Sample records for average radon concentration

  1. Results of simultaneous radon and thoron measurements in 33 metropolitan areas of Canada

    PubMed Central

    Chen, Jing; Bergman, Lauren; Falcomer, Renato; Whyte, Jeff

    2015-01-01

    Radon has been identified as the second leading cause of lung cancer after tobacco smoking. 222Rn (radon gas) and 220Rn (thoron gas) are the most common isotopes of radon. In order to assess thoron contribution to indoor radon and thoron exposure, a survey of residential radon and thoron concentrations was initiated in 2012 with ∼4000 homes in the 33 census metropolitan areas of Canada. The survey confirmed that indoor radon and thoron concentrations are not correlated and that thoron concentrations cannot be predicted from widely available radon information. The results showed that thoron contribution to the radiation dose varied from 0.5 to 6 % geographically. The study indicated that, on average, thoron contributes ∼3 % of the radiation dose due to indoor radon and thoron exposure in Canada. Even though the estimated average thoron concentration of 9 Bq m−3 (population weighted) in Canada is low, the average radon concentration of 96 Bq m−3 (population weighted) is more than double the worldwide average indoor radon concentration. It is clear that continued efforts are needed to further reduce the exposure and effectively reduce the number of lung cancers caused by radon. PMID:24748485

  2. Radon in indoor concentrations and indoor concentrations of metal dust particles in museums and other public buildings.

    PubMed

    Carneiro, G L; Braz, D; de Jesus, E F; Santos, S M; Cardoso, K; Hecht, A A; Dias da Cunha, Moore K

    2013-06-01

    The aim of this study was to evaluate the public and occupational exposure to radon and metal-bearing particles in museums and public buildings located in the city of Rio de Janeiro, Brazil. For this study, four buildings were selected: two historic buildings, which currently house an art gallery and an art museum; and two modern buildings, a chapel and a club. Integrated radon concentration measurements were performed using passive radon detectors with solid state nuclear track detector-type Lexan used as nuclear track detector. Air samplers with a cyclone were used to collect the airborne particle samples that were analyzed by the particle-induced X-ray emission technique. The average unattached-radon concentrations in indoor air in the buildings were above 40 Bq/m(3), with the exception of Building D as measured in 2009. The average radon concentrations in indoor air in the four buildings in 2009 were below the recommended reference level by World Health Organization (100 Bq/m(3)); however, in 2011, the average concentrations of radon in Buildings A and C were above this level, though lower than 300 Bq/m(3). The average concentrations of unattached radon were lower than 148 Bq/m(3) (4pCi/L), the USEPA level recommended to take action to reduce the concentrations of radon in indoor air. The unattached-radon average concentrations were also lower than the value recommended by the European Union for new houses. As the unattached-radon concentrations were below the international level recommended to take action to reduce the radon concentration in air, it was concluded that during the period of sampling, there was low risk to human health due to the inhalation of unattached radon in these four buildings.

  3. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND THEIR PROGENY IN THE INDOOR ENVIRONMENT OF RAJPUR REGION OF UTTARAKHAND HIMALAYA.

    PubMed

    Kandari, Tushar; Aswal, Sunita; Prasad, Mukesh; Pant, Preeti; Bourai, A A; Ramola, R C

    2016-10-01

    In the present study, the measurements of indoor radon, thoron and their progeny concentrations have been carried out in the Rajpur region of Uttarakhand, Himalaya, India by using LR-115 solid-state nuclear track detector-based time-integrated techniques. The gas concentrations have been measured by single-entry pin-hole dosemeter technique, while for the progeny concentrations, deposition-based Direct Thoron and Radon Progeny Sensor technique has been used. The radiation doses due to the inhalation of radon, thoron and progeny have also been determined by using obtained concentrations of radon, thoron and their progeny in the study area. The average radon concentration varies from 75 to 123 Bq m -3 with an overall average of 89 Bq m -3 The average thoron concentration varies from 29 to 55 Bq m -3 with an overall average of 38 Bq m -3 The total annual effective dose received due to radon, thoron and their progeny varies from 2.4 to 4.1 mSv y -1 with an average of 2.9 mSv y -1 While the average equilibrium factor for radon and its progeny was found to be 0.39, for thoron and its progeny, it was 0.06. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Exposure to atmospheric radon.

    PubMed Central

    Steck, D J; Field, R W; Lynch, C F

    1999-01-01

    We measured radon (222Rn) concentrations in Iowa and Minnesota and found that unusually high annual average radon concentrations occur outdoors in portions of central North America. In some areas, outdoor concentrations exceed the national average indoor radon concentration. The general spatial patterns of outdoor radon and indoor radon are similar to the spatial distribution of radon progeny in the soil. Outdoor radon exposure in this region can be a substantial fraction of an individual's total radon exposure and is highly variable across the population. Estimated lifetime effective dose equivalents for the women participants in a radon-related lung cancer study varied by a factor of two at the median dose, 8 mSv, and ranged up to 60 mSv (6 rem). Failure to include these doses can reduce the statistical power of epidemiologic studies that examine the lung cancer risk associated with residential radon exposure. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9924007

  5. A COMPARATIVE STUDY OF DIURNAL VARIATION OF RADON AND THORON CONCENTRATIONS IN INDOOR ENVIRONMENT.

    PubMed

    Pant, Preeti; Kandari, Tushar; Prasad, Mukesh; Ramola, R C

    2016-10-01

    The diurnal measurements of radon and thoron concentrations were performed in the indoor environment of Nuclear Research Laboratory, Badshahi Thaul, Tehri Garhwal, Uttarakhand, India by using AlphaGUARD, Portable Radon Monitor (SMART RnDuo) and RAD7. Using AlphaGUARD, the radon concentration was found to vary from 8 to 94 Bq m -3 with an average of 41.5±22.2 Bq m -3 Using Portable Radon Monitor (SMART RnDuo), the concentration was found to vary from 2 to 101 Bq m -3 with an average of 41.7±23.6 Bq m -3 , and with RAD7, the concentration was found to vary from 3 to 99 Bq m -3 with an average of 40±20.3 Bqm -3 While the thoron concentration using Portable Radon Monitor (SMART RnDuo) was found to vary from 4 to 65 Bq m -3 with an average of 17.3±12.9 Bqm -3 , and using RAD7, the concentration was found to vary from 5 to 90 Bq m -3 with an average of 29.8±17.3 Bq m -3 . © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Variations of radon concentration in the atmosphere. Gamma dose rate

    NASA Astrophysics Data System (ADS)

    Tchorz-Trzeciakiewicz, D. E.; Solecki, A. T.

    2018-02-01

    The purposes of research were following: observation and interpretation of variations of radon concentration in the atmosphere - vertical, seasonal, spatial and analysis of relation between average annual radon concentration and ground natural radiation and gamma dose rate. Moreover we wanted to check the occurrence of radon density currents and the possibility of radon accumulation at the foot of the spoil tip. The surveys were carried out in Okrzeszyn (SW Poland) in the area of the spoil tip formed during uranium mining that took place in 60's of 20th century. The measurements were carried out in 20 measurements points at three heights: 0.2 m, 1 m and 2 m a.g.l. using SSNTD LR-115. The survey lasted one year and detectors were exchanged at the beginning of every season. Uranium eU (ppm), thorium eTh (ppm) and potassium K (%) contents were measured using gamma ray spectrometer Exploranium RS-230, ambient gamma dose rate using radiometer RK-100. The average radon concentration on this area was 52.8 Bq m-3. The highest radon concentrations were noted during autumn and the lowest during winter. We observed vertical variations of radon concentration. Radon concentrations decreased with increase of height above ground level. The decrease of radon with increase of height a.g.l. had logarithmic character. Spatial variations of radon concentrations did not indicate the occurrence of radon density currents and accumulation of radon at the foot of the spoil tip. The analysis of relation between average radon concentrations and ground natural radiation (uranium and thorium content) or gamma dose rate revealed positive relation between those parameters. On the base of results mentioned above we suggested that gamma spectrometry measurements or even cheaper and simpler ambient gamma dose rate measurements can be a useful tool in determining radon prone areas. This should be confirmed by additional research.

  7. The effectiveness of mitigation for reducing radon risk in single-family Minnesota homes.

    PubMed

    Steck, Daniel J

    2012-09-01

    Increased lung cancer incidence has been linked with long-term exposure to elevated residential radon. Experimental studies have shown that soil ventilation can be effective in reducing radon concentrations in single-family homes. Most radon mitigation systems in the U.S. are installed by private contractors. The long-term effectiveness of these systems is not well known, since few state radon programs regulate or independently confirm post-mitigation radon concentrations. The effectiveness of soil ventilation systems in Minnesota was measured for 140 randomly selected clients of six professional mitigators. Homeowners reported pre-mitigation radon screening concentrations that averaged 380 Bq m (10.3 pCi L). Long term post-mitigation radon measurements on the two lowest floors show that, even years after mitigation, 97% of these homes have concentrations below the 150 Bq m U.S. Environmental Protection Agency action level. The average post-mitigation radon in the houses was 30 Bq m, an average observed reduction of >90%. If that reduction was maintained over the lifetime of the 1.2 million Minnesotans who currently reside in single-family homes with living space radon above the EPA action level, approximately 50,000 lives could be extended for nearly two decades by preventing radon-related lung cancers.

  8. Effect of soil moisture on seasonal variation in indoor radon concentration: modelling and measurements in 326 Finnish houses

    PubMed Central

    Arvela, H.; Holmgren, O.; Hänninen, P.

    2016-01-01

    The effect of soil moisture on seasonal variation in soil air and indoor radon is studied. A brief review of the theory of the effect of soil moisture on soil air radon has been presented. The theoretical estimates, together with soil moisture measurements over a period of 10 y, indicate that variation in soil moisture evidently is an important factor affecting the seasonal variation in soil air radon concentration. Partitioning of radon gas between the water and air fractions of soil pores is the main factor increasing soil air radon concentration. On two example test sites, the relative standard deviation of the calculated monthly average soil air radon concentration was 17 and 26 %. Increased soil moisture in autumn and spring, after the snowmelt, increases soil gas radon concentrations by 10–20 %. In February and March, the soil gas radon concentration is in its minimum. Soil temperature is also an important factor. High soil temperature in summer increased the calculated soil gas radon concentration by 14 %, compared with winter values. The monthly indoor radon measurements over period of 1 y in 326 Finnish houses are presented and compared with the modelling results. The model takes into account radon entry, climate and air exchange. The measured radon concentrations in autumn and spring were higher than expected and it can be explained by the seasonal variation in the soil moisture. The variation in soil moisture is a potential factor affecting markedly to the high year-to-year variation in the annual or seasonal average radon concentrations, observed in many radon studies. PMID:25899611

  9. Update of Ireland's national average indoor radon concentration - Application of a new survey protocol.

    PubMed

    Dowdall, A; Murphy, P; Pollard, D; Fenton, D

    2017-04-01

    In 2002, a National Radon Survey (NRS) in Ireland established that the geographically weighted national average indoor radon concentration was 89 Bq m -3 . Since then a number of developments have taken place which are likely to have impacted on the national average radon level. Key among these was the introduction of amending Building Regulations in 1998 requiring radon preventive measures in new buildings in High Radon Areas (HRAs). In 2014, the Irish Government adopted the National Radon Control Strategy (NRCS) for Ireland. A knowledge gap identified in the NRCS was to update the national average for Ireland given the developments since 2002. The updated national average would also be used as a baseline metric to assess the effectiveness of the NRCS over time. A new national survey protocol was required that would measure radon in a sample of homes representative of radon risk and geographical location. The design of the survey protocol took into account that it is not feasible to repeat the 11,319 measurements carried out for the 2002 NRS due to time and resource constraints. However, the existence of that comprehensive survey allowed for a new protocol to be developed, involving measurements carried out in unbiased randomly selected volunteer homes. This paper sets out the development and application of that survey protocol. The results of the 2015 survey showed that the current national average indoor radon concentration for homes in Ireland is 77 Bq m -3 , a decrease from the 89 Bq m -3 reported in the 2002 NRS. Analysis of the results by build date demonstrate that the introduction of the amending Building Regulations in 1998 have led to a reduction in the average indoor radon level in Ireland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Radon in Ingleborough / Clapham Cave, North Yorkshire, UK.

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin

    2015-04-01

    Atmospheric radon concentration was measured at Ingleborough Cave, North Yorkshire during the summer of 2004, and the autumn / winter of 2004/5. Significantly, Ingleborough Cave forms part of a larger system which includes the world famous Gaping Gill pothole. This plunges 105 m (334 ft), contains the tallest unbroken waterfall in England and one of the largest known underground chambers in the UK. Measurements were taken to assess the effects of seasonal and spatial variation, elevation and ventilation on radon concentration in Ingleborough. In this study personal dose exposures for three groups of cave user were identified, and the performance of a variety of radon detection systems evaluated. Summer radon concentrations inside the cave peaked at around 7,000 Bq m-3, although average concentrations were less than 5,000 Bq m-3. During the winter measurement period, average concentrations were around 100 Bq m-3, and a winter / summer ration therefore of 47,4. The average annual radon concentration exceeded the legislative limitations for the workplace of 400 Bq m-3 due in part to a failed fan in the ventilation system. When the fan was running we noted an 80% reduction in radon concentrations although reliability of the fan was problematic due to extensive but relatively rare flooding of the cave system. The radon dose experienced by cave workers and guides in this study exceeded the Ionisation Radiation Regulations limit of 5 mSv/annum, and highlighted that for health and safety reasons the ventilation system should be fully operational during the high radon concentration summer months. Keywords: Radon, Cave, Ingleborough, Detection methods

  11. Assessing exposure to granite countertops--Part 2: Radon.

    PubMed

    Allen, Joseph G; Minegishi, Taeko; Myatt, Theodore A; Stewart, James H; McCarthy, John F; Macintosh, David L

    2010-05-01

    Radon gas ((222)Rn) is a natural constituent of the environment and a risk factor for lung cancer that we are exposed to as a result of radioactive decay of radium ((226)Ra) in stone and soil. Granite countertops, in particular, have received recent media attention regarding their potential to emit radon. Radon flux was measured on 39 full slabs of granite from 27 different varieties to evaluate the potential for exposure and examine determinants of radon flux. Flux was measured at up to six pre-selected locations on each slab and also at areas identified as potentially enriched after a full-slab scan using a Geiger-Muller detector. Predicted indoor radon concentrations were estimated from the measured radon flux using the CONTAM indoor air quality model. Whole-slab average emissions ranged from less than limit of detection to 79.4 Bq/m(2)/h (median 3.9 Bq/m(2)/h), similar to the range reported in the literature for convenience samples of small granite pieces. Modeled indoor radon concentrations were less than the average outdoor radon concentration (14.8 Bq/m(3); 0.4 pCi/l) and average indoor radon concentrations (48 Bq/m(3); 1.3 pCi/l) found in the United States. Significant within-slab variability was observed for stones on the higher end of whole slab radon emissions, underscoring the limitations of drawing conclusions from discrete samples.

  12. SOIL GAS RADON MEASUREMENT AROUND FAULT LINES ON THE WESTERN SECTION OF THE NORTH ANATOLIAN FAULT ZONE IN TURKEY.

    PubMed

    Yakut, Hakan; Tabar, Emre; Yildirim, Eray; Zenginerler, Zemine; Ertugral, Filiz; Demirci, Nilufer

    2017-04-15

    Soil gas radon activity measurements were made around the western section of the North Anatolian Fault Zone. In the study, the variation of radon concentration at 12 different locations along the fault line was monitored by using LR-115 (solid-state nuclear track detectors) detectors for 12-monthly periods. Twelve radon stations were determined in the study region, and in each station, LR-115 films were installed in the borehole of ∼50 cm. The recorded radon concentration varies from 29 to 7059 Bqm-3 with an average value of 1930 Bqm-3. The influence of meteorological parameters such as temperature, pressure, total rainfall and humidity on soil radon concentrations in the study area was also investigated. The positive and poor correlation was observed between average value of 222Rn concentration and temperature. There is a reverse proportion between radon level with other meteorological factors (humidity, pressure and rainfall). The results show that the measured soil gas radon activity concentration shows seasonal variation in a highly permeable sandy-gravelly soil with definite seasons without obvious long transitional periods. The summer (from June 2013 to September 2013) is characterised by 1.8 times higher average soil gas radon activity concentration (median is 2.372 kBqm-3) than the winter (from December 2012 to March 2013) (median is 1.298 kBqm-3). © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Evaluation of annual effective dose from indoor radon concentration in Eastern Province, Dammam, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abuelhia, E.

    2017-11-01

    The aim of this study is to determine the indoor radon concentration and to evaluate the annual effective dose received by the inhabitants in Dammam, Al-Khobar, and compare it with new premises built at university of dammam. The research has been carried out by using active detection method; Electronic Radon Detector (RAD-7) a solid state α-detector with its special accessories. The indoor radon concentration measured varies from 10.2 Bqm-3 to 25.8 Bqm-3 with an average value of 18.8 Bqm-3 and 19.7 Bqm-3 to 23.5 Bqm-3 with an average value of 21.7 Bqm-3, in Dammam and Al-khobar dwellings, respectively. In university of dammam the radon concentration varies from 7.4 Bqm-3 to 15.8 Bqm-3 with an average value of 9.02 Bqm-3. The values of annual effective doses were found to be 0.47mSv/y, 0.55mSv/y, and 0.23mSv/y, in Dammam, Al-khobar and university new premises, respectively. The average radon concentration in the old dwellings was two times compared to that in the new premises and it was 25.4 Bqm-3 lower than the world average value of 40 Bqm-3 reported by the UNSCEAR. The annual effective doses in the old dwellings was found to be (0.55mSv/y) two times the doses received at the new premises, and below the world wide average of 1.15mSv/y reported by ICRP (2010). The indoor radon concentration in the study region is safe as far as health hazard is concerned.

  14. Study of the effect of electromagnetic fields on indoor and outdoor radon concentrations

    NASA Astrophysics Data System (ADS)

    Haider, Lina M.; Shareef, N. R.; Darwoysh, H. H.; Mansour, H. L.

    2018-05-01

    In the present work, the effect of electromagnetic fields produced by high voltage power lines(132kV) and indoor equipments on the indoor and outdoor average radon concentrations in Al-Kazaliya and Hay Al-Adil regions in Baghdad city were studied using CR-39 track detectors and a gauss-meter.Results of measurements of the present study, have shown that the highest value for the indoor average radon concentration (76.56± 8.44 Bq / m3) was recorded for sample A1(Hay Al-Adel) at a distance of (20 m) from the high voltage power lines, while the lowest value for the indoor average radon concentration (30.46 ± 8.44 Bq / m3) was recorded for sample A3 (Hay Al-Adil) at a distance of (50 m) from the high voltage power lines. The indoor gaussmeter measurements were found to be ranged from (30.2 mG) to (38.5 mG). The higest value for outdoor average radon concentration and the highest gaussmeter measurements were found for sample (1), with values (92.63 ±11.2 Bq / m3) and (87.24 ± 2.85 mG), directly under the high voltage power lines respectively, while the lowest outdoor average radon concentration and the lowest gaussmeter measurements were found in sample (4),with values (34.19 ± 6.33 Bq / m3) and (1.16 ± 0.14 Bq / m3),), at a distance of (120 m) from the high voltage power lines respectively. The results of the present work have shown that there might be an influence of the electromagnetic field on radon concentrations in areas which were close to high voltage power lines and houses which have used many electric equipment for a long period of time.

  15. The Concept of Equivalent Radon Concentration for Practical Consideration of Indoor Exposure to Thoron

    PubMed Central

    Chen, Jing; Moir, Deborah

    2012-01-01

    To consider the total exposure to indoor radon and thoron, a concept of equivalent radon concentration for thoron is introduced, defined as the radon concentration that delivers the same annual effective dose as that resulting from the thoron concentration. The total indoor exposure to radon and thoron is then the sum of the radon concentration and the equivalent radon concentration for thoron. The total exposure should be compared to the radon guideline value, and if it exceeds the guideline value, appropriate remedial action is required. With this concept, a separate guideline for indoor thoron exposure is not necessary. For homes already tested for radon with radon detectors, Health Canada’s recommendation of a 3-month radon test performed during the fall/winter heating season not only ensures a conservative estimate of the annual average radon concentration but also covers well any potentially missing contribution from thoron exposure. In addition, because the thoron concentration is much lower than the radon concentration in most homes in Canada, there is no real need to re-test homes for thoron. PMID:22470292

  16. The correlation between indoor and in soil radon concentrations in a desert climate

    NASA Astrophysics Data System (ADS)

    Al-Khateeb, H. M.; Aljarrah, K. M.; Alzoubi, F. Y.; Alqadi, M. K.; Ahmad, A. A.

    2017-01-01

    This study examines the levels and the correlation between indoor and in soil radon concentration in a desert climate. The measurements are carried out, in Jordan desert in AlMafraq district, using the passive integrated technique. An intelligent automated tracks counting system, modified recently by our group, is used to estimate the overlapping tracks and to decrease the counting percentage error. Results show that radon concentration in soil expands from 4.09 to 11.30 kBq m-3, with an average of 7.53 kBq m-3. Indoor radon concentrations vary from 20.2 Bq m-3 in the AlMafraq city to 46.7 Bq m-3 in Housha village and with an average of 29.6 Bq m-3. All of individual indoor radon concentrations are lower than the limit (100 Bq m-3) recommended by WHO except two dwellings in Housha village which found being higher than this limit. A moderate linear correlation (R2=0.66) was observed between indoor and in soil radon concentrations in the investigated region. Our results showed that an in soil radon measurement can be a satisfactory predictor for indoor radon potential.

  17. Radon emissions from natural gas power plants at The Pennsylvania State University.

    PubMed

    Stidworthy, Alison G; Davis, Kenneth J; Leavey, Jeff

    2016-11-01

    Burning natural gas in power plants may emit radon ( 222 Rn) into the atmosphere. On the University Park campus of The Pennsylvania State University, atmospheric radon enhancements were measured and modeled in the vicinity of their two power plants. The three-part study first involved measuring ambient outdoor radon concentrations from August 2014 through January 2015 at four sites upwind and downwind of the power plants at distances ranging from 80 m to 310 m. For each plant, one site served as a background site, while three other sites measured radon concentration enhancements downwind. Second, the radon content of natural gas flowing into the power plant was measured, and third, a plume dispersion model was used to predict the radon concentrations downwind of the power plants. These predictions are compared to the measured downwind enhancements in radon to determine whether the observed radon concentration enhancements could be attributed to the power plants' emissions. Atmospheric radon concentrations were consistently low as compared to the EPA action level of 148 Bq m -3 , averaging 34.5 ± 2.7 Bq m -3 around the East Campus Steam Plant (ECSP) and 31.6 ± 2.7 Bq m -3 around the West Campus Steam Plant (WCSP). Significant concentrations of radon, ranging from 516 to 1,240 Bq m -3 , were detected in the natural gas. The measured enhancements downwind of the ECSP averaged 6.2 Bq m -3 compared to modeled enhancements of 0.08 Bq m -3 . Measured enhancements around the WCSP averaged -0.2 Bq m -3 compared to the modeled enhancements of 0.05 Bq m -3 , which were not significant compared to observational error. The comparison of the measured to modeled downwind radon enhancements shows no correlation over time. The measurements of radon levels in the vicinity of the power plants appear to be unaffected by the emissions from the power plants. Radon measurements at sites surrounding power plants that utilize natural gas did not indicate that the radon concentrations originated from the plants' emissions. There were elevated radon concentrations in the natural gas supply flowing into the power plants, but combustion dilution puts the concentration below EPA action levels coming out of the stack, so no hazardous levels were expected downwind. Power plant combustion of natural gas is not likely to pose a radiation health hazard unless very different gas radon concentrations or combustion dilution ratios are encountered.

  18. Measurements of radon and thoron progeny concentrations in dwellings of Tehri Garhwal, India, using LR-115 deposition-based DTPS/DRPS technique.

    PubMed

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Yadav, Manjulata; Gusain, G S; Mishra, Rosaline; Ramola, R C

    2015-11-01

    This paper presents the values of radon and thoron progeny concentrations for different seasons in the dwellings of Tehri Garhwal, India. The measurements have been carried out using LR-115 solid-state nuclear track detector-based passive time-integrated direct thoron progeny sensor/direct radon progeny sensor technique. In summer, the radon and thoron progeny have been found to vary from 5.7±0.8 to 153.2±4.3 Bq m(-3) with an average of 37.6 Bq m(-3) and 0.3±0.06 to 3.2±0.19 Bq m(-3) with an average of 1.3 Bq m(-3), respectively. In the rainy season, the radon and thoron progeny have been found to vary from 3.2±0.6 to 120±3.7 Bq m(-3) with an average of 58.2 Bq m(-3) and 0.2±0.05 to 11.3±0.37 Bq m(-3) with an average of 3.4 Bq m(-3), respectively. In autumn, the radon and thoron progeny have been found to vary from 4.1±0.7 to 374.4±6.7 Bq m(-3) with an average of 95.6 Bq m(-3) and from 0.3±0.06 to 30.5±0.60 Bq m(-3) with an average of 6.6 Bq m(-3), respectively. In winter, the radon and thoron progeny have been found to vary from 9.8±1.1 to 188.9±4.8 Bq m(-3) with an average of 70.7 Bq m(-3) and 0.1±0.03 to 7.5±0.30 Bq m(-3) with an average of 2.3 Bq m(-3), respectively. It has been observed that the average value of radon and thoron progeny concentrations is maximum for autumn and minimum for summer seasons. The seasonal variations in radon and thoron progeny concentrations in different houses are discussed in detail. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. 30 CFR 57.5040 - Exposure records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... complete individual exposure of all mine personnel working in active working areas with radon daughter... personnel assigned to work in active working areas where radon daughter concentrations have been reduced to.... An average airborne radon daughter concentration for a designated active working area shall be...

  20. Radon estimation in water resources of Mandi - Dharamshala region of Himachal Pradesh, India for health risk assessments

    NASA Astrophysics Data System (ADS)

    Kumar, Gulshan; Kumari, Punam; Kumar, Mukesh; Kumar, Arvind; Prasher, Sangeeta; Dhar, Sunil

    2017-07-01

    The present study deals with the radon estimation in 40 water samples collected from different natural resources and radium content in the soils of Mandi-Dharamshala Region. Radon concentration is determined by using RAD-7 detector and radium contents of the soil in vicinity of water resources is as well measured by using LR-115 type - II detector, which is further correlated with radon concentration in water samples. The potential health risks related with 222Rn have also been estimated. The results show that the radon concentrations within the range of 1.51 to 22.7Bq/l with an average value of 5.93 Bq/l for all type of water samples taken from study area. The radon concentration in water samples is found lower than 100Bq/l, the exposure limit of radon in water recommended by the World Health Organization. The calculated average effective dose of radon received by the people of study area is 0.022 mSv/y with maximum of 0.083 mSv/y and minimum 0.0056 mSv/y. The total effective dose in all sites of the studied area is found to be within the safe limit (0.1 mSv/year) recommended by World Health Organization. The average value of radium content in the soil of study area is 6.326 Bq/kg.

  1. A COMPARISON OF WINTER SHORT-TERM AND ANNUAL AVERAGE RADON MEASUREMENTS IN BASEMENTS OF A RADON-PRONE REGION AND EVALUATION OF FURTHER RADON TESTING INDICATORS

    PubMed Central

    Barros, Nirmalla G.; Steck, Daniel J.; Field, R. William

    2014-01-01

    The primary objective of this study was to investigate the temporal variability between basement winter short-term (7 to 10 days) and basement annual radon measurements. Other objectives were to test the short-term measurement’s diagnostic performance at two reference levels and to evaluate its ability to predict annual average basement radon concentrations. Electret ion chamber (short-term) and alpha track (annual) radon measurements were obtained by trained personnel in Iowa residences. Overall, the geometric mean of the short-term radon concentrations (199 Bq m−3) was slightly greater than the geometric mean of the annual radon concentrations (181 Bq m−3). Short-term tests incorrectly predicted that the basement annual radon concentrations would be below 148 Bq m−3 12% of the time and 2% of the time at 74 Bq m−3. The short-term and annual radon concentrations were strongly correlated (r=0.87, p<0.0001). The foundation wall material of the basement was the only significant factor to have an impact on the absolute difference between the short-term and annual measurements. The findings from this study provide evidence of a substantially lower likelihood of obtaining a false negative result from a single short-term test in a region with high indoor radon potential when the reference level is lowered to 74 Bq m−3. PMID:24670901

  2. Investigation of radon level in air and tap water of workplaces at Thailand Institute of Nuclear Technology, Thailand

    NASA Astrophysics Data System (ADS)

    Sola, P.; Youngchuay, U.; Kongsri, S.; Kongtana, A.

    2017-06-01

    Thailand Institute of Nuclear Technology (TINT) has continuously monitored radiation exposure and radionuclide in workplaces specifically radon gas to estimate effective dose for workers. Radon exposure is the second leading cause of lung cancer in the world. In this study, radon in air and tap water at building no. 3, 7, 8, 9 and 18 on Ongkharak site of TINT have been measured for 5 years from 2012 to 2016. Radon level in air and tap water were investigated on 83 stations (workplaces) and 54 samples, respectively. Radon concentrations in air and tap water were measured by using the pulsed ionization chamber (ATMOS 12 DPX). Indoor radon concentrations in air were in the range of 12-138 Bq.m-3 with an average value of 30.13±17.05 Bq.m-3. Radon concentrations in tap water were in the range of 0.10 to 2.89 Bq.l-1 with an average value of 0.51±0.55 Bq.l-1. The results of radon concentrations at TINT were below the US Environmental Protection Agency (US EPA) safety limit of 148 Bq.m-3 and 150 Bq.l-1, for, air and tap water, respectively. The average effective dose for TINT’s workers due to indoor radon exposure was approximately 0.20±0.11 mSv.y-1. The value is 100 times less than the annual dose limit for limit occupational radiation worker defined by the International Commission on Radiological Protection (ICRP). As a result, the TINT’s workplaces are radiologically safe from radon content in air and tap water.

  3. Radon in earth-sheltered structures

    USGS Publications Warehouse

    Landa, E.R.

    1984-01-01

    Radon concentration in the indoor air of six residential and three non-residential earth-sheltered buildings in eastern Colorado was monitored quarterly over a nine-month period using passive, integrating detectors. Average radon concentrations during the three-month sampling periods ranged from about 1 to 9 pCi/L, although one building, a poorly ventilated storage bunker, had concentrations as high as 39 pCi/L. These radon concentrations are somewhat greater than those typically reported for conventional buildings (around 1 pCi/L); but they are of the same order of magnitude as radon concentrations reported for energy-efficient buildings which are not earth-sheltered. ?? 1984.

  4. Inhalation Dose and Source Term Studies in a Tribal Area of Wayanad, Kerala, India

    PubMed Central

    Damodaran, Ravikumar C.; Kumar, Visnuprasad Ashok; Panakal John, Jojo; Bangaru, Danalakshmi; Natarajan, Chitra; Sathiamurthy, Bala Sundar; Mundiyanikal Thomas, Jose; Mishra, Rosaline

    2017-01-01

    Among radiation exposure pathways to human beings, inhalation dose is the most prominent one. Radon, thoron, and their progeny contribute more than 50 per cent to the annual effective dose due to natural radioactivity. South west coast of India is classified as a High Natural Background Radioactivity Area and large scale data on natural radioactivity and dosimetry are available from these coastal regions including the Neendakara-Chavara belt in the south of Kerala. However, similar studies and reports from the northern part of Kerala are scarce. The present study involves the data collection and analysis of radon, thoron, and progeny concentration in the Wayanad district of Kerala. The radon concentration was found to be within a range of 12–378 Bq/m3. The thoron concentration varied from 15 to 621 Bq/m3. Progeny concentration of radon and thoron and the diurnal variation of radon were also studied. In order to assess source term, wall and floor exhalation studies have been done for the houses showing elevated concentration of radon and thoron. The average values of radon, thoron, and their progeny are found to be above the Indian average as well as the average values reported from the High Natural Background Radioactivity Areas of Kerala. Exhalation studies of the soil samples collected from the vicinity of the houses show that radon mass exhalation rate varied from below detectable limit (BDL) to a maximum of 80 mBq/kg/h. The thoron surface exhalation rate ranged from BDL to 17470 Bq/m2/h. PMID:28611847

  5. Lung cancer prevalence associated with radon exposure in Norwegian homes.

    PubMed

    Hassfjell, Christina Søyland; Grimsrud, Tom Kristian; Standring, William J F; Tretli, Steinar

    2017-08-22

    Radioactive radon gas is generated from uranium and thorium in underlying rocks and seeps into buildings. The gas and its decay products emit carcinogenic radiation and are regarded as the second most important risk factor for lung cancer after active tobacco smoking. The average radon concentration in Norwegian homes is higher than in most other Western countries. From a health and cost perspective, it is important to be able to quantify the risk of lung cancer posed by radon exposure. We estimated the radon-related risk of lung cancer in Norway based on risk estimates from the largest pooled analysis of European case-control studies, combined with the hitherto largest set of data on radon concentration measurements in Norwegian homes. Based on these estimates, we calculate that radon is a contributory factor in 12 % of all cases of lung cancer annually, assuming an average radon concentration of 88 Bq/m3 in Norwegian homes. For 2015, this accounted for 373 cases of lung cancer, with an approximate 95 % confidence interval of 145 – 682. Radon most likely contributes to a considerable number of cases of lung cancer. Since most cases of radon-associated lung cancer involve smokers or former smokers, a reduction of the radon concentration in homes could be a key measure to reduce the risk, especially for persons who are unable to quit smoking. The uncertainty in the estimated number of radon-associated cases can be reduced through a new national radon mapping study with an improved design.

  6. Measurement of Radon Concentration in Selected Houses in Ibadan, Nigeria

    NASA Astrophysics Data System (ADS)

    Usikalu, M. R.; Olatinwo, V.; Akpochafor, M.; Aweda, M. A.; Giannini, G.; Massimo, V.

    2017-05-01

    Radon is a natural radioactive gas without colour or odour and tasteless. The World Health Organization (WHO) grouped radon as a human lung carcinogen. For this reason, there has been a lot of interest on the effects of radon exposure to people all over the world and Nigeria is no exception. The aim of this study is to investigate the radon concentration in selected houses in three local government areas of Ibadan. The indoor radon was measured in both mud and brick houses. Fifty houses were considered from the three Local government areas. A calibrated portable continuous radon monitor type (RAD7) manufactured by Durridge company was used for the measurement. A distance of 100 to 200 m was maintained between houses in all the locations. The living room was kept closed during the measurements. The mean radon concentration measured in Egbeda is 10.54 ±1.30 Bqm -3; Lagelu is 16.90 ± 6.31 Bqm -3 and Ona-Ara is 17.95 ± 1.72 Bqm -3. The mean value of the annual absorbed dose and annual effective dose for the locations in the three local government areas was 0.19 mSvy-1 and 0.48 mSvy-1 respectively. The radon concentration for location 10 in Ono-Ara local government exceeded the recommended limit. However, the overall average indoor radon concentration of the three local governments was found to be lower than the world average value of 40 Bqm -3. Hence, there is need for proper awareness about the danger of radon accumulation in dwelling places.

  7. Atmospheric dispersion of radon around uranium mill tailings of the former Pridneprovsky Chemical Plant in Ukraine.

    PubMed

    Kovalets, Ivan V; Asker, Christian; Khalchenkov, Alexander V; Persson, Christer; Lavrova, Tatyana V

    2017-06-01

    Simulations of atmospheric dispersion of radon around the uranium mill tailings of the former Pridneprovsky Chemical Plant (PChP) in Ukraine were carried out with the aid of two atmospheric dispersion models: the Airviro Grid Model and the CALMET/CALPUFF model chain. The available measurement data of radon emission rates taken in the territories and the close vicinity of tailings were used in simulations. The results of simulations were compared to the yearly averaged measurements of concentration data. Both models were able to reasonably reproduce average radon concentration at the Sukhachivske site using averaged measured emission rates as input together with the measured meteorological data. At the same time, both models significantly underestimated concentrations as compared to measurements collected at the PChP industrial site. According to the results of both dispersion models, it was shown that only addition of significant radon emission rate from the whole territory of PChP in addition to emission rates from the tailings could explain the observed concentration measurements. With the aid of the uncertainty analysis, the radon emission rate from the whole territory of PChP was estimated to be between 1.5 and 3.5 Bq·m -2 s -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A Critical Analysis of Changing Radon Concentration Patterns on Gyokusen-dou Cave in Okinawa Island

    NASA Astrophysics Data System (ADS)

    Tanahara, A.; Iha, H.

    2009-04-01

    Radon concentrations were measured at 1 hour intervals for a year in Gyokuse-dou Cave, Okinawa Island. An apparatus for continuous radon monitoring connected to a data logger was installed in a large chamber of the cave along the tour route for visitors. Radon concentration ranged from 8000 Bq/m3 in the summer to 100 Bq/m3 in the winter. Seasonal changes in radon concentration correlate with difference between outside and inside air densities. The same effect seems to occur in a short time period. However, changing radon concentration pattern does not synchronize with air density difference pattern in the sites. The results of statistical treatment show that the outside air takes about 8-18 hours to reach the measuring point of radon in the Cave. The average airflow velocity from the site to the exit was estimated to be about 0.52-0.23 m/min. During the summer, the south wind blowing into the cave also affects the radon concentration.

  9. Origin of radon concentration of Csalóka Spring in the Sopron Mountains (West Hungary).

    PubMed

    Freiler, Ágnes; Horváth, Ákos; Török, Kálmán; Földes, Tamás

    2016-01-01

    We examined the Csalóka Spring, which has the highest radon concentration in the Sopron Mountains (West Hungary) (, yearly average of 227 ± 10 Bq L(-1)). The main rock types here are gneiss and micaschist, formed from metamorphism of former granitic and clastic sedimentary rocks respectively. The aim of the study was to find a likely source of the high radon concentration in water. During two periods (2007-2008 and 2012-2013) water samples were taken from the Csalóka Spring to measure its radon concentration (from 153 ± 9 Bq L(-1) to 291 ± 15 Bq L(-1)). Soil and rock samples were taken within a 10-m radius of the spring from debrish and from a deformed gneiss outcrop 500 m away from the spring. The radium activity concentration of the samples (between 24.3 ± 2.9 Bq kg(-1) and 145 ± 6.0 Bq kg(-1)) was measured by gamma-spectroscopy, and the specific radon exhalation was determined using radon-chamber measurements (between 1.32 ± 0.5 Bq kg(-1) and 37.1 ± 2.2 Bq kg(-1)). Based on these results a model calculation was used to determine the maximum potential radon concentration, which the soil or the rock may provide into the water. We showed that the maximum potential radon concentration of these mylonitic gneissic rocks (cpot = 2020 Bq L(-1)) is about eight times higher than the measured radon concentration in the water. However the maximum potential radon concentration for soils are significantly lower (41.3 Bq L(-1)) Based on measurements of radon exhalation and porosity of rock and soil samples we concluded that the source material can be the gneiss rock around the spring rather than the soil there. We determined the average radon concentration and the time dependence of the radon concentration over these years in the spring water. We obtained a strong negative correlation (-0.94 in period of 2007-2008 and -0.91 in 2012-2013) between precipitation and radon concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Soil gas radon-thoron monitoring in Dharamsala area of north-west Himalayas, India using solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Kumar, Gulshan; Kumar, Arvind; Walia, Vivek; Kumar, Jitender; Gupta, Vikash; Yang, Tsanyao Frank; Singh, Surinder; Bajwa, Bikramjit Singh

    2013-10-01

    The study described here is based on the measurements of soil gas radon-thoron concentrations performed at Dharamsala region of north-west (NW) Himalayas, India. The study area is tectonically and environmentally significant and shows the features of ductile shear zone due to the presence of distinct thrust planes. Solid state nuclear track detectors (LR-115 films) have been used for the soil gas radon-thoron monitoring. Twenty five radon-thoron discriminators with LR-115 films were installed in the borehole of about 50 cm in the study areas. The recorded radon concentration varies from 1593 to 13570 Bq/m3 with an average value of 5292 Bq/m3. The recorded thoron concentration varies from 223 to 2920 Bq/m3 with an average value of 901 Bq/m3. The anomalous value of radon-thoron has been observed near to the faults like main boundary thrust (MBT and MBT2) as well as neotectonic lineaments in the region.

  11. Assessment of indoor radon, thoron concentrations, and their relationship with seasonal variation and geology of Udhampur district, Jammu & Kashmir, India.

    PubMed

    Kumar, Ajay; Sharma, Sumit; Mehra, Rohit; Narang, Saurabh; Mishra, Rosaline

    2017-07-01

    Background The inhalation doses resulting from the exposure to radon, thoron, and their progeny are important quantities in estimating the radiation risk for epidemiological studies as the average global annual effective dose due to radon and its progeny is 1.3 mSv as compared to that of 2.4 mSv due to all other natural sources of ionizing radiation. Objectives The annual inhalation dose has been assessed with an aim of investigating the health risk to the inhabitants of the studied region. Methods Time integrated deposition based 222 Rn/ 220 Rn sensors have been used to measure concentrations in 146 dwellings of Udhampur district, Jammu and Kashmir. An active smart RnDuo monitor has also been used for comparison purposes. Results The range of indoor radon/thoron concentrations is found to vary from 11 to 58 Bqm -3 with an average value of 29 ± 9 Bqm -3 and from 25 to 185 Bqm -3 with an average value of 83 ± 32 Bqm -3 , respectively. About 10.7% dwellings have higher values than world average of 40 Bqm -3 prescribed by UNSCEAR. The relationship of indoor radon and thoron levels with different seasons, ventilation conditions, and different geological formations have been discussed. Conclusions The observed values of concentrations and average annual effective dose due to radon, thoron, and its progeny in the study area have been found to be below the recommended level of ICRP. The observed concentrations of 222 Rn and 220 Rn measured with active and passive techniques are found to be in good agreement.

  12. Significant reduction in indoor radon in newly built houses.

    PubMed

    Finne, Ingvild E; Kolstad, Trine; Larsson, Maria; Olsen, Bård; Prendergast, Josephine; Rudjord, Anne Liv

    2018-02-15

    Results from two national surveys of radon in newly built homes in Norway, performed in 2008 and 2016, were used in this study to investigate the effect of the 2010 building regulations introducing limit values on radon and requirements for radon prevention measures upon construction of new buildings. In both surveys, homes were randomly selected from the National Building Registry. The overall result was a considerable reduction of radon concentrations after the implementation of new regulations, but the results varied between the different dwelling categories. A statistically significant reduction was found for detached houses where the average radon concentration was almost halved from 76 to 40 Bq/m 3 . The fraction of detached houses which had at least one frequently occupied room with a radon concentration above the Action Level (100 Bq/m 3 ) fell from 23.9% to 6.4%, while the fraction above the Upper Limit Value (200 Bq/m 3 ) was reduced from 7.6% to 2.5%. In 2008 the average radon concentration measured in terraced and semi-detached houses was 44 and in 2016 it was 29 Bq/m 3 , but the reduction was not statistically significant. For multifamily houses, it was not possible to draw a conclusion due to insufficient number of measurements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Radon concentration of waters in Greece and Cyprus

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, D.; Vogiannis, E.; Louizi, A.

    2009-04-01

    Radon (222Rn) is a radioactive gas generated by the decay of the naturally occurring 238U series. It is considered very important from radiological point of view, since it is the most significant natural source of human radiation exposure (approximately 50% from all natural sources). Radon is present in soil, rocks, building materials and waters. Through diffusion and convection, radon migrates and emanates to the atmosphere. Outdoors, radon concentrates at low levels (in the order of 10 Bq/m3). However indoors, radon accumulates significantly. It is trivial to observe indoor environments with high radon levels (in the order of 400 Bq/m3 or higher). Radon accumulation indoors, depends on the composition of the underlying soil and rock formation, on building materials, meteorological parameters, ventilation, heating and water use. Although soil and building materials are the most significant radon sources, there have been reported elevated radon concentrations in building structures due to entering water. It is the radon concentrations in the entering water, the volume and the way of water usage, separated or in combination, that result in large amounts of radon in indoor air. Moreover, radon is a factor of stomach radiation burden due to water consumption. This burden is estimated by measurements of radon concentrations in waters. Due to the health impact of radon exposure, the reporting team continuously measures radon. This work focused on the radon concentrations exposure due to water consumption and use in Greece and Cyprus. Various locations in Greece and Cyprus were accessed taking into consideration existing natural radioactivity data (mainly radon in water), however under the restriction of the capability of movement. Radon in water was measured by Alpha Guard (Genitron Ltd) via a special unit (Aqua Kit). This unit consists of a vessel used for forced degassing of radon diluted in water samples, a security vessel used for water drop deposition. Vessels and Alpha Guard are connected via plastic radon proof tubes. Forced degassing of radon gas is performed by circulating the air in the set up with the use of a pump. Water sampling (to avoid radon escape) was driven by a strict protocol. Water taps were opened for 10 minutes before drawing the sample. Glass storage vessels of 200 to 1000 ml, with adjustment glass stoppers with standard NS 29/32 grounding, as well as sealing rings and granted security clamps for taper grounding, were completely filled slowly and immediately closed (to avoid the formation of air bubbles). Similar procedure (except tap opening) was followed for underground and surface waters. Laboratory measurements were performed at least one hour after drawing the sample in order to assure the full decay of any thoron content and to the minimum achievable time interval, so as the radon content to be the highest possible to allow higher precision. For the measurement the glass stopper was removed and immediately exchanged with the degassing cap. Afterwards water quantity was reduced to about half and measured. From the measurements, the mean annual equivalent dose rate (aEDr) delivered to stomach due to ingestion and the contribution to aEDr due to inhalation of radon in drinking water were calculated as using the EURATOM 2001 dose conversion factor (0.00144 mSv/Bq). Radon concentrations in drinking waters ranged between (1.1+/-0.5) Bq/L and (15+/4) Bq/L. Only three samples collected from the radon prone area of Arnea Chalkidikis presented high radon concentrations (120+/20 Bq/L, 320+/-40 Bq/L, 410+/-50 Bq/L). Radon concentrations in underground waters ranged between (1.2+/-0.7) Bq/L and (14.7+/-1.1) Bq/L. The corresponding concentration range in surface waters was (2.7+/-0.8) Bq/L and (24+/-6) Bq/L. The radon concentrations in thermal waters (some of which are used for drinking) were quite higher (in the range of (220+/-20) to (340+/-40) Bq/L). In both countries, no correlation of radon in underground waters with depth was observed. In Cyprus, the highest water radon concentrations were found in Protaras region. The average value of radon in water resulted to an average contribution of 0.3% in respect to the average indoor radon concentration and mean annual effective dose. The corresponding values for Greece resulted to a 0.1% contribution. This contribution is considered quite low both for Cyprus and Greece (0.1%) and hence this part of effective dose may be considered of slighter significance compared to inhalation of total radon. Yet this contribution is comparable to the effective dose values delivered through medical uses of radiation. On the other hand, significant doses are delivered to stomach of the Cypriot and Greek population due to ingested radon following water consumption. The corresponding average annual dose rates were found equal to 0.085 mSv/y (S.D of 0.080 mSv/y) for Cyprus and 0.081 mSv/y (S.D of 0.081 mSv/y) for Greece.

  14. Radon safety in terms of energy efficiency classification of buildings

    NASA Astrophysics Data System (ADS)

    Vasilyev, A.; Yarmoshenko, I.; Zhukovsky, M.

    2017-06-01

    According to the results of survey in Ekaterinburg, Russia, indoor radon concentrations above city average level have been found in each of the studied buildings with high energy efficiency class. Measures to increase energy efficiency were confirmed to decrease the air exchange rate and accumulation of high radon concentrations indoors. Despite of recommendations to use mechanical ventilation with heat recovery as the main scenario for reducing elevated radon concentrations in energy-efficient buildings, the use of such systems did not show an obvious advantage. In real situation, mechanical ventilation system is not used properly both in the automatic and manual mode, which does not give an obvious advantage over natural ventilation in the climate of the Middle Urals in Ekaterinburg. Significant number of buildings with a high class of energy efficiency and built using modern space-planning decisions contributes to an increase in the average radon concentration. Such situation contradicts to “as low as reasonable achievable” principle of the radiation protection.

  15. Influence of meteorological parameters on the soil radon (Rn222) emanation in Kutch, Gujarat, India.

    PubMed

    Sahoo, Sushanta Ku; Katlamudi, Madhusudhanarao; Shaji, Jerin P; Murali Krishna, K S; Udaya Lakshmi, G

    2018-02-02

    The soil radon (Rn 222 ) and thoron (Rn 220 ) concentrations recorded at Badargadh and Desalpar observatories in the Kutch region of Gujarat, India, have been analyzed to study the sources of the radon emissions, earthquake precursors, and the influence of meteorological parameters on radon emission. Radon and meteorological parameters were recorded using Radon Monitor RMT 1688-2 at these two stations. We used the radon data during February 21, 2011 to June 8, 2011, for Badargadh and March 2, 2011 to May 19, 2011, for the Desalpar station with a sampling interval of 10 min. It is observed that the radon concentrations at Desalpar varies between 781 and 4320 Bq m -3 with an average value of 2499 Bq m -3 , whereas thoron varies between 191 and 2017 Bq m -3 with an average value of 1433.69 Bq m -3 . The radon concentration at Badargadh varies between 264 and 2221 Bq m -3 with an average value of 1135.4 Bq m -3 , whereas thoron varies between 97 and 556 Bq m -3 . To understand how the meteorological parameters influence radon emanation, the radon and other meteorological parameters were correlated with linear regression analysis. Here, it was observed that radon and temperature are negatively correlated whereas radon and other two parameters, i.e., humidity and pressure are positively correlated. The cross correlogram also ascertains similar relationships between radon and other parameters. Further, the ratio between radon and thoron has been analyzed to determine the deep or shallow source of the radon emanation in the study area. These results revealed that the ratio radon/thoron enhanced during this period which indicates the deeper source contribution is prominent. Incidentally, all the local earthquakes occurred with a focal depth of 18-25 km at the lower crust in this region. We observed the rise in the concentrations of radon and the ratio radon/thoron at Badargadh station before the occurrence of the local earthquakes on 29th March 2011 (M 3.7) and 17th May 2011 (M 4.2). We clearly observed the radon level crossing the mean + 2*sigma level before the occurrence of these events. We conclude that these enhanced radon emissions are linked with alteration of the crustal stress/strain in this region as this observing station is near the epicenters of the earthquakes. We did not observe considerable variations in radon at the Desalpar station which is far from the earthquake location.

  16. Estimation of residential radon exposure and definition of Radon Priority Areas based on expected lung cancer incidence.

    PubMed

    Elío, J; Crowley, Q; Scanlon, R; Hodgson, J; Zgaga, L

    2018-05-01

    Radon is a naturally occurring gas, classified as a Class 1 human carcinogen, being the second most significant cause of lung cancer after tobacco smoking. A robust spatial definition of radon distribution in the built environment is therefore essential for understanding the relationship between radon exposure and its adverse health effects on the general population. Using Ireland as a case study, we present a methodology to estimate an average indoor radon concentration and calculate the expected radon-related lung cancer incidence. We use this approach to define Radon Priority Areas at the administrative level of Electoral Divisions (EDs). Geostatistical methods were applied to a data set of almost 32,000 indoor radon measurements, sampled in Ireland between 1992 and 2013. Average indoor radon concentrations by ED range from 21 to 338 Bq m -3 , corresponding to an effective dose ranging from 0.8 to 13.3 mSv y -1 respectively. Radon-related lung cancer incidence by ED was calculated using a dose-effect model giving between 15 and 239 cases per million people per year, depending on the ED. Based on these calculations, together with the population density, we estimate that of the approximately 2,300 lung cancer cases currently diagnosed in Ireland annually, about 280 may be directly linked to radon exposure. This figure does not account for the synergistic effect of radon exposure with other factors (e.g. tobacco smoking), so likely represents a minimum estimate. Our approach spatially defines areas with the expected highest incidence of radon-related lung cancer, even though indoor radon concentrations for these areas may be moderate or low. We therefore recommend that both indoor radon concentration and population density by small area are considered when establishing national radon action plans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    PubMed Central

    Wu, Yun-Yun; Ma, Yong-Zhong; Cui, Hong-Xing; Liu, Jian-Xiang; Sun, Ya-Ru; Shang, Bing; Su, Xu

    2014-01-01

    222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration. PMID:25350007

  18. Bagged neural network model for prediction of the mean indoor radon concentration in the municipalities in Czech Republic.

    PubMed

    Timkova, Jana; Fojtikova, Ivana; Pacherova, Petra

    2017-01-01

    The purpose of the study is to determine radon-prone areas in the Czech Republic based on the measurements of indoor radon concentration and independent predictors (rock type and permeability of the bedrock, gamma dose rate, GPS coordinates and the average age of family houses). The relationship between the mean observed indoor radon concentrations in monitored areas (∼22% municipalities) and the independent predictors was modelled using a bagged neural network. Levels of mean indoor radon concentration in the unmonitored areas were predicted using the bagged neural network model fitted for the monitored areas. The propensity to increased indoor radon was determined by estimated probability of exceeding the action level of 300Bq/m 3 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Use of a geographic information system (GIS) for targeting radon screening programs in South Dakota

    PubMed Central

    Kearfott, Kimberlee J.; Whetstone, Zachary D.; Rafique Mir, Khwaja M.

    2016-01-01

    Because 222Rn is a progeny of 238U, the relative abundance of uranium may be used to predict the areas that have the potential for high indoor radon concentration and therefore determine the best areas to conduct future surveys. Geographic Information System (GIS) mapping software was used to construct maps of South Dakota that included levels of uranium concentrations in soil and stream water and uranium deposits. Maps of existing populations and the types of land were also generated. Existing data about average indoor radon levels by county taken from a databank were included for consideration. Although the soil and stream data and existing recorded average indoor radon levels were sparse, it was determined that the most likely locations of elevated indoor radon would be in the northwest and southwest corners of the state. Indoor radon levels were only available for 9 out of 66 counties in South Dakota. This sparcity of data precluded a study of correlation of radon to geological features, but further motivates the need for more testing in the state. Only actual measurements should be used to determine levels of indoor radon because of the strong roles home construction and localized geology play in radon concentration. However, the data visualization method demonstrated here is potentially useful for directing resources relating to radon screening campaigns. PMID:26472478

  20. Radon measurements and dose estimate of workers in a manganese ore mine.

    PubMed

    Shahrokhi, Amin; Vigh, Tamás; Németh, Csaba; Csordás, Anita; Kovács, Tibor

    2017-06-01

    In the new European Basic Safety Standard (EU-BSS), a new reference level for indoor radon concentration in workplaces has recommended that the annual average activity concentration of indoor radon shall not be higher than 300Bqm -3 . This paper describes the radon concentration level in an underground workplace (manganese ore mine) over long time intervals (4 years). Several common radon monitors devices - including NRPB and Raduet (as a passive method based on CR-39), AlphaGUARD PQ 2000Pro, SARAD EQF3220, TESLA and Pylon WLX (as active methods) - were used for continuous radon measurements. The output results were used, first, to comprised the result of each device, based on conditions present in underground mines; Second, to have comprehensive measurements about all factors that cause workers exposure to radiation (each monitoring device specified for a unique measurement). The results indicate that the mine's staff had successful efforts to reach the strict requirement of the new EU-BSS, and the average annual radon activity concentrations during the working hours were below 300Bqm -3 in the investigated period. The paper presents the effective dose calculations; applying different equilibrium factors suggested by the literature and calculated basing on our measurements at the site, concluding that the differences could be about threefold. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Radon Levels in Indoor Environments of the University Hospital in Bari-Apulia Region Southern Italy

    PubMed Central

    Fucilli, Fulvio; Cavone, Domenica; De Maria, Luigi; Birtolo, Francesco; Ferri, Giovanni Maria; Soleo, Leonardo

    2018-01-01

    Since 1988, the International Agency for Research on Cancer (IARC) has classified radon among the compounds for which there is scientific evidence of carcinogenicity for humans (group 1). The World Health Organization (WHO) recommends a reference radon level between 100 and 300 Bq/m3 for homes. The objective of this study is to measure the radon concentrations in 401 workplaces, different from the patient rooms, in 28 different buildings of the university hospital in Bari (Apulia region, Southern Italy) to evaluate the exposure of health care workers. Radon environmental sampling is performed over two consecutive six-month periods via the use of passive dosimeters of the CR-39 type. We find an average annual radon concentration expressed as median value of 48.0 Bq/m3 (range 6.5–388.0 Bq/m3) with a significant difference between the two six-month periods (median value: February/July 41.0 Bq/m3 vs. August/January 55.0 Bq/m3). An average concentration of radon lower than the WHO reference level (100 Bq/m3) is detected in 76.1% of monitored environments, while higher than 300 Bq/m3 only in the 0.9%. Most workplaces report radon concentrations within the WHO reference level, therefore, the risk to workers’ health deriving from occupational exposure to radon can be considered to be low. Nevertheless, the goal is to achieve near-zero exposures to protect workers’ health. PMID:29642436

  2. MEASUREMENT OF RADON, THORON AND THEIR PROGENY IN DIFFERENT TYPES OF DWELLING IN ALMORA DISTRICT OF KUMAUN HIMALAYAN REGION.

    PubMed

    Singh, Kuldeep; Semwal, Poonam; Pant, Preeti; Gusain, G S; Joshi, Manish; Sapra, B K; Ramola, R C

    2016-10-01

    The indoor concentrations of radon ( 222 Rn), thoron ( 220 Rn) and their daughter products were measured in the dwellings of Almora district in Kumaun Himalaya, India using pin-hole dosemeters and deposition progeny sensors. The measurements were made in the residential houses built of mud, stone with cement plaster and cemented house during winter season. Average [geometric mean (GM) values] radon and thoron concentrations for all dwellings were found to be 99.82 and 79.70 Bq m -3 , respectively, while average equilibrium equivalent radon concentration and equilibrium equivalent thoron concentration (measured for the first time for this region) were measured at 35.22 and 2.52 Bq m -3 , respectively. Radon concentration (GM values) was found to be 110.73, 97.00 and 93.85 Bq m -3 for mud houses, stone with cemented plaster houses and cemented houses, respectively. On the other hand, thoron concentration values were 87.10, 75.79 and 75.68 Bq m -3 for cemented houses, mud houses and stone with cemented plaster houses, respectively. Interpretations have been made on the basis of measured radon/thoron and progeny concentration values with respect to the difference of construction material of the dwellings. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Measurements of radon activity concentration in mouse tissues and organs.

    PubMed

    Ishimori, Yuu; Tanaka, Hiroshi; Sakoda, Akihiro; Kataoka, Takahiro; Yamaoka, Kiyonori; Mitsunobu, Fumihiro

    2017-05-01

    The purpose of this study is to investigate the biokinetics of inhaled radon, radon activity concentrations in mouse tissues and organs were determined after mice had been exposed to about 1 MBq/m 3 of radon in air. Radon activity concentrations in mouse blood and in other tissues and organs were measured with a liquid scintillation counter and with a well-type HP Ge detector, respectively. Radon activity concentration in mouse blood was 0.410 ± 0.016 Bq/g when saturated with 1 MBq/m 3 of radon activity concentration in air. In addition, average partition coefficients obtained were 0.74 ± 0.19 for liver, 0.46 ± 0.13 for muscle, 9.09 ± 0.49 for adipose tissue, and 0.22 ± 0.04 for other organs. With these results, a value of 0.414 for the blood-to-air partition coefficient was calculated by means of our physiologically based pharmacokinetic model. The time variation of radon activity concentration in mouse blood during exposure to radon was also calculated. All results are compared in detail with those found in the literature.

  4. MEASUREMENT OF RADON CONCENTRATION IN DWELLINGS IN THE REGION OF HIGHEST LUNG CANCER INCIDENCE IN INDIA.

    PubMed

    Zoliana, B; Rohmingliana, P C; Sahoo, B K; Mishra, R; Mayya, Y S

    2016-10-01

    Indoor radon/thoron concentration has been measured in Aizawl district, Mizoram, India, which has the highest lung cancer incidence rates among males and females in India. Simultaneously, radon flux emanated from the surrounding soil of the dwellings was observed in selected places. The annual average value of concentration of radon(thoron) of Aizawl district is 48.8(22.65) Bq m -3 with a geometric standard deviation of 1.25(1.58). Measured radon flux from the soil has an average value of 22.6 mBq m -2 s -1 These results were found to be much below the harmful effect or action level as indicated by the World Health Organisation. On the other hand, food habit and high-level consumption of tobacco and its products in the district have been found to increase the risk of lung cancer incidence in the district. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Indoor radon activity concentration measurements in the great historical museums of University of Naples, Italy.

    PubMed

    Quarto, Maria; Pugliese, Mariagabriella; Loffredo, Filomena; La Verde, Giuseppe; Roca, Vincenzo

    2016-01-01

    Indoor radon activity concentrations were measured in seven Museums of University of Naples, very old buildings of great historical value. The measurements were performed using a time-integrated technique based on LR-115 solid-state nuclear track detectors. The annual average concentrations were found to range from 40 up to 1935 Bq m(-3) and in 26 % of measurement sites, the values were higher than 500 Bq m(-3) which is the limit value of Italian legislation for workplace. Moreover, we analysed the seasonal variations of radon concentrations observing the highest average in cold weather than in warm. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Estimation of the indoor radon and the annual effective dose from granite samples

    NASA Astrophysics Data System (ADS)

    Sola, P.; Srinuttrakul, W.; Kewsuwan, P.

    2015-05-01

    Inhalation of radon and thoron daughters increases the risk of lung cancer. The main sources of indoor radon are building materials. The aim of this research is to estimate the indoor radon and the annual effective dose from the building materials. Eighteen granite samples bought from the markets in Thailand were measured using an ionization chamber (ATMOS 12 DPX) for the radon concentration in air. Radon exhalation rates were calculated from the radon concentration in chamber. The indoor radon from the granite samples ranged from 10.04 to 55.32 Bq·m-2·h-1 with an average value of 20.30 Bq·m-2·h-1 and the annual effective dose ranged from 0.25 to 1.39 mSv·y-1 with an average value of 0.48 mSv·y-1. The results showed that the annual effective doses of three granite samples were higher than the annual exposure limit for the general public (1 mSv·y-1) recommended by the International Commission on Radiological Protection (ICRP). In addition, the relationship between the colours and radon exhalation rates of granite samples was also explained.

  7. Measurement of radon/thoron exhalation rates and gamma-ray dose rate in granite areas in Japan.

    PubMed

    Prasad, G; Ishikawa, T; Hosoda, M; Sahoo, S K; Kavasi, N; Sorimachi, A; Tokonami, S; Uchida, S

    2012-11-01

    Radon and thoron exhalation rates and gamma-ray dose rate in different places in Hiroshima Prefecture were measured. Exhalation rates were measured using an accumulation chamber method. The radon exhalation rate was found to vary from 3 to 37 mBq m(-2) s(-1), while the thoron exhalation rate ranged from 40 to 3330 mBq m(-2) s(-1). The highest radon exhalation rate (37 mBq m(-2) s(-1)) and gamma-ray dose rate (92 nGy h(-1)) were found in the same city (Kure City). In Kure City, indoor radon and thoron concentrations were previously measured at nine selected houses using a radon-thoron discriminative detector (Raduet). The indoor radon concentrations varied from 16 to 78 Bq m(-3), which was higher than the average value in Japan (15.5 Bq m(-3)). The indoor thoron concentration ranged from ND (not detected: below a detection limit of approximately 10 Bq m(-3)) to 314 Bq m(-3). The results suggest that radon exhalation rate from the ground is an influential factor for indoor radon concentration.

  8. Estimation of the residential radon levels and the annual effective dose in dwellings of Shiraz, Iran, in 2015

    PubMed Central

    Yarahmadi, Maryam; Shahsavani, Abbas; Mahmoudian, Mohammad Hassan; Shamsedini, Narges; Rastkari, Noushin; Kermani, Majid

    2016-01-01

    Introduction Radon is the second most important cause of lung cancer after smoking. Thus, the determination of indoor radon concentrations in dwellings and workplaces is an important public health concern. The purpose of this research was to measure the concentration of radon gas in residential homes and public places in the city of Shiraz and its relationship with the type and age of the buildings as well as the type of materials used to construct the building (brick, block). We also determined the radon dosages that occupants of the building would receive. Methods The present study is a descriptive-analytical and cross-sectional research that was conducted on the building’s indoor air in the city of Shiraz in 2015. Using geographic information system (GIS) software and a spatial sampling cell with an area of 25 square kilometers, 200 points were selected. In this study, we used passive diffusive samplers as Solid State Nuclear Track Detector (SSNTD) CR-39 polycarbonate films for three months in the winter. Sampling was conducted in accordance with the U.S. Environmental Protection Agency’s protocol. We determined the concentrations of radon gas at the time of sampling, and calibration factors were determined. The data were analyzed by IBM-SPSS, version 20, descriptive statistics, Kruskal-Wallis, and Mann–Whitney tests. Results This study showed that the average radon concentration was 57.6 ± 33.06 Bq/m3 in residential dwellings. The average effective dose was 1.45 mSv/y. The concentration of radon in 5.4% of the houses was found to be greater than 100 Bq/m3, which is above the level allowed by the World Health Organization (WHO). Conclusion Since radon is the second leading cause of lung cancer, it seems necessary to increase the public’s awareness of this issue and to take action to reduce radon in homes when the concentrations are above the WHO’s guideline. PMID:27504164

  9. Seasonal variability of equilibrium factor and unattached fractions of radon and thoron in different regions of Punjab, India.

    PubMed

    Saini, Komal; Singh, Parminder; Singh, Prabhjot; Bajwa, B S; Sahoo, B K

    2017-02-01

    A survey was conducted to estimate equilibrium factor and unattached fractions of radon and thoron in different regions of Punjab state, India. Pin hole based twin cup dosimeters and direct progeny sensor techniques have been utilized for estimation of concentration level of radon, thoron and their progenies. Equilibrium factor calculated from radon, thoron and their progenies concentration has been found to vary from 0.15 to 0.80 and 0.008 to 0.101 with an average value of 0.44 and 0.036 for radon and thoron respectively. Equilibrium factor for radon has found to be highest in winter season and lowest in summer season whereas for thoron highest value is observed in winter and rainy season and lowest in summer. Unattached fractions of radon and thoron have been found to vary from 0.022 to 0.205 and 0.013 to 0.212 with an average value of 0.099 and 0.071 respectively. Unattached fractions have found to be highest in winter season and lowest in rainy and summer season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Indoor radon variations in central Iran and its geostatistical map

    NASA Astrophysics Data System (ADS)

    Hadad, Kamal; Mokhtari, Javad

    2015-02-01

    We present the results of 2 year indoor radon survey in 10 cities of Yazd province in Central Iran (covering an area of 80,000 km2). We used passive diffusive samplers with LATEX polycarbonate films as Solid State Nuclear Track Detector (SSNTD). This study carried out in central Iran where there are major minerals and uranium mines. Our results indicate that despite few extraordinary high concentrations, average annual concentrations of indoor radon are within ICRP guidelines. When geostatistical spatial distribution of radon mapped onto geographical features of the province it was observed that risk of high radon concentration increases near the Saqand, Bafq, Harat and Abarkooh cities, this depended on the elevation and vicinity of the ores and mines.

  11. Radon Concentration And Dose Assessment In Well Water Samples From Karbala Governorate Of Iraq

    NASA Astrophysics Data System (ADS)

    Al-Alawy, I. T.; Hasan, A. A.

    2018-05-01

    There are numerous studies around the world about radon concentrations and their risks to the health of human beings. One of the most important social characteristics is the use of water wells for irrigation, which is a major source of water pollution with radon gas. In the present study, six well water samples have been collected from different locations in Karbala governorate to investigate radon concentration level using CR-39 technique. The maximum value 4.112±2.0Bq/L was in Al-Hurr (Al-Qarih Al-Easariah) region, and the lowest concentration of radon was in Hay Ramadan region which is 2.156±1.4Bq/L, with an average value 2.84±1.65Bq/L. The highest result of annual effective dose (AED) was in Al-Hurr (Al-Qarih Al-Easariah) region which is equal to 15.00±3.9μSv/y, while the minimum was recorded in Hay Ramadan 7.86±2.8μSv/y, with an average value 10.35±3.1μSv/y. The current results have shown that the radon concentrations in well water samples are lower than the recommended limit 11.1Bq/L and the annual effective dose in these samples are lower than the permissible international limit 1mSv/y.

  12. Effect of energy-efficient measures in building construction on indoor radon in Russia.

    PubMed

    Vasilyev, A; Yarmoshenko, I

    2017-04-28

    The effect of implementation of energy-efficient measures in building construction was studied. Analysis includes study of indoor radon in energy-efficient buildings in Ekaterinburg, Russia, and results of radiation measurements in 83 regions of Russia conducted within the regional programmes. The forecast distribution of radon concentration in Ekaterinburg was built with regard to the city development programme. With Ekaterinburg taken as representative case, forecast distribution of radon concentration in Russia in 2030 was built. In comparison with 2000, average radon concentration increases by a factor of 1.42 in 2030 year; percentage above the reference level 300 Bq/m3 increases by a factor of 4 in 2030 year. It is necessary to perceive such an increase with all seriousness and to prepare appropriate measures for optimization of protection against indoor radon. Despite the high uncertainty, reconstructed distribution of radon concentration can be applied for justification of measures to be incorporated in the radon mitigation strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Contribution of radon and radon daughters to respiratory cancer.

    PubMed Central

    Harley, N; Samet, J M; Cross, F T; Hess, T; Muller, J; Thomas, D

    1986-01-01

    This article reviews studies on the contribution of radon and radon daughters to respiratory cancer and proposes recommendations for further research, particularly a national radon survey. The steady-state outdoor radon concentration averages 200 pCi/m3, and indoor levels are about 4 times higher. The primary source of radon in homes is the underlying soil; entry depends on multiple variables and reduced ventilation for energy conservation increases indoor radon levels. Occupational exposures are expressed in units of radon daughter potential energy concentration or working level (WL). Cumulative exposure is the product of the working level and the time exposed. The unit for cumulative exposure is the working level month (WLM). The occupational standard for radon exposure is 4 WLM/year, and 2 WLM/year has been suggested as a guideline for remedial action in homes. Epidemiologic studies show that miners with cumulative radon daughter exposures somewhat below 100 WLM have excess lung cancer mortality. Some 3% to 8% of miners studied have developed lung cancer attributable to radon daughters. All of the underground mining studies show an increased risk of lung cancer with radon daughter exposure. All cell types of lung cancer increased with radon exposure. If radon and smoking act in a multiplicative manner, then the risk for smokers could be 10 times that for nonsmokers. The potential risk of lung cancer appears to be between 1 and 2 per 10,000/WLM, which yields a significant number of lung cancers as some 220 million persons in the United States are exposed on average to 10 to 20 WLM/lifetime. PMID:3830103

  14. Radon exhalation rates from some soil samples of Kharar, Punjab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Vimal; Deptt of Physics, Punjabi University, Patiala- 147 001; Singh, Tejinder Pal, E-mail: tejinders03@gmail.com

    Radon and its progeny are major contributors in the radiation dose received by general population of the world. Because radon is a noble gas, a large portion of it is free to migrate away from radium. The primary sources of radon in the houses are soils and rocks source emanations, emanation from building materials, and entry of radon into a structure from outdoor air. Keeping this in mind the study of radon exhalation rate from some soil samples of the Kharar, Punjab has been carried out using Can Technique. The equilibrium radon concentration in various soil samples of Kharar areamore » of district Mohali varied from 12.7 Bqm{sup −3} to 82.9 Bqm{sup −3} with an average of 37.5 ± 27.0 Bqm{sup −3}. The radon mass exhalation rates from the soil samples varied from 0.45 to 2.9 mBq/kg/h with an average of 1.4 ± 0.9 mBq/kg/h and radon surface exhalation rates varied from 10.4 to 67.2 mBq/m{sup 2}/h with an average of 30.6 ± 21.8 mBq/m{sup 2}/h. The radon mass and surface exhalation rates of the soil samples of Kharar, Punjab were lower than that of the world wide average.« less

  15. Soil radium, soil gas radon and indoor radon empirical relationships to assist in post-closure impact assessment related to near-surface radioactive waste disposal.

    PubMed

    Appleton, J D; Cave, M R; Miles, J C H; Sumerling, T J

    2011-03-01

    Least squares (LS), Theil's (TS) and weighted total least squares (WTLS) regression analysis methods are used to develop empirical relationships between radium in the ground, radon in soil and radon in dwellings to assist in the post-closure assessment of indoor radon related to near-surface radioactive waste disposal at the Low Level Waste Repository in England. The data sets used are (i) estimated ²²⁶Ra in the < 2 mm fraction of topsoils (eRa226) derived from equivalent uranium (eU) from airborne gamma spectrometry data, (ii) eRa226 derived from measurements of uranium in soil geochemical samples, (iii) soil gas radon and (iv) indoor radon data. For models comparing indoor radon and (i) eRa226 derived from airborne eU data and (ii) soil gas radon data, some of the geological groupings have significant slopes. For these groupings there is reasonable agreement in slope and intercept between the three regression analysis methods (LS, TS and WTLS). Relationships between radon in dwellings and radium in the ground or radon in soil differ depending on the characteristics of the underlying geological units, with more permeable units having steeper slopes and higher indoor radon concentrations for a given radium or soil gas radon concentration in the ground. The regression models comparing indoor radon with soil gas radon have intercepts close to 5 Bq m⁻³ whilst the intercepts for those comparing indoor radon with eRa226 from airborne eU vary from about 20 Bq m⁻³ for a moderately permeable geological unit to about 40 Bq m⁻³ for highly permeable limestone, implying unrealistically high contributions to indoor radon from sources other than the ground. An intercept value of 5 Bq m⁻³ is assumed as an appropriate mean value for the UK for sources of indoor radon other than radon from the ground, based on examination of UK data. Comparison with published data used to derive an average indoor radon: soil ²²⁶Ra ratio shows that whereas the published data are generally clustered with no obvious correlation, the data from this study have substantially different relationships depending largely on the permeability of the underlying geology. Models for the relatively impermeable geological units plot parallel to the average indoor radon: soil ²²⁶Ra model but with lower indoor radon: soil ²²⁶Ra ratios, whilst the models for the permeable geological units plot parallel to the average indoor radon: soil ²²⁶Ra model but with higher than average indoor radon: soil ²²⁶Ra ratios. Copyright © 2010 Natural Environment Research Council. Published by Elsevier Ltd.. All rights reserved.

