 W over 23 days. However, recent fissure eruptions in the Afar Rift have attained higher average intensities of 2.4-4.4 × 109 W, albeit for days, not weeks. The largest magnitude eruption was the ongoing eruption of Bardarbunga, Iceland, which radiated 2.6 × 1016 J. Kīlauea, Hawai'i, has radiated the most energy since 2000, although the lava lake at Nyiragongo, Democratic Republic of Congo, comes a close second. Time series analysis reveals evidence for periodicity in radiant flux at some volcanoes but not at others.
Beaulieu, Luc; Radford, Dee-Ann; Eduardo Villarreal-Barajas, J
2018-03-14
The Canadian Organization of Medical Physicists (COMP), in close partnership with the Canadian Partnership for Quality Radiotherapy (CPQR) has developed a series of Technical Quality Control (TQC) guidelines for radiation treatment equipment. These guidelines outline the performance objectives that equipment should meet in order to ensure an acceptable level of radiation treatment quality. The TQC guidelines have been rigorously reviewed and field tested in a variety of Canadian radiation treatment facilities. The development process enables rapid review and update to keep the guidelines current with changes in technology. This article contains detailed performance objectives and safety criteria for low-dose-rate (LDR) permanent seed brachytherapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
MOSFET detectors in quality assurance of tomotherapy treatments.
Cherpak, Amanda; Studinski, Ryan C N; Cygler, Joanna E
2008-02-01
The purpose of this work was to characterize metal oxide semiconductor field-effect transistors (MOSFETs) in a 6 MV conventional linac and investigate their use for quality assurance of radiotherapy treatments with a tomotherapy Hi-Art unit. High sensitivity and standard sensitivity MOSFETs were first calibrated and then tested for reproducibility, field size dependence, and accuracy of measuring surface dose in a 6 MV beam as well as in a tomotherapy Hi-Art unit. In vivo measurements were performed on both a RANDO phantom and several head and neck cancer patients treated with tomotherapy and compared to TLD measurements and treatment plan doses to evaluate the performance of MOSFETs in a high gradient radiation field. The average calibration factor found was 0.345+/-2.5%cGy/mV for the high sensitivity MOSFETs tested and 0.901+/-2.4%cGy/mV for the standard sensitivity MOSFETs. MOSFET measured surface doses had an average agreement with ion chamber measurements of 1.55% for the high sensitivity MOSFET and 5.23% for the standard sensitivity MOSFET when averaged over all trials and field sizes tested. No significant dependence on field size was found for the standard sensitivity MOSFETs, however a maximum difference of 5.34% was found for the high sensitivity MOSFET calibration factors in the field sizes tested. Measurements made with MOSFETS on head and neck patients treated on a tomotherapy Hi-Art unit had an average agreement of (3.26+/-0.03)% with TLD measurements, however the average of the absolute difference between the MOSFET measurements and the treatment plan skin doses was (12.2+/-7.5)%. The MOSFET measured patient skin doses also had good reproducibility, with inter-fraction deviations ranging from 1.4% to 6.6%. Similar results were found from trials using a RANDO phantom. The MOSFETs performed well when used in the tomotherapy Hi-Art unit and did not increase the overall treatment set-up time when used for patient measurements. It was found that MOSFETs are suitable detectors for surface dose measurements in both conventional beam and tomotherapy treatments and they can provide valuable skin dose information in areas where the treatment planning system may not be accurate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malkoske, Kyle; Nielsen, Michelle; Brown, Erika
The Canadian Partnership for Quality Radiotherapy (CPQR) and the Canadian Organization of Medical Physicist’s (COMP) Quality Assurance and Radiation Safety Advisory Committee (QARSAC) have worked together in the development of a suite of Technical Quality Control (TQC) Guidelines for radiation treatment equipment and technologies, that outline specific performance objectives and criteria that equipment should meet in order to assure an acceptable level of radiation treatment quality. Early community engagement and uptake survey data showed 70% of Canadian centers are part of this process and that the data in the guideline documents reflect, and are influencing the way Canadian radiation treatmentmore » centres run their technical quality control programs. As the TQC development framework matured as a cross-country initiative, guidance documents have been developed in many clinical technologies. Recently, there have been new TQC documents initiated for Gamma Knife and Cyberknife technologies where the entire communities within Canada are involved in the review process. At the same time, QARSAC reviewed the suite as a whole for the first time and it was found that some tests and tolerances overlapped across multiple documents as single tests could pertain to multiple quality control areas. The work to streamline the entire suite has allowed for improved usability of the suite while keeping the integrity of single quality control areas. The suite will be published by the JACMP, in the coming year.« less
Fundamental formulae for wave-energy conversion
Falnes, Johannes; Kurniawan, Adi
2015-01-01
The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units—i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)—may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the ‘added-mass’ matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called ‘fundamental theorem for wave power’. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies. PMID:26064612
Fundamental formulae for wave-energy conversion.
Falnes, Johannes; Kurniawan, Adi
2015-03-01
The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.
