Sample records for average reaction time

  1. Multispecies reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, A.; Fatollahi, A. H.; Khorrami, M.; Shariati, A.

    2000-10-01

    Multispecies reaction-diffusion systems, for which the time evolution equations of correlation functions become a closed set, are considered. A formal solution for the average densities is found. Some special interactions and the exact time dependence of the average densities in these cases are also studied. For the general case, the large-time behavior of the average densities has also been obtained.

  2. Analysis of Reaction Times and Aerobic Capacities of Soccer Players According to Their Playing Positions

    ERIC Educational Resources Information Center

    Taskin, Cengiz; Karakoc, Onder; Taskin, Mine; Dural, Murat

    2016-01-01

    70 soccer players in Gaziantep amateur league voluntarily participated in this study, (average of their ages 19,17±1,34years, average of their heights 181,28±5,06 cm, average of their body weights 76,75±4,43 kg and average of their sports experiences 3,78±0,95 years) to analyze visual and auditory reaction times and aerobic capacities of amateur…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fuke, E-mail: wufuke@mail.hust.edu.cn; Tian, Tianhai, E-mail: tianhai.tian@sci.monash.edu.au; Rawlings, James B., E-mail: james.rawlings@wisc.edu

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in themore » work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766–1793 (1996); ibid. 56, 1794–1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.« less

  4. Relationships between Static and Dynamic Balance and Anticipation Time, Reaction Time in School Children at the Age of 10-12 Years

    ERIC Educational Resources Information Center

    Bozkurt, Sinan; Erkut, Oya; Akkoç, Orkun

    2017-01-01

    The aim of this study is to investigate the relationship between anticipation time, reaction time and balance characteristics in school children at the age of 10-12 years. 11 males and 12 females, 23 students in total, studying at Istanbul Sancaktepe Ibn-i Sina Elementary School, whose average age was 11.06 years, average height was 142.78 cm and…

  5. Typewriting rate as a function of reaction time.

    PubMed

    Hayes, V; Wilson, G D; Schafer, R L

    1977-12-01

    This study was designed to determine the relationship between reaction time and typewriting rate. Subjects were 24 typists ranging in age from 19 to 39 yr. Reaction times (.001 sec) to a light were recorded for each finger and to each alphabetic character and three punctuation marks. Analysis of variance yielded significant differences in reaction time among subjects and fingers. Correlation between typewriting rate and average reaction time to the alphabetic characters and three punctuation marks was --.75. Correlation between typewriting rate and the difference between the reaction time of the hands was --.42. Factors influencing typewriting rate may include reaction time of the fingers, difference between the reaction time of the hands, and reaction time to individual keys on the typewriter. Implications exist for instructional methodology and further research.

  6. Stochastic simulation and analysis of biomolecular reaction networks

    PubMed Central

    Frazier, John M; Chushak, Yaroslav; Foy, Brent

    2009-01-01

    Background In recent years, several stochastic simulation algorithms have been developed to generate Monte Carlo trajectories that describe the time evolution of the behavior of biomolecular reaction networks. However, the effects of various stochastic simulation and data analysis conditions on the observed dynamics of complex biomolecular reaction networks have not recieved much attention. In order to investigate these issues, we employed a a software package developed in out group, called Biomolecular Network Simulator (BNS), to simulate and analyze the behavior of such systems. The behavior of a hypothetical two gene in vitro transcription-translation reaction network is investigated using the Gillespie exact stochastic algorithm to illustrate some of the factors that influence the analysis and interpretation of these data. Results Specific issues affecting the analysis and interpretation of simulation data are investigated, including: (1) the effect of time interval on data presentation and time-weighted averaging of molecule numbers, (2) effect of time averaging interval on reaction rate analysis, (3) effect of number of simulations on precision of model predictions, and (4) implications of stochastic simulations on optimization procedures. Conclusion The two main factors affecting the analysis of stochastic simulations are: (1) the selection of time intervals to compute or average state variables and (2) the number of simulations generated to evaluate the system behavior. PMID:19534796

  7. A comparative study of visual reaction time in table tennis players and healthy controls.

    PubMed

    Bhabhor, Mahesh K; Vidja, Kalpesh; Bhanderi, Priti; Dodhia, Shital; Kathrotia, Rajesh; Joshi, Varsha

    2013-01-01

    Visual reaction time is time required to response to visual stimuli. The present study was conducted to measure visual reaction time in 209 subjects, 50 table tennis (TT) players and 159 healthy controls. The visual reaction time was measured by the direct RT computerized software in healthy controls and table tennis players. Simple visual reaction time was measured. During the reaction time testing, visual stimuli were given for eighteen times and average reaction time was taken as the final reaction time. The study shows that table tennis players had faster reaction time than healthy controls. On multivariate analysis, it was found that TT players had 74.121 sec (95% CI 98.8 and 49.4 sec) faster reaction time compared to non-TT players of same age and BMI. Also playing TT has a profound influence on visual reaction time than BMI. Our study concluded that persons involved in sports are having good reaction time as compared to controls. These results support the view that playing of table tennis is beneficial to eye-hand reaction time, improve the concentration and alertness.

  8. Cryotherapy does not affect peroneal reaction following sudden inversion.

    PubMed

    Berg, Christine L; Hart, Joseph M; Palmieri-Smith, Riann; Cross, Kevin M; Ingersoll, Christopher D

    2007-11-01

    If ankle joint cryotherapy impairs the ability of the ankle musculature to counteract potentially injurious forces, the ankle is left vulnerable to injury. To compare peroneal reaction to sudden inversion following ankle joint cryotherapy. Repeated measures design with independent variables, treatment (cryotherapy and control), and time (baseline, immediately post treatment, 15 minutes post treatment, and 30 minutes post treatment). University research laboratory. Twenty-seven healthy volunteers. An ice bag was secured to the lateral ankle joint for 20 minutes. The onset and average root mean square amplitude of EMG activity in the peroneal muscles was calculated following the release of a trap door mechanism causing inversion. There was no statistically significant change from baseline for peroneal reaction time or average peroneal muscle activity at any post treatment time. Cryotherapy does not affect peroneal muscle reaction following sudden inversion perturbation.

  9. Energy diffusion controlled reaction rate of reacting particle driven by broad-band noise

    NASA Astrophysics Data System (ADS)

    Deng, M. L.; Zhu, W. Q.

    2007-10-01

    The energy diffusion controlled reaction rate of a reacting particle with linear weak damping and broad-band noise excitation is studied by using the stochastic averaging method. First, the stochastic averaging method for strongly nonlinear oscillators under broad-band noise excitation using generalized harmonic functions is briefly introduced. Then, the reaction rate of the classical Kramers' reacting model with linear weak damping and broad-band noise excitation is investigated by using the stochastic averaging method. The averaged Itô stochastic differential equation describing the energy diffusion and the Pontryagin equation governing the mean first-passage time (MFPT) are established. The energy diffusion controlled reaction rate is obtained as the inverse of the MFPT by solving the Pontryagin equation. The results of two special cases of broad-band noises, i.e. the harmonic noise and the exponentially corrected noise, are discussed in details. It is demonstrated that the general expression of reaction rate derived by the authors can be reduced to the classical ones via linear approximation and high potential barrier approximation. The good agreement with the results of the Monte Carlo simulation verifies that the reaction rate can be well predicted using the stochastic averaging method.

  10. Real-time data acquisition and alerts may reduce reaction time and improve perfusionist performance during cardiopulmonary bypass.

    PubMed

    Beck, J R; Fung, K; Lopez, H; Mongero, L B; Argenziano, M

    2015-01-01

    Delayed perfusionist identification and reaction to abnormal clinical situations has been reported to contribute to increased mortality and morbidity. The use of automated data acquisition and compliance safety alerts has been widely accepted in many industries and its use may improve operator performance. A study was conducted to evaluate the reaction time of perfusionists with and without the use of compliance alert. A compliance alert is a computer-generated pop-up banner on a pump-mounted computer screen to notify the user of clinical parameters outside of a predetermined range. A proctor monitored and recorded the time from an alert until the perfusionist recognized the parameter was outside the desired range. Group one included 10 cases utilizing compliance alerts. Group 2 included 10 cases with the primary perfusionist blinded to the compliance alerts. In Group 1, 97 compliance alerts were identified and, in group two, 86 alerts were identified. The average reaction time in the group using compliance alerts was 3.6 seconds. The average reaction time in the group not using the alerts was nearly ten times longer than the group using computer-assisted, real-time data feedback. Some believe that real-time computer data acquisition and feedback improves perfusionist performance and may allow clinicians to identify and rectify potentially dangerous situations. © The Author(s) 2014.

  11. Investigation of the relationship between CO2 reservoir rock property change and the surface roughness change originating from the supercritical CO2-sandstone-groundwater geochemical reaction at CO2 sequestration condition

    NASA Astrophysics Data System (ADS)

    Lee, Minhee; Wang, Sookyun; Kim, Seyoon; Park, Jinyoung

    2015-04-01

    Lab scale experiments were performed to investigate the property changes of sandstone slabs and cores, resulting from the scCO2-rock-groundwater reaction for 180 days under CO2 sequestration conditions (100 bar and 50 °C). The geochemical reactions, including the surface roughness change of minerals in the slab, resulted from the dissolution and the secondary mineral precipitation for the sandstone reservoir of the Gyeongsang basin, Korea were reproduced in laboratory scale experiments and the relationship between the geochemical reaction and the physical rock property change was derived, for the consideration of successful subsurface CO2 sequestration. The use of the surface roughness value (SRrms) change rate and the physical property change rate to quantify scCO2-rock-groundwater reaction is the novel approach on the study area for CO2 sequestration in the subsurface. From the results of SPM (Scanning Probe Microscope) analyses, the SRrms for each sandstone slab was calculated at different reaction time. The average SRrms increased more than 3.5 times during early 90 days reaction and it continued to be steady after 90 days, suggesting that the surface weathering process of sandstone occurred in the early reaction time after CO2 injection into the subsurface reservoir. The average porosity of sandstone cores increased by 8.8 % and the average density decreased by 0.5 % during 90 days reaction and these values slightly changed after 90 days. The average P and S wave velocities of sandstone cores also decreased by 10 % during 90 days reaction. The trend of physical rock property change during the geochemical reaction showed in a logarithmic manner and it was also correlated to the logarithmic increase in SRrms, suggesting that the physical property change of reservoir rocks originated from scCO2 injection directly comes from the geochemical reaction process. Results suggested that the long-term estimation of the physical property change for reservoir rocks in CO2 injection site could be possible from the extrapolation process of SRrms and rocks property change rates, acquired from laboratory scale experiments. It will be aslo useful to determine the favorite CO2 injection site from the viewpoint of the safety.

  12. Evidence for Dynamic Chemical Kinetics at Individual Molecular Ruthenium Catalysts.

    PubMed

    Easter, Quinn T; Blum, Suzanne A

    2018-02-05

    Catalytic cycles are typically depicted as possessing time-invariant steps with fixed rates. Yet the true behavior of individual catalysts with respect to time is unknown, hidden by the ensemble averaging inherent to bulk measurements. Evidence is presented for variable chemical kinetics at individual catalysts, with a focus on ring-opening metathesis polymerization catalyzed by the second-generation Grubbs' ruthenium catalyst. Fluorescence microscopy is used to probe the chemical kinetics of the reaction because the technique possesses sufficient sensitivity for the detection of single chemical reactions. Insertion reactions in submicron regions likely occur at groups of many (not single) catalysts, yet not so many that their unique kinetic behavior is ensemble averaged. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Test analysis and research on static choice reaction ability of commercial vehicle drivers

    NASA Astrophysics Data System (ADS)

    Zhang, Lingchao; Wei, Lang; Qiao, Jie; Tian, Shun; Wang, Shengchang

    2017-03-01

    Drivers' choice reaction ability has a certain relation with safe driving. It has important significance to research its influence on traffic safety. Firstly, the paper uses a choice reaction detector developed by research group to detect drivers' choice reaction ability of commercial vehicles, and gets 2641 effective samples. Then by using mathematical statistics method, the paper founds that average reaction time from accident group has no difference with non-accident group, and then introduces a variance rate of reaction time as a new index to replace it. The result shows that the test index choice reaction errors and variance rate of reaction time have positive correlations with accidents. Finally, according to testing results of the detector, the paper formulates a detection threshold with four levels for helping transportation companies to assess commercial vehicles drivers.