  16. A comparison of the dose from natural radionuclides and artificial radionuclides after the Fukushima nuclear accident

    PubMed Central

    Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Ishikawa, Tetsuo; Iwaoka, Kazuki

    2016-01-01

    Due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, the evacuees from Namie Town still cannot reside in the town, and some continue to live in temporary housing units. In this study, the radon activity concentrations were measured at temporary housing facilities, apartments and detached houses in Fukushima Prefecture in order to estimate the annual internal exposure dose of residents. A passive radon–thoron monitor (using a CR-39) and a pulse-type ionization chamber were used to evaluate the radon activity concentration. The average radon activity concentrations at temporary housing units, including a medical clinic, apartments and detached houses, were 5, 7 and 9 Bq m−3, respectively. Assuming the residents lived in these facilities for one year, the average annual effective doses due to indoor radon in each housing type were evaluated as 0.18, 0.22 and 0.29 mSv, respectively. The average effective doses to all residents in Fukushima Prefecture due to natural and artificial sources were estimated using the results of the indoor radon measurements and published data. The average effective dose due to natural sources for the evacuees from Namie Town was estimated to be 1.9 mSv. In comparison, for the first year after the FDNPP accident, the average effective dose for the evacuees due to artificial sources from the accident was 5.0 mSv. Although residents' internal and external exposures due to natural radionuclides cannot be avoided, it might be possible to lower external exposure due to the artificial radionuclides by changing some behaviors of residents. PMID:26838130

  17. Radon and thoron concentrations in public workplaces in Brisbane, Australia.

    PubMed

    Alharbi, Sami H; Akber, Riaz A

    2015-06-01

    Radon and thoron are radioactive gases that can emanate from soil and building materials, and it can accumulate in indoor environments. The concentrations of radon and thoron in the air from various workplace categories in Brisbane, Australia were measured using an active method. The average radon and thoron concentrations for all workplace categories were 10.5 ± 11.3 and 8.2 ± 1.4 Bq m(-3), respectively. The highest radon concentration was detected in a confined area, 86.6 ± 6.0 Bq m(-3), while the maximum thoron level was found in a storage room, 78.1 ± 14.0 Bq m(-3). At each site, the concentrations of radon and thoron were measured at two heights, 5 cm and 120 cm above the floor. The effect of the measurement heights on the concentration level was significant in the case of thoron. The monitoring of radon and thoron concentrations showed a lower radon concentration during work hours than at other times of the day. This can be attributed to the ventilation systems, including the air conditioner and natural ventilation, which normally operate during work hours. The diurnal variation was less observed in the case of thoron, as the change in its concentration during and after the working hours was insignificant. The study also investigated the influence of the floor level and flooring type on indoor radon and thoron concentrations. The elevated levels of radon and thoron were largely found in basements and ground floor levels and in rooms with concrete flooring. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Childhood cancer mortality and radon concentration in drinking water in North Carolina.

    PubMed Central

    Collman, G. W.; Loomis, D. P.; Sandler, D. P.

    1991-01-01

    We explored the association between groundwater radon levels and childhood cancer mortality in North Carolina. Using data from two state-wide surveys of public drinking water supplies, counties were ranked according to average groundwater radon concentration. Age and sex-adjusted 1950-79 cancer death rates among children under age 15 were calculated for counties with high, medium, and low radon levels. Overall cancer mortality was increased in counties with medium and high radon levels. The strongest association was for the leukaemias, but risks were also suggested for other sites. These associations could be due to confounding or other biases, but the findings are consistent with other recent reports. PMID:2021549

  19. Childhood cancer mortality and radon concentration in drinking water in North Carolina.

    PubMed

    Collman, G W; Loomis, D P; Sandler, D P

    1991-04-01

    We explored the association between groundwater radon levels and childhood cancer mortality in North Carolina. Using data from two state-wide surveys of public drinking water supplies, counties were ranked according to average groundwater radon concentration. Age and sex-adjusted 1950-79 cancer death rates among children under age 15 were calculated for counties with high, medium, and low radon levels. Overall cancer mortality was increased in counties with medium and high radon levels. The strongest association was for the leukaemias, but risks were also suggested for other sites. These associations could be due to confounding or other biases, but the findings are consistent with other recent reports.

  20. New Correction Factors Based on Seasonal Variability of Outdoor Temperature for Estimating Annual Radon Concentrations in UK.

    PubMed

    Daraktchieva, Z

    2017-06-01

    Indoor radon concentrations generally vary with season. Radon gas enters buildings from beneath due to a small air pressure difference between the inside of a house and outdoors. This underpressure which draws soil gas including radon into the house depends on the difference between the indoor and outdoor temperatures. The variation in a typical house in UK showed that the mean indoor radon concentration reaches a maximum in January and a minimum in July. Sine functions were used to model the indoor radon data and monthly average outdoor temperatures, covering the period between 2005 and 2014. The analysis showed a strong negative correlation between the modelled indoor radon data and outdoor temperature. This correlation was used to calculate new correction factors that could be used for estimation of annual radon concentration in UK homes. The comparison between the results obtained with the new correction factors and the previously published correction factors showed that the new correction factors perform consistently better on the selected data sets. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND PROGENY IN THE INDOOR ENVIRONMENT OF YAMUNA AND TONS VALLEYS OF GARHWAL HIMALAYA.

    PubMed

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Prasad, Ganesh; Mishra, Rosaline; Ramola, R C

    2016-10-01

    Long-term measurements of indoor radon, thoron and their progeny concentrations have been carried out in dwellings of Yamuna and Tons Valleys of Uttarkashi, Garhwal Himalaya to investigate the health risk associated with inhalation of radon, thoron and progeny. The experimentally determined values of radon, thoron and progeny concentrations were used to estimate the annual inhalation doses and annual effective doses. The annual inhalation dose has been found to vary from 0.8 to 3.9 mSv y -1 with an average of 1.8 mSv y -1 The annual effective dose from the exposure to radon and its progeny in the study area has been found to vary from 0.1 to 2.4 mSv with an average of 1.2±0.6 mSv. Similarly, the annual effective dose due to thoron and its progeny has been found to vary from 0.2 to 1.5 mSv with an average of 0.6±0.4. The measurement techniques and results obtained are discussed in detail. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The influence of traffic vibrations on the radon potential.

    PubMed

    Schmid, S; Wiegand, J

    1998-02-01

    The influence of traffic vibrations on the radon potential is analyzed in this study. Generally, the radon concentration in soil-gas increases through traffic vibrations. The influence of the vibrations is determined near railway tracks and heavy-traffic roads. Soils above natural, in-place, bedrock (solid and unconsolidated rocks) and backfills were studied. The type of vibrations, as well the soil material, have a pronounced influence on the amount of increase of the radon concentration. The spatial radius of influence is wider with railway traffic (>30 m) than with motor vehicle traffic (<25 m). Close to the traffic lanes the increase of the radon concentration by motor vehicle traffic is significantly higher (37%) than that by railway traffic (11.5%). There are no differences between locations, which lay above unconsolidated rock (11.1%), and locations above solid rock (11.8%). In addition to the increased radon concentrations, the averaged radon concentration decreases with increasing distance to the vibration source, but only at locations that lay above solid rock. Both phenomena can be explained by a "pump effect": the mechanical vibration of soil and mineral particles leads to an upward motion of the whole volume of soil-gas. During the vibrations the topmost soil layers lose radon to the atmosphere and as a result the upward transport is increased.

  3. Radon exhalation rates from building materials using electret ion chamber radon monitors in accumulators.

    PubMed

    Kotrappa, Payasada; Stieff, Frederick

    2009-08-01

    An electret ion chamber (EIC) radon monitor in a sealed accumulator measures the integrated average radon concentration at the end of the accumulation duration. Theoretical equations have been derived to relate such radon concentrations (Bq m(-3) ) to the radon emanation rate (Bq d(-1)) from building materials enclosed in the accumulator. As an illustration, a 4-L sealable glass jar has been used as an accumulator to calculate the radon emanation rate from different granite samples. The radon emanation rate was converted into radon flux (Bq mm(-2) d(-1)) by dividing the emanation rate by surface area of the sample. Fluxes measured on typical, commercially available granites ranged from 20-30 Bq m(-2) d(-1). These results are similar to the results reported in the literature. The lower limit of detection for a 2-d measurement works out to be 7 Bq m(-2) d(-1). Equations derived can also be used for other sealable accumulators and other integrating detectors, such as alpha track detectors.

  4. Residential radon exposure and risk of lung cancer in Missouri.

    PubMed Central

    Alavanja, M C; Lubin, J H; Mahaffey, J A; Brownson, R C

    1999-01-01

    OBJECTIVES: This study investigated residential radon exposure and lung cancer risk, using both standard radon dosimetry and a new radon monitoring technology that, evidence suggests, is a better measure of cumulative radon exposure. METHODS: Missouri women (aged 30 to 84 years) newly diagnosed with primary lung cancer during the period January 1, 1993, to January 31, 1994, were invited to participate in this population-based case-control study. Both indoor air radon detectors and CR-39 alpha-particle detectors (surface monitors) were used. RESULTS: When surface monitors were used, a significant trend in lung cancer odds ratios was observed for 20-year time-weighted-average radon concentrations. CONCLUSIONS: When surface monitors were used, but not when standard radon dosimetry was used, a significant lung cancer risk was found for radon concentrations at and above the action level for mitigation of houses currently used in the United States (148 Bqm-3). The risk was below the action level used in Canada (750 Bqm-3) and many European countries (200-400 Bqm-3). PMID:10394313

  5. Predicted indoor radon concentrations from a Monte Carlo simulation of 1,000,000 granite countertop purchases.

    PubMed

    Allen, J G; Zwack, L M; MacIntosh, D L; Minegishi, T; Stewart, J H; McCarthy, J F

    2013-03-01

    Previous research examining radon exposure from granite countertops relied on using a limited number of exposure scenarios. We expanded upon this analysis and determined the probability that installing a granite countertop in a residential home would lead to a meaningful radon exposure by performing a Monte Carlo simulation to obtain a distribution of potential indoor radon concentrations attributable to granite. The Monte Carlo analysis included estimates of the probability that a particular type of granite would be purchased, the radon flux associated with that type, the size of the countertop purchased, the volume of the home where it would be installed and the air exchange rate of that home. One million countertop purchases were simulated and 99.99% of the resulting radon concentrations were lower than the average outdoor radon concentrations in the US (14.8 Bq m(-3); 0.4  pCi l(-1)). The median predicted indoor concentration from granite countertops was 0.06 Bq m(-3) (1.59 × 10(-3) pCi l(-1)), which is over 2000 times lower than the US Environmental Protection Agency's action level for indoor radon (148 Bq m(-3); 4 pCi l(-1)). The results show that there is a low probability of a granite countertop causing elevated levels of radon in a home.

  6. Air radon concentration decrease in a waste water treatment plant.

    PubMed

    Juste, B; Ortiz, J; Verdú, G; Martorell, S

    2015-06-01

    (222)Rn is a naturally occurring gas created from the decay of (226)Ra. The long-term health risk of breathing radon is lung cancer. One particular place where indoor radon concentrations can exceed national guidelines is in wastewater treatment plants (WWTPs) where treatment processes may contribute to ambient airborne concentrations. The aim of this paper was to study the radon concentration decrease after the application of corrective measures in a Spanish WWTP. According to first measures, air radon concentration exceeded International Commission Radiologica1 Protection (ICRP) normative (recommends intervention between 400 and 1000 Bq m(-3)). Therefore, the WWTP improved mechanical forced ventilation to lower occupational exposure. This measure allowed to increase the administrative controls, since the limitation of workers access to the plant changed from 2 h d(-1) (considering a maximum permissible dose of 20 mSv y(-1) averaged over 5 y) to 7 h d(-1). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).

    PubMed

    Tchorz-Trzeciakiewicz, Dagmara Eulalia; Parkitny, Tomasz

    2015-11-01

    The surveys of radon concentrations in the Underground Tourist Route "Coal Mine" were carried out using passive and active measurement techniques. Passive methods with application of Solid State Nuclear Track Detectors LR115 were used at 4 points in years 2004-2007 and at 21 points in year 2011. These detectors were exchanged at the beginning of every season in order to get information about seasonal and spatial changes of radon concentrations. The average radon concentration noted in this facility was 799 Bq m(-3) and is consistent with radon concentrations noted in Polish coal mines. Seasonal variations, observed in this underground tourist route, were as follows: the highest radon concentrations were noted during summers, the lowest during winters, during springs and autumns intermediate but higher in spring than in autumn. The main external factor that affected seasonal changes of radon concentrations was the seasonal variation of outside temperature. No correlation between seasonal variations of radon concentrations and seasonal average atmospheric pressures was found. Spatial variations of radon concentrations corresponded with air movements inside the Underground Tourist Route "Coal Mine". The most vivid air movements were noted along the main tunnel in adit and at the place located near no blinded (in the upper part) shaft. Daily variations of radon concentrations were recorded in May 2012 using RadStar RS-230 as the active measurement technique. Typical daily variations of radon concentrations followed the pattern that the highest radon concentrations were recorded from 8-9 a.m. to 7-8 p.m. and the lowest during nights. The main factor responsible for hourly variations of radon concentrations was the daily variation of outside temperatures. No correlations were found between radon concentration and other meteorological parameters such as atmospheric pressure, wind velocity or precipitation. Additionally, the influence of human factor on radon concentrations was noticed. As human factor, we consider open entrance door during restorations works carried out inside the underground facility. Comprehensive surveys of radon concentrations in the Underground Tourist Route "Coal Mine", which included hourly, seasonal and spatial measurements, have revealed that radon can be the excellent tracer of air movements inside the underground facilities that are not equipped with mechanical ventilation system. The main external factor that affects hourly, seasonal and even spatial changes of radon concentrations inside Underground Tourist Route "Coal Mine" is the variation of outside temperature. The maximum effective dose received by employees during 2000 working hours in a year was 5.8 mSv y(-1) and the minimum was 3.5 mSv y(-1). Tourist guides, who usually spend underground about 1000 h y(-1), received effective dose from 1.7 mSv y(-1) to 2.3 mSv y(-1). According to Polish Law, employees, receiving effective dose for occupational exposure higher than 1 mSv y(-1) but below 6 mSv y(-1), are allocated to category B of workers and the level of radiation in their place of work should be controlled and continuously monitored. The radiation monitoring system in the Underground Tourist Route "Coal Mine" does not exist. None of Polish tourist routes or caves has installed radiation monitoring system although effective doses received by employees, in some of them, exceed values defined by law. Effective dose received by tourist during one trip was lower than 0.001 mSv y(-1) and risk of cancer induction was lower than 0.00001%. The probability, that tourists inside the Underground Tourist Route "Coal Mine" receive effective dose exceeding allowable annual limit for members of the public of 1 mSv y(-1) does not exist. The Underground Tourist Route Coal Mine is a safe place for tourists from radiological point of view. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Indoor radon levels in selected hot spring hotels in Guangdong, China.

    PubMed

    Song, Gang; Zhang, Boyou; Wang, Xinming; Gong, Jingping; Chan, Daniel; Bernett, John; Lee, S C

    2005-03-01

    Guangdong is one of the provinces that have most hot springs in China, and many hotels have been set up near hot springs, with spring water introduced into the bath inside each hotel room for hot spring bathing to attract tourists. In the present study, we measured radon in indoor and outdoor air, as well as in hot spring waters, in four hot spring hotels in Guangdong by using NR-667A (III) continuous radon detector. Radon concentrations ranged 53.4-292.5 Bq L(-1) in the hot spring water and 17.2-190.9 Bq m(-3) in outdoor air. Soil gas intrusion, indoor hot spring water use and inefficient ventilation all contributed to the elevated indoor radon levels in the hotel rooms. From the variation of radon levels in closed unoccupied hotel rooms, soil gas intrusion was found to be a very important source of indoor radon in hotel rooms with floors in contact with soils. When there was spring water bathing in the bathes, average radon levels were 10.9-813% higher in the hotel rooms and 13.8-489% higher in bathes compared to their corresponding average levels when there was no spring water use. Spring water use in the hotel rooms had radon transfer coefficients from 1.6x10(-4) to 5.0x10(-3). Radon in some hotel rooms maintained in concentrations much higher than guideline levels might thus have potential health risks to the hotel workers, and technical and management measures should be taken to lower their exposure of radon through inhalation.

  9. Radon mitigation in domestic properties and its health implications--a comparison between during-construction and post-construction radon reduction.

    PubMed

    Groves-Kirkby, C J; Denman, A R; Phillips, P S; Crockett, R G M; Woolridge, A C; Tornberg, R

    2006-05-01

    Although United Kingdom (UK) Building Regulations applicable to houses constructed since 1992 in Radon Affected Areas address the health issues arising from the presence of radon in domestic properties and specify the installation of radon-mitigation measures during construction, no legislative requirement currently exists for monitoring the effectiveness of such remediation once construction is completed and the houses are occupied. To assess the relative effectiveness of During-Construction radon reduction and Post-Construction remediation, radon concentration data from houses constructed before and after 1992 in Northamptonshire, UK, a designated Radon Affected Area, was analysed. Post-Construction remediation of 73 pre-1992 houses using conventional fan-assisted sump technology proved to be extremely effective, with radon concentrations reduced to the Action Level, or below, in all cases. Of 64 houses constructed since 1992 in a well-defined geographical area, and known to have had radon-barrier membranes installed during construction, 11% exhibited radon concentrations in excess of the Action Level. This compares with the estimated average for all houses in the same area of 17%, suggesting that, in some 60% of the houses surveyed, installation of a membrane has not resulted in reduction of mean annual radon concentrations to below the Action Level. Detailed comparison of the two data sets reveals marked differences in the degree of mitigation achieved by remediation. There is therefore an ongoing need for research to resolve definitively the issue of radon mitigation and to define truly effective anti-radon measures, readily installed in domestic properties at the time of construction. It is therefore recommended that mandatory testing be introduced for all new houses in Radon Affected Areas.

  10. Measurement of the concentration of radon gas in the Toirano's caves (Liguria).

    PubMed

    Bruzzone, Diego; Bussallino, Massimo; Castello, Gianrico; Maggiolo, Stefano; Rossi, Daniela

    2006-01-01

    The radioactive gas radon, intermediate term of the decay series of uranium and thorium, is the main contamination source of underground places and may be a risk for high concentration and long exposure time. European and Italian law requires radon concentration to be measured in workplaces and, if the "action level" of 500 Bq/m3 is reached, proper actions must be made in order to decrease the dose commitment. Considering natural showcaves or artificial cavities open to public, the exposition of the visitors is frequently small, due to the short residence time, but accompanying people, remaining underground for long time, may be subject to appreciable dose and the radon concentration should therefore be monitored. The high humidity in natural caves may impair the use of some measuring devices. Therefore, different detection methods were compared (ZnS scintillation counters, E-PERM electret ionisation chambers, cellulose nitrate alpha-track dosimeters) to select the best procedure for long-term investigation. The LR-115 (Kodak) alpha-track dosimeters were insensitive to humidity and permitted to monitor a great number of places at the same time. Measurements have been carried out in the speleological and archaeological site of the Toirano's Caves (Savona, Liguria, Italy) and several points were monitored for two years. Radon concentration strongly depends on the site and changes during the year, due to the difference between internal and external temperature. The maximum dose commitment during the visitors tour, considering the average yearly value of radon concentration, was found to be between 1.5 and 4 microSv. It was found that no risk exists for visitors, but the evaluation of the dose absorbed by the guides and their classification according to the radiation protection law requires a complete monitoring of the average yearly concentration of radon and of the total time spent by each worker into the cave.

  11. Preliminary results from an indoor radon thoron survey in Hungary.

    PubMed

    Szeiler, G; Somlai, J; Ishikawa, T; Omori, Y; Mishra, R; Sapra, B K; Mayya, Y S; Tokonami, S; Csordás, A; Kovács, T

    2012-11-01

    More than half of the radiation dose of natural origin comes from radon. However, according to some surveys in certain cases, the radiation dose originating from thoron may be considerable. Among the factors disturbing the measurement of radon, the presence of thoron may also influence the measured radon value, making the estimated radiation exposure imprecise. Thoron has previously been surveyed, mainly in Asia; however, recent surveys for some European locations have found that significant thoron concentrations also need to be considered. In this survey, several types of commercially available SSNTDs (solid-state nuclear track detectors) capable of measuring both radon and thoron were placed at the same time in 73 houses and 7 workplaces in Hungary with 3-month exposition periods. In order to measure thoron, the distance of the detector sets was fixed as 15-20 cm from the walls. The radon concentration was measured with five types of SSNTDs: NRPB, NRPB SSI, Raduet, DTPS and DRPS. The first four types had relatively good accordance (within ± 10 %), but the results of the DRPS detectors were considerably lower when compared with other detectors for radon concentrations over 100 Bq m(-3). The thoron averages were provided by two different types of detectors: Raduet and DTPS. The difference between their average results was more than 30 % and was six times the maximum values. Therefore, the thoron measurement results were judged to be erroneous, and their measurement protocol should be clearly established for future work.

  12. A study of indoor radon, thoron and their exhalation rates in the environment of Fazilka district, Punjab, India

    NASA Astrophysics Data System (ADS)

    Narang, Saurabh; Kumar, Deepak; Sharma, Dinesh Kumar; Kumar, Ajay

    2018-02-01

    Over the last few decades, the study of radioactive radon gas has gained huge momentum due to its possible role in health related hazards. In the present work, pin-hole twin chamber single entrance dosimeters have been used for track measurements of radon and thoron. The annual average radon concentration varies from 50.3 to 204 Bq/m3 at all locations. Almost all the values are below the safe range provided by ICRP. Radon concentration is found to be higher in winter as compared to other seasons. Variation of radon with quality of dwellings is also discussed. The values of annual effective dose due to radon and thoron are also well within the range provided by ICRP and WHO. Radon and thoron exhalation rates are measured using SMART RnDuo monitor. The radon mass exhalation rates ranged from 11 to 71 mBq/kg/h while the thoron surface values ranged from 36 to 2048 Bq/m2/h. All the values are on the lower side. A weak correlation is found between radon and thoron concentrations and their exhalation rates. When compared with the values of other parts of northern India, the values of present investigation are on higher side.

  13. Radon-222 in the ground water of Chester County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.

    1998-01-01

    Radon-222 concentrations in ground water in 31 geologic units in Chester County, Pa., were measured in 665 samples collected from 534 wells from 1986 to 1997. Chester County is underlain by schists, gneisses, quartzites, carbonates, sandstones, shales, and other rocks of the Piedmont Physiographic Province. On average, radon concentration was measured in water from one well per 1.4 square miles, throughout the 759 square-mile county, although the distribution of wells was not even areally or among geologic units.The median concentration of radon-222 in ground water from the 534 wells was 1,400 pCi/L (picocuries per liter). About 89 percent of the wells sampled contained radon-222 at concentrations greater than 300 pCi/L, and about 11 percent of the wells sampled contained radon-222 at concentrations greater than 5,000 pCi/L. The highest concentration measured was 53,000 pCi/L. Of the geologic units sampled, the median radon-222 concentration in ground water was greatest (4,400 pCi/L) in the Peters Creek Schist, the second most areally extensive formation in the county. Significant differences in the radon-222 concentrations in ground water among geologic units were observed. Generally, concentrations in ground water in schists, quartzites, and gneisses were greater than in ground water in anorthosite, carbonates, and ultramafic rocks. The distribution of radon-222 in ground water is related to the distribution of uranium in aquifer materials of the various rock types.Temporal variability in radon-222 concentrations in ground water does not appear to be greater than about a factor of two for most (75 percent) of wells sampled more than once but was observed to range up to almost a factor of three in water from one well. In water samples from this well, seasonal variations were observed; the maximum concentrations were measured in the fall and the minimum in the spring.

  14. Radon exposure and leukaemia in adulthood.

    PubMed

    Viel, J F

    1993-08-01

    Positive associations between leukaemia and radon concentrations have been observed in England, Scotland and Wales, and Canada. Results of a similar study for the populations of 41 French administrative areas ('départements') are reported for 1984-1986. The average indoor radon and gamma ray concentrations per 'département' range from 12 to 147 Bq.m-3 and from 28 to 142 nG.h-1, respectively. Acute lymphoid leukaemia mortality rate is similar to the national level, whereas an excess of acute myeloid leukaemia deaths is observed. According to Poisson regression models and modified tests for partial correlation, acute myeloid leukaemia mortality is significantly and positively related to indoor radon concentration whether or not adjustment is made for indoor gamma ray dose, socioeconomic status and linear gradient. This result reinforces the evidence that indoor exposure to high levels of radon is a leukaemic environmental hazard.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozkurt, A.; Kam, E.

    This study assesses the indoor radon concentrations for the city of Edirne situated in the European part of Turkey (Eastern Thrace). A total of 88 CR-39 nuclear track detectors were kept in basements of the selected apartment buildings and houses for passively determining the indoor radon levels of the dwellings for a period of three months. The detectors were then collected and a chemical process of etching was applied to the films. At this stage, the tracks left by alpha particles on the films exposed to radon gas were visible and were counted with a microscope (500xmagnification) to estimate themore » corresponding indoor radon concentrations. The average indoor radon concentration was found to be 49.2 Bq/m3 equivalent to an annual effective dose of 1.24 mSv. The measurement results obtained in this study show no significant departure from the other parts of the country.« less

  16. Active-passive measurements and CFD based modelling for indoor radon dispersion study.

    PubMed

    Chauhan, Neetika; Chauhan, R P

    2015-06-01

    Computational fluid dynamics (CFD) play a significant role in indoor pollutant dispersion study. Radon is an indoor pollutant which is radioactive and inert gas in nature. The concentration level and spatial distribution of radon may be affected by the dwelling's ventilation conditions. Present work focus at the study of indoor radon gas distribution via measurement and CFD modeling in naturally ventilated living room. The need of the study is the prediction of activity level and to study the effect of natural ventilation on indoor radon. Two measurement techniques (Passive measurement using pin-hole dosimeters and active measurement using continuous radon monitor (SRM)) were used for the validation purpose of CFD results. The CFD simulation results were compared with the measurement results at 15 points, 3 XY planes at different heights along with the volumetric average concentration. The simulation results found to be comparable with the measurement results. The future scope of these CFD codes is to study the effect of varying inflow rate of air on the radon concentration level and dispersion pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Comprehensive survey of household radon gas levels and risk factors in southern Alberta

    PubMed Central

    Stanley, Fintan K.T.; Zarezadeh, Siavash; Dumais, Colin D.; Dumais, Karin; MacQueen, Renata; Clement, Fiona; Goodarzi, Aaron A.

    2017-01-01

    Background: The inhalation of naturally occurring radon (222Rn) gas from indoor air exposes lung tissue to α-particle bombardment, a highly mutagenic form of ionizing radiation that damages DNA and increases the lifetime risk of lung cancer. We analyzed household radon concentrations and risk factors in southern Alberta, including Calgary, the third-largest Canadian metropolis. Methods: A total of 2382 residential homes (2018 in Calgary and 364 in surrounding townships) from an area encompassing 82% of the southern Alberta population were tested for radon, per Health Canada guidelines, for at least 90 days (median 103 d) between 2013 and 2016. Participants also provided home metrics (construction year, build type, foundation type, and floor and room of deployment of the radon detector) via an online survey. Homes that were subsequently remediated were retested to determine the efficacy of radon reduction techniques in the region. Results: The average indoor air radon level was 126 Bq/m3, which equates to an effective absorbed radiation dose of 3.2 mSv/yr. A total of 1135 homes (47.6%) had levels of 100 Bq/m3 or higher, and 295 homes (12.4%) had levels of 200 Bq/m3 or higher; the range was less than 15 Bq/m3 to 3441 Bq/m3. Homes built in 1992 or later had radon levels 31.5% higher, on average, than older homes (mean 142 Bq/m3 v. 108 Bq/m3). For 90 homes with an average radon level of 575 Bq/m3 before mitigation, radon suppression successfully reduced levels to an average of 32.5 Bq/m3. Interpretation: Our findings show that radon exposure is a genuine public health concern in southern Alberta, suggest that modern building practices are associated with increased indoor air radon accumulation, legitimatize efforts to understand the consequences of radon exposure to the public, and suggest that radon testing and mitigation are likely to be impactful cancer prevention strategies. PMID:28401142

  18. Radiation dose-dependent risk on individuals due to ingestion of uranium and radon concentration in drinking water samples of four districts of Haryana, India

    NASA Astrophysics Data System (ADS)

    Panghal, Amanjeet; Kumar, Ajay; Kumar, Suneel; Singh, Joga; Sharma, Sumit; Singh, Parminder; Mehra, Rohit; Bajwa, B. S.

    2017-06-01

    Uranium gets into drinking water when the minerals containing uranium are dissolved in groundwater. Uranium and radon concentrations have been measured in drinking water samples from different water sources such as hand pumps, tube wells and bore wells at different depths from various locations of four districts (Jind, Rohtak, Panipat and Sonipat) of Haryana, India, using the LED flourimetry technique and RAD7, electronic silicon solid state detector. The uranium (238U) and radon (222Rn) concentrations in water samples have been found to vary from 1.07 to 40.25 µg L-1 with an average of 17.91 µg L-1 and 16.06 ± 0.97 to 57.35 ± 1.28 Bq L-1 with an average of 32.98 ± 2.45 Bq L-1, respectively. The observed value of radon concentration in 43 samples exceeded the recommended limits of 11 Bq L-1 (USEPA) and all the values are within the European Commission recommended limit of 100 Bq L-1. The average value of uranium concentration is observed to be within the safe limit recommended by World Health Organization (WHO) and Atomic Energy Regulatory Board. The annual effective dose has also been measured in all the water samples and is found to be below the prescribed dose limit of 100 µSv y-1 recommended by WHO. Risk assessment of uranium in water is also calculated using life time cancer risk, life time average daily dose and hazard quotient. The high uranium concentration observed in certain areas is due to interaction of ground water with the soil formation of this region and the local subsurface geology of the region.

  19. Determination of radon and radium concentrations in drinking water samples around the city of Kutahya.

    PubMed

    Sahin, Latife; Cetinkaya, Hakan; Murat Saç, Müslim; Içhedef, Mutlu

    2013-08-01

    The concentration of radium and radon has been determined in drinking water samples collected from various locations of Kutahya city, Turkey. The water samples are taken from public water sources and tap water, with the collector chamber method used to measure the radon and radium concentration. The radon concentration ranges between 0.1 and 48.6±1.7 Bq l(-1), while the radium concentration varies from a minimum detectable activity of <0.02-0.7±0.2 Bq l(-1) in Kutahya city. In addition to the radon and radium levels, parameters such as pH, conductivity and temperature of the water, humidity, pressure, elevation and the coordinates of the sampling points have also been measured and recorded. The annual effective dose from radon and radium due to typical water usage has been calculated. The resulting contribution to the annual effective dose due to radon ingestion varies between 0.3 and 124.2 μSv y(-1); the contribution to the annual effective dose due to radium ingestion varies between 0 and 143.3 μSv y(-1); the dose contribution to the stomach due to radon ingestion varies between 0.03 and 14.9 μSv y(-1). The dose contribution due to radon inhalation ranges between 0.3 and 122.5 μSv y(-1), assuming a typical transfer of radon in water to the air. For the overwhelming majority of the Kutahya population, it is determined that the average radiation exposure from drinking water is less than 73.6 µSv y(-1).

  20. [Radon risk in healthcare facilities: environmental monitoring and effective dose].

    PubMed

    Cammarota, B; Cascone, Maria Teresa; De Paola, L; Schillirò, F; Del Prete, U

    2009-01-01

    Radon, the second cause of lung cancer after smoking (WHO- IARC), is a natural, radioactive gas, which originates from the soil and pollutes indoor air, especially in closed or underground spaces. The purpose of this study was to determine the concentration of radon gas, its effective dose, and the measurement of microclimatic degrees C; U.R. % and air velocity in non-academic intensive care units of public hospitals in the Naples area. The annual average concentrations of radon gas were detected with EIC type ionization electret chambers, type LLT with exposure over four 3-month periods. The concentrations varied for all health facilities between 186 and 1191 Bq/m3. Overall, the effective dose of exposure to radon gas of 3mSv/a recommended by Italian legislation was never exceeded. The concentration of radon gas showed a decreasing trend starting from the areas below ground level to those on higher floors; such concentrations were also influenced by natural and artificial ventilation of the rooms, building materials used for walls, and by the state of maintenance and improvements of the building (insulation of floors and walls). The data obtained confirmed the increased concentration of radionuclides in the yellow tuff of volcanic origin in the Campania Region and the resulting rate of release of radon gas, whereas the reinforced concrete structure (a hospital located on the hillside), which had the lowest values, proved to provide good insulation against penetration and accumulation of radon gas.

  1. A study on the correlation between soil radon potential and average indoor radon potential in Canadian cities.

    PubMed

    Chen, Jing; Ford, Ken L

    2017-01-01

    Exposure to indoor radon is identified as the main source of natural radiation exposure to the population. Since radon in homes originates mainly from soil gas radon, it is of public interest to study the correlation between radon in soil and radon indoors in different geographic locations. From 2007 to 2010, a total of 1070 sites were surveyed for soil gas radon and soil permeability. Among the sites surveyed, 430 sites were in 14 cities where indoor radon information is available from residential radon and thoron surveys conducted in recent years. It is observed that indoor radon potential (percentage of homes above 200 Bq m -3 ; range from 1.5% to 42%) correlates reasonably well with soil radon potential (SRP: an index proportional to soil gas radon concentration and soil permeability; average SRP ranged from 8 to 26). In five cities where in-situ soil permeability was measured at more than 20 sites, a strong correlation (R 2  = 0.68 for linear regression and R 2  = 0.81 for non-linear regression) was observed between indoor radon potential and soil radon potential. This summary report shows that soil gas radon measurement is a practical and useful predictor of indoor radon potential in a geographic area, and may be useful for making decisions around prioritizing activities to manage population exposure and future land-use planning. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. Seasonal radon measurements in Darbandikhan Lake water resources at Kurdistan region-northeastern of Iraq

    NASA Astrophysics Data System (ADS)

    Jafir, Adeeb Omer; Ahmad, Ali Hassan; Saridan, Wan Muhamad

    2016-03-01

    A total of 164 water samples were collected from Darbandikhan Lake with their different resources (spring, stream, and lake) during the four seasons, and the measurements were carried out using the electronic RAD 7 detector. For spring water the average radon concentration for spring, summer, autumn and summer were found to be 8.21 Bq/1, 8.94 Bq/1, 7.422 Bq/1, and 8.06 Bq/1, respectively, while for lake and streams the average values were found to be 0.43 Bq/1, 0.877 Bq/1, 0.727 Bq/1, 0.575 Bq/1 respectively. The radon concentration level was higher in summer and lower in spring, and only two samples from spring water have radon concentrations more than 11.1 Bq/1 recommended by the EPA. Total annual effective dose due to ingestion and inhalation has been estimated, the mean annual effective dose during the whole year for spring water was 0.022 mSv/y while for lake with streams was 0.00157 mSv/y. The determined mean annual effective dose in water was lower than the 0.1 mSv/y recommended by WHO. Some physicochemical parameters were measured and no correlation was found between them and radon concentration except for the conductivity of the spring drinking water which reveals a strong correlation for the four seasons.

  3. Determining the radon exhalation rate from a gold mine tailings dump by measuring the gamma radiation.

    PubMed

    Ongori, Joash N; Lindsay, Robert; Newman, Richard T; Maleka, Peane P

    2015-02-01

    The mining activities taking place in Gauteng province, South Africa have caused millions of tons of rocks to be taken from underground to be milled and processed to extract gold. The uranium bearing tailings are placed in an estimated 250 dumps covering a total area of about 7000 ha. These tailings dumps contain considerable amounts of radium and have therefore been identified as large sources of radon. The size of these dumps make traditional radon exhalation measurements time consuming and it is difficult to get representative measurements for the whole dump. In this work radon exhalation measurements from the non-operational Kloof mine dump have been performed by measuring the gamma radiation from the dump fairly accurately over an area of more than 1 km(2). Radon exhalation from the mine dump have been inferred from this by laboratory-based and in-situ gamma measurements. Thirty four soil samples were collected at depths of 30 cm and 50 cm. The weighted average activity concentrations in the soil samples were 308 ± 7 Bq kg(-1), 255 ± 5 Bq kg(-1) and 18 ± 1 Bq kg(-1) for (238)U, (40)K and (232)Th, respectively. The MEDUSA (Multi-Element Detector for Underwater Sediment Activity) γ-ray detection system was used for field measurements. The radium concentrations were then used with soil parameters to obtain the radon flux using different approaches such as the IAEA (International Atomic Energy Agency) formula. Another technique the MEDUSA Laboratory Technique (MELT) was developed to map radon exhalation based on (1) recognising that radon exhalation does not affect (40)K and (232)Th activity concentrations and (2) that the ratio of the activity concentration of the field (MEDUSA) to the laboratory (HPGe) for (238)U and (40)K or (238)U and (232)Th will give a measure of the radon exhalation at a particular location in the dump. The average, normalised radon flux was found to be 0.12 ± 0.02 Bq m(-2) s(-1) for the mine dump. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. In-soil radon anomalies as precursors of earthquakes: a case study in the SE slope of Mt. Etna in a period of quite stable weather conditions.

    PubMed

    Vizzini, Fabio; Brai, Maria

    2012-11-01

    In-soil radon concentrations as well as climatic parameters (temperature, atmospheric pressure and relative humidity) were collected in St. Venerina (Eastern Sicily - Italy) from March 19th to May 22nd 2009, close to an active fault system called Timpe Fault System (TFS), which is strictly linked to the geodynamics of Mt. Etna. During the monitoring period no drastic climatic variations were observed and, on the other hand, important seismic events were recorded close to the monitoring site. A seismic swarm composed of 5 earthquakes was observed in the Milo area on March 25th (M(max) = 2.7) at just 5.1 km from the site, and on May 13th an earthquake of 3.6 magnitude was recorded in the territory of St. Venerina, at just 3.2 km from the site; the earthquake was felt by the population and reported by all local and regional media. The in-soil radon concentrations have shown anomalous increases possibly linked to the earthquakes recorded, but certainly not attributable to local meteorology. To verify this assumption the average radon concentration and the standard deviation (σ) have been calculated and the regions of ±1.5σ and ±2σ deviation from the average concentration have been investigated. Moreover, to further minimise the contribution of the meteorological parameters on the in-soil radon fluctuations, a multiple regressions method has been used. To distinguish those earthquakes which could generate in-soil radon anomalies as precursors, the Dobrovolsky radius has been applied. The results obtained suggests that a clear correlation between earthquakes and in-soil radon increases exist, and that the detection of the in-soil radon anomalies becomes surely simpler in particular favourable conditions: weather stability, earthquakes within the Dobrovolsky radius and close to the monitoring area. Moreover, the absence of large variations of the climatic parameters, which could generate incoherent noise components to the radon signal, has made the radon fluctuations more evident and so more legible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Variation of the unattached fraction of radon progeny and its contribution to radon exposure.

    PubMed

    Guo, Lu; Zhang, Lei; Guo, Qiuju

    2016-06-01

    The unattached fraction of radon progeny is one of the most important factors for radon exposure evaluation through the dosimetric approach. To better understand its level and variation in the real environment, a series of field measurements were carried out indoors and outdoors, and radon equilibrium equivalent concentration was also measured. The dose contribution of unattached radon progeny was evaluated in addition. The results show that no clear variation trend of the unattached fraction of radon progeny is observed in an indoor or outdoor environment. The average unattached fraction of radon progeny for the indoors and outdoors are (8.7  ±  1.6)% and (9.7  ±  2.1)%, respectively. The dose contribution of unattached radon progeny to total radon exposure is some 38.8% in an indoor environment, suggesting the importance of the evaluation on unattached radon progeny.

  6. Characterization of radon levels in soil and groundwater in the North Maladeta Fault area (Central Pyrenees) and their effects on indoor radon concentration in a thermal spa.

    PubMed

    Moreno, V; Bach, J; Zarroca, M; Font, Ll; Roqué, C; Linares, R

    2018-09-01

    Radon levels in the soil and groundwater in the North Maladeta Fault area (located in the Aran Valley sector, Central Pyrenees) are analysed from both geological and radiation protection perspectives. This area is characterized by the presence of two important normal faults: the North Maladeta fault (NMF) and the Tredós Fault (TF). Two primary aspects make this study interesting: (i) the NMF shows geomorphic evidence of neotectonic activity and (ii) the presence of a thermal spa, Banhs de Tredós, which exploits one of the several natural springs of the area and needs to be evaluated for radiation dosing from radon according to the European regulation on basic safety standards for protection against ionizing radiation. The average soil radon and thoron concentrations along a profile perpendicular to the two normal faults - 22 ± 3 kBq·m -3 and 34 ± 3 kBq·m -3 , respectively - are not high and can be compared to the radionuclide content of the granitic rocks of the area, 25 ± 4 Bq·kg -1 for 226 Ra and 38 ± 2 Bq·kg -1 for 224 Ra. However, the hypothesis that the normal faults are still active is supported by the presence of anomalies in both the soil radon and thoron levels that are unlikely to be of local origin together with the presence of similar anomalies in CO 2 fluxes and the fact that the highest groundwater radon values are located close to the normal faults. Additionally, groundwater 222 Rn data have complemented the hydrochemistry data, enabling researchers to better distinguish between water pathways in the granitic and non-granitic aquifers. Indoor radon levels in the spa vary within a wide range, [7-1664] Bq·m -3 because the groundwater used in the treatment rooms is the primary source of radon in the air. Tap water radon levels inside the spa present an average value of 50 ± 8 kBq·m -3 , which does not exceed the level stipulated by the Spanish Nuclear Safety Council (CSN) of 100 kBq·m -3 for water used for human consumption. This finding implies that even relatively low radon concentration values in water can constitute a relevant indoor radon source when the transfer from water to indoor air is efficient. The estimated effective dose range of values for a spa worker due to radon inhalation is [1-9] mSv·y -1 . The use of annual averaged radon concentration values may significantly underestimate the dose in these situations; therefore, a detailed dynamic study must be performed by considering the time that the workers spend in the spa. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Indoor radon regulation using tabulated values of temporal radon variation.

    PubMed

    Tsapalov, Andrey; Kovler, Konstantin

    2018-03-01

    Mass measurements of indoor radon concentrations have been conducted for about 30 years. In most of the countries, a national reference/action/limit level is adopted, limiting the annual average indoor radon (AAIR) concentration. However, until now, there is no single and generally accepted international protocol for determining the AAIR with a known confidence interval, based on measurements of different durations. Obviously, as the duration of measurements increases, the uncertainty of the AAIR estimation decreases. The lack of the information about the confidence interval of the determined AAIR level does not allow correct comparison with the radon reference level. This greatly complicates development of an effective indoor radon measurement protocol and strategy. The paper proposes a general principle of indoor radon regulation, based on the simple criteria widely used in metrology, and introduces a new parameter - coefficient of temporal radon variation K V (t) that depends on the measurement duration and determines the uncertainty of the AAIR. An algorithm for determining K V (t) based on the results of annual continuous radon monitoring in experimental rooms is proposed. Included are indoor radon activity concentrations and equilibrium equivalent concentration (EEC) of radon progeny. The monitoring was conducted in 10 selected experimental rooms located in 7 buildings, mainly in the Moscow region (Russia), from 2006 to 2013. The experimental and tabulated values of K V (t) and also the values of the coefficient of temporal EEC variation depending on the mode and duration of the measurements were obtained. The recommendations to improve the efficiency and reliability of indoor radon regulation are given. The importance of taking into account the geological factors is discussed. The representativity of the results of the study is estimated and the approach for their verification is proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Radon monitoring and hazard prediction in Ireland

    NASA Astrophysics Data System (ADS)

    Elio, Javier; Crowley, Quentin; Scanlon, Ray; Hodgson, Jim; Cooper, Mark; Long, Stephanie

    2016-04-01

    Radon is a naturally occurring radioactive gas which forms as a decay product from uranium. It is the largest source of natural ionizing radiation affecting the global population. When radon is inhaled, its short-lived decay products can interact with lung tissue leading to DNA damage and development of lung cancer. Ireland has among the highest levels of radon in Europe and eighth highest of an OECD survey of 29 countries. Every year some two hundred and fifty cases of lung cancer in Ireland are linked to radon exposure. This new research project will build upon previous efforts of radon monitoring in Ireland to construct a high-resolution radon hazard map. This will be achieved using recently available high-resolution airborne gamma-ray spectrometry (radiometric) and soil geochemistry data (http://www.tellus.ie/), indoor radon concentrations (http://www.epa.ie/radiation), and new direct measurement of soil radon. In this regard, legacy indoor radon concentrations will be correlated with soil U and Th concentrations and other geogenic data. This is a new approach since the vast majority of countries with a national radon monitoring programme rely on indoor radon measurements, or have a spatially limited dataset of soil radon measurements. Careful attention will be given to areas where an indicative high radon hazard based on geogenic factors does not match high indoor radon concentrations. Where such areas exist, it may imply that some parameter(s) in the predictive model does not match that of the environment. These areas will be subjected to measurement of radon soil gas using a combination of time averaged (passive) and time dependant (active) measurements in order to better understand factors affecting production, transport and accumulation of radon in the natural environment. Such mapping of radon-prone areas will ultimately help to inform when prevention and remediation measures are necessary, reducing the radon exposure of the population. Therefore, given that an estimated 250,000 people in Ireland are exposed to high radon levels, the findings of this research stand to make a considerable positive impact in enhancing the quality of life and long-term health for a significant proportion of inhabitants.

  9. Variability of radon and thoron equilibrium factors in indoor environment of Garhwal Himalaya.

    PubMed

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Kandari, Tushar; Gusain, G S; Mishra, Rosaline; Ramola, R C

    2016-01-01

    The measurements of radon, thoron and their progeny concentrations have been carried out in the dwellings of Uttarkashi and Tehri districts of Garhwal Himalaya, India using LR-115 detector based pin-hole dosimeter and DRPS/DTPS techniques. The equilibrium factors for radon, thoron and their progeny were calculated by using the values measured with these techniques. The average values of equilibrium factor between radon and its progeny have been found to be 0.44, 0.39, 0.39 and 0.28 for rainy, autumn, winter and summer seasons, respectively. For thoron and its progeny, the average values of equilibrium factor have been found to be 0.04, 0.04, 0.04 and 0.03 for rainy, autumn, winter and summer seasons, respectively. The equilibrium factor between radon and its progeny has been found to be dependent on the seasonal changes. However, the equilibrium factor for thoron and progeny has been found to be same for rainy, autumn and winter seasons but slightly different for summer season. The annual average equilibrium factors for radon and thoron have been found to vary from 0.23 to 0.80 with an average of 0.42 and from 0.01 to 0.29 with an average of 0.07, respectively. The detailed discussion of the measurement techniques and the explanation for the results obtained is given in the paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Indoor radon levels in workplaces of Adapazarı, north-western Turkey

    NASA Astrophysics Data System (ADS)

    Kapdan, Enis; Altinsoy, Nesrin

    2014-02-01

    The main objective of this study is to assess the health hazards due to radon gas accumulation and to compare the concentrations in different kinds of workplaces, in the city of Adapazarı, one of the most important industrial cities of Turkey. For this purpose, radon activity concentration measurements were carried out in schools, factories, offices and outdoors using CR-39 solid state nuclear track detectors (SSNTD). Results show that the mean radon activity concentrations (RAC) in schools, offices and factories were found to be 66, 76 and 27 Bq/m3, respectively, with an outdoor concentration of 14 Bq/m3. The average concentrations were found to decrease as follows for different types of industries: automotive > electronic > metal > textile. Because the maximum measured radon concentrations are 151 Bq/m3 in the schools, 173 Bq/m3 in the offices and 52 Bq/m3 in the factories, the limits of ICRP are not exceeded in any of the buildings in the region. In addition, the estimated mean annual effective doses to the people in the workplace, students, office workers and factory workers have been calculated as 0.27, 0.63 and 0.20 mSv/y, respectively for the region.

  11. 222Rn variations in Mystery Cave, Minnesota

    USGS Publications Warehouse

    Lively, R.S.; Krafthefer, B.C.

    1995-01-01

    222Rn concentrations and meteorological parameters were measured at 4- h intervals over a 2-y period in Mystery Cave, southeastern Minnesota. Continuous radon monitors and meteorological sensors connected to data loggers were installed at several locations along commercial tour routes. 222Rn concentrations ranged as high as 25 kBq m-3 in summer and 20 kBq m-3 in winter. Average winter concentrations were lower than summer by at least a factor of two. Seasonal radon variations were correlative with outside air temperatures. During the winter, radon concentrations were observed to fluctuate periodically by factors of 20 or more in under 24 h. Both the long- and short-term variations are correlative with temperature- induced mixing of cave air with surface air.

  12. Enhancement of radon exposure in smoking areas.

    PubMed

    Abdel Ghany, Hayam A

    2007-06-01

    Radium-226 is a significant source of radon-222 which enters buildings through soil, construction materials or water supply. When cigarette smoke is present, the radon daughters attach to smoke particles. Thus, the alpha radiation to a smoker's lungs from the natural radon daughters is increased because of smoking. To investigate whether the cigarette tobacco itself is a potential source of indoor radon, the alpha potential energy exposure level contents of radon ((222)Rn, 3.82d) and Thoron ((220)Rn, 55.60s) were measured in 10 different cigarette tobacco samples using CR-39 solid-state nuclear track detectors (SSNTDs). The results showed that the (222, 220)Rn concentrations in these samples ranged from 128 to 266 and 49 to 148 Bqm(-3), respectively. The radon concentrations emerged from all investigated samples were significantly higher than the background level. Also, the annual equivalent doses from the samples were determined. The mean values of the equivalent dose were 3.51 (0.89) and 1.44 (0.08) mSvy(-1), respectively. Measurement of the average indoor radon concentrations in 20 café rooms was, significantly, higher than 20 smoking-free residential houses. The result refers to the dual (chemical and radioactive) effect of smoking as a risk factor for lung cancer.

  13. Does balneotherapy with low radon concentration in water influence the endocrine system? A controlled non-randomized pilot study.

    PubMed

    Nagy, Katalin; Berhés, István; Kovács, Tibor; Kávási, Norbert; Somlai, János; Bender, Tamás

    2009-08-01

    Radon bath is a well-established modality of balneotherapy for the management of degenerative musculoskeletal disorders. The present study was conducted to ascertain whether baths of relatively low (80 Bq/l) radon concentration have any influence on the functioning of the endocrine system. In the study, a non-randomized pilot study, 27 patients with degenerative musculoskeletal disorders received 30-min radon baths (of 31-32 degrees C temperature and 80 Bq/l average radon concentration) daily, for 15 days. Twenty-five patients with matching pathologies were subjected to balneotherapy according to the same protocol, using thermal water with negligible radon content (6 Bq/l). Serum thyroid stimulating hormone, prolactin, cortisol, adrenocorticotropic hormone, and dehydroepiandrosterone levels were measured before and after a balneotherapy course of 15 sessions. Comparison of the accumulated data using the Wilcoxon test did not reveal any significant difference between pre- and post-treatment values or between the two patient groups. It is noted that while the beneficial effects of balneotherapy with radon-containing water on degenerative disorders is widely known, only few data have been published in the literature on its effect on endocrine functions. The present study failed to demonstrate any substantial effect of thermal water with relatively low radon content on the functioning of the endocrine system.

  14. The Correlation between Radon Emission Concentration and Subsurface Geological Condition

    NASA Astrophysics Data System (ADS)

    Kuntoro, Yudi; Setiawan, Herru L.; Wijayanti, Teni; Haerudin, Nandi

    2018-03-01

    Exploration activities with standard methods have already encountered many obstacles in the field. Geological survey is often difficult to find outcrop because they are covered by vegetation, alluvial layer or as a result of urban development and housing. Seismic method requires a large expense and licensing in the use of dynamite is complicated. Method of gravity requires the operator to go back (looping) to the starting point. Given some of these constraints, therefore it needs a solution in the form of new method that can work more efficiently with less cost. Several studies in various countries have shown a correlation between the presence of hydrocarbons and Radon gas concentration in the earth surface. By utilizing the properties of Radon that can migrate to the surface, the value of Radon concentration in the surface is suggested to provide information about the subsurface structure condition. Radon is the only radioactive substance that gas-phased at atmospheric temperature. It is very abundant in the earth mantle. The vast differences of temperatures and pressures between the mantle and the earth crust cause the convection flow toward earth surface. Radon in gas phase will be carried by convection flow to the surface. The quantity of convection currents depend on the porosity and permeability of rocks where Radon travels within, so that Radon concentration in the earth surface delineates the porosity and permeability of subsurface rock layers. Some measurements were carried out at several locations with various subsurface geological conditions, including proven oil fields, proven geothermal field, and frontier area as a comparison. These measurements show that the average and the background concentration threshold in the proven oil field (11,200 Bq/m3) and proven geothermal field (7,820 Bq/m3) is much higher than the quantity in frontier area (329 and 1,620 Bq/m3). Radon concentration in the earth surface is correlated with the presence of geological faults. Peak concentrations of Radon takes place along the fault.

  15. Studies on indoor radon activity concentration in two villages of West-Khasi Hills District of Meghalaya, India

    NASA Astrophysics Data System (ADS)

    Khardewsaw, A.; Maibam, D.; Sharma, Y.; Saxena, A.

    2018-04-01

    Studies on radon aregenerally perceived from two perspectives, one from the aspect of hazard and the other as a tracer, of which in this paper our study is focused on the former. In this paper, we estimate whether the level of measured indoor radon activity concentration of the two villages under the study area has any impact on the well-being of the populace. The measured average radon activity concentration in the two villages (Nongkasen and Markasa) is found to be 101.74 ± 2.42Bq.m-3(G.M.) and 148.26 ± 2.57 Bq.m-3(G.M.)respectively. We have also measured its seasonal variation and found that the radon concentration is maximum during winter seasonviz.181.34±1.69 Bq.m-3 and 226.22±1.63 Bq.m-3 and minimum viz.66.31±2.75 Bq.m-3 and 83.32±3.26 Bq.m-3 during the rainy season for Nongkasen and Markasa respectively.

  16. Relationships between indoor radon concentrations, thermal retrofit and dwelling characteristics.

    PubMed

    Collignan, Bernard; Le Ponner, Eline; Mandin, Corinne

    2016-12-01

    A monitoring campaign was conducted on a sample of more than 3400 dwellings in Brittany, France from 2011 to 2014. The measurements were collected using one passive dosimeter per dwelling over two months during the heating season, according to the NF ISO 11665-8 (2013) standard. Moreover, building characteristics such as the period of construction, construction material, type of foundation, and thermal retrofit were determined using a questionnaire. The final data set consisted of 3233 houses with the measurement results and the questionnaire answers. Multivariate linear regression models were applied to explore the relationships between the indoor radon concentrations and building characteristics, particularly the thermal retrofit. The geometric mean of the indoor radon concentration was 155 Bq m -3 (with a geometric standard deviation of 3). The houses that had undergone a thermal retrofit had a higher average radon concentration than those that had not, which may have been due to a decrease in air permeability of the building envelope following rehabilitation work that did not systematically include proper management of the ventilation. Other building characteristics, primarily the building material and the foundation type, were associated with the indoor radon concentration. The indoor radon concentrations were higher in older houses built with granite or other stone, with a slab-on-grade foundation and without any ventilation system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Radon in the soil air of Estonia.

    PubMed

    Petersell, Valter; Täht-Kok, Krista; Karimov, Mark; Milvek, Heli; Nirgi, Siim; Raha, Margus; Saarik, Krista

    2017-01-01

    Several investigations in Estonia during 1996¬-1999 have shown that permissible level (200 Bq/m 3 ) of radon (222Rn) in indoor air is exceeded in 33% of the inspected dwellings. This makes Estonia one of the five countries with highest radon risk in Europe (Fig 1). Due to correlation between the soil radon risk level and radon concentration in houses, small scale radon risk mapping of soil air was carried out (one study point per 70-100 km 2 ). It turned out that one-third of Estonian mainland has high radon risk potential, where radon concentration in soil air exceeds safe limit of 50 kBq/m 3 . In order to estimate radon content in soil air, two different methods developed in Sweden were used simultaneously. Besides measuring radon content from soil air at the depth of 80 cm with an emanometer (RnM), maximum potential content of radon in soil (RnG) was estimated based on the rate of eU (226Ra) concentration in soil, which was acquired by using gamma-ray spectrometer. Mapping and following studies revealed that simultaneously measured RnG and RnM in study points may often differ. To inspect the cause, several monitoring points were set up in places with different geological conditions. It appeared that unlike the RnG content, which remains close to average level in repeated measurements, the RnM content may differ more than three times periodically. After continuous observations it turned out that concentration of directly measured radon depended on various factors being mostly controlled by mineral composition of soil, properties of topsoil as well as different factors influencing aeration of soil. The results of Rn monitoring show that reliable level of radon risk in Estonian soils can only be acquired by using calculated Rn-concentration in soil air based on eU content and directly measured radon content of soil air in combination with interpreting specific geological and geochemical situations in the study points. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Determination of the volume activity concentration of alpha artificial radionuclides with alpha spectrometer.

    PubMed

    Liu, B; Zhang, Q; Li, Y

    1997-12-01

    This paper introduces a method to determine the volume activity concentration of alpha and/or beta artificial radionuclides in the environment and radon/thoron progeny background-compensation based on a Si surface-barrier detector. By measuring the alpha peak counts of 218Po and 214Po in two time intervals, the activity concentration of 218Po, 214Pb and 214Bi aerosol particles were determined; meanwhile, the total beta count of 214Pb and 214Bi aerosols was also calculated from their decay scheme. With the average equilibrium factor of thoron progeny in general environment, the alpha and beta counts of thoron progeny were approximately evaluated by 212Po alpha peak counts. The alpha count of transuranic aerosols was determined by subtracting the trail counts of radon/thoron progeny alpha peaks. The total count of beta artificial radionuclides was determined by subtracting the beta counts of radon/thoron progeny aerosol particles. In our preliminary experiments, if the radon progeny concentration is less than 15 Bq m(-3), the lower limit of detection of transuranics concentration is less than 0.1 Bq m(-3). Even if the radon progeny concentration is as high as 75 Bq m(-3), the lower limit of detection of total beta activity concentration of artificial nuclides aerosols is less than 1 Bq m(-3).

  19. Experimental study of effectiveness of four radon mitigation solutions, based on underground depressurization, tested in prototype housing built in a high radon area in Spain.

    PubMed

    Frutos Vázquez, Borja; Olaya Adán, Manuel; Quindós Poncela, Luis Santiago; Sainz Fernandez, Carlos; Fuente Merino, Ismael

    2011-04-01

    The present paper discusses the results of an empirical study of four approaches to reducing indoor radon concentrations based on depressurization techniques in underground sumps. The experiments were conducted in prototype housing built in an area of Spain where the average radon concentration at a depth of 1 m is 250 kBq m(-3). Sump effectiveness was analysed in two locations: underneath the basement, which involved cutting openings into the foundation, ground storey and roof slabs, and outside the basement walls, which entailed digging a pit alongside the building exterior. The effectiveness of both sumps was likewise tested with passive and forced ventilation methods. The systems proved to be highly efficient, lowering radon levels by 91-99%, except in the solution involving passive ventilation and the outside sump, where radon levels were reduced by 53-55%. At wind speeds of over 8 m/s, however, passive ventilation across an outside sump lowered radon levels by 95% due to a Venturi effect induced drop in pressure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Seasonal variations of natural ventilation and radon-222 exhalation in a slightly rising dead-end tunnel.

    PubMed

    Perrier, Frédéric; Richon, Patrick; Gautam, Umesh; Tiwari, Dilli Ram; Shrestha, Prithvi; Sapkota, Soma Nath

    2007-01-01

    The concentration activity of radon-222 has been monitored, with some interruptions, from 1997 to 2005 in the end section of a slightly rising, dead-end, 38-m long tunnel located in the Phulchoki hill, near Kathmandu, Nepal. While a high concentration varying from 6 x 10(3) Bq m(-3) to 10 x 10(3) Bq m(-3) is observed from May to September (rainy summer season), the concentration remains at a low level of about 200 Bq m(-3) from October to March (dry winter season). This reduction of radon concentration is associated with natural ventilation of the tunnel, which, contrary to expectations for a rising tunnel, takes place mainly from October to March when the outside air temperature drops below the average tunnel temperature. This interpretation is supported by temperature measurements in the atmosphere of the tunnel, a few meters away from the entrance. The temporal variations of the diurnal amplitude of this temperature indeed follow the ventilation rate deduced from the radon measurements. In the absence of significant ventilation (summer season), the radon exhalation flux at the rock surface into the tunnel atmosphere can be inferred; it exhibits a yearly variation with additional transient reductions associated with heavy rainfall, likely to be due to water infiltration. No effect of atmospheric pressure variations on the radon concentration is observed in this tunnel. This experiment illustrates how small differences in the location and geometry of a tunnel can lead to vastly different behaviours of the radon concentration versus time. This observation has consequences for the estimation of the dose rate and the practicability of radon monitoring for tectonic purposes in underground environments.

  1. Ingredients for a Dutch radon action plan, based on a national survey in more than 2500 dwellings.

    PubMed

    Smetsers, R C G M Ronald; Blaauboer, R O Roelf; Dekkers, S A J Fieke

    2016-12-01

    A new Euratom directive demands that Member States establish a national action plan for indoor radon. Important requirements are a national reference level for the radon concentration in dwellings, actions to identify dwellings with radon concentrations that might exceed this reference level and the encouragement of appropriate measures to reduce the radon concentrations in dwellings where these are high. This paper provides ingredients and recommendations for a national action plan for radon in dwellings, applicable to the Netherlands. The approach presented here, which may serve as a model for other countries or regions with a comparatively favourable indoor radon situation, is based on the analysis of radon data from a national survey in more than 2500 Dutch dwellings, built since 1930. The annual average activity concentration of radon in dwellings in the Netherlands equals 15.6 ± 0.3 Bq m -3 . The 50th and 95th percentiles were found to be 12.2 and 38.0 Bq m -3 , respectively. In 0.4 per cent of the dwellings we found values above 100 Bq m -3 . Radon concentrations showed correlations with type of dwelling, year of construction, ventilation system, soil type and smoking behaviour of inhabitants. The survey data suggest that it is feasible for the Netherlands to adopt a national reference level for radon in dwellings of 100 Bq m -3 , in line with recommendations by WHO and ICRP. We were able to predict dwellings with a moderate probability for radon concentrations above 100 Bq m -3 by applying a combination of three selection criteria: location, type of dwelling and manner of ventilation. Of the existing 6.2 million dwellings in the Netherlands (built since 1930), approximately 23-24 thousand are suspected to exceed this level. Some 80% of these are found in the group of naturally ventilated single-family dwellings in either the southern part of Limburg (approx. 13 thousand) or the Meuse-Rhine-Waal river delta (approx. six thousand). This selected group of dwellings represents 7% of the housing stock. In contrast to many other countries in Europe and elsewhere, radon concentrations in dwellings above 200 Bq m -3 are very rare in the Netherlands. As a result, relatively simple and inexpensive measures in existing Dutch single-family dwellings will be sufficient to reduce indoor radon concentrations above the proposed national reference level of 100 Bq m -3 to values well below. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Radiation Protection. Measurement of radioactivity in the environment - Air- radon 222. A proposed ISO standard.

    NASA Astrophysics Data System (ADS)

    Gillmore, G.; Woods, M.

    2009-04-01

    Radon isotopes (222, 220, 219) are radioactive gases produced by the disintegration of radium isotopes 226, 224 and 223, which are decay products of uranium238, thorium232 and uranium235 respectively. All are found in the earth's crust. Solid elements, also radioactive, are produced by radon disintegration. Radon is classed as a rare gas in the periodic table of elements, along with helium, argon, neon, krypton and xenon. When disintegrating, radon emits alpha particles and generates solid decay products, which are also radioactive (polonium, bismuth, lead etc.). The potential danger of radon lies in its solid decay products rather than the gas itself. Whether or not they are attached aerosols, radon decay products can be inhaled and deposited in the bronchopulmonary tree to varying depths according to their size. Radon today is considered to be the main source of human exposure to natural radiation. At the international level, radon accounts for 52% of global average exposure to natural radiation. Isotope 222 (48%) is far more significant than isotope 220 (4%), whilst isotope 219 is considered as negligible. Exposure to radon varies considerably from one region to another, depending on factors such as weather conditions, and underlying geology. Activity concentration can therefore vary by a factor of 10 or even a 100 from one period of time to the next and from one area to another. There are many ways of measuring the radon 222 activity concentration and the potential alpha energy concentration of its short-lived decay products. Measuring techniques fall into three categories: - spot measurement methods; continuous measurement; integrated measurement. The proposed ISO (International Organisation for Standardisation) document suggests guidelines for measuring radon222 activity concentration and the potential alpha energy concentration of its short-lived decay products in a free (environment) and confined (buildings) atmosphere. The target date for availability of this work item is 2011. The ISO document here highlighted is a working draft. ISO is a worldwide federation of national standards bodies. Keywords: radon; international standards; measurement techniques.

  3. Radon exposure at a radioactive waste storage facility.

    PubMed

    Manocchi, F H; Campos, M P; Dellamano, J C; Silva, G M

    2014-06-01

    The Waste Management Department of Nuclear and Energy Research Institute (IPEN) is responsible for the safety management of the waste generated at all internal research centers and that of other waste producers such as industry, medical facilities, and universities in Brazil. These waste materials, after treatment, are placed in an interim storage facility. Among them are (226)Ra needles used in radiotherapy, siliceous cake arising from conversion processes, and several other classes of waste from the nuclear fuel cycle, which contain Ra-226 producing (222)Rn gas daughter.In order to estimate the effective dose for workers due to radon inhalation, the radon concentration at the storage facility has been assessed within this study. Radon measurements have been carried out through the passive method with solid-state nuclear track detectors (CR-39) over a period of nine months, changing detectors every month in order to determine the long-term average levels of indoor radon concentrations. The radon concentration results, covering the period from June 2012 to March 2013, varied from 0.55 ± 0.05 to 5.19 ± 0.45 kBq m(-3). The effective dose due to (222)Rn inhalation was further assessed following ICRP Publication 65.

  4. The distribution of indoor radon in Transylvania (Romania) - influence of the natural and anthropogenic factors

    NASA Astrophysics Data System (ADS)

    Cucos Dinu, Alexandra; Baciu, Calin; Dicu, Tiberius; Papp, Botond; Moldovan, Mircea; Bety Burghele, Denissa; Tenter, Ancuta; Szacsvai, Kinga

    2017-04-01

    Exposure to radon in homes and workplaces is now recognized as the most important natural factor in causing lung cancer. Radon activity is usually higher in buildings than in the outside atmosphere, as it may be released from building materials and soil beneath the constructions, and the concentration builds-up indoor, due to the low air renewal rates. Indoor radon levels can vary from one to multiple orders of magnitude over time and space, as it depends on several natural and anthropogenic factors, such us the radon concentration in soil under the construction, the weather conditions, the degree of containment in the areas where individuals are exposed, building materials, outside air, tap water and even city gas, the architecture, equipment (chimney, mechanical ventilation systems, etc.), the environmental parameters of the building (temperature, pressure, etc.), and on the occupants' lifestyle. The study presents the distribution of indoor radon in Transylvania, Romania, together with the measurements of radon in soil and soil water. Indoor radon measurements were performed by using CR-39 track detectors exposed for 3 months on ground-floor level of dwellings, according to the NRPB Measurement Protocol. Radon concentrations in soil and water were measured using the LUK3C device. A complete map was plotted at the date, based on 3300 indoor radon measurements, covering an area of about 42% of the Romanian territory. The indoor radon concentrations ranged from 5 to 3287 Bq m-3, with an updated preliminary arithmetic mean of 179 Bq m-3, and a geometric mean of 122 Bq m-3. In about 11% of the investigated grid cells the indoor radon concentrations exceed the threshold of 300 Bq m-3. The soil gas radon concentration varies from 0.8 to 169 kBq m-3, with a geometric mean of 26 kBq m-3. For water samples, the results show radon concentrations within the range of 0.3 - 352.2 kBq m-3, with a geometric mean of 7.7 Bq L-1. A weak correlation between the three sets of values (residential, soil, water) was observed, both as individual values, average values over the grid or county level. The highest concentrations of indoor radon were found in Bihor, Mures, Brasov, and Cluj. In these regions further investigation is needed on the factors influencing the accumulation of radon in high concentrations in indoor air, such as soil type and geology, ventilation, or constructive and architectural features. Acknowledgements: The research is supported by the project ID P_37_229, Contract No. 22/01.09.2016, with the title „Smart Systems for Public Safety through Control and Mitigation of Residential Radon linked with Energy Efficiency Optimization of Buildings in Romanian Major Urban Agglomerations SMART-RAD-EN" of the POC Programme.

  5. Radon potential mapping of the Tralee-Castleisland and Cavan areas (Ireland) based on airborne gamma-ray spectrometry and geology.

    PubMed

    Appleton, J D; Doyle, E; Fenton, D; Organo, C

    2011-06-01

    The probability of homes in Ireland having high indoor radon concentrations is estimated on the basis of known in-house radon measurements averaged over 10 km × 10 km grid squares. The scope for using airborne gamma-ray spectrometer data for the Tralee-Castleisland area of county Kerry and county Cavan to predict the radon potential (RP) in two distinct areas of Ireland is evaluated in this study. Airborne data are compared statistically with in-house radon measurements in conjunction with geological and ground permeability data to establish linear regression models and produce radon potential maps. The best agreement between the percentage of dwellings exceeding the reference level (RL) for radon concentrations in Ireland (% > RL), estimated from indoor radon data, and modelled RP in the Tralee-Castleisland area is produced using models based on airborne gamma-ray spectrometry equivalent uranium (eU) and ground permeability data. Good agreement was obtained between the % > RL from indoor radon data and RP estimated from eU data in the Cavan area using terrain specific models. In both areas, RP maps derived from eU data are spatially more detailed than the published 10 km grid map. The results show the potential for using airborne radiometric data for producing RP maps.

  6. Radon as a natural tracer for underwater cave exploration and hypogenic cave formation

    NASA Astrophysics Data System (ADS)

    Csondor, Katalin; Erőss, Anita; Horváth, Ákos; Szieberth, Dénes

    2017-04-01

    Using 222Rn as a natural tracer is a novel approach in underwater cave exploration and in the research of active hypogenic caves. The research area, the Molnár János cave is one of the largest caves of an unique hypogenic karst system, the Buda Thermal Karst (Budapest, Hungary). The cave system is mainly characterized by water-filled passages. The cave is located at one of the main discharge areas of the Buda Thermal Karst and the major outflow point of the waters of the cave system is the Boltív spring, which feeds the artificial Malom Lake. Previous complex hydrogeological studies and radon measurements in the cave system and in the spring established the highest radon concentration (71 Bq/L, where the average is 44 Bq/L) in the springwater. The origin of radon was identified in the form of iron-hydroxide containing biofilms, which form by mixing of waters and efficiently adsorb radium from the thermal water component and cause local radon anomalies. Since mixing of waters is responsible for the formation of the cave as well, these iron-hydroxide containing biofilms and consequently high radon concentrations mark the active cave forming zones. The aim of the study was to use the radon as a natural tracer to locate active mixing and cave forming zones. Based on previous radon measurements it is supposed that the active mixing and cave forming zone has to be close to the spring, since the highest radon concentration was measured there. Therefore, the radon activity concentration mapping was carried out with the help of divers and involving that part of the cave which closest to the spring. Based on our measurements the highest radon concentration (84 Bq/L) ever was achieved in the springwater. Based on the radon concentration distribution direct connection and active karst conduit was established between the spring and the deepest room of the researched part of the cave, which was verified by artificial tracer as well. However, the distribution of radon in the cave passages shows lower concentrations (18-46 Bq/L) compared to the spring, therefore an addition deep inflow from a hitherto unknown cave passages is assumed, from which waters with high radon content arrive to the spring. These passages are supposed to be in the active cave formation (mixing) zone. The Buda Thermal Karst research was funded by the Hungarian Scientific Research Fund under the grant agreement no. NK 101356.

  7. Radon Testing: Community Engagement By a Rural Family Medicine Office.

    PubMed

    Levy, Barcey T; Wolff, Cynthia K; Niles, Paul; Morehead, Heather; Xu, Yinghui; Daly, Jeanette M

    2015-01-01

    Iowa has the highest average radon concentrations in the nation, with an estimated 400 radon-induced lung cancer deaths each year. Radon is the second leading cause of lung cancer death overall. The objectives of this study were (1) to educate the population attending a family medicine office about the dangers of radon, (2) to encourage homeowners to test for radon, (3) to work with the community to identify resources for mitigation, and (4) to assess the utility of working with a local family medicine office as a model that could be adopted for other communities with high home radon concentrations. Participants obtained a US Environmental Protection Agency-certified activated charcoal short-term radon kit through their primary care office or by attending a seminar held by their medical office. Participants completed a short investigator-developed questionnaire about their home, heating, and demographics. Of 746 radon kits handed out, 378 valid results (51%) were received, of which 351 questionnaires could be matched to the kit results. The mean radon result was 10.0 pCi/L (standard deviation, 8.5 pCi/L). A radon result of 4 pCi/L or higher, the Environmental Protection Agency action level for mitigation, was found in 81% of homes (n = 285). Four of 5 homes tested had elevated radon levels. This family medicine office/university collaborative educational model could be useful for educating patients about other environmental dangers. © Copyright 2015 by the American Board of Family Medicine.

  8. Comparative survey of outdoor, residential and workplace radon concentrations

    PubMed Central

    Barros, Nirmalla; Field, Dan W.; Steck, Daniel J.; Field, R. William

    2015-01-01

    This study investigated radon concentrations in above-ground (i.e. first floor) workplace in Missouri and compared them with above-ground radon concentrations in nearby homes and outdoor locations. This study also examined the potential utility of using home and outdoor radon concentrations to predict the radon concentration at a nearby workplace (e.g. county agencies and schools). Even though workplace radon concentrations were not statistically different from home radon concentrations, the radon concentration at a particular home, or outdoor location, was a poor predictor of the radon concentration at a nearby workplace. Overall, 9.6 and 9.9 % of homes and workplace, respectively, exhibited radon concentrations of ≥148 Bq m−3. Because of the percentage of workplace with elevated radon concentrations, the results suggest that additional surveys of workplace radon concentrations are needed, especially in areas of high radon potential, to assess the contribution of workplace radon exposure to an individual's overall radon exposure. PMID:24936021

  9. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, William Jowett

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure andmore » the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.« less

  10. The Study of Equilibrium factor between Radon-222 and its Daughters in Bangkok Atmosphere by Gamma-ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Rujiwarodom, Rachanee

    2010-05-01

    To study the Equilibrium between radon-222 and its daughters in Bangkok atmosphere by Gamma-ray spectrometry, air sample were collected on 48 activated charcoal canister and 360 glass fiber filters by using a high volume jet-air sampler during December 2007 to November 2008.The Spectra of gamma-ray were measured by using a HPGe (Hyper Pure Germanium Detector). In the condition of secular equilibrium obtaining between Radon-222 and its decay products, radon-222 on activated charcoal canister and its daughters on glass fiber filters collected in the same time interval were calculated. The equilibrium factor (F) in the open air had a value of 0.38 at the minimum ,and 0.75 at the maximum. The average value of equilibrium factor (F) was 0.56±0.12. Based on the results, F had variations with a maximum value in the night to the early morning and decreased in the afternoon. In addition, F was higher in the winter than in the summer. This finding corresponds with the properties of the Earth atmosphere. The equilibrium factor (F) also depended on the concentration of dust in the atmosphere. People living in Bangkok were exposed to average value of 30 Bq/m3 of Radon-222 in the atmosphere. The equilibrium factor (0.56±0.12) and the average value of Radon-222 showed that people were exposed to alpha energy from radon-222 and its daughters decay at 0.005 WL(Working Level) which is lower than the safety standard at 0.02 WL. Keywords: Radon, Radon daughters , equilibrium factor, Gamma -ray spectrum analysis ,Bangkok ,Thailand

  11. Indoor radon and childhood leukaemia.

    PubMed

    Raaschou-Nielsen, Ole

    2008-01-01

    This paper summarises the epidemiological literature on domestic exposure to radon and risk for childhood leukaemia. The results of 12 ecological studies show a consistent pattern of higher incidence and mortality rates for childhood leukaemia in areas with higher average indoor radon concentrations. Although the results of such studies are useful to generate hypotheses, they must be interpreted with caution, as the data were aggregated and analysed for geographical areas and not for individuals. The seven available case-control studies of childhood leukaemia with measurement of radon concentrations in the residences of cases and controls gave mixed results, however, with some indication of a weak (relative risk < 2) association with acute lymphoblastic leukaemia. The epidemiological evidence to date suggests that an association between indoor exposure to radon and childhood leukaemia might exist, but is weak. More case-control studies are needed, with sufficient statistical power to detect weak associations and based on designs and methods that minimise misclassification of exposure and provide a high participation rate and low potential selection bias.