NASA Astrophysics Data System (ADS)
Kim, Kyo-Tae; Heo, Ye-Ji; Han, Moo-Jae; Oh, Kyung-Min; Lee, Young-Kyu; Kim, Shin-Wook; Park, Sung-Kwang
2017-04-01
In radiation therapy, accurate radiotherapy treatment plan (RTP) reproduction is necessary to optimize the clinical results. Thus, attempts have recently been made to ensure high RTP reproducibility using image-guide radiation therapy (IGRT) technology. However, the clinical use of digital X-ray equipment requires extended quality assurance (QA) for those devices, since the IGRT device quality determines the precision of intensity-modulated radiation therapy. The study described in this paper was focused on developing a multi-energy PbO dosimeter for IGRT device QA. The Schottky-type polycrystalline PbO dosimeter with a Au/PbO/ITO structure was evaluated by comparing its response coincidence, dose linearity, measurement reproducibility, linear attenuation coefficient, and percent depth dose with those of Si diode and standard ionization chamber dosimeters.
Implications of the focal beam profile in serial femtosecond crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, Lorenzo; Chapman, Henry N.; Metcalf, Peter
The photon density profile of an X-ray free-electron laser (XFEL) beam at the focal position is a critical parameter for serial femtosecond crystallography (SFX), but is difficult to measure because of the destructive power of the beam. A novel high intensity radiation induced phasing method (HIRIP) has been proposed as a general experimental approach for protein structure determination, but has proved to be sensitive to variations of the X-ray intensity, with uniform incident fluence desired for best performance. Here we show that experimental SFX data collected at the nano-focus chamber of the Coherent X-ray Imaging end-station at the Linac Coherentmore » Light Source using crystals with a limited size distribution suggests an average profile of the X-ray beam that has a large variation of intensity. We propose a new method to improve the quality of high fluence data for HI-RIP, by identifying and removing diffraction patterns from crystals exposed to the low intensity region of the beam. The method requires crystals of average size comparable to the width of the focal spot.« less
Smith, Jim T
2007-01-01
Background Following a nuclear incident, the communication and perception of radiation risk becomes a (perhaps the) major public health issue. In response to such incidents it is therefore crucial to communicate radiation health risks in the context of other more common environmental and lifestyle risk factors. This study compares the risk of mortality from past radiation exposures (to people who survived the Hiroshima and Nagasaki atomic bombs and those exposed after the Chernobyl accident) with risks arising from air pollution, obesity and passive and active smoking. Methods A comparative assessment of mortality risks from ionising radiation was carried out by estimating radiation risks for realistic exposure scenarios and assessing those risks in comparison with risks from air pollution, obesity and passive and active smoking. Results The mortality risk to populations exposed to radiation from the Chernobyl accident may be no higher than that for other more common risk factors such as air pollution or passive smoking. Radiation exposures experienced by the most exposed group of survivors of Hiroshima and Nagasaki led to an average loss of life expectancy significantly lower than that caused by severe obesity or active smoking. Conclusion Population-averaged risks from exposures following major radiation incidents are clearly significant, but may be no greater than those from other much more common environmental and lifestyle factors. This comparative analysis, whilst highlighting inevitable uncertainties in risk quantification and comparison, helps place the potential consequences of radiation exposures in the context of other public health risks. PMID:17407581
Efstathiou, Jason A; Heunis, Magda; Karumekayi, Talkmore; Makufa, Remigio; Bvochora-Nsingo, Memory; Gierga, David P; Suneja, Gita; Grover, Surbhi; Kasese, Joseph; Mmalane, Mompati; Moffat, Howard; von Paleske, Alexander; Makhema, Joseph; Dryden-Peterson, Scott
2016-01-01
There is a global cancer crisis, and it is disproportionately affecting resource-constrained settings, especially in low- and middle-income countries (LMICs). Radiotherapy is a critical and cost-effective component of a comprehensive cancer control plan that offers the potential for cure, control, and palliation of disease in greater than 50% of patients with cancer. Globally, LMICs do not have adequate access to quality radiation therapy and this gap is particularly pronounced in sub-Saharan Africa. Although there are numerous challenges in implementing a radiation therapy program in a low-resource setting, providing more equitable global access to radiotherapy is a responsibility and investment worth prioritizing. We outline a systems approach and a series of key questions to direct strategy toward establishing quality radiation services in LMICs, and highlight the story of private-public investment in Botswana from the late 1990s to the present. After assessing the need and defining the value of radiation, we explore core investments required, barriers that need to be overcome, and assets that can be leveraged to establish a radiation program. Considerations addressed include infrastructure; machine choice; quality assurance and patient safety; acquisition, development, and retention of human capital; governmental engagement; public-private partnerships; international collaborations; and the need to critically evaluate the program to foster further growth and sustainability. © 2015 by American Society of Clinical Oncology.
NASA Astrophysics Data System (ADS)
Huang, D.; Liu, Y.