  14. Evaluation of the Combined Effects of Heat and Lighting on the Level of Attention and Reaction Time: Climate Chamber Experiments in Iran.

    PubMed

    Mohebian, Zohreh; Farhang Dehghan, Somayeh; Dehghan, Habiballah

    2018-01-01

    Heat exposure and unsuitable lighting are two physical hazardous agents in many workplaces for which there are some evidences regarding their mental effects. The purpose of this study was to assess the combined effect of heat exposure and different lighting levels on the attention rate and reaction time in a climatic chamber. This study was conducted on 33 healthy students (17 M/16 F) with a mean (±SD) age of 22.1 ± 2.3 years. The attention and reaction time test were done by continuous performance test and the RT meter, respectively, in different exposure conditions including the dry temperatures (22°C and 37°C) and lighting levels (200, 500, and 1500 lux). Findings demonstrated that increase in heat and lighting level caused a decrease in average attention percentage and correct responses and increase in commission error, omission error, and response time ( P < 0.05). The average of simple, diagnostic, two-color selective, and two-sound selective reaction times increased after combined exposure to heat and lighting ( P < 0.05). The results of this study indicated that, in job task which requires using cognitive functions like attention, vigilance, concentration, cautiousness, and reaction time, the work environment must be optimized in terms of heat and lighting level.

  15. Characterization of thermal and mechanical properties of opligo(glycerol-glutaric acid)s

    USDA-ARS?s Scientific Manuscript database

    Dibutyltin oxide was used to catalyze the synthesis of oligo(glycerol-glutaric acid)s in the absence and presence of solvent. Reaction times were either 10h or 24h for reactions performed in DMF and 24h for the neat reaction. The oligomers were obtained on average in 84% yield and were characteriz...

  16. Detonation Reaction Zones in Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.

    2006-07-01

    Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich - von Neumann - Doling (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes are discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).

  17. A green chemical approach for synthesis of shape anisotropic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalyan Kamal, S. S.; Vimala, J.; Sahoo, P. K.; Ghosal, P.; Ram, S.; Durai, L.

    2014-06-01

    A complete green chemical reaction between aurochloric acid and tea polyphenols resulted in the reduction of Au3+ → Au0. The reaction was carried out in a Teflon-coated bomb digestion vessel at 200 °C. It was observed that with increasing the reaction time from 1 to 5 h, the shape of the nanoparticles changed from spherical- to rod-like structures. The reaction was followed with the help of UV-vis spectrometer, which showed a single absorption peak at 548 nm for 1-h reaction product and two peaks for a 5-h reaction product at 533 and 745 nm corresponding to the transverse and longitudinal surface plasmon resonance bands. Microstructures obtained from transmission electron microscope revealed that the samples obtained after 1-h reaction are predominantly spherical in shape with an average size of 15 nm. Whereas samples obtained after 5 h of reaction exhibited rod-like structures with an average size of 45 nm.

  18. When did the average cosmic ray flux increase?

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Murty, S. V. S.; Marti, K.; Arnold, J. R.

    1985-01-01

    A new 129 to 129 Xe method to obtain cosmic ray exposure ages and to study the average cosmic ray flux on a 10 to the 7th power to 10 to the 8th power year time-scale was developed. The method is based on secondary neutron reactions on Te in troilite and the subsequent decay of 129I, the reaction product to stable 129 Xe. The first measurements of 129 I and 129 Xe in aliquot samples of a Cape York troilite sample are reported.

  19. The effect of repetitive ankle perturbations on muscle reaction time and muscle activity.

    PubMed

    Thain, Peter Kevin; Hughes, Gerwyn Trefor Gareth; Mitchell, Andrew Charles Stephen

    2016-10-01

    The use of a tilt platform to simulate a lateral ankle sprain and record muscle reaction time is a well-established procedure. However, a potential caveat is that repetitive ankle perturbation may cause a natural attenuation of the reflex latency and amplitude. This is an important area to investigate as many researchers examine the effect of an intervention on muscle reaction time. Muscle reaction time, peak and average amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain (combined inversion and plantar flexion movement) were calculated in twenty-two physically active participants. The 40 perturbations were divided into 4 even groups of 10 dominant limb perturbations. Within-participants repeated measures analysis of variance (ANOVA) tests were conducted to assess the effect of habituation over time for each variable. There was a significant reduction in the peroneus longus average amplitude between the aggregated first and last 10 consecutive ankle perturbations (F2.15,45.09=3.90, P=0.03, ɳp(2)=0.16). Authors should implement no more than a maximum of 30 consecutive ankle perturbations (inclusive of practice perturbations) in future protocols simulating a lateral ankle sprain in an effort to avoid significant attenuation of muscle activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Impact of virtual reality games on psychological well-being and upper limb performance in adults with physical disabilities: A pilot study.

    PubMed

    Singh, D K A; Rahman, N N A; Seffiyah, R; Chang, S Y; Zainura, A K; Aida, S R; Rajwinder, K H S

    2017-04-01

    There is limited information regarding the effects of interactive virtual reality (VR) games on psychological and physical well-being among adults with physical disabilities. We aimed to examine the impact of VR games on psychological well-being, upper limb motor function and reaction time in adults with physical disabilities. Fifteen participants completed the intervention using Wii VR games in this pilot study. Depressive, Anxiety and Stress Scales (DASS) and Capabilities of Upper Extremity (CUE) questionnaires were used to measure psychological well-being and upper limb motor function respectively. Upper limb reaction time was measured using reaction time test. Results showed that there was a significant difference (p<0.05) in DASS questionnaire and average reaction time score after intervention. There is a potential for using interactive VR games as an exercise tool to improve psychological wellbeing and upper limb reaction time among adults with disabilities.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gul, Banat, E-mail: banatgul@gmail.com; Aman-ur-Rehman

    In this study, a fluid model has been used to study the effect of gas mixing ratio and pressure on the density distribution of important etchant species, i.e., hydrogen (H), bromine (Br), Br{sup +}, and HBr{sup +} in HBr/He plasma. Our simulation results show that the densities of active etchant species H, Br, and HBr{sup +} increase with the increase in pressure as well as the HBr fraction in HBr/He mixture. On the contrary, the density of Br{sup +} decreases with the increase in He percentage in HBr/He mixture and with the increase in the pressure. Time averaged reaction ratesmore » (of the reactions involved in the production and consumption of these species) have been calculated to study the effect of these reactions on the density distribution of these species. The spatial distribution of these species is explained with the help of the time averaged reaction rates. Important reactions have been identified that contribute considerably to the production and consumption of these active species. The code has been optimized by identifying 26 reactions (out of 40 reactions which contribute in the production and consumption of these species) that have insignificant effect on the densities of H, Br, Br{sup +}, and HBr{sup +}. This shows that out of 40 reactions, only 14 reactions can be used to calculate the density and distribution of the important species in HBr/He plasma discharge.« less

  2. Effect of bright light therapy on delayed sleep/wake cycle and reaction time of athletes participating in the Rio 2016 Olympic Games.

    PubMed

    Rosa, João Paulo P; Silva, Andressa; Rodrigues, Dayane F; Simim, Mário Antônio; Narciso, Fernanda V; Tufik, Sergio; Bichara, Jorge J; Pereira, Sebastian Rafael D; Da Silva, Sidney C; de Mello, Marco Tulio

    2018-04-16

    This study investigated the effect of using an artificial bright light on the entrainment of the sleep/wake cycle as well as the reaction times of athletes before the Rio 2016 Olympic Games. A total of 22 athletes from the Brazilian Olympic Swimming Team were evaluated, with the aim of preparing them to compete at a time when they would normally be about to go to bed for the night. During the 8-day acclimatization period, their sleep/wake cycles were assessed by actigraphy, with all the athletes being treated with artificial light therapy for between 30 and 45 min (starting at day 3). In addition, other recommendations to improve sleep hygiene were made to the athletes. In order to assess reaction times, the Psychomotor Vigilance Test was performed before (day 1) and after (day 8) the bright light therapy. As a result of the intervention, the athletes slept later on the third (p = 0.01), seventh (p = 0.01) and eighth (p = 0.01) days after starting bright light therapy. Regarding reaction times, when tested in the morning the athletes showed improved average (p = 0.01) and minimum reaction time (p = 0.03) when comparing day 8 to day 1. When tested in the evening, they showed improved average (p = 0.04), minimum (p = 0.03) and maximum reaction time (p = 0.02) when comparing day 8 to day 1. Light therapy treatment delayed the sleep/wake cycles and improved reaction times of members of the swimming team. The use of bright light therapy was shown to be effective in modulating the sleep/wake cycles of athletes who had to perform in competitions that took place late at night.

  3. Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium

    NASA Astrophysics Data System (ADS)

    Mi, XiaoCheng; Higgins, Andrew J.; Ng, Hoi Dick; Kiyanda, Charles B.; Nikiforakis, Nikolaos

    2017-05-01

    Detonation propagation in a compressible medium wherein the energy release has been made spatially inhomogeneous is examined via numerical simulation. The inhomogeneity is introduced via step functions in the reaction progress variable, with the local value of energy release correspondingly increased so as to maintain the same average energy density in the medium and thus a constant Chapman-Jouguet (CJ) detonation velocity. A one-step Arrhenius rate governs the rate of energy release in the reactive zones. The resulting dynamics of a detonation propagating in such systems with one-dimensional layers and two-dimensional squares are simulated using a Godunov-type finite-volume scheme. The resulting wave dynamics are analyzed by computing the average wave velocity and one-dimensional averaged wave structure. In the case of sufficiently inhomogeneous media wherein the spacing between reactive zones is greater than the inherent reaction zone length, average wave speeds significantly greater than the corresponding CJ speed of the homogenized medium are obtained. If the shock transit time between reactive zones is less than the reaction time scale, then the classical CJ detonation velocity is recovered. The spatiotemporal averaged structure of the waves in these systems is analyzed via a Favre-averaging technique, with terms associated with the thermal and mechanical fluctuations being explicitly computed. The analysis of the averaged wave structure identifies the super-CJ detonations as weak detonations owing to the existence of mechanical nonequilibrium at the effective sonic point embedded within the wave structure. The correspondence of the super-CJ behavior identified in this study with real detonation phenomena that may be observed in experiments is discussed.

  4. Reaction Dynamics of Proton-Coupled Electron Transfer from Reduced ZnO Nanocrystals.

    PubMed

    Braten, Miles N; Gamelin, Daniel R; Mayer, James M

    2015-10-27

    The creation of systems that efficiently interconvert chemical and electrical energies will be aided by understanding proton-coupled electron transfers at solution-semiconductor interfaces. Steps in developing that understanding are described here through kinetic studies of reactions of photoreduced colloidal zinc oxide (ZnO) nanocrystals (NCs) with the nitroxyl radical TEMPO. These reactions proceed by proton-coupled electron transfer (PCET) to give the hydroxylamine TEMPOH. They occur on the submillisecond to seconds time scale, as monitored by stopped-flow optical spectroscopy. Under conditions of excess TEMPO, the reactions are multiexponential in character. One of the contributors to this multiexponential kinetics may be a distribution of reactive proton sites. A graphical overlay method shows the reaction to be first order in [TEMPO]. Different electron concentrations in otherwise identical NC samples were achieved by three different methods: differing photolysis times, premixing with an unphotolyzed sample, or prereaction with TEMPO. The reaction velocities were consistently higher for NCs with higher numbers of electrons. For instance, NCs with an average of 2.6 e(-)/NC reacted faster than otherwise identical samples containing ≤1 e(-)/NC. Surprisingly, NC samples with the same average number of electrons but prepared in different ways often had different reaction profiles. These results show that properties beyond electron content determine PCET reactivity of the particles.