  12. RADON CONCENTRATION TIME SERIES MODELING AND APPLICATION DISCUSSION.

    PubMed

    Stránský, V; Thinová, L

    2017-11-01

    In the year 2010 a continual radon measurement was established at Mladeč Caves in the Czech Republic using a continual radon monitor RADIM3A. In order to model radon time series in the years 2010-15, the Box-Jenkins Methodology, often used in econometrics, was applied. Because of the behavior of radon concentrations (RCs), a seasonal integrated, autoregressive moving averages model with exogenous variables (SARIMAX) has been chosen to model the measured time series. This model uses the time series seasonality, previously acquired values and delayed atmospheric parameters, to forecast RC. The developed model for RC time series is called regARIMA(5,1,3). Model residuals could be retrospectively compared with seismic evidence of local or global earthquakes, which occurred during the RCs measurement. This technique enables us to asses if continuously measured RC could serve an earthquake precursor. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Analysis of the saturation phenomena of the neutralization rate of positively charged 218Po in water vapor.

    PubMed

    Tan, Yanliang; Xiao, Detao; Shan, Jian; Zhou, Qingzhi; Qu, Jingnian

    2014-09-01

    Generally, 88% of the freshly generated 218Po ions decayed from 222Rn are positively charged. These positive ions become neutralized by recombination with negative ions, and the main source of the negative ions is the OH- ions formed by radiolysis of water vapor. However, the neutralization rate of positively charged 218Po versus the square root of the concentration of H2O will be a constant when the concentration of H2O is sufficiently high. Since the electron affinity of the hydroxyl radical formed by water vapor is high, the authors propose that the hydroxyl radical can grab an electron to become OH-. Because the average period of collision with other positively charged ions and the average life of the OH- are much longer than those of the electron, the average concentration of negative ions will grow when the water vapor concentration increases. The authors obtained a model to describe the growth of OH- ions. From this model, it was found that the maximum value of the OH- ion concentration is limited by the square root of the radon concentration. If the radon concentration is invariant, the OH- ion concentration should be approximately a constant when the water vapor concentration is higher than a certain value. The phenomenon that the neutralization rate of positively charged 218Po versus the square root of the water vapor concentration will be saturated when the water vapor concentration is sufficiently high can be explained by this mechanism. This mechanism can be used also to explain the phenomenon that the detection efficiency of a radon monitor based on the electrostatic collection method seems to be constant when the water vapor concentration is high.

  14. Is environmental radon gas associated with the incidence of neurodegenerative conditions? A retrospective study of multiple sclerosis in radon affected areas in England and Wales.

    PubMed

    Groves-Kirkby, Christopher J; Denman, Antony R; Campbell, Jackie; Crockett, Robin G M; Phillips, Paul S; Rogers, Stephen

    2016-04-01

    To test whether an association exists between radon gas concentration in the home and increased multiple sclerosis (MS) incidence, a retrospective study was undertaken of MS incidence in known areas of raised domestic radon concentration in England and Wales, using The Health Improvement Network (THIN) clinical research database. The study population comprised 20,140,498 person-years of clinical monitoring (males: 10,056,628: 49.93%; females: 10,083,870: 50.07%), representing a mean annual population of 2.5 million individuals. To allow for the possible latency of MS initiation following exposure, data extraction was limited to patients with at least five years registration history with the same GP practice before first diagnosis. Patient records were allocated to one of nine radon concentration bands depending on the average radon level in their postcode sector. MS incidence was analysed by searching for patients with first MS diagnosis over the eight calendar years 2005-2012 inclusive. 1512 new MS cases were diagnosed, 1070 females, 442 males, equivalent to raw incidence rates of 7.51, 10.61 and 4.40 per 10(5) person-years respectively, comparable to previously reported results. Of these new cases, 115 could be allocated to one of the radon bands representing high radon areas. Standardising to the UK 2010 population, excess relative risk (ERR) figures for MS were calculated for each radon band. Linear regression of ERR against mean band radon concentration shows a positive gradient of 0.22 per 100 Bq·m(-3) (R(2) = 0.25, p = 0.0961) when forced through the origin to represent a linear-no-threshold response. The null hypothesis falls inside the 95% confidence interval for the linear fit and therefore this fit is not statistically significant. We conclude that, despite THIN sampling around 5% of the population, insufficient data was available to confirm or refute the hypothesised association between MS incidence and radon concentration. Copyright © 2015. Published by Elsevier Ltd.

  15. Assessment of inhalation and ingestion doses from exposure to radon gas using passive and active detecting techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, A. H.; Jafaar, M. S.

    The aim of this study was to assess an environmental hazard of radon exhalation rate from the samples of soil and drinking water in selected locations in Iraqi Kurdistan, passive (CR-39NTDs) and active (RAD7) detecting techniques has been employed. Long and short term measurements of emitted radon concentrations were estimated for 124 houses. High and lower radon concentration in soil samples was in the cities of Hajyawa and Er. Tyrawa, respectively. Moreover, for drinking water, high and low radon concentration was in the cities of Similan and Kelak, respectively. A comparison between our results with that mentioned in international reportsmore » had been done. Average annual dose equivalent to the bronchial epithelium, stomach and whole body in the cities of Kelak and Similan are estimated, and it was varied from 0.04{+-}0.01 mSv to 0.547{+-}0.018 mSv, (2.832{+-}0.22)x10{sup -5} to (11.972{+-}2.09)x10{sup -5} mSv, and (0.056 {+-}0.01) x10{sup -5} to (0.239{+-}0.01)x10{sup -5} mSv, respectively. This indicated that the effects of dissolved radon on the bronchial epithelium are much than on the stomach and whole body. (authors)« less

  16. The overview of the radon and environmental characteristics measurements in the Czech show caves.

    PubMed

    Thinová, L; Froňka, A; Rovenská, K

    2015-06-01

    This paper focuses on the measurement and assessment of absorbed doses of radiation in caves of the Czech Republic, some of which exhibit high activity concentration of radon in air. Presented is an analysis and recommendations based on measurement results obtained in the underground caves over the past 12 y. The most important results for cave environments were as follows: integral radon monitoring using RAMARN detectors can provide more consistent results for calculating the effective dose; no major differences were shown in the average radon activity concentration during working time as opposed to non-working time; the unattached fraction of radioactive particles in air ranged from 0.03 to 0.6, with arithmetical average fp = 0.13; the direct dependence between equilibrium factor F and the size of the unattached fraction fp was described using the Log-Power expression ln(1/fp) = a*ln(1/F)(b); the calculated values for coefficients a and b were 1.85 and -1.096, respectively. The individual cave factor for each investigated underground area was calculated. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Continuous monitoring of radon gas as a tool to understand air dynamics in the cave of Altamira (Cantabria, Spain).

    PubMed

    Sainz, Carlos; Rábago, Daniel; Celaya, Santiago; Fernández, Enrique; Quindós, Jorge; Quindós, Luis; Fernández, Alicia; Fuente, Ismael; Arteche, Jose Luis; Quindós, Luis Santiago

    2018-05-15

    The use of radon as an atmospheric tracer in the Altamira Cave over the past 30years has provided relevant information about gaseous exchanges between the Polychromes Room, the adjoining Chambers inside the cave, and the outside atmosphere. The relatively simple physico-chemical behaviour of radon gas provides a marked advantage over other tracer gases that are usually present in high concentrations in hypogeous environments, such as CO 2 . Two types of continuous radon measurement were undertaken. The first involves active detectors located in the Hall and Polychromes Room, which provide radon concentration values at 1-hour intervals. In addition, nuclear solid track etched detectors (CR-39) are used in every chamber of the cave over 14-day exposure periods, providing average radon concentrations. In this paper we show some of the specific degassing and recharge events identified by anomalous variations in the concentration of radon gas in the Polychromes Room. In addition, we update knowledge regarding the degree of connection between chambers inside the cave and with the outside atmosphere. We verify that the connection between the Polychromes Room and the rest of the cave has been drastically reduced by the installation of the second closure in 2008. Except for point exchanges with the Crossing zone generated by a negative temperature gradient in that direction, the atmosphere of the Polychromes Room remains stable, or else it exchanges matter with the outside atmosphere through the karst interface. The role of radon as a tracer is demonstrated to be valid both to reflect seasonal cycles of degassing and recharge, and to analyse shorter (daily) period fluctuations. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor ofmore » radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.« less

  19. Comparative survey of outdoor, residential and workplace radon concentrations.

    PubMed

    Barros, Nirmalla; Field, Dan W; Steck, Daniel J; Field, R William

    2015-02-01

    This study investigated radon concentrations in above-ground (i.e. first floor) workplace in Missouri and compared them with above-ground radon concentrations in nearby homes and outdoor locations. This study also examined the potential utility of using home and outdoor radon concentrations to predict the radon concentration at a nearby workplace (e.g. county agencies and schools). Even though workplace radon concentrations were not statistically different from home radon concentrations, the radon concentration at a particular home, or outdoor location, was a poor predictor of the radon concentration at a nearby workplace. Overall, 9.6 and 9.9 % of homes and workplace, respectively, exhibited radon concentrations of ≥148 Bq m(-3). Because of the percentage of workplace with elevated radon concentrations, the results suggest that additional surveys of workplace radon concentrations are needed, especially in areas of high radon potential, to assess the contribution of workplace radon exposure to an individual's overall radon exposure. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Invited Article: In situ comparison of passive radon-thoron discriminative monitors at subsurface workplaces in Hungary

    NASA Astrophysics Data System (ADS)

    Kávási, Norbert; Vigh, Tamás; Németh, Csaba; Ishikawa, Tetsuo; Omori, Yasutaka; Janik, Miroslaw; Yonehara, Hidenori

    2014-02-01

    During a one-year long measurement period, radon and thoron data obtained by two different passive radon-thoron discriminative monitors were compared at subsurface workplaces in Hungary, such as mines (bauxite and manganese ore) and caves (medical and touristic). These workplaces have special environmental conditions, such as, stable and high relative humidity (100%), relatively stable temperature (12°C-21°C), low or high wind speed (max. 2.4 m s-1) and low or elevated aerosol concentration (130-60 000 particles m-3). The measured radon and thoron concentrations fluctuated in a wide range among the different workplaces. The respective annual average radon concentrations and their standard deviations (in brackets) measured by the passive radon-thoron discriminative monitor with cellulose filter (CF) and the passive radon-thoron discriminative monitor with sponge filter (SF) were: 350(321) Bq m-3 and 550(497) Bq m-3 in the bauxite mine; 887(604) Bq m-3 and 1258(788) Bq m-3 in the manganese ore mine; 2510(2341) Bq m-3 and 3403(3075) Bq m-3 in the medical cave (Hospital Cave of Tapolca); and 6239(2057) Bq m-3 and 8512(1955) Bq m-3 in the touristic cave (Lake Cave of Tapolca). The respective average thoron concentrations and their standard deviation (in brackets) measured by CF and SF monitors were: 154(210) Bq m-3 and 161(148) Bq m-3 in the bauxite mine; 187(191) Bq m-3 and 117(147) Bq m-3 in the manganese-ore mine; 360(524) Bq m-3 and 371(789) Bq m-3 in the medical cave (Hospital Cave of Tapolca); and 1420(1184) Bq m-3 and 1462(3655) Bq m-3 in the touristic cave (Lake Cave of Tapolca). Under these circumstances, comparison of the radon data for the SF and CF monitors showed the former were consistently 51% higher in the bauxite mine, 38% higher in the manganese ore mine, and 34% higher in the caves. Consequently, correction is required on previously obtained radon data acquired by CF monitors at subsurface workplaces to gain comparable data for SF monitors. In the case of thoron, the data were unreliable and no significant tendency was seen during the comparison therefore comparison of previously obtained thoron data acquired by either CF or SF is doubtful. There was probable influence by relative humidity on the detection response; however, the effects of the high wind speed and elevated aerosol concentration could not be excluded. The results of this study call attention to the importance of calibration under extreme environmental conditions and the need for using reliable radon-thoron monitors for subsurface workplaces.

  1. Experiences of radiological examinations of buildings in Hungary.

    PubMed

    Homoki, Zsolt; Rell, Péter; Déri, Zsolt; Kocsy, Gábor

    2017-05-01

    Natural radioisotopes occur everywhere in the environment, being a source of exposure to the general population. Everyone is continuously exposed to terrestrial and cosmic radiations both indoors and outdoors, which are the main contributors to external exposure of individuals. There were made many ambient dose rate and indoor gamma radiation and radon concentration measurements in Hungarian by different laboratories. The main goal of the present work is the summarisation and evaluation of the latest results of the Laboratory of National Public Health Center National Research Directorate for Radiobiology and Radiohygiene. The reviewed examinations were made between 1995 and 2016. The average ambient dose rate was 103 ± 17 nSv/h and the average indoor gamma dose rate was 155 ± 47 nSv/h based on the data of 382 and 581 sampling points, respectively. The average indoor radon concentration was 108 Bq/m 3 with the median value of 75 Bq/m 3 based on the data of 415 sampling points. We performed an additional analysis of the results of 233 personal surveyed buildings where sophisticated gamma radiation and/or indoor radon concentration measurements were made. We were also interested in has got any affect the presence of slag to the radiation levels of the buildings? We found that usually elevated radiation can be detected in houses which contain slag compared to buildings without slag. In addition we conclude that the recommended minimum duration of short-term radon measurement shall be at least three days even if it does by closed conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 'Radon Concentration Survey in Inner Rooms from Deputy Chamber and National Congress-Brasilia/DF'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicoli, Ieda Gomes; Cardozo, Katia Maria; Azevedo Gouvea, Vandir de

    2008-08-07

    Radon gas has been monitored in many environments such as rural and urban houses, high natural radioactivity areas and underground mining regions. Nevertheless few data are reported in literature about studies in state buildings. So we get in touch with these buildings managers, where work the Deputy Chamber and the National Congress in Brasilia--DF, in order to obtain radon data in these state buildings, so representative for brazilian people. In order to make a preliminary scanning of radon concentration in these buildings, it was put in selected points, radon nuclear track passive detectors type SSNTD, specifically polycarbonate Lexan, which weremore » exposed for periods from two to five months. Afterwards they were sent to Nuclear Engineering Institute in Rio de Janeiro for analysis of {sup 222}Rn contents. Derived values, whose average value was about 73 Bq/m{sup 3}, were all under maximum permissible limits for radon 200 Bq/m{sup 3}, established by International Comission on Radiological Protection--ICRP 65, for inner environments of houses and state buildings. This work has been coordinated by CNEN Office in Braselia with effective participation of Nuclear Engineering Institute from CNEN--RJ, that has worked since beginning of april 2004, supplying and analysing radon detectors.« less

  3. 2014 ICHLNRRA intercomparison of radon/thoron gas and radon short-lived decay products measuring instruments in the NRPI Prague.

    PubMed

    Jílek, K; Timková, J

    2015-06-01

    During the Eighth International Conference on High Levels of Natural Radiation and Radon Areas held in autumn 2014 at Prague, the third intercomparison of radon/thoron gas and radon short-lived decay products measurement instruments was organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI; SÚRO v.v.i.) in Prague. The intercomparison was newly focussed also on continuous monitors with active sampling adapters capable to distinguish radon/thoron gas in their mix field.The results of radon gas measurements carried out in the big NRPI radon chamber indicated very well an average deviation of up to 5 % from the reference NRPI value for 80 % of all the exposed instruments. The results of equilibrium equivalent concentration continuous monitors indicated an average deviation of up to 5 % from the reference NRPI value for 40 % of all the exposed instruments and their ~8-10 % shift compared with the NRPI. The results of investigated ambient conditions upon response of exposed continuous monitors indicated influence of aerosol changes upon response of radon monitors with an active air sampling adapters through the filter, only. The exposures of both radon/thoron gas discriminative continuous monitors and passive detectors have been indicated inconsistent results: on one hand, their excellent agreement up to several per cent for both the gases, and on the other hand, systematic unsatisfactory differences up to 40 %. Additional radon/thoron exercises are recommended to improve both the instruments themselves and quality of their operators. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Orphan radon daughters at Denver Radium site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holub, R.F.; Droullard, R.F.; Davis, T.H.

    During 18 mo of sampling airborne radioactively at a National Priority List ({open_quotes}Superfund{close_quotes}) site in metroPOlitan Denver, Bureau of mines personnel discovered radon daughters that are not supported by the parent radon gas. We refer to them as {open_quotes}orphan{close_quotes} daughters because the parent, radon, is not present in sufficient concentration to support the measured daughter products. Measurements of the {open_quotes}orphan{close_quotes} daughters were made continuously, using the Bureau-developed radon and working-level (radon-daughter) monitors. The data showed high equilibrium ratios, ranging from 0.7 to 3.5, for long periods of time. Repeated, high-volume, 15-min grab samples were made, using the modified Tsivoglou method,more » to measure radon daughters, to which thoron daughters contributed 26 {+-} 12%. On average 28 {+-} 6% of the particulate activity was contributed by thoron daughters. Most samples were mixtures in which the {sup 218}Po concentration was lower than that of {sup 214}Pb and {sup 214}Bi, in agreement with the high-equilibrium factors obtained from the continuous sampling data. In view of the short half-life of radon progeny, we conclude that the source of the orphan daughters is not far from the Superfund sites. The mechanism of this phenomenon is not understood at this time, but we will discuss its possible significance in evaluating population doses.« less

  5. Successes and Challenges in Implementation of Radon Control Activities in Iowa, 2010-2015.

    PubMed

    Bain, Allison A; Abbott, Anne L; Miller, Laura L

    2016-04-14

    Radon gas has recently become more prominent in discussions of lung cancer prevention nationally and in Iowa. A review in 2013 of cancer plans in the National Comprehensive Cancer Control Program found that 42% of cancer plans, including Iowa's, had terminology on radon. Plans included awareness activities, home testing, remediation, policy, and policy evaluation. Iowa has the highest average radon concentrations in the United States; 70% of homes have radon concentrations above the Environmental Protection Agency's action levels. Radon control activities in Iowa are led by the Iowa Cancer Consortium, the Iowa Department of Public Health, and the Iowa Radon Coalition. A collaborative approach was used to increase levels of awareness, testing, and (if necessary) mitigation, and to introduce a comprehensive radon control policy in Iowa by engaging partners and stakeholders across the state. The multipronged approach and collaborative work in Iowa appears to have been successful in increasing awareness: the number of radon tests completed in Iowa increased by 20% from 19,600 in 2009 to 23,500 in 2014, and the number of mitigations completed by certified mitigators increased by 108% from 2,600 to more than 5,400. Through collaboration, Iowa communities are engaged in activities that led to increases in awareness, testing, mitigation, and policy. States interested in establishing a similar program should consider a multipronged approach involving multiple entities and stakeholders with different interests and abilities. Improvements in data collection and analysis are necessary to assess impact.

  6. Deposition of radon progeny on skin surfaces and resulting radiation doses in radon therapy.

    PubMed

    Tempfer, H; Hofmann, W; Schober, A; Lettner, H; Dinu, A L

    2010-05-01

    In the Gastein valley, Austria, radon-rich thermal water and air have been used for decades for the treatment of various diseases. To explore the exposure pathway of radon progeny adsorbed to the skin, progeny activities on the skin of patients exposed to thermal water (in a bathtub) and hot vapour (in a vapour chamber) were measured by alpha spectrometry. Average total alpha activities on the patients' skin varied from 1.2 to 4.1 Bq/cm(2) in the bathtub, and from 1.1 to 2.6 Bq/cm(2) in the vapour bath. Water pH-value and ion concentration did affect radon progeny adsorption on the skin, whereas skin greasiness and blood circulation did not. Measurements of the penetration of deposited radon progeny into the skin revealed a roughly exponential activity distribution in the upper layers of the skin. Based on the radon progeny surface activity concentrations and their depth distributions, equivalent doses to different layers of the skin, in particular to the Langerhans cells located in the epidermis, ranged from 0.12 mSv in the thermal bath to 0.33 mSv in the vapour bath, exceeding equivalent doses to the inner organs (kidneys) by inhaled radon and progeny by about a factor 3, except for the lung, which receives the highest doses via inhalation. These results suggest that radon progeny attachment on skin surfaces may play a major role in the dosimetry for both thermal water and hot vapour treatment schemes.

  7. Intercomparison of retrospective radon detectors.

    PubMed Central

    Field, R W; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C

    1999-01-01

    We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. The detector's track density generation rate (tracks per square centimeter per hour) is proportional to the surface alpha-activity. In the absence of other strong sources of alpha-emission in the glass, the implanted surface alpha-activity should be proportional to the accumulated (210)Po, and hence to the cumulative radon gas exposure. The goals of the intercomparison were to a) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, b) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass-implanted polonium activities, and c) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted (210)Po activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type. Preliminary comparisons of the models used to translate track rate densities to average long-term radon concentrations differ between the two studies. Further calibration of the retrospective detectors' models for interpretation of track rate density may allow the pooling of studies that use glass-based retrospective radon detectors to determine historic residential radon exposures. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10545336

  8. Intercomparison of retrospective radon detectors.

    PubMed

    Field, R W; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C

    1999-11-01

    We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. The detector's track density generation rate (tracks per square centimeter per hour) is proportional to the surface alpha-activity. In the absence of other strong sources of alpha-emission in the glass, the implanted surface alpha-activity should be proportional to the accumulated (210)Po, and hence to the cumulative radon gas exposure. The goals of the intercomparison were to a) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, b) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass-implanted polonium activities, and c) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted (210)Po activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type. Preliminary comparisons of the models used to translate track rate densities to average long-term radon concentrations differ between the two studies. Further calibration of the retrospective detectors' models for interpretation of track rate density may allow the pooling of studies that use glass-based retrospective radon detectors to determine historic residential radon exposures.

  9. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments.

    PubMed

    Stojanovska, Zdenka; Boev, Blazo; Zunic, Zora S; Ivanova, Kremena; Ristova, Mimoza; Tsenova, Martina; Ajka, Sorsa; Janevik, Emilija; Taleski, Vaso; Bossew, Peter

    2016-05-01

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m(3) for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported.

  10. Spatio-temporal variations of soil radon patterns around the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Passarelli, Luigi; Seyis, Cemil; Woith, Heiko

    2016-04-01

    Typically, the noble gas radon displays cyclic daily (S1), semidiurnal (S2) as well as seasonal variations in geological environments like soil air, groundwater, rock, caves, and tunnels. But there are also cases where theses cycles are absent. We present examples from a radon monitoring network of 21 sites around the Sea of Marmara. The works were carried out in the frame of MARsite, a project related to the EU supersite initiative (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417). Alpha-meters from the Canadian company alpha-nuclear are used to measure the radon concentration in counts per 15 minutes at a depth of 80 cm. The long-term average radon concentrations at 21 sites vary between 35 and 1,000 counts per 15 minutes. Typical seasonal variations are absent at more than 6 sites. Sites with seasonal variations have radon minima usually during winter (December to April), radon maxima during summer months (June to October). We carefully investigated radon time series for all the monitoring stations. We find that at some sites the empirical distribution of radon counts is clearly bimodal and in other bimodality is absent. In those stations we analysed the time series in different time intervals in order to highlight seasonal periodicity in the radon emission. The empirical distributions obtained by time-windowing of the radon signals results to be statistically different one another after applying a Kolmogorov-Smirnov test at significance level of 0.1. Usually the maxima in radon emission occur in summer time but, interestingly enough, two sites are characterized by radon maxima in winter periods. We further investigate the radon signals seeking for smaller scale periodicity. We calculated Fourier spectra of all 21 sites. Daily cycles are absent at 6 sites which is an unusual phenomenon. Daily cycles may disappear, if the local system is heavily disturbed, e.g. by fluid extraction from geothermal systems or during earthquakes.

  11. Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples used as construction material in Turkey.

    PubMed

    Aykamis, Ahmet S; Turhan, Seref; Aysun Ugur, F; Baykan, Umut N; Kiliç, Ahmet M

    2013-11-01

    It is very important to determine the levels of the natural radioactivity in construction materials and radon exhalation rate from these materials for assessing potential exposure risks for the residents. The present study deals with 22 different granite samples employed as decoration stones in constructions in Turkey. The natural radioactivity in granite samples was measured by gamma-ray spectrometry with an HPGe detector. The activity concentrations of (226)Ra, (232)Th and (40)K were found to be in the range of 10-187, 16-354 and 104-1630 Bq kg(-1), respectively. The radon surface exhalation rate and the radon mass exhalation rate estimated from the measured values of (226)Ra content and material properties varied from 1.3 to 24.8 Bq m(-2) h(-1) with a mean of 10.5±1.5 Bq m(-2) h(-1) and 0.03-0.64 Bq kg(-1) h(-1) with a mean of 0.27±0.04 Bq kg(-1) h(-1), respectively. Radon concentrations in the room caused from granite samples estimated using a mass balance equation varied from 23 to 461 Bq m(-3) with a mean of 196±27 Bq m(-3). Also the gamma index (Iγ), external indoor annual effective dose (Eγ) and annual effective dose due to the indoor radon exposure (ERn) were estimated as the average value of 1.1±0.1, 0.16±0.02 mSv and 5.0±0.7 mSv, respectively, for the granite samples.

  12. Indoor radon, geogenic radon surrogates and geology - Investigations on their correlation.

    PubMed

    Friedmann, H; Baumgartner, A; Bernreiter, M; Gräser, J; Gruber, V; Kabrt, F; Kaineder, H; Maringer, F J; Ringer, W; Seidel, C; Wurm, G

    2017-01-01

    The indoor radon concentration was measured in most houses in a couple of municipalities in Austria. At the same time the activity concentration of radium in soil, the soil gas radon concentration, the permeability of the ground and the ambient dose equivalent rate were also measured and the geological situations (geological units) were recorded too. From the indoor radon concentration and different house and living parameters a radon potential (Austrian radon potential) was derived which should represent the radon concentration in a standard room. Another radon potential (Neznal radon potential) was calculated from the soil gas radon concentration and the permeability. The aim of the investigation was to correlate all the different variables and to test if the use of surrogate data (e.g. geological information, ambient dose equivalent rate, etc.) can be used to judge the radon risk for an area without performing numerous indoor measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Successes and Challenges in Implementation of Radon Control Activities in Iowa, 2010–2015

    PubMed Central

    Abbott, Anne L.; Miller, Laura L.

    2016-01-01

    Background Radon gas has recently become more prominent in discussions of lung cancer prevention nationally and in Iowa. A review in 2013 of cancer plans in the National Comprehensive Cancer Control Program found that 42% of cancer plans, including Iowa’s, had terminology on radon. Plans included awareness activities, home testing, remediation, policy, and policy evaluation. Community Context Iowa has the highest average radon concentrations in the United States; 70% of homes have radon concentrations above the Environmental Protection Agency’s action levels. Radon control activities in Iowa are led by the Iowa Cancer Consortium, the Iowa Department of Public Health, and the Iowa Radon Coalition. Methods A collaborative approach was used to increase levels of awareness, testing, and (if necessary) mitigation, and to introduce a comprehensive radon control policy in Iowa by engaging partners and stakeholders across the state. Outcome The multipronged approach and collaborative work in Iowa appears to have been successful in increasing awareness: the number of radon tests completed in Iowa increased by 20% from 19,600 in 2009 to 23,500 in 2014, and the number of mitigations completed by certified mitigators increased by 108% from 2,600 to more than 5,400. Interpretation Through collaboration, Iowa communities are engaged in activities that led to increases in awareness, testing, mitigation, and policy. States interested in establishing a similar program should consider a multipronged approach involving multiple entities and stakeholders with different interests and abilities. Improvements in data collection and analysis are necessary to assess impact. PMID:27079648

  14. Radon levels in Romanian caves: an occupational exposure survey.

    PubMed

    Cucoş Dinu, Alexandra; Călugăr, Monica I; Burghele, Bety D; Dumitru, Oana A; Cosma, Constantin; Onac, Bogdan P

    2017-10-01

    A comprehensive radon survey has been carried out in seven caves located in the western half of Romania's most significant karst regions. Touristic and non-touristic caves were investigated with the aim to provide a reliable distribution of their radon levels and evaluate the occupational exposure and associated effective doses. Radon gas concentrations were measured with long-term diffusion-type detectors during two consecutive seasons (warm and cold). All investigated caves exceed the European Union reference level of radon gas at workplaces (300 Bq/m 3 ). The radon concentration in these caves ranges between 53 and 2866 Bq/m 3 , reflecting particular cave topography, season-related cave ventilation, and complex tectonic and geological settings surrounding each location. Relatively homogeneous high radon levels occur in all investigated touristic caves and in Tăuşoare and Vântului along their main galleries. Except for Muierii, in all the other caves radon levels are higher during the warm season, compared to the cold one. This suggests that natural cave ventilation largely controls the underground accumulation of radon. The results reported here reveal that the occupational exposure in Urşilor, Vadu Crişului, Tăuşoare, Vântului, and Muierii caves needs to be carefully monitored. The effective doses to workers vary between an average of 0.25 and 4.39 mSv/year depending on the measuring season. The highest values were recorded in show caves, ranging from 1.15 to 6.15 mSv/year, well above the European recommended limit, thus posing a potential health hazard upon cave guides, cavers, and scientists.

  15. [Evaluation of radon levels in bank buildings: results of a survey on a major Italian banking group].

    PubMed

    Urso, Patrizia; Ronchin, M; Lietti, Barbara; Izzo, A; Colloca, G; Russignaga, D; Carrer, P

    2008-01-01

    Radon, the second cause of lung cancer after smoking, is a natural, radioactive gas, which originates from the soil and pollutes indoor air, especially in closed or underground spaces. Italian legislation recommends an action level of 500 Bq/m3 per year for occupational exposure in underground premises. Since banks usually use various underground premises (archives, safe-deposit room), a study was made of the radon levels on such premises with the aim of identifying useful monitoring strategies. 134 branches of a major Italian banking group were examined using 1817 nuclear track dosimeters at ground level and underground level premises. The branches were located in 7 Italian regions in the north (Piedmont, Lombardy, Veneto), centre (Lazio) and south (Campania, Apulia, Sicily). Information on measurement points was recorded in a technical sheet and statistical analysis was carried out. Annual underground measurements gave an average concentration of 157 Bq/m3, with 5.1% for 400 < C < 500 Bq/m3 and 2.9%for C > 500 Bq/m3. Seasonal variability was reflected in a significant decrease in concentrations between winter and spring (delta(mean)% = -47.3%) and good stability between autumn and winter (delta(mean)% = 3%); moreover quarterly concentrations account for 85% of the variability of the corresponding annual level. A multiple linear regression model (R2 = 0.33) indicated geographic location as the principal factor in radon accumulation, followed by underground level, humidity, use, lack of windows, heating and natural ventilation, and direct contact of at least one wall with ground rock; whereas the safe-deposit room structure seems to protect from radon accumulation. Moreover, the ground level measurement results were significantly associated with the corresponding underground average concentrations (p < 0.001). The results could be a useful tool in planning a monitoring strategy for assessment of bank worker exposure, especially for banking groups with a large number of branches.

  16. Inhalation dose due to radon, thoron, and progenies in dwellings of a hill station.

    PubMed

    Sivakumar, R

    2017-02-01

    The general public spends a major portion of their time in an indoor environment and hence receives a considerable amount of radiation. Knowledge about indoor radiation is important in order to arrive at the actual effective dose received by residents. The indoor radon, thoron, and progeny concentrations observed in the present study were found to vary with seasons of a given year. The highest and lowest indoor average radon, thoron, and progeny levels were observed during winter and summer seasons, respectively. The concentrations of indoor radon, thoron, and progenies were found to vary with the type of houses. The highest 222 Rn, 220 Rn, and progeny concentrations were observed in mud houses and the lowest values were recorded in wooden houses. The indoor 222 Rn concentration correlated well with concentration of its grandparent 238 U in underlying soil with a correlation coefficient of 0.87. The correlation between indoor 220 Rn and 232 Th in the underlying soil was found to be 0.64. The estimated effective doses received by the general public in the present study due to indoor radon and thoron were 1.49 ± 0.49 and 1.30 ± 0.53 mSv/year, respectively. The annual effective doses due to radon and thoron progenies were estimated as 0.76 ± 0.27 and 0.47 ± 0.23 mSv/year, respectively. The contributions from 222 Rn, 220 Rn, and corresponding progenies to the annual effective doses received were 37, 32, 19, and 12%, respectively. The general public living in the study area receives an inhalation dose of 4.02 mSv/year due to indoor radon, thoron, and progenies, which were found to be less than the action limit of ICRP 2009.

  17. Indoor radon risk associated to post-tectonic biotite granites from Vila Pouca de Aguiar pluton, northern Portugal.

    PubMed

    Martins, L M O; Gomes, M E P; Teixeira, R J S; Pereira, A J S C; Neves, L J P F

    2016-11-01

    At Vila Pouca de Aguiar area, northern Portugal, crops out a post-tectonic Variscan granite pluton, related with the Régua-Vila Real-Verín fault zone, comprising three types of biotite granites. Among these granites, PSG granite yield the highest average contents of U, probably due to its enrichment in accessory U-bearing minerals such as zircon. In the proximity of faults and joints, these granites are often affected by different degrees of hydrothermal alteration, forming reddish altered rocks, commonly known as "episyenites". These altered rocks are probably associated to the occurrence of hydrothermal processes, which led to uranium enrichment in the most advanced stages of episyenitization. In these granites, both average gamma absorbed dose rates in outdoor and indoor air are higher than those of the world average. Furthermore, even in the worst usage scenario, all these granites can be used as a building material, since their annual effective doses are similar to the limit defined by the European Commission. The geometric mean of radon activity of 91 dwellings located at the Vila Pouca de Aguiar pluton is 568Bqm(-3), exceeding that of other northern Portuguese granites. Measurements carried out during a winter season, indicate that 62.6% of the analysed dwellings yield higher indoor radon average values than the Portuguese legislation limit (400Bqm(-3)), and annual effective doses due higher than the world's average value (1.2mSvy(-1)). The interaction of geogenic, architectural and anthropogenic features is crucial to explain the variance in the geometric mean of radon activity of dwellings from Vila Pouca de Aguiar pluton, but the role of geologic faults is probably the most important decisive factor to increase the indoor radon concentration in dwellings. Hence, the development of awareness campaigns in order to inform population about the incurred radiological risks to radon exposure are highly recommended for this specific area. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Natural radiation and its hazard in copper ore mines in Poland

    NASA Astrophysics Data System (ADS)

    Chau, Nguyen; Jodłowski, Paweł; Kalita, Stefan; Olko, Paweł; Chruściel, Edward; Maksymowicz, Adam; Waligórski, Michał; Bilski, Paweł; Budzanowski, Maciej

    2008-06-01

    The doses of gamma radiation, concentrations of radium isotopes in water and sediments, radon concentration and concentration of alpha potential energy of radon decay products in the copper ore mine and in the mining region in the vicinity of Lubin town in Poland are presented. These data served as a basis for the assessment of radiological hazard to the mine workers and general public. The results of this assessment indicate that radiological hazard in the region does not differ substantially from typical values associated with natural radiation background. The calculated average annual effective dose for copper miners is 1.48 mSv. In general, copper ore mines can be regarded as radiologically safe workplaces.

  19. Radon measurement of natural gas using alpha scintillation cells.

    PubMed

    Kitto, Michael E; Torres, Miguel A; Haines, Douglas K; Semkow, Thomas M

    2014-12-01

    Due to their sensitivity and ease of use, alpha-scintillation cells are being increasingly utilized for measurements of radon ((222)Rn) in natural gas. Laboratory studies showed an average increase of 7.3% in the measurement efficiency of alpha-scintillation cells when filled with less-dense natural gas rather than regular air. A theoretical calculation comparing the atomic weight and density of air to that of natural gas suggests a 6-7% increase in the detection efficiency when measuring radon in the cells. A correction is also applicable when the sampling location and measurement laboratory are at different elevations. These corrections to the measurement efficiency need to be considered in order to derive accurate concentrations of radon in natural gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Radon-222 signatures of natural ventilation regimes in an underground quarry.

    PubMed

    Perrier, Frédéric; Richon, Patrick; Crouzeix, Catherine; Morat, Pierre; Le Mouël, Jean Louis

    2004-01-01

    Radon-222 activity concentration has been monitored since 1999 in an underground limestone quarry located in Vincennes, near Paris, France. It is homogeneous in summer, with an average value of 1700 Bq m(-3), and varies from 730 to 1450 Bq m(-3) in winter, indicating natural ventilation with a rate ranging from 0.5 to 2.4 x 10(-6) s(-1) (0.04-0.22 day(-1)). This hypothesis is supported by measurements in the vertical access pit where, in winter, a turbulent air current produces a stable radon profile, smoothly decreasing from 700 Bq m(-3) at 20 m depth to 300 Bq m(-3) at surface. In summer, a thermal stratification is maintained in the pit, but the radon-222 concentration jumps repeatedly between 100 and 2000 Bq m(-3). These jumps are due to atmospheric pressure pumping, which induces ventilation in the quarry at a rate of about 0.1 x 10(-6) s(-1) (0.009 day(-1)). Radon-222 monitoring thus provides a dynamical characterisation of ventilation regimes, which is important for the assessment of the long-term evolution of underground systems.

  1. Using radon-222 to distinguish between vertical transport processes at Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Griffiths, Alan; Chambers, Scott; Conen, Franz; Weingartner, Ernest; Zimmermann, Lukas; Williams, Alastair; Steinbacher, Martin

    2015-04-01

    Trace gases measured at Jungfrajoch, a key baseline monitoring station in the Swiss Alps, are tranported from the surface to the alpine ridge by several different processes. On clear days with weak synoptic forcing, thermally-driven upslope mountain winds (anabatic winds) are prevalent. Using hourly radon--222 observations, which are often used to identify air of terrestrial origin, we used the shape of the diurnal cycle to sort days according to the strength of anabatic winds. Radon is ideal as an airmass tracer because it is emitted from soil at a relatively constant rate, it is chemically inert, and decays with a half-life of 3.8 days. Because of its short half-life, radon concentrations are much lower in the free troposphere than in boundary-layer air over land. For comparable radon concentrations, anabatic wind days at Jungfraujoch are different from non-anabatic days in terms of the average wind speed, humidity, air temperature anomalies, and trace species. As a consequence, future studies could be devised which focus on a subset of days, e.g. by excluding anabatic days, with the intention of choosing a set of days which can be more accurately simulated by a transport model.

  2. Diurnal variations of (218)Po, (214)Pb, and (214)Po and their effect on atmospheric electrical conductivity in the lower atmosphere at Mysore city, Karnataka State, India.

    PubMed

    Pruthvi Rani, K S; Paramesh, L; Chandrashekara, M S

    2014-12-01

    The short-lived radon daughters ((218)Po, (214)Pb, (214)Bi and (214)Po) are natural tracers in the troposphere, in particular near the ground surface. They are electrically charged particles and are chemically reactive. As soon as they are formed they get attached to the aerosol particles of the atmosphere. The behavior of radon daughters is similar to that of aerosols with respect to their growth, transport and removal processes in the atmosphere. The electrical conductivity of the atmosphere is mainly due to the presence of highly mobile ions. Galactic cosmic rays are the main source of ionization in the planetary boundary layer; however, near the surface of the earth, ions are produced mainly by decays of natural radioactive gases emanating from the soil surface and by radiations emitted directly from the surface. Hence the electrical conductivity of air near the surface of the earth is mainly due to radiations emitted by (222)Rn, (218)Po, (214)Pb, (214)Bi and (214)Po, and depends on aerosol concentrations and meteorological parameters. In the present work the diurnal and seasonal variations of radon and its progeny concentrations are studied using Low Level Radon Detection System and Airflow Meter respectively. Atmospheric electrical conductivity of both positive and negative polarities is measured using a Gerdien Condenser. All the measurements were carried out simultaneously at one location in Mysore city (12°N, 76°E), India. The diurnal variation of atmospheric electrical conductivity was found to be similar to that of ion pair production rate estimated from radon and its progeny concentrations with a maximum in the early morning hours and minimum during day time. The annual average concentrations of (222)Rn, (218)Po, (214)Pb, and (214)Po at the study location were found to be 21.46, 10.88, 1.78 and 1.80 Bq m(-3) respectively. The annual average values of positive and negative atmospheric electrical conductivity were found to be 18.1 and 16.6 f S m(-1) respectively. The radon and its progeny concentrations are higher in winter than in summer and rainy season. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Residential radon in Galicia: a cross-sectional study in a radon-prone area.

    PubMed

    Lorenzo-González, María; Ruano-Ravina, Alberto; Peón, Joaquín; Piñeiro, María; Barros-Dios, Juan Miguel

    2017-09-01

    Residential radon exposure is a major public health problem. It is the second greatest cause of lung cancer, after smoking, and the greatest in never-smokers. This study shows the indoor radon exposure distribution in Galicia and estimates the percentage of dwellings exceeding reference levels. It is based on 3245 residential radon measurements obtained from the Galician Radon Map project and from controls of two previous case-control studies on residential radon and lung cancer. Results show a high median residential radon concentration in Galicia (99 Bq m -3 ), with 49.3% of dwellings having a radon concentration above 100 Bq m -3 and 11.1% having a concentration above 300 Bq m -3 . Ourense and Pontevedra, located in South Galicia, are the provinces with the highest median indoor radon concentrations (137 Bq m -3 and 123.5 Bq m -3 , respectively). Results also show lower radon levels in progressively higher building storeys. These high residential radon concentrations confirm Galicia as a radon-prone area. A policy on radon should be developed and implemented in Galicia to minimize the residential radon exposure of the population.

  4. A combined analysis of North American case-control studies of residential radon and lung cancer.

    PubMed

    Krewski, Daniel; Lubin, Jay H; Zielinski, Jan M; Alavanja, Michael; Catalan, Vanessa S; Field, R William; Klotz, Judith B; Létourneau, Ernest G; Lynch, Charles F; Lyon, Joseph L; Sandler, Dale P; Schoenberg, Janet B; Steck, Daniel J; Stolwijk, Jan A; Weinberg, Clarice; Wilcox, Homer B

    2006-04-01

    Cohort studies have consistently shown underground miners exposed to high levels of radon to be at excess risk of lung cancer, and extrapolations based on those results indicate that residential radon may be responsible for nearly 10-15% of all lung cancer deaths per year in the United States. However, case-control studies of residential radon and lung cancer have provided ambiguous evidence of radon lung cancer risks. Regardless, alpha-particle emissions from the short-lived radioactive radon decay products can damage cellular DNA. The possibility that a demonstrated lung carcinogen may be present in large numbers of homes raises a serious public health concern. Thus, a systematic analysis of pooled data from all North American residential radon studies was undertaken to provide a more direct characterization of the public health risk posed by prolonged radon exposure. To evaluate the risk associated with prolonged residential radon exposure, a combined analysis of the primary data from seven large scale case-control studies of residential radon and lung cancer risk was conducted. The combined data set included a total of 4081 cases and 5281 controls, representing the largest aggregation of data on residential radon and lung cancer conducted to date. Residential radon concentrations were determined primarily by a-track detectors placed in the living areas of homes of the study subjects in order to obtain an integrated 1-yr average radon concentration in indoor air. Conditional likelihood regression was used to estimate the excess risk of lung cancer due to residential radon exposure, with adjustment for attained age, sex, study, smoking factors, residential mobility, and completeness of radon measurements. Although the main analyses were based on the combined data set as a whole, we also considered subsets of the data considered to have more accurate radon dosimetry. This included a subset of the data involving 3662 cases and 4966 controls with a-track radon measurements within the exposure time window (ETW) 5-30 yr prior to the index date considered previously by Krewski et al. (2005). Additional restrictions focused on subjects for which a greater proportion of the ETW was covered by measured rather than imputed radon concentrations, and on subjects who occupied at most two residences. The estimated odds ratio (OR) of lung cancer generally increased with radon concentration. The OR trend was consistent with linearity (p = .10), and the excess OR (EOR) was 0.10 per Bq/m3 with 95% confidence limits (-0.01, 0.26). For the subset of the data considered previously by Krewski et al. (2005), the EOR was 0.11 (0.00, 0.28). Further limiting subjects based on our criteria (residential stability and completeness of radon monitoring) expected to improve radon dosimetry led to increased estimates of the EOR. For example, for subjects who had resided in only one or two houses in the 5-30 ETW and who had a-track radon measurements for at least 20 yr of this 25-yr period, the EOR was 0.18 (0.02, 0.43) per 100 Bq/m3. Both estimates are compatible with the EOR of 0.12 (0.02, 0.25) per 100 Bq/m3 predicted by downward extrapolation of the miner data. Collectively, these results provide direct evidence of an association between residential radon and lung cancer risk, a finding predicted by extrapolation of results from occupational studies of radon-exposed underground miners.

  5. A continuous plutonium aerosol monitor for use in high radon environments.

    PubMed

    Li, HuiBin; Jia, MingYan; Li, GuoShen; Wang, YinDong

    2012-01-01

    Radon concentration is very high in underground basements and other facilities. Radon concentration in a nuclear facility locates in the granite tunnel can be as high as 10(4) Bq m(-3) in summer. Monitoring plutonium aerosol in this circumstance is seriously interfered by radon daughters. In order to solve this problem, a new continuous aerosol monitor that can monitor very low plutonium aerosol concentration in high radon background was developed. Several techniques were used to reduce interference of radon daughters, and the minimum detectable concentrations in various radon concentrations were measured.

  6. [Radon levels in interiors in Valtellina, on the Angera hills and in the high valley of the Cervo river].

    PubMed

    Facchini, U; Valli, G; Vecchi, R; Dezzuto, C; Lainati, D; Trabucchi, M T; Bonetti, R; Capra, L

    1992-10-01

    The results are reported of an investigation carried out from 1988 to 1990 in many houses in various sites in Lombardy and Piedmont. Measurements were actually carried out in Valtellina, in Angera--on the Lombard side of lake Maggiore--and in the high valley of the river Cervo, north of Biella. The patterns of radon immission in houses due to buildings materials and also to soil emissions are described. Average values of radon levels were obtained using track-etch detectors, whereas fluctuations were recorded daily with a unit capable of detecting alpha particles in real time. Some of the values obtained in 28 Valtellina towns were quite high--e.g., about 1,000 Bq/m3 in towns along the Insubrica fault. The area around Bormio and the Masino valley did not exhibit high radioactivity levels. A total number of nearly 100 houses were investigated in Angera; the highest radon concentrations were observed in cellars and especially in the areas where fractures are bigger and more diffuse. One particular house was accurately examined with real-time analysis of radon fluctuations. Four small towns in the pluton area were investigated in the valley of the river Cervo. In this instance, values were generally high (mean concentration: 842 Bq/m3); the highest concentrations were found in cellars and in ground-floor rooms.

  7. Invited Article: In situ comparison of passive radon-thoron discriminative monitors at subsurface workplaces in Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kávási, Norbert, E-mail: norbert@fml.nirs.go.jp; Social Organization for Radioecological Cleanliness, Veszprém; Vigh, Tamás

    During a one-year long measurement period, radon and thoron data obtained by two different passive radon-thoron discriminative monitors were compared at subsurface workplaces in Hungary, such as mines (bauxite and manganese ore) and caves (medical and touristic). These workplaces have special environmental conditions, such as, stable and high relative humidity (100%), relatively stable temperature (12°C–21°C), low or high wind speed (max. 2.4 m s{sup −1}) and low or elevated aerosol concentration (130–60 000 particles m{sup −3}). The measured radon and thoron concentrations fluctuated in a wide range among the different workplaces. The respective annual average radon concentrations and their standard deviations (inmore » brackets) measured by the passive radon-thoron discriminative monitor with cellulose filter (CF) and the passive radon-thoron discriminative monitor with sponge filter (SF) were: 350(321) Bq m{sup −3} and 550(497) Bq m{sup −3} in the bauxite mine; 887(604) Bq m{sup −3} and 1258(788) Bq m{sup −3} in the manganese ore mine; 2510(2341) Bq m{sup −3} and 3403(3075) Bq m{sup −3} in the medical cave (Hospital Cave of Tapolca); and 6239(2057) Bq m{sup −3} and 8512(1955) Bq m{sup −3} in the touristic cave (Lake Cave of Tapolca). The respective average thoron concentrations and their standard deviation (in brackets) measured by CF and SF monitors were: 154(210) Bq m{sup −3} and 161(148) Bq m{sup −3} in the bauxite mine; 187(191) Bq m{sup −3} and 117(147) Bq m{sup −3} in the manganese-ore mine; 360(524) Bq m{sup −3} and 371(789) Bq m{sup −3} in the medical cave (Hospital Cave of Tapolca); and 1420(1184) Bq m{sup −3} and 1462(3655) Bq m{sup −3} in the touristic cave (Lake Cave of Tapolca). Under these circumstances, comparison of the radon data for the SF and CF monitors showed the former were consistently 51% higher in the bauxite mine, 38% higher in the manganese ore mine, and 34% higher in the caves. Consequently, correction is required on previously obtained radon data acquired by CF monitors at subsurface workplaces to gain comparable data for SF monitors. In the case of thoron, the data were unreliable and no significant tendency was seen during the comparison therefore comparison of previously obtained thoron data acquired by either CF or SF is doubtful. There was probable influence by relative humidity on the detection response; however, the effects of the high wind speed and elevated aerosol concentration could not be excluded. The results of this study call attention to the importance of calibration under extreme environmental conditions and the need for using reliable radon-thoron monitors for subsurface workplaces.« less

  8. Preliminary lung cancer risk assessment of exposure to radon progeny for Transylvania, Romania.

    PubMed

    Truta-Popa, Lucia-Adina; Dinu, Alexandra; Dicu, Tiberius; Szacsvai, Kinga; Cosma, Constantin; Hofmann, Werner

    2010-09-01

    The objective of the present study was to assess the lung cancer risk induced by exposures to radon progeny of people living in some areas of Transylvania, Romania. Indoor radon concentrations were measured in 667 dwellings of Stei area, Cluj, Bistrita-Nasaud, Sibiu, and Alba counties. Measurements were performed using CR-39 track detectors, exposed for a minimum of 3 mo. Average annual radon concentrations were 232, 114, 71, 62, and 161 Bq m for Stei area, Cluj, Bistrita-Nasaud, Sibiu, and Alba, respectively. The linear risk model of Darby was used to simulate the dose-effect relationship and relative lung cancer risk at low doses of alpha particles specific to residential radon exposures. Predicted relative risks at the measured exposure levels, together with information on the total number of reported lung cancer deaths and the number of people living in these regions, enabled us to estimate the fraction of lung cancer cases in each area that is attributable to radon. These percentages are 16.67% for Stei area, 9.09% for Cluj, 5.66% for Bistrita-Nasaud, 4.76% for Sibiu, and 12.28% for Alba county among lifetime non-smokers. Assuming that the smoking rates are similar for the investigated regions (10.72% smokers among men and 5.95% among women), around 64 to 69% of the total number of annual lung cancer deaths, stratified by sex, would be attributed to radon and occur among smoking male population, and around 35 to 44% would be attributed to radon and occur among smoking female population.

  9. Lung Cancer Risk from Radon in Marcellus Shale Gas in Northeast U.S. Homes.

    PubMed

    Mitchell, Austin L; Griffin, W Michael; Casman, Elizabeth A

    2016-11-01

    The amount of radon in natural gas varies with its source. Little has been published about the radon from shale gas to date, making estimates of its impact on radon-induced lung cancer speculative. We measured radon in natural gas pipelines carrying gas from the Marcellus Shale in Pennsylvania and West Virginia. Radon concentrations ranged from 1,520 to 2,750 Bq/m 3 (41-74 pCi/L), and the throughput-weighted average was 1,983 Bq/m 3 (54 pCi/L). Potential radon exposure due to the use of Marcellus Shale gas for cooking and space heating using vent-free heaters or gas ranges in northeastern U.S. homes and apartments was assessed. Though the measured radon concentrations are higher than what has been previously reported, it is unlikely that exposure from natural gas cooking would exceed 1.2 Bq/m 3 (<1% of the U.S. Environmental Protection Agency's action level). Using worst-case assumptions, we estimate the excess lifetime (70 years) lung cancer risk associated with cooking to be 1.8×10 -4 (interval spanning 95% of simulation results: 8.5×10 -5 , 3.4×10 -4 ). The risk profile for supplemental heating with unvented gas appliances is similar. Individuals using unvented gas appliances to provide primary heating may face lifetime risks as high as 3.9×10 -3 . Under current housing stock and gas consumption assumptions, expected levels of residential radon exposure due to unvented combustion of Marcellus Shale natural gas in the Northeast United States do not result in a detectable change in the lung cancer death rates. © 2016 Society for Risk Analysis.

  10. Modeling Joint Exposures and Health Outcomes for Cumulative Risk Assessment: The Case of Radon and Smoking

    PubMed Central

    Chahine, Teresa; Schultz, Bradley D.; Zartarian, Valerie G.; Xue, Jianping; Subramanian, SV; Levy, Jonathan I.

    2011-01-01

    Community-based cumulative risk assessment requires characterization of exposures to multiple chemical and non-chemical stressors, with consideration of how the non-chemical stressors may influence risks from chemical stressors. Residential radon provides an interesting case example, given its large attributable risk, effect modification due to smoking, and significant variability in radon concentrations and smoking patterns. In spite of this fact, no study to date has estimated geographic and sociodemographic patterns of both radon and smoking in a manner that would allow for inclusion of radon in community-based cumulative risk assessment. In this study, we apply multi-level regression models to explain variability in radon based on housing characteristics and geological variables, and construct a regression model predicting housing characteristics using U.S. Census data. Multi-level regression models of smoking based on predictors common to the housing model allow us to link the exposures. We estimate county-average lifetime lung cancer risks from radon ranging from 0.15 to 1.8 in 100, with high-risk clusters in areas and for subpopulations with high predicted radon and smoking rates. Our findings demonstrate the viability of screening-level assessment to characterize patterns of lung cancer risk from radon, with an approach that can be generalized to multiple chemical and non-chemical stressors. PMID:22016710

  11. A study on natural radioactivity in Khewra Salt Mines, Pakistan.

    PubMed

    Baloch, Muzahir Ali; Qureshi, Aziz Ahmed; Waheed, Abdul; Ali, Muhammad; Ali, Nawab; Tufail, Muhammad; Batool, Saima; Akram, Muhammad; Iftikhar, Poonam; Qayyum, Hamza; Manzoor, Shahid; Khan, Hameed Ahmed

    2012-01-01

    The Khewra Salt Mines, the second largest salt mines in the world, are located 160 km south of Islamabad, the capital of Pakistan. Around 1000 workers are involved in the removal of salt from these mines. More than 40,000 visitors come annually to see the mines. The visitors and workers are directly exposed to the internal and external radiological hazards of radon and gamma rays in these mines. The general public is affected by the intake of the salt containing the naturally occurring radionuclides. Therefore the concentration of radon (²²²Rn) in the Khewra Salt Mines and activity concentrations of the naturally occurring radionuclides in the salt samples from these mines were measured. Both active and passive techniques were employed for the measurement of radon with Radon Alpha Detector (RAD-7) and SSNTD respectively. The concentration of ²²²Rn was 26 ± 4 Bq m⁻³ measured by the active method while 43 ± 8 Bq m⁻³ was measured by the passive method. The activity concentration of the radionuclides was measured using gamma ray spectrometry with HPGe detector. The mean activity of ⁴⁰K in salt samples was found to be 36 ± 20 Bq kg⁻¹ and the concentration of ²²⁶Ra and ²³²Th in the salt samples was below the detection limits. Gamma radiation hazard was assessed in terms of the external gamma dose from salt slabs and the rooms made of salt and the annual effective dose due to gamma radiation. The exposure to radon daughters, annual effective dose and excessive lifetime cancer risk due to radon in the mines were estimated. The mean annual effective dose due to an intake of ⁴⁰K from the salt was calculated as 20.0 ± 11.1 µSv, which is lower than the average annual effective dose rate of 0.29 mSv, received by the ingestion of natural radionuclides. Due to the low concentration values of primordial radionuclides in the salt and radon ²²²Rn) in the mines, a 'low level activity measurement laboratory' is suggested to be established in these mines.

  12. Indoor Radon Concentration Related to Different Radon Areas and Indoor Radon Prediction

    NASA Astrophysics Data System (ADS)

    Juhásová Šenitková, Ingrid; Šál, Jiří

    2017-12-01

    Indoor radon has been observed in the buildings at areas with different radon risk potential. Preventive measures are based on control of main potential radon sources (soil gas, building material and supplied water) to avoid building of new houses above recommended indoor radon level 200 Bq/m3. Radon risk (index) estimation of individual building site bedrock in case of new house siting and building protection according technical building code are obligatory. Remedial actions in buildings built at high radon risk areas were carried out principally by unforced ventilation and anti-radon insulation. Significant differences were found in the level of radon concentration between rooms where radon reduction techniques were designed and those where it was not designed. The mathematical model based on radon exhalation from soil has been developed to describe the physical processes determining indoor radon concentration. The model is focused on combined radon diffusion through the slab and advection through the gap from sub-slab soil. In this model, radon emanated from building materials is considered not having a significant contribution to indoor radon concentration. Dimensional analysis and Gauss-Newton nonlinear least squares parametric regression were used to simplify the problem, identify essential input variables and find parameter values. The presented verification case study is introduced for real buildings with respect to various underground construction types. Presented paper gives picture of possible mathematical approach to indoor radon concentration prediction.

  13. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ajay, E-mail: ajay782@rediffmail.com; Sharma, Sumit, E-mail: sumitshrm210@gmail.com

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEARmore » [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].« less

  14. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Sharma, Sumit

    2015-08-01

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEAR [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].

  15. Radon daughter plate-out measurements at SNOLAB for polyethylene and copper

    NASA Astrophysics Data System (ADS)

    Stein, Matthew; Bauer, Dan; Bunker, Ray; Calkins, Rob; Cooley, Jodi; Loer, Ben; Scorza, Silvia

    2018-02-01

    Polyethylene and copper samples were exposed to the underground air at SNOLAB for approximately three months while several environmental factors were monitored. Predictions of the radon-daughter plate-out rate are compared to the resulting surface activities, obtained from high-sensitivity measurements of alpha emissivity using the XIA UltraLo-1800 spectrometer at Southern Methodist University. From these measurements, we determine an average 210Pb plate-out rate of 249 and 423 atoms/day/cm2 for polyethylene and copper, respectively, when exposed to radon activity concentration of 135 Bq/m3 at SNOLAB. A time-dependent model of alpha activity is discussed for these materials placed in similar environmental conditions.

  16. Radon exposure assessment for underground workers: a case of Seoul Subway Police officers in Korea.

    PubMed

    Song, Myeong Han; Chang, Byung-Uck; Kim, Yongjae; Cho, Kun-Woo

    2011-11-01

    The objective of this study is the systematic and individual assessment of the annual effective dose due to inhaled radon for the Seoul Subway Police officers, Korea. The annual average radon concentrations were found to be in the range of 18.9-114 Bq·m(-3) in their workplaces. The total annual effective doses which may likely to be received on duty were assessed to be in the range of 0.41-1.64 mSv·y(-1). These were well below the recommended action level 10 mSv·y(-1) by ICRP. However, the effective doses were higher than subway station staff in Seoul, Korea.

  17. Radiological safety assessment inside ancient Egyptian tombs in Saqqara.

    PubMed

    El-Kameesy, S U; Salama, E; El-Fiki, S A; Ehab, M; Rühm, W

    2016-12-01

    Many archaeological sites in Egypt are unique worldwide, such as ancient tombs and pyramids, because they document fundamental developments in human civilization that took place several thousands of years ago. For this reason, these sites are visited by numerous visitors every year. The present work is devoted to provide a pre-operational radiological baseline needed to quantify occupational radiation exposure at the famous Saqqara region in Cairo, Egypt. A hyperpure Ge detector has been used in the γ-ray spectrometric analysis while the (222)Rn concentration was measured using a portable radon monitor RTM 1688-2, SARAD. The mean specific activities of (226)Ra, (232)Th and (40)K in the samples collected from the interior walls of the Saqqara tombs were determined and found to show average values of 16, 8.5 and 45 Bq kg(-1), respectively. The concentration of radon was measured inside the tombs Serapeum, South tomb and the Zoser Pyramid (fifth level) and an associated average working level of 0.83 WL was obtained. In order to avoid the health hazards associated with the exposure to radon during the long period of work inside these tombs, proposed solutions are introduced.

  18. Contribution of (222)Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China.

    PubMed

    Song, Gang; Wang, Xinming; Chen, Diyun; Chen, Yongheng

    2011-04-01

    This study investigates the contribution of radon ((222)Rn)-bearing water to indoor (222)Rn in thermal baths. The (222)Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM(10) and PM(2.5)) and carbon dioxide (CO(2)) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m(-3) of (222)Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which (222)Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average (222)Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor (222)Rn levels were influenced by the (222)Rn concentrations in the hot spring water and the bathing times. The average (222)Rn transfer coefficients from water to air were 6.2 × 10(-4)-4.1 × 10(-3). The 24-h average levels of CO(2) and PM(10) in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM(2.5). Radon and PM(10) levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Factors Affecting Radon Concentration in Houses

    NASA Astrophysics Data System (ADS)

    Al-Sharif, Abdel-Latif; Abdelrahman, Y. S.

    2001-03-01

    The dangers to the human health upon exposure to radon and its daughter products is the main motivation behind the vast number of studies performed to find the concentration of radon in our living environment, including our houses. The presence of radon and its daughter products in houses are due to various sources including building materials and the soil under the houses. Many factors affect radon concentration in our houses, the elevation above ground level,ventilation, building materials and room usage being among these factors. In our paper, we discuss the effect of elevation above ground level, room usage and ventilation on the Radon concentration in houses. The faculty residences of the Mu'tah University (Jordan) were chosen in our study. Our results showed that the concentration of radon decreases with elevation. Ventilation rate was also found to affect radon concentration, where low concentrations observed for areas with good ventilation.

  20. Measurement of natural radioactivity and radon exhalation rate from rock samples of Jaduguda uranium mines and its radiological implications

    NASA Astrophysics Data System (ADS)

    Mahur, A. K.; Kumar, Rajesh; Sonkawade, R. G.; Sengupta, D.; Prasad, Rajendra

    2008-04-01

    The Singhbhum shear zone is a 200 km long arcuate belt in Jharkhand state situated in eastern India. The central part between Jaduguda-Bhatin-Nimdih, Narwapahr-Garadih-Turamdih is rich in uranium. Presence of uranium in the host rocks and the prevalence of a confined atmosphere within mines could result in enhanced concentration of radon (222Rn) gas and its progeny. Inhalation of radon daughter products is a major contributor to the radiation dose to exposed subjects. By using high resolution γ-ray spectroscopic system various radionuclides in the rock samples, collected from different places of Jaduguda uranium mines have been identified quantitatively based on the characteristic spectral peaks. The activity concentrations of the natural radionuclides, uranium (238U), thorium (232Th) and potassium (40K) were measured in the rock samples and radiological parameters were calculated. Uranium concentration was found to vary from 123 ± 7 Bq kg-1 to 40,858 ± 174 Bq kg-1. Activity of thorium was not significant in the samples, whereas, few samples have shown potassium activity from 162 ± 11 Bq kg-1 to 9024 ± 189 Bq kg-1. Radon exhalation rates from these samples were also measured using "Sealed Can technique" and found to vary from 4.2 ± 0.05 to 13.7 ± 0.08 Bq m-2 h-1. A positive correlation was found between the radon exhalation rate and the uranium activity. The absorbed dose rates vary from 63.6 to 18876.4 nGy h-1, with an average value of 7054.2 nGy h-1. The annual external effective dose rates vary from 0.7 to 23.2 mSv y-1. Radium equivalent activities (Raeq) varied from 134.3 to 40858.0 Bq kg-1. Value of external hazard index (Hex) varied from 0.4 to 110.4 with an average value of 41.2.

  1. Comparison study and thoron interference test of different radon monitors.

    PubMed

    Sumesh, C G; Kumar, A Vinod; Tripathi, R M; Puranik, V D

    2013-03-01

    A comparison study and thoron interference test for different continuous radon monitors were carried out. The comparison study includes three passive diffusion monitors [one pulse ionisation chamber based-Alpha Guard and two silicon semi-conductor based-Radon Scout Plus (RSP)] and one silicon semi-conductor-based active radon thoron discriminating monitor--RAD 7. Radon emanation standard, supplied by National Institute of Science and Technology, has been utilised for the comparison study to qualify the calibration of the continuous radon monitors. All the instruments showed good agreement with the estimated radon concentration using (226)Ra/(222)Rn emanation standard. It was found that the active radon monitoring system is having a higher initial response towards the transient radon concentration than the passive radon monitors studied. The instruments measuring radon concentration without energy discrimination are likely to have some sensitivity towards the thoron concentration. Thus, thoron interference study was carried out in the above monitors. Nine percent interference in measured radon concentration in the Alpha Guard monitor and 4 % interference in the semi-conductor-based RSP monitors was observed. Study indicates that the interference of thoron in radon monitors depends on the area of diffusion of gas, volume of detection and sensitivity factor.

  2. Radon (222Rn) in groundwater studies in two volcanic zones of central Mexico

    NASA Astrophysics Data System (ADS)

    Cortés, A.; Cardona, A.; Pérez-Quezadas, J.; Inguaggiato, S.; Vázquez-López, C.; Golzarri, J. I.; Espinosa, G.

    2013-07-01

    The distribution of radon (222Rn) concentrations in groundwater from two basins of volcanic origin is presented. Regions have different physiographic characteristics with fractured mafic/intermediate and felsic rocks. Samples were taken from deep wells and springs. Concentrations were field measured by two methods: i) scintillator, coupled to a photomultiplier, and ii) passive method, using Nuclear Track Detectors. Qualitatively, results of 222Rn measured with both techniques are comparable only when concentrations have values less than 1 Bq/l. For the Basin of Mexico City the data shows an average difference of 0.13 Bq/l. Results of 222Rn concentrations in 46 groundwater samples indicate that the data are below 11.1 Bq/l, with both methodologies. Low concentrations of 222Rn in the Basin of Mexico City are related to the mafic intermediate composition rocks such as basalt. The anomalies with high values are correlated with the transition zone between volcanic units and clays from ancient lakes. In San Luis Potosí 10 samples show an average of 4.2 Bq/l. These concentrations compared with those of the Basin of Mexico City are related to the composition of the felsic (rhyolite) volcanic rocks.

  3. Radon Concentration in the Drinking Water of Aliabad Katoul, Iran.

    PubMed

    Adinehvand, Karim; Sahebnasagh, Amin; Hashemi-Tilehnoee, Mehdi

    2016-07-01

    According to the world health organization, radon is a leading cause of cancer in various internal organs and should be regarded with concern. The aim of this study is to evaluate the concentration of soluble radon in the drinking water of the city of Aliabad Katoul, Iran. The radon concentration was measured by using a radon meter, SARAD(TM) model RTM 1688-2, according to accepted standards of evaluation. The mean radon concentration in the drinking water of Aliabad Katoul is 2.90 ± 0.57 Bq/L. The radon concentration in Aliabad Katoul is below the limit for hazardous levels, but some precautions will make conditions even safer for the local populace.

  4. Measurements of radon concentrations in Spa waters in Amasya, Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yigitoglu, I., E-mail: ibrahim.yigitoglu@gop.edu.tr; Ucar, B.; Oner, F.

    The aim of this study is to determine the radon concentrations in thermal waters in the Amasya basin in Turkey and to explore the relationship between radon anomalies and active geological faults. The radon concentration measurements were performed in four thermal Spas around Amasya basin. The water samples were collected from tap waters in thermal water sources. The obtained radon concentrations ranged from 0.15 ± 0.12 to 0.71 ± 0.32 BqL{sup −1} for Spa waters. The relationship between the radon concentration anomalies and earthquakes that occurred in the sampling period are discussed.

  5. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    USGS Publications Warehouse

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  6. Evaluation of radon occurrence in groundwater from 16 geologic units in Pennsylvania, 1986–2015, with application to potential radon exposure from groundwater and indoor air

    USGS Publications Warehouse

    Gross, Eliza L.

    2017-05-11

    Results from 1,041 groundwater samples collected during 1986‒2015 from 16 geologic units in Pennsylvania, associated with 25 or more groundwater samples with concentrations of radon-222, were evaluated in an effort to identify variations in radon-222 activities or concentrations and to classify potential radon-222 exposure from groundwater and indoor air. Radon-222 is hereafter referred to as “radon.” Radon concentrations in groundwater greater than or equal to the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) for public-water supply systems of 300 picocuries per liter (pCi/L) were present in about 87 percent of the water samples, whereas concentrations greater than or equal to the proposed alternative MCL (AMCL) for public water-supply systems of 4,000 pCi/L were present in 14 percent. The highest radon concentrations were measured in groundwater from the schists, gneisses, and quartzites of the Piedmont Physiographic Province.In this study, conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Health and the Pennsylvania Department of Environmental Protection, groundwater samples were aggregated among 16 geologic units in Pennsylvania to identify units with high median radon concentrations in groundwater. Graphical plots and statistical tests were used to determine variations in radon concentrations in groundwater and indoor air. Median radon concentrations in groundwater samples and median radon concentrations in indoor air samples within the 16 geologic units were classified according to proposed and recommended regulatory limits to explore potential radon exposure from groundwater and indoor air. All of the geologic units, except for the Allegheny (Pa) and Glenshaw (Pcg) Formations in the Appalachian Plateaus Physiographic Province, had median radon concentrations greater than the proposed EPA MCL of 300 pCi/L, and the Peters Creek Schist (Xpc), which is in the Piedmont Physiographic Province, had a median radon concentration greater than the EPA proposed AMCL of 4,000 pCi/L. Median concentrations of radon in groundwater and indoor air were determined to differ significantly among the geologic units (Kruskal-Wallis test, significance probability, p<0.001), and Tukey’s test indicated that radon concentrations in groundwater and indoor air in the Peters Creek Schist (Xpc) were significantly higher than those in the other units. Also, the Peters Creek Schist (Xpc) was determined to be the area with highest potential of radon exposure from groundwater and indoor air and one of two units with the highest percentage of population assumed to be using domestic self-supplied water (81 percent), which puts the population at greater potential of exposure to radon from groundwater.Potential radon exposure determined from classification of geologic units by median radon concentrations in groundwater and indoor air according to proposed and recommended regulatory limits is useful for drawing general conclusions about the presence, variation, and potential radon exposure in specific geologic units, but the associated data and maps have limitations. The aggregated indoor air radon data have spatial accuracy limitations owing to imprecision of geocoded test locations. In addition, the associated data describing geologic units and the public water supplier’s service areas have spatial and interpretation accuracy limitations. As a result, data and maps associated with this report are not recommended for use in predicting individual concentrations at specific sites nor for use as a decision-making tool for property owners to decide whether to test for radon concentrations at specific locations. Instead, the data and maps are meant to promote awareness regarding potential radon exposure in Pennsylvania and to point out data gaps that exist throughout the State.

  7. Investigation of distribution of radioactivity with effects of heavy metals in toothpastes from Penang markets.

    PubMed

    Salih, Najeba F; Jafri, Zubir M; Jaafar, Mohamad S

    2016-12-01

    This study was carried out to determine the concentration of 222 Rn, 226 Ra, and 238 U in 25 different toothpastes available in the local market in Penang, Malaysia, using a CR-39 detector. The results showed the maximum concentration of radon/ radium/uranium to be 4197.644 Bq.m -3 , 54.369 Bq.Kgm -1 , and 0.044 ppm in Colgate4; the annual effective dose was found (0.402 mSvy -1 ) in S07. The average concentration of radon (42 %, 3.224 KBq.m -3 ) was higher than the concentration of 214 Po, 218 Po in POS (32 %, 2.415 KBq.m -3 ) and POW (26 %, 1.979 KBq.m -3 ). Also the values of pH of samples ranged from 4.21 (highly acidic) in S04 to 9.97 (highly basic) in S07, with an average of 6.33 which tended towards an acidic behavior; a low or high pH for a long period of time can cause harmful side-effects and enamel erosion. Concentrations of heavy metals varied from the maximum value 56.156 ppm in the Ca elements in the Colgate 4 sample to a minimum value of -0.858 ppm in the Cd elements in Colgate 6 (Ca 56.156 ppm > Cd 51.572 ppm > Zn 41.039 ppm > Mg 11.682 ppm > Pb 11.009 ppm]. Monitoring the accumulation of these metals in toothpaste samples is very important: the average annual effective dose (0.3118 mSvy -1 ) was below the range (3-10 mSvy -1 ) reported by ICRP (1993), and therefore there is no evidence of health problems. Significant strong positive correlations were found (r = 1, Pearson correlation, p < 0.000) in concentration of radon, radium, uranium, annual effective dose, pH, and electrical conductivity.

  8. Radon in the Exhaled Air of Patients in Radon Therapy.

    PubMed

    Lettner, Herbert; Hubmer, Alexander; Hofmann, Werner; Landrichinger, Julia; Gaisberger, Martin; Winkler-Heil, Renate

    2017-11-01

    In the Gastein valley, numerous facilities use radon for the treatment of various diseases either by exposure to radon in air or in radon rich thermal water. In this study, six test persons were exposed to radon thermal water in a bathtub and the time-dependent radon activity concentration in the exhaled air was recorded. At temperatures between 38°C and 40°C, the radon activity concentration in the water was about 900 kBq/m3 in a total volume of 600 l, where the patients were exposed for 20 min, while continuously sampling the exhaled air during the bathing and 20 min thereafter. After entering the bath, the exhaled radon activity concentration rapidly increased, reaching some kind of saturation after 20 min exposure. The radon activity concentration in the exhaled air was about 8000 Bq/m3 at the maximum, with higher concentrations for male test persons. The total radon transfer from water to the exhaled air was between 480 and 1000 Bq, which is equivalent to 0.08% and 0.2% of the radon in the water. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Radon in ground water: A study of the measurement and release of waterborne radon and modeling of radon variation in bedrock wells

    NASA Astrophysics Data System (ADS)

    Guiseppe, Vincente E.

    Naturally occurring radon gas (222Rn) exists in ground water and drinking water supplies. Research involving radon in ground water requires the ability to accurately measure radon in water. In the absence of a national program, an intercomparison study of laboratories was sanctioned by the State of Maine. The University of Maine research laboratory supplied each laboratory with water samples of various radon concentrations, served as the reference laboratory, and analyzed the results presented here. The external review of the University of Maine laboratory and agreement with some of the participating laboratories verifies its accuracy in measuring radon in water. A study of nine elementary schools in Maine examined the release of waterborne radon during water use. The release of radon into the kitchen air was measured to be greater than the EPA action level of 0.150 Bq L -1 (4 pCi L-1) in all schools but negligible concentrations of radon were found in adjacent classrooms. In two schools over a three-fold spatial radon variation was measured suggesting that multiple detectors are needed to accurately measure waterborne radon in air. During water use, the radon in water concentration was measured periodically and many of the schools showed an increase in the radon concentration by 200 BqL-1 or more. To explore this effect, nine bedrock wells were studied in detail. Measurements of the ambient and purged radon profiles in the wells showed variations of radon concentration of samples within the well. The rock chips removed during well-drilling were analyzed for radionuclides in the 238U decay series. The 226Ra concentrations in the rock chips do not explain the measured vertical variation of dissolved radon. The vertical flow and fracture locations were previously determined by borehole logging to determine location of ground water inflow. A mathematical model of the ground-water flow into and through the well with radon as a tracer was tested. The model was successfully fit to data obtained from the wells that had a variation in radon concentration.

  10. Radon daughter plate-out measurements at SNOLAB for polyethylene and copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Matthew; Bauer, Dan; Bunker, Ray

    We report that polyethylene and copper samples were exposed to the underground air at SNOLAB for approximately three months while several environmental factors were monitored. Predictions of the radon-daughter plate-out rate are compared to the resulting surface activities, obtained from high-sensitivity measurements of alpha emissivity using the XIA UltraLo-1800 spectrometer at Southern Methodist University. From these measurements, we determine an average 210Pb plate-out rate of 249 and 423 atoms/day/cm 2 for polyethylene and copper, respectively, when exposed to radon activity concentration of 135 Bq/m 3 at SNOLAB. Finally, a time-dependent model of alpha activity is discussed for these materials placedmore » in similar environmental conditions.« less

  11. Radon daughter plate-out measurements at SNOLAB for polyethylene and copper

    DOE PAGES

    Stein, Matthew; Bauer, Dan; Bunker, Ray; ...