2014-12-01
The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes are examined by use of long-term retrieval products at the Tropical West Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy's Atmospheric Radiation Measurement (ARM) Program. Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water content. The PDFs are then used to upscale relevant physical processes to obtain grid-average process rates. It is found that the truncated Gaussian representation results in up to 30% mean bias in autoconversion rate whereas the mean bias for the lognormal representation is about 10%. The Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations perform better than the Gamma and Weibull representations. The results show that the optimal choice of subgrid cloud distribution function depends on the nonlinearity of the process of interest and thus there is no single distribution function that works best for all parameterizations. Examination of the scale (window size) dependence of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.
Derin, Mary Thomas; Vijayagopal, Perumal; Venkatraman, Balasubramaniam; Chaubey, Ramesh Chandra; Gopinathan, Anilkumar
2012-01-01
The present paper describes a detailed study on the distribution of radionuclides along Chavara – Neendakara placer deposit, a high background radiation area (HBRA) along the Southwest coast of India (Kerala). Judged from our studies using HPGe gamma spectrometric detector, it becomes evident that Uranium (238U), Thorium (232Th) and Potassium (40K) are the major sources for radioactivity prevailing in the area. Our statistical analyses reveal the existence of a high positive correlation between 238U and 232Th, implicating that the levels of these elements are interdependent. Our SEM-EDAX analyses reveal that titanium (Ti) and zircon (Zr) are the major trace elements in the sand samples, followed by aluminum, copper, iron, ruthenium, magnesium, calcium, sulphur and lead. This is first of its kind report on the radiation hazard indices on this placer deposit. The average absorbed dose rates (9795 nGy h−1) computed from the present study is comparable with the top-ranking HBRAs in the world, thus offering the Chavara-Neendakara placer the second position, after Brazil; pertinently, this value is much higher than the World average. The perceptibly high absorbed gamma dose rates, entrained with the high annual external effective dose rates (AEED) and average annual gonadal dose equivalent (AGDE) values existing in this HBRA, encourage us to suggest for a candid assessment of the impact of the background radiation, if any, on the organisms that inhabit along this placer deposit. Future research could effectively address the issue of the possible impact of natural radiation on the biota inhabiting this HBRA. PMID:23185629
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noel, Camille E.; Gutti, VeeraRajesh; Bosch, Walter
Purpose: To quantify the potential impact of the Integrating the Healthcare Enterprise–Radiation Oncology Quality Assurance with Plan Veto (QAPV) on patient safety of external beam radiation therapy (RT) operations. Methods and Materials: An institutional database of events (errors and near-misses) was used to evaluate the ability of QAPV to prevent clinically observed events. We analyzed reported events that were related to Digital Imaging and Communications in Medicine RT plan parameter inconsistencies between the intended treatment (on the treatment planning system) and the delivered treatment (on the treatment machine). Critical Digital Imaging and Communications in Medicine RT plan parameters were identified.more » Each event was scored for importance using the Failure Mode and Effects Analysis methodology. Potential error occurrence (frequency) was derived according to the collected event data, along with the potential event severity, and the probability of detection with and without the theoretical implementation of the QAPV plan comparison check. Failure Mode and Effects Analysis Risk Priority Numbers (RPNs) with and without QAPV were compared to quantify the potential benefit of clinical implementation of QAPV. Results: The implementation of QAPV could reduce the RPN values for 15 of 22 (71%) of evaluated parameters, with an overall average reduction in RPN of 68 (range, 0-216). For the 6 high-risk parameters (>200), the average reduction in RPN value was 163 (range, 108-216). The RPN value reduction for the intermediate-risk (200 > RPN > 100) parameters was (0-140). With QAPV, the largest RPN value for “Beam Meterset” was reduced from 324 to 108. The maximum reduction in RPN value was for Beam Meterset (216, 66.7%), whereas the maximum percentage reduction was for Cumulative Meterset Weight (80, 88.9%). Conclusion: This analysis quantifies the value of the Integrating the Healthcare Enterprise–Radiation Oncology QAPV implementation in clinical workflow. We demonstrate that although QAPV does not provide a comprehensive solution for error prevention in RT, it can have a significant impact on a subset of the most severe clinically observed events.« less
Bacher, Klaus; Smeets, Peter; Vereecken, Ludo; De Hauwere, An; Duyck, Philippe; De Man, Robert; Verstraete, Koenraad; Thierens, Hubert
2006-09-01
The aim of this study was to compare the image quality and radiation dose in chest imaging using an amorphous silicon flat-panel detector system and an amorphous selenium flat-panel detector system. In addition, the low-contrast performance of both systems with standard and low radiation doses was compared. In two groups of 100 patients each, digital chest radiographs were acquired with either an amorphous silicon or an amorphous selenium flat-panel system. The effective dose of the examination was measured using thermoluminescent dosimeters placed in an anthropomorphic Rando phantom. The image quality of the digital chest radiographs was assessed by five experienced radiologists using the European Guidelines on Quality Criteria for Diagnostic Radiographic Images. In addition, a contrast-detail phantom study was set up to assess the low-contrast performance of both systems at different radiation dose levels. Differences between the two groups were tested for significance using the two-tailed Mann-Whitney test. The amorphous silicon flat-panel system allowed an important and significant reduction in effective dose in comparison with the amorphous selenium flat-panel system (p < 0.0001) for both the posteroanterior and lateral views. In addition, clinical image quality analysis showed that the dose reduction was not detrimental to image quality. Compared with the amorphous selenium flat-panel detector system, the amorphous silicon flat-panel detector system performed significantly better in the low-contrast phantom study, with phantom entrance dose values of up to 135 muGy. Chest radiographs can be acquired with a significantly lower patient radiation dose using an amorphous silicon flat-panel system than using an amorphous selenium flat-panel system, thereby producing images that are equal or even superior in quality to those of the amorphous selenium flat-panel detector system.