  5. Correlating defect density with growth time in continuous graphene films.

    PubMed

    Kang, Cheong; Jung, Da Hee; Nam, Ji Eun; Lee, Jin Seok

    2014-12-01

    We report that graphene flakes and films which were synthesized by copper-catalyzed atmospheric pressure chemical vapor deposition (APCVD) method using a mixture of Ar, H2, and CH4 gases. It was found that variations in the reaction parameters, such as reaction temperature, annealing time, and growth time, influenced the domain size of as-grown graphene. Besides, the reaction parameters influenced the number of layers, degree of defects and uniformity of the graphene films. The increase in growth temperature and annealing time tends to accelerate the graphene growth rate and increase the diffusion length, respectively, thereby increasing the average size of graphene domains. In addition, we confirmed that the number of pinholes reduced with increase in the growth time. Micro-Raman analysis of the as-grown graphene films confirmed that the continuous graphene monolayer film with low defects and high uniformity could be obtained with prolonged reaction time, under the appropriate annealing time and growth temperature.

  6. Carcinogenesis of Depleted Uranium Fragments

    DTIC Science & Technology

    2000-06-01

    essentially no inflammatory reaction, fibrotic reaction, or proliferative lesion was seen in response to the injected Thorotrast®. However, the...uncertain. One striking feature of the reaction is the corrosion of the DU(Ti) in the tissues and the intensity of the inflammatory and fibrotic response to...collection of Information is estimated to average 1 hour per response , Including the time for reviewing instructions, searching existing data sources

  7. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer

    NASA Technical Reports Server (NTRS)

    Kleinman, Leonid S.; Red, X. B., Jr.

    1995-01-01

    An algorithm has been developed for time-dependent forced convective diffusion-reaction having convection by a recirculating flow field within the drop that is hydrodynamically coupled at the interface with a convective external flow field that at infinity becomes a uniform free-streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet, or reactions can take place in both phases. The algorithm has been implemented, and for comparison results are shown here for the case of no reaction in either phase and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  8. Ab initio molecular dynamics study of thermite reaction at Al and CuO nano-interfaces at different temperatures

    NASA Astrophysics Data System (ADS)

    Tang, Cui-Ming; Chen, Xiao-Xu; Cheng, Xin-Lu; Zhang, Chao-Yang; Lu, Zhi-Peng

    2018-05-01

    The thermite reaction at Al/CuO nano-interfaces is investigated with ab initio molecular dynamics calculations in canonical ensemble at 500 K, 800 K, 1200 K and 1500 K, respectively. The reaction process and reaction products are analyzed in terms of chemical bonds, average charge, time constants and total potential energy. The activity of the reactants enhances with increasing temperature, which induces a faster thermite reaction. The alloy reaction obviously expands outward at Cu-rich interface of Al/CuO system, and the reaction between Al and O atoms obviously expands outward at O-rich interface as temperature increases. Different reaction products are found at the outermost layer of different interfaces in the Al/CuO system. In generally, the average charge of the outer layer aluminum atoms (i.e., Al1, Al2, Al5 and Al6) increases with temperature. The potential energy of Al/CuO system decreases significantly, which indicates that drastic exothermic reaction occurs at the Al/CuO system. This research enhances fundamental understanding in temperature effect on the thermite reaction at atomic level, which can potentially open new possibilities for its industrial application.

  9. EEG changes as heat stress reactions in rats irradiated by high intensity 35 GHz millimeter waves.

    PubMed

    Xie, Taorong; Pei, Jian; Cui, Yibin; Zhang, Jie; Qi, Hongxing; Chen, Shude; Qiao, Dengjiang

    2011-06-01

    As the application of millimeter waves for civilian and military use increases, the possibility of overexposure to millimeter waves will also increase. This paper attempts to evaluate stress reactions evoked by 35 GHz millimeter waves. The stress reactions in Sprague-Dawley (SD) rats were quantitatively studied by analyzing electroencephalogram (EEG) changes induced by overexposure to 35 GHz millimeter waves. The relative changes in average energy of the EEG and its wavelet decompositions were used for extracting the stress reaction indicators. Incident average power densities (IAPDs) of 35 GHz millimeter waves from 0.5 W cm(-2) to 7.5 W cm(-2) were employed to investigate the relation between irradiation dose and the stress reactions in the rats. Different stress reaction periods evoked by irradiation were quantitatively evaluated by EEG results. The results illustrate that stress reactions are more intense during the first part of the irradiation than during the later part. The skin temperature increase produced by millimeter wave irradiation is the principle reason for stress reactions and skin injuries. As expected, at the higher levels of irradiation, the reaction time decreases and the reaction intensity increases.

  10. Simplified Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two time step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting rates of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx are obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering the turbine (T4) was also correlated as a function of the initial combustor temperature (T3), equivalence ratio, water to fuel mass ratio, and pressure.

  11. Symmetry and asymmetry of reaction time and body tissue composition of upper limbs in young female basketball players.

    PubMed

    Poliszczuk, Tatiana; Mańkowska, Maja; Poliszczuk, Dmytro; Wiśniewski, Andrzej

    2013-01-01

    The role of psychomotor abilities and their relationship to the morphofunctional characteristics of athletes is becoming more and more emphasized in studies on the subject, especially for disciplines that require athletes to notice and to respond to signals originating in dynamically changing conditions. At the same time, athletes who perform symmetrically are more effective and less likely to sustain an injury through unilateral strain. Assessment of the degree of symmetry and asymmetry of reaction time to stimuli in the central and peripheral visual fields, and assessment of body composition of upper limbs in young female basketball players. Participants of the study comprised 17 young female basketball players. Their average age was 18.11-0.8 years. On average, they had been training basketball for 6.83-1.75 years. Body tissue composition was measured using the bioelectrical impedance method. The degree of symmetry and asymmetry of reaction time to signals in the central and peripheral visual fields were measured using the Reaction Test (RT-S1) and a modified Peripheral Perception (PP) test within the Vienna Test System. An analysis of body tissue composition of the upper right and upper left limbs found an asymmetry (p<0.01 and p<0.05) in the FAT [%], FAT MASS [kg], and FFM [kg] parameters. The values of these parameters were higher for the non-dominant arm. No statistically significant differences were found in reaction time and motor time for the dominant and non-dominant arm. A correlation was found between motor time and the FFM [kg] (r=-0.62; p<0.05) and PMM [kg] (r=-0.63; p<0.05) parameters. A significant asymmetry was found in the body tissue composition of the upper limbs. Asymmetry of reaction time was found only for signals in the peripheral visual field.

  12. [Treatment of Epidermal Growth Factor Receptor Inhibitors Associated Adverse Skin Reactions by Zhiyang Pingfu Liquid: a Clinical Study].

    PubMed

    Wang, Hong-yan; Zou, Chao; Cui, Hui-juan; Bai, Yan-ping; Li, Yuan; Tan, Huang-ying; Wang, Wei; Ju, Hai

    2015-07-01

    To study the curative effect of Zhiyang Pingfu Liquid (ZPL) in treating epidermal growth factor receptor inhibitors (EGFRIs) associated adverse reactions of the skin. All 54 patients with pathologically confirmed malignant tumor had EGFRIs induced adverse reactions of the skin to various degrees. ZPL was externally applied for them all, once or twice per day, 14 days consisting of one therapeutic course. Changes of adverse skin reactions, time for symptoms relief, adverse skin reaction types suitable for ZPL were observed before and after treatment. EGFRIs associated skin adverse reactions were improved to various degrees after they used ZPL. The shortest symptoms relief time was 1 day while the longest was 12 days, with an average of 6.93 days and the median time 7 days. Compared with before treatment, itching, rash/scaling, acne/acneform eruptions were obviously improved (P < 0.05). ZPL could alleviate EGFRls associated adverse skin reactions, especially showed better effect on itching, rash/scaling, acne/acneform eruptions.

  13. Evaluating the Recovery Curve for Clinically Assessed Reaction Time After Concussion.

    PubMed

    Del Rossi, Gianluca

    2017-08-01

      A change in reaction time is one of various clinical measures of neurocognitive function that can be monitored after concussion and has been reported to be among the most sensitive indicators of cognitive impairment.   To determine the timeline for clinically assessed simple reaction time to return to baseline after a concussion in high school athletes.   Observational study.   Athletic training room.   Twenty-one high school-aged volunteers.   Participants completed 8 trials of the ruler-drop test during each session. Along with baseline measures, a total of 6 additional test sessions were completed over the course of 4 weeks after a concussion (days 3, 7, 10, 14, 21, and 28).   The mean reaction times calculated for all participants from each of the 7 test sessions were analyzed to assess the change in reaction time over the 7 time intervals.   After a concussion and compared with baseline, simple reaction time was, on average, 26 milliseconds slower at 48 to 72 hours postinjury (P < .001), almost 18 milliseconds slower on day 7 (P < .001), and about 9 milliseconds slower on day 10 (P < .001). Simple reaction time did not return to baseline levels until day 14 postinjury.   Clinically assessed simple reaction time appeared to return to baseline levels within a timeframe that mirrors other measures of cognitive performance (approximately 14 days).

  14. Invariance and optimality in the regulation of an enzyme

    PubMed Central

    2013-01-01

    Background The Michaelis-Menten equation, proposed a century ago, describes the kinetics of enzyme-catalyzed biochemical reactions. Since then, this equation has been used in countless, increasingly complex models of cellular metabolism, often including time-dependent enzyme levels. However, even for a single reaction, there remains a fundamental disconnect between our understanding of the reaction kinetics, and the regulation of that reaction through changes in the abundance of active enzyme. Results We revisit the Michaelis-Menten equation under the assumption of a time-dependent enzyme concentration. We show that all temporal enzyme profiles with the same average enzyme level yield identical substrate degradation– a simple analytical conclusion that can be thought of as an invariance principle, and which we validate experimentally using a β-galactosidase assay. The ensemble of all time-dependent enzyme trajectories with the same average concentration constitutes a space of functions. We develop a simple model of biological fitness which assigns a cost to each of these trajectories (in the form of a function of functions, i.e. a functional). We then show how one can use variational calculus to analytically infer temporal enzyme profiles that minimize the overall enzyme cost. In particular, by separately treating the static costs of amino acid sequestration and the dynamic costs of protein production, we identify a fundamental cellular tradeoff. Conclusions The overall metabolic outcome of a reaction described by Michaelis-Menten kinetics is ultimately determined by the average concentration of the enzyme during a given time interval. This invariance in analogy to path-independent phenomena in physics, suggests a new way in which variational calculus can be employed to address biological questions. Together, our results point to possible avenues for a unified approach to studying metabolism and its regulation. Reviewers This article was reviewed by Sergei Maslov, William Hlavacek and Daniel Kahn. PMID:23522082

  15. Simplified Two-Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydorgen/Oxygen

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (> 1 x 10(exp -20) moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/air fuel and for the H2/O2. A similar correlation is also developed using data from NASA s Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T3). High values of the regression coefficient R2 are obtained.

  16. Summary of Simplified Two Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydrogen/Oxygen

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Molnar, Melissa

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (greater than l x 10(exp -20)) moles per cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T(sub 4)). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/Air fuel and for H2/O2. A similar correlation is also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T(sub 4)) as a function of overall fuel/air ratio, pressure and initial temperature (T(sub 3)). High values of the regression coefficient R squared are obtained.