    2017-11-04

    We report that polyethylene and copper samples were exposed to the underground air at SNOLAB for approximately three months while several environmental factors were monitored. Predictions of the radon-daughter plate-out rate are compared to the resulting surface activities, obtained from high-sensitivity measurements of alpha emissivity using the XIA UltraLo-1800 spectrometer at Southern Methodist University. From these measurements, we determine an average 210Pb plate-out rate of 249 and 423 atoms/day/cm 2 for polyethylene and copper, respectively, when exposed to radon activity concentration of 135 Bq/m 3 at SNOLAB. Finally, a time-dependent model of alpha activity is discussed for these materials placedmore » in similar environmental conditions.« less

  12. Exposure of population from residential radon: a case study for district Hattian, Azad Kashmir, Sub-Himalayas, Pakistan.

    PubMed

    Rafique, M; Rahman, S U; Matiullah

    2012-11-01

    Indoor air quality has acquired considerable importance in recent years. Tighter buildings with poorer ventilation systems have led towards higher levels of indoor air pollution. Radon is considered to be most significant perilous gas among the various air contaminants found in the residential environment. To determine the risk posed by residential radon exposure, a survey was carried out in the Hattian district of the state of Azad Jammu and Kashmir, Pakistan. In this context, 160 houses were carefully selected for the installation of CR-39-based National Radiological Protection Board-type detectors installation. After exposing the CR-39 detectors for a period of 90 d, they were etched in 6 M chemical solution of sodium hydroxide at a temperature of 80°C for a period of 16 h. The detectors were read under an optical microscope and observed track densities were converted into the indoor radon concentration using a calibration factor of 2.7 tracks cm(-2) h(-1) per kBqm(-3). For the current study, observed radon concentrations ranged from 35 to 175 Bqm(-3), whereas the mean annual effective radon doses received by the inhabitants of the area ranged from 0.88 ± 0.12 to 4.41 ± 0.20 mSv with an average value of 2.62 ± 0.12 mSv. These reported values are less than the limits (standards) recommended by the different world organisations.

  13. Effects of air exchange property of passive-type radon-thoron discriminative detectors on performance of radon and thoron measurements.

    PubMed

    Omori, Y; Janik, M; Sorimachi, A; Ishikawa, T; Tokonami, S

    2012-11-01

    Pairs of diffusion chambers with different air exchange rates are used in a large-scale survey to determine radon and thoron, separately. When they are enclosed in radon-proof bags for keeping after the exposure, since radon does not escape out immediately from the low-diffusion chamber, it leads to further exposure in the bags and disturbs the estimation of radon and thoron concentrations. In this study, the effects of the different air exchange properties of the radon-thoron discriminative detectors with CR-39 chips on the estimations of radon and thoron concentrations were investigated. The commercially available and frequently used detectors, Raduet, are examined in this study. The result shows that radon escapes out in 10 h. When degassing is not enough after the exposure in a calibration experiment or high-background radiation area, the residual radon causes the overestimation of the radon concentration and increase in the uncertainty in the thoron concentration, i.e. a low-performance quality of radon and thoron measurements.

  14. Distribution of radon concentrations in child-care facilities in South Korea.

    PubMed

    Lee, Cheol-Min; Kwon, Myung-Hee; Kang, Dae-Ryong; Park, Tae-Hyun; Park, Si-Hyun; Kwak, Jung-Eun

    2017-02-01

    This study was conducted to provide fundamental data on the distribution of radon concentrations in child day-care facilities in South Korea and to help establish radon mitigation strategies. For this study, 230 child-care centers were randomly chosen from all child-care centers nationwide, and alpha track detectors were used to examine cumulative radon exposure concentrations from January to May 2015. The mean radon concentration measured in Korean child-care centers is approximately 52 Bq m -3 , about one-third of the upper limit of 148 Bq m -3 , which is recommended by South Korea's Indoor Air Quality Control in Public Use Facilities, etc. Act and the U.S. Environmental Protection Agency (EPA). Furthermore, this concentration is about 50% lower than 102 Bq m -3 , which is the measured concentration of radon in houses nationwide from December 2013 to February 2014. Our results indicate that the amount of ventilation, as a major determining factor for indoor radon concentrations, is strongly correlated with the fluctuation of indoor radon concentrations in Korean child-care centers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone.

    PubMed

    Tsunomori, Fumiaki; Shimodate, Tomoya; Ide, Tomoki; Tanaka, Hidemi

    2017-06-01

    Groundwater radon concentrations around the Tachikawa fault zone were surveyed. The radon concentrations in shallow groundwater samples around the Tachikawa fault segment are comparable to previous studies. The characteristics of the radon concentrations on both sides of the segment are considered to have changed in response to the decrease in groundwater recharge caused by urbanization on the eastern side of the segment. The radon concentrations in deep groundwater samples collected around the Naguri and the Tachikawa fault segments are the same as those of shallow groundwater samples. However, the radon concentrations in deep groundwater samples collected from the bedrock beside the Naguri and Tachikawa fault segments are markedly higher than the radon concentrations expected from the geology on the Kanto plane. This disparity can be explained by the development of fracture zones spreading on both sides of the two segments. The radon concentration distribution for deep groundwater samples from the Naguri and the Tachikawa fault segments suggests that a fault exists even at the southern part of the Tachikawa fault line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Dealing with the increased radon concentration in thermally retrofitted buildings.

    PubMed

    Jiránek, M; Kačmaříková, V

    2014-07-01

    The influence of energy-saving measures on indoor radon concentration has been studied on the basis of a family house made of clinker concrete wall panels containing from 1000 up to 4000 Bq kg(-1) of 226Ra. Thermal retrofitting based on installing external thermal insulation composite system on the building envelope and replacing existing windows by new ones decreased the annual energy need for heating 2.8 times, but also reduced the ventilation rate to values<0.1 h(-1). As a consequence, the 1-y average indoor radon concentration values increased 3.4 times from 337 to 1117 Bq m(-3). The additional risk of lung cancer in the thermally retrofitted house increased to a value that is 125 % higher than before conversion. Methods for dealing with this enhanced risk by increasing the ventilation rate are discussed. Recovery of investments and the energy consequences of increased ventilation are studied in a long-term perspective. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Canadian Lung Cancer Relative Risk from Radon Exposure for Short Periods in Childhood Compared to a Lifetime

    PubMed Central

    Chen, Jing

    2013-01-01

    Long-term exposure to elevated indoor radon concentrations has been determined to be the second leading cause of lung cancer in adults after tobacco smoking. With the establishment of a National Radon Program in Canada in 2007 thousands of homes across the country have been tested for radon. Although the vast majority of people are exposed to low or moderate radon concentrations; from time to time; there are homes found with very high concentrations of radon. Among those living in homes with very high radon concentrations, it is typically parents of young children that demonstrate a great deal of concern. They want to know the equivalent risk in terms of the lifetime relative risk of developing lung cancer when a child has lived in a home with high radon for a few years. An answer to this question of risk equivalency is proposed in this paper. The results demonstrate clearly that the higher the radon concentration; the sooner remedial measures should be undertaken; as recommended by Health Canada in the Canadian radon guideline. PMID:23698696

  18. Impact of radon gas concentration in the aerosoles profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukaj, Edmond, E-mail: mondilukaj@yahoo.com; Vila, Floran, E-mail: floranvila@yahoo.com; Mandija, Florian, E-mail: fmandija@yahoo.com

    Radon gases relased from building materials and from earth surface are the major responsibility of air ionization. Radon nuclear decay can produce an alpha particle with high energy and Radon progeny. This particle and gamma rays can deliver particles in the air and produce ions with different polarities. This ions, because of induced electric charge, can attach with air aerosols and charge them with their electric charge. The charged aerosols can interact with the other aerosols and ions. Because of this exchange, the air conductivity and the aerosol profiles will change dependently by Radon gas concentration and gamma radiation. Observationsmore » show an increase in concentration of Radon during the night, and a decrease during the daylight time. The Radon gas concentration changed hour by hour can induce aerosol profile to change. This dependency between the aerosol profiles and the Radon gas concentrations is discussed.« less

  19. The relation of seismic activity and radon concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulali, Feride, E-mail: feridekulali@gmail.com, E-mail: iskender@fef.sdu.edu.tr; Akkurt, İskender, E-mail: feridekulali@gmail.com, E-mail: iskender@fef.sdu.edu.tr; Vogiannis, Efstratios, E-mail: svog@env.aegean.gr

    Radon, which is the largest source of natural ionizing radiation, reaches to surface as gas or dissolved form in the ground water. Emanation of radon can has a profile is disposed to increasing or decreasing depending on the effects of meteorological events or crust movements. In this work, the radon concentration in soil gas, which is transported from soil to AlphaGUARD, is continuously measured in Mytilene (Greece). A graph of radon concentration is prepared for comparison with simultaneous earthquake data. As a consequence of comparison, we determined that the radon concentration indicates anomalies before the earthquakes.

  20. Error in measuring radon in soil gas by means of passive detectors

    USGS Publications Warehouse

    Tanner, A.B.

    1991-01-01

    Passive detection of radon isotopes depends on diffusion of radon atoms from the sites of their generation to the location of the detecting or collecting device. Because some radon decays en route to a passive detector in soil, the radon concentration measured by the detector must be less than the concentration in those soil pores where it is undiminished by diffusion to the detector cavity. The true radon concentration may be significantly underestimated in moist soils. -Author

  1. Soil radon survey to assess NAPL contamination from an ancient spill. Do kerosene vapors affect radon partition ?

    PubMed

    De Simone, Gabriele; Lucchetti, Carlo; Pompilj, Francesca; Galli, Gianfranco; Tuccimei, Paola; Curatolo, Pierpaolo; Giorgi, Riccardo

    2017-05-01

    A soil radon-deficit survey was carried out in a site polluted with kerosene (Rome, Italy) in winter 2016 to assess the contamination due to the NAPL residual component in the vadose zone and to investigate the role of the vapor plume. Radon is indeed more soluble in the residual NAPL than in air or water, but laboratory experiments demonstrated that it is also preferentially partitioned in the NAPL vapors that transport it and may influence soil radon distribution patterns. Specific experimental configurations were designed and applied to a 31-station grid to test this hypothesis; two RAD7 radon monitors were placed in-series and connected to the top of a hollow probe driven up to 80-cm depth; the first instrument was directly attached to the probe and received humid soil gas, which was counted and then conveyed to the second monitor through a desiccant (drierite) cylinder capturing moisture and eventually the NAPL volatile component plus the radon dissolved in vapors. The values from the two instruments were cross-calibrated through specifically designed laboratory experiments and compared. The results are in agreement within the error range, so the presence of significant NAPL vapors, eventually absorbed by drierite, was ruled out. This is in agreement with low concentrations of soil VOCs. Accordingly, the radon-deficit is ascribed to the residual NAPL in the soil pores, as shown very well also by the obtained maps. Preferential areas of radon-deficit were recognised, as in previous surveys. An average estimate of 21 L (17 Kg) of residual NAPL per cubic meter of terrain is provided on the basis of original calculations, developed from published equations. A comparison with direct determination of total hydrocarbon concentration (23 kg per cubic meter of terrain) is provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Radon as an Anthropogenic Indoor Air Pollutant

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Crockett, Robin

    2016-04-01

    Radon is generally regarded as a naturally occurring radiological hazard but we report here measurements of significant, hazardous radon concentrations that arise from man-made sources, including granite ornaments/artefacts, uranium glass and glazed objects as well radium dial watches. This presentation concerns an examination and assessment of health risks from radium and uranium found in historical artefacts, many of which were once viewed as everyday items, and the radon that emanates from them. Such objects were very popular in industrialised countries such as the USA, UK and European countries) particularly between and including the two World Wars but are still readily available. A watch collection examined gave rise to a hazardous radon concentration of 13.24 kBq•m-3 approximately 67 times the Domestic Action Level of 200 Bq•m-3.The results for an aircraft altimeter are comparable to those of the watches, indicating radon activity equivalent to several watches, and also indicate an equilibrium concentration in the 16.3 m3 room ca. 33 times the UK domestic Action Level. Results from a granite block indicate a radon emanation of 19.7 Bq•kg-1, but the indicated equilibrium concentration in the 16.3 m3 room is only ca. 1.7% of the UK domestic Action Level. Uranium-glazed crockery and green uranium glass were scoped for radon activity. The former yielded a radon concentration of ca. 44 Bq•m-3 in a small (7 L) sealed container. The latter yielded a lower radon concentration in a larger (125 L) sealed container of ca. 6 Bq•m-3. This is barely above the background radon concentration in the laboratory, which was typically ca. 1-2 Bq•m-3. Individual items then are capable of giving rise to radon concentrations in excess of the UK Domestic Action Level in rooms in houses, particularly if poorly ventilated. We highlight the gap in the remediation protocols, which are focused on preventing radon entering buildings from outside, with regard to internally-generated radon hazards. We conclude with a recommendation that radon as arising from artefacts and ornaments is considered appropriately in radon protocols and guidelines.

  3. Study of radon flux and natural radionuclides (226Ra, 232Th and 40K) in the Main Boundary Thrust region of Garhwal Himalaya

    NASA Astrophysics Data System (ADS)

    Kandari, Tushar; Prasad, Mukesh; Pant, Preeti; Semwal, Poonam; Bourai, Abhay Anand; Ramola, Rakesh Chand

    2018-05-01

    The Himalayan region is subdivided lithologically into four regions in which the junction between the lower Himalaya and Shivalik is known as the Main Boundary Thrust (MBT). It is well known that the environmental radon concentration depends upon various geological factors including faults, thrust, cracks and the composition of the soil. Radon gas eventually comes out from the fault/thrust zones having radium as its prominent source. Hence, it is important to study the behaviour of emission of radon present inside the earth crust as well as the levels of natural radionuclides in soil. In this study, the levels of natural radionuclides and exhalation rates of radon in the soil of MBT region of Garhwal Himalaya, India, were determined by using gamma ray spectrometer and scintillation detector-based Smart Radon Monitor, respectively. The average activities of 226Ra, 232Th and 40K were found 71.9, 88.2 and 893.6 Bq Kg-1, respectively. The measured radon surface flux was found to vary from 13.08 to 1626.4 Bq m-2 h-1 with a mean value of 256.5 Bq m-2 h-1. The measured activity levels were used to assess the doses associated with the contaminated soil.

  4. Modeling of indoor radon concentration from radon exhalation rates of building materials and validation through measurements.

    PubMed

    Kumar, Amit; Chauhan, R P; Joshi, Manish; Sahoo, B K

    2014-01-01

    Building materials are the second major source of indoor radon after soil. The contribution of building materials towards indoor radon depends upon the radium content and exhalation rates and can be used as a primary index for radon levels in the dwellings. The radon flux data from the building materials was used for calculation of the indoor radon concentrations and doses by many researchers using one and two dimensional model suggested by various researchers. In addition to radium content, the radon wall flux from a surface strongly depends upon the radon diffusion length (L) and thickness of the wall (2d). In the present work the indoor radon concentrations from the measured radon exhalation rate of building materials calculated using different models available in literature and validation of models was made through measurement. The variation in the predicted radon flux from different models was compared with d/L value for wall and roofs of different dwellings. The results showed that the radon concentrations predicted by models agree with experimental value. The applicability of different model with d/L ratio was discussed. The work aims to select a more appropriate and general model among available models in literature for the prediction of indoor radon. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Indoor radon mapping and its relation to geology in Hungary

    NASA Astrophysics Data System (ADS)

    Minda, Mihály; Tóth, György; Horváth, István; Barnet, Ivan; Hámori, Krisztián; Tóth, Eszter

    2009-04-01

    Indoor radon mapping may show stronger dependence on geological formations if the measured homes are one-storied houses with no basement. In Hungary, 17,244 homes were investigated on the yearly average of indoor radon concentrations; among these homes, there were 6,154, one-storied, no-basement houses. In Hungary, 21 geological units were created relevant for indoor radon index characterized by lithology, the position of the ground water table, and the gas permeability. Maps were drawn of different topography (counties, grid, geological units) and different values (maximum, mean, indoor radon indexes). A kind of standardization of houses was that only the one-storied, no-basement ones were chosen, but from geological point of view some more information was gained when the wall materials (bricks or adobe) were also taken into account. (“Adobe” is made of clay and straw in Hungary, and not burned as brick, just dried on sunshine). Enhanced indoor radon values can be observed on the bedrock of Cenozoic volcanic rocks and their eroded materials deposited on the local alluvial valleys. Another group with relatively increased indoor radon values can be connected to granite bodies. The grid method is useful for covering large state or even continental areas. For practical public use and detailed radon risk mapping geological or administrative unit-systems could yield more reasonable and useful results.

  6. Estimation of Soil Radon Concentration in Al-Qateef's Date Palm Farms, Saudi Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Baig, M. R.

    2011-10-27

    This study involves the measurement of radon concentrations in agricultural soil from two date Palm farms in Al-Qateef province using CR-39 detector. In each farm the palm trees are arranged in rows separated by the irrigation reservoirs. The first farm is about 10000 m{sup 2} and has 350 palm trees and the second farm is about 7000 m{sup 2} and has 320 palm trees. The average distance between trees is about 5.5 m. The rows are separated by an irrigation reservoir where fertilizers are added. Sixty soil samples were collected from each farm and classified in paperboard boxes. These samplesmore » were taken from different depths and positions between the trees and from the irrigation reservoir.A newly designed tag type dosimeter is used in which the alpha tracks are registered on both sides of the CR-39 detector. The tag dosimeter was calibrated against a cup type dosimeter which was calibrated at the National Radiological Protection Board (NRPB) at the U.K.The detectors were left to count for five months and then chemically treated in the standard way. Finally an optical microscope is used to count alpha tracks and the data are treated statistically.The study is set to test for significant differences in radon concentrations at different positions and depths in the barren and fertilized soils in the two farms. Measured radon concentrations ranged between 42 and 344Bq/m{sup 3}. No significant difference between the mean concentration values in soil samples taken between the trees and that taken at the depth of 50 cm from the irrigation reservoir. Significant difference was however found between radon concentrations in samples collected directly from the surface of the irrigation reservoir where fertilizers are introduced and those taken from the other two positions. The used fertilizers are found to have higher contents of uranium which is limited to the surface soil of the irrigation reservoir.« less

  7. Estimation of Soil Radon Concentration in Al-Qateef's Date Palm Farms, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Baig, M. R.; Al-Sameen, M.

    2011-10-01

    This study involves the measurement of radon concentrations in agricultural soil from two date Palm farms in Al-Qateef province using CR-39 detector. In each farm the palm trees are arranged in rows separated by the irrigation reservoirs. The first farm is about 10000 m2 and has 350 palm trees and the second farm is about 7000 m2 and has 320 palm trees. The average distance between trees is about 5.5 m. The rows are separated by an irrigation reservoir where fertilizers are added. Sixty soil samples were collected from each farm and classified in paperboard boxes. These samples were taken from different depths and positions between the trees and from the irrigation reservoir. A newly designed tag type dosimeter is used in which the alpha tracks are registered on both sides of the CR-39 detector. The tag dosimeter was calibrated against a cup type dosimeter which was calibrated at the National Radiological Protection Board (NRPB) at the U.K. The detectors were left to count for five months and then chemically treated in the standard way. Finally an optical microscope is used to count alpha tracks and the data are treated statistically. The study is set to test for significant differences in radon concentrations at different positions and depths in the barren and fertilized soils in the two farms. Measured radon concentrations ranged between 42 and 344Bq/m3. No significant difference between the mean concentration values in soil samples taken between the trees and that taken at the depth of 50 cm from the irrigation reservoir. Significant difference was however found between radon concentrations in samples collected directly from the surface of the irrigation reservoir where fertilizers are introduced and those taken from the other two positions. The used fertilizers are found to have higher contents of uranium which is limited to the surface soil of the irrigation reservoir.

  8. Radon, radionuclides and the Cretaceous Folkestone Sands - gamma spectroscopy and geochemical analysis of silver sands and associated deposits in the SE of England.

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Al-Rafai, Yousef; Flowers, Alan

    2017-04-01

    Radon concentrations in a historic sand mine in Surrey, UK (Reigate Caves), have been measured by both real-time and time-averaged methods over a number of years. These mines are not identified as being in a 'Radon Affected Area' as defined by Public Health England, although concentrations show a summer level of 640 Bqm3 +-44 Bqm3. Average radon concentrations (September 2013 to January 2014) in Reigate caves were above the UK 200 Bqm3 domestic Action Level, above the UK domestic Target Level (of 100 Bqm3) but below the current workplace Action Level of 400 Bqm3. By way of a comparison radon has also been measured in nearby Dorking (South Street Caves). These enigmatic caves were not mined for sand for glass manufacture as Reigate Caves were and there is speculation on why the caves were created. Both are visited by tourists on a semi-regular basis. Dorking caves have a different morphology with radon concentrations in Autumn 2016 of up to 1940 +/- 230 Bqm3. The caves in Reigate are situated along Tunnel Road. These mines were also used as air raid shelters and wine stores. They consist of an East and West system and an older cave (Barons cave) which may have a medieval origin. As the Western Caves are now a shooting range our work has been carried out in the Eastern section at Reigate. Where Dorking is concerned the shops and houses in the town have extensive interconnected cellars and galleries cut into these sands. The caves probably date from the 17th century but were used quite extensively for wine storage in the 19th century due to their constant 140C air temperatures. Real-time measurements were taken with a Durridge Rad7 with time-averaged CR39 SSNTDs being placed throughout the cave systems to assess radon distribution and compare results with the real-time detector. Both caves contain marine shallow-water deposited locking (having tensile and compressive strength) silica sands of the Cretaceous Lower Greensand Group, Folkestone Formation, with little cement holding the grains together (typical porosity being around 30%). Microscope analysis shows that this material contains mostly angular to sub-angular quartz grains, some with undulose extinction under cross-polarised light. This suggests a metamorphic origin for the quartz. There are also some relatively rare rock fragments present. These silver sands are a mixture of fine to medium grain sizes (0.10 to 0.5 mm) with small proportions of finer and coarser grades and are in the order of 30 - 36 metres thick at Reigate. These beds show lateral and vertical variability in their grain size, mineralogy and geochemical make up such as iron oxide content and are heavily faulted in places. In view of these radon results, in order to determine whether these levels are supported or unsupported, samples were collected and subjected to laboratory-based Gamma spectrometry. This indicated the presence of U235 (186keV) and Pb212 (238keV) in sands from these caves. We will shortly be in a position to also report in-situ gamma spectrometry and ICPMS analysis of samples taken from these beds.

  9. Using a multi-method approach based on soil radon deficit, resistivity, and induced polarization measurements to monitor non-aqueous phase liquid contamination in two study areas in Italy and India.

    PubMed

    Castelluccio, Mauro; Agrahari, Sudha; De Simone, Gabriele; Pompilj, Francesca; Lucchetti, Carlo; Sengupta, Debashish; Galli, Gianfranco; Friello, Pierluigi; Curatolo, Pierpaolo; Giorgi, Riccardo; Tuccimei, Paola

    2018-05-01

    Geochemical and geophysical surveys employing radon deficit, resistivity, and induced polarization (IP) measurements were undertaken on soil contaminated with non-aqueous phase liquids (NAPLs) in two different sites in India and in Italy. Radon deficit, validated through the comparison with average soil radon in reference unpolluted areas, shows the extension of contamination in the upper part of the unsaturated aquifers. In site 1 (Italy), the spill is not recent. A residual film of kerosene covers soil grains, inhibiting their chargeability and reducing electrical resistivity difference with background unpolluted areas. No correlation between the two parameters is observed. Soil volatile organic compounds (VOCs) concentration is not linked with radon deficit, supporting the old age of the spillage. NAPL pollution in sites 2a and 2b (India) is more recent and probably still active, as demonstrated by higher values of electrical resistivity. A good correlation with IP values suggests that NAPL is still distributed as droplets or as a continuous phase in the pores, strengthening the scenario of a fresh spill or leakage. Residual fraction of gasoline in the pore space of sites 2a and 2b is respectively 1.5 and 11.8 kg per cubic meter of terrain. This estimation is referred to the shallower portion of the unsaturated aquifer. Electrical resistivity is still very high indicating that the gasoline has not been strongly degraded yet. Temperature and soil water content influence differently radon deficit in the three areas, reducing soil radon concentration and partly masking the deficit in sites 2a and 2b.

  10. Geogenic and anthropogenic impacts on indoor radon in the Techa River region.

    PubMed

    Yarmoshenko, I; Malinovsky, G; Vasilyev, A; Onischenko, A; Seleznev, A

    2016-11-15

    Indoor radon concentration was studied in the 14 settlements located near the Techa River, which was contaminated by radioactive wastes in 1950-s. Results of the radon survey were used for analysis of the relationship between the indoor radon and main geologic factors (Pre-Jurassic formations, Quaternary sediments and faults), local geogenic radon potential and anthropogenic factors. Main influencing factors explain 58% of the standard deviation of indoor radon concentration. Association of the air exchange influence over radon concentration with underlying geological media was related to different contributions of geogenic advective and diffusive radon entries. The properties of geological formation to transfer radon gas in interaction with the house can be considered within the radon geogenic potential concept. The study of the radon exposure of the Techa River population can be used to estimate the contribution of natural radon to the overall radiation exposure of the local population during the period of radioactive waste discharges. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Soil features and indoor radon concentration prediction: radon in soil gas, pedology, permeability and 226Ra content.

    PubMed

    Lara, E; Rocha, Z; Santos, T O; Rios, F J; Oliveira, A H

    2015-11-01

    This work aims at relating some physicochemical features of soils and their use as a tool for prediction of indoor radon concentrations of the Metropolitan Region of Belo Horizonte (RMBH), Minas Gerais, Brazil. The measurements of soil gas radon concentrations were performed by using an AlphaGUARD monitor. The (226)Ra content analysis was performed by gamma spectrometry (high pure germanium) and permeabilities were performed by using the RADON-JOK permeameter. The GEORP indicator and soil radon index (RI) were also calculated. Approximately 53 % of the Perferric Red Latosols measurement site could be classified as 'high risk' (Swedish criteria). The Litholic Neosols presented the lowest radon concentration mean in soil gas. The Perferric Red Latosols presented significantly high radon concentration mean in soil gas (60.6 ± 8.7 kBq m(-3)), high indoor radon concentration, high RI, (226)Ra content and GEORP. The preliminary results may indicate an influence of iron formations present very close to the Perferric Red Latosols in the retention of uranium minerals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Correlation of radon and thoron concentrations with natural radioactivity of soil in Zonguldak, Turkey

    NASA Astrophysics Data System (ADS)

    Koray, Abdullah; Akkaya, Gizem; Kahraman, Ayşegül

    2017-02-01

    Radon and thoron gases are produced by the decay of the radioactive elements those are radium and thorium in the soil. In this study, the correlations between soil radon and thoron concentration with their parent nuclide (226Ra and 232Th) concentrations in collected soil samples from the same locations were evaluated. The result of the measurement shows that the distribution of radon and thoron in soil showed the same tendency as 226Ra and 232Th distribution. It was found a weak correlation between the radon and the 226Ra concentration (R =0.57), and between the thoron and the 232Th concentration (R=0.64). No strong correlation was observed between soil-gas radon and thoron concentration (R = 0.29).

  13. Indoor radon concentration in Korea residential environments.

    PubMed

    Park, Tae Hyun; Kang, Dae Ryong; Park, Si Hyun; Yoon, Dan Ki; Lee, Cheol Min

    2018-05-01

    The purpose of this study is to provide basic data for the evaluation and management of health effects with respect to exposure to radon within residential environments in South Korea. It is part of a case-control study to develop a management plan based on indoor radon exposure levels and assess their impact on health. To investigate the long-term cumulative concentration levels of radon, 599 patients who have respiratory diseases were recruited in South Korea, and alpha track detectors were installed in their residences for a period of 3 months from mid-2015 to late 2016. A survey was then conducted to determine the factors affecting the radon concentration. The radon concentration levels were analyzed in conjunction with the survey results. The results show that the arithmetic mean of the radon concentrations in domestic residences was in the range of 70.8 ± 65.2 Bq/m 3 . An analysis of covariance (ANCOVA) was performed to identify the environmental factors affecting the radon concentration and contributing to variations in the residential radon concentration based on the height of the residence. The results show that the contribution of the local environmental factor to the variation in radon concentration (p < 0.05) was greater than that of other environmental factors. Although no statistically significant difference was found with regard to the construction year of the building before the control (p > 0.05), the same was found with regard to the construction year after the control (p < 0.05).

  14. An electrical circuit model for simulation of indoor radon concentration.

    PubMed

    Musavi Nasab, S M; Negarestani, A

    2013-01-01

    In this study, a new model based on electric circuit theory was introduced to simulate the behaviour of indoor radon concentration. In this model, a voltage source simulates radon generation in walls, conductivity simulates migration through walls and voltage across a capacitor simulates radon concentration in a room. This simulation considers migration of radon through walls by diffusion mechanism in one-dimensional geometry. Data reported in a typical Greek house were employed to examine the application of this technique of simulation to the behaviour of radon.

  15. Radon as a natural tracer for underwater cave exploration.

    PubMed

    Csondor, Katalin; Erőss, Anita; Horváth, Ákos; Szieberth, Dénes

    2017-07-01

    The Molnár János cave is one of the largest hypogenic caves of the Buda Thermal Karst (Budapest, Hungary) and mainly characterized by water-filled passages. The major outflow point of the waters of the cave system is the Boltív spring, which feeds the artificial Malom Lake. Previous radon measurements in the cave system and in the spring established the highest radon concentration (71 BqL -1 ) in the springwater. According to previous studies, the origin of radon was identified as iron-hydroxide containing biofilms, which form where there is mixing of cold and thermal waters, and these biofilms efficiently adsorb radium from the thermal water component. Since mixing of waters is responsible for the formation of the cave as well, these iron-hydroxide containing biofilms and the consequent high radon concentrations mark the active cave forming zones. Based on previous radon measurements, it is supposed that the active mixing and cave forming zone has to be close to the spring, since the highest radon concentration was measured there. Therefore radon mapping was carried out with the help of divers in order to get a spatial distribution of radon in the cave passages closest to the spring. Based on our measurements, the highest radon activity concentration (84 BqL -1 ) was found in the springwater. Based on the distribution of radon activity concentrations, direct connection was established between the spring and the István-room of the cave, which was verified by an artificial tracer. However, the distribution of radon in the cave passages shows lower concentrations (18-46 BqL -1 ) compared to the spring, therefore an additional deep inflow from hitherto unknown cave passages is assumed, from which waters with high radon content arrive to the spring. These passages are assumed to be in the active cave formation zone. This study proved that radon activity concentration distribution is a useful tool in underwater cave exploration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Iowa radon leukaemia study: a hierarchical population risk model for spatially correlated exposure measured with error.

    PubMed

    Smith, Brian J; Zhang, Lixun; Field, R William

    2007-11-10

    This paper presents a Bayesian model that allows for the joint prediction of county-average radon levels and estimation of the associated leukaemia risk. The methods are motivated by radon data from an epidemiologic study of residential radon in Iowa that include 2726 outdoor and indoor measurements. Prediction of county-average radon is based on a geostatistical model for the radon data which assumes an underlying continuous spatial process. In the radon model, we account for uncertainties due to incomplete spatial coverage, spatial variability, characteristic differences between homes, and detector measurement error. The predicted radon averages are, in turn, included as a covariate in Poisson models for incident cases of acute lymphocytic (ALL), acute myelogenous (AML), chronic lymphocytic (CLL), and chronic myelogenous (CML) leukaemias reported to the Iowa cancer registry from 1973 to 2002. Since radon and leukaemia risk are modelled simultaneously in our approach, the resulting risk estimates accurately reflect uncertainties in the predicted radon exposure covariate. Posterior mean (95 per cent Bayesian credible interval) estimates of the relative risk associated with a 1 pCi/L increase in radon for ALL, AML, CLL, and CML are 0.91 (0.78-1.03), 1.01 (0.92-1.12), 1.06 (0.96-1.16), and 1.12 (0.98-1.27), respectively. Copyright 2007 John Wiley & Sons, Ltd.

  17. Concentration en radon dans une maison du Calvados

    NASA Astrophysics Data System (ADS)

    Leleyter, Lydia; Riffault, Benoit; Mazenc, Bernard

    2010-03-01

    Recent studies indicate a link between the risk of lung cancer and residential radon exposure. However, in France, awareness of this problem was made relatively late. Accordingly this study examines the radon concentration in a private home in Calvados. Findings show that the presence of a fireplace in a house can accelerate radon convective transfer, and that simple adjustments to interior and exterior accommodation can significantly reduce radon concentrations in the home.

  18. Radon Levels in Nurseries and Primary Schools in Bragança District-Preliminary Assessment.

    PubMed

    Sousa, S I V; Branco, P T B S; Nunes, R A O; Alvim-Ferraz, M C M; Martins, F G

    2015-01-01

    Lung cancer has been associated with radon concentration even at low levels such as those found in dwellings. This study aimed to (i) determine radon diurnal variations in three nurseries and one primary school in the Bragança district (north of Portugal) and (ii) compare radon concentrations with legislated standards and assess the legislated procedures. Radon was measured in three nurseries and a primary school in a rural area with nongranite soil. Measurements were performed continuously to examine differences between occupation and nonoccupation periods. Indoor temperature and relative humidity were also measured continuously. A great variability was found in radon concentrations between the microenvironments examined. Radon concentrations surpassed by severalfold the recommended guidelines and thresholds, and excessive levels of health concern were sporadically found (361.5-753.5 Bq m(-3)). Thus, it is of importance to perform a national campaign on radon measurements and to reduce exposure.

  19. First Map of Residential Indoor Radon Measurements in Azerbaijan.

    PubMed

    Hoffmann, M; Aliyev, C S; Feyzullayev, A A; Baghirli, R J; Veliyeva, F F; Pampuri, L; Valsangiacomo, C; Tollefsen, T; Cinelli, G

    2017-06-15

    This article describes results of the first measurements of indoor radon concentrations in Azerbaijan, including description of the methodology and the mathematical and statistical processing of the results obtained. Measured radon concentrations varied considerably: from almost radon-free houses to around 1100 Bq m-3. However, only ~7% of the total number of measurements exceeded the maximum permissible concentrations. Based on these data, maps of the distribution of volumetric activity and elevated indoor radon concentrations in Azerbaijan were created. These maps reflect a mosaic character of distribution of radon and enhanced values that are confined to seismically active areas at the intersection of an active West Caspian fault with sub-latitudinal faults along the Great and Lesser Caucasus and the Talysh mountains. Spatial correlation of radon and temperature behavior is also described. The data gathered on residential indoor radon have been integrated into the European Indoor Radon Map. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Measurement and modeling of indoor radon concentrations in residential buildings.

    PubMed

    Park, Ji Hyun; Whang, Sungim; Lee, Hyun Young; Lee, Cheol-Min; Kang, Dae Ryong

    2018-01-01

    Radon, the primary constituent of natural radiation, is the second leading environmental cause of lung cancer after smoking. To confirm a relationship between indoor radon exposure and lung cancer, estimating cumulative levels of exposure to indoor radon for an individual or population is necessary. This study sought to develop a model for estimate indoor radon concentrations in Korea. Especially, our model and method may have wider application to other residences, not to specific site, and can be used in situations where actual measurements for input variables are lacking. In order to develop a model, indoor radon concentrations were measured at 196 ground floor residences using passive alpha-track detectors between January and April 2016. The arithmetic mean (AM) and geometric mean (GM) means of indoor radon concentrations were 117.86±72.03 and 95.13±2.02 Bq/m 3 , respectively. Questionnaires were administered to assess the characteristics of each residence, the environment around the measuring equipment, and lifestyles of the residents. Also, national data on indoor radon concentrations at 7643 detached houses for 2011-2014 were reviewed to determine radon concentrations in the soil, and meteorological data on temperature and wind speed were utilized to approximate ventilation rates. The estimated ventilation rates and radon exhalation rates from the soil varied from 0.18 to 0.98/hr (AM, 0.59±0.17/hr) and 326.33 to 1392.77 Bq/m 2 /hr (AM, 777.45±257.39; GM, 735.67±1.40 Bq/m 2 /hr), respectively. With these results, the developed model was applied to estimate indoor radon concentrations for 157 residences (80% of all 196 residences), which were randomly sampled. The results were in better agreement for Gyeonggi and Seoul than for other regions of Korea. Overall, the actual and estimated radon concentrations were in better agreement, except for a few low-concentration residences.

  1. Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant

    NASA Astrophysics Data System (ADS)

    Martinez, J. E.; Juste, B.; Ortiz, J.; Martorell, S.; Verdu, G.

    2017-11-01

    We analyze in this paper a Waste Water Pre-Treatment Plant (WWTP) located at the Mediterranean coast with air radon concentration above Spanish action level (600 Bq per cubic meter). This paper presents a method for radon equilibrium determination by gamma spectrometry measuring of the radon progeny concentrations in the air, in order to estimate WWTP workers effective dose more exactly. The method is based on simultaneous sampling of air through a filter paper and alpha spectrometry measurement of radon activity concentration in the air. According to the measured radon activity concentration in the air of 368±45 Bq/m3 the equilibrium factor between radon and progenies is estimated to be F=0.27, which is in good agreement with expected values.

  2. Hazelwood Interim Storage Site: Annual site environment report, Calendar year 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-11-01

    The Hazelwood Interim Storage Site (HISS) is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the HISS is in compliance with DOE Derived Concentration Guides (DCGs) and radiation protection standards. During 1985, annual average radon concentrations ranged from 10 to 23% of the DCG. The highest external dose rate at the HISS was 287 mrem/yr. The measured background dose rate for the HISS area is 99 mrem/yr. The highest average annual concentration of uranium in surface water monitored in the vicinity of the HISS was 0.7% of the DOE DCG; for /sup 226/Ra itmore » was 0.3% of the applicable DCG, and for /sup 230/Th it was 1.7%. In groundwater, the highest annual average concentration of uranium was 12% of the DCG; for /sup 226/Ra it was 3.6% of the applicable DCG, and for /sup 230/Th it was 1.8%. While there are no concentration guides for stream sediments, the highest concentration of total uranium was 19 pCi/g, the highest concentration of /sup 226/Ra was 4 pCi/g, and the highest concentration of /sup 230/Th was 300 pCi/g. Radon concentrations, external gamma dose rates, and radionuclide concentrations in groundwater at the site were lower than those measured in 1984; radionuclide concentrations in surface water were roughly equivalent to 1984 levels. For sediments, a meaningful comparison with 1984 concentrations cannot be made since samples were obtained at only two locations and were only analyzed for /sup 230/Th. The calculated radiation dose to the maximally exposed individual at the HISS, considering several exposure pathways, was 5.4 mrem, which is 5% of the radiation protection standard.« less

  3. Inhalation dose assessment of indoor radon progeny using biokinetic and dosimetric modeling and its application to Jordanian population.

    PubMed

    Al-Jundi, J; Li, W B; Abusini, M; Tschiersch, J; Hoeschen, C; Oeh, U

    2011-06-01

    High indoor radon concentrations in Jordan result in internal exposures of the residents due to the inhalation of radon and its short-lived progeny. It is therefore important to quantify the annual effective dose and further the radiation risk to the radon exposure. This study describes the methodology and the biokinetic and dosimetric models used for calculation of the inhalation doses exposed to radon progeny. The regional depositions of aerosol particles in the human respiratory tract were firstly calculated. For the attached progeny, the activity median aerodynamic diameters of 50 nm, 230 nm and 2500 nm were chosen to represent the nucleation, accumulation and coarse modes of the aerosol particles, respectively. For the unattached progeny, the activity median thermodynamic diameter of 1 nm was chosen to represent the free progeny nuclide in the room air. The biokinetic models developed by the International Commission on Radiological Protection (ICRP) were used to calculate the nuclear transformations of radon progeny in the human body, and then the dosimetric model was applied to estimate the organ equivalent doses and the effective doses with the specific effective energies derived from the mathematical anthropomorphic phantoms. The dose conversion coefficient estimated in this study was 15 mSv WLM(-1) which was in the range of the values of 6-20 mSv WLM(-1) reported by other investigators. Implementing the average indoor radon concentration in Jordan, the annual effective doses were calculated to be 4.1 mSv y(-1) and 0.08 mSv y(-1) due to the inhalation of radon progeny and radon gas, respectively. The total annual effective dose estimated for Jordanian population was 4.2 mSv y(-1). This high annual effective dose calculated by the dosimetric approach using ICRP biokinetic and dosimetric models resulted in an increase of a factor of two in comparison to the value by epidemiological study. This phenomenon was presented by the ICRP in its new published statement on radon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Temporal variations of radon in soil related to earthquakes.

    PubMed

    Planinić, J; Radolić, V; Lazanin, Z

    2001-08-01

    A radon detector with LR-115 nuclear track film was constructed for radon concentration measurements in soil. Temporal radon variations, as well as the barometric pressure, precipitation and temperature were measured for two years. Negative correlation between radon concentration in soil and barometric pressure was found. For some of the recorded earthquakes that occurred during the observation period, soil radon anomalies may be noticed one month before the quakes.

  5. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989-2013.

    PubMed

    Casey, Joan A; Ogburn, Elizabeth L; Rasmussen, Sara G; Irving, Jennifer K; Pollak, Jonathan; Locke, Paul A; Schwartz, Brian S

    2015-11-01

    Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). We evaluated predictors of indoor radon concentrations. Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167-679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52-178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = -0.323, 95% CI: -0.333, -0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p < 0.001), with higher levels in counties having ≥ 100 drilled wells versus counties with none, and with highest levels in the Reading Prong. Geologic unit, well water, community, weather, and unconventional natural gas development were associated with indoor radon concentrations. Future studies should include direct environmental measurement of radon, as well as building features unavailable for this analysis. Casey JA, Ogburn EL, Rasmussen SG, Irving JK, Pollak J, Locke PA, Schwartz BS. 2015. Predictors of indoor radon concentrations in Pennsylvania, 1989-2013. Environ Health Perspect 123:1130-1137; http://dx.doi.org/10.1289/ehp.1409014.

  6. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989–2013

    PubMed Central

    Casey, Joan A.; Ogburn, Elizabeth L.; Rasmussen, Sara G.; Irving, Jennifer K.; Pollak, Jonathan; Locke, Paul A.

    2015-01-01

    Background Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). Objectives We evaluated predictors of indoor radon concentrations. Methods Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Results Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167–679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52–178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = –0.323, 95% CI: –0.333, –0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p < 0.001), with higher levels in counties having ≥ 100 drilled wells versus counties with none, and with highest levels in the Reading Prong. Conclusions Geologic unit, well water, community, weather, and unconventional natural gas development were associated with indoor radon concentrations. Future studies should include direct environmental measurement of radon, as well as building features unavailable for this analysis. Citation Casey JA, Ogburn EL, Rasmussen SG, Irving JK, Pollak J, Locke PA, Schwartz BS. 2015. Predictors of indoor radon concentrations in Pennsylvania, 1989–2013. Environ Health Perspect 123:1130–1137; http://dx.doi.org/10.1289/ehp.1409014 PMID:25856050

  7. Radon in the fluvial aquifers of the White River Basin, Indiana, 1995

    USGS Publications Warehouse

    Fenelon, Joseph M.; Moore, Rhett C.

    1996-01-01

    Water samples collected in 1995 from 57 monitoring wells (48 shallow and 9 deep) in the fluvial aquifers of the White River Basin were analyzed for radon. Radon concentrations in the shallow wells ranged from 140 to 1,600 pCi/L (picocuries per liter); the median concentration was 420 pCi/L. In comparison, analyses of the samples from the nine deep wells indicate that radon concentrations decrease with depth within the fluvial aquifers; the median concentration was 210 pCi/L. No areal trends in radon concentrations are evident in the water of the shallow fluvial aquifers of the basin

  8. Long-term measurements of radon, thoron and their airborne progeny in 25 schools in Republic of Srpska.

    PubMed

    Ćurguz, Z; Stojanovska, Z; Žunić, Z S; Kolarž, P; Ischikawa, T; Omori, Y; Mishra, R; Sapra, B K; Vaupotič, J; Ujić, P; Bossew, P

    2015-10-01

    This article reports results of the first investigations on indoor radon, thoron and their decay products concentration in 25 primary schools of Banja Luka, capital city of Republic Srpska. The measurements have been carried out in the period from May 2011 to April 2012 using 3 types of commercially available nuclear track detectors, named: long-term radon monitor (GAMMA 1)- for radon concentration measurements (C(Rn)); radon-thoron discriminative monitor (RADUET) for thoron concentration measurements (C(Tn)); while equilibrium equivalent radon concentration (EERC) and equilibrium equivalent thoron concentrations (EETC) measured by Direct Radon Progeny Sensors/Direct Thoron Progeny Sensors (DRPS/DTPS) were exposed in the period November 2011 to April 2012. In each school the detectors were deployed at 10 cm distance from the wall. The obtained geometric mean concentrations were C(Rn) = 99 Bq m(-3) and C(Tn) = 51 Bq m(-3) for radon and thoron gases respectively. Those for equilibrium equivalent radon concentration (EERC) and equilibrium equivalent thoron concentrations (EETC) were 11.2 Bq m(-3) and 0.4 Bq m(-3), respectively. The correlation analyses showed weak relation only between C(Rn) and C(Tn) as well as between C(Tn) and EETC. The influence of the school geographical locations and factors linked to buildings characteristic in relation to measured concentrations were tested. The geographical location and floor level significantly influence C(Rn) while C(Tn) depend only from building materials (ANOVA, p ≤ 0.05). The obtained geometric mean values of the equilibrium factors were 0.123 for radon and 0.008 for thoron. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nanomaterial containing wall paints can increase radon concentration in houses located in radon prone areas.

    PubMed

    Haghani, M; Mortazavi, S M J; Faghihi, R; Mehdizadeh, S; Moradgholi, J; Darvish, L; Fathi-Pour, E; Ansari, L; Ghanbar-Pour, M R

    2013-09-01

    Nowadays, extensive technological advancements have made it possible to use nanopaints which show exciting properties. In IR Iran excessive radon levels (up to 3700 Bq m-3) have been reported in homes located in radon prone areas. Over the past decades, concerns have been raised about the risk posed by residential radon exposure. This study aims at investigating the effect of using nanomaterial containing wall paints on radon concentration in homes. Two wooden model houses were used in this study. Soil samples from Ramsar high background radiation areas were used for simulating the situation of a typical house in radon-prone areas. Conventional water-soluble wall paint was used for painting the walls of the 1st house model; while the 2nd house model was painted with the same wall paint with montmorillonitenanoclay. Three days after sealing the house models, radon level was measured by using a portable radon survey meter. The mean radon level inside the 1st house model (conventional paint) was 515.3 ± 17.8 Bq/m(3) while the mean radon concentration in the 2nd house model (nano-painted house model) was 570.8 ± 18.5 Bq/m(3). The difference between these means was statistically significant (P<0.001). To the best of our knowledge, this study is the first investigation on the effect of nano-material containing wall paints on indoor radon concentrations.  It can be concluded that nano-material-containing wall paints should not be used in houses with wooden walls located in radon prone areas. Although the mechanism of this effect is not clearly known, decreased porosity in nano-paints might be a key factor in increasing the radon concentration in homes.

  10. Nanomaterial Containing Wall Paints Can Increase Radon Concentration in Houses Located in Radon Prone Areas

    PubMed Central

    Haghani, M.; Mortazavi, S. M. J.; Faghihi, R.; Mehdizadeh, S.; Moradgholi, J.; Darvish, L.; Fathi-Pour, E.; Ansari, L.; Ghanbar-pour, M. R.

    2013-01-01

    Background: Nowadays, extensive technological advancements have made it possible to use nanopaints which show exciting properties. In IR Iran excessive radon levels (up to 3700 Bq m–3) have been reported in homes located in radon prone areas. Over the past decades, concerns have been raised about the risk posed by residential radon exposure. Objective: This study aims at investigating the effect of using nanomaterial containing wall paints on radon concentration in homes. Methods: Two wooden model houses were used in this study. Soil samples from Ramsar high background radiation areas were used for simulating the situation of a typical house in radon-prone areas. Conventional water-soluble wall paint was used for painting the walls of the 1st house model; while the 2nd house model was painted with the same wall paint with montmorillonitenanoclay. Results: Three days after sealing the house models, radon level was measured by using a portable radon survey meter. The mean radon level inside the 1st house model (conventional paint) was 515.3 ± 17.8 Bq/m3 while the mean radon concentration in the 2nd house model (nano-painted house model) was 570.8 ± 18.5 Bq/m3. The difference between these means was statistically significant (P<0.001). Conclusion: To the best of our knowledge, this study is the first investigation on the effect of nano-material containing wall paints on indoor radon concentrations.  It can be concluded that nano-material-containing wall paints should not be used in houses with wooden walls located in radon prone areas. Although the mechanism of this effect is not clearly known, decreased porosity in nano-paints might be a key factor in increasing the radon concentration in homes. PMID:25505754

  11. Measurement of radon concentration in water using the portable radon survey meter.

    PubMed

    Yokoyama, S; Mori, N; Shimo, M; Fukushi, M; Ohnuma, S

    2011-07-01

    A measurement method for measuring radon in water using the portable radon survey meter (RnSM) was developed. The container with propeller was used to stir the water samples and release radon from the water into the air in a sample box of the RnSM. In this method, the measurement of error would be <20 %, when the radon concentration in the mineral water was >20 Bq l(-1).

  12. RADON GENERATION AND TRANSPORT THROUGH CONCRETE FOUNDATIONS

    EPA Science Inventory

    The report gives results of an examination of radon generation and transport through Florida residential concretes for their contribution to indoor radon concentrations. Radium concentrations in the 11 concretes tested were all <2.5 pCi/g and radon emanation coefficients were all...

  13. Shallow circulation groundwater - the main type of water containing hazardous radon concentration

    NASA Astrophysics Data System (ADS)

    Przylibski, Tadeusz

    2010-05-01

    Radon dissolves in water very good. As an effect this gas is present in surface and groundwater, which are used in households. The range of Rn-222 concentration in water is very wide, it changes from below 1 Bq/dm3 up to several hundreds of thousands Bq/dm3. Inhabitants may be exposed to an important additional dose from ionizing radiation if they use in household radon water (concentration of Rn-222 between 100 and 999.9(9) Bq/dm3), high-radon water (1000 - 9999.9(9) Bq/dm3) or extreme-radon water (10 000 Bq/dm3 and more). Value of the dose depends on the amount of radon released from water during cooking, washing, taking bath or shower, and it not depends on the amount of radon dissolved in drinked water or water used for making a meal. Radon released from water to the air in a house may be inhaled by inhabitants and increase the risk of lung cancer. Knowing the risk, international organizations, i.e. WHO, publish the recommendations concerning admissible levels of radon concentration in water in the intake (before supplying households). In a few countries these recommendations became a law (i.e. USA, England, Finland, Sweden, Russia, Czech Rep., Slowak Rep.). Law regulations force to measuring concentrations of radon dissolved in water in all the intakes of water supplying hauseholds. Knowing radon behaviour in the environment it is possible to select certain types of water, which may contain the highest radon concentration. As a result one may select these intakes of water, which should be particularly controled with regard to possible hazardous radon cencentration. Radon concentration in surface water depends on partial pressure of this gas over the water table - in the atmosphere. Partial pressure of radon in the atmosphere is very low, so the radon concentration in surface water is usually low and as a rule it is not higher than several, rarely several tens of Bq/dm3. In the spring, where the groundwater flows out on the surface, and groundwater become a surface water forming a stream, radon very quickly escapes to the atmosphere. This is the main reason, that even in regions, where the bottoms of streams and rivers are formed by the rocks containing high amounts of radium (and uranium), surface waters very quickly lose radon escaping to the atmosphere. Concluding, surface waters cannot be the source of hazardous radon concentration. One may expect completely different situation in the case of groundwater. When the groundwater is exploited without any contact with the atmosphere, it contains higher concentration of Rn-222, than surface water in the same neighbourhood with regard to geological structure. Concentration of radon dissolved in groundwater depends first of all on the emanation coefficient of the reservoir rock. This coefficient may be calculated taking into account a few parameters, like cancentration of parent Ra-226 isotope in the reservoir rocks, effective porosity of the rock and the density of the grain framework of the rock. The way of radium atoms disposition in crystals or mineral grains of rock with reference to the pores and cracks filled with groundwater is also an important parameter. Calculations made by the author for more than 100 intakes of groundwater proove, that the highest values of emanation coefficient are characteristic for the rocks in the weathering zone - on the depths between surface level and 30 - 50 m below surface level. Groundwater exploited from the rocks of this zone contains the highest concentration of Rn-222. On the greater depths even high Ra-226 content in the reservoir rock does not affect to the Rn-222 concentration in groundwater flowing through this rock. Summing up, potentially the great radon concentration may contain groundwater of shallow circulation (up to ~50 m b.s.l.), flowing through weathered resrvoir rock with high content of parent Ra-226 isotope.

  14. Indoor Radon Exposure in Italian Schools

    PubMed Central

    Castiglia, Paolo; Piana, Andrea; Salis, Giovanni

    2018-01-01

    Background: The aim of the study was to assess radon concentration in schoolrooms in a city located in the midwest of Italy. Methods: A two-phase environmental study was carried out in 19 school buildings of 16 primary, secondary, and tertiary schools. Results: Median (interquartile range—IQR) indoor radon concentration in schoolrooms was 91.6 (45.0–140.3) Bq/m3. The highest (median 952.8 Bq/m3) radon concentration was found in one (3.6%) classroom, located in a building of a primary school whose median concentration was 185 Bq/m3. Radon concentration was significantly correlated with the number of students and teachers, foundation wall construction material, and with the absence of underground floors. A geopedological survey was performed close to the building with highest radon level, showing the presence of granite and tonalithic granodiorite in the soil. Conclusions: Radon levels should be routinely assessed where individuals live or work. Schools are susceptible targets, because of childhood stay and the long daily stay of occupants. Low-cost interventions, such as implementation of natural air ventilation and school maintenance, can reduce radon levels, limiting individual exposure. PMID:29652857

  15. Indoor radon and thoron concentrations in some towns of central and South Serbia.

    PubMed

    Vuckovic, Biljana; Gulan, Ljiljana; Milenkovic, Biljana; Stajic, Jelena M; Milic, Gordana

    2016-12-01

    This study presents the results of indoor radon and thoron activity concentrations of some municipalities in central and south part of Serbia: Krusevac, Brus, Blace and Kursumlija. Measurements were carried out in 60 dwellings during the winter season. Passive discriminative radon-thoron detectors known as UFO detectors were used. The mean values of indoor radon and thoron concentrations were 82 Bq m -3 and 42 Bq m -3 , respectively. Population-weighted mean values were 76 Bq m -3 and 40 Bq m -3 , respectively. 26.7% of dwellings had radon concentration higher than 100 Bq m -3 (one location had even more than 300 Bq m -3 ). There are no statistically significant correlations of indoor radon and thoron concentrations neither with the period of house construction, nor with the existence of a basement. The results of this study represent the first step of investigating radon and thoron levels in these parts of Serbia and therefore could be the basis for creating a radon map. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Anomalous changes in atmospheric radon concentration before and after the 2011 northern Wakayama Earthquake (Mj 5.5).

    PubMed

    Goto, Mikako; Yasuoka, Yumi; Nagahama, Hiroyuki; Muto, Jun; Omori, Yasutaka; Ihara, Hayato; Mukai, Takahiro

    2017-04-28

    A significant increase in atmospheric radon concentration was observed in the area around the epicentre before and after the occurrence of the shallow inland earthquake in the northern Wakayama Prefecture on 5 July 2011 (Mj 5.5, depth 7 km) in Japan. The seismic activity in the sampling site was evaluated to identify that this earthquake was the largest near the sampling site during the observation period. To determine whether this was an anomalous change, the atmospheric daily minimum radon concentration measured for a 13-year period was analysed. When the residual radon concentration values without the seasonal radon variation and the linear trend was > 3 standard deviations of the residual radon variation corresponding to the normal period, the values were deemed as anomalous. As a result, an anomalous increase in radon concentration was determined before and after the earthquake. In conclusion, anomalous change related to earthquakes with at least Mj 5.5 can be detected by monitoring atmospheric radon near the epicentre. © The Author 2016. Published by Oxford University Press.

  17. Radon 222 tracing of soil and forest canopy trace gas exchange in an open canopy boreal forest

    NASA Technical Reports Server (NTRS)

    Ussler, William, III; Chanton, Jeffrey P.; Kelley, Cheryl A.; Martens, Christopher S.

    1994-01-01

    A set of continuous, high-resolution atmospheric radon (Rn-222) concentration time series and radon soil flux measurements were acquired during the summer of 1990 at a micrometeorological tower site 13 km northwest of Schefferville, Quebec, Canada. The tower was located in a dry upland, open-canopy lichen-spruce woodland. For the period July 23 to August 1, 1990, the mean radon soil flux was 41.1 +/- 4.8 Bq m(exp -2)/h. Radon surface flux from the two end-member forest floor cover types (lichen mat and bare soil) were 38.8 +/- 5.1 and 61.8 +/- 15.6 Bq m(exp -2)/h, respectively. Average total forest canopy resistances computed using a simple 'flux box' model for radon exchange between the forest canopy and the overlying atmosphere range from 0.47 +/- 0.24 s cm(exp -1) to 2.65 +/- 1.61 cm(exp -1) for daytime hours (0900-1700 LT) and from 3.44 +/- 0.91 s cm(exp -1) to 10.55 +/- 7.16 s cm(exp -1) for nighttime hours (2000-0600) for the period July 23 to August 6, 1990. Continuous radon profiling of canopy atmospheres is a suitable approach for determining rates of biosphere/atmosphere trace gas exchange for remote field sites where daily equipment maintenance is not possible. where daily equipment maintenance is not possible.

  18. Study of radon dispersion in typical dwelling using CFD modeling combined with passive-active measurements

    NASA Astrophysics Data System (ADS)

    Rabi, R.; Oufni, L.

    2017-10-01

    Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. Indoor air conditions and ventilation systems strongly influence the indoor radon concentration. This study focuses on investigating both numerically and experimentally the influence of environmental conditions on the indoor radon concentration and spatial distribution. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on both radon content and distribution. The variations of radon concentration with the ventilation, temperature and relative humidity are discussed. The measurement results show the diurnal variations of the indoor radon concentration are found to exhibit a positive correlation with relative humidity and negatively correlate with the air temperature. The analytic solution is used to validate the numeric results. The comparison amongst analytical, numerical and measurement results shows close agreement.

  19. Comparative analysis of radon, thoron and thoron progeny concentration measurements.

    PubMed

    Janik, Miroslaw; Tokonami, Shinji; Kranrod, Chutima; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Hosoda, Masahiro; McLaughlin, James; Chang, Byung-Uck; Kim, Yong Jae

    2013-07-01

    This study examined correlations between radon, thoron and thoron progeny concentrations based on surveys conducted in several different countries. For this purpose, passive detectors developed or modified by the National Institute of Radiological Sciences (NIRS) were used. Radon and thoron concentrations were measured using passive discriminative radon-thoron detectors. Thoron progeny measurements were conducted using the NIRS-modified detector, originally developed by Zhuo and Iida. Weak correlations were found between radon and thoron as well as between thoron and thoron progeny. The statistical evaluation showed that attention should be paid to the thoron equilibrium factor for calculation of thoron progeny concentrations based on thoron measurements. In addition, this evaluation indicated that radon, thoron and thoron progeny were independent parameters, so it would be difficult to estimate the concentration of one from those of the others.

  20. Comparative analysis of radon, thoron and thoron progeny concentration measurements

    PubMed Central

    Janik, Miroslaw; Tokonami, Shinji; Kranrod, Chutima; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Hosoda, Masahiro; Mclaughlin, James; Chang, Byung-Uck; Kim, Yong Jae

    2013-01-01

    This study examined correlations between radon, thoron and thoron progeny concentrations based on surveys conducted in several different countries. For this purpose, passive detectors developed or modified by the National Institute of Radiological Sciences (NIRS) were used. Radon and thoron concentrations were measured using passive discriminative radon-thoron detectors. Thoron progeny measurements were conducted using the NIRS-modified detector, originally developed by Zhuo and Iida. Weak correlations were found between radon and thoron as well as between thoron and thoron progeny. The statistical evaluation showed that attention should be paid to the thoron equilibrium factor for calculation of thoron progeny concentrations based on thoron measurements. In addition, this evaluation indicated that radon, thoron and thoron progeny were independent parameters, so it would be difficult to estimate the concentration of one from those of the others. PMID:23297318

  1. Statistical analysis of the radon-222 potential of rocks in Virginia, U.S.A.

    USGS Publications Warehouse

    Brown, C. Erwin; Mose, D.G.; Mushrush, G.W.; Chrosniak, C.E.

    1992-01-01

    More than 3,200 indoor radon-222 (222Rn) measurements were made seasonally in an area of about 1,000 square kilometers of the Coastal Plain and Piedmont physiographic provinces in Virginia, U.S.A. Results of these measurements indicate that some geological units are associated, on the average, with twice as much indoor222Rn as other geological units, and that indoor222Rn varies seasonally. The Kruskal-Wallis test was used to test whether indoor222Rn concentrations for data gathered over the winter and summer seasons differ significantly by rock unit. The tests concluded that indoor222Rn concentrations for different rock units were not equal at the 5-percent significance level. The rocks associated with the highest median indoor222Rn concentration are specific rocks in the Mesozoic Culpeper basin, including shale and siltstone units with Jurassic diabase intrusives, and mica schists in the Piedmont physiographic province. The pre-Triassic Peters Creek Schist has the highest ranking in terms of indoor222Rn concentration. The rocks associated with the lowest indoor222Rn concentrations include coastal plain sediments, the Occoquan Granite, Falls Church Tonalite, Piney Branch Mafic and Ultramafic complex, and unnamed mafic and ultramafic inclusions, respectively. The rocks have been ranked according to observed222Rn concentration by transforming the average rank of indoor222Rn concentrations to z scores. ?? 1992 Springer-Verlag New York Inc.

  2. Residential Radon and Brain Tumour Incidence in a Danish Cohort

    PubMed Central

    Bräuner, Elvira V.; Andersen, Zorana J.; Andersen, Claus E.; Pedersen, Camilla; Gravesen, Peter; Ulbak, Kaare; Hertel, Ole; Loft, Steffen; Raaschou-Nielsen, Ole

    2013-01-01

    Background Increased brain tumour incidence over recent decades may reflect improved diagnostic methods and clinical practice, but remain unexplained. Although estimated doses are low a relationship between radon and brain tumours may exist. Objective To investigate the long-term effect of exposure to residential radon on the risk of primary brain tumour in a prospective Danish cohort. Methods During 1993–1997 we recruited 57,053 persons. We followed each cohort member for cancer occurrence from enrolment until 31 December 2009, identifying 121 primary brain tumour cases. We traced residential addresses from 1 January 1971 until 31 December 2009 and calculated radon concentrations at each address using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate-ratios (IRR) and 95% confidence intervals (CI) for the risk of primary brain tumours associated with residential radon exposure with adjustment for age, sex, occupation, fruit and vegetable consumption and traffic-related air pollution. Effect modification by air pollution was assessed. Results Median estimated radon was 40.5 Bq/m3. The adjusted IRR for primary brain tumour associated with each 100 Bq/m3 increment in average residential radon levels was 1.96 (95% CI: 1.07; 3.58) and this was exposure-dependently higher over the four radon exposure quartiles. This association was not modified by air pollution. Conclusions We found significant associations and exposure-response patterns between long-term residential radon exposure radon in a general population and risk of primary brain tumours, adding new knowledge to this field. This finding could be chance and needs to be challenged in future studies. PMID:24066143

  3. Lung and stomach cancer associations with groundwater radon in North Carolina, USA

    PubMed Central

    Messier, Kyle P; Serre, Marc L

    2017-01-01

    Abstract Background: The risk of indoor air radon for lung cancer is well studied, but the risks of groundwater radon for both lung and stomach cancer are much less studied, and with mixed results. Methods: Geomasked and geocoded stomach and lung cancer cases in North Carolina from 1999 to 2009 were obtained from the North Carolina Central Cancer Registry. Models for the association with groundwater radon and multiple confounders were implemented at two scales: (i) an ecological model estimating cancer incidence rates at the census tract level; and (ii) a case-only logistic model estimating the odds that individual cancer cases are members of local cancer clusters. Results: For the lung cancer incidence rate model, groundwater radon is associated with an incidence rate ratio of 1.03 [95% confidence interval (CI) = 1.01, 1.06] for every 100 Bq/l increase in census tract averaged concentration. For the cluster membership models, groundwater radon exposure results in an odds ratio for lung cancer of 1.13 (95% CI = 1.04, 1.23) and for stomach cancer of 1.24 (95% CI = 1.03, 1.49), which means groundwater radon, after controlling for multiple confounders and spatial auto-correlation, increases the odds that lung and stomach cancer cases are members of their respective cancer clusters. Conclusion: Our study provides epidemiological evidence of a positive association between groundwater radon exposure and lung cancer incidence rates. The cluster membership model results find groundwater radon increases the odds that both lung and stomach cancer cases occur within their respective cancer clusters. The results corroborate previous biokinetic and mortality studies that groundwater radon is associated with increased risk for lung and stomach cancer. PMID:27639278

  4. Lung and stomach cancer associations with groundwater radon in North Carolina, USA.

    PubMed

    Messier, Kyle P; Serre, Marc L

    2017-04-01

    The risk of indoor air radon for lung cancer is well studied, but the risks of groundwater radon for both lung and stomach cancer are much less studied, and with mixed results. Geomasked and geocoded stomach and lung cancer cases in North Carolina from 1999 to 2009 were obtained from the North Carolina Central Cancer Registry. Models for the association with groundwater radon and multiple confounders were implemented at two scales: (i) an ecological model estimating cancer incidence rates at the census tract level; and (ii) a case-only logistic model estimating the odds that individual cancer cases are members of local cancer clusters. For the lung cancer incidence rate model, groundwater radon is associated with an incidence rate ratio of 1.03 [95% confidence interval (CI) = 1.01, 1.06] for every 100 Bq/l increase in census tract averaged concentration. For the cluster membership models, groundwater radon exposure results in an odds ratio for lung cancer of 1.13 (95% CI = 1.04, 1.23) and for stomach cancer of 1.24 (95% CI = 1.03, 1.49), which means groundwater radon, after controlling for multiple confounders and spatial auto-correlation, increases the odds that lung and stomach cancer cases are members of their respective cancer clusters. Our study provides epidemiological evidence of a positive association between groundwater radon exposure and lung cancer incidence rates. The cluster membership model results find groundwater radon increases the odds that both lung and stomach cancer cases occur within their respective cancer clusters. The results corroborate previous biokinetic and mortality studies that groundwater radon is associated with increased risk for lung and stomach cancer. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

  5. Radon and Thoron In-air Occupational Exposure Study within Selected Wine Cellars of the Western Cape (South Africa) and Associated Annual Effective Doses.

    PubMed

    Botha, R; Newman, R T; Lindsay, R; Maleka, P P

    2017-01-01

    This is the first known study of exposure of Rn (radon) and secondarily Rn (thoron) in-air activity concentrations assessed within nine selected wine cellars in four wine districts of the Western Cape (South Africa) and the associated annual occupational effective doses. E-PERM electret ion chambers (EIC) and RAD-7 α-detectors were used to perform these measurements. The radon in-air levels ranged from 12 ± 4 Bq m to 770 ± 40 Bq m within the nine selected wine cellars. Eight of the nine wine cellars (excluding results from cellar w-6) had a median radon in-air activity concentration of 48 ± 8 Bq m. Continuous thoron in-air activity concentration levels were also measured near an internal granite wall of the wine cellar w-6 (barrel room), where peak levels of up to 1,520 ± 190 Bq m and an average of 680 ± 30 Bq m were observed. The occupational annual effective dose due to radon and decay progeny exposure in-air within the selected wine cellars ranged from 0.08 ± 0.03 mSv to 4.9 ± 0.3 mSv with a median of 0.32 ± 0.04 mSv (Tmax = 2,000 h). The annual effective dose within the wine cellar (w-6) ranged up to a maximum of 2.5 ± 0.4 mSv (Tmax = 2000 h) due to exposure to thoron and decay progeny. In general, most of the wines cellars pose negligible associated health risk to personnel due to ionizing radiation exposure from the inhalation of radon and progeny. Under certain conditions (proximity and exposure time), caution should be exercised at wine cellar w-6 because of elevated thoron in-air levels.

  6. Radon in indoor air of primary schools: determinant factors, their variability and effective dose.

    PubMed

    Madureira, Joana; Paciência, Inês; Rufo, João; Moreira, André; de Oliveira Fernandes, Eduardo; Pereira, Alcides

    2016-04-01

    Radon is a radioactive gas, abundant in granitic areas, such as in the city of Porto at the north-east of Portugal. This gas is a recognized carcinogenic agent, being appointed by the World Health Organization as the leading cause of lung cancer after smoking. The aim of this preliminary survey was to determine indoor radon concentrations in public primary schools, to analyse the main factors influencing their indoor concentration levels and to estimate the effective dose in students and teachers in primary schools. Radon concentrations were measured in 45 classrooms from 13 public primary schools located in Porto, using CR-39 passive radon detectors for about 2-month period. In all schools, radon concentrations ranged from 56 to 889 Bq/m(3) (mean = 197 Bq/m(3)). The results showed that the limit of 100 Bq/m(3) established by WHO IAQ guidelines was exceeded in 92 % of the measurements, as well as 8 % of the measurements exceeded the limit of 400 Bq/m(3) established by the national legislation. Moreover, the mean annual effective dose was calculated as 1.25 mSv/y (ranging between 0.58 and 3.07 mSv/y), which is below the action level (3-10 mSv). The considerable variability of radon concentration observed between and within floors indicates a need to monitor concentrations in several rooms for each floor. A single radon detector for each room can be used, provided that the measurement error is considerably lower than variability of radon concentration between rooms. The results of the present survey will provide useful baseline data for adopting safety measures and dealing effectively with radiation emergencies. In particular, radon remediation techniques should be used in buildings located in the highest radon risk areas of Portugal. The results obtained in the current study concerning radon levels and their variations will be useful to optimize the design of future research surveys.

  7. Kinetics of the water/air phase transition of radon and its implication on detection of radon-in-water concentrations: practical assessment of different on-site radon extraction methods.

    PubMed

    Schubert, Michael; Paschke, Albrecht; Bednorz, Denise; Bürkin, Walter; Stieglitz, Thomas

    2012-08-21

    The on-site measurement of radon-in-water concentrations relies on extraction of radon from the water followed by its detection by means of a mobile radon-in-air monitor. Many applications of radon as a naturally occurring aquatic tracer require the collection of continuous radon concentration time series, thus necessitating the continuous extraction of radon either from a permanent water stream supplied by a water pump or directly from a water body or a groundwater monitoring well. Essentially, three different types of extraction units are available for this purpose: (i) a flow-through spray chamber, (ii) a flow-through membrane extraction module, and (iii) a submersible (usually coiled) membrane tube. In this paper we discuss the advantages and disadvantages of these three methodical approaches with particular focus on their individual response to instantaneously changing radon-in-water concentrations. After a concise introduction into theoretical aspects of water/air phase transition kinetics of radon, experimental results for the three types of extraction units are presented. Quantitative suggestions for optimizing the detection setup by increasing the water/air interface and by reducing the air volume circulating through the degassing unit and radon detector are made. It was shown that the flow-through spray chamber and flow-through membrane perform nearly similarly, whereas the submersible membrane tubing has a significantly larger delay in response to concentration changes. The flow-through spray chamber is most suitable in turbid waters and to applications where high flow rates of the water pump stream can be achieved (e.g., where the power supply is not constrained by field conditions). The flow-through membrane is most suited to radon extraction from clear water and in field conditions where the power supply to a water pump is limited, e.g., from batteries. Finally, the submersible membrane tube is most suitable if radon is to be extracted in situ without any water pumping, e.g., in groundwater wells with a low yield, or in long-term time series, in which short-term variations in the radon concentration are of no relevance.

  8. EFFECTS OF NATURAL AND FORCED BASEMENT VENTILATION ON RADON LEVELS IN SINGLE FAMILY DWELLINGS

    EPA Science Inventory

    The report gives, for the first time, results of an extensive study of the effect of ventilation on radon concentrations and radon entry rate in a single-family dwelling. Measurements of radon concentrations, building dynamics, and environmental parameters made in Princeton Unive...

  9. Comparison of urinary excretion of radon from the human body before and after radon bath therapy.

    PubMed

    Kávási, Norbert; Kovács, Tibor; Somlai, János; Jobbágy, Viktor; Nagy, Katalin; Deák, Eszter; Berhés, István; Bender, Tamás; Ishikawa, Tetsuo; Tokonami, Shinji

    2011-07-01

    Theoretically, the human body absorbs radon through the lungs and the skin and excretes it through the lungs and the excretory organs during radon bath therapy. To check this theory, the radon concentrations in urine samples were compared before and after radon bath therapy. During the therapy, the geometric mean (GM) and the geometric standard deviation of the radon concentration in air and in the bath water were 979 Bq m(-3), 1.58 and 73.6 Bq dm(-3), 1.1, respectively. Since radon was detected in each urine sample (GM around 3.0 Bq dm(-3)), urinary excretion of radon was confirmed. The results of this study can neither reject nor confirm the hypothesis of radon absorption through the skin. A 15 times higher increment of inhaled radon level did not cause significant changes in radon of urine samples.

  10. Quantitative health impact of indoor radon in France.

    PubMed

    Ajrouche, Roula; Roudier, Candice; Cléro, Enora; Ielsch, Géraldine; Gay, Didier; Guillevic, Jérôme; Marant Micallef, Claire; Vacquier, Blandine; Le Tertre, Alain; Laurier, Dominique

    2018-05-08

    Radon is the second leading cause of lung cancer after smoking. Since the previous quantitative risk assessment of indoor radon conducted in France, input data have changed such as, estimates of indoor radon concentrations, lung cancer rates and the prevalence of tobacco consumption. The aim of this work was to update the risk assessment of lung cancer mortality attributable to indoor radon in France using recent risk models and data, improving the consideration of smoking, and providing results at a fine geographical scale. The data used were population data (2012), vital statistics on death from lung cancer (2008-2012), domestic radon exposure from a recent database that combines measurement results of indoor radon concentration and the geogenic radon potential map for France (2015), and smoking prevalence (2010). The risk model used was derived from a European epidemiological study, considering that lung cancer risk increased by 16% per 100 becquerels per cubic meter (Bq/m 3 ) indoor radon concentration. The estimated number of lung cancer deaths attributable to indoor radon exposure is about 3000 (1000; 5000), which corresponds to about 10% of all lung cancer deaths each year in France. About 33% of lung cancer deaths attributable to radon are due to exposure levels above 100 Bq/m 3 . Considering the combined effect of tobacco and radon, the study shows that 75% of estimated radon-attributable lung cancer deaths occur among current smokers, 20% among ex-smokers and 5% among never-smokers. It is concluded that the results of this study, which are based on precise estimates of indoor radon concentrations at finest geographical scale, can serve as a basis for defining French policy against radon risk.