NASA Technical Reports Server (NTRS)
Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.
2000-01-01
Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against monthly averaged diagnostics obtained from hourly samplings over the entire globe. Results show that differences between irregularly (satellite) and regularly (true) sampled diagnostics of the longwave net radiative budgets are the greatest at the surface and the smallest in the atmosphere and at the top-of-the-atmosphere, under both cloud-free and cloudy conditions. In contrast, differences between the satellite and the true diagnostics of the longwave cloud radiative forcings are the largest in the atmosphere and at the top-of-the-atmosphere, and the smallest at the surface. A poorer diurnal sampling of the surface temperature in the satellite simulations relative to the true simulation contributes a major part to sampling biases in the longwave net radiative budgets, while a poorer diurnal sampling of cloudiness and its optical properties directly affects diagnostics of the longwave cloud radiative forcings. A factor of 8 difference in the number of satellite overpasses between PICA705 and PICA485 and ICESAT leads to a systematic factor of 3 difference in the spatial standard deviations of all radiative and cloudiness diagnostics.
A new plan quality index for nasopharyngeal cancer SIB IMRT.
Jin, X; Yi, J; Zhou, Y; Yan, H; Han, C; Xie, C
2014-02-01
A new plan quality index integrating dosimetric and radiobiological indices was proposed to facilitate the evaluation and comparison of simultaneous integrated boost (SIB) intensity modulated radiotherapy (IMRT) plans for nasopharyngeal cancer (NPC) patients. Ten NPC patients treated by SIB-IMRT were enrolled in the study. Custom software was developed to read dose-volume histogram (DVH) curves from the treatment planning system (TPS). A plan filtering matrix was introduced to filter plans that fail to satisfy treatment protocol. Target plan quality indices and organ at risk (OAR) plan quality indices were calculated for qualified plans. A unique composite plan quality index (CPQI) was proposed based on the relative weight of these indices to evaluate and compare competing plans. Plan ranking results were compared with detailed statistical analysis, radiation oncology quality system (ROQS) scoring results and physician's evaluation results to verify the accuracy of this new plan quality index. The average CPQI values for plans with OAR priority of low, normal, high, and PTV only were 0.22 ± 0.08, 0.49 ± 0.077, 0.71 ± 0.062, and -0.21 ± 0.16, respectively. There were significant differences among these plan quality indices (One-way ANOVA test, p < 0.01). This was consistent with statistical analysis, ROQS results and physician's ranking results in which 90% OAR high plans were selected. Plan filtering matrix was able to speed up the plan evaluation process. The new matrix plan quality index CPQI showed good consistence with physician ranking results. It is a promising index for NPC SIB-IMRT plan evaluation. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Drying characteristics and quality of rough rice under infrared radiation heating
USDA-ARS?s Scientific Manuscript database
Infrared (IR) radiation heating could provide high heating rate and rapid moisture removal for rough rice drying. The objective of this research was to investigate the effect of the drying bed thickness on drying characteristics and quality of rough rice subjected to IR heating. Samples of freshly ...
The Question of Impurities in Macromolecule Crystal Quality Improvement in Microgravity
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matthew; Cassanto, John M.
2000-01-01
While macromolecule impurities may affect crystal size and morphology the over-riding question is how do macromolecule impurities effect crystal X-ray quality and diffraction resolution. In the case of chicken egg white lysozyme previous researchers have reported that crystals grown in the presence of ovalbumin, ovotransferrin, and turkey egg white lysozyme show no difference in diffraction resolution compared to those grown in pure solutions. One impurity however, a naturally occurring lysozyme dimer, does negatively impact the X-ray crystal properties. For this impurity it has been reported that crystal quality improvement in microgravity may be due to improved impurity partitioning during crystallization. In this study we have examined the incorporation of the dimer into lysozyme crystals, both on the ground and in microgravity experiments, and have performed detailed X-ray analysis of the crystals using a new technique for finely probing the mosaicity of the crystal at the Stanford Synchrotron Radiation Laboratory. Dimer partitioning was not significantly different in microgravity compared to the ground based experiments, although it is significantly better than that previously reported in microgravity. Mosaicity analysis of pure crystals, 1422 indexed reflections (microgravity) and 752 indexed reflections (ground), gave average results of 0.0066 and 0.0092 degrees (FWHM) respectively. The microgravity crystals also provided an increased signal to noise. Dimer incorporation increased the average mosaicity in microgravity but not on the ground. However, dimer incorporation did greatly reduce the resolution limit in both ground and microgravity grown crystals. The data is being treated anisotropically to explore these effects. These results indicate that impurity effects in microgravity are complex and that the conditions or techniques employed may greatly affect the role of impurities.