  17. A Novel Assessment of Braking Reaction Time Following THA Using a New Fully Interactive Driving Simulator.

    PubMed

    Ruel, Allison V; Lee, Yuo-Yu; Boles, John; Boettner, Friedrich; Su, Edwin; Westrich, Geoffrey H

    2015-07-01

    After total hip replacement surgery, patients are eager to resume the activities of daily life, particularly driving. Most surgeons recommend waiting 6 weeks after surgery to resume driving; however, there is no evidence to indicate that patients cannot resume driving earlier. Our purpose was to evaluate when in the recovery period following THA that patients regain or improve upon their preoperative braking reaction time, allowing them to safely resume driving. We measured and compared pre- and postoperative braking reaction times of 90 patients from 3 different surgeons using a Fully Interactive Driving Simulator (Simulator Systems International, Tulsa, OK). We defined a return to safe braking reaction time as a return to a time value that is either equal to or less than the preoperative braking reaction time. Patients tested at 2 and 3 weeks after surgery had slower braking reaction times than preoperative times by an average of 0.069 and 0.009 s, respectively. At 4 weeks after surgery, however, patients improved their reaction times by 0.035 s (p = 0.0398). In addition, at 2, 3, and 4 weeks postoperatively, the results also demonstrated that patient less than 70 years of age recovered faster. Based upon the results of this study, most patients should be allowed to return to driving 4 weeks following minimally invasive primary total hip arthroplasty.

  18. Aspects of Motor Performance and Preacademic Learning.

    ERIC Educational Resources Information Center

    Feder, Katya; Kerr, Robert

    1996-01-01

    The Miller Assessment for Preschoolers (MAP) and a number/counting test were given to 50 4- and 5-year-olds. Low performance on counting was related to significantly slower average response time, overshoot movement time, and reaction time, indicating perceptual-motor difficulty. Low MAP scores indicated difficulty processing visual spatial…

  19. Research on the Relationship between Reaction Ability and Mental State for Online Assessment of Driving Fatigue.

    PubMed

    Guo, Mengzhu; Li, Shiwu; Wang, Linhong; Chai, Meng; Chen, Facheng; Wei, Yunong

    2016-11-24

    Background: Driving fatigue affects the reaction ability of a driver. The aim of this research is to analyze the relationship between driving fatigue, physiological signals and driver's reaction time. Methods: Twenty subjects were tested during driving. Data pertaining to reaction time and physiological signals including electroencephalograph (EEG) were collected from twenty simulation experiments. Grey correlation analysis was used to select the input variable of the classification model. A support vector machine was used to divide the mental state into three levels. The penalty factor for the model was optimized using a genetic algorithm. Results: The results show that α/β has the greatest correlation to reaction time. The classification results show an accuracy of 86%, a sensitivity of 87.5% and a specificity of 85.53%. The average increase of reaction time is 16.72% from alert state to fatigued state. Females have a faster decrease in reaction ability than males as driving fatigue accumulates. Elderly drivers have longer reaction times than the young. Conclusions: A grey correlation analysis can be used to improve the classification accuracy of the support vector machine (SVM) model. This paper provides basic research that online detection of fatigue can be performed using only a simple device, which is more comfortable for users.

  20. Research on the Relationship between Reaction Ability and Mental State for Online Assessment of Driving Fatigue

    PubMed Central

    Guo, Mengzhu; Li, Shiwu; Wang, Linhong; Chai, Meng; Chen, Facheng; Wei, Yunong

    2016-01-01

    Background: Driving fatigue affects the reaction ability of a driver. The aim of this research is to analyze the relationship between driving fatigue, physiological signals and driver’s reaction time. Methods: Twenty subjects were tested during driving. Data pertaining to reaction time and physiological signals including electroencephalograph (EEG) were collected from twenty simulation experiments. Grey correlation analysis was used to select the input variable of the classification model. A support vector machine was used to divide the mental state into three levels. The penalty factor for the model was optimized using a genetic algorithm. Results: The results show that α/β has the greatest correlation to reaction time. The classification results show an accuracy of 86%, a sensitivity of 87.5% and a specificity of 85.53%. The average increase of reaction time is 16.72% from alert state to fatigued state. Females have a faster decrease in reaction ability than males as driving fatigue accumulates. Elderly drivers have longer reaction times than the young. Conclusions: A grey correlation analysis can be used to improve the classification accuracy of the support vector machine (SVM) model. This paper provides basic research that online detection of fatigue can be performed using only a simple device, which is more comfortable for users. PMID:27886139

  1. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: Competition among oligomerization, functionalization, and fragmentation

    DOE PAGES

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; ...

    2016-04-13

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl ( 3C *) and hydroxyl radical ( • OH). Changes in themore » molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OS C) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ~2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OS C values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers ( n C) below 6. The average n C of phenolic aqSOA decreases while average OS C increases over the course of photochemical aging. In addition, the saturation vapor pressures ( C *) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C * values is observed, varying from < 10 –20 µg m –3 for functionalized phenolic oligomers to > 10 µg m –3 for small open-ring species. Furthermore, the detection of abundant extremely low-volatile organic compounds (ELVOC) indicates that aqueous reactions of phenolic compounds are likely an important source of ELVOC in the atmosphere.« less

  2. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: Competition among oligomerization, functionalization, and fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lu; Smith, Jeremy; Laskin, Alexander

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl ( 3C *) and hydroxyl radical ( • OH). Changes in themore » molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OS C) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ~2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OS C values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers ( n C) below 6. The average n C of phenolic aqSOA decreases while average OS C increases over the course of photochemical aging. In addition, the saturation vapor pressures ( C *) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C * values is observed, varying from < 10 –20 µg m –3 for functionalized phenolic oligomers to > 10 µg m –3 for small open-ring species. Furthermore, the detection of abundant extremely low-volatile organic compounds (ELVOC) indicates that aqueous reactions of phenolic compounds are likely an important source of ELVOC in the atmosphere.« less

  3. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Laskin, A.; George, K. M.; Anastasio, C.; Laskin, J.; Dillner, A. M.; Zhang, Q.

    2015-10-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ∼ 2 h irradiation under midday, winter solstice sunlight in northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated open-ring molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures C*) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C* values is observed, varying from < 10-20 μg m-3 for functionalized phenolic oligomers to > 10 μg m-3 for small open-ring species. The detection of abundant extremely low volatile organic compounds (ELVOC) indicates that aqueous reactions of phenolic compounds are likely an important source of ELVOC in the atmosphere.

  4. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    NASA Astrophysics Data System (ADS)

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; George, Katheryn M.; Anastasio, Cort; Laskin, Julia; Dillner, Ann M.; Zhang, Qi

    2016-04-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C∗) and hydroxyl radical (OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ˜ 2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures (C∗) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C∗ values is observed, varying from < 10-20 µg m-3 for functionalized phenolic oligomers to > 10 µg m-3 for small open-ring species. The detection of abundant extremely low-volatile organic compounds (ELVOC) indicates that aqueous reactions of phenolic compounds are likely an important source of ELVOC in the atmosphere.

  5. A Lagrangian Transport Eulerian Reaction Spatial (LATERS) Markov Model for Prediction of Effective Bimolecular Reactive Transport

    NASA Astrophysics Data System (ADS)

    Sund, Nicole; Porta, Giovanni; Bolster, Diogo; Parashar, Rishi

    2017-11-01

    Prediction of effective transport for mixing-driven reactive systems at larger scales, requires accurate representation of mixing at small scales, which poses a significant upscaling challenge. Depending on the problem at hand, there can be benefits to using a Lagrangian framework, while in others an Eulerian might have advantages. Here we propose and test a novel hybrid model which attempts to leverage benefits of each. Specifically, our framework provides a Lagrangian closure required for a volume-averaging procedure of the advection diffusion reaction equation. This hybrid model is a LAgrangian Transport Eulerian Reaction Spatial Markov model (LATERS Markov model), which extends previous implementations of the Lagrangian Spatial Markov model and maps concentrations to an Eulerian grid to quantify closure terms required to calculate the volume-averaged reaction terms. The advantage of this approach is that the Spatial Markov model is known to provide accurate predictions of transport, particularly at preasymptotic early times, when assumptions required by traditional volume-averaging closures are least likely to hold; likewise, the Eulerian reaction method is efficient, because it does not require calculation of distances between particles. This manuscript introduces the LATERS Markov model and demonstrates by example its ability to accurately predict bimolecular reactive transport in a simple benchmark 2-D porous medium.

  6. Quenching of reactive intermediates during mechanochemical depolymerization of lignin

    DOE PAGES

    Brittain, Alex D.; Chrisandina, Natasha J.; Cooper, Rachel E.; ...

    2017-05-10

    Mechanochemical reactions are performed to depolymerize organosolv lignin with sodium hydroxide in a mixer ball mill. GPC analysis reveals that rapid depolymerization into small oligomers occurs within minutes of milling time, followed by a slower reduction in average relative molecular mass over the next 8 h of milling. Monomeric products are identified by GC–MS and quantified by GC-FID. The extent of depolymerization appears to be limited by repolymerization reactions that form bonds between products. Suppression of these repolymerization reactions can be achieved through the addition of methanol as a scavenger or adjustment of the moisture content of the feedstock. Thesemore » modifications result in lower average relative molecular masses and higher yields of monomers. These results are an important step towards designing an efficient pathway for lignin valorization.« less

  7. New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2004-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx were obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering the turbine (T4) was also correlated as a function of the initial combustor temperature (T3), equivalence ratio, water to fuel mass ratio, and pressure.

  8. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea.

    PubMed

    Kim, Min-Young; Seguin, Philippe; Ahn, Joung-Kuk; Kim, Jong-Jin; Chun, Se-Chul; Kim, Eun-Hye; Seo, Su-Hyun; Kang, Eun-Young; Kim, Sun-Lim; Park, Yool-Jin; Ro, Hee-Myong; Chung, Ill-Min

    2008-08-27

    A study was conducted to determine the content of phenolic compounds and the antioxidative activity of five edible and five medicinal mushrooms commonly cultivated in Korea. Phenolic compounds were analyzed using high performance liquid chromatography, and antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and superoxide dismutase activity. A total of 28 phenolic compounds were detected in the mushrooms studied. The average total concentration of phenolic compounds was 326 microg/g, the average being of 174 microg/g in edible mushrooms and 477 microg/g in medicinal mushrooms. The average total flavonoids concentration was 49 microg/g, with averages of 22 and 76 microg/g in edible and medicinal mushrooms, respectively. The DPPH radical scavenging activities ranged between 15 (Pleurotus eryngii) and 70% (Ganoderma lucidum) when reaction time was for 1 min. When reaction time was 30 min, the values ranged between 5 (Pleurotus eryngii) and 78% (Agaricus bisporus). The SOD activity averaged 28% among the 10 mushroom species, averages for edible and medicinal mushrooms being comparable. DPPH activities was significantly correlated (p < 0.01) with total content of phenolic compounds in edible mushrooms, while in medicinal mushrooms there was a significant correlation (p < 0.01) between SOD activity and total concentration of phenolic compounds. Numerous significant positive correlations were observed between phenolic compounds detected and antioxidative potential.

  9. Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wasly, H. S.; El-Sadek, M. S. Abd; Henini, Mohamed

    2018-01-01

    Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV-visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30-40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90-3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles.

  10. Bend strengths of reaction bonded silicon nitride prepared from dry attrition milled silicon powder

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.

    1979-01-01

    Dry attrition milled silicon powder was compacted, sintered in helium, and reaction bonded in nitrogen-4 volume percent hydrogen. Bend strengths of bars with as-nitrided surfaces averaged as high as 210 MPa at room temperature and 220 MPa at 1400 C. Bars prepared from the milled powder were stronger than those prepared from as-received powder at both room temperature and at 1400 C. Room temperature strength decreased with increased milling time and 1400 C strength increased with increased milling time.

  11. HRSSA - Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    NASA Astrophysics Data System (ADS)

    Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong

    2016-07-01

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.