  11. Analysis of dissolved gas and fluid chemistry in mountainous region of Goaping river watershed in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Tang, Kai-Wen; Chen, Cheng-Hong; Liu, Tsung-Kwei

    2016-04-01

    Annual rainfall in Taiwan is up to 2500 mm, about 2.5 times the average value of the world. However due to high topographic relief of the Central Mountain Range in Taiwan, groundwater storage is critical for water supply. Mountain region of the Goaping river watershed in southern Taiwan is one of the potential areas to develop groundwater recharge model. Therefore the target of this study is to understand sources of groundwater and surface water using dissolved gas and fluid chemistry. Four groundwater and 6 surface water samples were collected from watershed, 5 groundwater and 13 surface water samples were collected from downstream. All samples were analyzed for stable isotopes (hydrogen and oxygen), dissolved gases (including nitrogen, oxygen, argon, methane and carbon dioxide), noble gases (helium and radon) and major ions. Hydrogen and oxygen isotopic ratios of surface water and groundwater samples aligned along meteoric water line. For surface water, dissolved gases are abundant in N2 (>80%) and O2 (>10%); helium isotopic ratio is approximately equal to 1 RA (RA is 3He/4He ratio of air); radon-222 concentration is below the detection limit (<200 Bq/m3); and concentrations of major anions and cations are low (Na+ <20 ppm, Ca2+ < 60 ppm, Cl- <2 ppm). All these features indicate that surface waters are predominately recharged by precipitation. For groundwater, helium isotopic ratios (0.9˜0.23 RA) are lower and radon-222 concentrations (300˜6000 Bq/m3) are much higher than the surface water. Some samples have high amounts of dissolved gases, such as CH4 (>20%) or CO2 (>10%), most likely contributed by biogenic or geogenic sources. On the other hand, few samples that have temperature 5° higher than the average of other samples, show significantly high Na+ (>1000 ppm), Ca2+ (>150 ppm) and Cl- (>80 ppm) concentrations. An interaction between such groundwater and local hot springs is inferred. Watershed and downstream samples differ in dissolved gas species and fluid chemistry for groundwater and surface water. The higher hydrogen and oxygen isotopic ratios for surface water from downstream are most probably caused by evaporation. Low radon-222 concentrations of some groundwater from downstream may represent sources from different aquifers. Therefore, we conclude that surface water from downstream are recharged directly from its watershed, but groundwater are influenced by the local geological environment. Keywords: groundwater, dissolved gas, noble gas, radon in water, 3He/4He

  12. Determination of indoor radon concentrations at the elementary schools of Fatih district in Istanbul

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt, A., E-mail: aziz.kurt@istanbul.edu.tr; Yalcin, L. Sahin, E-mail: latife.sahin@gmail.com; Oktem, Y., E-mail: sgyks@istanbul.edu.tr

    Radon is an odorless, tasteless, colorless noble radioactive gas which is produced within the radioactive decay chain of Uranium. The Radon forms in rocks, diffuses into soil and then escapes into atmosphere. When human exposure to high concentration of radon gas from inside, risk of developing lung cancer is increased. There are many methods to determine {sup 222}Rn concentration in the air. In this study, radon concentration of confined air spaces were measured by using LR-115 solid state nuclear track detectors. 509 LR-115 nuclear trace detectors were placed to 25 schools in Fatih District and they effective dose values weremore » calculated. The results of measurements showed that the radon concentration varies between 40-395 Bq/m{sup 3}. This results compared with Turkey’s limits (400 Bq/m{sup 3}) are low, conversely higher compared with WHO’s limits (100 Bq/m{sup 3}).« less

  13. Distribution of indoor radon concentrations in Pennsylvania, 1990-2007

    USGS Publications Warehouse

    Gross, Eliza L.

    2013-01-01

    Median indoor radon concentrations aggregated according to geologic units and hydrogeologic settings are useful for drawing general conclusions about the occurrence of indoor radon in specific geologic units and hydrogeologic settings, but the associated data and maps have limitations. The aggregated indoor radon data have testing and spatial accuracy limitations due to lack of available information regarding testing conditions and the imprecision of geocoded test locations. In addition, the associated data describing geologic units and hydrogeologic settings have spatial and interpretation accuracy limitations, which are a result of using statewide data to define conditions at test locations and geologic data that represent a broad interpretation of geologic units across the State. As a result, indoor air radon concentration distributions are not proposed for use in predicting individual concentrations at specific sites nor for use as a decision-making tool for property owners to decide whether to test for indoor radon concentrations at specific property locations.

  14. Radon and monocytic leukaemia in England.

    PubMed Central

    Eatough, J P; Henshaw, D L

    1993-01-01

    The relationship between the standardised registration ratio (SRR) for monocytic leukaemia and the radon concentration by county in England was investigated. Leukaemia data were obtained from the OPCS and cover the age range 0-74 years and the period 1975-86. Radon concentrations were obtained from a recent National Radiological Protection Board report. A significant correlation was observed between the SRR for monocytic leukaemia and the radon concentration by county. PMID:8120509

  15. Radon and monocytic leukaemia in England.

    PubMed

    Eatough, J P; Henshaw, D L

    1993-12-01

    The relationship between the standardised registration ratio (SRR) for monocytic leukaemia and the radon concentration by county in England was investigated. Leukaemia data were obtained from the OPCS and cover the age range 0-74 years and the period 1975-86. Radon concentrations were obtained from a recent National Radiological Protection Board report. A significant correlation was observed between the SRR for monocytic leukaemia and the radon concentration by county.

  16. Soil gas radon concentrations measurements in terms of great soil groups.

    PubMed

    Içhedef, Mutlu; Saç, Müslim Murat; Camgöz, Berkay; Bolca, Mustafa; Harmanşah, Çoşkun

    2013-12-01

    In this study, soil gas radon concentrations were investigated according to locations, horizontal soil layers and great soil groups around Tuzla Fault, Seferihisar-İzmir. Great soil groups are a category that described the horizontal soil layers under soil classification system and distributions of radon concentration in the great soil groups are firstly determined by the present study. According to the obtained results, it has been showed that the radon concentrations in the Koluvial soil group are higher than the other soil groups in the region. Also significant differences on location in same great soil group were determined. The radon concentrations in the Koluvial soil groups were measured with respect to soil layers structures (A, B, C1, and C2). It has been observed that the values increase with depth of soil (C2>C1>B>A). The main reason may be due to the meteorological factors that have limited effect on radon escape from deep layers. Although fault lines pass thought the study area radon concentrations were varied location to location, layer to layer and great group to great group. The study shows that a detailed location description should be performed before soil radon measurements for earthquake predictions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Interpreting short and medium exposure etched-track radon measurements to determine whether an action level could be exceeded.

    PubMed

    Denman, A R; Crockett, R G M; Groves-Kirkby, C J; Phillips, P S

    2016-10-01

    Radon gas is naturally occurring, and can concentrate in the built environment. It is radioactive and high concentration levels within buildings, including homes, have been shown to increase the risk of lung cancer in the occupants. As a result, several methods have been developed to measure radon. The long-term average radon level determines the risk to occupants, but there is always pressure to complete measurements more quickly, particularly when buying and selling the home. For many years, the three-month exposure using etched-track detectors has been the de facto standard, but a decade ago, Phillips et al. (2003), in a DEFRA funded project, evaluated the use of 1-week and 1-month measurements. They found that the measurement methods were accurate, but the challenge lay in the wide variation in radon levels - with diurnal, seasonal, and other patterns due to climatic factors and room use. In the report on this work, and in subsequent papers, the group proposed methodologies for 1-week, 1-month and 3-month measurements and their interpretation. Other work, however, has suggested that 2-week exposures were preferable to 1-week ones. In practice, the radon remediation industry uses a range of exposure times, and further guidance is required to help interpret these results. This paper reviews the data from this study and a subsequent 4-year study of 4 houses, re-analysing the results and extending them to other exposures, particularly for 2-week and 2-month exposures, and provides comprehensive guidance for the use of etched-track detectors, the value and use of Seasonal Correction Factors (SCFs), the uncertainties in short and medium term exposures and the interpretation of results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Health risks due to radon in drinking water

    USGS Publications Warehouse

    Hopke, P.K.; Borak, T.B.; Doull, J.; Cleaver, J.E.; Eckerman, K.F.; Gundersen, L.C.S.; Harley, N.H.; Hess, C.T.; Kinner, N.E.; Kopecky, K.J.; Mckone, T.E.; Sextro, R.G.; Simon, S.L.

    2000-01-01

    Following more than a decade of scientific debate about the setting of a standard for 222Rn in drinking water, Congress established a timetable for the promulgation of a standard in the 1996 Amendments to the Safe Drinking Water Act. As a result of those Amendments, the EPA contracted with the National Academy of Sciences to undertake a risk assessment for exposure to radon in drinking water. In addition, the resulting committee was asked to address several other scientific issues including the national average ambient 222Rn concentration and the increment of 222Rn to the indoor- air concentration arising from the use of drinking water in a home. A new dosimetric analysis of the cancer risk to the stomach from ingestion was performed. The recently reported risk estimates developed by the BEIR VI Committee for inhalation of radon decay products were adopted. Because the 1996 Amendments permit states to develop programs in which mitigation of air- producing health-risk reductions equivalent to that which would be achieved by treating the drinking water, the scientific issues involved in such 'multimedia mitigation programs' were explored.

  19. 30 CFR 57.5046 - Protection against radon gas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against radon gas. 57.5046 Section... Protection against radon gas. Where radon daughter concentrations exceed 10 WL, respirator protection against radon gas shall be provided in addition to protection against radon daughters. Protection against radon...

  20. Annual variation in the atmospheric radon concentration in Japan.

    PubMed

    Kobayashi, Yuka; Yasuoka, Yumi; Omori, Yasutaka; Nagahama, Hiroyuki; Sanada, Tetsuya; Muto, Jun; Suzuki, Toshiyuki; Homma, Yoshimi; Ihara, Hayato; Kubota, Kazuhito; Mukai, Takahiro

    2015-08-01

    Anomalous atmospheric variations in radon related to earthquakes have been observed in hourly exhaust-monitoring data from radioisotope institutes in Japan. The extraction of seismic anomalous radon variations would be greatly aided by understanding the normal pattern of variation in radon concentrations. Using atmospheric daily minimum radon concentration data from five sampling sites, we show that a sinusoidal regression curve can be fitted to the data. In addition, we identify areas where the atmospheric radon variation is significantly affected by the variation in atmospheric turbulence and the onshore-offshore pattern of Asian monsoons. Furthermore, by comparing the sinusoidal regression curve for the normal annual (seasonal) variations at the five sites to the sinusoidal regression curve for a previously published dataset of radon values at the five Japanese prefectures, we can estimate the normal annual variation pattern. By fitting sinusoidal regression curves to the previously published dataset containing sites in all Japanese prefectures, we find that 72% of the Japanese prefectures satisfy the requirements of the sinusoidal regression curve pattern. Using the normal annual variation pattern of atmospheric daily minimum radon concentration data, these prefectures are suitable areas for obtaining anomalous radon variations related to earthquakes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Diffusive Soil Degassing of Radon and Carbon Dioxide at Ilopango Caldera, El Salvador, Central America

    NASA Astrophysics Data System (ADS)

    Ransom, L.; Lopez, D. L.; Hernandez, P.

    2001-12-01

    Ilopango Caldera lies 10 Km east of San Salvador, El Salvador and holds Ilopango Lake, the largest body of fresh water in El Salvador. There is currently no observed fumarolic activity within the caldera system. However, the last eruption occurred in 1880. In November - December, 1999, radon gas concentrations (pCi/l) were measured using a Pylon AB5 radon monitor, and flux of CO2 (g/m2/day) was determined using the accumulation chamber method at 106 sampling stations around the lake, along and across the caldera walls. Gas samples were also collected to determine the isotopic composition of C in CO2. CO2 fluxes did not show high values characteristic of other volcanic systems, values ranged from 0.7 to 9.2 g/m2/day with an average value of 3.9. These values are similar to the low values of the background population observed in nearby San Salvador volcano. Highest values are observed to the east and west of the lake. Isotopic values for C in soil gases do not show an important magmatic component. Radon concentrations present three distinct populations with the highest values occurring to the southwest. Thoron concentrations are higher close to the caldera walls than inside the caldera due to the possible higher rock fracturing in that region. Measurements taken in March 2001, after the January 13 and February 13, 2001 earthquakes did not show significant variations in CO2 fluxes. However, radon concentrations varied due to the high seismicity that lasted several months after these earthquakes. These results suggest that the magmatic system of Ilopango Caldera is not emitting high fluxes of CO2 to the atmosphere throughout the caldera soils. Subaquatic emissions of CO2 have not been evaluated. However, subaquatic hydrothermal discharges have not been identified at this calderic lake.

  2. Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke

    2008-08-07

    For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.

  3. [Patients' exposure to electromagnetic fields and radon in radon spas].

    PubMed

    Politański, Piotr; Olszewski, Jerzy; Mamrot, Paweł; Mariańska, Mlagda; Zmyślony, Marek

    2014-01-01

    Many patients of physiotherapeutic facilities using therapeutic radon are also referred to other treatments involving the use of electromagnetic field (EMF). However, in the light of the theory of EMF influence on free radicals, it is still an open question whether, application of EMF shortly after the radon treatment may alter the biological effects of radon or EMF. The aim of the study was to determine how large is the group of patients exposed to radon and EMF in Poland, and how high is the exposure of these patients to analyzed factors. The results of the study are to be used in the future assessment of the combined effects of radon and EMF in radon spas. Based on the statistical data and interviews held in the major Polish radon spas, the analysis of treatment structure was performed and exposure to radon and EMF was assessed by measuring radon concentrations and characteristic values of exposure to EMF. More than 8000 people per year are subjected to combined exposure to radon and EMF. Significant differences were found between measured radon concentrations (they ranged from approximately 61 kBq/m3 for inhalations with inhaler to only 290 Bq/m3 for graduation towers, p = 0.049) and EMF intensities corresponded to those observed in hazardous and dangerous zones for occupational exposure. The results of the study showed significant differences between radon concentrations during various radon treatments. There is a need to develop clear and universal procedures for the application of radon or radon combined with EMF in radon spas. The effects of patients' exposure to radon, especially combined with EMF need to be further studied.

  4. Data on the effect of geological and meteorological parameters on indoor radon and thoron level- case study: Kermanshah, Iran.

    PubMed

    Pirsaheb, Meghdad; Najafi, Farid; Hemati, Lida; Khosravi, Touba; Sharafi, Hooshmand

    2018-06-01

    The present study was aimed to evaluate the relationship between indoor radon and thoron concentrations, geological and meteorological parameters. The radon and thoron concentrations were determined in three hospitals in Kermanshah, the west part of Iran, using the RTM-1688-2 radon meter. Also, the type and porosity of the underlying soil and the meteorological parameters such as temperature, humidity, atmospheric pressure, rainfall and wind speed were studied and the obtained results analyzed using STATA-Ver.8. In this study the obtained radon concentration was furthered in buildings which constructed on the soil with clayey gravel and sand feature than the soil with clay characteristic and little pasty with a significant difference ( P < 0.05). While the lower coefficient about 1.3 was obtained in measured the thoron concentration and a significant difference was not observed. So the soil porosity can extremely effect on the indoor radon amount. Among all studied meteorological parameters, temperature has been determined as the most important meteorological parameter, influence the indoor radon and thoron concentrations.

  5. Effect of a grounded object on radon measurement using AlphaGUARD.

    PubMed

    Ichitsubo, Hirokazu; Yamada, Yuji

    2004-07-01

    ABSTRACT-: The effects on radon concentration measurement of a grounded object near the opening of a cylindrical ionization chamber were studied using AlphaGUARD. AlphaGUARD comes with a flow measurement adapter that fits on the front of the AlphaGUARD ionization chamber. If the adapter nozzle is grounded, the radon concentration is falsely measured at 0 Bq m. A metal connector for use between the AlphaGUARD and the air duct wall was manufactured in our laboratory. When the connector is grounded, the radon concentration is again falsely measured as 0 Bq m. If the nozzle or connector is ungrounded, the AlphaGUARD measures radon concentration accurately. Health Phys.

  6. The effectiveness of radon preventive and remedial measures in Irish homes.

    PubMed

    Long, S; Fenton, D; Cremin, M; Morgan, A

    2013-03-01

    It is estimated that approximately 100 000 Irish homes have radon concentrations above the reference level of 200 Bq m(-3). To minimise the number of new homes with this problem, building regulations require that all new homes built since July 1998 in high radon areas are installed with radon barriers during construction. Measurements on local authority homes in a number of high radon areas have allowed the impact of these new regulations to be assessed. In County Cork a reduction of up to 70% in the mean radon concentration was observed in homes built since 1998 relative to those built before this date. A reduction in both the number of homes exceeding the reference level and the maximum concentration measured in homes was also measured. Homes exceeding the reference level were remediated with the use of an active sump. The results of this remedial work are also presented and show that the mean reduction in radon concentration achieved was 92%.

  7. Radiological risk assessment of environmental radon

    NASA Astrophysics Data System (ADS)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan; Yasir, Muhammad Samudi

    2013-11-01

    Measurements of radon gas (222Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the 226Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based on the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m-3 to 571.1 ± 251.4 Bq m-3, 101.0 ± 41.0 Bq m-3 to 245.3 ± 100.2 Bq m-3, 53.1 ± 7.5 Bq m-3 to 181.8 ± 9.7 Bq m-3, 256.1 ± 59.3 Bq m-3 to 652.2 ± 222.2 Bq m-3 and 164.5 ± 75.9 Bq m-3 to 653.3 ± 240.0 Bq m-3, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m-3, 192.1 ± 75.4 Bq m-3, 176.1 ± 85.9 Bq m-3 and 28.4 ± 5.7 Bq m-3, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the action level for radon gas of 148 Bq m-3 proposed by EPA except monazite 0.15 kg, struverite 0.15 kg and 0.25 kg. Whereas, all building material samples have exceeded the radon concentration in concrete and building materials of 3 to 7 Bq m-3 estimated by ICRP. The annual effective dose, effective dose equivalent, and radon exhalation rates in tin tailings were calculated to be in the range of 2.47 to 11.46 mSv, 5.94 to 1090.56 mSv y-1, and 0.23 to 1.18 mBq kg-1 h-1. For building materials, the calculated risk assessment of the annual effective dose, effective dose equivalent, radon exhalation rates and fatal cancer risk were 0.72 to 10.00 mSv, 1.73 to 24.00 mSv y-1, 0.010 to 0.06 mBq kg-1 h-1 and 40 to 550 chances of persons will suffer the cancer per million (1 × 106), respectively.

  8. The national survey of natural radioactivity in concrete produced in Israel.

    PubMed

    Kovler, Konstantin

    2017-03-01

    The main goal of the current survey was to collect the results of the natural radiation tests of concrete produced in the country, to analyze the results statistically and make recommendations for further regulation on the national scale. Totally 109 concrete mixes produced commercially during the years 2012-2014 by concrete plants in Israel were analyzed. The average concentrations of NORM did not exceed the values recognized in the EU and were close to the values obtained from the Mediterranean countries such as Greece, Spain and Italy. It was also found that although the average value of the radon emanation coefficient of concrete containing coal fly ash (FA) was lower, than that of concrete mixes without FA, there was no significant difference between the indexes of both total radiation (addressing gamma radiation and radon together), and gamma radiation only, of the averages of the two sub-populations of concrete mixes: with and without FA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. DEVELOPMENT OF ALTERNATE PERFORMANCE STANDARD FOR RADON RESISTANT CONSTRUCTION BASED ON SHORT-TERM/LONG- TERM INDOOR RADON CONCENTRATIONS - VOLUME 2: APPENDICES

    EPA Science Inventory

    The report gives results of a study of short- and long-term variations in radon concentration in about 80 houses in Florida. The study involves comparative sampling using the most common radon measurement technologies during the past year. he study, providing the most detailed da...

  10. DEVELOPMENT OF ALTERNATE PERFORMANCE STANDARD FOR RADON RESISTANT CONSTRUCTION BASED ON SHORT-TERM/LONG- TERM INDOOR RADON CONCENTRATIONS - VOLUME 1: TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a study of short- and long-term variations in radon concentration in about 80 houses in Florida. The study involves comparative sampling using the most common radon measurement technologies during the past year. he study, providing the most detailed da...

  11. Uncertainties in radon related to house-specific factors and proximity to geological boundaries in England.

    PubMed

    Hunter, Nezahat; Muirhead, Colin R; Miles, Jon C H; Appleton, J Donald

    2009-08-01

    Data collected as a part of a survey on radon concentrations from about 40 000 dwellings in England for six contrasting geological units were analysed to evaluate the impact of house-specific factors (building characteristics and construction dates) and of proximity to geological boundaries. After adjusting for temperature and outdoor radon, geological unit, house type, double glazing and date of building were found to have a statistically significant influence on indoor radon concentrations and explained about 29 % of the total variation between dwellings in logarithmically transformed radon values. In addition, there were statistically significant differences in radon concentrations according to proximity to geological boundaries categories for most of the geological units, but no consistent pattern could be detected.

  12. Geochemical Characteristics of Aquifer system in Taichung Area, Central Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Jui-Fen; Chen, Cheng-Hong; Liu, Tsung-Kwei

    2016-04-01

    For understanding the relationship between water bodies and host rocks and getting more information for groundwater in Taichung area, Central Taiwan, we systematically analyzed the stable isotopes (hydrogen and oxygen), helium isotopes and radon concentrations of dissolved gases from 54 groundwater, 39 river and 4 rain samples collected from Taichung Basin in wet and dry seasons of the year 2015. In the δ18O vs. δD plot, all samples present a linear trend similar to local meteoric water, indicating a meteoric origin. However, river samples are relative lighter than rain samples, it appears that the rivers are mainly recharged from precipitation of high-elevation areas with a lighter isotopic composition. Because the seasonal isotopic variation of river samples is significant, we calculated relative contribution of precipitation by seasons using the mass balance equation. Results show that the precipitation in the rainy season is the major source of groundwater. The helium isotopic ratio in dissolved gases of most groundwater samples are close to 1 RA (RA = 3He/4He ratio of air), except the sample from Wu-Feng well that exhibits 0.3 RA. This sample also has an older C-14 age (˜27000 yrs.) than others (<200 yrs.), implying that the dissolved helium is likely affected by radiogenic 4He of surrounding rocks. The average concentration of radon for groundwater in the northern section of Taichung Basin is 20.3 Bq/L, which is higher than that of the southern section (14.5 Bq/L). Variations of radon concentrations in the two sections may be related to the different drainage systems (Paleo-Dajia River vs. Wu River), in which sediments from Paleo-Dajia River may contain higher uranium concentrations. On the other hand, water in rivers usually contains undetectable radon (<0.37 Bq/L) because it rapidly escapes to the atmosphere. However, river samples from the central part of basin have radon concentrations ranging between 1 and 3 Bq/L, reflecting that the sampling sites are in the vicinity of points of groundwater inflow. This study illustrates the utility of hydrogen and oxygen isotopes to trace the groundwater source and determine the seasonal contribution ratios of precipitation to groundwater recharge, and demonstrates the advantage of using dissolved gas to investigate the groundwater-host rocks interaction. Key words: Central Taiwan, groundwater, dissolved gas, helium isotope, hydrogen and oxygen isotopes, water radon

  13. RADON REDUCTION AND RADON-RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK - VOLUME 1: TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of radon reduction and radon-resistant construction demonstrations in New York. The existing house evaluation demonstrated radon mitigation techniques where indoor radon concentrations exceeded 4 pCi/L. Results demonstrated that sealing all accessible fou...

  14. Mapping the geogenic radon potential of the eastern Canary Islands.

    NASA Astrophysics Data System (ADS)

    Rubiano, Jesús G.; Alonso, Hector; Arnedo, Miguel. A.; Tejera, Alicia; Martel, Pablo; Gil, Juan M.; Rodriguez, Rafael; González, Jonay

    2014-05-01

    The main contribution of indoor radon comes from soils and thus, the knowledge of the concentration of this gas in soils is important for estimating the risk of finding high radon indoor concentrations. To characterize the behavior of radon in soils, it is common to use the a quantity named Radon Potential which results of a combination of properties of the soil itself and from the underlying rock, such as concentration and distribution of radium, porosity, permeability, the moisture content and meteorological parameters, among others. In this work, the results three year of campaigns of measurement radon gas as well as the permeability in soils of the Eastern Canary Islands (Gran Canaria, Fuerteventura and Lanzarote) are presented. By combining these two parameters and through the use of geostatistic interpolation techniques, the radon potential of soils is estimated and it is used to carry on a classification of the territory into hazard zones according to their potential for radon emanation. To measure the radon soil gas a probe equipped with a "lost" sharp tip is inserted to the desired sampling depth. One of the characteristics of the Canary Islands is the absence of developed soils and so the bedrock is found typically at very shallow depth. This fact has led us to adopt a sampling depth of 50 cm at most. The probe is connected to the continuous radon monitor Durridge RAD7 equipped with a solid-state alpha spectrometer to determine concentration radon using the activity its short-lived progeny. Dried soil air is delivered to the RAD7 radon monitor by pumping. A half hour counting time for all sampling points has been taken. In parallel to the radon measurement campaign, the permeability of soils has also been determined at each point using the permeameter RADON-JOK. The principle of operation of this equipment consists of air withdrawal by means of negative pressure. The gas permeability is then calculated using the known flow of air flowing through the probe using a calibrated nomogram. As results, maps of radon in soils have been developed for the three islands to identify areas where may appear high activity concentrations of radon due to natural sources. Finally to determine the radon potential of soils analyzed we applied a procedure to classify the radon areas in several levels of risk using the measured values of radon activity concentration and soil permeability. Acknowledgments: This work was financed by the Nuclear Safety Council (CSN) through a grant in its R&D program 2009 and by the European Development Fund (ERDF) through a research project program 2007 granted by Canary Agency for Research, Innovation and Information Society (ACIISI) of the Canary Islands.

  15. A critical analysis of climatic influences on indoor radon concentrations: Implications for seasonal correction.

    PubMed

    Groves-Kirkby, Christopher J; Crockett, Robin G M; Denman, Antony R; Phillips, Paul S

    2015-10-01

    Although statistically-derived national Seasonal Correction Factors (SCFs) are conventionally used to convert sub-year radon concentration measurements to an annual mean, it has recently been suggested that external temperature could be used to derive local SCFs for short-term domestic measurements. To validate this approach, hitherto unanalysed radon and temperature data from an environmentally-stable location were analysed. Radon concentration and internal temperature were measured over periods totalling 1025 days during an overall period of 1762 days, the greatest continuous sampling period being 334 days, with corresponding meteorological data collected at a weather station 10 km distant. Mean daily, monthly and annual radon concentrations and internal temperatures were calculated. SCFs derived using monthly mean radon concentration, external temperature and internal-external temperature-difference were cross-correlated with each other and with published UK domestic SCF sets. Relatively good correlation exists between SCFs derived from radon concentration and internal-external temperature difference but correlation with external temperature, was markedly poorer. SCFs derived from external temperature correlate very well with published SCF tabulations, confirming that the complexity of deriving SCFs from temperature data may be outweighed by the convenience of using either of the existing domestic SCF tabulations. Mean monthly radon data fitted to a 12-month sinusoid showed reasonable correlation with many of the annual climatic parameter profiles, exceptions being atmospheric pressure, rainfall and internal temperature. Introducing an additional 6-month sinusoid enhanced correlation with these three parameters, the other correlations remaining essentially unchanged. Radon latency of the order of months in moisture-related parameters suggests that the principal driver for radon is total atmospheric moisture content rather than relative humidity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing.

    PubMed

    Perrier, Frédéric; Richon, Patrick

    2010-04-01

    Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m(-3) in summer to about 800-1400 Bq m(-3) in winter, indicating winter ventilation rates varying from 0.6 to 2.5 x 10(-6) s(-1). Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from -7 to -26 Bq m(-3) hPa(-1). This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. A study of Monitoring and Mapping for Radon-Concentration Distribution in Gyeongju - 12201

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chan Hee; Lee, Jung Min; Jang, So Young

    Radon is one of the most important contributors to the radiation exposure in humans. This study measured the indoor radon concentrations at the 17 elementary school auditoriums that were sampled from those in the city of Gyeongju, Korea. The reason that an elementary school was selected as a measurement object is that many students and teachers stay for a long time in a day and it's easy to identify the characteristics of the auditorium building such as the essential building. The measurement shows that most of the indoor radon concentrations at the 17 elementary school auditoriums did not exceed 148more » Bq/m{sup 3} that is the action level recommended by U.S. Environmental Protection Agency. This study measured the indoor radon concentrations at the elementary school auditoriums in Gyeongju. The measurements were analyzed according to the bedrock type and the time intervals per day. In this study, it was found that the indoor radon concentrations over off-duty hours were generally higher that those over on-duty hours, and the indoor radon concentration in the area whose bedrock is volcanic rock was higher than those in the area of the other types of bedrock. As mentioned above, attention has to be paid to an elementary school since many young students and teachers stay for more 6 hours a day at it. Hence, it is necessary to continuously monitor and properly manage the indoor radon concentrations in the elementary schools. (authors)« less

  18. [Estimation of effective doses derived from radon in selected SPA centers that use geothermal waters based on the information of radon concentrations].

    PubMed

    Walczak, Katarzyna; Zmyślony, Marek

    2013-01-01

    Geothermal waters contain, among other components, soluble radon gas. Alpha radioactive radon is a health hazard to humans, especially when it gets into the respiratory tract. SPA facilities that use geothermal water can be a source of an increased radiation dose to people who stay there. Based on the available literature concerning radon concentrations, we assessed exposure to radon among people - workers and visitors of Spa centers that use geothermal waters. Radon concentrations were analyzed in 17 geothermal centers: in Greece (3 centers), Iran (5), China (4) and India (5). Doses recived by people in the SPA were estimated using the formula that 1 hour exposure to 1 Bq/m3 of radon concentration and equilibrium factor F = 0.4 corresponds to an effective dose of 3.2 nSv. We have found that radon levels in SPAs are from a few to several times higher than those in confined spaces, where geothermal waters are not used (e.g., residential buildings). In 82% of the analyzed SPAs, workers may receive doses above 1 mSv/year. According to the relevant Polish regulations, people receiving doses higher than 1 mSv/year are included in category B of radiation exposure and require regular dosimetric monitoring. Doses received by SPA visitors are much lower because the time of their exposure to radon released from geothermal water is rather short. The analysis of radon concentration in SPA facilities shows that the radiological protection of people working with geothermal waters plays an important role. It seems reasonable to include SPA workers staying close to geotermal waters into a dosimetric monitoring program.

  19. Radon Levels Measured at a Touristic Thermal Spa Resort in Montagu (South Africa) and Associated Effective Doses.

    PubMed

    Botha, R; Newman, R T; Maleka, P P

    2016-09-01

    Radon activity concentrations (in water and in air) were measured at 13 selected locations at the Avalon Springs thermal spa resort in Montagu (Western Cape, South Africa) to estimate the associated effective dose received by employees and visitors. A RAD-7 detector (DURRIDGE), based on alpha spectrometry, and electret detectors (E-PERM®Radelec) were used for these radon measurements. The primary source of radon was natural thermal waters from the hot spring, which were pumped to various locations on the resort, and consequently a range of radon in-water analyses were performed. Radon in-water activity concentration as a function of time (short term and long term measurements) and spatial distributions (different bathing pools, etc.) were studied. The mean radon in-water activity concentrations were found to be 205 ± 6 Bq L (source), 112 ± 5 Bq L (outdoor pool) and 79 ± 4 Bq L (indoor pool). Radon in-air activity concentrations were found to range between 33 ± 4 Bq m (at the outside bar) to 523 ± 26 Bq m (building enclosing the hot spring's source). The most significant potential radiation exposure identified is that due to inhalation of air rich in radon and its progeny by the resort employees. The annual occupational effective dose due to the inhalation of radon progeny ranges from 0.16 ± 0.01 mSv to 0.40 ± 0.02 mSv. For the water samples collected, the Ra in-water activity concentrations from samples collected were below the lower detection limit (~0.7 Bq L) of the γ-ray detector system used. No significant radiological health risk can be associated with radon and progeny from the hot spring at the Avalon Springs resort.

  20. Lung Cancer Mortality and Radon Concentration in a Chronically Exposed Neighborhood in Chihuahua, Mexico: A Geospatial Analysis

    PubMed Central

    Hinojosa de la Garza, Octavio R.; Sanín, Luz H.; Montero Cabrera, María Elena; Serrano Ramirez, Korina Ivette; Martínez Meyer, Enrique; Reyes Cortés, Manuel

    2014-01-01

    This study correlated lung cancer (LC) mortality with statistical data obtained from government public databases. In order to asses a relationship between LC deaths and radon accumulation in dwellings, indoor radon concentrations were measured with passive detectors randomly distributed in Chihuahua City. Kriging (K) and Inverse-Distance Weighting (IDW) spatial interpolations were carried out. Deaths were georeferenced and Moran's I correlation coefficients were calculated. The mean values (over n = 171) of the interpolation of radon concentrations of deceased's dwellings were 247.8 and 217.1 Bq/m3, for K and IDW, respectively. Through the Moran's I values obtained, correspondingly equal to 0.56 and 0.61, it was evident that LC mortality was directly associated with locations with high levels of radon, considering a stable population for more than 25 years, suggesting spatial clustering of LC deaths due to indoor radon concentrations. PMID:25165752

  1. Study of indoor radon distribution using measurements and CFD modeling.

    PubMed

    Chauhan, Neetika; Chauhan, R P; Joshi, M; Agarwal, T K; Aggarwal, Praveen; Sahoo, B K

    2014-10-01

    Measurement and/or prediction of indoor radon ((222)Rn) concentration are important due to the impact of radon on indoor air quality and consequent inhalation hazard. In recent times, computational fluid dynamics (CFD) based modeling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement CFD based modeling for studying indoor radon gas distribution. This study focuses on comparison of experimentally measured and CFD modeling predicted spatial distribution of radon concentration for a model test room. The key inputs for simulation viz. radon exhalation rate and ventilation rate were measured as a part of this study. Validation experiments were performed by measuring radon concentration at different locations of test room using active (continuous radon monitor) and passive (pin-hole dosimeters) techniques. Modeling predictions have been found to be reasonably matching with the measurement results. The validated model can be used to understand and study factors affecting indoor radon distribution for more realistic indoor environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Radon soil gas measurements in a geological versatile region as basis to improve the prediction of areas with a high radon potential.

    PubMed

    Kabrt, Franz; Seidel, Claudia; Baumgartner, Andreas; Friedmann, Harry; Rechberger, Fabian; Schuff, Michael; Maringer, Franz Josef

    2014-07-01

    With the aim to predict the radon potential by geological data, radon soil gas measurements were made in a selected region in Styria, Austria. This region is characterised by mean indoor radon potentials of 130-280 Bq m(-3) and a high geological diversity. The distribution of the individual measuring sites was selected on the basis of geological aspects and the distribution of area settlements. In this work, the radon soil gas activity concentration and the soil permeability were measured at 100 sites, each with three single measurements. Furthermore, the local dose rate was determined and soil samples were taken at each site to determine the activity concentration of natural radionuclides. During two investigation periods, long-term soil gas radon measurements were made to study the time dependency of the radon activity concentration. All the results will be compared and investigated for correlation among each other to improve the prediction of areas with high radon potential. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Diurnal variations of radon and thoron activity concentrations and effective doses in dwellings in Niška Banja, Serbia.

    PubMed

    Vaupotič, J; Streil, T; Tokonami, S; Žunic, Z S

    2013-12-01

    In Niška Banja, a spa town in a radon-prone area in southern Serbia, radon ((222)Rn) and thoron ((220)Rn) activity concentrations were measured continuously for one day in indoor air of 10 dwellings with a SARAD RTM 2010-2 Radon/Thoron Monitor, and equilibrium factor between radon and its decay products and the fraction of unattached radon decay products with a SARAD EQF 3020-2 Equilibrium Factor Monitor. Radon concentration in winter time ranged from 26 to 73 100 Bq m(-3) and that of thoron, from 10 to 8650 Bq m(-3). In the same period, equilibrium factor and the unattached fraction varied in the range of 0.08 to 0.90 and 0.01 to 0.27, respectively. One-day effective doses were calculated and were in winter conditions from 4 to 2599 μSv d(-1) for radon and from 0.2 to 73 μSv d(-1) for thoron.

  4. Is radon emission in caves causing deletions in satellite DNA sequences of cave-dwelling crickets?

    PubMed

    Allegrucci, Giuliana; Sbordoni, Valerio; Cesaroni, Donatella

    2015-01-01

    The most stable isotope of radon, 222Rn, represents the major source of natural radioactivity in confined environments such as mines, caves and houses. In this study, we explored the possible radon-related effects on the genome of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae) sampled in caves with different concentrations of radon. We analyzed specimens from ten populations belonging to two genetically closely related species, D. geniculata and D. laetitiae, and explored the possible association between the radioactivity dose and the level of genetic polymorphism in a specific family of satellite DNA (pDo500 satDNA). Radon concentration in the analyzed caves ranged from 221 to 26,000 Bq/m3. Specimens coming from caves with the highest radon concentration showed also the highest variability estimates in both species, and the increased sequence heterogeneity at pDo500 satDNA level can be explained as an effect of the mutation pressure induced by radon in cave. We discovered a specific category of nuclear DNA, the highly repetitive satellite DNA, where the effects of the exposure at high levels of radon-related ionizing radiation are detectable, suggesting that the satDNA sequences might be a valuable tool to disclose harmful effects also in other organisms exposed to high levels of radon concentration.

  5. Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-09-01

    We report on one year of high-precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late-summer to 44 mBq m-3 in late winter and early spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  6. Characterising terrestrial influences on Antarctic air masses using radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-05-01

    We report on one year of high precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late summer to 44 mBq m-3 in late-winter and early-spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  7. MEASUREMENT OF RADON, THORON AND THEIR PROGENY CONCENTRATIONS IN THE DWELLINGS OF PAURI GARHWAL, UTTARAKHAND, INDIA.

    PubMed

    Joshi, Veena; Dutt, Sanjay; Yadav, Manjulata; Mishra, Rosaline; Ramola, R C

    2016-10-01

    It is well known that inhalation of radon, thoron and their progeny contributes more than 50 % of natural background radiation dose to human being. The time-integrated passive measurements of radon, thoron and their progeny concentrations were carried out in the dwellings of Pauri Garhwal, Uttarakhand, India. The measurements of radon and thoron concentrations were performed by LR-115 detector-based single-entry pin-hole dosemeter, while for the measurement of progeny concentrations, LR-115 deposition-based direct radon and thoron progeny sensors technique was used. The experimental techniques and results obtained are discussed in detail. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Potential health effects of indoor radon exposure.

    PubMed Central

    Radford, E P

    1985-01-01

    Radon-222 is a ubiquitous noble gas arising from decay of radium-226 normally present in the earth's crust. Alpha radiation from inhaled short-lived daughters of radon readily irradiates human bronchial epithelium, and there is now good evidence of excess risk of lung cancer in underground miners exposed to higher concentrations. In homes, radon levels are highly variable, showing approximately log-normal distributions and often a small fraction of homes with high concentrations of radon and radon daughters. Factors affecting indoor concentrations include type of bedrock under dwellings, house foundation characteristics, radon dissolved in artesian water, and ventilation and degree of air movement in living spaces. Despite much recent work, exposures to radon daughters by the general public are not well defined. From application of risk assessments in miners to home conditions, it appears that about 25% or more of lung cancers among nonsmokers over the age of 60, and about 5% in smokers, may be attributable to exposure to radon daughters at home. It may be necessary to take remedial action to reduce this hazard in those dwellings with elevated levels of radon, and new construction should take account of this problem. PMID:4085431

  9. Monitoring and descriptive analysis of radon in relation to seismic activity of Northern Pakistan.

    PubMed

    Jilani, Zeeshan; Mehmood, Tahir; Alam, Aftab; Awais, Muhammad; Iqbal, Talat

    2017-06-01

    Earthquakes are one of the major causes of natural disasters and its forecasting is challenging task. Some precursory phenomenon exists in theory in relation to earthquakes occurrence. The emission of radioactive gas named 'radon' before the earthquakes is a potential earthquake precursory candidate. The study aims to monitor and to analyze the radon in relation to seismic activity in Northern Pakistan. For this purpose RTM-2200 has been used to monitor the changes in radon concentration from August 01, 2014 to January 31, 2015 in Northern Pakistan. Significant temporal variations has been observed in radon concentration. The bivariate analysis of radon with other variables manifests its positive relationship with air pressure and relative humidity and negative relationship with temperature. 2σ upper control limit on monthly basis are computed for detection of anomalous trends in the data. Overall increasing trend is detected in radon concentration. Five earthquakes from August 01, 2014 to January 31, 2015 have been selected from earthquake catalogue, depending upon their magnitude and distance from monitoring station and out of which radon concentration can be associated with only two earthquakes correlated with tectonic effect of radon concentration. Both of events have same magnitude 5.5 and occurred on September 13 and October 14, 2014 respectively. Very large variations have been observed in radon for the last two months of the study period, which may be occurred due to some other geological and environmental changes, but are not related to the earthquake activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Radon and ammonia transects across the Cerro Prieto geothermal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semprini, L.; Kruger, P.

    1981-01-01

    Radon and ammonia transects, conducted at the Cerro Prieto geothermal field, involve measurement of concentration gradients at wells along lines of structural significance in the reservoir. Analysis of four transects showed radon concentrations ranging from 0.20 to 3.60 nCi/kg and ammonia concentrations from 17.6 to 59.3 mg/l. The data showed the lower concentrations in wells of lowest enthalpy fluid and the higher concentrations in wells of highest enthalpy fluid. Linear correlation analysis of the radon-enthalpy data indicated a strong relationship, with a marked influence by the two-phase conditions of the produced fluid. It appears that after phase separation in themore » reservoir, radon achieves radioactive equilibrium between fluid and rock, suggesting that the phase separation occurs well within the reservoir. A two-phase mixing model based on radon-enthalpy relations allows estimation of the fluid phase temperatures in the reservoir. Correlations of ammonia concentration with fluid enthalpy suggests an equilibrium partitioning model in which enrichment of ammonia correlates with higher enthalpy vapor.« less

  11. Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Aldama, Chihuahua, Mexico.

    PubMed

    Colmenero Sujo, L; Montero Cabrera, M E; Villalba, L; Rentería Villalobos, M; Torres Moye, E; García León, M; García-Tenorio, R; Mireles García, F; Herrera Peraza, E F; Sánchez Aroche, D

    2004-01-01

    High-resolution gamma spectrometry was used to determine the concentration of 40K, 238U and 232Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m3; the radon concentrations detected exceeded 148 Bq/m3 in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m3. The high activity of 238U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.

  12. Prediction of indoor radon/thoron concentration in a model room from exhalation rates of building materials for different ventilation rates

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Sharma, Navjeet; Sarin, Amit

    2018-05-01

    Studies have confirmed that elevated levels of radon/thoron in the human-environments can substantially increase the risk of lung cancer in general population. The building materials are the second largest contributors to indoor radon/thoron after soil and bedrock beneath dwellings. In present investigation, the exhalation rates of radon/thoron from different building materials samples have been analysed using active technique. Radon/thoron concentrations in a model room have been predicted based on the exhalation rates from walls, floor and roof. The indoor concentrations show significant variations depending upon the ventilation rate and type of building materials used.

  13. Development of a real-time radon monitoring system for simultaneous measurements in multiple sites

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Yamasoto, K.; Iida, T.

    1999-12-01

    A real-time radon monitoring system that can simultaneously measure radon concentrations in multiple sites was developed and tested. The system consists of maximum of four radon detectors, optical fiber cables and a data acquisition personal computer. The radon detector uses a plastic scintillation counter that collects radon daughters in the chamber electrostatically. The applied voltage on the photocathode for the photomultiplier tube (PMT) acts as an electrode for radon daughters. The thickness of the plastic scintillator was thin, 50 /spl mu/m, so as to minimize the background counts due to the environmental gamma rays or beta particles. The energy discriminated signals from the radon detectors are fed to the data acquisition personal computer via optical fiber cables. The system made it possible to measure the radon concentrations in multiple sites simultaneously.

  14. Survey of Indoor Radon Concentrations in California Elementary Schools. Final Report.

    ERIC Educational Resources Information Center

    Zhou, Joey Y.; Liu, Kai-Shen; Waldman, Jed

    This paper reports on the concentrations of radon found within a sample of 378 elementary schools in California. Long-term alpha-track radon detectors were placed in 6,485 classrooms within participating schools to detect radon levels for between 220 to 366 days. Only classrooms were tested. Results show that about 5.6 percent of the schools…

  15. ASSESSMENT OF RADON IN SOIL AND WATER IN DIFFERENT REGIONS OF KOLHAPUR DISTRICT, MAHARASHTRA, INDIA.

    PubMed

    Raste, P M; Sahoo, B K; Gaware, J J; Sharma, Anil; Waikar, M R; Shaikh, A A; Sonkawade, R G

    2018-03-19

    Researchers have already established that inhalation of high radon concentration is hazardous to human health. Radon concentration has been measured in water and soil, in various part of Kolhapur district has been carried out by the AQTEK Smart RnDuo which is an active device technique. The observed minimum value of the radon mass exhalation rate of the soil is 13.16 ± 0.83 mBq/kg/h and maximum is 35.11 ± 1.84 mBq/kg/h. The minimum value of the Radon concentration in water is 0.33 ± 0.052 Bq/L and maximum is 7.32 ± 0.078 Bq/L. These values of radon concentration are below the action of recommended level by the USEPA, which is set as the maximum contaminant level of 11.1-148 Bq/L of radon in drinking water. Total annual effective dose rate of water is 11 μSv/y. The purpose of present study is to assess radiological risk from consumption of water that provide in Kolhapur district and to evaluate the radon mass exhalation rate of soil in few places of Kolhapur district.

  16. Correlative and multivariate analysis of increased radon concentration in underground laboratory.

    PubMed

    Maletić, Dimitrije M; Udovičić, Vladimir I; Banjanac, Radomir M; Joković, Dejan R; Dragić, Aleksandar L; Veselinović, Nikola B; Filipović, Jelena

    2014-11-01

    The results of analysis using correlative and multivariate methods, as developed for data analysis in high-energy physics and implemented in the Toolkit for Multivariate Analysis software package, of the relations of the variation of increased radon concentration with climate variables in shallow underground laboratory is presented. Multivariate regression analysis identified a number of multivariate methods which can give a good evaluation of increased radon concentrations based on climate variables. The use of the multivariate regression methods will enable the investigation of the relations of specific climate variable with increased radon concentrations by analysis of regression methods resulting in 'mapped' underlying functional behaviour of radon concentrations depending on a wide spectrum of climate variables. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Quantile regression and Bayesian cluster detection to identify radon prone areas.

    PubMed

    Sarra, Annalina; Fontanella, Lara; Valentini, Pasquale; Palermi, Sergio

    2016-11-01

    Albeit the dominant source of radon in indoor environments is the geology of the territory, many studies have demonstrated that indoor radon concentrations also depend on dwelling-specific characteristics. Following a stepwise analysis, in this study we propose a combined approach to delineate radon prone areas. We first investigate the impact of various building covariates on indoor radon concentrations. To achieve a more complete picture of this association, we exploit the flexible formulation of a Bayesian spatial quantile regression, which is also equipped with parameters that controls the spatial dependence across data. The quantitative knowledge of the influence of each significant building-specific factor on the measured radon levels is employed to predict the radon concentrations that would have been found if the sampled buildings had possessed standard characteristics. Those normalised radon measures should reflect the geogenic radon potential of the underlying ground, which is a quantity directly related to the geological environment. The second stage of the analysis is aimed at identifying radon prone areas, and to this end, we adopt a Bayesian model for spatial cluster detection using as reference unit the building with standard characteristics. The case study is based on a data set of more than 2000 indoor radon measures, available for the Abruzzo region (Central Italy) and collected by the Agency of Environmental Protection of Abruzzo, during several indoor radon monitoring surveys. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Radon measurements in the Gran Sasso Underground Laboratory.

    PubMed

    Arpesella, C; Bam, B B; Bassignani, A; Cecchini, S; Colombo, G; Dekhissi, H; Fresca Fantoni, R; Giacomelli, G; Lembo, L; Maltoni, G; Mandrioli, G; Patrizii, L; Sartorio, C; Serra, P; Togo, V; Vilela, E

    1997-04-01

    Systematic radon monitoring in the Gran Sasso Underground Laboratory was performed in order to determine the background radon contribution to the sophisticated experimental apparatus and to check health physics standards for the personnel. As expected, the radon concentrations were found to depend strongly on the ventilation in the three experimental halls. Considerable reductions in the radon concentrations were obtained in 1993, when fresh air was drawn into the laboratory through a pipe and exhaust air was routed into the highway tunnel.

  19. Radiological risk assessment of environmental radon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan

    Measurements of radon gas ({sup 222}Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the {sup 226}Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based onmore » the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m{sup −3} to 571.1 ± 251.4 Bq m{sup −3}, 101.0 ± 41.0 Bq m{sup −3} to 245.3 ± 100.2 Bq m{sup −3}, 53.1 ± 7.5 Bq m{sup −3} to 181.8 ± 9.7 Bq m{sup −3}, 256.1 ± 59.3 Bq m{sup −3} to 652.2 ± 222.2 Bq m{sup −3} and 164.5 ± 75.9 Bq m{sup −3} to 653.3 ± 240.0 Bq m{sup −3}, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m{sup −3}, 192.1 ± 75.4 Bq m{sup −3}, 176.1 ± 85.9 Bq m{sup −3} and 28.4 ± 5.7 Bq m{sup −3}, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the action level for radon gas of 148 Bq m{sup −3} proposed by EPA except monazite 0.15 kg, struverite 0.15 kg and 0.25 kg. Whereas, all building material samples have exceeded the radon concentration in concrete and building materials of 3 to 7 Bq m{sup −3} estimated by ICRP. The annual effective dose, effective dose equivalent, and radon exhalation rates in tin tailings were calculated to be in the range of 2.47 to 11.46 mSv, 5.94 to 1090.56 mSv y{sup −1}, and 0.23 to 1.18 mBq kg{sup −1} h{sup −1}. For building materials, the calculated risk assessment of the annual effective dose, effective dose equivalent, radon exhalation rates and fatal cancer risk were 0.72 to 10.00 mSv, 1.73 to 24.00 mSv y{sup −1}, 0.010 to 0.06 mBq kg{sup −1} h{sup −1} and 40 to 550 chances of persons will suffer the cancer per million (1 × 10{sup 6}), respectively.« less

  20. Radon mitigation at Birch Cliff Public School.

    PubMed

    Moridi, R; Becker, E

    1996-01-01

    In 1991, Canadian Institute for Radiation Safety (CAIRS) conducted a radon screening program in all Metropolitan Toronto public schools. Birch Cliff Public School had a radon progeny level higher than the action level of 4.16 x 10(-7) Jm-3 (20 mWL). Follow-up radon testing was carried out at the school. Locations on the ground floor and in the basement were tested. All locations on the ground floor had radon progeny levels below the action level. Six locations in the basement had readings above the action level. All cracks and openings in the basement were sealed and a new heating/ventilating (HV) system for the basement was designed and installed. Then, the basement was tested again. Radon progeny levels are now well below the action level with an average of 7.43 x 10(-8) Jm-3 (3.57 mWL). This is about one fifth of the average radon progeny level found in the first stage of follow-up testing.

  1. Canadian population risk of radon induced lung cancer: a re-assessment based on the recent cross-Canada radon survey

    PubMed Central

    Chen, J.; Moir, D.; Whyte, J.

    2012-01-01

    Exposure to indoor radon has been determined to be the second leading cause of lung cancer after tobacco smoking. Canadian population risk of radon induced lung cancer was assessed in 2005 with the radon distribution characteristics determined from a radon survey carried out in the late 1970s in 19 cities. In that survey, a grab sampling method was used to measure radon levels. The observed radon concentration in 14 000 Canadian homes surveyed followed a log–normal distribution with a geometric mean (GM) of 11.2 Bq m–3 and a geometric standard deviation (GSD) of 3.9. Based on the information from that survey, it was estimated that ∼10 % of lung cancers in Canada resulted from indoor radon exposure. To gain a better understanding of radon concentrations in homes across the country, a national residential radon survey was launched in April 2009. In the recent survey, long-term (3 month or longer) indoor radon measurements were made in roughly 14 000 homes in 121 health regions across Canada. The observed radon concentrations follow, as expected, a log–normal distribution with a GM of 41.9 Bq m–3 and a GSD of 2.8. Based on the more accurate radon distribution characteristics obtained from the recent cross-Canada radon survey, a re-assessment of Canadian population risk for radon induced lung cancer was undertaken. The theoretical estimates show that 16 % of lung cancer deaths among Canadians are attributable to indoor radon exposure. These results strongly suggest the ongoing need for the Canadian National Radon Program. In particular, there is a need for a focus on education and awareness by all levels of government, and in partnership with key stakeholders, to encourage Canadians to take action to reduce the risk from indoor radon exposure. PMID:22874897

  2. Radon as a causative factor in induction of myeloid leukaemia and other cancers.

    PubMed

    Henshaw, D L; Eatough, J P; Richardson, R B

    1990-04-28

    The international incidence of myeloid leukaemia, cancer of the kidney, melanoma, and certain childhood cancers all show significant correlation with radon exposure in the home. For myeloid leukaemia, analysis suggests that in the UK 6-12% of incidence may be attributed to radon. In Cornwall, where radon levels are higher, the range is 23-43%. For the world average radon exposure of 50 Bq.m-3, 13-25% of myeloid leukaemia at all ages may be caused by radon.

  3. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances.

    PubMed

    Pornnumpa, C; Tokonami, S; Sorimachi, A; Kranrod, C

    2015-11-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. St. Louis Airport Site. Annual site environmental report, calendar year 1985. Formerly Utilized Sites Remedial Action Program (FUSRAP). Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    During 1985, the environmental monitoring program was continued at the St. Louis Airport Site (SLAPS) in St. Louis County, Missouri. The ditches north and south of the site have been designated for cleanup as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The monitoring program at the SLAPS measures radon gas concentrations in air; external gamma radiation dose rates; and uranium, thorium, and radium concentrations in surface water, groundwater, and sediment. Potential radiation doses to the public are also calculated. Because the site is not controlled or regulated by the DOE, the DOE Derived Concentration Guides (DCGs) aremore » not applicable to SLAPS, but are included only as a basis for comparison. The DOE DCGs and the DOE radiation protection standard have been revised. (Appendix B). During 1985, annual average radon levels in air at the SLAPS were below the DCG for uncontrolled areas. External gamma monitoring in 1985 showed measured annual gamma dose rates ranging from 3 to 2087 mrem/y, with the highest value occurring in an area known to be contaminated. The calculated maximum dose at the site boundary, assuming limited occupancy, would be 6 mrem/y. Average annual concentrations of /sup 230/Th, /sup 226/Ra, and total uranium in surface waters remained below the DOE DCG. The on-site groundwater measurements showed that average annual concentrations of /sup 230/Th, /sup 226/Ra and total uranium were within the DOE DCGs. Although there are no DCGs for sediments, all concentrations of total uraniu, /sup 230/Th, and /sup 226/Ra were below the FUSRAP Guidelines.« less

  5. Association of School District Policies for Radon Testing and Radon-Resistant New Construction Practices with Indoor Radon Zones.

    PubMed

    Foster, Stephanie; Everett Jones, Sherry

    2016-12-13

    Radon is a naturally occurring, colorless, odorless, and tasteless radioactive gas. Without testing, its presence is unknown. Using nationally representative data from the 2012 School Health Policies and Practices Study, we examined whether the prevalence of school district policies for radon testing and for radon-resistant new construction practices varied by district location in relation to the U.S. Environmental Protection Agency Map of Radon Zones. Among school districts located in counties with high predicted average indoor radon, 42.4% had policies for radon testing and 37.5% had policies for radon-resistant new construction practices. These findings suggest a critical need for improved awareness among policy makers regarding potential radon exposure for both students and school staff.

  6. Association of School District Policies for Radon Testing and Radon-Resistant New Construction Practices with Indoor Radon Zones

    PubMed Central

    Foster, Stephanie; Everett Jones, Sherry

    2016-01-01

    Radon is a naturally occurring, colorless, odorless, and tasteless radioactive gas. Without testing, its presence is unknown. Using nationally representative data from the 2012 School Health Policies and Practices Study, we examined whether the prevalence of school district policies for radon testing and for radon-resistant new construction practices varied by district location in relation to the U.S. Environmental Protection Agency Map of Radon Zones. Among school districts located in counties with high predicted average indoor radon, 42.4% had policies for radon testing and 37.5% had policies for radon-resistant new construction practices. These findings suggest a critical need for improved awareness among policy makers regarding potential radon exposure for both students and school staff. PMID:27983613

  7. Radon and temperature as tracer of geothermal flow system: application to Arxan geothermal system, Northeastern China

    NASA Astrophysics Data System (ADS)

    Gu, X.; Shao, J.; Cui, Y.

    2017-12-01

    In this work, hydrogeological and hydrochemical investigations were applied to explain geothermal system factors controlling groundwater mineralization in Arxan geothermal system, Northeastern China. Geothermal water samples were collected from different locations (thermal baths and wells). Radon concentrations of water samples representing different water types and depths were controlled using RAD7. In addition to radon concentration, physical parameters such as temperature (T), pH, electrical conductivity (EC) and TDS were measured in situ, while major ions were analyzed in laboratory. Temperature spatial variability in the study area was described using kriging interpolation method. Hydrochemical analysis and thermal parameters suggest two distinct hydrogeological systems. The first type was dominated by a moderate temperature (25 41°C) with a chemical facies Na-HCO3, which characterizes Jurassic deep water. The second water type was characterized by Ca.Na-HCO3 type with a temperature <25 °C and represents the shallow aquifer. Superficial aquifer displays higher radon concentration (37 to 130 Bq/L), while deep groundwater from Jurassic aquifer shows relatively a low radon concentration (6 to 57.4 Bq/L). Seasonal and geographical variations of radon give insight into the processes controlling radon activities in the Arxan groundwater. Radon concentrations along with spatial distribution of water temperature reveal the existence of vertical communication between shallow aquifer and deep Jurassic aquifer through vertical faults and fractures system, the emanation of radon from thermal water and groundwater is controlled by the geological structure of the area. Furthermore, the knowledge and conclusion demonstrates that combined use of radon and temperature as tracers can give insight into the characteristics of geological structure and geothermal flow system.

  8. Preventive and curative effects of radon inhalation on chronic constriction injury-induced neuropathic pain in mice.

    PubMed

    Yamato, K; Kataoka, T; Nishiyama, Y; Taguchi, T; Yamaoka, K

    2013-04-01

    Radon therapy is clinically useful for the treatment of pain-related diseases. However, there have been no studies regarding the effects of radon inhalation on neuropathic pain. In this study, we aimed to determine whether radon inhalation actually induced a remission of neuropathic pain and improved the quality of life. First, we investigated the antinociceptive effects of radon inhalation in the chronic constriction injury (CCI) model of neuropathic pain. We evaluated pain behaviour in mice before and after CCI surgery, using von Frey test. Pretreated mice received CCI surgery immediately after 24-h inhalation of radon at background (BG) concentration (c. 19 Bq/m(3) ), or at a concentration of 1000 or 2000 Bq/m(3) , and post-treated mice inhaled similar levels of radon 2 days after CCI surgery. CCI surgery induced mechanical allodynia and hyperalgesia on a plantar surface of mice, as assessed using von Frey test, and 2000 Bq/m(3) radon inhalation alleviated hyperalgesic conditions 22-37% compared to BG level concentration. Concurrently, CCI surgery increased norepinephrine (NE), tumour necrosis factor-alpha (TNF-α) and nitric oxide (NO) concentrations in plasma, and leukocyte migration in paws. Furthermore, CCI-induced neuropathy reduced superoxide dismutase (SOD) activity. Treatment with radon inhalation, specifically at a concentration of 2000 Bq/m(3) , produced antinociceptive effects, i.e., lowered plasma TNF-α, NE and NO levels and restored SOD activity, as well as pain-related behaviour. This study showed that inhalation of 2000 Bq/m(3) radon prevented and alleviated CCI-induced neuropathic pain in mice. © 2012 European Federation of International Association for the Study of Pain Chapters.

  9. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    PubMed

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Radon exhalation of hardening concrete: monitoring cement hydration and prediction of radon concentration in construction site.

    PubMed

    Kovler, Konstantin

    2006-01-01

    The unique properties of radon as a noble gas are used for monitoring cement hydration and microstructural transformations in cementitious system. It is found that the radon concentration curve for hydrating cement paste enclosed in the chamber increases from zero (more accurately - background) concentrations, similar to unhydrated cement. However, radon concentrations developed within 3 days in the test chamber containing cement paste were approximately 20 times higher than those of unhydrated cement. This fact proves the importance of microstructural transformations taking place in the process of cement hydration, in comparison with cement grain, which is a time-stable material. It is concluded that monitoring cement hydration by means of radon exhalation method makes it possible to distinguish between three main stages, which are readily seen in the time dependence of radon concentration: stage I (dormant period), stage II (setting and intensive microstructural transformations) and stage III (densification of the structure and drying). The information presented improves our understanding of the main physical mechanisms resulting in the characteristic behavior of radon exhalation in the course of cement hydration. The maximum value of radon exhalation rate observed, when cement sets, can reach 0.6 mBq kg(-1) s(-1) and sometimes exceeds 1.0 mBq kg(-1) s(-1). These values exceed significantly to those known before for cementitious materials. At the same time, the minimum ventilation rate accepted in the design practice (0.5 h(-1)), guarantees that the concentrations in most of the cases will not exceed the action level and that they are not of any radiological concern for construction workers employed in concreting in closed spaces.

  11. Diurnal and seasonal variations of concentration and size distribution of nano aerosols (10-1100 nm) enclosing radon decay products in the Postojna Cave, Slovenia.

    PubMed

    Bezek, M; Gregoric, A; Kávási, N; Vaupotic, J

    2012-11-01

    At the lowest point along the tourist route in the Postojna Cave, the activity concentration of radon ((222)Rn) short-lived decay products and number concentration and size distribution of background aerosol particles in the size range of 10-1100 nm were measured. In the warm yearly season, aerosol concentration was low (52 cm(-3)) with 21 % particles smaller than 50 nm, while in the cold season, it was higher (1238 cm(-3)) with 8 % of <50 nm particles. Radon activity concentrations were 4489 and 1108 Bq m(-3), and fractions of unattached radon decay products were 0.62 and 0.13, respectively.

  12. Canadian individual risks of radon-induced lung cancer for different exposure profiles.

    PubMed

    Chen, Jing

    2005-01-01

    Indoor radon has been determined to be the second leading cause of lung cancer after tobacco smoking. There is an increasing need among radiation practitioners to have numerical values of lung cancer risks for men and women, ever-smokers and never-smokers exposed to radon in homes. This study evaluates individual risks for the Canadian population exposed to radon in homes at different radon concentrations and for different periods of their lives. Based on the risk model developed recently by U.S. Environmental Protection Agency (EPA), individual risks of radon-induced lung cancers are calculated with Canadian age-specific rates for overall and lung cancer mortalities (1996-2000) as well as the Canadian smoking prevalence data in 2002. Convenient tables of lifetime relative risks are constructed for lifetime exposures and short exposures between any two age intervals from 0 to 110, and for various radon concentrations found in homes from 50 to 1000 Bq/m3. The risk of developing lung cancer from residential radon exposure increases with radon concentration and exposure duration. For short exposure periods, such as 10 or 20 years, risks are higher in middle age groups (30-50) compared especially to the later years. Individuals could lower their risks significantly by reducing radon levels earlier in life. The tables could help radiation protection practitioners to better communicate indoor radon risk to members of the public.

  13. Investigation of Ground-Water Availability and Quality in Orange County, North Carolina

    USGS Publications Warehouse

    Cunningham, William L.; Daniel, Charles C.

    2001-01-01

    A countywide inventory was conducted of 649 wells in nine hydrogeologic units in Orange County, North Carolina. As a result of this inventory, estimates of ground-water availability and use were calculated, and water-quality results were obtained from 51 wells sampled throughout the County from December 1998 through January 1999. The typical well in Orange County has an average depth of 208 feet, an average casing length of 53.6 feet, a static water level of 26.6 feet, a yield of 17.6 gallons per minute, and a well casing diameter of 6.25 inches. The saturated thickness of the regolith averages 27.0 feet and the yield per foot of total well depth averages 0.119 gallon per minute per foot. Two areas of the County are more favorable for high-yield wells—a west-southwest to east-northeast trending area in the northwestern part of the County, and a southwest to northeast trending area in the southwestern part of the County. Well yields in Orange County show little correlation with topographic or hydrogeologic setting.Fifty-one sampling locations were selected based on (a) countywide areal distribution, (b) weighted distribution among hydrogeologic units, and (c) permission from homeowners. The list of analytes for the sampling program consisted of common anions and cations, metals and trace elements, nutrients, organic compounds, and radon. Samples were screened for the presence of fuel compounds and pesticides by using immuno-assay techniques. Dissolved oxygen, pH, temperature, specific conductance, and alkalinity were measured in the field. The median pH was 6.9, which is nearly neutral, and the median hardness was 75 milligrams per liter calcium carbonate. The median dissolved solids concentration was 125 milligrams per liter, and the median specific conductance was 175 microsiemens per centimeter at 25 degrees Celsius. Orange County ground water is classified as a calcium-bicarbonate type.High nutrient concentrations were not found in samples collected for this study. Nitrate was detected in 82 percent of the samples at concentrations ranging up to 7.2 milligrams per liter, although the median concentration was 0.49 milligram per liter; all other samples had a concentration of 2.9 milligrams per liter or less. In general, trace elements were detected infrequently or at concentrations less than State drinking-water standards. However, exceedances of North Carolina drinking-water standards were observed for iron (3 exceedances of 51 analyses, detection up to 1,100 micrograms per liter), manganese (12 exceedances of 51 analyses, detection up to 890 micrograms per liter), and zinc (4 exceedances of 31 analyses, detection up to 4,900 micrograms per liter). Lead was detected in 8 of 31 samples with a concentration up to 3.5 micrograms per liter. Zinc, manganese, iron, and copper were the most frequently detected trace metals at 100, 94, 80, and 61 percent, respectively. Lead, arsenic, bromide, alum inum, and selenium were detected in 13 to 26 percent of the analyses. No benzene, toluene, ethylbenzene, and xylene (BTEX) or atrazine compounds were detected in any of the samples.Radon activities in ground water can be high because of the rock units present in Orange County. Radon activity ranged from 38 to 4,462 picocuries per liter countywide, with a median activity of 405 picocuries per liter. Median radon activities in Orange County were highest in felsic rocks (487 picocuries per liter) and lowest in mafic rocks (357 picocuries per liter). When evaluated by individual hydrogeologic units, the median radon activity was highest in the phyllite unit (1,080 picocuries per liter in 2 samples) and the felsic metaigneous unit (571 picocuries per liter in 13 samples).Overall, water-quality data in Orange County indicate few drinking-water concerns. No organic contaminants analyzed (total BTEX and atrazine) or excessive nutrient concentrations were detected, and few exceedances of North Carolina drinking- water standards were detected.

  14. Additional contamination when radon is in excess.

    PubMed

    Martín Sánchez, A; de la Torre Pérez, J; Ruano Sánchez, A B; Naranjo Correa, F L

    2013-11-01

    A study of the behavior of the (222)Rn progeny on clothes, skin and hair has been performed in a place with very high radon concentration. In the past, radon concentration was established to be about 32 kBq/m(3) in a very high humidity environment inside a tourist cave in Extremadura (Spain). The results show that (222)Rn daughters are adhered on clothes, skin and hair, adding some radioactive concentration to that due to radon and its progeny existing in the breathable air. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Seasonal Variability in European Radon Measurements

    NASA Astrophysics Data System (ADS)

    Groves-Kirkby, C. J.; Denman, A. R.; Phillips, P. S.; Crockett, R. G. M.; Sinclair, J. M.

    2009-04-01

    In temperate climates, domestic radon concentration levels are generally seasonally dependent, the level in the home reflecting the convolution of two time-dependent functions. These are the source soil-gas radon concentration itself, and the principal force driving radon into the building from the soil, namely the pressure-difference between interior and exterior environment. While the meteorological influence can be regarded as relatively uniform on a European scale, its variability being defined largely by the influence of North-Atlantic weather systems, soil-gas radon is generally more variable as it is essentially geologically dependent. Seasonal variability of domestic radon concentration can therefore be expected to exhibit geographical variability, as is indeed the case. To compensate for the variability of domestic radon levels when assessing the long term radon health risks, the results of individual short-term measurements are generally converted to equivalent mean annual levels by application of a Seasonal Correction Factor (SCF). This is a multiplying factor, typically derived from measurements of a large number of homes, applied to the measured short-term radon concentration to provide a meaningful annual mean concentration for dose-estimation purposes. Following concern as to the universal applicability of a single SCF set, detailed studies in both the UK and France have reported location-specific SCF sets for different regions of each country. Further results indicate that SCFs applicable to the UK differ significantly from those applicable elsewhere in Europe and North America in both amplitude and phase, supporting the thesis that seasonal variability in indoor radon concentration cannot realistically be compensated for by a single national or international SCF scheme. Published data characterising the seasonal variability of European national domestic radon concentrations, has been collated and analysed, with the objective of identifying correlations between published datasets and local geographic/geological conditions. Available data included regional SCF figures from the United Kingdom and from France, together with nationally-consolidated results from a number of other European countries. Analysis of this data shows significant variability between different countries and from region to region within those countries where regional data is available. Overall, radon-rich sedimentary geologies, particularly high porosity limestones etc., exhibit high seasonal variation, while radon-rich igneous geologies demonstrate relatively constant, albeit somewhat higher, radon concentration levels. Examples of the former can be found in the Pennines and South Downs in England, Languedoc and Brittany in France. Greatest variability is found in Switzerland, still subject to the ongoing Alpine orogeny, where the inhabited part of the country is largely overlain with recently-deposited light, porous sediments. Low-variability high-radon regions include the granite-rich Cornwall/Devon peninsular in England, and Auvergne and the Ardennes in France, all components of the Devonian-Carboniferous Hercynian belt, which extends from the Iberian peninsular through South-West Ireland and South-West England to France and Germany.

  16. Measurement of radon concentration in super-Kamiokande's buffer gas

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Sekiya, H.; Tasaka, S.; Takeuchi, Y.; Wendell, R. A.; Matsubara, M.; Nakahata, M.

    2017-09-01

    To precisely measure radon concentrations in purified air supplied to the Super-Kamiokande detector as a buffer gas, we have developed a highly sensitive radon detector with an intrinsic background as low as 0 . 33 ± 0 . 07 mBq /m3. In this article, we discuss the construction and calibration of this detector as well as results of its application to the measurement and monitoring of the buffer gas layer above Super-Kamiokande. In March 2013, the chilled activated charcoal system used to remove radon in the input buffer gas was upgraded. After this improvement, a dramatic reduction in the radon concentration of the supply gas down to 0 . 08 ± 0 . 07 mBq /m3. Additionally, the Rn concentration of the in-situ buffer gas has been measured 28 . 8 ± 1 . 7 mBq /m3 using the new radon detector. Based on these measurements we have determined that the dominant source of Rn in the buffer gas arises from contamination from the Super-Kamiokande tank itself.

  17. A Study Of The Atmospheric Boundary Layer Using Radon And Air Pollutants As Tracers

    NASA Astrophysics Data System (ADS)

    Kataoka, Toshio; Yunoki, Eiji; Shimizu, Mitsuo; Mori, Tadashige; Tsukamoto, Osamu; Ohashi, Yukitaka, Sahashi, Ken; Maitani, Toshihiko; Miyashita, Koh'ichi; Iwata, Toru; Fujikawa, Yoko; Kudo, Akira; Shaw, Roger H.

    Concentrations of radon 222Rn andair pollutants, meteorological parametersnear the surface and vertical profiles of meteorological elements were measured atUchio (Okayama City, Okayama Prefecture, Japan) 12 km north from the coast ofthe Inland Sea of Japan. In the nighttime, the 222Rn concentration increased in the case of weak winds, but did not increase as much in the case of moderate or strong winds, as had been expected. In the daytime, the 222Rn concentrationheld at a slightly higher than average level for the period from sunrise to about 1100 JST. It is considered that this phenomenon is due to a period of morning calm, that is, a transition period from land breeze to sea breeze.NO, which is sensitive to traffic volume,brought information concerning advection.Oxidant concentrations,which reflect the availability of sunlight,acted in the reverse manner to 222Rnconcentrations. Thus, a set of 222Rn and air pollutants could provide useful information regarding the local conditions of the atmospheric boundary layer.

  18. Low-Cost Radon Reduction Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, William B.; Francisco, Paul W.; Merrin, Zachary

    The aim of the research was to conduct a primary scoping study on the impact of air sealing between the foundation and the living space on radon transport reduction across the foundation-living space floor assembly. Fifteen homes in the Champaign, Illinois area participated in the study. These homes were instrumented for hourly continuous radon measurements and simultaneous temperature and humidity the foundation was improved. However, this improved isolation did not lead to significant reductions in radon concentration in the living space. Other factors such as outdoor temperature were shown to have an impact on radon concentration.

  19. Development of a System to Perform, Record, and Analyze Measurements of Radon Concentrations on a Large Scale.

    DTIC Science & Technology

    1990-10-01

    Radiation Protection and Measurements. Measurement of Radon and Radon Daughters in Air, NCRP Report No. 97. 1988. 2. Cohen, Bernard L., et al. "Theory and...Measurements. Measurement of Radon and Radon Daughters in Air, NCRP Report No. 97. 1988. 4. Stein, Lawrence. "Chemical Properties of Radon," Radon and Its...Measurement of Radon and Radon Daughters in Air, NCRP Report No. 97. 1988. 6. Frame, R. "Radon and Its Daughters." ORNL Briefing, June 16, 1989. 7

  20. Evaluation of the intake of radon through skin from thermal water

    PubMed Central

    Sakoda, Akihiro; Ishimori, Yuu; Tschiersch, Jochen

    2016-01-01

    The biokinetics of radon in the body has previously been studied with the assumption that its absorption through the skin is negligibly small. This assumption would be acceptable except in specific situations, such as bathing in a radon hot spring where the radon concentration in thermal water is far higher than that in air. The present study focused on such a situation in order to better understand the biokinetics of radon. To mathematically express the entry of radon through the skin into the body, we first modified the latest sophisticated biokinetic model for noble gases. Values of an important parameter for the model—the skin permeability coefficient K (m s−1)—were derived using data from previous human studies. The analysis of such empirical data, which corresponded to radon concentrations in the air exhaled by subjects during and following bathing in radon-rich thermal water, revealed that the estimated K values had a log-normal distribution. The validity of the K values and the characteristics of the present model are then discussed. Furthermore, the impact of the intake of radon or its progeny via inhalation or skin absorption on radiation dose was also assessed for possible exposure scenarios in a radon hot spring. It was concluded that, depending on the radon concentration in thermal water, there might be situations in which the dose contribution resulting from skin absorption of radon is comparable to that resulting from inhalation of radon and its progeny. This conclusion can also apply to other therapeutic situations (e.g. staying in the pool for a longer period). PMID:26983980

  1. Possible association between mutant frequency in peripheral lymphocytes and domestic radon concentrations.

    PubMed

    Bridges, B A; Cole, J; Arlett, C F; Green, M H; Waugh, A P; Beare, D; Henshaw, D L; Last, R D

    1991-05-18

    To investigate whether previously found geographical correlations between leukaemia incidence and exposure to radon are reflected in a detectable mutagenic effect on individuals, the frequency of mutations in the hypoxanthine guanine phosphoribosyl transferase gene (hprt) in peripheral blood T lymphocytes was measured in subjects with known domestic radon concentrations. These concentrations were measured in December, 1989, in houses in Street, Somerset, UK, by passive alpha-track radon detectors. 20 non-smoking subjects aged 36-55 years were selected from the patient list at the local health centre on the basis of the radon concentrations in their homes--the range selected varied by a factor of ten. Blood samples for preparation of T lymphocytes were taken in July, 1990. There was a significant association between the log mutant frequency and radon concentration (t = 3.47, p less than 0.01). A second analysis of a further set of radon measurements (October, 1990, to January, 1991), in both living rooms and bedrooms, and repeated mutant frequency determinations also showed a significant relation, which remained significant even after exclusion of the highest frequency and adjustment for subject's age and cloning efficiency. These data must be regarded as preliminary and further more extensive studies should be done to determine whether the observed association is causal.