Preoperative Chemotherapy, Radiation Improve Survival in Esophageal Cancer (Updated)
Patients with esophageal cancer who received chemotherapy and radiation before surgery survived, on average, nearly twice as long as patients treated with surgery alone, according to results of a randomized clinical trial published May 31, 2012, in NEJM.
Potential of a New Lunar Surface Radiator Concept for Hot Lunar Thermal Environments
NASA Technical Reports Server (NTRS)
Ochoa, Dustin A.; Vogel, Matthew R.; Trevino, Luis A.; Stephan, Ryan A.
2008-01-01
The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft s vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approx.325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Upright Lunar Terrain Radiator Assembly (ULTRA), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of the ULTRA is the absence of louvers or other moving parts and its simple geometry. Analysis of the ULTRA for a lunar extravehicular activity (EVA) portable life support system (PLSS) is shown to provide moderate heat rejection, on average, at all solar incident angles assuming an average radiator temperature of 294 K, whereas prior concepts exhibited insignificant heat rejection or heat absorption at higher incident angles. The performance of the ULTRA for a lunar lander is also discussed and compared to the performance of a vertically oriented, flat panel radiator at various lunar latitudes.
Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wild, Esther, E-mail: e.wild@dkfz.de; Bangert, Mark; Nill, Simeon
Purpose: The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. Methods: For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directionsmore » and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. Results: VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable treatment plan quality. Conclusions: The authors’ study reconfirms the dosimetric benefits of noncoplanar irradiation of nasopharyngeal tumors. Both SnS using optimized noncoplanar beam ensembles and VMAT using an optimized, arbitrary, noncoplanar trajectory enabled dose reductions in organs at risk compared to coplanar SnS and VMAT. Using great circles or simple couch rotations to implement noncoplanar VMAT, however, was not sufficient to yield meaningful improvements in treatment plan quality. The authors estimate that noncoplanar VMAT using arbitrary optimized irradiation trajectories comes at an increased delivery time compared to coplanar VMAT yet at a decreased delivery time compared to noncoplanar SnS IMRT.« less
Phenol induced by irradiation does not impair sensory quality of fenugreek and papaya
NASA Astrophysics Data System (ADS)
Chatterjee, Suchandra; Variyar, Prasad S.; Sharma, Arun
2013-11-01
The effect of radiation processing on the sensory quality of fenugreek and papaya exposed to doses in the range of 2.5-10 kGy and 100 Gy-2.5 kGy respectively was investigated. Despite an increase in the content of phenol in the volatile oil of these food products overall sensory quality of the irradiated and control samples was not significantly affected by radiation processing.
Medium-induced gluon radiation and colour decoherence beyond the soft approximation
NASA Astrophysics Data System (ADS)
Apolinário, Liliana; Armesto, Néstor; Milhano, José Guilherme; Salgado, Carlos A.
2015-02-01
We derive the in-medium gluon radiation spectrum off a quark within the path integral formalism at finite energies, including all next-to-eikonal corrections in the propagators of quarks and gluons. Results are computed for finite formation times, including interference with vacuum amplitudes. By rewriting the medium averages in a convenient manner we present the spectrum in terms of dipole cross sections and a colour decoherence parameter with the same physical origin as that found in previous studies of the antenna radiation. This factorisation allows us to present a simple physical picture of the medium-induced radiation for any value of the formation time, that is of interest for a probabilistic implementation of the modified parton shower. Known results are recovered for the particular cases of soft radiation and eikonal quark and for the case of a very long medium, with length much larger than the average formation times for medium-induced radiation. Technical details of the computation of the relevant n-point functions in colour space and of the required path integrals in transverse space are provided. The final result completes the calculation of all finite energy corrections for the radiation off a quark in a QCD medium that exist in the small angle approximation and for a recoilless medium.
NASA Astrophysics Data System (ADS)
Wiryanta, I. K. E. H.; Adiaksa, I. M. A.