  12. Stochastic Kinetics on Networks: When Slow Is Fast

    PubMed Central

    2015-01-01

    Most chemical and biological processes can be viewed as reaction networks in which different pathways often compete kinetically for transformation of substrates into products. An enzymatic process is an example of such phenomena when biological catalysts create new routes for chemical reactions to proceed. It is typically assumed that the general process of product formation is governed by the pathway with the fastest kinetics at all time scales. In contrast to the expectation, here we show theoretically that at time scales sufficiently short, reactions are predominantly determined by the shortest pathway (in the number of intermediate states), regardless of the average turnover time associated with each pathway. This universal phenomenon is demonstrated by an explicit calculation for a system with two competing reversible (or irreversible) pathways. The time scales that characterize this regime and its relevance for single-molecule experimental studies are also discussed. PMID:25140607

  13. Covariances for the 56Fe radiation damage cross sections

    NASA Astrophysics Data System (ADS)

    Simakov, Stanislav P.; Koning, Arjan; Konobeyev, Alexander Yu.

    2017-09-01

    The energy-energy and reaction-reaction covariance matrices were calculated for the n + 56Fe damage cross-sections by Total Monte Carlo method using the TENDL-2013 random files. They were represented in the ENDF-6 format and added to the unperturbed evaluation file. The uncertainties for the spectrum averaged radiation quantities in the representative fission, fusion and spallation facilities were first time assessed as 5-25%. Additional 5 to 20% have to be added to the atom displacement rate uncertainties to account for accuracy of the primary defects simulation in materials. The reaction-reaction correlation were shown to be 1% or less.

  14. Deriving analytic solutions for compact binary inspirals without recourse to adiabatic approximations

    NASA Astrophysics Data System (ADS)

    Galley, Chad R.; Rothstein, Ira Z.

    2017-05-01

    We utilize the dynamical renormalization group formalism to calculate the real space trajectory of a compact binary inspiral for long times via a systematic resummation of secularly growing terms. This method generates closed form solutions without orbit averaging, and the accuracy can be systematically improved. The expansion parameter is v5ν Ω (t -t0) where t0 is the initial time, t is the time elapsed, and Ω and v are the angular orbital frequency and initial speed, respectively. ν is the binary's symmetric mass ratio. We demonstrate how to apply the renormalization group method to resum solutions beyond leading order in two ways. First, we calculate the second-order corrections of the leading radiation reaction force, which involves highly nontrivial checks of the formalism (i.e., its renormalizability). Second, we show how to systematically include post-Newtonian corrections to the radiation reaction force. By avoiding orbit averaging, we gain predictive power and eliminate ambiguities in the initial conditions. Finally, we discuss how this methodology can be used to find analytic solutions to the spin equations of motion that are valid over long times.

  15. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    PubMed

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  16. Effects of partial sleep deprivation on reaction time in anesthesiologists.

    PubMed

    Saadat, Haleh; Bissonnette, Bruno; Tumin, Dmitry; Raman, Vidya; Rice, Julie; Barry, N'Diris; Tobias, Joseph

    2017-04-01

    Fatigue in anesthesiologists may have implications that extend beyond individual well-being. The aim of the present study was to evaluate the impact of sleep deprivation on the reaction time in anesthesiologists either after an overnight call or regular working hours. Moderation of this effect by coping strategies was observed. Psychomotor vigilance test was used to assess reaction time in 23 anesthesiologists at two time-points: (i) on a regular non-call day and (ii) after a 17-h in-house call. Student's paired t-test was used to compare Psychomotor Vigilance Task data at these two moments. Change score regression was performed to determine the association between coping strategies, assessed using the Coping Strategy Indicator instrument, and decline in reaction time after night call. Twenty-one colleagues completed the psychomotor vigilance test measurements after two decided to end their participation for personal reasons. Post-call psychomotor vigilance test mean reaction time decreased by an average of 31.2 ms (95% CI: 0.5, 61.9; P = 0.047) when compared to regular day. Reliance on specific coping mechanisms, indicated by Coping Strategy Indicator scale scores, included problem-solving (28 ± 4), followed by seeking social support (23 ± 5) and avoidance (19 ± 4). The change score regression model (r 2 = 0.48) found that greater reliance on avoidance was associated with greater increase in reaction time after night call. Reaction time increased considerably in anesthesiologists after a night call duty. Greater subjective reliance on avoidance as a coping strategy was associated with greater deterioration in performance. © 2016 John Wiley & Sons Ltd.

  17. Synthesis of TiCr2 intermetallic compound from mechanically activated starting powders via calcio-thermic co-reduction

    NASA Astrophysics Data System (ADS)

    Bayat, O.; Khavandi, A. R.; Ghasemzadeh, R.

    2017-05-01

    Effect of mechanical activation of TiO2 and Cr2O3 oxides as starting materials was investigated for direct synthesis of TiCr2. Differential thermal analysis (DTA) indicated that increasing the ball milling time resulted in lower exothermic reaction temperatures between molten Ca-Cr2O3 and molten Ca-TiO2. A model-free Kissinger type method was applied to DTA data to evaluate the reaction kinetics. The results reveal that the activation energy of the exothermic reactions decreased with increasing the milling time. The structure, oxygen content, and average particle sizes of the obtained TiCr2 product were affected by the ball milling time of the starting materials. Increasing the milling time from 10 to 40 h decreased the average particle size and oxygen content of the obtained TiCr2 from 10 to 2 μm and from 1690 to 1290 ppm, respectively. The X-ray diffraction (XRD) results showed that TiCr2 compounds with metastable bcc phase can be produced using nano-sized starting materials, while only a slight amount of bcc phase can be obtained in the TiCr2 compounds, using micron-sized starting materials. The TiCr2 obtained by this method had a hydrogen absorption capability of 0.63 wt % and the kinetics of the hydrogen absorption increased for the 40 h milled sample.

  18. Assessment of softball bat safety performance using mid-compression polyurethane softballs.

    PubMed

    McDowell, Mark

    2004-07-01

    There is currently much debate about the safety of the sport of softball. Batted-ball speed and average pitcher reaction time are factors often used to determine safe performance. Batted-ball speed is shown to be the most important factor to consider when determining safe play. Average pitcher reaction time is explained and directly correlated to batted-ball speed. Eleven aluminum multi-wall, three aluminum single-wall and two composite softball bats were tested with mid-compression polyurethane softballs averaging 1721+/-62 N/6.4 mm to represent the relative bat-ball performance for the sport of slowpitch softball. Nine men and six women were chosen for this study out of a test group of over three hundred slowpitch softball players. On average, aluminum bat performance results were within the recommended safety limits established by the national softball associations. However, when composite bats were used, their performance results exceeded the recommended safety limits which can pose a significant safety risk. Using aluminum softball bats, batted-ball speeds ranged from 80 to 145km x h(-1) Using composite softball bats, batted-ball speeds ranged from 146 to 161 km x h(-1). The scientific relevance of this study is to provide performance information that can lead to injury prevention in the sport of softball.

  19. R-Matrix Analysis of Structures in Economic Indices: from Nuclear Reactions to High-Frequency Trading

    NASA Astrophysics Data System (ADS)

    Firk, Frank W. K.

    2014-03-01

    It is shown that the R-matrix theory of nuclear reactions is a viable mathematical theory for the description of the fine, intermediate and gross structure observed in the time-dependence of economic indices in general, and the daily Dow Jones Industrial Average in particular. A Lorentzian approximation to R-matrix theory is used to analyze the complex structures observed in the Dow Jones Industrial Average on a typical trading day. Resonant structures in excited nuclei are characterized by the values of their fundamental strength function, (average total width of the states)/(average spacing between adjacent states). Here, values of the ratios (average lifetime of individual states of a given component of the daily Dow Jones Industrial Average)/(average interval between the adjacent states) are determined. The ratios for the observed fine and intermediate structure of the index are found to be essentially constant throughout the trading day. These quantitative findings are characteristic of the highly statistical nature of many-body, strongly interacting systems, typified by daily trading. It is therefore proposed that the values of these ratios, determined in the first hour-or-so of trading, be used to provide valuable information concerning the likely performance of the fine and intermediate components of the index for the remainder of the trading day.

  20. Late-time emission of prompt fission γ rays

    DOE PAGES

    Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; ...

    2016-12-22

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, asmore » well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu( nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.« less

  1. Experimental Study on Treatment of Dyeing Wastewater by Activated Carbon Adsorption, Coagulation and Fenton Oxidation

    NASA Astrophysics Data System (ADS)

    Xiaoxu, SUN; Jin, XU; Xingyu, LI

    2017-12-01

    In this paper dyeing waste water was simulated by reactive brilliant blue XBR, activated carbon adsorption process, coagulation process and chemical oxidation process were used to treat dyeing waste water. In activated carbon adsorption process and coagulation process, the water absorbance values were measured. The CODcr value of water was determined in Fenton chemical oxidation process. Then, the decolorization rate and COD removal rate were calculated respectively. The results showed that the optimum conditions of activated carbon adsorption process were as follows: pH=2, the dosage of activated carbon was 1.2g/L, the adsorption reaction time was 60 min, and the average decolorization rate of the three parallel experiments was 85.30%. The optimum conditions of coagulation experiment were as follows: pH=8~9, PAC dosage was 70mg/L, stirring time was 20min, standing time was 45min, the average decolorization rate of the three parallel experiments was 74.48%. The optimum conditions for Fenton oxidation were Fe2+ 0.05g/L, H2O2 (30%) 14mL/L, pH=3, reaction time 40min. The average CODcr removal rate was 69.35% in three parallel experiments. It can be seen that in the three methods the activated carbon adsorption treatment of dyeing wastewater was the best one.

  2. Heating-Rate-Coupled Model for Hydrogen Reduction of JSC-1A

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S. A.

    2010-01-01

    A previously developed and validated model for hydrogen reduction of JSC-1A for a constant reaction-bed temperature is extended to account for reaction during the bed heat-up period. A quasisteady approximation is used wherein an expression is derived for a single average temperature of reaction during the heat-up process by employing an Arrhenius expression for regolith conversion. Subsequently, the regolith conversion during the heat-up period is obtained by using this representative temperature. Accounting for the reaction during heat-up provides a better estimate of the reaction time needed at the desired regolith-bed operating temperature. Implications for the efficiency of the process, as measured by the energy required per unit mass of oxygen produced, are also indicated.

  3. HRSSA – Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Luca, E-mail: marchetti@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; University of Trento, Department of Mathematics

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance andmore » accuracy of HRSSA against other state of the art algorithms.« less

  4. Developmental changes in shortening of pro-saccade reaction time while maintaining neck flexion position.

    PubMed

    Kunita, Kenji; Fujiwara, Katsuo; Kiyota, Naoe; Yaguchi, Chie; Kiyota, Takeo

    2018-01-10

    We investigated developmental changes in shortening of pro-saccade reaction time while maintaining neck flexion. Subjects comprised 135 children (3-14 years) and 29 young adults (19-23 years). Children were divided into six groups in 2-year age strata. Pro-saccade reaction tasks for 30 s were performed in neck rest and flexion positions. Reaction times under each position were averaged in every 10-s period. Under neck rest position, reaction time in the 0-10 s period was significantly longer in the 3- to 4-year-old group than in the 5- to 6-year-old group and above. No significant age effect was found for reaction time in the 0-10 s period in the 5- to 6-year-old group and above. Although a significant effect of neck flexion was not observed until the 9- to 10-year-old group, significant shortening of reaction time with neck flexion was found in the 11- to 12-year-old group and above. Furthermore, this shortening was maintained until the first 20-s period in the 11- to 12-year-old group and during the entire 30 s in the 13- to 14-year-old and above. These results suggest that brain activation with the maintenance of neck flexion, related to shortening of the pro-saccade reaction time, was found from a later age of approximately 11 years and above, compared with the age at which information-processing function in the pro-saccade was enhanced. In addition, brain activation with the maintenance of neck flexion was sustained longer with age.