  2. Concentrations of 222Rn and its short-lived decay products at a number of greek radon spas

    NASA Astrophysics Data System (ADS)

    Kritidis, P.; Angelou, P.

    1986-11-01

    A series of measurements has been performed in 9 radon therapy centers in order to determine concentration levels of radon and its decay products in the air and to assess the related personnel and patient annual doses.

  3. Geohydrologic, geochemical, and geologic controls on the occurrence of radon in ground water near Conifer, Colorado, USA

    USGS Publications Warehouse

    Lawrence, E.; Poeter, E.; Wanty, R.

    1991-01-01

    Integrated studies of geohydrology, geochemistry, and geology of crystalline rocks in the vicinity of Conifer, Colorado, reveal that radon concentrations do not correlate with variations in concentrations of other dissolved species. Concentrations of major ions show systematic variations along selected groundwater flowpaths, whereas radon concentrations are dependent on local geochemical and geologic phenomena (such as localized uranium concentration in the rock or the presence of faults or folds). When radon enters the flow system, concentrations do not increase along flowpaths because its decay rate is fast relative to groundwater flow rates. Radon-222 is not in secular equilibrium with 238U and 226Ra in the water. Therefore, most of the 238U and 226Ra necessary to support the waterborne 222Rn must be present locally in the rock. High concentrations of dissolved radon are not found in zones of high transmissivity, and transmissivity is not correlated with rock type in the study area. A higher transmissivity can be indicative of higher water-volume to rock-surface-area ratios, which could effectively dilute 222Rn entering the water and/or may indicate that emanated radon is carried away more rapidly. Water samples collected from individual wells over periods of several months showed significant fluctuations in the dissolved 222Rn content. This fluctuation may be controlled by changes in the contributions of water-producing zones within the well resulting from seasonal fluctuations of the water table and/or pumping stresses. ?? 1991.

  4. Seismo-volcanic monitoring at Furnas Volcano (Azores): radon (222Rn) concentration in groundwater

    NASA Astrophysics Data System (ADS)

    Silva, Catarina; Virgílio Cruz, José; Ferreira, Teresa; Viveiros, Fátima; Freire, Pedro; Allard, Patrick

    2017-04-01

    The Azores archipelago, located in the middle of the North Atlantic Ocean, is composed of nine volcanic islands that formed at the triple junction of the North American, Eurasian and African (Nubian) tectonic plates. These volcanic islands were the sites of several eruptions and destructive earthquakes since human settlement in the 15th century. S. Miguel Island, the largest and most densely populated island of the Azores, hosts three active strato-volcanoes with calderas. Furnas Volcano is one of these. Its eruptive activity has been essentially explosive, involving magmas with trachytic (s.l.) composition. In the last 5000 years at least 10 explosive eruptions occurred inside the caldera of Furnas. The last one occurred in 1630 and was subplinian in character. Since then an intense hydrothermal activity has persisted, involving four main fumarolic fields, thermal springs, CO2-rich springs, several soil diffuse degassing areas (CO2 and 222Rn), as well as occasional hydrothermal explosions. In the past decade we have developed a radon survey of Furnas hydrothermal manifestations. Here we report on the radon survey of twelve water springs, located inside the caldera, and representative of the different water types encountered at the volcano (orthothermal, thermal and CO2-rich springs). Bimonthly sampling and determination of radon activity and water temperature was performed in the selected springs between years 2007 and 2011. At each sampling point two water samples were collected for radon dosing in laboratory with the RAD7 equipment. A decay correction was applied to each sample. The average radon activities were found to vary between 1.15 Bq/L and 29.77 Bq/L, while water temperatures ranged between 16.5 °C and 76.2 °C. As a whole radon activities inversely correlate with water temperature, with orthothermal springs showing higher radon activity than thermal springs. Temporal variations in both parameters appear to be mainly determined by seasonal variations of environmental conditions as soil temperature, rainfall and soil water content, rather than by volcanic activity, with the exception of one spring where radon activity seems to change more closely relate to the seismic activity of Furnas Volcano. Because some of the surveyed waters are often drunk by the local population and tourists, our results are also useful in a public health perspective. We conclude that the measured radon activities do not pose any health problem, as they remain under the safety threshold (100 Bq/L) defined by the World Health Organization. The research performed allowed to define the radon background for each one of the groundwater discharges sampled and to identify the environmental parameters that can influence the radon concentration in the groundwater of Furnas Volcano, allowing more easily to identify a future reactivation of this volcanic system.

  5. Influence of architectural style on indoor radon concentration in a radon prone area: A case study.

    PubMed

    Baeza, A; García-Paniagua, J; Guillén, J; Montalbán, B

    2018-01-01

    Indoor radon is a major health concern as it is a known carcinogenic. Nowadays there is a trend towards a greater energy conservation in buildings, which is reflected in an increasing number of regulations. But, can this trend increase the indoor radon concentration? In this paper, we selected a radon prone area in Spain and focused on single-family dwellings constructed in a variety of architectural styles. These styles ranged from 1729 up to 2014, with varying construction techniques (from local resources to almost universally standard building materials) and regulations in force (from none to the Spanish regulation in force). The 226 Ra concentrations in soil and surface radon exhalation rates were rather similar in this area, mean values ranging 70-126Bq/kg and 49-100mBq/m 2 ·s, respectively. Indoor radon concentration was generally greater than the contribution from soil exhalation (surface exhalation rates), especially in New dwellings (1980-2014). Its concentration in dwellings built in the Traditional style (1729-1940) was significantly lower than in the new houses. This can be consequence of the air tightness of the dwellings as a consequence of the different regulations in force. In the period covered by the Traditional style, there was no regulation in force, and dwelling had loose air tight. Whereas in recent times, there are mandatory regulations assuring a better air tightness of the buildings. Refurbishment of Traditional dwellings also seems to increase the indoor radon concentration, as they must also comply with the regulations in force. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. An application of the NCRP screening techniques to atmospheric radon releases from the former Feed Materials Production Center near Fernald, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, C.W.

    1999-11-01

    The National Council on Radiation Protection and Measurements has published a series of screening models for releases of radionuclides to the environment. These models have been used to prioritize radionuclides being considered in environmental dose reconstructions. The NCRP atmospheric models are also accepted by the U.S. Nuclear Regulatory Commission for demonstrating compliance with the constraint on releases of airborne radioactive materials to the environment from licenses other than power reactors. This study tested the NCRP atmospheric techniques by comparing annual average predicted air concentrations of radon with measured radon concentrations at 14 locations 43 m to 598 m downwind ofmore » the former US Department of Energy Feed Materials Production Center (FMPC) near Fernald, Ohio, for the period 2 July 1985 to 2 July 1986. Predictions were made using five different sets of meteorological data as input: (1) NCRP default values; (2) composite FMPC site data; (3) data from the Greater Cincinnati Airport; (4) data from the Dayton, Ohio, airport; and (5) data collected at Miami University, located near Oxford, Ohio. Following are the respective medians and ranges of the ratio of the predicted to observed annual radon air concentrations for each of these sources of meterological data: (1) 5.2, 0.9--54; (2) 1.4, 0.1--8.2; (3) 0.7, 0.1--7.2; (4) 0.7, 0.1--8.4; and (5) 0.6, 0.1--10. The stated goal of the NCRP models is to predict doses that do not underpredict actual doses by greater than a factor of 10. In this comparison, all of the meteorological data produced air concentration predictions that meet this criteria. However, to ensure that final doses meet this criterion, one would need to carefully evaluate all assumptions used to calculate dose from each of these air concentrations.« less

  7. An application of the NCRP screening techniques to atmospheric radon releases from the former feed materials production center near Fernald, Ohio. National Council on Radiation Protection and Measurements.

    PubMed

    Miller, C W

    1999-11-01

    The National Council on Radiation Protection and Measurements has published a series of screening models for releases of radionuclides to the environment. These models have been used to prioritize radionuclides being considered in environmental dose reconstructions. The NCRP atmospheric models are also accepted by the U.S. Nuclear Regulatory Commission for demonstrating compliance with the constraint on releases of airborne radioactive materials to the environment from licensees other than power reactors. This study tested the NCRP atmospheric techniques by comparing annual average predicted air concentrations of radon with measured radon concentrations at 14 locations 43 m to 598 m downwind of the former U.S. Department of Energy Feed Materials Production Center (FMPC) near Fernald, Ohio, for the period 2 July 1985 to 2 July 1986. Predictions were made using five different sets of meteorological data as input: (1) NCRP default values; (2) composite FMPC site data; (3) data from the Greater Cincinnati Airport; (4) data from the Dayton, Ohio, airport; and (5) data collected at Miami University, located near Oxford, Ohio. Following are the respective medians and ranges of the ratio of the predicted to observed annual radon air concentrations for each of these sources of meteorological data: (1) 5.2, 0.9-54; (2) 1.4, 0.1-8.2; (3) 0.7, 0.1-7.2; (4) 0.7, 0.1-8.4; and (5) 0.6, 0.1-10. The stated goal of the NCRP models is to predict doses that do not underpredict actual doses by greater than a factor of 10. In this comparison, all of the meteorological data produced air concentration predictions that meet this criteria. However, to ensure that final doses meet this criterion, one would need to carefully evaluate all assumptions used to calculate dose from each of these air concentrations.

  8. Radon levels in drinking water and soil samples of Jodhpur and Nagaur districts of Rajasthan, India.

    PubMed

    Mittal, Sudhir; Rani, Asha; Mehra, Rohit

    2016-07-01

    Radon causes lung cancer when it is trapped inside the lungs. Therefore it is very important to analyze the radon concentration in water and soil samples. In the present investigation, water and soil samples collected from 20 different locations of Jodhpur and Nagaur districts of Northern Rajasthan, India have been studied by using RAD7. The measured radon concentration in water samples varies from 0.5 to 15Bql(-1). The observed values lie within the safe limit as set by UNSCEAR, 2008. The total annual effective dose due to radon in water corresponding to all studied locations has been found to be well within the safe limit of 0.1mSvy(-1) as recommended by World Health Organization (WHO, 2004) and European Council (EU, 1998). The measurements carried out on radon concentration in soil samples reveal a variation from 1750 to 9850Bqm(-3). These results explore that the water of Jodhpur and Nagaur districts is suitable for drinking purpose without posing any health hazard but soil hazards depend upon its permeability and radon concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Radon 222 in drinking water resources of Iran: A systematic review, meta-analysis and probabilistic risk assessment (Monte Carlo simulation).

    PubMed

    Keramati, Hassan; Ghorbani, Raheb; Fakhri, Yadolah; Mousavi Khaneghah, Amin; Conti, Gea Oliveri; Ferrante, Margherita; Ghaderpoori, Mansour; Taghavi, Mahmoud; Baninameh, Zahra; Bay, Abotaleb; Golaki, Mohammad; Moradi, Bigard

    2018-05-01

    The current study was performed to review the conducted studies regarding the concentration of radon 222 in the tap drinking water; furthermore, by estimation of ingestion and inhalation effective dose, the health risk assessment in the adults and children using MCS technique was assessed. All related studies published among January 1990 to October 2016; were screened in the available databases such as Web of Science, PubMed, Science Direct, Scopus, SID, and Irandoc. The total effective dose was estimated by calculating E ing (Effective dose of ingestion) and E inh (Effective dose of inhalation) by Monte Carlo simulation (MCS) method. The range of ND ─ 40.9 Bq/L for radon 222 in water resources was proposed after evaluation of data collected from 13 studies with 1079 samples. The overall concentration of radon 222 in drinking water in Iran was 3.98: 95%CI (3.79 ─ 4.17 Bq/L). Also, the effective ingestion dose of radon 222 in adults age groups was 1.35 times higher than children. The rank order of drinking water resources based on the concentration of radon 222 was Spring > Spring and Well > Well > Spring and Qanat > Tap water. The overall concentration of radon 222 in drinking water in Iran was lower than WHO and EPA standard limits. Also, the rank order regarding area studied based on the concentration of radon 222 was Gillan > Mashhad > Mazandaran > Kerman > Yazd > Tehran > Kermanshah > Golestan > Hormozgan. The effective ingestion dose of radon 222 to consumers in the Gillan, Mashhad, Mazandaran, and Kerman were higher than WHO guidance (0.1 mSv/y). Also except consumers in the Hormozgan, inhalation effective dose radon 222, in the other investigated areas were higher than WHO guidance (0.1 mSv/y). Therefore, it is recommended to conduct the required programs regarding control and elimination of radon 222 concentration in Iranian drinking water supply. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A tentative protocol for measurement of radon availability from the ground

    USGS Publications Warehouse

    Tanner, A.B.

    1988-01-01

    A procedure is being tested in order to determine its suitability for assessing the intrinsic ability of the ground at a particular site to supply radon (222Rn) to a basement structure to be built on the site. The mean migration distance, multiplied by the measured radon concentration gives the "Radon Availability Number' (RAN). Measurements at sites of known indoor radon concentration suggest that RANs below 2 kBq/m2 (5x104 pCi/m2) indicate little chance of elevated indoor radon and RANs above 20 kBq/m2 (5x105 pCi/m2) indicate that elevated indoor radon is likely. The range of uncertainty and the point-to-point and seasonal variations to be expected are under investigation. -from Author

  11. Model-derived dose rates per unit concentration of radon in air in a generic plant geometry.

    PubMed

    Vives i Batlle, J; Smith, A; Vives-Lynch, S; Copplestone, D; Pröhl, G; Strand, T

    2011-11-01

    A model for the derivation of dose rates per unit radon concentration in plants was developed in line with the activities of a Task Group of the International Commission on Radiological Protection (ICRP), aimed at developing more realistic dosimetry for non-human biota. The model considers interception of the unattached and attached fractions of the airborne radon daughters by plant stomata, diffusion of radon gas through stomata, permeation through the plant's epidermis and translocation of deposited activity to plant interior. The endpoint of the model is the derivation of dose conversion coefficients relative to radon gas concentration at ground level. The model predicts that the main contributor to dose is deposition of (214)Po α-activity on the plant surface and that diffusion of radon daughters through the stomata is of relatively minor importance; hence, daily variations have a small effect on total dose.

  12. A comprehensive study of radon levels and associated radiation doses in Himalayan groundwater

    NASA Astrophysics Data System (ADS)

    Prasad, Mukesh; Kumar, G. Anil; Sahoo, B. K.; Ramola, R. C.

    2018-03-01

    The concentration of radon in groundwater is mainly governed by the radium content in the rocks of the aquifer. The internal exposure to high levels of radon in water is directly associated with the radiological risk to members of public. In this work, radon concentrations were measured in groundwater of Garhwal Himalaya, India, using scintillation detector-based RnDuo and silicon detector-based RAD7 monitors. An inter-comparison exercise was carried out between RnDuo and RAD7 techniques for a few samples to validate the results. The radiation doses associated with the exposure to radon in water were estimated from measured values of activity concentrations. An attempt has been made to see the effect of geology, geohydrology and different types of sources on radon levels in Himalayan groundwater. The experimental techniques and results obtained are discussed in detail.

  13. Comparative Measurements of Radon Concentration in Soil Using Passive and Active Methods in High Level Natural Radiation Area (HLNRA) of Ramsar

    PubMed Central

    Amanat, B; Kardan, M R; Faghihi, R; Hosseini Pooya, S M

    2013-01-01

    Background: Radon and its daughters are amongst the most important sources of natural exposure in the world. Soil is one of the significant sources of radon/thoron due to both radium and thorium so that the emanated thoron from it may cause increased uncertainties in radon measurements. Recently, a diffusion chamber has been designed and optimized for passive discriminative measurements of radon/thoron concentrations in soil. Objective: In order to evaluate the capability of the passive method, some comparative measurements (with active methods) have been performed. Method: The method is based upon measurements by a diffusion chamber, including two Lexan polycarbonate SSNTDs, which can discriminate the emanated radon/thorn from the soil by delay method. The comparative measurements have been done in ten selected points of HLNRA of Ramsar in Iran. The linear regression and correlation between the results of two methods have been studied. Results: The results show that the radon concentrations are within the range of 12.1 to 165 kBq/m3 values. The correlation between the results of active and passive methods was measured by 0.99 value. As well, the thoron concentrations have been measured between 1.9 to 29.5 kBq/m3 values at the points. Conclusion: The sensitivity as well as the strong correlation with active measurements shows that the new low-cost passive method is appropriate for accurate seasonal measurements of radon and thoron concentration in soil. PMID:25505760

  14. Radon Mitigation Approach in a Laboratory Measurement Room

    PubMed Central

    Blanco-Rodríguez, Patricia; Fernández-Serantes, Luis Alfonso; Otero-Pazos, Alberto; Calvo-Rolle, José Luis; de Cos Juez, Francisco Javier

    2017-01-01

    Radon gas is the second leading cause of lung cancer, causing thousands of deaths annually. It can be a problem for people or animals in houses, workplaces, schools or any building. Therefore, its mitigation has become essential to avoid health problems and to prevent radon from interfering in radioactive measurements. This study describes the implementation of radon mitigation systems at a radioactivity laboratory in order to reduce interferences in the different works carried out. A large set of radon concentration samples is obtained from measurements at the laboratory. While several mitigation methods were taken into account, the final applied solution is explained in detail, obtaining thus very good results by reducing the radon concentration by 76%. PMID:28492468

  15. Radon Mitigation Approach in a Laboratory Measurement Room.

    PubMed

    Blanco-Rodríguez, Patricia; Fernández-Serantes, Luis Alfonso; Otero-Pazos, Alberto; Calvo-Rolle, José Luis; de Cos Juez, Francisco Javier

    2017-05-11

    Radon gas is the second leading cause of lung cancer, causing thousands of deaths annually. It can be a problem for people or animals in houses, workplaces, schools or any building. Therefore, its mitigation has become essential to avoid health problems and to prevent radon from interfering in radioactive measurements. This study describes the implementation of radon mitigation systems at a radioactivity laboratory in order to reduce interferences in the different works carried out. A large set of radon concentration samples is obtained from measurements at the laboratory. While several mitigation methods were taken into account, the final applied solution is explained in detail, obtaining thus very good results by reducing the radon concentration by 76%.

  16. Performance of the first Japanese large-scale facility for radon inhalation experiments with small animals.

    PubMed

    Ishimori, Yuu; Mitsunobu, Fumihiro; Yamaoka, Kiyonori; Tanaka, Hiroshi; Kataoka, Takahiro; Sakoda, Akihiro

    2011-07-01

    A radon test facility for small animals was developed in order to increase the statistical validity of differences of the biological response in various radon environments. This paper illustrates the performances of that facility, the first large-scale facility of its kind in Japan. The facility has a capability to conduct approximately 150 mouse-scale tests at the same time. The apparatus for exposing small animals to radon has six animal chamber groups with five independent cages each. Different radon concentrations in each animal chamber group are available. Because the first target of this study is to examine the in vivo behaviour of radon and its effects, the major functions to control radon and to eliminate thoron were examined experimentally. Additionally, radon progeny concentrations and their particle size distributions in the cages were also examined experimentally to be considered in future projects.

  17. Predicting Risk from Radon in Source Waters from Water Quality Parameters

    EPA Science Inventory

    Overall, 47 groundwater samples were collected from 45 small community water systems (CWSs) and analyzed for radon and other water quality constituents. In general, groundwater from unconsolidated deposits and sedimentary rocks had lower average radon levels (ranging from 223 to...

  18. Air conditioning impact on the dynamics of radon and its daughters concentration.

    PubMed

    Kozak, Krzysztof; Grządziel, Dominik; Połednik, Bernard; Mazur, Jadwiga; Dudzińska, Marzenna R; Mroczek, Mariusz

    2014-12-01

    Radon and its decay products are harmful pollutants present in indoor air and are responsible for the majority of the effective dose due to ionising radiation that people are naturally exposed to. The paper presents the results of the series of measurements of radon and its progeny (in unattached and attached fractions) as well as indoor air parameters: temperature, relative humidity, number and mass concentrations of fine aerosol particles. The measurements were carried out in the auditorium (lecture hall), which is an indoor air quality laboratory, in controlled conditions during two periods of time: when air conditioning (AC) was switched off (unoccupied auditorium) and when it was switched on (auditorium in normal use). The significant influence of AC and of students' presence on the dynamics of radon and its progeny was confirmed. A decrease in the mean value of radon and its attached progeny was found when AC was working. The mean value of radon equilibrium factor F was also lower when AC was working (0.49) than when it was off (0.61). The linear correlations were found between attached radon progeny concentration and particle number and mass concentration only when the AC was switched off. This research is being conducted with the aim to study the variability of radon equilibrium factor F which is essential to determine the effective dose due to radon and its progeny inhalation. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Health risk profile for terrestrial radionuclides in soil around artisanal gold mining area at Alsopag, Sudan

    NASA Astrophysics Data System (ADS)

    Idriss, Hajo; Salih, Isam; Alaamer, Abdulaziz S.; AL-Rajhi, M. A.; Osman, Alshfia; Adreani, Tahir Elamin; Abdelgalil, M. Y.; Ali, Nagi I.

    2018-06-01

    This study shows the assessment of radiation hazard parameters due to terrestrial radionuclides in the soil around artisanal gold mining for addressing the issue of natural radioactivity in mining areas. Hence, the levels 238U, 232Th, 40K and 226Ra in soil (using gamma spectrometry), 222Rn in soil and 222Rn in air were determined. Radiation hazard parameters were then computed. These include absorbed dose D, annual effective dose E, radium equivalent activity Raeq, external hazard H ex, annual gonadal dose equivalent hazard index AGDE and excess lifetime cancer risk ELCR due to the inhalation of radon (222Rn) and consumption of radium (226Ra) in vegetation. Uranium (238U), thorium (232Th) and potassium (40K) averages were, respectively, 26, 36 and 685 Becquerel per kilogram (Bq kg-1). Soil radon (4671 Bq m-3) and radon in air (14.77 Bq m-3) were found to be less than worldwide data. Nevertheless, the average 40K concentration was 685 Bq kg-1. This is slightly higher than the United Nations Scientific Committee on the Effects of Atomic Radiation average value of 412 Bq kg-1. The obtained result indicates that some of the radiation hazard parameters seem unsavory. The mean value of absorbed dose rate (62.49 nGy h-1) was slightly higher than average value of 57 nGy h-1 ( 45% from 40K), and that of AGDE (444 μSv year-1) was higher than worldwide average reported value (300 μSv year-1). This study highlights the necessity to launch extensive nationwide radiation protection program in the mining areas for regulatory control.

  20. Measurements of radon concentrations in spa waters in Amasya, Turkey.

    PubMed

    Oner, F; Yigitoglu, I; Yalim, H A

    2013-12-01

    Radon concentration measurements were performed in four spas used for therapy, drinking and irrigation purposes in the Amasya basin in Turkey, during a period of time between January 2009 and May 2010. The measurements were done using commercially available WG-1001 Vacuum Water Degassing System and the AB-5R Radiation Monitor manufactured by Pylon Electronics. The observed radon concentration values ranged from 0.11 to 0.71 Bq L⁻¹. Effective doses from inhalation of radon released from spa waters have been estimated between 0.28 and 1.78 μSv y⁻¹ .

  1. Study of epidemiological risk of lung cancer in Mexico due indoor radon exposure

    NASA Astrophysics Data System (ADS)

    Ángeles, A.; Espinosa, G.

    2014-07-01

    In this work the lifetime relative risks (LRR) of lung cancer due to exposure to indoor 222Rn on the Mexican population is calculated. Cigarette smoking is the number one risk factor for lung cancer (LC), because that, to calculate the number of cases of LC due to exposure to 222Rn is necessary considers the number of cases of LC for smoking cigarette. The lung cancer mortality rates published by the "Secretaría de Salud" (SSA), the mexican population data published by the "Consejo Nacional de Población" (CONAPO), smoking data in the mexican population, published by the "Comisión Nacional Contra las Adicciones" (CONADIC), the "Organización Panamericana de la Salud" (OPS) and indoor 222Rn concentrations in Mexico published in several recent studies are used. To calculate the lifetime relative risks (LRR) for different segments of the Mexican population, firstly the Excess Relative Risk (ERR) is calculated using the method developed by the BEIR VI committee and subsequently modified by the USEPA and published in the report "EPA Assessment of Risks from Radon in Homes". The excess relative risks were then used to calculate the corresponding lifetime relative risks, again using the method developed by the BEIR VI committee. The lifetime relative risks for Mexican male and female eversmokers and Mexican male and female never-smokers were calculated for radon concentrations spanning the range found in recent studies of indoor radon concentrations in Mexico. The lifetime relative risks of lung cancer induced by lifetime exposure to the mexican average indoor radon concentration were estimated to be 1.44 and 1.40 for never-smokers mexican females and males respectively, and 1.19 and 1.17 for ever-smokers Mexican females and males respectively. The Mexican population LRR values obtained in relation to the USA and Canada LRR published values in ever-smokers for both gender are similar with differences less than 4%, in case of never-smokers in relation with Canada population the differences in LRR values are less than 2% and in never-smokers for the USA population the differences in LRR values compared with the Mexican population are about 10%.

  2. Radon and COPD mortality in the American Cancer Society Cohort

    PubMed Central

    Turner, Michelle C.; Krewski, Daniel; Chen, Yue; Pope, C. Arden; Gapstur, Susan M.; Thun, Michael J.

    2012-01-01

    Although radon gas is a known cause of lung cancer, the association between residential radon and mortality from non-malignant respiratory disease has not been well characterised. The Cancer Prevention Study-II is a large prospective cohort study of nearly 1.2 million Americans recruited in 1982. Mean county-level residential radon concentrations were linked to study participants' residential address based on their ZIP code at enrolment (mean±sd 53.5±38.0 Bq·m−3). Cox proportional hazards regression models were used to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) for non-malignant respiratory disease mortality associated with radon concentrations. After necessary exclusions, a total of 811,961 participants in 2,754 counties were included in the analysis. Throughout 2006, there were a total of 28,300 non-malignant respiratory disease deaths. Radon was significantly associated with chronic obstructive pulmonary disease (COPD) mortality (HR per 100 Bq·m−3 1.13, 95% CI 1.05–1.21). There was a significant positive linear trend in COPD mortality with increasing categories of radon concentrations (p<0.05). Findings suggest residential radon may increase COPD mortality. Further research is needed to confirm this finding and to better understand possible complex inter-relationships between radon, COPD and lung cancer. PMID:22005921

  3. Functional test of a Radon sensor based on a high-resistivity-silicon BJT detector

    NASA Astrophysics Data System (ADS)

    Dalla Betta, G. F.; Tyzhnevyi, V.; Bosi, A.; Bonaiuti, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Forti, F.; Giorgi, M. A.; Morsani, F.; Paoloni, E.; Rizzo, G.; Walsh, J.; Lusiani, A.; Ciolini, R.; Curzio, G.; D'Errico, F.; Del Gratta, A.; Bidinelli, L.; Rovati, L.; Saguatti, D.; Verzellesi, G.; Bosisio, L.; Rachevskaia, I.; Boscardin, M.; Giacomini, G.; Picciotto, A.; Piemonte, C.; Zorzi, N.; Calamosca, M.; Penzo, S.; Cardellini, F.

    2013-08-01

    A battery-powered, wireless Radon sensor has been designed and realized using a BJT, fabricated on a high-resistivity-silicon substrate, as a radiation detector. Radon daughters are electrostatically collected on the detector surface. Thanks to the BJT internal amplification, real-time α particle detection is possible using simple readout electronics, which records the particle arrival time and charge. Functional tests at known Radon concentrations, demonstrated a sensitivity up to 4.9 cph/(100 Bq/m3) and a count rate of 0.05 cph at nominally-zero Radon concentration.

  4. ASSESSMENT OF INHALATION DOSE FROM THE INDOOR 222Rn AND 220Rn USING RAD7 AND PINHOLE CUP DOSEMETERS.

    PubMed

    Mehra, R; Jakhu, R; Bangotra, P; Kaur, K; Mittal, H M

    2016-10-01

    Radon is the most important source of natural radiation and is responsible for approximately half of the received dose from all sources. Most of this dose is from inhalation of the radon progeny, especially in closed atmospheres. Concentration of radon ( 222 Rn) and thoron ( 220 Rn) in the different villages of Jalandhar and Kapurthala district of Punjab has been calculated by pinhole cup dosemeters and RAD7. On an average, it has been observed from the study that the values of all the parameters calculated are higher in case of active monitoring than the passive monitoring. The calculated equilibrium equivalent 222 Rn concentration (EEC Rn ) and equilibrium equivalent 220 Rn concentration (EEC Th ) fluctuate in the range from 5.58 to 34.29 and from 0.35 to 2.7 Bq m -3 as estimated by active technique, respectively. Similarly, the observed mean value of the potential alpha energy concentration of 222 Rn (PAEC Rn ) and 220 Rn (PAEC Th ) is 4.55 and 4.34 mWL, respectively. The dose rate to the soft tissues and lung from indoor 222 Rn varies from 0.06 to 0.38 and from 0.50 to 3.05 nGy h -1 , respectively. The total annual effective dose for the residents of the study area is less than 10 mSv. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Evaluation of the intake of radon through skin from thermal water.

    PubMed

    Sakoda, Akihiro; Ishimori, Yuu; Tschiersch, Jochen

    2016-07-01

    The biokinetics of radon in the body has previously been studied with the assumption that its absorption through the skin is negligibly small. This assumption would be acceptable except in specific situations, such as bathing in a radon hot spring where the radon concentration in thermal water is far higher than that in air. The present study focused on such a situation in order to better understand the biokinetics of radon. To mathematically express the entry of radon through the skin into the body, we first modified the latest sophisticated biokinetic model for noble gases. Values of an important parameter for the model-the skin permeability coefficient K (m s(-1))-were derived using data from previous human studies. The analysis of such empirical data, which corresponded to radon concentrations in the air exhaled by subjects during and following bathing in radon-rich thermal water, revealed that the estimated K values had a log-normal distribution. The validity of the K values and the characteristics of the present model are then discussed. Furthermore, the impact of the intake of radon or its progeny via inhalation or skin absorption on radiation dose was also assessed for possible exposure scenarios in a radon hot spring. It was concluded that, depending on the radon concentration in thermal water, there might be situations in which the dose contribution resulting from skin absorption of radon is comparable to that resulting from inhalation of radon and its progeny. This conclusion can also apply to other therapeutic situations (e.g. staying in the pool for a longer period). © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  6. Calibration of the Politrack® system based on CR39 solid-state nuclear track detectors for passive indoor radon concentration measurements.

    PubMed

    Kropat, G; Baechler, S; Bailat, C; Barazza, F; Bochud, F; Damet, J; Meyer, N; Palacios Gruson, M; Butterweck, G

    2015-11-01

    Swiss national requirements for measuring radon gas exposures demand a lower detection limit of 50 kBq h m(-3), representing the Swiss concentration average of 70 Bq m(-3) over a 1-month period. A solid-state nuclear track detector (SSNTD) system (Politrack, Mi.am s.r.l., Italy) has been acquired to fulfil these requirements. This work was aimed at the calibration of the Politrack system with traceability to international standards and the development of a procedure to check the stability of the system. A total of 275 SSNTDs was exposed to 11 different radon exposures in the radon chamber of the Secondary Calibration Laboratory at the Paul Scherrer Institute, Switzerland. The exposures ranged from 50 to 15000 kBq h m(-3). For each exposure of 20 detectors, 5 SSNTDs were used to monitor possible background exposures during transport and storage. The response curve and the calibration factor of the whole system were determined using a Monte Carlo fitting procedure. A device to produce CR39 samples with a reference number of tracks using a (241)Am source was developed for checking the long-term stability of the Politrack system. The characteristic limits for the detection of a possible system drift were determined following ISO Standard 11929. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Seasonal and Lunar Month Periods Observed in Natural Neutron Flux at High Altitude

    NASA Astrophysics Data System (ADS)

    Stenkin, Yuri; Alekseenko, Victor; Cai, Zeyu; Cao, Zhen; Cattaneo, Claudio; Cui, Shuwang; Giroletti, Elio; Gromushkin, Dmitry; Guo, Cong; Guo, Xuewen; He, Huihai; Liu, Ye; Ma, Xinhua; Shchegolev, Oleg; Vallania, Piero; Vigorito, Carlo; Zhao, Jing

    2017-07-01

    Air radon concentration measurement is useful for research on geophysical effects, but it is strongly sensitive to site geology and many geophysical and microclimatic processes such as wind, ventilation, air humidity and so on inducing very big fluctuations on the concentration of radon in air. On the contrary, monitoring the radon concentration in soil by measuring the thermal neutron flux reduces environmental effects. In this paper, we report some experimental results on the natural thermal neutron flux as well as on the concentration of air radon and its variations at 4300 m asl. These results were obtained with unshielded thermal neutron scintillation detectors (en-detectors) and radon monitors located inside the ARGO-YBJ experimental hall. The correlation of these variations with the lunar month and 1-year period is undoubtedly confirmed. A method for earthquake prediction provided by a global net of en-detectors is currently under study.

  8. Determination of the relationship between radon anomalies and earthquakes in well waters on the Akşehir-Simav Fault System in Afyonkarahisar province, Turkey.

    PubMed

    Ali Yalım, Hüseyin; Sandıkcıoğlu, Ayla; Ertuğrul, Oğuz; Yıldız, Ahmet

    2012-08-01

    Radon concentrations were measured in water of 4 wells on the Akşehir-Simav Fault System (ASFS) in Afyonkarahisar province from August 2009 to September 2010 and the relationship between radon anomalies and earthquake magnitudes was examined. Anomalous decreases in radon concentrations in the wells were observed to precede the earthquakes of magnitudes ranging from 2.6 M to 3.9 M. The correlation coefficients (R(2)) were 0.79, 0.93, 0.98 and 0.90 for the wells from 1 to 4, respectively, indicating that radon minima and earthquake magnitude were well correlated and suggesting that the groundwater radon, when observed at suitable sites, can be a sensitive tracer for strain changes in crust associated with earthquake occurrences. The relationship between the two parameters can be further improved as additional radon anomalies precursor to possible large earthquakes are recorded in the wells located on the ASFS in the future. This study strongly suggests that the continuous observations of radon concentrations in well water, especially at well 3, should be carried forward. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them

    PubMed Central

    Read, Simon; McGale, Paul; Darby, Sarah

    2009-01-01

    Objective To determine the number of deaths from lung cancer related to radon in the home and to explore the cost effectiveness of alternative policies to control indoor radon and their potential to reduce lung cancer mortality. Design Cost effectiveness analysis. Setting United Kingdom. Data sources Epidemiological data on risks from indoor radon and from smoking, vital statistics on deaths from lung cancer, survey information on effectiveness and costs of radon prevention and remediation. Main outcome measures Estimated number of deaths from lung cancer related to indoor radon, lifetime risks of death from lung cancer before and after various potential interventions to control radon, the cost per quality adjusted life year (QALY) gained from different policies for control of radon, and the potential of those policies to reduce lung cancer mortality. Results The mean radon concentration in UK homes is 21 becquerels per cubic metre (Bq/m3). Each year around 1100 deaths from lung cancer (3.3% of all deaths from lung cancer) are related to radon in the home. Over 85% of these arise from radon concentrations below 100 Bq/m3 and most are caused jointly by radon and active smoking. Current policy requiring basic measures to prevent radon in new homes in selected areas is highly cost effective, and such measures would remain cost effective if extended to the entire UK, with a cost per QALY gained of £11 400 ( €12 200; $16 913). Current policy identifying and remediating existing homes with high radon levels is, however, neither cost effective (cost per QALY gained £36 800) nor effective in reducing lung cancer mortality. Conclusions Policies requiring basic preventive measures against radon in all new homes throughout the UK would be cost effective and could complement existing policies to reduce smoking. Policies involving remedial work on existing homes with high radon levels cannot prevent most radon related deaths, as these are caused by moderate exposure in many homes. These conclusions are likely to apply to most developed countries, many with higher mean radon concentrations than the UK. PMID:19129153

  10. Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them.

    PubMed

    Gray, Alastair; Read, Simon; McGale, Paul; Darby, Sarah

    2009-01-06

    To determine the number of deaths from lung cancer related to radon in the home and to explore the cost effectiveness of alternative policies to control indoor radon and their potential to reduce lung cancer mortality. Cost effectiveness analysis. United Kingdom. Epidemiological data on risks from indoor radon and from smoking, vital statistics on deaths from lung cancer, survey information on effectiveness and costs of radon prevention and remediation. Estimated number of deaths from lung cancer related to indoor radon, lifetime risks of death from lung cancer before and after various potential interventions to control radon, the cost per quality adjusted life year (QALY) gained from different policies for control of radon, and the potential of those policies to reduce lung cancer mortality. The mean radon concentration in UK homes is 21 becquerels per cubic metre (Bq/m(3)). Each year around 1100 deaths from lung cancer (3.3% of all deaths from lung cancer) are related to radon in the home. Over 85% of these arise from radon concentrations below 100 Bq/m(3) and most are caused jointly by radon and active smoking. Current policy requiring basic measures to prevent radon in new homes in selected areas is highly cost effective, and such measures would remain cost effective if extended to the entire UK, with a cost per QALY gained of pound11,400 ( euro12 200; $16,913). Current policy identifying and remediating existing homes with high radon levels is, however, neither cost effective (cost per QALY gained pound36,800) nor effective in reducing lung cancer mortality. Policies requiring basic preventive measures against radon in all new homes throughout the UK would be cost effective and could complement existing policies to reduce smoking. Policies involving remedial work on existing homes with high radon levels cannot prevent most radon related deaths, as these are caused by moderate exposure in many homes. These conclusions are likely to apply to most developed countries, many with higher mean radon concentrations than the UK.

  11. Radon activity concentrations and effective doses in ancient Egyptian tombs of the Valley of the Kings.

    PubMed

    Hafez, A F; Hussein, A S

    2001-09-01

    Radon concentrations and equilibrium factors were measured in three pharaonic tombs during the year 1998. The tombs, which are open to the public are located in a limestone wadi on the West Bank of the River Nile at Luxor, 650 km south of Cairo. The radon activity concentration and equilibrium factor were measured monthly by two-integral nuclear track detectors (bare and diffusion detectors). Seasonal variation of radon concentrations, with summer maximum and winter minimum were observed in all tombs investigated. The yearly mean radon activity concentrations insidc the tombs ranged from 540 to 3115 Bq m(-3). The mean equilibrium factor over a year was found to be 0.25 and 0.32 inside and at the entrance, respectively. Estimated annual effective doses to tour guides ranged from 0.33 to 1.90 mSv, visitors receive doses from 0.65 to 3.80 microSv per visit. The effective dose to tomb workers did not exceed the 20 mSv yr(-1) limit.

  12. STUDY ON A STEP-ADVANCED FILTER MONITOR FOR CONTINUOUS RADON PROGENY MEASUREMENT.

    PubMed

    Zhang, Lei; Yang, Jinmin; Guo, Qiuju

    2017-04-01

    Traditional fixed-filter radon progeny monitors are usually clogged with the loading of dust and cannot be used for radon progeny continuous measurement for long period. To solve this problem, a step-advanced filter (SAF) monitor for radon progeny measurement was developed. This monitor automatically roll and stop the filter at each interview. Radon progeny is collected on a 'fresh' filter at a flowrate of 3 L/min. At the same time, alpha and beta particles emitted from filter are recorded by a PIPS detector. A newly developed alpha-beta spectrum method was used for radon progeny concentration calculation. The 218Po, 214Pb and 214Bi concentrations as well as equilibrium equivalent concentration (EEC) could be worked out at the same time. The lower level limit detection of this monitor is 0.48 Bq m-3 (EEC) for 1h interval. Comparison experiments were carried out in the radon chamber at the National Institute of Metrology of China. The measurement results of this SAF monitor are consistent with EQF3220 (SARAD GmbH, Germany), and the uncertainty is smaller. Due to its high sensitivity, the periodical variation of radon progeny concentration can be easily observed by this monitor. The SAF moniter is suitable for continuous measurement in both indoor and outdoor environments. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Radiological survey of the covered and uncovered drilling mud depository.

    PubMed

    Jónás, Jácint; Somlai, János; Csordás, Anita; Tóth-Bodrogi, Edit; Kovács, Tibor

    2018-08-01

    In petroleum engineering, the produced drilling mud sometimes contains elevated amounts of natural radioactivity. In this study, a remediated Hungarian drilling mud depository was investigated from a radiological perspective. The depository was monitored before and after a clay layer was applied as covering. In this study, the ambient dose equivalent rate H*(10) of the depository has been measured by a Scintillator Probe (6150AD-b Dose Rate Meter). Outdoor radon concentration, radon concentration in soil gas, and in situ field radon exhalation measurements were carried out using a pulse-type ionization chamber (AlphaGUARD radon monitor). Soil gas permeability (k) measurements were carried out using the permeameter (RADON-JOK) in situ device. Geogenic radon potentials were calculated. The radionuclide content of the drilling mud and cover layer sample has been determined with an HPGe gamma-spectrometer. The gamma dose rate was estimated from the measured radionuclide concentrations and the results were compared with the measured ambient dose equivalent rate. Based on the measured results before and after covering, the ambient dose equivalent rates were 76 (67-85) nSv/h before and 86 (83-89) nSv/h after covering, radon exhalation was 9 (6-12) mBq/m 2 s before and 14 (5-28) mBq/m 2 s after covering, the outdoor radon concentrations were 11 (9-16) before and 13 (10-22) Bq/m 3 after covering and the soil gas radon concentrations were 6 (3-8) before and 24 (14-40) kBq/m 3 after covering. Soil gas permeability measurements were 1E-11 (7E-12-1E-11) and 1E-12 (5E-13-1E-12) m 2 and the calculated geogenic radon potential values were 6 (3-8) and 12 (6-21) before and after the covering. The main radionuclide concentrations of the drilling mud were C U-238 12 (10-15) Bq/kg, C Ra-226 31 (18-40) Bq/kg, C Th-232 35 (33-39) Bq/kg and C K-40 502 (356-673) Bq/kg. The same radionuclide concentrations in the clay were C U-238 31 (29-34) Bq/kg, C Ra-226 45 (40-51) Bq/kg, C Th-232 58 (55-60) Bq/kg and C K-40 651 (620-671) Bq/kg. According to our results, the drilling mud depository exhibits no radiological risk from any radiological aspects (radon, radon exhalation, gamma dose, etc.); therefore, long term monitoring activity is not necessary from the radiological point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Βedrock instability of underground storage systems in the Czech Republic, Central Europe

    NASA Astrophysics Data System (ADS)

    Novakova, Lucie; Broz, Milan; Zaruba, Jiri; Sosna, Karel; Najser, Jan; Rukavickova, Lenka; Franek, Jan; Rudajev, Vladimir

    2016-06-01

    Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a complex approach to the risks posed by induced bedrock instabilities in deep geological underground storage sites. Bedrock instability owing to underground openings has been studied and discussed for many years. The Bohemian Massif in the Czech Republic (Central Europe) is geologically and tectonically complex. However, this setting is ideal for learning about the instability state of rock masses. Longterm geological and mining studies, natural and induced seismicity, radon emanations, and granite properties as potential storage sites for disposal of radioactive waste in the Czech Republic have provided useful information. In addition, the Czech Republic, with an average concentration radon of 140 Bq m-3, has the highest average radon concentrations in the world. Bedrock instabilities might emerge from microscale features, such as grain size and mineral orientation, and microfracturing. Any underground storage facility construction has to consider the stored substance and the geological settings. In the Czech Republic, granites and granitoids are the best underground storage sites. Microcrack networks and migration properties are rock specific and vary considerably. Moreover, the matrix porosity also affects the mechanical properties of the rocks. Any underground storage site has to be selected carefully. The authors suggest to study the complex set of parameters from micro to macroscale for a particular place and type of rock to ensure that the storage remains safe and stable during construction, operation, and after closure.

  15. An indoor radon survey of the X-ray rooms of Mexico City hospitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juarez, Faustino; Reyes, Pedro G.; Espinosa, Guillermo

    This paper presents the results of measurements of indoor radon concentrations in the X-ray rooms of a selection of hospitals in the metropolitan area of Mexico City. The metropolitan area of Mexico City is Mexico's largest metropolitan area by population; the number of patients requiring the use of X-rays is also the highest. An understanding of indoor radon concentrations in X-ray rooms is necessary for the estimation of the radiological risk to which patients, radiologists and medical technicians are exposed. The indoor radon concentrations were monitored for a period of six months using nuclear track detectors (NTD) consisting of amore » closed-end cup system with CR-39 (Lantrack Registered-Sign ) polycarbonate as detector material. The indoor radon concentrations were found to be between 75 and 170 Bq m{sup -3}, below the USEPA-recommended indoor radon action level for working places of 400 Bq m{sup -3}. It is hoped that the results of this study will contribute to the establishment of recommended action levels by the Mexican regulatory authorities responsible for nuclear safety.« less

  16. Modeling and experimental examination of water level effects on radon exhalation from fragmented uranium ore.

    PubMed

    Ye, Yong-Jun; Dai, Xin-Tao; Ding, De-Xin; Zhao, Ya-Li

    2016-12-01

    In this study, a one-dimensional steady-state mathematical model of radon transport in fragmented uranium ore was established according to Fick's law and radon transfer theory in an air-water interface. The model was utilized to obtain an analytical solution for radon concentration in the air-water, two-phase system under steady state conditions, as well as a corresponding radon exhalation rate calculation formula. We also designed a one-dimensional experimental apparatus for simulating radon diffusion migration in the uranium ore with various water levels to verify the mathematical model. The predicted results were in close agreement with the measured results, suggesting that the proposed model can be readily used to determine radon concentrations and exhalation rates in fragmented uranium ore with varying water levels. Copyright © 2016. Published by Elsevier Ltd.

  17. Use of linear regression models to determine influence factors on the concentration levels of radon in occupied houses

    NASA Astrophysics Data System (ADS)

    Buermeyer, Jonas; Gundlach, Matthias; Grund, Anna-Lisa; Grimm, Volker; Spizyn, Alexander; Breckow, Joachim

    2016-09-01

    This work is part of the analysis of the effects of constructional energy-saving measures to radon concentration levels in dwellings performed on behalf of the German Federal Office for Radiation Protection. In parallel to radon measurements for five buildings, both meteorological data outside the buildings and the indoor climate factors were recorded. In order to access effects of inhabited buildings, the amount of carbon dioxide (CO2) was measured. For a statistical linear regression model, the data of one object was chosen as an example. Three dummy variables were extracted from the process of the CO2 concentration to provide information on the usage and ventilation of the room. The analysis revealed a highly autoregressive model for the radon concentration with additional influence by the natural environmental factors. The autoregression implies a strong dependency on a radon source since it reflects a backward dependency in time. At this point of the investigation, it cannot be determined whether the influence by outside factors affects the source of radon or the habitant’s ventilation behavior resulting in variation of the occurring concentration levels. In any case, the regression analysis might provide further information that would help to distinguish these effects. In the next step, the influence factors will be weighted according to their impact on the concentration levels. This might lead to a model that enables the prediction of radon concentration levels based on the measurement of CO2 in combination with environmental parameters, as well as the development of advices for ventilation.

  18. Variation in the radon concentrations and outdoor gamma radiation levels in relation to different geological formations in the thermal regions of Bursa, Turkey.

    PubMed

    Akkaya, Gizem; Kahraman, Ayşegül; Koray, Abdullah; Kaynak, Gökay

    2016-09-01

    Spring waters used as spas and their region may contain significant amounts of natural radionuclides. The main sources of exposure are the inhalation of radon and its decay products released from the water and soil and terrestrial gamma-radiation. In order to evaluate the potential risk of thermal regions in Bursa, located in the impact area of the NAF (North Anatolian Fault), radon and thoron concentrations in soil gas, radon concentrations in thermal waters and outdoor gamma radiation levels were measured in thermal regions that have different geological formations. The radon and thoron concentrations in soil-gas were found to vary from 2272  ±  121 to 245196  ±  3455 Bq m -3 and from 999  ±  218 to 178 848  ±  17 742 Bq m -3 , respectively. The radon concentrations in thermal waters ranged from 0.99  ±  0.21 to 226.74  ±  2.51 Bq l -1 in the rainy season and from 0.26  ±  0.10 to 178.03  ±  12.86 Bq l -1 in the dry season. The measured outdoor gamma radiation levels varied from 38 to 180 nGy h -1 . The gamma dose rates were found to be strong positively correlating with the radon and thoron concentrations in soil-gas. The radon and outdoor gamma radiation levels were observed to be a function of the geological formations of the area.

  19. Calibration system for radon EEC measurements.

    PubMed

    Mostafa, Y A M; Vasyanovich, M; Zhukovsky, M; Zaitceva, N

    2015-06-01

    The measurement of radon equivalent equilibrium concentration (EECRn) is very simple and quick technique for the estimation of radon progeny level in dwellings or working places. The most typical methods of EECRn measurements are alpha radiometry or alpha spectrometry. In such technique, the influence of alpha particle absorption in filters and filter effectiveness should be taken into account. In the authors' work, it is demonstrated that more precise and less complicated calibration of EECRn-measuring equipment can be conducted by the use of the gamma spectrometer as a reference measuring device. It was demonstrated that for this calibration technique systematic error does not exceed 3 %. The random error of (214)Bi activity measurements is in the range 3-6 %. In general, both these errors can be decreased. The measurements of EECRn by gamma spectrometry and improved alpha radiometry are in good agreement, but the systematic shift between average values can be observed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Radon Concentration in Groundwater in the Central Region of Gyeongju, Korea - 13130

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jung Min; Lee, A. Rim; Park, Chan Hee

    Radon is a naturally occurring radioactive gas that is a well known cause of lung cancer through inhalation. Nevertheless, stomach cancer can also occur if radon-containing water is ingested. This study measured the radon concentration in groundwater for drinking or other domestic uses in the central region of Gyeongju, Korea. The groundwater samples were taken from 11 points chosen from the 11 administrative districts in the central region of Gyeongju by selecting a point per district considering the demographic distribution including the number of tourists who visit the ancient ruins and archaeological sites. The mean radon concentrations in the groundwatermore » samples ranged from 14.38 to 9050.73 Bq.m{sup -3}, which were below the recommendations by the U.S. EPA and WHO. (authors)« less

  1. Field evaluation and health assessment of air cleaners in removing radon decay products in domestic environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chih-Shan.

    In this study, field evaluations of two types of air cleaners were conducted in three single-family houses. The measurements included radon concentration, particle number concentration, and concentration and size distribution of radon decay products. The influence on the behavior of radon decay products by various indoor particles both with and without the air cleaning systems was investigated. A room model was used to calculate the changes in the aerosol parameters caused by the operation of the air cleaners. Using the James dosimetric models (1989 and 1990), the changes in the hourly bronchial dose rate per Bq m{sup {minus}3} radon formore » men, women, and children can be estimated for various domestic environments. 94 refs., 60 figs., 28 tabs.« less

  2. Preliminary results on variations of radon concentration associated with rock deformation in a uranium mine

    NASA Astrophysics Data System (ADS)

    Verdoya, Massimo; Bochiolo, Massimo; Chiozzi, Paolo; Pasquale, Vincenzo; Armadillo, Egidio; Rizzello, Daniele; Chiaberto, Enrico

    2013-04-01

    Time-series of radon concentration and environmental parameters were recently recorded in a uranium mine gallery, located in the Maritime Alps (NW Italy). The mine was bored in metarhyolites and porphyric schists mainly composed by quartz, feldspar, sericite and fluorite. U-bearing minerals are generally concentrated in veins heterogeneously spaced and made of crystals of metaautunite and metatorbernite. Radon air concentration monitoring was performed with an ionization chamber which was placed at the bottom of the gallery. Hourly mean values of temperature, pressure, and relative humidity were also measured. External data of atmospheric temperature, pressure and rainfall were also available from a meteorological station located nearby, at a similar altitude of the mine. The analysis of the time series recorded showed variation of radon concentration, of large amplitude, exhibiting daily and half-daily periods, which do not seem correlated with meteorological records. Searching for the origin of radon concentration changes and monitoring their amplitude as a function of time can provide important clues on the complex emanation process. During this process, radon reaches the air- and water-filled interstices by recoil and diffusion, where its migration is directed towards lower concentration regions, following the local gradient. The radon emanation from the rock matrix could also be controlled by stress changes acting on the rate of migration of radon into fissures, and fractures. This may yield emanation boosts due to rock extension and the consequent crack broadening, and emanation decrease when joints between cracks close. Thus, besides interaction and mass transfer with the external atmospheric environment, one possible explanation for the periodic changes in radon concentrations in the investigated mine, could be the variation of rock deformation related to lunar-solar tides. The large variation of concentration could be also due to the fact that the mine is located next to the Ligurian Sea coast. When the sea tides change the water level at the shore, this might produce additional pressure which increases the deformations (sea loading). This paper presents the preliminary results of an experiment, which is in progress in the uranium mine. During the experiment, several geophysical parameters are monitored together with radon concentration. After appropriate insulation in order to prevent radon escape through normal atmospheric circulation, the gallery was equipped with three radon detectors, four passive dosimeters, an array of unpolarisable electrodes for measurements of self-potential variations and a microgravimeter for monitoring of the tidal effect. We expect that changes in the mechanical state can be accompanied by changes in the electric potential. Since the latter variation can be related also to changes in the natural magnetic field, measurements with a three components fluxgate magnetometer are also being carried out. The recorded signals will be analysed according to standard procedures, such as spectral analysis and cross-correlation, aimed at discriminating the periodic components and the governing physical processes.

  3. Long-term radon concentrations estimated from 210Po embedded in glass

    USGS Publications Warehouse

    Lively, R.S.; Steck, D.J.

    1993-01-01

    Measured surface-alpha activity on glass exposed in radon chambers and houses has a linear correlation to the integrated radon exposure. Experimental results in chambers and houses have been obtained on glass exposed to radon concentrations between 100 Bq m-3 and 9 MBq m-3 for periods of a few days to several years. Theoretical calculations support the experimental results through a model that predicts the fractions of airborne activity that deposit and become embedded or adsorbed. The combination of measured activity and calculated embedded fraction for a given deposition environment can be applied to most indoor areas and produces a better estimate for lifetime radon exposure than estimates based on short-term indoor radon measurements.

  4. New study on the correlation between carbon dioxide concentration in the environment and radon monitor devices.

    PubMed

    Shahrokhi, A; Burghele, B D; Fábián, F; Kovács, T

    2015-12-01

    The influence of high geogenic carbon dioxide concentrations on monitoring devices might present a significant challenge to the measurement of radon concentrations in environments with a high level of carbon dioxide concentration such as volcano sites, mofettes, caves, etc. In this study, the influence of carbon dioxide concentration on several different types of radon monitor devices - including Alpha Spectrometry (Sarad RTM 2200, EQF 3220, RAD7), Ionizing Chamber (AlphaGUARD PQ2000 PRO) and Active Cell (Active scintillation cell, Pylon 300A) - was examined to represent new aspects of radon measuring in environments with carbon dioxide. In light of the results, all measuring devices were exposed to variable conditions affected by carbon dioxide concentration, except for the AlphaGUARD, which was kept in a steady state throughout the experiment. It was observed that alpha spectroscopy devices were affected by carbon dioxide, since measured radon concentrations decreased in the presence of 70% and 90% carbon dioxide concentrations by 26.5 ± 2% and 14.5 ± 2.5% for EQF 3220, and 32 ± 2% and 35.5 ± 2% for RTM 2200. However, the ionizing chamber instrument was unaffected by changes in carbon dioxide concentration. It was determined that the RAD7 performed relatively inefficiently in the presence of carbon dioxide concentrations higher than 67% by an overall efficiency factor of approximately 0.52, confirming that it is not an admissible radon monitor instrument in environments with high carbon dioxide concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Ground-Water Quality and Potential Effects of Individual Sewage Disposal System Effluent on Ground-Water Quality in Park County, Colorado, 2001-2004

    USGS Publications Warehouse

    Miller, Lisa D.; Ortiz, Roderick F.

    2007-01-01

    In 2000, the U.S. Geological Survey, in cooperation with Park County, Colorado, began a study to evaluate ground-water quality in the various aquifers in Park County that supply water to domestic wells. The focus of this study was to identify and describe the principal natural and human factors that affect ground-water quality. In addition, the potential effects of individual sewage disposal system (ISDS) effluent on ground-water quality were evaluated. Ground-water samples were collected from domestic water-supply wells from July 2001 through October 2004 in the alluvial, crystalline-rock, sedimentary-rock, and volcanic-rock aquifers to assess general ground-water quality and effects of ISDS's on ground-water quality throughout Park County. Samples were analyzed for physical properties, major ions, nutrients, bacteria, and boron; and selected samples also were analyzed for dissolved organic carbon, human-related (wastewater) compounds, trace elements, radionuclides, and age-dating constituents (tritium and chlorofluorocarbons). Drinking-water quality is adequate for domestic use throughout Park County with a few exceptions. Only about 3 percent of wells had concentrations of fluoride, nitrate, and (or) uranium that exceeded U.S. Environmental Protection Agency national, primary drinking-water standards. These primary drinking-water standards were exceeded only in wells completed in the crystalline-rock aquifers in eastern Park County. Escherichia coli bacteria were detected in one well near Guffey, and total coliform bacteria were detected in about 11 percent of wells sampled throughout the county. The highest total coliform concentrations were measured southeast of the city of Jefferson and west of Tarryall Reservoir. Secondary drinking-water standards were exceeded more frequently. About 19 percent of wells had concentrations of one or more constituents (pH, chloride, fluoride, sulfate, and dissolved solids) that exceeded secondary drinking-water standards. Currently (2004), there is no federally enforced drinking-water standard for radon in public water-supply systems, but proposed regulations suggest a maximum contaminant level of 300 picocuries per liter (pCi/L) and an alternative maximum contaminant level of 4,000 pCi/L contingent on other mitigating remedial activities to reduce radon levels in indoor air. Radon concentrations in about 91 percent of ground-water samples were greater than or equal to 300 pCi/L, and about 25 percent had radon concentrations greater than or equal to 4,000 pCi/L. Generally, the highest radon concentrations were measured in samples collected from wells completed in the crystalline-rock aquifers. Analyses of ground-water-quality data indicate that recharge from ISDS effluent has affected some local ground-water systems in Park County. Because roughly 90 percent of domestic water used is assumed to be recharged by ISDS's, detections of human-related (wastewater) compounds in ground water in Park County are not surprising; however, concentrations of constituents associated with ISDS effluent generally are low (concentrations near the laboratory reporting levels). Thirty-eight different organic wastewater compounds were detected in 46 percent of ground-water samples, and the number of compounds detected per sample ranged from 1 to 17 compounds. Samples collected from wells with detections of wastewater compounds also had significantly higher (p-value < 0.05) chloride and boron concentrations than samples from wells with no detections of wastewater compounds. ISDS density (average subdivision lot size used to estimate ISDS density) was related to ground-water quality in Park County. Chloride and boron concentrations were significantly higher in ground-water samples collected from wells located in areas that had average subdivision lot sizes of less than 1 acre than in areas that had average subdivision lot sizes greater than or equal to 1 acre. For wells completed in the crystalline-

  6. Mitigation of radon and thoron decay products by filtration.

    PubMed

    Wang, Jin; Meisenberg, Oliver; Chen, Yongheng; Karg, Erwin; Tschiersch, Jochen

    2011-09-01

    Inhalation of indoor radon ((222)Rn) and thoron ((220)Rn) decay products is the most important source of exposure to ionizing radiation for the human respiratory tract. Decreasing ventilation rates due to energy saving reasons in new buildings suggest additional active mitigation techniques to reduce the exposure in homes with high radon and thoron concentrations but poor ventilation. Filtration techniques with HEPA filters and simple surgical mask material have been tested for their potential to reduce the indoor exposure in terms of the total effective dose for mixed radon and thoron indoor atmospheres. The tests were performed inside an experimental room providing stable conditions. Filtration (at filtration rates of 0.2 h(-1) and larger) removes attached radon and thoron decay products effectively but indoor aerosol as well. Therefore the concentration of unattached decay products (which have a higher dose coefficient) may increase. The decrease of the attached decay product concentrations could be theoretically described by a slowly decreasing exponential process. For attached radon decay products, it exhibited a faster but weaker removal process compared to attached thoron decay products (-70% for attached radon decay products and -80% for attached thoron decay products at a filtration rate of 0.5 h(-1) with an HEPA filter). The concentration of unattached thoron decay products increased distinctly during the filtration process (+300%) while that of unattached radon decay products rose only slightly though at a much higher level (+17%). In the theoretical description these observed differences could be attributed to the different half-lives of the nuclides. Considering both effects, reduced attached and increased unattached decay product concentrations, filtration could significantly decrease the total effective dose from thoron whereas the overall effect on radon dose is small. A permanent filtration is recommended because of the slow decrease of the thoron decay product concentrations. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Radon and its daughter products behaviour in the air of an underground tourist route in the former arsenic and gold mine in Złoty Stok (Sudety Mountains, SW Poland).

    PubMed

    Przylibski, T A

    2001-01-01

    This paper describes the occurrence of radon and its daughter products in the accessible workings, partially open to the public, in the former arsenic and gold mine in Zloty Stok. The geology of the area and the characteristics of the workings provide the background for explanation of the genesis of radon and its daughter products and of the spatial and temporal variations in their concentrations. The results demonstrate that well-ventilated areas along the tourist route have the lowest values of all the measured parameters and that temporal variations of these parameters are irregular. The highest concentration values for radon (up to 18.50kBq/m3) and its daughter products (up to 14.49kBq/m3) have been recorded in the workings with obstructed natural ventilation. These are the areas where seasonal oscillations in the concentrations of these isotopes have been registered, with the maxima in summer and the minima in winter. These sections of the workings are inaccessible to the casual visitor. Radon is supplied to the workings from the side walls and its concentration is influenced, most of all, by ventilation and the degree of rock fissuring. The reason is the uniform and not very high content of 226Ra in the rocks where the galleries were excavated. Only locally, in the workings of the Gertruda adit lying outside the tourist route, do open fault zones have significant influence on enhanced concentrations of radon and its daughter products. These fault zones constitute effective routes of radon migration to the workings. In spite of this, it must be stated that neither guides nor tourists are exposed to excessive concentrations of radon or its daughter products in the tourist route area. However, the extension of the route to other workings will require the introduction of forced ventilation in order to lower theconcentration of radon and its daughter products. reserved.

  8. Influences of meteorological parameters on indoor radon concentrations (222Rn) excluding the effects of forced ventilation and radon exhalation from soil and building materials.

    PubMed

    Schubert, Michael; Musolff, Andreas; Weiss, Holger

    2018-06-13

    Elevated indoor radon concentrations ( 222 Rn) in dwellings pose generally a potential health risk to the inhabitants. During the last decades a considerable number of studies discussed both the different sources of indoor radon and the drivers for diurnal and multi day variations of its concentration. While the potential sources are undisputed, controversial opinions exist regarding their individual relevance and regarding the driving influences that control varying radon indoor concentrations. These drivers include (i) cyclic forced ventilation of dwellings, (ii) the temporal variance of the radon exhalation from soil and building materials due to e.g. a varying moisture content and (iii) diurnal and multi day temperature and pressure patterns. The presented study discusses the influences of last-mentioned temporal meteorological parameters by effectively excluding the influences of forced ventilation and undefined radon exhalation. The results reveal the continuous variation of the indoor/outdoor pressure gradient as key driver for a constant "breathing" of any interior space, which affects the indoor radon concentration with both diurnal and multi day patterns. The diurnally recurring variation of the pressure gradient is predominantly triggered by the day/night cycle of the indoor temperature that is associated with an expansion/contraction of the indoor air volume. Multi day patterns, on the other hand, are mainly due to periods of negative air pressure indoors that is triggered by periods of elevated wind speeds as a result of Bernoulli's principle. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The radon indicator

    NASA Astrophysics Data System (ADS)

    Samuelsson, L.

    2005-11-01

    The radon indicator is an efficient instrument for measuring the radon daughter concentrations in a house or dwelling. Physics or environmental science students could build a radon indicator as a student project. Another possibility would be to use a radon indicator in a student investigation of radon levels in different houses. Finally the radon indicator is an excellent device for producing a radioactive source, free of charge, for the study of α-, β- and γ-radiation. The half-life of the activity collected is approximately 40 min. The radon indicator makes use of an electrostatic method by which charged particles are drawn to a small aluminium plate with a high negative voltage (-5 kV), thus creating a strong electric field between the plate and a surrounding copper wire. The radioactivity on the plate is subsequently measured by a GM-counter and the result calculated in Bq m-3. The collecting time is just 5.5 min and therefore the instrument is only suitable for use in a short-time method for indicating the radon concentration. An improved diagram, ground-radon and/or wall-radon in houses, is presented on the basis of the author's measurements recorded with the radon indicator over many years. This diagram is very useful when discussing how to reduce radiation levels in homes.

  10. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, A.C.; Knutson, E.O.; Tu, K.W.

    1995-12-01

    The results from the May 1995 Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurement conducted in the EML radon exposure and test facility are presented. Represented were 13 participants that measure radon with open faced and diffusion barrier activated carbon collectors, 10 with nuclear alpha track detectors, 9 with short-term and long-term electret/ionization chambers, and 13 with active and passive commercial electronic continuous monitors. For radon progeny, there were four participants that came in person to take part in the grab sampling methodology for measuring individual radon progeny and the potential alpha energy concentration (PAEC).more » There were 11 participants with continuous and integrating commercial electronic instruments that are used for measuring the PAEC. The results indicate that all the tested instruments that measure radon fulfill their intended purpose. All instruments and methods used for grab sampling for radon progeny did very well. However, most of the continuous and integrating electronic instruments used for measuring the PAEC or working level appear to underestimate the potential risk from radon progeny when the concentration of particles onto which the radon progeny are attached is <5,000 cm{sup -3}.« less

  11. Measurement systems and indices of miners' exposure to radon daughter products in the air of mines.

    PubMed

    Domański, T

    1990-01-01

    This paper presents the classification of measurement systems that may be used for the assessment of miners' exposure to radiation in mines. The following systems were described and characterized as the Air Sampling System (ASS), the Environmental Control System (ECS), the Individual Dosimetry System (IDS), the Stream Monitoring System (SMS) and the Exhaust Monitoring System (EMS). The indices for evaluation of miners' working environments, or for assessment of individual or collective miners' exposure, were selected and determined. These are: average expected concentration (CAE), average observed concentration (CAO), average expected rate of exposure cumulation rate (EEXP), average observed exposure cumulation rate (EOBS), average effective exposure cumulation rate (EEFF). Mathematical formulae for determining all these indicators, according to the type of measurement system used in particular mines, are presented. The reliability of assessment of miners' exposure in particular measurement systems, as well as the role of the possible reference system, are discussed.

  12. Analysis of Radon and Radon Progeny in Residences: Factors that Affect Their Amounts and Methods of Reduction

    DTIC Science & Technology

    1985-03-01

    figures 6 - 14 a plot of the radon daughters concentration versua the Electronic Air Cleener operation time is shown. The variations in the daughter...34Uncertainties in the Measurement of Airborne Radon Daughters ," Health Physics, 39, 943-955 (1980). 4. Cliff, K.D. and others. "Radon Daughter Exposures in...Radon and Radon Daughters in Canadian Homes," Health Physics, 39: 285-289 (1980). 25. Nero, A.V. "Indoor Radiation Exposures from Rn-222 and its

  13. Radon measurements and effective dose from radon inhalation estimation in the Neapolitan catacombs.

    PubMed

    Quarto, M; Pugliese, M; Loffredo, F; Zambella, C; Roca, V

    2014-03-01

    In this study, the indoor radon activity concentrations have been measured in the Neapolitan catacombs using LR115 detectors. The detectors were exposed for two quarters, one in the warm season and the other in the cold. This has allowed one to evaluate the seasonal variations of concentrations, while the diurnal variations were evaluated performing continuous measurements by a Radim 5 monitor. The authors found that radon concentrations were lower in winter than in summer. Based on their values, taking into consideration the working hours in the catacombs and the equilibrium factor of 0.4, the effective dose to workers was estimated.

  14. Preliminary Results of Indoor Radon/thoron Concentrations and Terrestrial Gamma Doses in Gejiu, Yunnan, China

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tetsuo; Tokonami, Shinji; Sun, Quafu; Kobayashi, Yosuke; Min, Xiangdong; Yoshinaga, Shinji

    2008-08-01

    A preliminary survey on indoor radon/thoron and external gamma ray dose rate was conducted for houses in Gejiu city and its neighboring village in Yunnan Province, China. As a result of the radon/thoron measurements for about 50 houses, very high thoron concentrations were found in some hoses (maximum: 7,900 Bq/m3). The mean annual dose from thoron decay products was estimated to be larger than that from radon decay products (2.9 mSv vs. 1.6 mSv). Further dosimetric and epidemiological studies are needed to investigate the possible effects of radon and thoron.

  15. Investigating Indoor Radon Levels and Influencing Factors in Primary Schools of Zulfi City, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Al-Mosa, Tahani M.; Baig, M. R.

    2011-10-01

    Measurement of indoor Concentrations were performed in Zulfi city of Saudi Arabia, using CR-39 track etch detectors. This investigation focused on the influence of different parameters, namely different locations, school categories, school building types, and room type as well as on the existence of differences in radon concentration at floor levels. We divided the Zulfi city into five regions, keeping in mind their geographical locations between Tuwaiq Mountains and Al-Thuwayrat sands. The measured average radon concentrations for regions 1-5 respectively are: 87.0±14.2 Bq/m3, 83.4±6.0 Bq/m3, 61.6±6.4 Bq/m3, 63.7±5.4 Bq/m3 and 87.5±6.Bq/m3 and the minimum concentrations are 28.0 Bq/m3, 5.5 Bq/m3, 1.1 Bq/m3, 1.0 Bq/m3 and 24 Bq/m3 respectively. These results are still within normal limits and below the action level of 148 Bqm-3 set by the U.S. Environmental Protection Agency (EPA). A test of significance using Minitab program was applied to investigate if radon levels in regions are significantly different from each other. We tried all combinations, and found the following results. The "within regions" (different location) test yielded, region 2 is not significant versus region "1" (p = 0.783) and versus region "5" (P = 0.646), whereas it is significant versus region "3" ( P = 0.0160) and also versus region "4" (p = 0.018). We investigated government and rented school's building also and none was found significantly different (p = 0.052). Floors of the same building were tested in order to examine the radon concentration as a function of storey level. No significant difference was observed at floor levels (p = 0.009). When girl's schools versus Boys and kindergartens schools were tested they were found significantly different. It is believed that this significant difference is due to geographical nature of the area, since most of the girl's schools were selected from regions 2 and 3, these regions are relatively close to the Tuwaiq mountains whereas other regions are near to the Al-Thuwayrat sands.

  16. The use of mapped geology as a predictor of radon potential in Norway.

    PubMed

    Watson, Robin J; Smethurst, Mark A; Ganerød, Guri V; Finne, Ingvild; Rudjord, Anne Liv

    2017-01-01

    Radon exposure is considered to cause several hundred fatalities from lung-cancer each year in Norway. A national map identifying areas which are likely to be exposed to elevated radon concentrations would be a useful tool for decision-making authorities, and would be particularly important in areas where only few indoor radon measurements exist. An earlier Norwegian study (Smethurst et al. 2008) produced radon hazard maps by examining the relationship between airborne gamma-ray spectrometry, bedrock and drift geology, and indoor radon. The study was limited to the Oslo region where substantial indoor radon and airborne equivalent uranium datasets were available, and did not attempt to test the statistical significance of relationships, or to quantify the confidence of its predictions. While it can be anticipated that airborne measurements may have useful predictive power for indoor radon, airborne measurement coverage in Norway is at present sparse; to provide national coverage of radon hazard estimates, a good understanding of the relationship between geology and indoor radon is therefore important. In this work we use a new enlarged (n = 34,563) form of the indoor radon dataset with national coverage, and we use it to examine the relationship between geology and indoor radon concentrations. We use this relationship to characterise geological classes by their radon potential, and we produce a national radon hazard map which includes confidence limits on the likelihood of areas having elevated radon concentrations, and which covers the whole of mainland Norway, even areas where little or no indoor radon data are available. We find that bedrock and drift geology classes can account for around 40% of the total observed variation in radon potential. We test geology-based predictions of RP (radon potential) against locally-derived estimates of RP, and produce classification matrices with kappa values in the range 0.37-0.56. Our classifier has high predictive value but suffers from low sensitivities for radon affected areas. We investigate an alternative classification method based on a Naïve Bayes classifier which results in similar overall performance. The work forms part of an ongoing study which will eventually incorporate airborne equivalent uranium data, as and when new airborne data become available. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. An assessment of radon in groundwater in New York State

    USGS Publications Warehouse

    Shaw, Stephen B.; Eckhardt, David A.V.

    2012-01-01

    Abstract: A set of 317 samples collected from wells throughout New York State (excluding Long Island) from 2003 through 2008 was used to assess the distribution of radon gas in drinking water. Previous studies have documented high concentrations of radon in groundwater from granitic and metamorphic bedrock, but there have been only limited characterizations of radon in water from sedimentary rock and unconsolidated sand-and-gravel deposits in New York. Approximately 8% of the samples from bedrock wells exceed 89 Bq L-1 (eight times the proposed regulatory limit), but only 2% of samples from sand-and-gravel wells exceed 44 Bq L-1. Specific metamorphic and sedimentary rock formations in New York are associated with the high radon concentrations, indicating that specific areas of New York could be targeted with efforts to reduce the risk of exposure to radon in groundwater. Additionally, radon in groundwater from the sand-and-gravel aquifers was found to be directly correlated to radon in indoor air when assessed by county.

  18. Prediction of 222Rn in Danish dwellings using geology and house construction information from central databases.

    PubMed

    Andersen, Claus E; Raaschou-Nielsen, Ole; Andersen, Helle Primdal; Lind, Morten; Gravesen, Peter; Thomsen, Birthe L; Ulbak, Kaare

    2007-01-01

    A linear regression model has been developed for the prediction of indoor (222)Rn in Danish houses. The model provides proxy radon concentrations for about 21,000 houses in a Danish case-control study on the possible association between residential radon and childhood cancer (primarily leukaemia). The model was calibrated against radon measurements in 3116 houses. An independent dataset with 788 house measurements was used for model performance assessment. The model includes nine explanatory variables, of which the most important ones are house type and geology. All explanatory variables are available from central databases. The model was fitted to log-transformed radon concentrations and it has an R(2) of 40%. The uncertainty associated with individual predictions of (untransformed) radon concentrations is about a factor of 2.0 (one standard deviation). The comparison with the independent test data shows that the model makes sound predictions and that errors of radon predictions are only weakly correlated with the estimates themselves (R(2) = 10%).

  19. Results of the radon measurements in the area of volcano Popocatepetl, Mexico

    NASA Astrophysics Data System (ADS)

    Kotsarenko, Anatoliy; Yustis, Vsevolod; Grimalsky, Vladimir; Medina Pérez, Ivan Luis; Koshevaya, Svetlana; Villegas Cerón, Reyna Alejandra; Pérez Enríquez, Hector Roman; López Cruz Abeyro, Jose Antonio; Valdés Gonzáles, Carlos

    2010-05-01

    Anomaly variation of the concentration of radon measured in the area of the volcano Popocatepetl and their analysis are presented. Permanent observations in the different sites during December 2007 - December 2009 revealed certain stable tendency: the character of radon variation in Tlamacas station area differs essentially from the similar measurements in all the other sites. Thus, numerous gradual depressions of the radon concentration with duration from about 12 hours up to several days were detected there as possible response to the major and moderate volcano eruptions. In order to determine presumed peculiarities of the Tlamacas site we realized detailed study of the natural radioactivity near Tlamacas and surrounding area, combining measurements of the Radon concentration in 25 sites in the mentioned area with radioactive spectroscopy (K, U and Th) study. Obtained distributions of the Rn, K, U and Th permit us to surmise a possible existence of a hidden tectono-volcanic structure in the area of Tlamacas mountain with anomalously enhanced emanation of radon.