2018-01-01
The purposes of this research was to investigate the temperature performance of tube and fins car radiator experimentally and numerically. The experiment research was carried out on a simulation design consists of a reservoir water tank, a heater, pump to circulate hot water to the radiator and a cooling fan. The hot water mass flow rate is 0.486 kg/s, and the cooling air velocity of the fan is 1 m/s. The heat transfer rate and the effectiveness of radiator were investigated. The results showed that the exhaust heat transfer rate from the radiator tended to increase over time, with an average heat transfer rate of 3974.3 Watt. The maximum heat transfer rate was 4680 Watt obtained at 6 minutes. The effectiveness of the radiator (ε) over time tends to increase with an average of ε = 0.3 and the maximum effectiveness value was obtained at 12 minutes i.e. 0.35. The numerical research conducted using CFD method. The geometry and meshing created using ANSYS Workbench and the post processing using Fluent. The simulation result showed the similarity with the experimental research. The temperatures of air-side radiator are about 45°C.
An Improved Approach for Estimating Daily Net Radiation over the Heihe River Basin
Wu, Bingfang; Liu, Shufu; Zhu, Weiwei; Yan, Nana; Xing, Qiang; Tan, Shen
2017-01-01
Net radiation plays an essential role in determining the thermal conditions of the Earth’s surface and is an important parameter for the study of land-surface processes and global climate change. In this paper, an improved satellite-based approach to estimate the daily net radiation is presented, in which sunshine duration were derived from the geostationary meteorological satellite (FY-2D) cloud classification product, the monthly empirical as and bs Angstrom coefficients for net shortwave radiation were calibrated by spatial fitting of the ground data from 1997 to 2006, and the daily net longwave radiation was calibrated with ground data from 2007 to 2010 over the Heihe River Basin in China. The estimated daily net radiation values were validated against ground data for 12 months in 2008 at four stations with different underlying surface types. The average coefficient of determination (R2) was 0.8489, and the averaged Nash-Sutcliffe equation (NSE) was 0.8356. The close agreement between the estimated daily net radiation and observations indicates that the proposed method is promising, especially given the comparison between the spatial distribution and the interpolation of sunshine duration. Potential applications include climate research, energy balance studies and the estimation of global evapotranspiration. PMID:28054976
An Improved Approach for Estimating Daily Net Radiation over the Heihe River Basin.
Wu, Bingfang; Liu, Shufu; Zhu, Weiwei; Yan, Nana; Xing, Qiang; Tan, Shen
2017-01-04
Net radiation plays an essential role in determining the thermal conditions of the Earth's surface and is an important parameter for the study of land-surface processes and global climate change. In this paper, an improved satellite-based approach to estimate the daily net radiation is presented, in which sunshine duration were derived from the geostationary meteorological satellite (FY-2D) cloud classification product, the monthly empirical a s and b s Angstrom coefficients for net shortwave radiation were calibrated by spatial fitting of the ground data from 1997 to 2006, and the daily net longwave radiation was calibrated with ground data from 2007 to 2010 over the Heihe River Basin in China. The estimated daily net radiation values were validated against ground data for 12 months in 2008 at four stations with different underlying surface types. The average coefficient of determination ( R ²) was 0.8489, and the averaged Nash-Sutcliffe equation ( NSE ) was 0.8356. The close agreement between the estimated daily net radiation and observations indicates that the proposed method is promising, especially given the comparison between the spatial distribution and the interpolation of sunshine duration. Potential applications include climate research, energy balance studies and the estimation of global evapotranspiration.
Wang, Juanqi; Hu, Weigang; Yang, Zhaozhi; Chen, Xiaohui; Wu, Zhiqiang; Yu, Xiaoli; Guo, Xiaomao; Lu, Saiquan; Li, Kaixuan; Yu, Gongyi
2017-05-22
Knowledge-based planning (KBP) is a promising technique that can improve plan quality and increase planning efficiency. However, no attempts have been made to extend the domain of KBP for planners with different planning experiences so far. The purpose of this study was to quantify the potential gains for planners with different planning experiences after implementing KBP in intensity modulated radiation therapy (IMRT) plans for left-sided breast cancer patients. The model libraries were populated with 80 expert clinical plans from treated patients who previously received left-sided breast-conserving surgery and IMRT with simultaneously integrated boost. The libraries were created on the RapidPlan TM . 6 planners with different planning experiences (2 beginner planners, 2 junior planners and 2 senior planners) generated manual and KBP optimized plans for additional 10 patients, similar to those included in the model libraries. The plan qualities were compared between manual and KBP plans. All plans were capable of achieving the prescription requirement. There were almost no statistically significant differences in terms of the planning target volume (PTV) coverage and dose conformality. It was demonstrated that the doses for most of organs-at-risk (OARs) were on average lower or equal in KBP plans compared to manual plans except for the senior planners, where the very small differences were not statistically significant. KBP data showed a systematic trend to have superior dose sparing at most parameters for the heart and ipsilateral lung. The observed decrease in the doses to these OARs could be achieved, particularly for the beginner and junior planners. Many differences were statistically significant. It is feasible to generate acceptable IMRT plans after implementing KBP for left-sided breast cancer. KBP helps to effectively improve the quality of IMRT plans against the benchmark of manual plans for less experienced planners without any manual intervention. KBP showed promise for homogenizing the plan quality by transferring planning expertise from more experienced to less experienced planners.