  5. Influence of temperature and aging time on HA synthesized by the hydrothermal method.

    PubMed

    Kothapalli, C R; Wei, M; Legeros, R Z; Shaw, M T

    2005-05-01

    The influence of temperature and aging time on the morphology and mechanical properties of nano-sized hydroxyapatite (HA) synthesized by a hydrothermal method is reported here. The pre-mixed reactants were poured into a stirred autoclave and reacted at temperatures between 25-250 degrees C for 2-10 h. HA powders thus obtained were examined using X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (FESEM) and a particle size analyzer. It was found that the aspect ratio of the particles increased with the reaction temperature. The length of the HA particles increased with the reaction temperature below 170 degrees C, but it decreased when the temperature was raised above 170 degrees C. The agglomerates of HA particles were formed during synthesis, and their sizes were strongly dependent on reaction temperatures. As the reaction temperature increased, the agglomerate size decreased (p = 0.008). The density of the discs pressed from these samples reached 85-90% of the theoretical density after sintering at 1200 degrees C for 1 h. No decomposition to other calcium phosphates was detected at this sintering temperature. A correlation existed (p = 0.05) between the agglomerate sizes of HA particles synthesized at various conditions and their sintered densities. With the increase of the agglomerate size, the sintered density of the HA compact decreased. It was found that both the sintered density and flexural strength increased with increasing aging time and reaction temperature. A maximum flexural strength of 78 MPa was observed for the samples synthesized at 170 degrees C for 5 h with the predicted average at these conditions being 65 MPa. These samples attained an average sintered density of 88%.

  6. How long do people look and listen to forest-oriented exhibits?

    Treesearch

    James William Shiner; Elwood L., Jr. Shafer

    1975-01-01

    To gain a better understanding of public reaction to I & E displays, average visitor-viewing time was measured for a variety of exhibits at the Adirondack Museum, Blue Mountain Lake, N.Y. Visitors viewed displays 15 to 64 percent of the time required to read or listen to the total message presented. The longer the message per exhibit, the less time was spent...

  7. An investigation of oxidation products and SOA yields from OH + pesticide reactions

    NASA Astrophysics Data System (ADS)

    Murschell, T.; Friedman, B.; Link, M.; Farmer, D.

    2016-12-01

    Pesticides are used globally in agricultural and residential areas. After application and/or volatilization from a surface, these compounds can be transported over long distances in the atmosphere. However, their chemical fate, including oxidation and gas-particle partitioning in the atmosphere, is not well understood. We present gas and particle measurements of oxidation products from pesticide + OH reactions using a dynamic solution injection system coupled to an Oxidative Flow Reactor. Products were detected with a High Resolution Time of Flight Iodide Chemical Mass Spectrometer (HR-ToF-CIMS) and a Size Mobility Particle Scanner (SMPS). The OFR allows pesticides to react with variable OH radical exposures, ranging from the equivalent of one day to a full week of atmospheric oxidative aging. In this work, we explore pesticide oxidation products from reaction with OH and ozone, and compare those products to photolysis reactions. Pesticides of similar chemical structures were explored, including acetochlor / metolachlor and permethrin / cypermethrin, to explore mechanistic differences. We present chemical parameters including average product oxidation state, average oxygen to carbon ratio, and potential secondary organic aerosol formation for each of these compounds.

  8. Nonequilibrium transition and pattern formation in a linear reaction-diffusion system with self-regulated kinetics

    NASA Astrophysics Data System (ADS)

    Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar

    2018-02-01

    We consider a reaction-diffusion system with linear, stochastic activator-inhibitor kinetics where the time evolution of concentration of a species at any spatial location depends on the relative average concentration of its neighbors. This self-regulating nature of kinetics brings in spatial correlation between the activator and the inhibitor. An interplay of this correlation in kinetics and disparity of diffusivities of the two species leads to symmetry breaking non-equilibrium transition resulting in stationary pattern formation. The role of initial noise strength and the linear reaction terms has been analyzed for pattern selection.

  9. [Short-term memory characteristics of vibration intensity tactile perception on human wrist].

    PubMed

    Hao, Fei; Chen, Li-Juan; Lu, Wei; Song, Ai-Guo

    2014-12-25

    In this study, a recall experiment and a recognition experiment were designed to assess the human wrist's short-term memory characteristics of tactile perception on vibration intensity, by using a novel homemade vibrotactile display device based on the spatiotemporal combination vibration of multiple micro vibration motors as a test device. Based on the obtained experimental data, the short-term memory span, recognition accuracy and reaction time of vibration intensity were analyzed. From the experimental results, some important conclusions can be made: (1) The average short-term memory span of tactile perception on vibration intensity is 3 ± 1 items; (2) The greater difference between two adjacent discrete intensities of vibrotactile stimulation is defined, the better average short-term memory span human wrist gets; (3) There is an obvious difference of the average short-term memory span on vibration intensity between the male and female; (4) The mechanism of information extraction in short-term memory of vibrotactile display is to traverse the scanning process by comparison; (5) The recognition accuracy and reaction time performance of vibrotactile display compares unfavourably with that of visual and auditory. The results from this study are important for designing vibrotactile display coding scheme.

  10. Spectroscopic characteristics of carbon dots (C-dots) derived from carbon fibers and conversion to sulfur-bridged C-dots nanosheets.

    PubMed

    Vinci, John C; Ferrer, Ivonne M; Guterry, Nathan W; Colón, Verónica M; Destino, Joel F; Bright, Frank V; Colón, Luis A

    2015-09-01

    We synthesized sub-10 nm carbon nanoparticles (CNPs) consistent with photoluminescent carbon dots (C-dots) from carbon fiber starting material. The production of different C-dots fractions was monitored over seven days. During the course of the reaction, one fraction of C-dots species with relatively high photoluminescence was short-lived, emerging during the first hour of reaction but disappearing after one day of reaction. Isolation of this species during the first hour of the reaction was crucial to obtaining higher-luminescent C-dots species. When the reaction proceeded for one week, the appearance of larger nanostructures was observed over time, with lateral dimensions approaching 200 nm. The experimental evidence suggests that these larger species are formed from small C-dot nanoparticles bridged together by sulfur-based moieties between the C-dot edge groups, as if the C-dots polymerized by cross-linking the edge groups through sulfur bridges. Their size can be tailored by controlling the reaction time. Our results highlight the variety of CNP products, from sub-10 nm C-dots to ~200 nm sulfur-containing carbon nanostructures, that can be produced over time during the oxidation reaction of the graphenic starting material. Our work provides a clear understanding of when to stop the oxidation reaction during the top-down production of C-dots to obtain highly photoluminescent species or a target average particle size.

  11. Fusion and quasifission studies for the 40Ca+186W,192Os reactions

    NASA Astrophysics Data System (ADS)

    Prasad, E.; Hinde, D. J.; Williams, E.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.; Ramachandran, K.; Simenel, C.; Wakhle, A.

    2017-09-01

    Background: All elements above atomic number 113 have been synthesized using hot fusion reactions with calcium beams on statically deformed actinide target nuclei. Quasifission and fusion-fission are the two major mechanisms responsible for the very low production cross sections of superheavy elements. Purpose: To achieve a quantitative measurement of capture and quasifission characteristics as a function of beam energy in reactions forming heavy compound systems using calcium beams as projectiles. Methods: Fission fragment mass-angle distributions were measured for the two reactions 40Ca+186W and 40C+192Os, populating 226Pu and 232Cm compound nuclei, respectively, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Mass ratio distributions, angular distributions, and total fission cross sections were obtained from the experimental data. Simulations to match the features of the experimental mass-angle distributions were performed using a classical phenomenological approach. Results: Both 40Ca+186W and 40C+192Os reactions show strong mass-angle correlations at all energies measured. A maximum fusion probability of 60 -70 % is estimated for the two reactions in the energy range of the present study. Coupled-channels calculations assuming standard Woods-Saxon potential parameters overpredict the capture cross sections. Large nuclear potential diffuseness parameters ˜1.5 fm are required to fit the total capture cross sections. The presence of a weak mass-asymmetric quasifission component attributed to the higher angular momentum events can be reproduced with a shorter average sticking time but longer mass-equilibration time constant. Conclusions: The deduced above-barrier capture cross sections suggest that the dissipative processes are already occurring outside the capture barrier. The mass-angle correlations indicate that a compact shape is not achieved for deformation aligned collisions with lower capture barriers. The average sticking time of fast quasifission events is 10-20 s.

  12. Effect of static porosity fluctuations on reactive transport in a porous medium

    NASA Astrophysics Data System (ADS)

    L'Heureux, Ivan

    2018-02-01

    Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.

  13. Dynamic Solvent Control of a Reaction in Ionic Deep Eutectic Solvents: Time-Resolved Fluorescence Measurements of Reactive and Nonreactive Dynamics in (Choline Chloride + Urea) Melts.

    PubMed

    Das, Anuradha; Biswas, Ranjit

    2015-08-06

    Dynamic fluorescence anisotropy and Stokes shift measurements of [f choline chloride + (1 - f) urea)] deep eutectic solvents at f = 0.33 and 0.40 have been carried out using a dipolar solute, coumarin 153 (C153), in the temperature range 298 ≤ T ≤ 333 K. Subsequently, measured time-dependent solvent response is utilized to investigate the dynamic solvent control on the measured rates of photoexcited intramolecular charge transfer (ICT) reactions of two molecules, 4-(1-azetidinyl)benzonitrile (P4C) and 4-(1-pyrrolidinyl)benzonitrile (P5C), occurring in these media. Measured average reaction time scales (⟨τ(rxn)⟩) exhibit the following dependence on average solvation times scales (⟨τ(s)⟩): ⟨τ(rxn)⟩ ∝ ⟨τ(s)⟩(α) with α = 0.5 and 0.35 for P4C and P5C, respectively. Such a strong dynamic solvent control of ⟨τ(rxn)⟩, particularly for P4C, is different from earlier observations with these ICT molecules in conventional molecular solvents. Excitation wavelength-dependent fluorescence emissions of C153 and trans-2-[4-(dimethylamino)styryl]-benzothiazole (DMASBT), which differ widely in average fluorescence lifetimes (⟨τ(life)⟩), suggest the presence of substantial spatial heterogeneity in these systems. Dynamic heterogeneity is reflected via the following fractional viscosity (η) dependences of ⟨τ(s)⟩ and ⟨τ(r)⟩ (⟨τ(r)⟩ being solute's average rotation time): ⟨τx⟩ ∝ (η/T)(p) with 0.7 ≤ p ≤ 0.9. Different correlations between ⟨τ(s)⟩ and ⟨τ(r)⟩ emerge at different temperature regimes, indicating variable frictional coupling at low and high temperatures. Estimated dynamic Stokes shifts in these media vary between ∼1200 and ∼1600 cm(-1), more than 50% of which possess a time scale much faster than the temporal resolution (∼75 ps) employed in these measurements. Estimated activation energy for η is closer to that for ⟨τ(r)⟩ than that for ⟨τ(s)⟩, suggesting ⟨τ(s)⟩ being more decoupled from η than ⟨τ(r)⟩.

  14. Fluidized bed reaction towards crystalline embedded amorphous Si anode with much enhanced cycling stability.

    PubMed

    Zhou, Yu; Guo, Huajun; Yan, Guochun; Wang, Zhixing; Li, Xinhai; Yang, Zhewei; Zheng, Anxiong; Wang, Jiexi

    2018-04-10

    A facile and large-scale fluidized bed reaction route was introduced for the first time to prepare crystalline embedded amorphous silicon nanoparticles with an average size of 50 nm as anode materials for lithium-ion batteries. By increasing the operating potential to control the electrochemically active degree, the resulting sample showed excellent cycle stability with a high capacity retention of 94.7% after 200 cycles at 1 A g-1 in the voltage range of 0.12-2.00 V.