  20. Indoor radon problem in energy efficient multi-storey buildings.

    PubMed

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. [Experimental study on the influence of natural and artificial ventilation on indoor radon concentration].

    PubMed

    Remetti, R; Gigante, G E

    2010-01-01

    The study presents the results of a campaign of measurements on the daily radon concentration using a Genitron Alpha Guard spectrometer. All the measurements have been intended to highlight the radon concentration variability during the 24 hours of the day and trying to find correlations with other ambient parameters such as temperature and pressure or local conditions such as the presence or not of a forced ventilation system. The main part of the measurements have been carried in the area of the Nuclear Measurement Laboratory of the Department of Basic and Applied Sciences for Engineering of "Sapienza" University of Rome. Results show a rapid rise of radon concentration in the night, when the artificial ventilation system was off and with door and windows closed. In the morning, after the opening of door and windows, the concentration falls down abruptly. With artificial ventilation system in function concentration never reaches significant values.

  2. Radon Assessment of Occupational Facilities, Homestead ARB, FL

    DTIC Science & Technology

    2013-11-21

    electrets is directly measured and used to calculate radon levels. The radon detectors were placed in the test locations for greater than 90 days in...of USAFSAM’s radon analysis. A proficiency test was last performed and passed on 18 July 2012. (2) Blanks: Six field blanks were used during the...voltage. 5. CONCLUSIONS AND RECOMMENDATIONS: a. All 46 facilities tested had radon concentrations below the action limit of 4 pCi/L; no radon

  3. Measurements of radon concentrations in the lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.; Jackson, P. O.; Langford, J. C.

    1977-01-01

    The radon concentrations in the lunar atmosphere were determined by measuring the Po-210 progeny activity in artifacts returned from the moon. Experiments performed on a section of the polished aluminum strut from Surveyor 3 and data obtained from the Apollo 16 Cosmic Ray Detector Experiment Teflon thermal shield are compared with other values of the lunar radon concentration obtained at different times and different locations and by various techniques. Possible sources and release mechanisms compatible with all of the data are discussed. An experimental procedure to determine the relative retention coefficients of various types of material for radon progeny in a simulated lunar environment is described. The results of several experiments are given, and their effect on lunar radon progeny measurements is discussed. An analytical procedure is given for the analysis of a Teflon matrix for trace constituents.

  4. Uranium and radon in ground water in the lower Illinois River basin

    USGS Publications Warehouse

    Morrow, William S.

    2001-01-01

    Uranium and radon are present in ground water throughout the United States, along with other naturally occurring radionuclides. The occurrence and distribution of uranium and radon are of concern because these radionuclides are carcinogens that can be ingested through drinking water. As part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program, water samples were collected and analyzed for uranium and radon from 117 wells in four aquifers in the lower Illinois River Basin (LIRB) from 1996 to 1997. The aquifers were the shallow glacial drift deposits of the Bloomington Ridged Plain (BRP) not overlying a buried bedrock valley (BRP N/O BV), shallow glacial drift deposits of the BRP overlying the Mahomet Buried Bedrock Valley (BRP O/L MBBV), shallow glacial drift deposits of the Galesburg/Springfield Plain not overlying a buried bedrock valley (GSP N/O BV), and the deep glacial drift deposits of the Mahomet Buried Bedrock Valley (MBBV). Uranium was detected in water samples from all aquifers except the MBBV and ranged in concentration from less than 1 microgram per liter ( ? g/L) to 17 ? g/L. Uranium concentrations did not exceed 20 ? g/L, the proposed U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) at the time of sampling (1996?97). The current (2001) promulgated MCL is 30 ? g/L (U.S. Environmental Protection Agency, 2000). The highest median uranium concentration (2.0 ? g/L) among the four aquifers was in the BRP N/O BV. Uranium most often occurred in oxidizing and sulfate-rich water. Radon was detected in water samples from all aquifers in the LIRB. Radon concentrations in all aquifers ranged from less than 80 picocuries per liter (pCi/L) to 1,300 pCi/L. Of 117 samples, radon concentrations exceeded 300 pCi/L (the proposed USEPA MCL) in 34 percent of the samples. Radon concentrations exceeded 300 pCi/L in more than one-half of the samples from the GSP N/O BV and the BRP O/L MBBV. No sample exceeded the proposed Alternative Maximum Contaminant Level (AMCL) of 4,000 pCi/L. Concentrations of uranium and radon were not correlated.

  5. Investigation of the relationship between radon anomalıes in deep water resources near Akşehir fault zone and the radial distances of the sources to an earthquake center

    NASA Astrophysics Data System (ADS)

    Gümüş, Ayla; Yalım, Hüseyin Ali

    2018-02-01

    Radon emanation occurs all the rocks and earth containing uranium element. Anomalies in radon concentrations before earthquakes are observed in fault lines, geothermal sources, uranium deposits, volcanic movements. The aim of this study is to investigate the relationship between the radon anomalies in water resources and the radial distances of the sources to the earthquake center. For this purpose, radon concentrations of 9 different deep water sources near Akşehir fault line were determined by taking samples with monthly periods for two years. The relationship between the radon anomalies and the radial distances of the sources to the earthquake center was obtained for the sources.

  6. Logistic regression model for detecting radon prone areas in Ireland.

    PubMed

    Elío, J; Crowley, Q; Scanlon, R; Hodgson, J; Long, S

    2017-12-01

    A new high spatial resolution radon risk map of Ireland has been developed, based on a combination of indoor radon measurements (n=31,910) and relevant geological information (i.e. Bedrock Geology, Quaternary Geology, soil permeability and aquifer type). Logistic regression was used to predict the probability of having an indoor radon concentration above the national reference level of 200Bqm -3 in Ireland. The four geological datasets evaluated were found to be statistically significant, and, based on combinations of these four variables, the predicted probabilities ranged from 0.57% to 75.5%. Results show that the Republic of Ireland may be divided in three main radon risk categories: High (HR), Medium (MR) and Low (LR). The probability of having an indoor radon concentration above 200Bqm -3 in each area was found to be 19%, 8% and 3%; respectively. In the Republic of Ireland, the population affected by radon concentrations above 200Bqm -3 is estimated at ca. 460k (about 10% of the total population). Of these, 57% (265k), 35% (160k) and 8% (35k) are in High, Medium and Low Risk Areas, respectively. Our results provide a high spatial resolution utility which permit customised radon-awareness information to be targeted at specific geographic areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. RESOLVING THE RADON PROBLEM IN CLINTON, NEW JERSEY HOUSES

    EPA Science Inventory

    The paper discusses the resolution of a radon problem in Clinton, New Jersey, where significantly elevated radon concentrations were found in several adjacent houses. The U.S. EPA screened 56 of the houses and selected 10 for demonstration of radon reduction techniques. Each of t...

  8. Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico.

    PubMed

    Villalba, L; Colmenero Sujo, L; Montero Cabrera, M E; Cano Jiménez, A; Rentería Villalobos, M; Delgado Mendoza, C J; Jurado Tenorio, L A; Dávila Rangel, I; Herrera Peraza, E F

    2005-01-01

    This paper reports (222)Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited (222)Rn concentrations exceeding 11Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of (222)Rn found may be entirely attributed to the nature of aquifer rocks.

  9. Ecological association between indoor radon concentration and childhood leukaemia incidence in France, 1990-1998.

    PubMed

    Evrard, A S; Hémon, D; Billon, S; Laurier, D; Jougla, E; Tirmarche, M; Clavel, J

    2005-04-01

    The objective of this study was to evaluate the ecological association between indoor radon concentration and acute leukaemia incidence among children under 15 years of age in the 348 geographical units (zones d'emploi, ZE) of France between 1990 and 1998. During that period, 4015 cases were registered by the French National Registry of Childhood Leukaemia and Lymphoma. Exposure assessment was based on a campaign of 13 240 measurements covering the whole country. The arithmetic mean radon concentration was 85 Bq/m (range, 15-387 Bq/m) and the geometric mean, 59 Bq/m (range: 13-228 Bq/m). A positive ecological association, on the borderline of statistical significance (P=0.053), was observed between indoor radon concentration and childhood leukaemia incidence. The association was highly significant for acute myeloid leukaemia (AML) (P=0.004) but not for acute lymphocytic leukaemia (ALL) (P=0.49). The standardized incidence ratio (SIR) increased by 7, 3 and 24% for all acute leukaemia, ALL and AML, respectively, when radon concentration increased by 100 Bq/m. In conclusion, the present ecological study supports the hypothesis of a moderate association between indoor radon concentration and childhood acute myeloid leukaemia. It is consistent with most previous ecological studies. Since the association is moderate, this result does not appear inconsistent with the five published case-control studies, most of which found no significant association.

  10. Long-term variation of the concentrations of long-lived Rn descendants and cosmogenic 7Be and determination of the MRT of aerosols

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Fernández, M. C.; Carretero, J.; Liger, E.; Cañete, S.

    During a 6 years period, the atmospheric activity concentrations of the long-lived 222Rn daughters and 7Be concentrations were measured at Málaga (36° 43'40″ N; 4° 28'8″ W). The concentration data of long-lived radon daughters and 7Be together with meteorological variables were used for a comprehensive regression analysis of weekly variation of radioactivity in air. The seasonal variations of the concentrations show similar trend for the long-lived daughters of radon and 7Be concentrations. The activity concentrations were observed to be higher during the summer months than in other seasons. From the ratio between the activity concentrations of 210Po and 210Pb, a mean residence time of aerosol particles in the atmosphere of about 31 days was obtained. The average concentrations values of 210Pb and 7Be over the 6 years period have been found to be 510 and 4.6 mBq m -3, respectively. A mean aerosol mass concentrations of (46.6±7.8) μg m -3 was also determined during the period of measurements. The 7Be/ 210Pb activity ratios varied between 11 and 8.4. Correlation study has been carried out between the aerosol mass and concentrations of these tracers.

  11. Characterising fifteen years of continuous atmospheric radon activity observations at Cape Point (South Africa)

    NASA Astrophysics Data System (ADS)

    Botha, R.; Labuschagne, C.; Williams, A. G.; Bosman, G.; Brunke, E.-G.; Rossouw, A.; Lindsay, R.

    2018-03-01

    This paper describes and discusses fifteen years (1999-2013) of continuous hourly atmospheric radon (222Rn) monitoring at the coastal low-altitude Southern Hemisphere Cape Point Station in South Africa. A strong seasonal cycle is evident in the observed radon concentrations, with maxima during the winter months, when air masses arriving at the Cape Point station from over the African continental surface are more frequently observed, and minima during the summer months, when an oceanic fetch is predominant. An atmospheric mean radon activity concentration of 676 ± 2 mBq/m3 is found over the 15-year record, having a strongly skewed distribution that exhibits a large number of events falling into a compact range of low values (corresponding to oceanic air masses), and a smaller number of events with high radon values spread over a wide range (corresponding to continental air masses). The mean radon concentration from continental air masses (1 004 ± 6 mBq/m3) is about two times higher compared to oceanic air masses (479 ± 3 mBq/m3). The number of atmospheric radon events observed is strongly dependent on the wind direction. A power spectral Fast Fourier Transform analysis of the 15-year radon time series reveals prominent peaks at semi-diurnal, diurnal and annual timescales. Two inter-annual radon periodicities have been established, the diurnal 0.98 ± 0.04 day-1 and half-diurnal 2.07 ± 0.15 day-1. The annual peak reflects major seasonal changes in the patterns of offshore versus onshore flow associated with regional/hemispheric circulation patterns, whereas the diurnal and semi-diurnal peaks together reflect the influence of local nocturnal radon build-up over land, and the interplay between mesoscale sea/land breezes. The winter-time diurnal radon concentration had a significant decrease of about 200 mBq/m3 (17%) while the summer-time diurnal radon concentration revealed nearly no changes. A slow decline in the higher radon percentiles (75th and 95th) for the winter and spring seasons is found over the 15-year data set, with most of the change occurring in the first 9 years (1999-2007). This observed inter-annual decline appears to be associated with changes in the frequency of air masses having originated from over the African continental surfaces, and no significant trend is found in the lower radon percentiles associated with oceanic air masses. The general decrease of atmospheric radon-associated with continental air-masses at Cape Point could be attributed to changing meteorological conditions, possibly driven by climate change.

  12. STUDY OF RADON FLUX FROM SOIL IN BUDHAKEDAR REGION USING SRM.

    PubMed

    Bourai, A A; Aswal, Sunita; Kandari, Tushar; Kumar, Shiv; Joshi, Veena; Sahoo, B K; Ramola, R C

    2016-10-01

    In the present study, the radon flux rate of the soil is measured using portable radon monitor (scintillation radon monitor) in the Budhakedar region of District Tehri, India. The study area falls along a fault zone named Main Central Thrust, which is relatively rich in radium-bearing minerals. Radon flux rate from the soil is one of the most important factors for the evaluation of environmental radon levels. The earlier studies in the Budhakedar region shows a high level of radon (>4000 Bq m -3 ). Hence, it is important to measure the radon flux rate. The aim of the present study is to calculate the average estimate of the surface radon flux rate as well as the effective mass exhalation rate. A positive correlation of 0.54 was found between radon flux rate and radon mass exhalation rate. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Development of a continuous radon concentration monitoring system in underground soil

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Tarutani, K.; Yamasoto, K.; Iskandar, D.; Iida, T.

    2001-06-01

    A continuous radon (Rn-222) concentration monitoring system for use in underground soil was developed and tested. The system consists of a 19-mm-diameter, 1100-mm-long detector assembly and a microprocessor based data logger. A small volume chamber is installed at the tip of the detector assembly. A thin ZnS(Ag) scintillator film inside the chamber and a photomultiplier tube (PMT) detect alpha particles from radon and its daughters. When the system is in measurement, the detector part is buried into underground soil. An energy resolution of approximately 70% full width half maximum (FWHM) was obtained for 5.5 MeV alpha particles from Am-241. Both the rise time and fall time for the system were measured to be approximately 1-2 h. Temporal variations in underground radon concentration at different depths were investigated simultaneously using four sets of the developed system. The results confirmed that the developed system is useful for continuous measurement of radon concentration in underground soil.

  14. Analysis of radon and thoron progeny measurements based on air filtration.

    PubMed

    Stajic, J M; Nikezic, D

    2015-02-01

    Measuring of radon and thoron progeny concentrations in air, based on air filtration, was analysed in order to assess the reliability of the method. Changes of radon and thoron progeny activities on the filter during and after air sampling were investigated. Simulation experiments were performed involving realistic measuring parameters. The sensitivity of results (radon and thoron concentrations in air) to the variations of alpha counting in three and five intervals was studied. The concentration of (218)Po showed up to be the most sensitive to these changes, as was expected because of its short half-life. The well-known method for measuring of progeny concentrations based on air filtration is rather unreliable and obtaining unrealistic or incorrect results appears to be quite possible. A simple method for quick estimation of radon potential alpha energy concentration (PAEC), based on measurements of alpha activity in a saturation regime, was proposed. Thoron PAEC can be determined from the saturation activity on the filter, through beta or alpha measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. MCNPX evaluation of gamma spectrometry results in high radon concentration areas.

    PubMed

    Thinová, L; Solc, J

    2014-07-01

    The radon concentration in underground workplaces may reach tens of thousands of Bq m(-3). A simple MCNPXTM Monte Carlo (MC) model of a cave was developed to estimate the influence of radon on the in situ gamma spectrometry results in various geometries and radon concentrations. The detector total count rate was obtained as the sum of the individual count rates due to 214Bi in the air, radon in the walls and deposition of radon daughters on surfaces. The MC model was then modified and used in the natural conditions of the Mladeč Caves, Czech Republic. The content of 226Ra was calculated from laboratory gamma spectrometry measurements, and the concentrations of unattached and attached 214Bi were measured using the FRITRA4 device (SMM-Prague). We present a comparison of the experimental results with results calculated by the MCNPXTM model of the Gamma Surveyor spectrometry probe (GF Instruments) with a 3″×3″ NaI(Tl) detector and a 2″×2″ BGO detector. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Theoretical modeling of indoor radon concentration and its validation through measurements in South-East Haryana, India.

    PubMed

    Singh, Prabhjot; Sahoo, B K; Bajwa, B S

    2016-04-15

    A three dimensional semi-empirical model deduced from the existing 1-D model has been used to predict indoor radon concentration with theoretical calculations. Since the major contributor of radon concentration in indoors originates from building materials used in construction of walls and floor which are mostly derived from soil. In this study different building materials have been analyzed for radon exhalation, diffusion length along with physical dimensions of observation area to calculate indoor radon concentration. Also calculated values have been validated by comparing with experimental measurements. The study has been carried out in the mud, brick and cement houses constructed from materials available locally in South-East region of Haryana. This region is also known for its protruding land structure consisting volcanic, felsite and granitic rocks in plane. Further, exhalation (Jw) ratio from wall and floor comparison has been plotted for each selected village dwelling to identify the high radon emanating source (building material) from the study region. All those measured factors might be useful in building construction code development and selection of material to be used in construction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A preliminary study for conducting a rational assessment of radon exposure levels.

    PubMed

    Jeon, Hyung-Jin; Kang, Dae-Ryoung; Go, Sang-Baek; Park, Tae-Hyun; Park, Si-Hyun; Kwak, Jung-Eun; Lee, Cheol-Min

    2017-06-01

    The aim of this study was to determine the factors that go into a highly reliable estimate of radon exposure levels for use in setting up the case-control study. To this end, the present study conducted a multi-faceted investigation of the distribution of radon concentrations in the bedrooms and living rooms of 400 households in the target areas during the winter months from December 2014 to February 2015. We determined that taking the mean value of the radon concentration levels detected in the bedroom and living room as the representative value of residential concentration is appropriate, given the usability of previous research data and the difference in the concentration levels between the two. In terms of detector placement, we found that detectors should not inconvenience residents or be affected by an air current. Further, we found that housing type should distinguish between regular housing (single-detached, row, and multiplex housing) and apartments but that the building type was not a key factor in the assessment of radon exposure levels. Houses should be classified into those constructed with soil (red clay) and those with constructed with general building materials for the assessment of radon exposure levels.

  18. Study and Search for Main Reason of Lung Cancers Based on Cherenkov Radiation in Environmental Radiation

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Emoto, Yusaku; Fujihara, Kento; Kawai, Hideyuki; Kimura, Shota; Kodama, Satoshi; Mizuno, Takahiro

    2018-01-01

    The number of lung-cancer-related death is highest among all cancers in the world, and it is increasing in Japan where population aging in progressing. The main reason for the lung cancer of non-smokers is regarded to be environmental pollution or exposure of the lung to radon in the nature. The risk of lung cancer was estimated to increase by 8 to 13% per every 100 Bq m-3 concentration of radon in the air. We observed beta rays with maximum energy of 3.27 MeV emitted from 214Bi as one of the progenies based on a detection of Cherenkov radiation. The surface radioactivity concentration of 214Bi on the sample was measured; the relation between the concentration and exposure time for the sample at the room air is researched. The behavior of the radon progenies in the air is discussed by a research for the progenies attaching on the sample after the radon decay. The inhalation of the radon progenies is not clear. Thus, to understand the behavior of progenies in the air make to clear the causal relation between the radon concentration and lung cancers.

  19. Hourly indoor radon measurements in a research house.

    PubMed

    Sesana, Lucia; Begnini, Stefania

    2004-01-01

    This paper reports and discusses the behaviour of radon concentration with time in an uninhabited dwelling. The relationship between variations in radon concentrations and indoor-outdoor temperatures and wind intensity has also been discussed. Radon concentration was measured hourly in a house located at a height of 800 m in the Lombard Prealps, at the top of the Valassina valley. The wind velocity and indoor-outdoor temperatures were measured by means of a meteorological station located on the terrace of the house. The data were analysed using the LBL model for indoor-outdoor air exchange and the models for the indoor accumulation of radon due to exhalation from building materials and pressure-driven infiltrations located underground. The role of wind and indoor-outdoor temperatures were analysed. The agreement of measurements with modelling clearly demonstrates the importance of the different sources of indoor radon. As the investigation was conducted in an uninhabited house, the measurements were not affected by the behaviour of people, e.g. opening and closing of windows. Measurements of the outdoor atmospheric concentrations of (222)Rn provide an index of the atmospheric stability, the formation of thermal inversions and convective turbulence.

  20. Diffusion of radon through concrete block walls: A significant source of indoor radon

    USGS Publications Warehouse

    Lively, R.S.; Goldberg, L.F.

    1999-01-01

    Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.

  1. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine...—radon daughter concentrations representative of worker's breathing zone shall be determined at least...

  2. Controlling the Radon Threat Needn't Be Another Costly Nightmare.

    ERIC Educational Resources Information Center

    Freije, Matthew R.

    1989-01-01

    After a study of 3,000 classrooms in 130 schools in 16 states, the Environmental Protection Agency urged all schools to conduct tests for radon. Explains a 6-step screening test, methods of reducing radon concentrations, and how the risk from radon exposure compares with other risks. (MLF)

  3. One year of real-time radon monitoring at Stromboli volcano and the effect of environmental parameters on 222Rn concentrations

    NASA Astrophysics Data System (ADS)

    Cigolini, C.; Laiolo, M.; Coppola, D.; Piscopo, D.; Bertolino, S.

    2009-12-01

    Real-time radon monitoring at Stromboli volcano has been operative within the last two years. In this contribution we will discuss the recent one-year-long time series analyses in the light of environmental parameters. Two sites for real-time monitoring have been identified by means of a network of periodic radon surveys in order to locate the areas of more efficient response to seismic transients and/or volcanic degassing. Two real-time stations are positioned at Stromboli: one at the summit and located along a fracture zone where the gas flux is concentrated, and the second one at a lower altitude in a sector of diffuse degassing. The signals of the two time-series are essentially concordant but radon concentrations are considerably higher at the summit station. Raw data show that there is a negative correlation between radon emissions and seasonal temperature variations, whereas the correlation with atmospheric pressure is negative for the site of diffuse degassing and sligthly positive for the station lacated along the summit fracture zone. These data and the previously collected ones show that SW winds may substantially decrease radon concentrations at the summit station. Multivarite regression statistics on the radon signals in the light of the above enviromental parameters and tidal forces, may contribute to better idenfify the correlation between radon emissions and variations in volcanic activity. Fig. 1. Radon monitoring stations at Stromboli and the two major summit faults. Stars identify sites for real-time monitoring: LSC and PZZ. The diamond is the location of the automated Labronzo Station. Full dots are stations for periodic measurements using alpha track-etches detectors and E-PERM® electrets. Inset with the location of Stromboli and the major structures of the Aeolian arc.

  4. High sensitivity detectors for measurement of diffusion, emanation and low activity of radon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    Today's underground experiments require ultra-low background conditions. One of the most important source of background is radon. It is necessary to suppress it and consequently to detect very low radon concentration. In the frame of SuperNEMO collaboration experimental setups for measurement of low radon activity, radon diffusion through shielding foils and radon emanation from construction materials have been constructed in IEAP CTU in Prague and the obtained results are presented. The application of Timepix device in radon detection is briefly discussed.

  5. Field comparison of several commercially available radon detectors.

    PubMed Central

    Field, R W; Kross, B C

    1990-01-01

    To determine the accuracy and precision of commercially available radon detectors in a field setting, 15 detectors from six companies were exposed to radon and compared to a reference radon level. The detectors from companies that had already passed National Radon Measurement Proficiency Program testing had better precision and accuracy than those detectors awaiting proficiency testing. Charcoal adsorption detectors and diffusion barrier charcoal adsorption detectors performed very well, and the latter detectors displayed excellent time averaging ability. Alternatively, charcoal liquid scintillation detectors exhibited acceptable accuracy but poor precision, and bare alpha registration detectors showed both poor accuracy and precision. The mean radon level reported by the bare alpha registration detectors was 68 percent lower than the radon reference level. PMID:2368851

  6. Development of radon sources with a high stability and a wide range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukutsu, K.; Yamada, Y.

    A solid {sup 222}Rn (radon) source using a fibrous and porous SiC ceramic disk was developed. The emission rate of radon emanated from the disk depended on the content of {sup 226}Ra and the sintering temperature. A {sup 226}Ra sulfate ({sup 226}RaSO{sub 4}) solution was dropped on a fibrous SiC ceramic disk (33 mmφ) of 1 mm in thickness, and sintered at 400 °C. The radon concentration from a disk containing {sup 226}Ra of 1.85 MBq was measured to be 38 kBq m{sup −3} at a carrier airflow rate of 0.5 L min{sup −1}. By adjusting the {sup 226}Ra contentmore » or the sweep airflow rate, the radon concentrations were easily controlled over a wide range of over three orders of magnitude. The concentration was very stable for a long term. The compactness of the source disk made is easy for handling the source container and the shielding of gamma radiation from {sup 226}Ra and its decay products. Such advantages in a radon generation system are desirable for experiments of high-level, large-scale radon exposure.« less

  7. Radon-222 from different sources of water and the assessment of health hazard.

    PubMed

    Ademola, Janet A; Ojeniran, Oluwaferanmi R

    2017-02-01

    Water samples collected from different sources were analysed for radon concentrations in order to evaluate the health effect associated with radon in water. The radon concentrations were in the range of 3.56-98.57, 0.88-25.49, 0.73-1.35 and 0.24-1.03 Bq.L -1 for borehole, well, packaged and utility water, respectively. Samples from boreholes had the highest radon concentrations with about 67% being higher than the threshold value of 11.1 Bq.L -1 recommended by the USEPA. The mean annual effective dose (AED) due to ingestion for adult, child and infant ranged from 8.71 × 10 -3 to 0.831 mSv.y -1 for the different sources. The mean AED calculated for consuming water from boreholes and wells for the three age groups were higher than the recommended reference dose level of 0.1 mSv.y -1 . The mean AED due to inhalation of radon in drinking water was negligible, ranging from 0.13 to 6.20 μSv.y -1 . The health burden associated with radon in water in the study is through ingestion of water directly from boreholes.

  8. Extremely high radon activity concentration in two adits of the abandoned uranium mine 'Podgórze' in Kowary (Sudety Mts., Poland).

    PubMed

    Fijałkowska-Lichwa, Lidia

    2016-12-01

    Measurements of radon activity concentration were conducted for a period of 6 months, from April to September 2011, in the air of two adits constituting part of the disused uranium mine 'Podgórze' in Kowary. Adits no. 19 and 19a in Kowary had been chosen owing to the occurrence within them of the highest documented radon concentrations in Poland, With levels higher than a million Bq m -3 . The main goal of this study was to characterize the level of 222 Rn activity concentration registered in selected workings of this underground space, investigate 222 Rn changes and their characteristics over selected periods of time (an hour, a day, a month, six months) and determine the effective doses, which provided the basis for estimating the risk of exposure to increased ionizing radiation for employees and visitors to the mine. The highest values of 222 Rn activity concentration inside the adits occurred at the time when visitors, guides and other members of the staff were present there. The recorded values of radon activity concentration, regardless of the time and the month when the measurement was performed, remained at an average level of 350-400 kBq m -3 . These values were far above the limit of 1.5 kBq·m -3 recommended by international guidelines. The maximum values ranged from 800 to more than 1000 kBq·m -3 . Radon activity concentration changes occurred only in periods determined by 7-h cycles of connecting and disconnecting the mechanical ventilation. For about 7 h after activating the ventilation system, between 7 a. m. and 2 p. m., and after closing the adit, between 7 p. m. and 2 a. m., 222 Rn activity concentrations decreased to levels even as low as 100 kBq·m-3. However, as early as 3-4 h after disconnecting the ventilation system, there was a sharp rise in the values of 222 Rn activity concentration, to the level higher than 800 kBq·m-3. The risk of receiving a radiation dose higher than the national standard of 1 mSv/year by members of the public occurred as soon as after spending 1 h inside the workings. The minimum monthly effective radiation dose received by every employee in the tourist adit no. 19 in Kowary was higher than 1/5 (4 mSv) of the annual effective dose allowed by Polish law (20 mSv/year). In the non-tourist adit no. 19, the minimum monthly radiation dose was more than 3 times as high as the allowed value of 4 mSv. Due to the highly disturbing and unfavourable, from a radiological protection point of view, conditions inside the disused uranium mine 'Podgórze' in Kowary, the mine manager decided to increase the efficiency of the designed mechanical ventilation system and launch measurements of radon activity concentration in the workplace. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Outdoor (222)Rn-concentrations in Germany - part 2 - former mining areas.

    PubMed

    Kümmel, M; Dushe, C; Müller, S; Gehrcke, K

    2014-06-01

    In the German Federal States of Saxony, Saxony-Anhalt and Thuringia, centuries of mining and milling activities resulted in numerous residues with increased levels of natural radioactivity such as waste rock dumps and tailings ponds. These may have altered potential radiation exposures of the population significantly. Especially waste rock dumps from old mining activities as well as 20th century uranium mining may, due to their radon ((222)Rn) exhalation capacity, lead to significant radiation exposures. They often lie close to or within residential areas. In order to study the impact on the natural radon level, the Federal Office for Radiation Protection (BfS) has run networks of radon measurement points in 16 former mining areas, together with 2 networks in regions not influenced by mining for comparison purposes. Representative overviews of the long-term outdoor radon concentrations could be established including estimates of regional background concentrations. Former mining and milling activities did not result in large-area impacts on the outdoor radon level. However, significantly increased radon concentrations were observed in close vicinity of shafts and large waste rock dumps. They are partly located in residential areas and need to be considered under radiation protection aspects. Examples are given that illustrate the consequences of the Wismut Ltd. Company's reclamation activities on the radon situation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The Influence of Internal Wall and Floor Covering Materials and Ventilation Type on Indoor Radon and Thoron Levels in Hospitals of Kermanshah, Iran.

    PubMed

    Pirsaheb, Meghdad; Najafi, Farid; Haghparast, Abbas; Hemati, Lida; Sharafi, Kiomars; Kurd, Nematullah

    2016-10-01

    Building materials and the ventilation rate of a building are two main factors influencing indoor radon and thoron levels (two radioactive gases which have the most important role in human natural radiation exposure within dwellings). This analytical descriptive study was intended to determine the relationship between indoor radon and thoron concentrations and the building materials used in interior surfaces, as well as between those concentrations and the type of ventilation system (natural or artificial). 102 measurements of radon and thoron levels were taken from different parts of three hospital buildings in the city of Kermanshah in the west of Iran, using an RTM-1688-2 radon meter. Information on the type of building material and ventilation system in the measurement location was collected and then analyzed using Stata 8 software and multivariate linear regression. In terms of radon and thoron emissions, travertine and plaster were found to be the most appropriate and inappropriate covering for walls, respectively. Furthermore, granite and travertine were discovered to be inappropriate materials for flooring, while plastic floor covering was found suitable. Natural ventilation performed better for radon, while artificial ventilation worked better for thoron. Internal building materials and ventilation type affect indoor radon and thoron concentrations. Therefore, the use of proper materials and adequate ventilation can reduce the potential human exposure to radon and thoron. This is of utmost importance, particularly in buildings with a high density of residents, including hospitals.

  11. Indoor radon survey in Visegrad countries.

    PubMed

    Műllerová, Monika; Kozak, Krzysztof; Kovács, Tibor; Smetanová, Iveta; Csordás, Anita; Grzadziel, Dominik; Holý, Karol; Mazur, Jadwiga; Moravcsík, Attila; Neznal, Martin; Neznal, Matej

    2016-04-01

    The indoor radon measurements were carried out in 123 residential buildings and 33 schools in Visegrad countries (Slovakia, Hungary and Poland). In 13.2% of rooms radon concentration exceeded 300Bqm(-3), the reference value recommended in the Council Directive 2013/59/EURATOM. Indoor radon in houses shows the typical radon behavior, with a minimum in the summer and a maximum in the winter season, whereas in 32% of schools the maximum indoor radon was reached in the summer months. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Exposure assessment of radon in the drinking water supplies: a descriptive study in Palestine

    PubMed Central

    2012-01-01

    Background Radon gas is considered as a main risk factor for lung cancer and found naturally in rock, soil, and water. The objective of this study was to determine the radon level in the drinking water sources in Nablus city in order to set up a sound policy on water management in Palestine. Methods This was a descriptive study carried out in two phases with a random sampling technique in the second phase. Primarily, samples were taken from 4 wells and 5 springs that supplied Nablus city residents. For each source, 3 samples were taken and each was analyzed in 4 cycles by RAD 7 device manufactured by Durridge Company. Secondly, from the seven regions of the Nablus city, three samples were taken from the residential tap water of each region. Regarding the old city, ten samples were taken. Finally, the mean radon concentration value for each source was calculated. Results The mean (range) concentration of radon in the main sources were 6.9 (1.5-23.4) Becquerel/liter (Bq/L). Separately, springs and wells' means were 4.6 Bq/L and 9.5 Bq/L; respectively. For the residential tap water in the 7 regions, the results of the mean (range) concentration values were found to be 1.0 (0.9-1.3) Bq/L. For the old city, the mean (range) concentration values were 2.3 (0.9-3.9) Bq/L. Conclusions Except for Al-Badan well, radon concentrations in the wells and springs were below the United State Environmental Protection Agency maximum contaminated level (U.S EPA MCL). The level was much lower for tap water. Although the concentration of radon in the tap water of old city were below the MCL, it was higher than other regions in the city. Preventive measures and population awareness on radon's exposure are recommended. PMID:22243625

  13. Exposure assessment of radon in the drinking water supplies: a descriptive study in Palestine.

    PubMed

    Al Zabadi, Hamzeh; Musmar, Samar; Issa, Shaza; Dwaikat, Nidal; Saffarini, Ghassan

    2012-01-13

    Radon gas is considered as a main risk factor for lung cancer and found naturally in rock, soil, and water. The objective of this study was to determine the radon level in the drinking water sources in Nablus city in order to set up a sound policy on water management in Palestine. This was a descriptive study carried out in two phases with a random sampling technique in the second phase. Primarily, samples were taken from 4 wells and 5 springs that supplied Nablus city residents. For each source, 3 samples were taken and each was analyzed in 4 cycles by RAD 7 device manufactured by Durridge Company. Secondly, from the seven regions of the Nablus city, three samples were taken from the residential tap water of each region. Regarding the old city, ten samples were taken. Finally, the mean radon concentration value for each source was calculated. The mean (range) concentration of radon in the main sources were 6.9 (1.5-23.4) Becquerel/liter (Bq/L). Separately, springs and wells' means were 4.6 Bq/L and 9.5 Bq/L; respectively. For the residential tap water in the 7 regions, the results of the mean (range) concentration values were found to be 1.0 (0.9-1.3) Bq/L. For the old city, the mean (range) concentration values were 2.3 (0.9-3.9) Bq/L. Except for Al-Badan well, radon concentrations in the wells and springs were below the United State Environmental Protection Agency maximum contaminated level (U.S EPA MCL). The level was much lower for tap water. Although the concentration of radon in the tap water of old city were below the MCL, it was higher than other regions in the city. Preventive measures and population awareness on radon's exposure are recommended.

  14. Calculating flux to predict future cave radon concentrations.

    PubMed

    Rowberry, Matt D; Martí, Xavi; Frontera, Carlos; Van De Wiel, Marco J; Briestenský, Miloš

    2016-06-01

    Cave radon concentration measurements reflect the outcome of a perpetual competition which pitches flux against ventilation and radioactive decay. The mass balance equations used to model changes in radon concentration through time routinely treat flux as a constant. This mathematical simplification is acceptable as a first order approximation despite the fact that it sidesteps an intrinsic geological problem: the majority of radon entering a cavity is exhaled as a result of advection along crustal discontinuities whose motions are inhomogeneous in both time and space. In this paper the dynamic nature of flux is investigated and the results are used to predict cave radon concentration for successive iterations. The first part of our numerical modelling procedure focuses on calculating cave air flow velocity while the second part isolates flux in a mass balance equation to simulate real time dependence among the variables. It is then possible to use this information to deliver an expression for computing cave radon concentration for successive iterations. The dynamic variables in the numerical model are represented by the outer temperature, the inner temperature, and the radon concentration while the static variables are represented by the radioactive decay constant and a range of parameters related to geometry of the cavity. Input data were recorded at Driny Cave in the Little Carpathians Mountains of western Slovakia. Here the cave passages have developed along splays of the NE-SW striking Smolenice Fault and a series of transverse faults striking NW-SE. Independent experimental observations of fault slip are provided by three permanently installed mechanical extensometers. Our numerical modelling has revealed four important flux anomalies between January 2010 and August 2011. Each of these flux anomalies was preceded by conspicuous fault slip anomalies. The mathematical procedure outlined in this paper will help to improve our understanding of radon migration along crustal discontinuities and its subsequent exhalation into the atmosphere. Furthermore, as it is possible to supply the model with continuous data, future research will focus on establishing a series of underground monitoring sites with the aim of generating the first real time global radon flux maps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Radon measurement and mitigation activity in Finland.

    PubMed

    Valmari, T; Arvela, H; Reisbacka, H; Holmgren, O

    2014-07-01

    Radon prevention, measurement and mitigation activities have been increasing in Finland during the 2000s. Nowadays, many municipal authorities, especially those located in high-radon areas, require radon prevention measures. This has activated radon measurements. Owners of new houses having radon piping installed under the floor slab are the most active group to measure and reduce the found high-radon values. Their radon awareness is apparently better than on the average, and the existing piping makes it easier and cheaper to reduce the radon levels. Local campaigns involving invitation flyers mailed to the residents have been a cost-effective means to activate measurements of older houses. So far 116,611 dwellings in low-rise residential buildings have been measured. At least 15% of the 16,860 dwellings found to exceed the reference level of 400 Bq m(-3) had their indoor radon level reduced below that. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Effects of Radon Inhalation on Some Biophysical Properties of Blood in Rats

    NASA Astrophysics Data System (ADS)

    Essa, M. F.; Shahin, Fayez M.; Ahmed, Ashour M.; Abdel-Salam, Omar

    2013-03-01

    The major source of human exposure to natural radiation arises from the inhalation of radon (222Rn) gas. Exposure to high concentrations of radon 222Rn and its daughters for long period leads to pathological effects like lung cancer, leukaemia, skin cancer and kidney diseases. The present study was performed on rats to investigate the effect of radon exposure on the absorption spectra of hemoglobin. Measurements have been performed in a radon chamber where rats were exposed to radon for 1, 5 or 7 weeks. The inhalation of radon resulted in decrease in intensity of the absorption bands characterizing the hemoglobin molecular structure with increased radon doses.

  17. Significance of independent radon entry rate and air exchange rate assessment for the purpose of radon mitigation effectiveness proper evaluation: case studies.

    PubMed

    Froňka, A; Jílek, K; Moučka, L; Brabec, M

    2011-05-01

    Two new single-family houses identified as insufficient with regard to existing radon barrier efficiency, have been selected for further examination. A complex set of radon diagnosis procedures has been applied in order to localise and quantify radon entry pathways into the indoor environment. Independent assessment of radon entry rate and air exchange rate has been carried out using the continuous indoor radon measurement and a specific tracer gas application. Simultaneous assessment of these key determining factors has turned out to be absolutely crucial in the context of major cause identification of elevated indoor radon concentration.

  18. Spanish experience on the design of radon surveys based on the use of geogenic information.

    PubMed

    Sainz Fernández, C; Quindós Poncela, L S; Fernández Villar, A; Fuente Merino, I; Gutierrez-Villanueva, J L; Celaya González, S; Quindós López, L; Quindós López, J; Fernández, E; Remondo Tejerina, J; Martín Matarranz, J L; García Talavera, M

    2017-01-01

    One of the requirements of the recently approved EU-BSS (European Basic Safety Standards Directive, EURATOM, 2013) is the design and implementation of national radon action plans in the member states (Annex XVIII). Such plans require radon surveys. The analysis of indoor radon data is supported by the existing knowledge about geogenic radiation. With this aim, we used the terrestrial gamma dose rate data from the MARNA project. In addition, we considered other criterion regarding the surface of Spain, population, permeability of rocks, uranium and radium contain in soils because currently no data are available related to soil radon gas concentration and permeability in Spain. Given that, a Spanish radon map was produced which will be part of the European Indoor Radon Map and a component of the European Atlas of Natural Radiation. The map indicates geographical areas with high probability of finding high indoor radon concentrations. This information will support legislation regarding prevention of radon entry both in dwellings and workplaces. In addition, the map will serve as a tool for the development of strategies at all levels: individual dwellings, local, regional and national administration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The United Kingdom Childhood Cancer Study of exposure to domestic sources of ionising radiation: 1: radon gas.

    PubMed

    2002-06-05

    This paper reports the results of the United Kingdom Childhood Cancer Study relating to risks associated with radon concentrations in participants homes at the time of diagnosis of cancer and for at least 6 months before. Results are given for 2226 case and 3773 control homes. No evidence to support an association between higher radon concentrations and risk of any of the childhood cancers was found. Indeed, evidence of decreasing cancer risks with increasing radon concentrations was observed. Adjustment for deprivation score for area of residence made little difference to this trend and similar patterns were evident in all regions and in all diagnostic groups. The study suggests that control houses had more features, such as double glazing and central heating, leading to higher radon levels than case houses. Further, case houses have features more likely to lead to lower radon levels, e.g. living-rooms above ground level. Consequently the case-control differences could have arisen because of differences between houses associated with deprivation that are not adequately allowed for by the deprivation score. Copyright 2002 Cancer Research UK

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeslbagg, Y. Ue.; Kuecuekoemeroglu, A.; Kurnaz, A.

    Indoor radon studies have been conducted in Artvin, Eastern alack sea region of Turkey using SSNTD type nuclear track detector (CR-39). Radon measurements were done for 4 seasons in 73 dwellings, selected as uniformly distributed as possible. The radon concentrations vary from 21 aq m{sup -3} to 321 aq m{sup -3} with the annual mean concentration of 132 aq m{sup -3} for Artvin. Seasonal variation indoor radon shows high in winter low values in summer. The resulting estimated annual effective dose-equivalent due to inhalation of radon for inhabitants is 3.32 mSv y{sup -1} and the total annual effective dose liesmore » in the range of the action level (3-10 mSv y{sup -1}) recommended by the ICRP.« less

  1. Protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice

    PubMed Central

    Etani, Reo; Kataoka, Takahiro; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro; Taguchi, Takehito

    2017-01-01

    ABSTRACT Radon therapy using radon (222Rn) gas is classified into two types of treatment: inhalation of radon gas and drinking water containing radon. Although short- or long-term intake of spa water is effective in increasing gastric mucosal blood flow, and spa water therapy is useful for treating chronic gastritis and gastric ulcer, the underlying mechanisms for and precise effects of radon protection against mucosal injury are unclear. In the present study, we examined the protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice. Mice inhaled radon at a concentration of 2000 Bq/m3 for 24 h or were provided with hot spring water for 2 weeks. The activity density of 222Rn ranged from 663 Bq/l (start point of supplying) to 100 Bq/l (end point of supplying). Mice were then orally administered ethanol at three concentrations. The ulcer index (UI), an indicator of mucosal injury, increased in response to the administration of ethanol; however, treatment with either radon inhalation or hot spring water inhibited the elevation in the UI due to ethanol. Although no significant differences in antioxidative enzymes were observed between the radon-treated groups and the non-treated control groups, lipid peroxide levels were significantly lower in the stomachs of mice pre-treated with radon or hot spring water. These results suggest that hot spring water drinking and radon inhalation inhibit ethanol-induced gastric mucosal injury. PMID:28498931

  2. RADON AND PROGENY SOURCED DOSE ASSESSMENT OF SPA EMPLOYEES IN BALNEOLOGICAL SITES.

    PubMed

    Uzun, Sefa Kemal; Demiröz, Işık

    2016-09-01

    This study was conducted in the scope of IAEA project with the name 'Establishing a Systematic Radioactivity Survey and Total Effective Dose Assessment in Natural Balneological Sites' (TUR/9/018), at the Health Physics department of Sarayköy Nuclear Research and Training Center (SANAEM). The aim of this study is estimation of radon and progeny sourced effective dose for the people who are working at the spa facilities by measuring radon activity concentration (RAC) at the ambient air of indoor spa pools and dressing rooms. As it is known, the source of the radon gas is the radium content of the earth crust. Therefore, thermal waters coming from ground may contain dissolved radon and the radon can diffuse water to air. So the ambient air of spa pools can contain serious RAC that depends on a lot of parameters. In this regard, RAC measurements were executed at the 70 spa facilities in Turkey. The measurements were done with both active and passive methods at ambient air of spa pools and dressing rooms. Thus, active measurements were carried out by using the Alphaguard(®) with diffusion mode during half an hour, and passive measurements were carried out by using the humidity resistive CR-39 radon detectors during 2 months. Results show that RAC values at ambient air of spa pools varies between 13 Bq m(-3) and 10 kBq m(-3) Because long-term measurements are more reliable, if it is available, for dose calculations passive radon measurements (with CR-39 detectors) at ambient air of spa pools and dressing rooms were used, otherwise active measurement results were used. With the measurement by the conversion coefficients of ICRP 65 and occupational data of the employees has got from questionary forms, effective dose values were calculated. According to the calculations, spa employees are exposed to annual average dose between 0.05 and 29 mSv because of radon and progeny. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Room model based Monte Carlo simulation study of the relationship between the airborne dose rate and the surface-deposited radon progeny.

    PubMed

    Sun, Kainan; Field, R William; Steck, Daniel J

    2010-01-01

    The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through a Monte Carlo simulation study based on the extended Jacobi room model. Airborne dose rates were calculated from the unattached and attached potential alpha-energy concentrations (PAECs) using two dosimetric models. Surface-deposited (218)Po and (214)Po were significantly correlated with radon concentration, PAECs, and airborne dose rate (p-values <0.0001) in both non-smoking and smoking environments. However, in non-smoking environments, the deposited radon progeny were not highly correlated to the attached PAEC. In multiple linear regression analysis, natural logarithm transformation was performed for airborne dose rate as a dependent variable, as well as for radon and deposited (218)Po and (214)Po as predictors. In non-smoking environments, after adjusting for the effect of radon, deposited (214)Po was a significant positive predictor for one dose model (RR 1.46, 95% CI 1.27-1.67), while deposited (218)Po was a negative predictor for the other dose model (RR 0.90, 95% CI 0.83-0.98). In smoking environments, after adjusting for radon and room size, deposited (218)Po was a significant positive predictor for one dose model (RR 1.10, 95% CI 1.02-1.19), while a significant negative predictor for the other model (RR 0.90, 95% CI 0.85-0.95). After adjusting for radon and deposited (218)Po, significant increases of 1.14 (95% CI 1.03-1.27) and 1.13 (95% CI 1.05-1.22) in the mean dose rates were found for large room sizes relative to small room sizes in the different dose models.

  4. Groundwater chemistry and radon-222 distribution in Jerba Island, Tunisia.

    PubMed

    Telahigue, Faten; Agoubi, Belgacem; Souid, Fayza; Kharroubi, Adel

    2018-02-01

    The present study integrates hydrogeological, hydrochemical and radiogenic data of groundwater samples taken from the Plio-Quaternary unconfined aquifer of Jerba Island, southeastern Tunisia, in order to interpret the spatial variations of the groundwater quality and identify the main hydrogeochemical factors responsible for the high ion concentrations and radon-222 content in the groundwater analysed. Thirty-nine groundwater samples were collected from open wells widespread on the island. Physical parameters (EC, pH, TDS and T °) were measured, major ions (Ca 2+ , Mg 2+ , Na + , K + , Cl - , SO 4 2- , NO 3 - and HCO 3 - ) were analysed and 222 Rn concentrations were determined using a RAD7-H 2 O. Hydrogeochemical characterisation revealed that groundwater from the Jerba aquifer has several origins. Basically, two water types exist in the island. The first one, characterized by a low to moderate salinity with a chemical facies CaMgClSO 4 , characterizes the central part of Jerba (a recharge area) due to carbonate and gypsum dissolution. The second water type with high salinities, dominated by NaKCl type, was observed in coastal areas and some parts having low topographic and piezometric levels. These areas seem to be affected by the seawater intrusion process. The 222 Rn concentrations in groundwater samples in Jerba varied from 0 Bq.L -1 to 2860 Bq.L -1 with an average of 867 Bq.L -1 . The highest values were registered in the western coastal wells and near the fault of Guellala. However, the central and eastern wells showed low radon levels. Compared to 222 Rn activity in some countries with the same lithology, radon concentrations in the Jerba unconfined aquifer have higher values influenced by the structure of the aquifer and by seawater inflow enriched with 222 Rn resulting from the decay of uranium derived from phosphogypsum deposits in the gulf of Gabes. The EC and 222 Rn spatial variability in the study area were mapped using ARC Map 10.3 software. Hydrochemical results in addition to geological data and radon activities confirm the existence of vertical communication between the Miocene aquifer and the unconfined Plio-Quaternary aquifer through fault system and a lateral communication with the sea via seawater intrusion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Investigating Indoor Radon Levels and Influencing Factors in Primary Schools of Zulfi City, Saudi Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Al-Mosa, Tahani M.

    Measurement of indoor Concentrations were performed in Zulfi city of Saudi Arabia, using CR-39 track etch detectors. This investigation focused on the influence of different parameters, namely different locations, school categories, school building types, and room type as well as on the existence of differences in radon concentration at floor levels. We divided the Zulfi city into five regions, keeping in mind their geographical locations between Tuwaiq Mountains and Al-Thuwayrat sands. The measured average radon concentrations for regions 1-5 respectively are: 87.0{+-}14.2 Bq/m{sup 3}, 83.4{+-}6.0 Bq/m{sup 3}, 61.6{+-}6.4 Bq/m{sup 3}, 63.7{+-}5.4 Bq/m{sup 3} and 87.5{+-}6.Bq/m{sup 3} and the minimum concentrationsmore » are 28.0 Bq/m{sup 3}, 5.5 Bq/m{sup 3}, 1.1 Bq/m{sup 3}, 1.0 Bq/m{sup 3} and 24 Bq/m{sup 3} respectively. These results are still within normal limits and below the action level of 148 Bqm{sup -3} set by the U.S. Environmental Protection Agency (EPA). A test of significance using Minitab program was applied to investigate if radon levels in regions are significantly different from each other. We tried all combinations, and found the following results. The ''within regions''(different location) test yielded, region 2 is not significant versus region ''1''(p = 0.783) and versus region ''5''(P = 0.646), whereas it is significant versus region ''3''(P = 0.0160) and also versus region ''4''(p = 0.018). We investigated government and rented school's building also and none was found significantly different (p = 0.052). Floors of the same building were tested in order to examine the radon concentration as a function of storey level. No significant difference was observed at floor levels (p = 0.009). When girl's schools versus Boys and kindergartens schools were tested they were found significantly different. It is believed that this significant difference is due to geographical nature of the area, since most of the girl's schools were selected from regions 2 and 3, these regions are relatively close to the Tuwaiq mountains whereas other regions are near to the Al-Thuwayrat sands.« less

  6. Radiation dose due to radon and thoron progeny inhalation in high-level natural radiation areas of Kerala, India.

    PubMed

    Omori, Yasutaka; Tokonami, Shinji; Sahoo, Sarata Kumar; Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Hosoda, Masahiro; Kudo, Hiromi; Pornnumpa, Chanis; Nair, Raghu Ram K; Jayalekshmi, Padmavaty Amma; Sebastian, Paul; Akiba, Suminori

    2017-03-20

    In order to evaluate internal exposure to radon and thoron, concentrations for radon, thoron, and thoron progeny were measured for 259 dwellings located in high background radiation areas (HBRAs, outdoor external dose: 3-5 mGy y -1 ) and low background radiation areas (control areas, outdoor external dose: 1 mGy y -1 ) in Karunagappally Taluk, Kerala, India. The measurements were conducted using passive-type radon-thoron detectors and thoron progeny detectors over two six-month measurement periods from June 2010 to June 2011. The results showed no major differences in radon and thoron progeny concentrations between the HBRAs and the control areas. The geometric mean of the annual effective dose due to radon and thoron was calculated as 0.10 and 0.44 mSv, respectively. The doses were small, but not negligible compared with the external dose in the two areas.

  7. Size distribution of radon daughter particles in uranium mine atmospheres.

    PubMed

    George, A C; Hinchliffe, L; Sladowski, R

    1975-06-01

    The size distribution of radon daughters was measured in several uranium mines using four compact diffusion batteries and a round jet cascade impactor. Simultaneously, measurements were made of uncombined fractions of radon daughters, radon concentration, working level and particle concentration. The size distributions found for radon daughters were log normal. The activity median diameters ranged from 0.09 mum to 0.3 mum with a mean value of 0.17 mum. Geometric standard deviations were in the range from 1.3 to 4 with a mean value of 2.7. Uncombined fractions expressed in accordance with the ICRP definition ranged from 0.004 to 0.16 with a mean value of 0.04. The radon daughter sizes in these mines are greater than the sizes assumed by various authors in calculating respiratory tract dose. The disparity may reflect the widening use of diesel-powered equipment in large uranium mines.

  8. Indoor concentration of radon, thoron and their progeny around granite regions in the state of Karnataka, India.

    PubMed

    Sannappa, J; Ningappa, C

    2014-03-01

    An extensive studies on the indoor activity concentrations of thoron, radon and their progeny in the granite region in the state of Karnataka, India, has been carried out since, 2007 in the scope of a lung cancer epidemiological study using solid-state nuclear track detector-based double-chamber dosemeters (LR-115, type II plastic track detector). Seventy-four dwellings of different types were selected for the measurement. The dosemeters containing SSNTD detectors were fixed 2 m above the floor. After an exposure time of 3 months (90 d), films were etched to reveal tracks. From the track density, the concentrations of radon and thoron were evaluated. The value of the indoor concentration of thoron and radon in the study area varies from 16 to 170 Bq m(-3) and 18 to 300 Bq m(-3) with medians of 66 and 82.3 Bq m(-3), respectively, and that of their progeny varies from 1.8 to 24 mWL with a median of 3.6 mWL and 1.6 to 19.6 mWL, respectively. The concentrations of indoor thoron, radon and their progeny and their equivalent effective doses are discussed.

  9. Geographical Correlations between Indoor Radon Concentration and Risks of Lung Cancer, Non-Hodgkin’s Lymphoma, and Leukemia during 1999–2008 in Korea

    PubMed Central

    Ha, Mina; Hwang, Seung-sik; Kang, Sungchan; Park, No-Wook; Chang, Byung-Uck; Kim, Yongjae

    2017-01-01

    Indoor radon is the second most important risk factor for lung cancer and may also be a risk factor for hematopoietic cancers, particularly in children and adolescents. The present study measured indoor radon concentration nationwide at 5553 points during 1989–2009 and spatially interpolated using lognormal kriging. The incidences of lung cancer, non-Hodgkin’s lymphoma (NHL), and leukemia, stratified by sex and five-year age groups in each of the 234 administrative regions in the country during 1999–2008, were obtained from the National Cancer Registry and used to calculate the standardized incidence ratios. After considering regional deprivation index values and smoking rates by sex in each region as confounding variables, the cancer risks were estimated based on Bayesian hierarchical modeling. We found that a 10 Bq/m3 increase in indoor radon concentration was associated with a 1% increase in the incidence of lung cancer in male and a 7% increase in NHL in female children and adolescents in Korea aged less than 20 years. Leukemia was not associated with indoor radon concentration. The increase in NHL risk among young women requires confirmation in future studies, and the radon control program should consider children and adolescents. PMID:28338643

  10. Geographical Correlations between Indoor Radon Concentration and Risks of Lung Cancer, Non-Hodgkin's Lymphoma, and Leukemia during 1999-2008 in Korea.

    PubMed

    Ha, Mina; Hwang, Seung-Sik; Kang, Sungchan; Park, No-Wook; Chang, Byung-Uck; Kim, Yongjae

    2017-03-24

    Indoor radon is the second most important risk factor for lung cancer and may also be a risk factor for hematopoietic cancers, particularly in children and adolescents. The present study measured indoor radon concentration nationwide at 5553 points during 1989-2009 and spatially interpolated using lognormal kriging. The incidences of lung cancer, non-Hodgkin's lymphoma (NHL), and leukemia, stratified by sex and five-year age groups in each of the 234 administrative regions in the country during 1999-2008, were obtained from the National Cancer Registry and used to calculate the standardized incidence ratios. After considering regional deprivation index values and smoking rates by sex in each region as confounding variables, the cancer risks were estimated based on Bayesian hierarchical modeling. We found that a 10 Bq/m³ increase in indoor radon concentration was associated with a 1% increase in the incidence of lung cancer in male and a 7% increase in NHL in female children and adolescents in Korea aged less than 20 years. Leukemia was not associated with indoor radon concentration. The increase in NHL risk among young women requires confirmation in future studies, and the radon control program should consider children and adolescents.

  11. Lung-cancer reduction from smoking cessation and radon remediation: a preliminary cost-analysis in Northamptonshire, UK.

    PubMed

    Groves-Kirkby, C J; Timson, K; Shield, G; Denman, A R; Rogers, S; Phillips, P S

    2011-02-01

    Domestic radon levels in parts of the United Kingdom are sufficiently high as to increase the risk of lung-cancer among residents. Public health campaigns in the county of Northamptonshire, a designated radon Affected Area with 6.3% of homes having average radon levels in excess of the UK Action Level of 200 Bq m(-3), have encouraged householders to test for radon and then, if indicated to be necessary, to carry out remediation in their homes. These campaigns have been only partially successful, since to date only 40% of Northamptonshire houses have been tested, and only 15% of those householders finding raised levels have proceeded to remediate. Those who remediate have been shown to have smaller families, to be older, and to include fewer smokers than the average population, suggesting that current strategies to reduce domestic radon exposure are not reaching those most at risk. During 2004-2005, the NHS Stop-Smoking Services in Northamptonshire assisted 2847 smokers to quit to the 4-week stage, the 15% (435) of these 4-week quitters remaining quitters at 1year forming the subjects of a retrospective study considering whether smoking cessation campaigns contribute significantly to radon risk reduction. Quantitative assessment of the risk of lung-cancer among the study population, from knowledge of the individuals' age, gender, and smoking habits, together with the radon levels in their homes, demonstrates that smoking cessation programmes have significant added value in reducing the incidence of lung-cancer in radon Affected Areas, and contribute a substantially greater health benefit at a lower cost than the alternative strategy of reducing radon levels in the smokers' homes, while they remain smokers. Both radon remediation and smoking cessation programmes are very cost effective in Northamptonshire, with smoking cessation being significantly more cost effective, and these are potentially valuable programmes to drive health improvements through promotion of the uptake or environmental management for radon in the home. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Radon remediation and prevention status in 23 European countries.

    PubMed

    Holmgren, O; Arvela, H; Collignan, B; Jiránek, M; Ringer, W

    2013-12-01

    Radon remediation and prevention aim at reducing indoor radon concentrations in the existing and new buildings. This paper gives an estimate of the number of dwellings where remediation or preventive measures have been applied so far in Europe. Questionnaires were sent to contact persons in national radiation protection authorities and radon-related research institutes. Answers from 23 European countries were obtained. Approximately 26 000 dwellings have been remediated in total. Millions of dwellings remain to be remediated and the number is increasing due to the rare use of radon prevention. These facts imply a need for an efficient radon strategy to promote radon remediation. Moreover, the importance of radon prevention in new construction and the regulations concerning radon in the national building codes should be emphasised.

  13. Radon in Wisconsin.

    PubMed

    Weiffenbach, C; Anderson, H A

    2000-11-01

    Owners of about 15% to 20% of the homes in Wisconsin have tested their indoor air for the carcinogenic gas radon. Five percent to 10% of homes have year-average main-floor radon levels that exceed the US Environmental Protection Agency (EPA) exposure guideline, and they are found in most regions of the state. Attempting to retroactively seal foundations to keep radon from the ground out of a home is largely ineffective. However, a soil-depressurization radon mitigation system is highly effective for existing houses, and new homes can easily be built radon-resistant. As the number of homeowners obtaining needed repairs increases, significant lung cancer risk reduction is being achieved in a voluntary, non-regulatory setting. In coming years, as radon in community drinking water supplies becomes regulated under the federal 1996 Safe Drinking Water Act, the "multimedia" option of the act may result in additional attention to mitigation of radon in indoor air.

  14. The China Clipper - Fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Le Roulley, Jean-Claude; Danielsen, Edwin F.

    1990-01-01

    A series of upper tropospheric radon concentration measurements made over the eastern Pacific and west coast of the U.S. during the summers of 1983 and 1984 has revealed the occurrence of unexpectedly high radon concentrations for 9 of the 61 measurements. A frequency distribution plot of the set of 61 observations shows a distinct bimodal distribution, with approximately 2/5 of the observations falling close to 1 pCi/SCM, and 3/5 falling in a high concentration mode centered at about 11 pCi/SCM. Trajectory and synoptic analyses for two of the flights on which such high radon concentrations were observed indicate that this radon-rich air originated in the Asian boundary layer, ascended in cumulus updrafts, and was carried eastward in the fast moving air on the anticyclonic side of the upper tropospheric jet. The results suggest that the combination of rapid vertical transport from the surface boundary layer to the upper troposphere, followed by rapid horizontal transport eastward represents an efficient mode of long-transport for other, chemically reactive atmospheric trace constituents.

  15. The China Clipper - Fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California

    NASA Astrophysics Data System (ADS)

    Kritz, Mark A.; Le Roulley, Jean-Claude; Danielsen, Edwin F.

    1990-02-01

    A series of upper tropospheric radon concentration measurements made over the eastern Pacific and west coast of the U.S. during the summers of 1983 and 1984 has revealed the occurrence of unexpectedly high radon concentrations for 9 of the 61 measurements. A frequency distribution plot of the set of 61 observations shows a distinct bimodal distribution, with approximately 2/5 of the observations falling close to 1 pCi/SCM, and 3/5 falling in a high concentration mode centered at about 11 pCi/SCM. Trajectory and synoptic analyses for two of the flights on which such high radon concentrations were observed indicate that this radon-rich air originated in the Asian boundary layer, ascended in cumulus updrafts, and was carried eastward in the fast moving air on the anticyclonic side of the upper tropospheric jet. The results suggest that the combination of rapid vertical transport from the surface boundary layer to the upper troposphere, followed by rapid horizontal transport eastward represents an efficient mode of long-transport for other, chemically reactive atmospheric trace constituents.

  16. PARAMETRIC ANALYSIS OF THE INSTALLATION AND OPERATING COSTS OF ACTIVE SOIL DEPRESSURIZATION SYSTEMS FOR RESIDENTIAL RADON MITIGATION

    EPA Science Inventory

    The report gives results of a recent analysis showing that cost- effective indoor radon reduction technology is required for houses with initial radon concentrations < 4 pCi/L, because 78-86% of the national lung cancer risk due to radon is associated with those houses. ctive soi...

  17. HANDBOOK: SUB-SLAB DEPRESSURIZATION FOR LOW PERMEABILITY FILL MATERIAL DESIGN AND INSTALLATION OF A HOME RADON REDUCTION SYSTEM

    EPA Science Inventory

    Radon, a radioactive gas, comes from the natural decay of uranium. It moves to the earth's surface through tiny openings and cracks in soil and rocks. In outdoor air, radon is diluted to such low concentrations that it is usually nothing to worry about. However, radon can accumul...

  18. AN ESTIMATION OF THE EXPOSURE OF THE POPULATION OF ISRAEL TO NATURAL SOURCES OF IONIZING RADIATION.

    PubMed

    Epstein, L; Koch, J; Riemer, T; Haquin, G; Orion, I

    2017-11-01

    The radiation dose to the population of Israel due to exposure to natural sources of ionizing radiation was assessed. The main contributor to the dose is radon that accounts for 60% of the exposure to natural sources. The dose due to radon inhalation was assessed by combining the results of a radon survey in single-family houses with the results of a survey in apartments in multi-storey buildings. The average annual dose due to radon inhalation was found to be 1.2 mSv. The dose rate due to exposure to cosmic radiation was assessed using a code that calculates the dose rate at different heights above sea level, taking into account the solar cycle. The annual dose was calculated based on the fraction of time spent indoors and the attenuation provided by buildings and was found to be 0.2 mSv. The annual dose due to external exposure to the terrestrial radionuclides was similarly assessed. The indoor dose rate was calculated using a model that takes into account the concentrations of the natural radionuclides in building materials, the density and the thickness of the walls. The dose rate outdoors was calculated based on the concentrations of the natural radionuclides in different geological units in Israel as measured in an aerial survey and measurements above ground. The annual dose was found to be 0.2 mSv. Doses due to internal exposure other than exposure to radon were also calculated and were found to be 0.4 mSv. The overall annual exposure of the population of Israel to natural sources of ionizing radiation is therefore 2 mSv and ranges between 1.7 and 2.7 mSv. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. The Influence of Internal Wall and Floor Covering Materials and Ventilation Type on Indoor Radon and Thoron Levels in Hospitals of Kermanshah, Iran

    PubMed Central

    Pirsaheb, Meghdad; Najafi, Farid; Haghparast, Abbas; Hemati, Lida; Sharafi, Kiomars; Kurd, Nematullah

    2016-01-01

    Background Building materials and the ventilation rate of a building are two main factors influencing indoor radon and thoron levels (two radioactive gases which have the most important role in human natural radiation exposure within dwellings). Objectives This analytical descriptive study was intended to determine the relationship between indoor radon and thoron concentrations and the building materials used in interior surfaces, as well as between those concentrations and the type of ventilation system (natural or artificial). Materials and Methods 102 measurements of radon and thoron levels were taken from different parts of three hospital buildings in the city of Kermanshah in the west of Iran, using an RTM-1688-2 radon meter. Information on the type of building material and ventilation system in the measurement location was collected and then analyzed using Stata 8 software and multivariate linear regression. Results In terms of radon and thoron emissions, travertine and plaster were found to be the most appropriate and inappropriate covering for walls, respectively. Furthermore, granite and travertine were discovered to be inappropriate materials for flooring, while plastic floor covering was found suitable. Natural ventilation performed better for radon, while artificial ventilation worked better for thoron. Conclusions Internal building materials and ventilation type affect indoor radon and thoron concentrations. Therefore, the use of proper materials and adequate ventilation can reduce the potential human exposure to radon and thoron. This is of utmost importance, particularly in buildings with a high density of residents, including hospitals. PMID:28180013

  20. A comparative study on the characteristics of radioactivities and negative air ions originating from the minerals in some radon hot springs.

    PubMed

    Sakoda, Akihiro; Hanamoto, Katsumi; Haruki, Naoto; Nagamatsu, Tomohiro; Yamaoka, Kiyonori

    2007-01-01

    To elucidate the characteristics of some radon hot springs, we simulated a hot spring by soaking the rocks for the radon therapy in water and measured the concentrations of radon and negative air ions in various conditions. In the results, the individual rock structure could contribute to radon leaching because the radon leaching rates were independent of the grain sizes. More negative air ions were generated by the wet rocks than by the dry rocks.

  1. Researching Radon.

    ERIC Educational Resources Information Center

    Lucidi, Louis; Mecca, Peter M.

    2001-01-01

    Introduces a project in which students examined the physics, chemistry, and geology of radon and used available technology to measure radon concentrations in their homes. Uses the inquiry process, analytical skills, communication skills, content knowledge, and production of authentic products for student assessment. (YDS)

  2. Monitoring trends in civil engineering and their effect on indoor radon.

    PubMed

    Ringer, W

    2014-07-01

    In this paper, the importance of monitoring new building concepts is discussed. The effect of energy-efficient construction technologies on indoor radon is presented in more detail. Comparing the radon levels of about 100 low-energy and passive houses in Austria with radon levels in conventional new houses show that, in energy-efficient new houses, the radon level is about one-third lower than in conventional new houses. Nevertheless, certain features or bad practice may cause high radon levels in energy-efficient new houses. Recommendations to avoid adverse effects were set up. Furthermore, the paper deals with the effect of thermal retrofitting on indoor radon. Results from a Swiss study where 163 dwellings were measured before and after thermal retrofit yield an increase of the radon level of 26% in average. Among the various retrofit measures, replacing windows has the greatest impact on the indoor radon level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Novel determination of radon-222 velocity in deep subsurface rocks and the feasibility to using radon as an earthquake precursor

    NASA Astrophysics Data System (ADS)

    Zafrir, Hovav; Ben Horin, Yochai; Malik, Uri; Chemo, Chaim; Zalevsky, Zeev

    2016-09-01

    A novel technique utilizing simultaneous radon monitoring by gamma and alpha detectors to differentiate between the radon climatic driving forces and others has been improved and used for deep subsurface investigation. Detailed long-term monitoring served as a proxy for studying radon movement within the shallow and deep subsurface, as well as for analyzing the effect of various parameters of the radon transport pattern. The main achievements of the investigation are (a) determination, for the first time, of the radon movement velocity within rock layers at depths of several tens of meters, namely, 25 m/h on average; (b) distinguishing between the diurnal periodical effect of the ambient temperature and the semidiurnal effect of the ambient pressure on the radon temporal spectrum; and (c) identification of a radon random preseismic anomaly preceding the Nuweiba, M 5.5 earthquake of 27 June 2015 that occurred within Dead Sea Fault Zone.

  4. Novel method of measurement of radon exhalation from building materials.

    PubMed

    Awhida, A; Ujić, P; Vukanac, I; Đurašević, M; Kandić, A; Čeliković, I; Lončar, B; Kolarž, P

    2016-11-01

    In the era of the energy saving policy (i.e. more air tight doors and windows), the radon exhaled from building materials tends to increase its concentration in indoor air, which increases the importance of the measurement of radon exhalation from building materials. This manuscript presents a novel method of the radon exhalation measurement using only a HPGe detector or any other gamma spectrometer. Comparing it with the already used methods of radon exhalation measurements, this method provides the measurement of the emanation coefficient, the radon diffusion length and the radon exhalation rate, all within the same measurement, which additionally defines material's radon protective properties. Furthermore it does not necessitate additional equipment for radon or radon exhalation measurement, which simplifies measurement technique, and thus potentially facilitates introduction of legal obligation for radon exhalation determination in building materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Temporal variations of radon concentration in the saturated soil of Alpine grassland: the role of groundwater flow.

    PubMed

    Perrier, Frédéric; Richon, Patrick; Sabroux, Jean-Christophe

    2009-03-15

    Radon concentration has been monitored from 1995 to 1999 in the soil of the Sur-Frêtes ridge (French Alps), covered with snow from November to April. Measurements were performed at 70 cm depth, with a sampling time of 1 h, at two points: the summit of the ridge, at an altitude of 1792 m, and the bottom of the ridge, at an altitude of 1590 m. On the summit, radon concentration shows a moderate seasonal variation, with a high value from October to April (winter), and a low value from May to September (summer). At the bottom of the ridge, a large and opposite seasonal variation is observed, with a low value in winter and a high value in summer. Fluctuations of the radon concentration seem to be associated with temperature variations, an effect which is largely delusory. Indeed, these variations are actually due to water infiltration. A simplified mixing model is used to show that, at the summit of the ridge, two effects compete in the radon response: a slow infiltration response, rich in radon, with a typical time scale of days, and a fast infiltration of radon-poor rainwater. At the bottom of the ridge, similarly, two groundwater contributions compete: one slow infiltration response, similar to the response seen at the summit, and an additional slower response, with a typical time scale of about a month. This second slower response can be interpreted as the aquifer discharge in response to snow melt. This study shows that, while caution is necessary to properly interpret the various effects, the temporal variations of the radon concentration in soil can be understood reasonably well, and appear to be a sensitive tool to study the subtle interplay of near surface transfer processes of groundwater with different transit times.

  6. Determination of recharge fraction of injection water in combined abstraction-injection wells using continuous radon monitoring.

    PubMed

    Lee, Kil Yong; Kim, Yong-Chul; Cho, Soo Young; Kim, Seong Yun; Yoon, Yoon Yeol; Koh, Dong Chan; Ha, Kyucheol; Ko, Kyung-Seok

    2016-12-01

    The recharge fractions of injection water in combined abstraction-injection wells (AIW) were determined using continuous radon monitoring and radon mass balance model. The recharge system consists of three combined abstraction-injection wells, an observation well, a collection tank, an injection tank, and tubing for heating and transferring used groundwater. Groundwater was abstracted from an AIW and sprayed on the water-curtain heating facility and then the used groundwater was injected into the same AIW well by the recharge system. Radon concentrations of fresh groundwater in the AIWs and of used groundwater in the injection tank were measured continuously using a continuous radon monitoring system. Radon concentrations of fresh groundwater in the AIWs and used groundwater in the injection tank were in the ranges of 10,830-13,530 Bq/m 3 and 1500-5600 Bq/m 3 , respectively. A simple radon mass balance model was developed to estimate the recharge fraction of used groundwater in the AIWs. The recharge fraction in the 3 AIWs was in the range of 0.595-0.798. The time series recharge fraction could be obtained using the continuous radon monitoring system with a simple radon mass balance model. The results revealed that the radon mass balance model using continuous radon monitoring was effective for determining the time series recharge fractions in AIWs as well as for characterizing the recharge system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Seasonal variability of soil-gas radon concentration in central California

    USGS Publications Warehouse

    King, C.-Y.; Minissale, A.

    1994-01-01

    Radon concentrations in soil gas were measured by the track-etch method in 60 shallow holes, each 70 cm deep and supported by a capped plastic tube, along several major faults in central California during 1975-1985. This set of data was analyzed to investigate the seasonal variability of soil-gas radon concentration in an area which has various geological conditions but similar climate. The results show several different patterns of seasonal variations, but all of which can be largely attributed to the water-saturation and moisture-retention characteristics of the shallow part of the soil. During the rainy winter and spring seasons, radon tended to be confined underground by the water-saturated surface soil which had much reduced gas permeability, while during the sunny summer and autumn seasons, it exhaled more readily as the soil became drier and more permeable. At several sites located on creeping faults, the radon-variation patterns changed with time, possibly because of disturbance of site condition by fault movement. ?? 1994.

  8. Use of Artificial Neural Network for the Simulation of Radon Emission Concentration of Granulated Blast Furnace Slag Mortar.

    PubMed

    Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young

    2016-05-01

    In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.

  9. Field experience on indoor radon, thoron and their progenies with solid-state detectors in a survey of Kosovo and Metohija (Balkan region).

    PubMed

    Gulan, L; Milic, G; Bossew, P; Omori, Y; Ishikawa, T; Mishra, R; Mayya, Y S; Stojanovska, Z; Nikezic, D; Vuckovic, B; Zunic, Z S

    2012-11-01

    Since 1996/97, indoor radon has been measured in scattered locations around Kosovo. In the most recent campaign, apart from radon, thoron and Rn and Tn progenies have also been measured. The current survey involves 48 houses, in which different detectors have been deployed side-by-side in one room, in order to measure indoor radon and thoron gas with RADUET devices based on CR-39 detectors (analysed by Japanese collaborators) and with direct thoron and radon progeny sensor (DTPS and DRPS) devices based on LR-115 detectors (analysed by collaborators from India). Estimated arithmetic mean values of concentrations in 48 houses are 122 Bq m(-3) for radon and 136 Bq m(-3) for thoron. Those for equilibrium equivalent radon concentration and equilibrium equivalent thoron concentration based on measurements in 48 houses are 40 and 2.1 Bq m(-3), respectively. The arithmetic mean value of the equilibrium factor is estimated to be 0.50 ± 0.23 for radon and 0.037 ± 0.041 for thoron. The preliminary results of these measurements are reported, particularly regarding DTPS and DRPS being set up in real field conditions for the first time in the Balkan region. The results are to be understood under the caveat of open questions related to measurement protocols which yield reproducible and representative results, and to quality assurance of Tn and Rn/Tn progeny measurements in general, some of which are discussed.

  10. Risks from Radon: Reconciling Miner and Residential Epidemiology

    NASA Astrophysics Data System (ADS)

    Chambers, Douglas B.; Harley, Naomi H.