Yao, Xiaoqin; Chu, Jianzhou; He, Xueli; Ma, Chunhui; Han, Chao; Shen, Haiyu
2015-05-01
The paper mainly reported the changes in quality ingredients of Qi chrysanthemum flowers treated with elevated UV-B radiation at different growth stages. The experiment included two levels of UV-B radiation (ambient UV-B, a 10% increase in ambient UV-B). Elevated UV-B radiation was carried out for 10-days during seedling, vigorous growth, bud and flower stages of Qi chrysanthemum, respectively. Elevated UV-B treatments applied during four development stages did not significantly affect flower yield, the rate of superoxide radical production and malondialdehyde concentration in flowers, while increased free amino acid concentration. The amino acid concentration induced by elevated UV-B radiation applied during bud stage was higher than that during the other stages. Elevated UV-B radiation applied during vigorous growth (except for flavone), bud and flower stages of chrysanthemum significantly increased hydrogen peroxide concentration, phenylalanine ammonia lyase enzyme activity, vitamin C, chlorogenic acid and flavone concentrations in flowers. These results suggested that active and nutritional ingredients in flowers of chrysanthemum could be increased by elevated UV-B radiation applied during the later growth stages of chrysanthemum. The paper supplied a simple and environmental-friendly method to improve quality of medicinal plants. Copyright © 2015 Elsevier B.V. All rights reserved.
Improved Statistical Model Of 10.7-cm Solar Radiation
NASA Technical Reports Server (NTRS)
Vedder, John D.; Tabor, Jill L.
1993-01-01
Improved mathematical model simulates short-term fluctuations of flux of 10.7-cm-wavelength solar radiation during 91-day averaging period. Called "F10.7 flux", important as measure of solar activity and because it is highly correlated with ultraviolet radiation causing fluctuations in heating and density of upper atmosphere. F10.7 flux easily measureable at surface of Earth.
Bauer, Carole; Magnan, Morris; Laszewski, Pamela
Radiation therapy is a key treatment modality for cancer patients, but it is associated with adverse side effects such as radiation dermatitis. To mitigate the adverse effects of radiation on the skin, patients must participate in skin-related self-care. However, even with self-care instruction, adherence can be poor. This quality improvement project used best available evidence for skin care in patients undergoing radiation therapy and a theoretical framework, 4MATing, to provide a structured approach to patient education designed to enhance adherence to skin care recommendations. Implementation of this approach resulted in increased adherence to a topical skin care protocol in our facility. Patients were highly satisfied with their education. While there was a 4-day delay in the onset of radiation dermatitis, this difference was not statistically significant.
Occupational radiation exposure in nuclear medicine department in Kuwait
NASA Astrophysics Data System (ADS)
Alnaaimi, M.; Alkhorayef, M.; Omar, M.; Abughaith, N.; Alduaij, M.; Salahudin, T.; Alkandri, F.; Sulieman, A.; Bradley, D. A.
2017-11-01
Ionizing radiation exposure is associated with eye lens opacities and cataracts. Radiation workers with heavy workloads and poor protection measures are at risk for vision impairment or cataracts if suitable protection measures are not implemented. The aim of this study was to measure and evaluate the occupational radiation exposure in a nuclear medicine (NM) department. The annual average effective doses (Hp[10] and Hp[0.07]) were measured using calibrated thermos-luminescent dosimeters (TLDs; MCP-N [LiF:Mg,Cu,P]). Five categories of staff (hot lab staff, PET physicians, NM physicians, technologists, and nurses) were included. The average annual eye dose (Hp[3]) for NM staff, based on measurements for a typical yearly workload of >7000 patients, was 4.5 mSv. The annual whole body radiation (Hp[10]) and skin doses (Hp[0.07]) were 4.0 and 120 mSv, respectively. The measured Hp(3), Hp(10), and Hp(0.07) doses for all NM staff categories were below the dose limits described in ICRP 2014 in light of the current practice. The results provide baseline data for staff exposure in NM in Kuwait. Radiation dose optimization measures are recommended to reduce NM staff exposure to its minimal value.