  15. Combined effect of whole-body vibration and ambient lighting on human discomfort, heart rate, and reaction time.

    PubMed

    Monazzam, Mohammad Reza; Shoja, Esmaeil; Zakerian, Seyed Abolfazl; Foroushani, Abbas Rahimi; Shoja, Mohsen; Gharaee, Masoumeh; Asgari, Amin

    2018-07-01

    This study aimed to investigate the effect of whole-body vibration and ambient lighting, as well as their combined effect on human discomfort, heart rate, and reaction time in laboratory conditions. 44 men were recruited with an average age of 25.4 ± 1.9 years. Each participant was subjected to 12 experimental steps, each step lasting five minutes for four different vibration accelerations in X, Y, and Z axes at a fixed frequency; three different lighting intensities of 50, 500, and 1000 lx were also considered. At each step, a visual computerized reaction test was taken from subjects and their heart rate recorded by pulse oximeter. In addition, the discomfort rate of subjects was measured using Borg scale. Increasing vibration acceleration significantly increased the discomfort rate and heart beat but not the reaction time. Lack of lighting caused more discomfort in the subjects, but there was no significant correlation between lighting intensity with heart rate and reaction time. The results also showed that the combined effect of vibration and lighting had no significant effect on any of the discomfort, heart rate, and reaction time variables. Whole-body vibration is an important factor in the development of human subjective and physiological reactions compared to lighting. Therefore, consideration of the level of vibration to which an individual is exposed in workplaces subject to vibration plays an important role in reducing the level of human discomfort, but its interaction with ambient lighting does not have a significant effect on human subjective and physiological responses.

  16. Overlap of movement planning and movement execution reduces reaction time.

    PubMed

    Orban de Xivry, Jean-Jacques; Legrain, Valéry; Lefèvre, Philippe

    2017-01-01

    Motor planning is the process of preparing the appropriate motor commands in order to achieve a goal. This process has largely been thought to occur before movement onset and traditionally has been associated with reaction time. However, in a virtual line bisection task we observed an overlap between movement planning and execution. In this task performed with a robotic manipulandum, we observed that participants (n = 30) made straight movements when the line was in front of them (near target) but often made curved movements when the same target was moved sideways (far target, which had the same orientation) in such a way that they crossed the line perpendicular to its orientation. Unexpectedly, movements to the far targets had shorter reaction times than movements to the near targets (mean difference: 32 ms, SE: 5 ms, max: 104 ms). In addition, the curvature of the movement modulated reaction time. A larger increase in movement curvature from the near to the far target was associated with a larger reduction in reaction time. These highly curved movements started with a transport phase during which accuracy demands were not taken into account. We conclude that an accuracy demand imposes a reaction time penalty if processed before movement onset. This penalty is reduced if the start of the movement consists of a transport phase and if the movement plan can be refined with respect to accuracy demands later in the movement, hence demonstrating an overlap between movement planning and execution. In the planning of a movement, the brain has the opportunity to delay the incorporation of accuracy requirements of the motor plan in order to reduce the reaction time by up to 100 ms (average: 32 ms). Such shortening of reaction time is observed here when the first phase of the movement consists of a transport phase. This forces us to reconsider the hypothesis that motor plans are fully defined before movement onset. Copyright © 2017 the American Physiological Society.

  17. Overlap of movement planning and movement execution reduces reaction time

    PubMed Central

    Legrain, Valéry; Lefèvre, Philippe

    2016-01-01

    Motor planning is the process of preparing the appropriate motor commands in order to achieve a goal. This process has largely been thought to occur before movement onset and traditionally has been associated with reaction time. However, in a virtual line bisection task we observed an overlap between movement planning and execution. In this task performed with a robotic manipulandum, we observed that participants (n = 30) made straight movements when the line was in front of them (near target) but often made curved movements when the same target was moved sideways (far target, which had the same orientation) in such a way that they crossed the line perpendicular to its orientation. Unexpectedly, movements to the far targets had shorter reaction times than movements to the near targets (mean difference: 32 ms, SE: 5 ms, max: 104 ms). In addition, the curvature of the movement modulated reaction time. A larger increase in movement curvature from the near to the far target was associated with a larger reduction in reaction time. These highly curved movements started with a transport phase during which accuracy demands were not taken into account. We conclude that an accuracy demand imposes a reaction time penalty if processed before movement onset. This penalty is reduced if the start of the movement consists of a transport phase and if the movement plan can be refined with respect to accuracy demands later in the movement, hence demonstrating an overlap between movement planning and execution. NEW & NOTEWORTHY In the planning of a movement, the brain has the opportunity to delay the incorporation of accuracy requirements of the motor plan in order to reduce the reaction time by up to 100 ms (average: 32 ms). Such shortening of reaction time is observed here when the first phase of the movement consists of a transport phase. This forces us to reconsider the hypothesis that motor plans are fully defined before movement onset. PMID:27733598

  18. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    NASA Astrophysics Data System (ADS)

    Pritychenko, B.; Mughabghab, S. F.

    2012-12-01

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  19. Association of spinal deformity and pelvic tilt with gait asymmetry in adolescent idiopathic scoliosis patients: Investigation of ground reaction force.

    PubMed

    Park, Yang Sun; Lim, Young Tae; Koh, Kyung; Kim, Jong Moon; Kwon, Hyun Joon; Yang, Ji Seung; Shim, Jae Kun

    2016-07-01

    Adolescent idiopathic scoliosis is a prevalent orthopedic problem in children ages 10 to 16years. Although genetic, physiological and biomechanical factors are considered to contribute to the onset and progression of adolescent idiopathic scoliosis, the underlying mechanisms are not yet clear. The purpose of this study was to investigate the association between spinal deformity and inter-leg ground reaction force asymmetry during walking in adolescent idiopathic scoliosis patients. Fourteen patients (3 males and 11 females) participated in this study. Maximum Cobb's angle, adjusted Cobb's angle, and pelvic tilt were calculated from X-ray images. Asymmetry indices between legs were also calculated from ground reaction force magnitude and time variables from their preferred speed walking. Pearson coefficients of correlation were used to investigate associations of asymmetry indices with angle variables. Asymmetry indices of ground reaction force magnitudes positively correlated with adjusted Cobb's angle and maximum Cobb's angle mainly during the peak of braking phase, average of braking phase, while asymmetry indices of ground reaction force time variables showed no significant correlation with adjusted or maximum Cobb's angle. In contrast, asymmetry indices of ground reaction force time variables positively correlated with pelvic tilt during stance phase. We concluded that the spinal deformity of adolescent idiopathic scoliosis patients estimated using the maximum and adjusted Cobb's angles is generally associated with greater asymmetry of ground reaction force magnitudes in walking, while the pelvic tilt is associated with the greater asymmetry of ground reaction force time variables. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions.

    PubMed

    Menke, Hannah P; Bijeljic, Branko; Andrew, Matthew G; Blunt, Martin J

    2015-04-07

    Quantifying CO2 transport and average effective reaction rates in the subsurface is essential to assess the risks associated with underground carbon capture and storage. We use X-ray microtomography to investigate dynamic pore structure evolution in situ at temperatures and pressures representative of underground reservoirs and aquifers. A 4 mm diameter Ketton carbonate core is injected with CO2-saturated brine at 50 °C and 10 MPa while tomographic images are taken at 15 min intervals with a 3.8 μm spatial resolution over a period of 2(1/2) h. An approximate doubling of porosity with only a 3.6% increase in surface area to volume ratio is measured from the images. Pore-scale direct simulation and network modeling on the images quantify an order of magnitude increase in permeability and an appreciable alteration of the velocity field. We study the uniform reaction regime, with dissolution throughout the core. However, at the pore scale, we see variations in the degree of dissolution with an overall reaction rate which is approximately 14 times lower than estimated from batch measurements. This work implies that in heterogeneous rocks, pore-scale transport of reactants limits dissolution and can reduce the average effective reaction rate by an order of magnitude.

  1. Discriminatory Questions and Applicant Reactions in the Employment Interview.

    ERIC Educational Resources Information Center

    Saks, Alan M.; And Others

    This study investigated the effects of discriminatory interview questions on applicants' perceptions and intentions toward an organization. Participants included 118 graduate business students (59 percent male), average age of 31 with more than eight years of full-time work experience. Discriminatory questions addressed handicaps, plans for…

  2. Usability of a virtual reality environment simulating an automated teller machine for assessing and training persons with acquired brain injury.

    PubMed

    Fong, Kenneth N K; Chow, Kathy Y Y; Chan, Bianca C H; Lam, Kino C K; Lee, Jeff C K; Li, Teresa H Y; Yan, Elaine W H; Wong, Asta T Y

    2010-04-30

    This study aimed to examine the usability of a newly designed virtual reality (VR) environment simulating the operation of an automated teller machine (ATM) for assessment and training. Part I involved evaluation of the sensitivity and specificity of a non-immersive VR program simulating an ATM (VR-ATM). Part II consisted of a clinical trial providing baseline and post-intervention outcome assessments. A rehabilitation hospital and university-based teaching facilities were used as the setting. A total of 24 persons in the community with acquired brain injury (ABI)--14 in Part I and 10 in Part II--made up the participants in the study. In Part I, participants were randomized to receive instruction in either an "early" or a "late" VR-ATM program and were assessed using both the VR program and a real ATM. In Part II, participants were assigned in matched pairs to either VR training or computer-assisted instruction (CAI) teaching programs for six 1-hour sessions over a three-week period. Two behavioral checklists based on activity analysis of cash withdrawals and money transfers using a real ATM were used to measure average reaction time, percentage of incorrect responses, level of cues required, and time spent as generated by the VR system; also used was the Neurobehavioral Cognitive Status Examination. The sensitivity of the VR-ATM was 100% for cash withdrawals and 83.3% for money transfers, and the specificity was 83% and 75%, respectively. For cash withdrawals, the average reaction time of the VR group was significantly shorter than that of the CAI group (p = 0.021). We found no significant differences in average reaction time or accuracy between groups for money transfers, although we did note positive improvement for the VR-ATM group. We found the VR-ATM to be usable as a valid assessment and training tool for relearning the use of ATMs prior to real-life practice in persons with ABI.

  3. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2018-06-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  4. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2018-04-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  5. Criticality and Induction Time of Hot Spots in Detonating Heterogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Hill, Larry

    2017-06-01

    Detonation reaction in physically heterogeneous explosives is-to an extent that depends on multiple material attributes-likewise heterogeneous. Like all heterogeneous reaction, detonation heterogeneous reaction begins at nucleation sites, which, in this case, comprise localized regions of higher-than-average temperature-so-called hot spots. Burning grows at, and then spreads from these nucleation sites, via reactive-thermal (R-T) waves, to consume the interstitial material. Not all hot spots are consequential, but only those that are 1) supercritical, and 2) sufficiently so as to form R-T waves before being consumed by those already emanating from neighboring sites. I explore aspects of these two effects by deriving simple formulae for hot spot criticality and the induction time of supercritical hot spots. These results serve to illustrate the non-intuitive, yet mathematically simplifying, effects of extreme dependence of reaction rate upon temperature. They can play a role in the development of better reactive burn models, for which we seek to homogenize the essentials of heterogeneous detonation reaction without introducing spurious complexity. Work supported by the US Dept. of Energy.

  6. Autonomous Vehicles: Disengagements, Accidents and Reaction Times.

    PubMed

    Dixit, Vinayak V; Chand, Sai; Nair, Divya J

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.

  7. Autonomous Vehicles: Disengagements, Accidents and Reaction Times

    PubMed Central

    Dixit, Vinayak V.; Chand, Sai; Nair, Divya J.