    2008-08-01

    Everyone is exposed to radon, an inert radioactive gas that occurs naturally and is present everywhere in the atmosphere. The annual dose from radon and its (short-lived) decay products is typically about one-half of the dose received by members of the public from all natural sources of ionizing radiation. Data on exposures and consequent effects have recently been reviewed by the National Council on Radiation Protection and Measurements (NCRP) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Studies of underground miners provides a well-established basis for estimating risks from occupational exposures to radon and for studying factors that may affect the dose response relationship such as the reduction of risk (coefficients) with increasing time since exposure. Miners' studies previously formed the basis for estimating risks to people exposed to radon at home, with downward extrapolation from exposures in mines to residential levels of radon. Presently, the risk estimates from residential studies are adequate to estimate radon risks in homes. Although there are major uncertainties in extrapolating the risks of exposure to radon from the miner studies to assessing risks in the home, there is remarkably good agreement between the average of risk factors derived from miner studies and those from pooled residential case-control studies. There are now over 20 analytical studies of residential radon and lung cancer. These studies typically assess the relative risk from exposure to radon based on estimates of residential exposure over a period of 25 to 30 years prior to diagnosis of lung cancer. Recent pooled analyses of residential case-control studies support a small but detectable lung cancer risk from residential exposure, and this risk increases with increasing concentrations. The excess relative risk of lung cancer from long-term residential exposure is about the same for both smokers and non-smokers; however, because the baseline lung cancer rate for smokers is much higher than for non or never smokers, smokers account for nearly 90% of the population risk from residential exposure to radon. As described in the paper, an excess relative risk (ERR) of 0.12(95% CI: 0.08-0.2)per 100 Bq m-3 (radon gas) can be estimated from combined miner studies. This compares well with the ERR from pooled residential case-control studies (for restricted analysis) for Europe of 0.16(95% CI: 0.05-0.31)[1] and for North America of 0.11(95% CI: 0.0-0.28)[2].

  11. Investigation of the exposure to radon and progeny in the thermal spas of Loutraki (Attica-Greece): results from measurements and modelling.

    PubMed

    Nikolopoulos, Dimitrios; Vogiannis, Efstratios; Petraki, Ermioni; Zisos, Athanasios; Louizi, Anna

    2010-01-01

    Radon and progeny ((218)Po, (214)Pb, (214)Bi and (214)Po) in thermal spas are well known radioactive pollutants identified for additional radiation burden of patients due to the activity concentration peaks which appear during bath treatment or due to drinking of waters of high radon content. This burden affects additionally the working personnel of the spas. The present paper has focused on the thermal spas of Loutraki (Attica-Greece). The aim was the investigation of the health impact for patients and working personnel due to radon and progeny. Attention has been paid to radon and progeny transient concentration peaks (for bath treatment) and to radon of thermal waters (both for bath treatment and drinking therapy). Designed experiments have been carried out, which included radon and progeny activity concentration measurements in thermal waters and ambient air. Additionally, published models for description of radon and progeny transient concentration peaks were employed. The models were based on physicochemical processes involved and employed non linear first order derivative mass balance differential equations which were solved numerically with the aid of specially developed computer codes. The collected measurements were analysed incorporating these models. Results were checked via non linear statistical tests. Predictions and measurements were found in close agreement. Non linear parameters were estimated. The models were employed for dosimetric estimations of patients and working personnel. The effective doses of patients receiving bath treatment were found low but not negligible. The corresponding doses to patients receiving potable treatment were found high but below the proposed international limits. It was found that the working personnel are exposed to considerable effective doses, however well below the acceptable limits for workers. It was concluded that treatment and working in the Loutraki spas leads to intense variations of radon and progeny and consequently additional health impact both to patients and working personnel.

  12. ACTIVE SOIL DEPRESSURIZATION (ASD) DEMONSTRATION IN A LARGE BUILDING

    EPA Science Inventory

    The report gives results of an evaluation of the feasibility of implementing radon resistant construction techniques -- especially active soil depressurization (ASD) -- in new large buildings in Florida. Indoor radon concentrations and radon entry were monitored in a finished bui...

  13. Modeling of lung cancer risk due to radon exhalation of granite stone in dwelling houses.

    PubMed

    Abbasi, Akbar

    2017-01-01

    Due to increasing occurrences of lung cancer, radon exhalation rates, radon concentrations, and lung cancer risks in several types of commonly used granite stone, samples used for flooring in buildings, have been investigated. We measured the radon exhalation rates due to granite stones by means of an AlphaGUARD Model PQ2000 in a cube container with changeable floor by various granite stones. The lung cancer risk and percentage of lung cancer deaths (LCRn) due to those conditions were calculated using Darby's model. The radon exhalation rates ranged from 1.59 ± 0.41 to 9.43 ± 0.74 Bq/m 2/h. The radon concentrations in the standard room with poor and normal ventilation were calculated 20.10-71.09 Bq/m 3 and 16.12-47.01 Bq/m 3, respectively. The estimated numbers of lung cancer deaths attributable to indoor radon due to granite stones in 2013 were 145 (3.33%) and 103 (2.37%) for poor and normal ventilation systems, respectively. According to our estimations, the values of 3.33% and 2.37% of lung cancer deaths in 2013 are attributed to radon exhalation of granite stones with poor and normal ventilation systems, respectively.

  14. A simple bubbling system for measuring radon (222Rn) gas concentrations in water samples based on the high solubility of radon in olive oil.

    PubMed

    Al-Azmi, D; Snopek, B; Sayed, A M; Domanski, T

    2004-01-01

    Based on the different levels of solubility of radon gas in organic solvents and water, a bubbling system has been developed to transfer radon gas, dissolving naturally in water samples, to an organic solvent, i.e. olive oil, which is known to be a good solvent of radon gas. The system features the application of a fixed volume of bubbling air by introducing a fixed volume of water into a flask mounted above the system, to displace an identical volume of air from an air cylinder. Thus a gravitational flow of water is provided without the need for pumping. Then, the flushing air (radon-enriched air) is directed through a vial containing olive oil, to achieve deposition of the radon gas by another bubbling process. Following this, the vial (containing olive oil) is measured by direct use of gamma ray spectrometry, without the need of any chemical or physical processing of the samples. Using a standard solution of 226Ra/222Rn, a lowest measurable concentration (LMC) of radon in water samples of 9.4 Bq L(-1) has been achieved (below the maximum contaminant level of 11 Bq L(-1)).

  15. Study on peak shape fitting method in radon progeny measurement.

    PubMed

    Yang, Jinmin; Zhang, Lei; Abdumomin, Kadir; Tang, Yushi; Guo, Qiuju

    2015-11-01

    Alpha spectrum measurement is one of the most important methods to measure radon progeny concentration in environment. However, the accuracy of this method is affected by the peak tailing due to the energy losses of alpha particles. This article presents a peak shape fitting method that can overcome the peak tailing problem in most situations. On a typical measured alpha spectrum curve, consecutive peaks overlap even their energies are not close to each other, and it is difficult to calculate the exact count of each peak. The peak shape fitting method uses combination of Gaussian and exponential functions, which can depict features of those peaks, to fit the measured curve. It can provide net counts of each peak explicitly, which was used in the Kerr method of calculation procedure for radon progeny concentration measurement. The results show that the fitting curve fits well with the measured curve, and the influence of the peak tailing is reduced. The method was further validated by the agreement between radon equilibrium equivalent concentration based on this method and the measured values of some commercial radon monitors, such as EQF3220 and WLx. In addition, this method improves the accuracy of individual radon progeny concentration measurement. Especially for the (218)Po peak, after eliminating the peak tailing influence, the calculated result of (218)Po concentration has been reduced by 21 %. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Characterizing the sources, range, and environmental influences of radon 222 and its decay products

    NASA Astrophysics Data System (ADS)

    Nero, A. V.; Sextro, R. G.; Doyle, S. M.; Moed, B. A.; Nazaroff, W. W.; Revzan, K. L.; Schwehr, M. B.

    1985-06-01

    Recent results from our group directly assist efforts to identify and control excessive concentrations of radon 222 and its decay products in residential environments. We have demonstrated directly the importance of pressure-induced flow of soil gas for transport of radon from the ground into houses. Analysis of available information from measurements of concentration in US homes has resulted in a quantitative appreciation of the distribution of indoor levels, including the degree of dependence on geographic location. Experiments on the effectiveness of air cleaning devices for removal of particles and radon decay products indicate the potential and limitations of this approach to control.

  17. Radon survey and soil gamma doses in primary schools of Batman, Turkey.

    PubMed

    Damla, Nevzat; Aldemir, Kamuran

    2014-06-01

    A survey was conducted to evaluate levels of indoor radon and gamma doses in 42 primary schools located in Batman, southeastern Anatolia, Turkey. Indoor radon measurements were carried out using CR-39 solid-state nuclear track detector-based radon dosimeters. The overall mean annual (222)Rn activity in the surveyed area was found to be 49 Bq m(-3) (equivalent to an annual effective dose of 0.25 mSv). However, in one of the districts (Besiri) the maximum radon value turned out to be 307 Bq m(-3). The estimated annual effective doses are less than the recommended action level (3-10 mSv). It is found that the radon concentration decreases with increasing floor number. The concentrations of natural and artificial radioisotopes were determined using gamma-ray spectroscopy for soil samples collected in close vicinity of the studied schools. The mean gamma activity concentrations in the soil samples were 31, 25, 329 and 12 Bq kg(-1) for (226)Ra, (232)Th, (40)K and (137)Cs, respectively. The radiological parameters such as the absorbed dose rate in air and the annual effective dose equivalent were calculated. These radiological parameters were evaluated and compared with the internationally recommended values.

  18. Application of spectral decomposition of ²²²Rn activity concentration signal series measured in Niedźwiedzia Cave to identification of mechanisms responsible for different time-period variations.

    PubMed

    Przylibski, Tadeusz Andrzej; Wyłomańska, Agnieszka; Zimroz, Radosław; Fijałkowska-Lichwa, Lidia

    2015-10-01

    The authors present an application of spectral decomposition of (222)Rn activity concentration signal series as a mathematical tool used for distinguishing processes determining temporal changes of radon concentration in cave air. The authors demonstrate that decomposition of monitored signal such as (222)Rn activity concentration in cave air facilitates characterizing the processes affecting changes in the measured concentration of this gas. Thanks to this, one can better correlate and characterize the influence of various processes on radon behaviour in cave air. Distinguishing and characterising these processes enables the understanding of radon behaviour in cave environment and it may also enable and facilitate using radon as a precursor of geodynamic phenomena in the lithosphere. Thanks to the conducted analyses, the authors confirmed the unquestionable influence of convective air exchange between the cave and the atmosphere on seasonal and short-term (diurnal) changes in (222)Rn activity concentration in cave air. Thanks to the applied methodology of signal analysis and decomposition, the authors also identified a third process affecting (222)Rn activity concentration changes in cave air. This is a deterministic process causing changes in radon concentration, with a distribution different from the Gaussian one. The authors consider these changes to be the effect of turbulent air movements caused by the movement of visitors in caves. This movement is heterogeneous in terms of the number of visitors per group and the number of groups visiting a cave per day and per year. Such a process perfectly elucidates the observed character of the registered changes in (222)Rn activity concentration in one of the decomposed components of the analysed signal. The obtained results encourage further research into precise relationships between the registered (222)Rn activity concentration changes and factors causing them, as well as into using radon as a precursor of geodynamic phenomena in the lithosphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Measurement of Radon Exhalation Rate in Sand Samples from Gopalpur and Rushikulya Beach Orissa, Eastern India

    NASA Astrophysics Data System (ADS)

    Mahur, Ajay Kumar; Sharma, Anil; Sonkawade, R. G.; Sengupta, D.; Sharma, A. C.; Prasad, Rajendra

    Natural radioactivity is wide spread in the earth's environment and exists in various geological formations like soils, rocks, water and sand etc. The measurement of activities of naturally occurring radionuclides 226Ra, 232Th and 40K is important for the estimation of radiation risk and has been the subject of interest of research scientists all over the world. Building construction materials and soil beneath the house are the main sources of radon inside the dwellings. Radon exhalation rate from building materials like, cement, sand and concrete etc. is a major source of radiation to the habitants. In the present studies radon exhalation rates in sand samples collected from Gopalpur and Rushikulya beach placer deposit in Orissa are measured by using "Sealed Can technique" with LR-115 type II nuclear track detectors. In Samples from Rushikulya beach show radon activities varying from 389 ± 24 to 997 ± 38 Bq m-3 with an average value of 549 ±28 Bq m-3. Surface exhalation rates in these samples are found to vary from 140 ± 9 to 359 ± 14 mBq m-2 h-1with an average value of 197 ±10 mBq m-2 h-1, whereas, mass exhalation rates vary from 5 ± 0.3 to 14 ± 0.5 mBq kg-1 h-1 with an average value of 8 ± 0.4 mBq kg-1 h-1. Samples from Gopalpur radon activities are found to vary from 371 ± 23 to 800 ± 34 Bq m-3 with an average value of 549 ± 28 Bq m-3. Surface exhalation rates in these samples are found to vary from 133 ± 8 to 288 ± 12 mBq m-2h-1 with an average value of 197 ± 10 mBq m-2 h-1, whereas, mass exhalation rates vary from 5 ± 0.3 to 11 ± 1 mBq kg-1 h-1 with an average value of 8 ± 0.4 mBq kg-1 h-1.

  20. Estimates of the occupational exposure to tenorm in the phosphoric acid production plant in Iran.

    PubMed

    Fathabadi, N; Vasheghani Farahani, M; Moradi, M; Hadadi, B

    2012-09-01

    Phosphate rock is used world wide for manufacturing phosphoric acid and several chemical fertilisers. It is known that the phosphate rock contains various concentrations of uranium, thorium, radium and their daughters. The subject of this study is the evaluation of the radiation exposure to workers in the phosphoric acid production plant due to technologically enhanced naturally occurring radioactive materials that can result from the presence of naturally occurring radioactive materials in phosphate ores used in the manufacturing of phosphoric acid. Radiation exposure due to direct gamma radiation, dust inhalation and radon gas has been investigated and external and internal doses of exposed workers have been calculated. Natural radioactivity due to (40)K, (226)Ra and (232)Th have been measured in phosphate rock, phosphogypsum, chemical fertilisers and other samples by gamma spectrometry system with a high-purity germanium. The average concentrations of (226)Ra and (40)K observed in the phosphate rock are 760 and 80 Bq kg(-1), respectively. Annual effective dose from external radiation had a mean value of ∼0.673 mSv y(-1). Dust sampling revealed greatest values in the storage area. The annual average effective dose from inhalation of long-lived airborne was 0.113 mSv y(-1). Radon gas concentrations in the processing plant and storage area were found to be of the same value as the background. In this study the estimated annual effective doses to workers were below 1 mSv y(-1).

  1. Thoron detection with an active Radon exposure meter—First results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irlinger, J., E-mail: josef.irlinger@helmholtz-muenchen.de; Wielunski, M.; Rühm, W.

    For state-of-the-art discrimination of Radon and Thoron several measurement techniques can be used, such as active sampling, electrostatic collection, delayed coincidence method, and alpha-particle-spectroscopy. However, most of the devices available are bulky and show high power consumption, rendering them unfeasible for personal exposition monitoring. Based on a Radon exposure meter previously realized at the Helmholtz Center Munich (HMGU), a new electronic prototype for Radon/Thoron monitoring is currently being developed, which features small size and weight. Operating with pin-diode detectors, the low-power passive-sampling device can be used for continuous concentration measurements, employing alpha-particle-spectroscopy and coincidence event registration to distinguish decays originatingmore » either from Radon or Thoron isotopes and their decay products. In open geometry, preliminary calibration measurements suggest that one count per hour is produced by a 11 Bq m{sup −3} Radon atmosphere or by a 15 Bq m{sup −3} Thoron atmosphere. Future efforts will concentrate on measurements in mixed Radon/Thoron atmospheres.« less

  2. A tentative protocol for measurement of radon availability from the ground

    USGS Publications Warehouse

    Tanner, A.B.

    1988-01-01

    A procedure is being tested in order to determine its suitability for assessing the intrinsic ability of the ground as a particular site to supply 222Rn to a basement structure to be built on the site. Soil gas is sucked from a borehold probe through an alpha scintillation chamber and flow meter by a pump. The permeability of the soil is calculated from the flow rate and the pressure difference between the atmosphere and the borehold at the intake point. The diffusion coefficient is estimated from the water fraction in the soil pores. The upward migration distance for radon in such soil during one mean life is computed for an arbitrary steady pressure difference. This mean migration distance, multiplied by the measured radon concentration, gives the 'radon availability number'. Measurements at sites of known indoor radon concentration suggest that numbers below 2 kBq ?? m-2 indicate little chance of elevated indoor radon and above 20 kBq ?? m-2 indicate that elevated indoor radon is likely. The range of uncertainty and the point-to-point and seasonal variations to be expected are under investigation.

  3. Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran.

    PubMed

    Bavarnegin, E; Fathabadi, N; Vahabi Moghaddam, M; Vasheghani Farahani, M; Moradi, M; Babakhni, A

    2013-03-01

    Radon exhalation rates from building materials used in high background radiation areas (HBRA) of Ramsar were measured using an active radon gas analyzer with an emanation container. Radon exhalation rates from these samples varied from below the lower detection limit up to 384 Bq.m(-2) h(-1). The (226)Ra, (232)Th and (40)K contents were also measured using a high resolution HPGe gamma- ray spectrometer system. The activity concentration of (226)Ra, (232)Th and (40)K content varied from below the minimum detection limit up to 86,400 Bq kg(-1), 187 Bq kg(-1) and 1350 Bq kg(-1), respectively. The linear correlation coefficient between radon exhalation rate and radium concentration was 0.90. The result of this survey shows that radon exhalation rate and radium content in some local stones used as basements are extremely high and these samples are main sources of indoor radon emanation as well as external gamma radiation from uranium series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Radon daughters' concentration in air and exposure of joggers at the university campus of Bangalore, India.

    PubMed

    Ashok, G V; Nagaiah, N; Shiva Prasad, N G

    2008-09-01

    The concentration of radon daughters in outdoor air was measured continuously from January 2006 to December 2006 near the Department of Physics, Bangalore University campus, Bangalore. The concentration was measured by collecting air samples at a height of 1 m above the ground level on a glass micro fibre filter paper with a known air flow rate. The results show that the radon progeny concentration exhibits distinct seasonal and diurnal variations that are predominantly caused by changes in the temperature gradient at the soil-atmosphere interface. The concentration was found to be high from 20.00 to 8.00 hrs, when the turbulence mixing was minimum and low during the rest of the time. In terms of the monthly concentration, January was found to be the highest with September/August being the lowest. The diurnal variations in the concentrations of radon progeny were found to exhibit positive correlation with the relative humidity and anti-correlation with the atmospheric temperature. From the measured concentration, an attempt was made to establish the annual effective dose to the general public of the region and was found to be 0.085 mSv/a. In addition, an attempt was also made for the first time to study the variation of inhalation dose with respect to the physical activity levels. Results show that in the light of both the effect of chemical pollutants and radiation dose due to inhalation of radon daughters, evening jogging is advisable.

  5. A Citizen's Guide to Radon. What It Is and What To Do about It.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) are concerned about the increased risk of developing lung cancer faced by persons exposed to above-average levels of radon in their homes. The purpose of this pamphlet is to help readers to understand the radon problem and decide if they need to take…

  6. On the interaction between radon progeny and particles generated by electronic and traditional cigarettes

    NASA Astrophysics Data System (ADS)

    Vargas Trassierra, C.; Cardellini, F.; Buonanno, G.; De Felice, P.

    2015-04-01

    During their entire lives, people are exposed to the pollutants present in indoor air. Recently, Electronic Nicotine Delivery Systems, mainly known as electronic cigarettes, have been widely commercialized: they deliver particles into the lungs of the users but a "second-hand smoke" has yet to be associated to this indoor source. On the other hand, the naturally-occurring radioactive gas, i.e. radon, represents a significant risk for lung cancer, and the cumulative action of these two agents could be worse than the agents separately would. In order to deepen the interaction between radon progeny and second-hand aerosol from different types of cigarettes, a designed experimental study was carried out by generating aerosol from e-cigarette vaping as well as from second-hand traditional smoke inside a walk-in radon chamber at the National Institute of Ionizing Radiation Metrology (INMRI) of Italy. In this chamber, the radon present in air comes naturally from the floor and ambient conditions are controlled. To characterize the sidestream smoke emitted by cigarettes, condensation particle counters and scanning mobility particle sizer were used. Radon concentration in the air was measured through an Alphaguard ionization chamber, whereas the measurement of radon decay product in the air was performed with the Tracelab BWLM Plus-2S Radon daughter Monitor. It was found an increase of the Potential Alpha-Energy Concentration (PAEC) due to the radon decay products attached to aerosol for higher particle number concentrations. This varied from 7.47 ± 0.34 MeV L-1 to 12.6 ± 0.26 MeV L-1 (69%) for the e-cigarette. In the case of traditional cigarette and at the same radon concentration, the increase was from 14.1 ± 0.43 MeV L-1 to 18.6 ± 0.19 MeV L-1 (31%). The equilibrium factor increases, varying from 23.4% ± 1.11% to 29.5% ± 0.26% and from 30.9% ± 1.0% to 38.1 ± 0.88 for the e-cigarette and traditional cigarette, respectively. These growths still continue for long time after the combustion, by increasing the exposure risk.

  7. Isotopic Techniques for Assessment of Groundwater Discharge to the Coastal Ocean

    DTIC Science & Technology

    2003-09-30

    estimates of the pore water Rn activity. The red line (based on an average groundwater concentration of 170 dpm/L) is considered our best estimate and...Isotopic Techniques For Assessment of Groundwater Discharge to the Coastal Ocean William C. Burnett Department of Oceanography Florida State...evaluating the influence of submarine groundwater discharge (SGD) into the ocean. Our long-term goal is to develop geochemical tools (e.g., radon and

  8. Measurements of the dose due to cosmic rays in aircraft

    NASA Astrophysics Data System (ADS)

    Vuković, B.; Lisjak, I.; Radolić, V.; Vekić, B.; Planinić, J.

    2006-06-01

    When the primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The cosmic radiation dose aboard A320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; radon concentration in the atmosphere was measured with the Alpha Guard radon detector. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed by the flights Zagreb-Paris-Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the TLD dosimeter registered the total dose of 75 μSv and the average dose rate was 2.7 μSv/h. In the same month, February 2005, a traveling to Japan (24 h flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h.

  9. Radon in soil gas in Kosovo.

    PubMed

    Kikaj, Dafina; Jeran, Zvonka; Bahtijari, Meleq; Stegnar, Peter

    2016-11-01

    An assessment of the radiological situation due to exposure to radon and gamma emitting radionuclides was conducted in southern Kosovo. This study deals with sources of radon in soil gas. A long-term study of radon concentrations in the soil gas was carried out using the SSNTDs (CR-39) at 21 different locations in the Sharr-Korabi zone. The detectors were exposed for an extended period of time, including at least three seasonal periods in a year and the sampling locations were chosen with respect to lithology. In order to determine the concentration of the natural radioactive elements 238 U and 226 Ra, as a precursor of 222 Rn, soil samples were collected from each measuring point from a depth of 0.8 m, and measured by gamma spectrometry. The levels (Bq kg -1 ) of naturally occurring radionuclides and levels (kBq m -3 ) of radon in soil gas obtained at a depth 0.8 m of soil were: 21-53 for 226 Ra, 22-160 for 238 U and 0.295-32 for 222 Rn. With respect to lithology, the highest value for 238 U and 226 Ra were found in limestone and the highest value for 222 Rn was found in metamorphic rocks. In addition, the results showed seasonal variations of the measured soil gas radon concentrations with maximum concentration in the spring months. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Emanation of radon from household granite.

    PubMed

    Kitto, Michael E; Haines, Douglas K; Arauzo, Hernando Diaz

    2009-04-01

    Emanation of radon (222Rn) from granite used for countertops and mantels was measured with continuous and integrating radon monitors. Each of the 24 granite samples emitted a measurable amount of radon. Of the two analytical methods that utilized electret-based detectors, one measured the flux of radon from the granite surfaces, and the other one measured radon levels in a glass jar containing granite cores. Additional methods that were applied utilized alpha-scintillation cells and a continuous radon monitor. Measured radon flux from the granites ranged from 2 to 310 mBq m-2 s-1, with most granites emitting <20 mBq m-2 s-1. Emanation of radon from granites encapsulated in airtight containers produced equilibrium concentrations ranging from <0.01 to 11 Bq kg-1 when alpha-scintillation cells were used, and from <0.01 to 4.0 Bq kg-1 when the continuous radon monitor was used.

  11. Real-time measurement of individual occupational radon exposures in tombs of the Valley of the Kings, Egypt.

    PubMed

    Gruber, E; Salama, E; Rühm, W

    2011-03-01

    The active radon exposure meter developed recently at the German Research Center for Environmental Health (Helmholtz Zentrum München) was used to measure radon concentrations in 12 tombs located in the Valley of the Kings, Egypt. Radon concentrations in air between 50 ± 7 and 12 100 ± 600 Bq m(-3) were obtained. The device was also used to measure individual radon exposures of those persons working as safeguards inside the tombs. For a measurement time of 2-3 d, typical individual radon exposures ranged from 1800 ± 400 to 240 000 ± 13 000 Bq h m(-3), depending on the duration of measurement and radon concentration in the different tombs. Based on current ICRP dose conversion conventions for workers and on equilibrium factors published in the literature for these tombs, individual effective dose rates that range from 1.5 ± 0.3 to 860 ± 50 µSv d(-1) were estimated. If it is assumed that the climatic conditions present at the measurement campaign persist for about half a year, in this area, then effective doses up to ∼ 66 mSv could be estimated for half a year, for some of the safeguards of tombs where F-values were known. To reduce the exposure of the safeguards, some recommendations are proposed.

  12. Particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist Route "Liczyrzepa" Mine in Kowary Adit

    NASA Astrophysics Data System (ADS)

    Wołoszczuk, Katarzyna; Skubacz, Krystian

    2018-01-01

    Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC), particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route "Liczyrzepa" Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS). The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS) spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS).

  13. Calibration of LR-115 for 222Rn monitoring taking into account the plateout effect.

    PubMed

    Da Silva, A A R; Yoshimura, E M

    2003-01-01

    The dose received by people exposed to indoor radon is mainly due to radon progeny. This fact points to the establishment of techniques that access either radon and progeny together, or only radon progeny concentration. In this work a low cost and easy to use methodology is presented to determine the total indoor alpha emission concentration. It is based on passive detection using LR-115 and CR-39 detectors, taking into account the plateout effect. A calibration of LR-115 track density response was done by indoor exposure in controlled environments and dwellings, places where 222Rn and progeny concentration were measured with CR-39. The calibration factor obtained showed great dependence on the ambient condition: (0.69 +/- 0.04) cm for controlled environments and (0.43 +/- 0.03) cm for dwellings.

  14. Radon and cancers other than lung cancer in underground miners: a collaborative analysis of 11 studies.

    PubMed

    Darby, S C; Whitley, E; Howe, G R; Hutchings, S J; Kusiak, R A; Lubin, J H; Morrison, H I; Tirmarche, M; Tomásek, L; Radford, E P

    1995-03-01

    Exposure to the radioactive gas radon and its progeny (222Rn and its radioactive decay products) has recently been linked to a variety of cancers other than lung cancer in geographic correlation studies of domestic radon exposure and in individual cohorts of occupationally exposed miners. This study was designed to characterize further the risks for cancers other than lung cancer (i.e., non-lung cancers) from atmospheric radon. Mortality from non-lung cancer was examined in a collaborative analysis of data from 11 cohorts of underground miners in which radon-related excesses of lung cancer had been established. The study included 64,209 men who were employed in the mines for 6.4 years on average, received average cumulative exposures of 155 working-level months (WLM), and were followed for 16.9 years on average. For all non-lung cancers combined, mortality was close to that expected from mortality rates in the areas surrounding the mines (ratio of observed to expected deaths [O/E] = 1.01; 95% confidence interval [CI] = 0.95-1.07, based on 1179 deaths), and mortality did not increase with increasing cumulative exposure. Among 28 individual cancer categories, statistically significant increases in mortality for cancers of the stomach (O/E = 1.33; 95% CI = 1.16-1.52) and liver (O/E = 1.73; 95% CI = 1.29-2.28) and statistically significant decreases for cancers of the tongue and mouth (O/E = 0.52; 95% CI = 0.26-0.93), pharynx (O/E = 0.35; 95% CI = 0.16-0.66), and colon (O/E = 0.77; 95% CI = 0.63-0.95) were observed. For leukemia, mortality was increased in the period less than 10 years since starting work (O/E = 1.93; 95% CI = 1.19-2.95) but not subsequently. For none of these diseases was mortality significantly related to cumulative exposure. Among the remaining individual categories of non-lung cancer, mortality was related to cumulative exposure only for cancer of the pancreas (excess relative risk per WLM = 0.07%; 95% CI = 0.01-0.12) and, in the period less than 10 years since the start of employment, for other and unspecified cancers (excess relative risk per WLM = 0.22%; 95% CI = 0.08-0.37). The increases in mortality from stomach and liver cancers and leukemia are unlikely to have been caused by radon, since they are unrelated to cumulative exposure. The association between cumulative exposure and pancreatic cancer seems likely to be a chance finding, while the association between cumulative exposure and other and unspecified cancers was caused by deaths certified as due to carcinomatosis (widespread disseminated cancer throughout the body) that were likely to have been due to lung cancers. This study, therefore, provides considerable evidence that high concentrations of radon in air do not cause a material risk of mortality from cancers other than lung cancer. Protection standards for radon should continue to be based on consideration of the lung cancer risk alone.

  15. The physical behavior and geologic control of radon in mountain streams

    USGS Publications Warehouse

    Rogers, Allen S.

    1956-01-01

    Radon measurement were made in several small, turbulent mountain streams in the Wasatch Mountains near Salt Lake City and Ogden, Utah, to determine the relationship between the distribution of radon and its geologic environment. In this area, the distribution of radon in streams can be sued to locate points where relatively large amounts of radon-bearing ground water enter the stream, although other evidence of spring activity may be lacking. These points of influence ground water are marked by abrupt increases (as much as two orders of magnitude within a distance of 50 feet) in the radon content of the stream waters. The excess radon in the stream water is then rapidly lost to the atmosphere through stream turbulence. The rate of radon dissipation is an exponential function, of different slopes, with respect to distance of streamflow, and depend upon the rate and volume of streamflow, and the gradient and nature of the stream channel. The higher radon concentration can be generally related to specific stratigraphic horizons in several different drainage area. Thus, lithologic units which act as the primary aquifers can be identifies. In one area, thrust faults were found to control he influx of ground water into the stream. Estimates, based on radon concentration in stream and related spring waters, can also be made of the major increments of addition of ground water to streamflow where conventional methods such as stream gaging are not practical. The radon in the waters studied was found to be almost completely unsupported by radium in solution.

  16. Surface-deposition and Distribution of the Radon (222Rn and 220Rn) Decay Products Indoors

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Tommasino, Luigi

    The exposure to radon (222Rn and 220Rn) decay products is of great concern both in dwellings and workplaces. The model to estimate the lung dose refers to the deposition mechanisms and particle sizes. Unfortunately, most of the dose data available are based on the measurement of radon concentration and the concentration of radon decay products. These combined measurements are widely used in spite of the fact that accurate dose assessments require information on the particle deposition mechanisms and the spatial distribution of radon decay products indoors. Most of the airborne particles and/or radon decay products are deposited onto indoor surfaces, which deposition makes the radon decay products unavailable for inhalation. These deposition processes, if properly known, could be successfully exploited to reduce the exposure to radon decay products. In spite of the importance of the surface deposition of the radon decay products, both for the correct evaluation of the dose and for reducing the exposure, little or no efforts have been made to investigate these deposition processes. Recently, two parallel investigations have been carried out in Rome and at Universidad Nacional Autónoma de México (UNAM) in Mexico City respectively, which address the issue of the surface-deposited radon decay products. Even though these investigations have been carried independently, they complement one another. It is with these considerations in mind that it was decided to report both investigations in the same paper.

  17. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpitta, S.C.; Tu, K.W.; Fisenne, I.M.

    1996-10-01

    Results are presented from the Fifth Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurements conducted in the EML radon exposure and test facility in May 1996. In total, thirty-four government, private and academic facilities participated in the exercise with over 170 passive and electronic devices exposed in the EML test chamber. During the first week of the exercise, passive and continuous measuring devices were exposed (usually in quadruplicate) to about 1,280 Bq m{sup {minus}3} {sup 222}Rn for 1--7 days. Radon progeny measurements were made during the second week of the exercise. The results indicate thatmore » all of the tested devices that measure radon gas performed well and fulfill their intended purpose. The grand mean (GM) ratio of the participants` reported values to the EML values, for all four radon device categories, was 0.99 {plus_minus} 0.08. Eighty-five percent of all the radon measuring devices that were exposed in the EML radon test chamber were within {plus_minus}1 standard deviation (SD) of the EML reference values. For the most part, radon progeny measurements were also quite good as compared to the EML values. The GM ratio for the 10 continuous PAEC instruments was 0.90 {plus_minus} 0.12 with 75% of the devices within 1 SD of the EML reference values. Most of the continuous and integrating electronic instruments used for measuring the PAEC underestimated the EML values by about 10--15% probably because the concentration of particles onto which the radon progeny were attached was low (1,200--3,800 particles cm{sup {minus}3}). The equilibrium factor at that particle concentration level was 0.10--0.22.« less

  18. Protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice.

    PubMed

    Etani, Reo; Kataoka, Takahiro; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro; Taguchi, Takehito; Yamaoka, Kiyonori

    2017-09-01

    Radon therapy using radon (222Rn) gas is classified into two types of treatment: inhalation of radon gas and drinking water containing radon. Although short- or long-term intake of spa water is effective in increasing gastric mucosal blood flow, and spa water therapy is useful for treating chronic gastritis and gastric ulcer, the underlying mechanisms for and precise effects of radon protection against mucosal injury are unclear. In the present study, we examined the protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice. Mice inhaled radon at a concentration of 2000 Bq/m3 for 24 h or were provided with hot spring water for 2 weeks. The activity density of 222Rn ranged from 663 Bq/l (start point of supplying) to 100 Bq/l (end point of supplying). Mice were then orally administered ethanol at three concentrations. The ulcer index (UI), an indicator of mucosal injury, increased in response to the administration of ethanol; however, treatment with either radon inhalation or hot spring water inhibited the elevation in the UI due to ethanol. Although no significant differences in antioxidative enzymes were observed between the radon-treated groups and the non-treated control groups, lipid peroxide levels were significantly lower in the stomachs of mice pre-treated with radon or hot spring water. These results suggest that hot spring water drinking and radon inhalation inhibit ethanol-induced gastric mucosal injury. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. EML indoor radon workshop, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, A.C.; Lowder, W.; Fisenne, I.

    1983-07-01

    A workshop on indoor radon, held at the Environmental Measurements Laboratory (EML) on November 30 and December 1, 1982, covered recent developments in radon daughter research and development. Thirty papers were presented dealing with standardization and quality assurance measurement methods, surveys, measurements strategy, physical mechanisms of radon and radon daughter transport and development of guidance standards for indoor exposures. The workshop concluded with a planning session that identified the following needs: (1) national and international intercomparisons of techniques for measuring radon and radon daughter concentrations, working level and radon exhalation flux density; (2) development and refinement of practical measurement techniquesmore » for thoron and its daughter products; (3) quantitative definition of the sources of indoor radon and the mechanisms of transport into structures; (4) better knowledge of the physical properties of radon daughters; (5) more complete and accurate data on the population exposure to radon, which can only be met by broadly based surveys; and (6) more international cooperation and information exchange among countries with major research programs.« less

  20. Mapping variation in radon potential both between and within geological units.

    PubMed

    Miles, J C H; Appleton, J D

    2005-09-01

    Previously, the potential for high radon levels in UK houses has been mapped either on the basis of grouping the results of radon measurements in houses by grid squares or by geological units. In both cases, lognormal modelling of the distribution of radon concentrations was applied to allow the estimated proportion of houses above the UK radon Action Level (AL, 200 Bq m(-3)) to be mapped. This paper describes a method of combining the grid square and geological mapping methods to give more accurate maps than either method can provide separately. The land area is first divided up using a combination of bedrock and superficial geological characteristics derived from digital geological map data. Each different combination of geological characteristics may appear at the land surface in many discontinuous locations across the country. HPA has a database of over 430,000 houses in which long-term measurements of radon concentration have been made, and whose locations are accurately known. Each of these measurements is allocated to the appropriate bedrock--superficial geological combination underlying it. Taking each geological combination in turn, the spatial variation of radon potential is mapped, treating the combination as if it were continuous over the land area. All of the maps of radon potential within different geological combinations are then combined to produce a map of variation in radon potential over the whole land surface.

  1. Measuring the radon concentration in air meting van de radonconcentratie in lucht

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aten, J.B.T.; Bierhuizen, H.W.J.; Vanhoek, L.P.

    1975-01-01

    A simple transportable apparatus for measurement of the radon concentration in the air of a workshop was developed. An air sample is sucked through a filter and the decay curve of the alpha activity is measured. The counting speed 40 min after sampling gives an indication of the radon activity. The apparatus was calibrated by analyzing an analogous decay curve obtained with a big filter and a big air sample, the activity being measured with an anti-coincidence counter. (GRA)

  2. Critical level setting of continuous air monitor.

    PubMed

    Li, Huibin; Jia, Mingyan; Wang, Kailiang

    2013-01-01

    Algorithms used to compensate the radon and thoron progeny's interference are one of the key technologies for continuous air monitors (CAMs). In this study, a CAM that can automatically change filter was manufactured, and equations used to calculate the transuranic aerosol concentration and the corresponding critical level were derived. The parameters used in calculation were acquired by continuous measurement in a high radon environment. At last, validation of the calculation was tested in a cave where the radon concentration fluctuated frequently, and the results were analysed.

  3. Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter?

    PubMed

    Borgoni, Riccardo; De Francesco, Davide; De Bartolo, Daniela; Tzavidis, Nikos

    2014-12-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and only second to smoking as major leading cause of lung cancer. The main concern is in indoor environments where the gas tends to accumulate and can reach high concentrations. The primary contributor of this gas into the building is from the soil although architectonic characteristics, such as building materials, can largely affect concentration values. Understanding the factors affecting the concentration in dwellings and workplaces is important both in prevention, when the construction of a new building is being planned, and in mitigation when the amount of Radon detected inside a building is too high. In this paper we investigate how several factors, such as geologic typologies of the soil and a range of building characteristics, impact on indoor concentration focusing, in particular, on how concentration changes as a function of the floor level. Adopting a mixed effects model to account for the hierarchical nature of the data, we also quantify the extent to which such measurable factors manage to explain the variability of indoor radon concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Radon entry into basements: Approach, experimental structures, and instrumentation of the small structures research project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, W.J.; Modera, M.P.; Sextro, R.G.

    1992-02-01

    We describe the experimental approach, structures, and instrumentation of a research project on radon generation and transport in soil and entry into basements. The overall approach is to construct small precisely-fabricated basements in areas of different geology and climate, to control the pressures and ventilation rates in the structures, and to monitor radon concentrations and other relevant parameters over a period of one year or more. Two nearly air-tight structures have been constructed at the first site. The floor of each structure contains adjustable-width slots that serve as the only significant pathway for advective entry of radon. A layer ofmore » gravel underlays the floor of one structure; otherwise they are identical. The structures are instrumented for continuous or periodic monitoring of soil, structural, and meteorological parameters that affect radon entry. The pressure difference that drives advective radon entry can be maintained constant or varied over time. Soil gas and radon entry rates and associated parameters, such as soil gas pressures and radon concentrations, have been monitored for a range of steady-state and time-varying pressure differences between the interior of the structure and the soil. Examples of the experimentally-measured pressure and permeability fields in the soil around a structure are presented and discussed.« less

  5. Physical conditions of a house and their effects on measured radon levels: data from Hillsborough Township, New Jersey, 2010-2011.

    PubMed

    Shendell, Derek G; Carr, Michael

    2013-10-01

    Concentrations of radon in homes are thought to be dependent on several factors, including the presence of certain physical conditions of the house that act as entry points for this colorless, odorless gas. Drains and sump pits are currently sealed as part of radon mitigation, but doing so may cause drainage problems and mold. The authors attempted to determine if specific attributes and physical conditions of homes are associated with measured residential concentrations of radon. Radon tests were conducted in 96 participating homes in rural Hillsborough Township, New Jersey, November 2010-February 2011. Samplers were placed and a walk-through survey was conducted. Test devices were analyzed by a New Jersey certified radon testing laboratory and results compared to survey data. Overall, 50% of houses with a perimeter drain and 30% of houses with a sump pit exceeded the New Jersey and federal radon action level of 4.0 picocuries per liter, and 47% of homes with both a sump and a perimeter "French" drain exceeded this action level. The authors' results suggested certain physical conditions act as pathways allowing radon entry into homes. Results could be used by local and state agencies to start local initiatives, e.g., increased testing or to seal these components as partial mitigation.

  6. Radon exhalation from building materials for decorative use.

    PubMed

    Chen, Jing; Rahman, Naureen M; Abu Atiya, Ibrahim

    2010-04-01

    Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m(-2) d(-1). Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m(-2) d(-1) for slate tiles and 42 Bq m(-2) d(-1) for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m(-2) d(-1), it would contribute only 18 Bq m(-3) to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  7. Relevance of air conditioning for 222Radon concentration in shops of the Savona Province, Italy.

    PubMed

    Panatto, Donatella; Ferrari, Paola; Lai, Piero; Gallelli, Giovanni

    2006-02-15

    Radon (222Rn) concentration was evaluated in shops of the Savona Province, Italy, between summer 2002 and winter 2002-2003. The main characteristics of each shops were recorded through a questionnaire investigating the ventilation rate and factors related to 222Rn precursors in the soil and the construction materials. The main variables that were related to radon concentration were the following: age of the building, level of the shop above ground, season of the year, wind exposure, active windows, and type of heating system. Shops equipped with individual air heating/conditioning systems exhibited radon concentrations that were three times higher than those of shops heated by centralized furnaces. Our data indicate that the level of pollution in the shops was of medium level, with an expected low impact on the salespersons' health. Only in wintertime, the action level of 200 Bq m(-3) for the confined environment was reached in 10 shops equipped with individual air heating/conditioning systems.

  8. Real-time measurements of radon activity with the Timepix-based RADONLITE and RADONPIX detectors

    NASA Astrophysics Data System (ADS)

    Caresana, M.; Garlati, L.; Murtas, F.; Romano, S.; Severino, C. T.; Silari, M.

    2014-11-01

    Radon gas is the most important source of ionizing radiation among those of natural origin. Two new systems for radon measurement based on the Timepix silicon detector were developed. The positively charged radon daughters are electrostatically collected on the surface of the Si detector and their energy spectrum measured. Pattern recognition of the tracks on the sensor and particle identification are used to determine number and energy of the alpha particles and to subtract the background, allowing for efficient radon detection. The systems include an algorithm for real-time measurement of the radon concentration and the calculation of the effective dose to the lungs.

  9. COMPARATIVE STUDY OF RADON AND THORON MEASUREMENTS IN FOUR ROMANIAN SHOW CAVES.

    PubMed

    Burghele, B D; Cucos, A; Papp, B; Dicu, T; Pressyanov, D; Dimitrov, D; Dimitrova, I; Constantin, S

    2017-11-01

    Measurements have been carried out using four types of passive detectors in four of the most popular show caves in Romania. Three types of detectors (RSKS, RadTrak and CD) were used for radon measurements and two (Raduet and CD) for thoron measurement. Activity concentrations in air were measured in the same locations for two seasons, autumn and winter. Measured values for the different caves varied between below detection limit (5 Bq m-3) and 4024 Bq m-3 for radon and from below 10 to 583 Bq m-3 for thoron. The results indicate a very good correlation between RSKS and RadTrak detectors (r = 0.96). The most significant difference between radon concentrations measured with different types of detectors (RSKS and CD) was higher than 150%. The study suggests that the activity concentration of radon in caves, measured using track detectors, could not be influenced by the type of detector used if the microclimate factor is acknowledged. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. An overview of Ireland's National Radon Policy.

    PubMed

    Long, S; Fenton, D

    2011-05-01

    In Ireland radon is a significant public health issue and is linked to 150-200 lung cancer deaths each year. Irish National Radon Policy aims to reduce individual risk by identifying and remediating buildings with high radon concentrations and also to reduce collective dose through radon prevention as required by revised building regulations. Achievements to date are significant and include the completion of the National Radon Survey, the testing of every school in Ireland, the on-going testing of social housing, collaboration between the public health and radiation protection authorities and the inclusion of radon in inspections of workplaces. However, this work now needs to be drawn together centrally to comprehensively address the radon problem. The RPII and the relevant central governing department, the Department of Environment, Heritage and Local Government are currently working to constitute a group of key experts from relevant public authorities to drive the development of a National Radon Control Strategy.

  11. Radon inhalation protects against transient global cerebral ischemic injury in gerbils.

    PubMed

    Kataoka, Takahiro; Etani, Reo; Takata, Yuji; Nishiyama, Yuichi; Kawabe, Atsushi; Kumashiro, Masayuki; Taguchi, Takehito; Yamaoka, Kiyonori

    2014-10-01

    Although brain disorders are not the main indication for radon therapy, our previous study suggested that radon inhalation therapy might mitigate brain disorders. In this study, we assessed whether radon inhalation protects against transient global cerebral ischemic injury in gerbils. Gerbils were treated with inhaled radon at a concentration of 2,000 Bq/m(3) for 24 h. After radon inhalation, transient global cerebral ischemia was induced by bilateral occlusion of the common carotid artery. Results showed that transient global cerebral ischemia induced neuronal damage in hippocampal CA1, and the number of damaged neurons was significantly increased compared with control. However, radon treatment inhibited ischemic damage. Superoxide dismutase (SOD) activity in the radon-treated gerbil brain was significantly higher than that in sham-operated gerbils. These findings suggested that radon inhalation activates antioxidative function, especially SOD, thereby inhibiting transient global cerebral ischemic injury in gerbils.

  12. Reduction of Radon Progeny in Indoor Air.

    DTIC Science & Technology

    1986-03-01

    arises from indoor radon is due * 4 to inhalation of the short-lived radon daughters Ra-A, Ra-B, and Ra-C. These decay products are formed from the alpha...concentrations of radon daughters 40 ’ in an air sample from the gross alpha counting of a filter 50 ’ in accordance with the modified Tsivoglou method. 60 ’ 70...8217 The modified Tsivoglou method may be found in " Measurement 80 ’ of Radon Daughters in Air," Health Physics, 23, : pp7S3-789 90 ’ (19𔃼). 95 100 The

  13. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  14. A geostatistical approach to assess the spatial association between indoor radon concentration, geological features and building characteristics: the case of Lombardy, Northern Italy.

    PubMed

    Borgoni, Riccardo; Tritto, Valeria; Bigliotto, Carlo; de Bartolo, Daniela

    2011-05-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and second to smoking, a major leading cause of lung cancer. The main source of radon is the soil, but the gas can enter buildings in many different ways and reach high indoor concentrations. Monitoring surveys have been promoted in many countries in order to assess the exposure of people to radon. In this paper, two complementary aspects are investigated. Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil. Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data. This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon. Our results suggest the opportunity to differentiate construction requirements in a large and inhomogeneous area, as the one considered in this paper, according to different places and provide a method to identify those dwellings which should be monitored more carefully.

  15. The United Kingdom Childhood Cancer Study of exposure to domestic sources of ionising radiation: 1: radon gas

    PubMed Central

    2002-01-01

    This paper reports the results of the United Kingdom Childhood Cancer Study relating to risks associated with radon concentrations in participants homes at the time of diagnosis of cancer and for at least 6 months before. Results are given for 2226 case and 3773 control homes. No evidence to support an association between higher radon concentrations and risk of any of the childhood cancers was found. Indeed, evidence of decreasing cancer risks with increasing radon concentrations was observed. Adjustment for deprivation score for area of residence made little difference to this trend and similar patterns were evident in all regions and in all diagnostic groups. The study suggests that control houses had more features, such as double glazing and central heating, leading to higher radon levels than case houses. Further, case houses have features more likely to lead to lower radon levels, e.g. living-rooms above ground level. Consequently the case–control differences could have arisen because of differences between houses associated with deprivation that are not adequately allowed for by the deprivation score. British Journal of Cancer (2002) 86, 1721–1726. doi:10.1038/sj.bjc.6600276 www.bjcancer.com © 2002 Cancer Research UK PMID:12087456

  16. Children's Exposure to Radon in Nursery and Primary Schools.

    PubMed

    Branco, Pedro T B S; Nunes, Rafael A O; Alvim-Ferraz, Maria C M; Martins, Fernando G; Sousa, Sofia I V

    2016-03-30

    The literature proves an evident association between indoor radon exposure and lung cancer, even at low doses. This study brings a new approach to the study of children's exposure to radon by aiming to evaluate exposure to indoor radon concentrations in nursery and primary schools from two districts in Portugal (Porto and Bragança), considering different influencing factors (occupation patterns, classroom floor level, year of the buildings' construction and soil composition of the building site), as well as the comparison with IAQ standard values for health protection. Fifteen nursery and primary schools in the Porto and Bragança districts were considered: five nursery schools for infants and twelve for pre-schoolers (seven different buildings), as well as eight primary schools. Radon measurements were performed continuously. The measured concentrations depended on the building occupation, classroom floor level and year of the buildings' construction. Although they were in general within the Portuguese legislation for IAQ, exceedances to international standards were found. These results point out the need of assessing indoor radon concentrations not only in primary schools, but also in nursery schools, never performed in Portugal before this study. It is important to extend the study to other microenvironments like homes, and in time to estimate the annual effective dose and to assess lifetime health risks.

  17. A Geostatistical Approach to Assess the Spatial Association between Indoor Radon Concentration, Geological Features and Building Characteristics: The Case of Lombardy, Northern Italy

    PubMed Central

    Borgoni, Riccardo; Tritto, Valeria; Bigliotto, Carlo; de Bartolo, Daniela

    2011-01-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and second to smoking, a major leading cause of lung cancer. The main source of radon is the soil, but the gas can enter buildings in many different ways and reach high indoor concentrations. Monitoring surveys have been promoted in many countries in order to assess the exposure of people to radon. In this paper, two complementary aspects are investigated. Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil. Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data. This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon. Our results suggest the opportunity to differentiate construction requirements in a large and inhomogeneous area, as the one considered in this paper, according to different places and provide a method to identify those dwellings which should be monitored more carefully. PMID:21655128

  18. Children’s Exposure to Radon in Nursery and Primary Schools

    PubMed Central

    Branco, Pedro T. B. S.; Nunes, Rafael A. O.; Alvim-Ferraz, Maria C. M.; Martins, Fernando G.; Sousa, Sofia I. V.

    2016-01-01

    The literature proves an evident association between indoor radon exposure and lung cancer, even at low doses. This study brings a new approach to the study of children’s exposure to radon by aiming to evaluate exposure to indoor radon concentrations in nursery and primary schools from two districts in Portugal (Porto and Bragança), considering different influencing factors (occupation patterns, classroom floor level, year of the buildings’ construction and soil composition of the building site), as well as the comparison with IAQ standard values for health protection. Fifteen nursery and primary schools in the Porto and Bragança districts were considered: five nursery schools for infants and twelve for pre-schoolers (seven different buildings), as well as eight primary schools. Radon measurements were performed continuously. The measured concentrations depended on the building occupation, classroom floor level and year of the buildings’ construction. Although they were in general within the Portuguese legislation for IAQ, exceedances to international standards were found. These results point out the need of assessing indoor radon concentrations not only in primary schools, but also in nursery schools, never performed in Portugal before this study. It is important to extend the study to other microenvironments like homes, and in time to estimate the annual effective dose and to assess lifetime health risks. PMID:27043596

  19. SOME RESULTS FROM THE DEMONSTRATION OF INDOOR RADON REDUCTION MEASURES IN BLOCK BASEMENT HOUSES

    EPA Science Inventory

    Active soil ventilation techniques have been tested in 26 block-wall basement houses in eastern Pennsylvania with significantly elevated indoor radon concentrations, generally above 740 Bq/m3, and the results indicate that radon levels can be reduced substantially often below the...

  20. Thoron in the environment and its related issues

    NASA Astrophysics Data System (ADS)

    Tokonami, Shinji

    2009-06-01

    Since radon is internationally noted as the second cause of lung cancer, many countries are trying about to solve the problem worldwide. In addition, a new evidence of lung cancer risk has been recently found out with a low level below 200 Bq m-3. Thus the action level will have to be set lower than before. Importance of radon exposure has been further recognized and accurate radon concentrations will be required. Recently thoron has also been recognized from the viewpoint of accurate radon measurements. The present paper describes specification of the NIRS radon and thoron chambers, passive measurement technique of radon and thoron and thoron interference on radon measurements from both experimental studies and field experiences on epidemiological study area.

  1. Determination of radon concentration in water using RAD7 with RAD H{sub 2}O accessories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, M. F. I.; Rabaiee, N. A.; Jaafar, M. S.

    In the last decade, the radon issue has become one of the major problems of radiation protection. Radon exposure occurs when using water for showering, washing dishes, cooking and drinking water. RAD7 and Rad H20 accessories were used in order to measure radon concentration in water sample. In this study, four types of water were concerns which are reverse osmosis (drinking water), mineral water, tap water and well water. Reverse osmosis (drinking water) and mineral water were bought from the nearest supermarket while tap water and well water were taken from selected areas of Pulau Pinang and Kedah. Total 20more » samples were taken with 5 samples for each type of water. The measured radon concentration ranged from 2.9±2.9 to 79.5±17 pCi/L, 2.9±2.9 to 67.8±16 pCi/L, 15.97±7 to 144.25±24 pCi/L and 374.89±37 to 6409.03±130 pCi/L in reverse osmosis (drinking water), mineral water, tap water and well water. Well water has the highest radon compared to others. It was due to their geological element such as granite. Results for all types of water are presented and compared with maximum contamination limit (MCL) recommended by United State Environmental Protection Agency (USEPA) which is 300pCi/L. Reverse osmosis water, mineral water and tap water were fall below MCL. However, well water was exceeded maximum level that was recommended. Thus, these findings were suggested that an action should be taken to reduce radon concentration level in well water as well as reduce a health risk towards the public.« less

  2. On radon emanation as a possible indicator of crustal deformation

    USGS Publications Warehouse

    King, C.-Y.

    1979-01-01

    Radon emanation has been monitored in shallow capped holes by a Tracketch method along several active faults and in the vicinity of some volcanoes and underground nuclear explosions. The measured emanation shows large temporal variations that appear to be partly related to crustal strain changes. This paper proposes a model that may explain the observed tectonic variations in radon emanation, and explores the possibility of using radon emanation as an indicator of crustal deformation. In this model the emanation variation is assumed to be due to the perturbation of near-surface profile of radon concentration in the soil gas caused by a change in the vertical flow rate of the soil gas which, in turn, is caused by the crustal deformation. It is shown that, for a typical soil, a small change in the flow rate (3 ?? 10-4 cm sec-1) can effect a significant change (a factor of 2) in radon emanation detected at a fixed shallow depth (0.7 m). The radon concentration profile has been monitored at several depths at a selected site to test the model. The results appear to be in satisfactory agreement. ?? 1979.

  3. Radon Sources and Associated Risk in Terms of Exposure and Dose

    PubMed Central

    Vogiannis, Efstratios G.; Nikolopoulos, Dimitrios

    2015-01-01

    Radon concerns the international scientific community from the early twentieth century, initially as radium emanation and nearly the second half of the century as a significant hazard to human health. The initial brilliant period of its use as medicine was followed by a period of intense concern for its health effects. Miners in Europe and later in the U.S were the primary target groups surveyed. Nowadays, there is a concrete evidence that radon and its progeny can cause lung cancer (1). Human activities may create or modify pathways increasing indoor radon concentration compared to outdoor background. These pathways can be controlled by preventive and corrective actions (2). Indoor radon and its short-lived progeny either attached on aerosol particles or free, compose an air mixture that carries a significant energy amount [Potential Alpha-Energy Concentration (PAEC)]. Prior research at that topic focused on the exposure on PAEC and the dose delivered by the human body or tissues. Special mention was made to the case of water workers due to inadequate data. Furthermore, radon risk assessment and relevant legislation for the dose delivered by man from radon and its progeny has been also reviewed. PMID:25601905

  4. RADON CHAMBER IN THE CENTRAL MINING INSTITUTE-THE CALIBRATION FACILITY FOR RADON AND RADON PROGENY MONITORS.

    PubMed

    Skubacz, K; Chalupnik, S; Urban, P; Wysocka, M

    2017-11-01

    The article presents the advantages of the radon chamber with volume of 17 m3, that belongs to Silesian Centre for Environmental Radioactivity and its applicability for calibration of equipment designed to measure the radon concentration and its short-lived decay products. The chamber can be operated under controlled conditions in the range from -20 to 60°C and relative humidity from 20 to 90%. There is also discussed the influence of aerosol concentration and their size distribution on the calibration results. When calibrating the measuring devices in an atmosphere with a large contribution of ultrafine particles that are defined as particles with diameter <0.1 μm, their sensitivity may decrease by tens of percent. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Radiological and chemical monitoring of Dikili geothermal waters, Western Turkey

    NASA Astrophysics Data System (ADS)

    Tabar, E.; Kumru, M. N.; Saç, M. M.; İçhedef, M.; Bolca, M.; Özen, F.

    2013-10-01

    Naturally occurring Radionuclides such as 226Ra and 222Rn as well as the major dissolved ions were investigated in the four thermal springs from Dikili Geothermal Area, Western Turkey. It was observed that 222Rn concentrations vary from 0.3 to 31 Bql-1 with an average value of 8.2 Bql-1, while the 226Ra activities range from 0.10 to 1.2 Bql-1 with a mean value of 0.495 Bql-1. A direct correlation was determined between radon and radium activities which indicates their parent-child relationship. The annual effective doses ranged from 0.58 to 3.06 µSvy-1 with an average 1.75 for radon and vary from 4.88 to 8.58 µSvy-1 with an average value of 6.53 µSvy-1 for radium and all are well below 100 µSvy-1 recommended by WHO. The chemical analyses of water samples show that Na+ and Cl- ions mainly dominate the chemistry of waters. Due to their chemical characteristics, the springs were placed in the Water Quality Class 1 or 2 according to Turkish Environmental Regulations for Water Pollution Control. On the other hand, no significant correlations was found between the physic-chemical parameters and investigated radionuclides.

  6. Long-term measurements of residential radon, thoron, and thoron progeny concentrations around the Chhatrapur placer deposit, a high background radiation area in Odisha, India.

    PubMed

    Omori, Yasutaka; Prasad, Ganesh; Sorimachi, Atsuyuki; Sahoo, Sarata Kumar; Ishikawa, Tetsuo; Vidya Sagar, Devulapalli; Ramola, Rakesh Chand; Tokonami, Shinji

    2016-10-01

    The Chhatrapur placer deposit is found in a high background radiation area which has been recently identified on the southeastern coast of India. Previously, some geochemical studies of this area were carried out to assess external dose from radionuclides-bearing heavy mineral sands. In this study, radon, thoron and thoron progeny concentrations were measured in about 100 dwellings during three seasons (autumn-winter, summer, and rainy) in a 10- to 12-month period and annual doses due to inhalation of them were evaluated. The measurements were made by passive-type radon-thoron discriminative detectors and thoron progeny detectors in which solid state nuclear track detectors were deployed. The results show that radon and thoron concentrations differ by one order of magnitude depending on exposure periods, while thoron progeny concentration is nearly constant throughout the year. Since thorium-rich sand is distributed in the studied area, exposure to thoron is equal to, or exceeds, exposure to radon and is not negligible for dose evaluation. Based on the measurements, doses due to inhalation of radon and thoron are evaluated as 0.1-1.6 mSv y -1 and 0.2-3.8 mSv y -1 , respectively. The total dose is 0.8-4.6 mSv y -1 , which is the same order of magnitude as the worldwide value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Detection of 210Po on filter papers 16 years after use for the collection of short-lived radon progeny in a room.

    PubMed

    Abu-Jarad, F; Fazal-ur-Rehman

    2003-01-01

    Radon gas was allowed to accumulate in its radium source and then injected into a 36 m(3) test room, resulting in an initial radon concentration of 15 kBq m(-3). Filter papers were used to collect the short-lived radon progeny and thus to measure the Potential Alpha Energy Concentration (PAEC) in-situ in the year 1984 at different times and conditions according to the experimental design. The radon progeny collected on the filter papers were studied as a function of aerosol particle concentration ranging from 10(2)-10(5) particles cm(-3) in three different experiments. The highest aerosol particle concentration was generated by indoor cigarette smoking. Those filters were stored after the experiment, and were used after 16 years to study the activity of the radon long-lived alpha emitter progeny, (210)Po (T(1/2)=138 days). This isotope is separated from the short-lived progeny by (210)Pb beta emitter with 22.3 years half-life. After 16 years' storage of these filters, each filter paper was sandwiched and wrapped between two CR-39 nuclear track detectors, to put the detectors in contact with the surfaces of different filters, for 337 days. Correlation between the PAEC measured using filter papers in the year 1984 and the activity of long-lived alpha emitter (210)Po on the same filter papers measured in the year 2000 were studied. The results of the (210)Po activity showed a very good correlation of 0.92 with the PAEC 16 years ago. The results also depict that the PAEC and (210)Po activity in indoor air increased with the increase of aerosol particle concentration, which shows the attachment of short-lived radon progeny with the aerosol particles. The experiment proves that indoor cigarette smoking is a major source of aerosol particles carrying radon progeny and, thus, indoor cigarette smoking is an additional source of internal radiation hazard to the occupants whether smoker or non-smoker.

  8. Radon programmes and health marketing.

    PubMed

    Fojtikova, Ivana; Rovenska, Katerina

    2011-05-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed.

  9. Radiological risk of building materials using homemade airtight radon chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalid, Norafatin; Majid, Amran Ab.; Yahaya, Redzuwan

    Soil based building materials known to contain various amounts of natural radionuclide mainly {sup 238}U and {sup 232}Th series and {sup 40}K. In general most individuals spend 80% of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived {sup 222}Radon and its progenies which arise from the decay of {sup 226}Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samplesmore » were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m{sup −3}, 192 Bq m{sup −3}, 176 Bq m{sup −3} and 28 Bq m{sup −3}, respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m{sup −3} i.e. higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y{sup −1}, 4.85 mSv y{sup −1}, 4.44 mSv y{sup −1} and 0.72 mSv y{sup −1}, respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels i.e. 3 - 10 mSv y{sup −1}. As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively.« less

  10. International intercomparison of measuring instruments for radon/thoron gas and radon short-lived daughter products in the NRPI Prague.

    PubMed

    Jílek, K; Hýža, M; Kotík, L; Thomas, J; Tomášek, L

    2014-07-01

    During the 7th European Conference on Protection Against Radon at Home and at Work held in the autumn of 2013 in Prague, the second intercomparison of measuring instruments for radon and its short-lived decay products and the first intercomparison of radon/thoron gas discriminative passive detectors in mix field of radon/thoron were organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI) in Prague. In total, 14 laboratories from 11 different countries took part in the 2013 NRPI intercomparison. They submitted both continuous monitors for the measurement of radon gas and equivalent equilibrium radon concentration in a big NRPI chamber (48 m3) and sets of passive detectors including radon/thoron discriminative for the measurement of radon gas in the big chamber and thoron gas in a small thoron chamber (150 dm3). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Radon emanation of heterogeneous basin deposits in Kathmandu Valley, Nepal

    NASA Astrophysics Data System (ADS)

    Girault, Frédéric; Gajurel, Ananta Prasad; Perrier, Frédéric; Upreti, Bishal Nath; Richon, Patrick

    2011-01-01

    Effective radium-226 concentration ( EC Ra) has been measured in soil samples from seven horizontal and vertical profiles of terrace scarps in the northern part of Kathmandu Valley, Nepal. The samples belong to the Thimi, Gokarna, and Tokha Formations, dated from 50 to 14 ky BP, and represent a diverse fluvio-deltaic sedimentary facies mainly consisting of gravelly to coarse sands, black, orange and brown clays. EC Ra was measured in the laboratory by radon-222 emanation. The samples ( n = 177) are placed in air-tight glass containers, from which, after an accumulation time varying from 3 to 18 days, the concentration of radon-222, radioactive decay product of radium-226 and radioactive gas with a half-life of 3.8 days, is measured using scintillation flasks. The EC Ra values from the seven different profiles of the terrace deposits vary from 0.4 to 43 Bq kg -1, with profile averages ranging from 12 ± 1 to 27 ± 2 Bq kg -1. The values have a remarkable consistency along a particular horizon of sediment layers, clearly demonstrating that these values can be used for long distance correlations of the sediment horizons. Widely separated sediment profiles, representing similar stratigraphic positions, exhibit consistent EC Ra values in corresponding stratigraphic sediment layers. EC Ra measurements therefore appear particularly useful for lithologic and stratigraphic discriminations. For comparison, EC Ra values of soils from different localities having various sources of origin were also obtained: 9.2 ± 0.4 Bq kg -1 in soils of Syabru-Bensi (Central Nepal), 23 ± 1 Bq kg -1 in red residual soils of the Bhattar-Trisuli Bazar terrace (North of Kathmandu), 17.1 ± 0.3 Bq kg -1 in red residual soils of terrace of Kalikasthan (North of Trisuli Bazar) and 10 ± 1 Bq kg -1 in red residual soils of a site near Nagarkot (East of Kathmandu). The knowledge of EC Ra values for these various soils is important for modelling radon exhalation at the ground surface, in particular in the vicinity of active faults. Importantly, the study also reveals that, above numerous sediments of Kathmandu Valley, radon concentration in dwellings can potentially exceed the level of 300 Bq m -3 for residential areas; a fact that should be seriously taken into account by the governmental and non-governmental agencies as well as building authorities.

  12. Radon potential, geologic formations, and lung cancer risk

    PubMed Central

    Hahn, Ellen J.; Gokun, Yevgeniya; Andrews, William M.; Overfield, Bethany L.; Robertson, Heather; Wiggins, Amanda; Rayens, Mary Kay

    2015-01-01

    Objective Exposure to radon is associated with approximately 10% of U.S. lung cancer cases. Geologic rock units have varying concentrations of uranium, producing fluctuating amounts of radon. This exploratory study examined the spatial and statistical associations between radon values and geological formations to illustrate potential population-level lung cancer risk from radon exposure. Method This was a secondary data analysis of observed radon values collected in 1987 from homes (N = 309) in Kentucky and geologic rock formation data from the Kentucky Geological Survey. Radon value locations were plotted on digital geologic maps using ArcGIS and linked to specific geologic map units. Each map unit represented a package of different types of rock (e.g., limestone and/or shale). Log-transformed radon values and geologic formation categories were compared using one-way analysis of variance. Results Observed radon levels varied significantly by geologic formation category. Of the 14 geologic formation categories in north central Kentucky, four were associated with median radon levels, ranging from 8.10 to 2.75 pCi/L. Conclusion Radon potential maps that account for geologic factors and observed radon values may be superior to using observed radon values only. Knowing radon-prone areas could help target population-based lung cancer prevention interventions given the inequities that exist related to radon. PMID:26844090

  13. Implications of alteration processes on radon emanation, radon production rate and W-Sn exploration in the Panasqueira ore district.

    PubMed

    Domingos, Filipa; Pereira, Alcides

    2018-05-01

    Alteration processes have strong impacts on the chemical and physical properties of rock masses. Because they can affect the contents and the distribution of U as well as enhance the permeability of the bedrock, they may lead to a significant increase of radon release to the environment. However, their influence on radon emanation and radon production rate has yet to be properly assessed. To investigate the impact of alteration processes on the radiological properties, samples were collected in the Panasqueira region under the influence of surface weathering, deuteric, hydrothermal and fault related alteration. Major and trace elements (U, Th), physical, and radiological properties were measured in metasedimentary and fault rocks. The degree of alteration and weathering progress were assessed through indices of alteration, porosity and bulk density. Overall, an increase of the radon emanation coefficient from (approximately) 0.1 to 0.4 and radon production rate (from 40 to over 160Bq·m -3 ·h -1 ) is observed with the progress of physicochemical alteration. Decoupling of physical and chemical alteration however implies both must be quantified towards a proper assessment of the degree of alteration. The behavior of radiogenic elements upon alteration is shown to be complex and contingent upon the alteration process. An atypical increase of radon emanation in the ore district due to U mobilization was caused by hydrothermal alteration. Because radon emanation is not dependent upon the pelitic nature of the metasedimentary rocks, it may thus become a proxy for W-Sn exploration. The dependency of radon production rate from the latter constrains its use for exploration. Nevertheless, it may provide a reliable estimation of the bedrock contribution to indoor radon concentrations. Higher indoor radon concentrations, hence, a higher risk of exposure to radon are expected in the ore district as well as within fault zones. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Measurement of (222)Rn concentration levels in drinking water and the associated health effects in the Southern part of West Bank - Palestine.

    PubMed

    Thabayneh, Khalil M

    2015-09-01

    Radon concentration and annual effective doses were measured in drinking water in the Southern Part of West Bank - Palestine, by using both passive and active techniques. 184 samples were collected from various sources i.e. tap water, groundwater, rain waters and mineral waters. It is found that the annual effective dose resulting from inhalation and ingestion of radon emanated from all types of drinking water is negligible compared to the total annual effective dose from indoor radon in the region. Results reveal that there is no significant public health risk from radon ingested and inhalation with drinking water in the study region. Copyright © 2015. Published by Elsevier Ltd.

  15. Radon Reduction Methods: A Homeowner's Guide.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The U.S. Environmental Protection Agency (EPA) is studying the effectiveness of various ways to reduce high concentrations of radon in houses. This booklet was produced to share what has been learned with those whose radon problems demand immediate action. The booklet describes nine methods that have been tested successfully--by EPA and/or other…

  16. EVALUATION OF RADON EMANATION FROM SOIL WITH VARYING MOISTURE CONTENT IN A SOIL CHAMBER

    EPA Science Inventory

    The paper describes measurements to quantitatively identify the extent to which moisture affects radon emanation and diffusive transport components of a sandy soil radon concentration gradient obtained in the EPA test chamber. The chamber (2X2X4 m long) was constructed to study t...

  17. Applicability of radon emanometry in lithologically discontinuous sites contaminated by organic chemicals.

    PubMed

    De Miguel, Eduardo; Barrio-Parra, Fernando; Elío, Javier; Izquierdo-Díaz, Miguel; García-González, Jerónimo Emilio; Mazadiego, Luis Felipe; Medina, Rafael

    2018-06-02

    The applicability of radon ( 222 Rn) measurements to delineate non-aqueous phase liquids (NAPL) contamination in subsoil is discussed at a site with lithological discontinuities through a blind test. Three alpha spectroscopy monitors were used to measure radon in soil air in a 25,000-m 2 area, following a regular sampling design with a 20-m 2 grid. Repeatability and reproducibility of the results were assessed by means of duplicate measurements in six sampling positions. Furthermore, three points not affected by oil spills were sampled to estimate radon background concentration in soil air. Data histograms, Q-Q plots, variograms, and cluster analysis allowed to recognize two data populations, associated with the possible path of a fault and a lithological discontinuity. Even though the concentration of radon in soil air was dominated by this discontinuity, the characterization of the background emanation in each lithological unit allowed to distinguish areas potentially affected by NAPL, thus justifying the application of radon emanometry as a screening technique for the delineation of NAPL plumes in sites with lithological discontinuities.

  18. A finite element model development for simulation of the impact of slab thickness, joints, and membranes on indoor radon concentration.

    PubMed

    Muñoz, E; Frutos, B; Olaya, M; Sánchez, J

    2017-10-01

    The focus of this study is broadly to define the physics involved in radon generation and transport through the soil and other materials using different parameter-estimation tools from the literature. The effect of moisture in the soil and radon transport via water in the pore space was accounted for with the application of a porosity correction coefficient. A 2D finite element model is created, which reproduces the diffusion and advection mechanisms resulting from specified boundary conditions. A comparison between the model and several analytical and numerical solutions obtained from the literature and field studies validates the model. Finally, the results demonstrate that the model can predict radon entry through different building boundary conditions, such as concrete slabs with or without joints, variable slab thicknesses and diffusion coefficients, and the use of several radon barrier membranes. Cracks in the concrete or the radon barrier membrane have been studied to understand how indoor concentration is affected by these issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Radon anomaly in soil gas as an earthquake precursor.

    PubMed

    Miklavcić, I; Radolić, V; Vuković, B; Poje, M; Varga, M; Stanić, D; Planinić, J

    2008-10-01

    The mechanical processes of earthquake preparation are always accompanied by deformations; afterwards, the complex short- or long-term precursory phenomena can appear. Anomalies of radon concentrations in soil gas are registered a few weeks or months before many earthquakes. Radon concentrations in soil gas were continuously measured by the LR-115 nuclear track detectors at site A (Osijek) during a 4-year period, as well as by the Barasol semiconductor detector at site B (Kasina) during 2 years. We investigated the influence of the meteorological parameters on the temporal radon variations, and we determined the equation of the multiple regression that enabled the reduction (deconvolution) of the radon variation caused by the barometric pressure, rainfall and temperature. The pre-earthquake radon anomalies at site A indicated 46% of the seismic events, on criterion M>or=3, R<200 km, and 21% at site B. Empirical equations between earthquake magnitude, epicenter distance and precursor time enabled estimation or prediction of an earthquake that will rise at the epicenter distance R from the monitoring site in expecting precursor time T.

  20. First radon measurements and occupational exposure assessments in underground geodynamic laboratory the Polish Academy of Sciences Space Research Centre in Książ Castle (SW Poland).

    PubMed

    Fijałkowska-Lichwa, Lidia; Przylibski, Tadeusz A

    2016-12-01

    The article presents the results of the first radon activity concentration measurements conducted continuously between 17 th May 2014 and 16 th May 2015 in the underground geodynamic laboratory of the Polish Academy of Sciences Space Research Centre in Książ. The data were registered with the use of three Polish semiconductor SRDN-3 detectors located the closest (SRDN-3 No. 6) to and the furthest (SRDN-3 No. 3) from the facility entrance, and in the fault zone (SRDN-3 No. 4). The study was conducted to characterize the radon behaviour and check it possibility to use with reference to long- and short-term variations of radon activity concentration observed in sedimentary rocks strongly fractured and intersected by systems of multiple faults, for integrated comparative assessments of changes in local orogen kinetics. The values of radon activity concentration in the underground geodynamic laboratory of the Polish Academy of Sciences (PAN) Space Research Centre in Książ undergo changes of a distinctly seasonal character. The highest values of radon activity concentration are recorded from late spring (May/June) to early autumn (October), and the lowest - from November to April. Radon activity concentrations varied depending on the location of measurement points. Between late spring and autumn they ranged from 800 Bq·m -3 to 1200 Bq·m -3 , and even 3200 Bq·m -3 in the fault zone. Between November and April, values of radon activity concentration are lower, ranging from 500 Bq·m -3 to 1000 Bq·m -3 and 2700 Bq·m -3 in the fault zone. The values of radon activity concentration recorded in the studied facility did not undergo short-term changes in either the whole annual measuring cycle or any of its months. Effective doses received by people staying in the underground laboratory range from 0.001 mSv/h to 0.012 mSv/h. The mean annual effective dose, depending on the measurement site, equals 1 or is slightly higher than 10 mSv/year, while the maximum dose exceeds 20 mSv/year. The estimated annual effective doses are comparable to the standard value of 20 mSv/year defined by Polish law for people employed in the conditions of radiation exposure. They are also in the range of annual effective dose value (8 mSv/year) recommended in workplaces by International Commission on Radiation Protection. Copyright © 2016 Elsevier Ltd. All rights reserved.

Top