Nelson, Heidi D; Pappas, Miranda; Cantor, Amy; Griffin, Jessica; Daeges, Monica; Humphrey, Linda
2016-02-16
In 2009, the U.S. Preventive Services Task Force recommended biennial mammography screening for women aged 50 to 74 years and selective screening for those aged 40 to 49 years. To review studies of screening in average-risk women with mammography, magnetic resonance imaging, or ultrasonography that reported on false-positive results, overdiagnosis, anxiety, pain, and radiation exposure. MEDLINE and Cochrane databases through December 2014. English-language systematic reviews, randomized trials, and observational studies of screening. Investigators extracted and confirmed data from studies and dual-rated study quality. Discrepancies were resolved through consensus. Based on 2 studies of U.S. data, 10-year cumulative rates of false-positive mammography results and biopsies were higher with annual than biennial screening (61% vs. 42% and 7% vs. 5%, respectively) and for women aged 40 to 49 years, those with dense breasts, and those using combination hormone therapy. Twenty-nine studies using different methods reported overdiagnosis rates of 0% to 54%; rates from randomized trials were 11% to 22%. Women with false-positive results reported more anxiety, distress, and breast cancer-specific worry, although results varied across 80 observational studies. Thirty-nine observational studies indicated that some women reported pain during mammography (1% to 77%); of these, 11% to 46% declined future screening. Models estimated 2 to 11 screening-related deaths from radiation-induced cancer per 100,000 women using digital mammography, depending on age and screening interval. Five observational studies of tomosynthesis and mammography indicated increased biopsies but reduced recalls compared with mammography alone. Studies of overdiagnosis were highly heterogeneous, and estimates varied depending on the analytic approach. Studies of anxiety and pain used different outcome measures. Radiation exposure was based on models. False-positive results are common and are higher for annual screening, younger women, and women with dense breasts. Although overdiagnosis, anxiety, pain, and radiation exposure may cause harm, their effects on individual women are difficult to estimate and vary widely. Agency for Healthcare Research and Quality.
Hirakuri, Ayaka; Numasawa, Kanako; Takeishi, Hideki; Satomura, Minato; Takeda, Hiromitsu; Harada, Kuniaki; Asanuma, Osamu; Sakata, Motomichi
2012-01-01
The exposure of the eye lens caused by multi-detector row computed tomography (MDCT) of the temporal bone is a serious problem. Our aim was to evaluate the radiation dose to the eye lens by different scan baselines (orbitomeatal line; OML, acanthiomeatal line; AML) and examine the difference of the depiction of the temporal bone structures. Measurement of the exposure to the eye lens was performed by means of MDCT of the temporal bone with a radio-photoluminescence glass dosimeter using a rand phantom. Moreover, we studied only one volunteer (58-year-old male) who had no symptom and was not suspected of having any ear abnormalities with a two scan baseline. Visualization of the major anatomical structures of the temporal bone (the tympanic portion of the facial nerve canal, the body of the incus, stapes superstructures, vestibule etc.) was performed on the volunteer. The average absorbed dose was 6.42 mGy by the OML and 1.59 mGy by the AML, respectively. With regard to visualization of the temporal bone structures, all structures were of equal quality with the two scan baseline. With the AML line, the radiation dose to the eye lens was reduced to 75%. Therefore, the authors recommended an AML for use for MDCT of the temporal bone. In clinical practice, the optimization of scanning factor (kVp, mAs etc.) and the use of the radio-protection should be implemented for radiation dose reduction of the eye lens by MDCT of the temporal bone.
Ardley, Nicholas D; Lau, Ken K; Buchan, Kevin
2013-12-01
Cervical spine injuries occur in 4-8 % of adults with head trauma. Dual acquisition technique has been traditionally used for the CT scanning of brain and cervical spine. The purpose of this study was to determine the efficacy of radiation dose reduction by using a single acquisition technique that incorporated both anatomical regions with a dedicated neck detection algorithm. Thirty trauma patients for brain and cervical spine CT were included and were scanned with the single acquisition technique. The radiation doses from the single CT acquisition technique with the neck detection algorithm, which allowed appropriate independent dose administration relevant to brain and cervical spine regions, were recorded. Comparison was made both to the doses calculated from the simulation of the traditional dual acquisitions with matching parameters, and to the doses of retrospective dual acquisition legacy technique with the same sample size. The mean simulated dose for the traditional dual acquisition technique was 3.99 mSv, comparable to the average dose of 4.2 mSv from 30 previous patients who had CT of brain and cervical spine as dual acquisitions. The mean dose from the single acquisition technique was 3.35 mSv, resulting in a 16 % overall dose reduction. The images from the single acquisition technique were of excellent diagnostic quality. The new single acquisition CT technique incorporating the neck detection algorithm for brain and cervical spine significantly reduces the overall radiation dose by eliminating the unavoidable overlapping range between 2 anatomical regions which occurs with the traditional dual acquisition technique.
Digital radiography: optimization of image quality and dose using multi-frequency software.
Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D
2012-09-01
New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.
Status of the R&D activity on diamond particle detectors
NASA Astrophysics Data System (ADS)
Adam, W.; Bellini, B.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Doroshenko, J.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K. K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Karl, C.; Kass, R.; Keil, M.; Knöpfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Perera, L.; Pernicka, M.; Polesello, P.; Potenza, R.; Riester, J. L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.; RD42 Collaboration
2003-09-01
Chemical Vapor Deposited (CVD) polycrystalline diamond has been proposed as a radiation-hard alternative to silicon in the extreme radiation levels occurring close to the interaction region of the Large Hadron Collider. Due to an intense research effort, reliable high-quality polycrystalline CVD diamond detectors, with up to 270 μm charge collection distance and good spatial uniformity, are now available. The most recent progress on the diamond quality, on the development of diamond trackers and on radiation hardness studies are presented and discussed.