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems. PMID:27997566

  8. Electrokinetic Microstrirring to Enhance Immunoassays

    NASA Astrophysics Data System (ADS)

    Feldman, Hope; Sigurdson, Marin; Meinhart, Carl

    2006-11-01

    Electrokinetic microstirring is used to improve the sensitivity of microfluidic heterogeneous immuno-sensors by enhancing the transport in diffusion-limited reactions. The AC electrokinetic force, Electrothermal Flow, is exploited to create a circular stirring fluid motion, thereby providing more binding opportunities between suspended and wall-immobilized molecules. This process can significantly reduce test times, important for both field-portable biosensors and for lab-based assays. A 2-D numerical simulation model is used to predict the effect of electrothermal flow on a heterogeneous immunoassay resulting from an AC potential applied to two parallel electrodes. The binding is increased by a factor of 7 for an applied voltage of 10 Vrms. The effect was investigated experimentally using a high affinity biotin-streptavidin reaction. Microstirred reaction rates were compared with passive reactions. The measurements show on average an order of magnitude increase in binding between immobilized biotin and fluorescently-labeled streptavidin after 5 minutes. Therefore, this technique shows significant promise for reducing incubation time and enhancing the sensitivity of immunoassays.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritychenko, B.; Mughabghab, S.F.

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present papermore » contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.« less

  10. Multiple reaction monitoring assay based on conventional liquid chromatography and electrospray ionization for simultaneous monitoring of multiple cerebrospinal fluid biomarker candidates for Alzheimer's disease

    PubMed Central

    Choi1, Yong Seok; Lee, Kelvin H.

    2016-01-01

    Alzheimer's disease (AD) is the most common type of dementia, but early and accurate diagnosis remains challenging. Previously, a panel of cerebrospinal fluid (CSF) biomarker candidates distinguishing AD and non-AD CSF accurately (> 90%) was reported. Furthermore, a multiple reaction monitoring (MRM) assay based on nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) was developed to help validate putative AD CSF biomarker candidates including proteins from the panel. Despite the good performance of the MRM assay, wide acceptance may be challenging because of limited availability of nLC-MS/MS systems laboratories. Thus, here, a new MRM assay based on conventional LC-MS/MS is presented. This method monitors 16 peptides representing 16 (of 23) biomarker candidates that belonged to the previous AD CSF panel. A 30-times more concentrated sample than the sample used for the previous study was loaded onto a high capacity trap column, and all 16 MRM transitions showed good linearity (average R2 = 0.966), intra-day reproducibility (average coefficient of variance (CV) = 4.78%), and inter-day reproducibility (average CV = 9.85%). The present method has several advantages such as a shorter analysis time, no possibility of target variability, and no need for an internal standard. PMID:26404792

  11. Analysis of high mass resolution PTR-TOF mass spectra from 1,3,5-trimethylbenzene (TMB) environmental chamber experiments

    NASA Astrophysics Data System (ADS)

    Müller, M.; Graus, M.; Wisthaler, A.; Hansel, A.; Metzger, A.; Dommen, J.; Baltensperger, U.

    2011-09-01

    A series of 1,3,5-trimethylbenzene (TMB) photo-oxidation experiments was performed in the 27-m3 Paul Scherrer Institute environmental chamber under various NOx conditions. A University of Innsbruck prototype high resolution Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOF) was used for measurements of gas and particulate phase organics. The gas phase mass spectrum displayed ~200 ion signals during the TMB photo-oxidation experiments. Molecular formulas CNmHnNoOp were determined and ion signals were separated and grouped according to their C, O and N numbers. This allowed to determine the time evolution of the O:C ratio and of the average carbon oxidation state OSC of the reaction mixture. Both quantities were compared with master chemical mechanism (MCMv3.1) simulations. The O:C ratio in the particle phase was about twice the O:C ratio in the gas phase. Average carbon oxidation states of secondary organic aerosol (SOA) samples OSCSOA were in the range of -0.34 to -0.31, in agreement with expected average carbon oxidation states of fresh SOA (OSC = -0.5 - 0).

  12. Analysis of high mass resolution PTR-TOF mass spectra from 1,3,5-trimethylbenzene (TMB) environmental chamber experiments

    NASA Astrophysics Data System (ADS)

    Müller, M.; Graus, M.; Wisthaler, A.; Hansel, A.; Metzger, A.; Dommen, J.; Baltensperger, U.

    2012-01-01

    A series of 1,3,5-trimethylbenzene (TMB) photo-oxidation experiments was performed in the 27-m3 Paul Scherrer Institute environmental chamber under various NOx conditions. A University of Innsbruck prototype high resolution Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOF) was used for measurements of gas and particulate phase organics. The gas phase mass spectrum displayed ~200 ion signals during the TMB photo-oxidation experiments. Molecular formulas CmHnNoOp were determined and ion signals were separated and grouped according to their C, O and N numbers. This allowed to determine the time evolution of the O:C ratio and of the average carbon oxidation state OSC of the reaction mixture. Both quantities were compared with master chemical mechanism (MCMv3.1) simulations. The O:C ratio in the particle phase was about twice the O:C ratio in the gas phase. Average carbon oxidation states of secondary organic aerosol (SOA) samples OSCSOA were in the range of -0.34 to -0.31, in agreement with expected average carbon oxidation states of fresh SOA (OSC = -0.5-0).

  13. Multiple reaction monitoring assay based on conventional liquid chromatography and electrospray ionization for simultaneous monitoring of multiple cerebrospinal fluid biomarker candidates for Alzheimer's disease.

    PubMed

    Choi, Yong Seok; Lee, Kelvin H

    2016-03-01

    Alzheimer's disease (AD) is the most common type of dementia, but early and accurate diagnosis remains challenging. Previously, a panel of cerebrospinal fluid (CSF) biomarker candidates distinguishing AD and non-AD CSF accurately (>90 %) was reported. Furthermore, a multiple reaction monitoring (MRM) assay based on nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) was developed to help validate putative AD CSF biomarker candidates including proteins from the panel. Despite the good performance of the MRM assay, wide acceptance may be challenging because of limited availability of nLC-MS/MS systems in laboratories. Thus, here, a new MRM assay based on conventional LC-MS/MS is presented. This method monitors 16 peptides representing 16 (of 23) biomarker candidates that belonged to the previous AD CSF panel. A 30-times more concentrated sample than the sample used for the previous study was loaded onto a high capacity trap column, and all 16 MRM transitions showed good linearity (average R(2) = 0.966), intra-day reproducibility (average coefficient of variance (CV) = 4.78 %), and inter-day reproducibility (average CV = 9.85 %). The present method has several advantages such as a shorter analysis time, no possibility of target variability, and no need for an internal standard.

  14. Reaction time following yoga bellows-type breathing and breath awareness.

    PubMed

    Telles, Shirley; Yadav, Arti; Gupta, Ram Kumar; Balkrishna, Acharya

    2013-08-01

    The reaction time (RT) was assessed in two groups of healthy males, yoga group (M age = 29.0 yr.) and non-yoga or control group (M age = 29.0 yr.), with 35 participants each. The yoga group had an average experience of 6 months, while the control group was yoga-naïve. The yoga group was assessed in two sessions, (i) bhastrika pranayama or bellows breathing and (ii) breath awareness, while the control group had a single control session. The two experimental sessions, one with each type of breathing, and the control session consisted of pre- (5 min.), during (18 min.), and post-session epochs (5 min.). Assessments were made in the pre- and post-session epochs using a Multi-Operational Apparatus for Reaction Time. Following 18 min. of bhastrika pranayama there was a statistically significant reduction in number of anticipatory responses compared to before the practice. This suggests that the immediate effect of bhastrika pranayama is to inhibit unnecessary responding to stimuli.

  15. Procedural learning is impaired in dyslexia: Evidence from a meta-analysis of serial reaction time studies☆

    PubMed Central

    Lum, Jarrad A.G.; Ullman, Michael T.; Conti-Ramsden, Gina

    2013-01-01

    A number of studies have investigated procedural learning in dyslexia using serial reaction time (SRT) tasks. Overall, the results have been mixed, with evidence of both impaired and intact learning reported. We undertook a systematic search of studies that examined procedural learning using SRT tasks, and synthesized the data using meta-analysis. A total of 14 studies were identified, representing data from 314 individuals with dyslexia and 317 typically developing control participants. The results indicate that, on average, individuals with dyslexia have worse procedural learning abilities than controls, as indexed by sequence learning on the SRT task. The average weighted standardized mean difference (the effect size) was found to be 0.449 (CI95: .204, .693), and was significant (p < .001). However, moderate levels of heterogeneity were found between study-level effect sizes. Meta-regression analyses indicated that studies with older participants that used SRT tasks with second order conditional sequences, or with older participants that used sequences that were presented a large number of times, were associated with smaller effect sizes. These associations are discussed with respect to compensatory and delayed memory systems in dyslexia. PMID:23920029

  16. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    PubMed

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Escape and finite-size scaling in diffusion-controlled annihilation

    DOE PAGES

    Ben-Naim, Eli; Krapivsky, Paul L.

    2016-12-16

    In this paper, we study diffusion-controlled single-species annihilation with a finite number of particles. In this reaction-diffusion process, each particle undergoes ordinary diffusion, and when two particles meet, they annihilate. We focus on spatial dimensions d>2 where a finite number of particles typically survive the annihilation process. Using scaling techniques we investigate the average number of surviving particles, M, as a function of the initial number of particles, N. In three dimensions, for instance, we find the scaling law M ~ N 1/3 in the asymptotic regime N»1. We show that two time scales govern the reaction kinetics: the diffusionmore » time scale, T ~ N 2/3, and the escape time scale, τ ~ N 4/3. The vast majority of annihilation events occur on the diffusion time scale, while no annihilation events occur beyond the escape time scale.« less

  18. Biocatalytic Synthesis of Poly(δ-Valerolactone) Using a Thermophilic Esterase from Archaeoglobus fulgidus as Catalyst

    PubMed Central

    Cao, Hong; Han, Haobo; Li, Guangquan; Yang, Jiebing; Zhang, Lingfei; Yang, Yan; Fang, Xuedong; Li, Quanshun

    2012-01-01

    The ring-opening polymerization of δ-valerolactone catalyzed by a thermophilic esterase from the archaeon Archaeoglobus fulgidus was successfully conducted in organic solvents. The effects of enzyme concentration, temperature, reaction time and reaction medium on monomer conversion and product molecular weight were systematically evaluated. Through the optimization of reaction conditions, poly(δ-valerolactone) was produced in 97% monomer conversion, with a number-average molecular weight of 2225 g/mol, in toluene at 70 °C for 72 h. This paper has produced a new biocatalyst for the synthesis of poly(δ-valerolactone), and also deeper insight has been gained into the mechanism of thermophilic esterase-catalyzed ring-opening polymerization. PMID:23202895

  19. Enhanced reaction kinetics in biological cells

    NASA Astrophysics Data System (ADS)

    Loverdo, C.; Bénichou, O.; Moreau, M.; Voituriez, R.

    2008-02-01

    The cell cytoskeleton is a striking example of an `active' medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties: a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose an analytical model of transport-limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers such as vesicles. We derive analytically the average interaction time with motor proteins that optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures such as axons.

  20. Experimental design and analysis of activators regenerated by electron transfer-atom transfer radical polymerization experimental conditions for grafting sodium styrene sulfonate from titanium substrates.

    PubMed

    Foster, Rami N; Johansson, Patrik K; Tom, Nicole R; Koelsch, Patrick; Castner, David G

    2015-09-01

    A 2 4 factorial design was used to optimize the activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) grafting of sodium styrene sulfonate (NaSS) films from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate (ester ClSi) functionalized titanium substrates. The process variables explored were: (1) ATRP initiator surface functionalization reaction time; (2) grafting reaction time; (3) CuBr 2 concentration; and (4) reducing agent (vitamin C) concentration. All samples were characterized using x-ray photoelectron spectroscopy (XPS). Two statistical methods were used to analyze the results: (1) analysis of variance with [Formula: see text], using average [Formula: see text] XPS atomic percent as the response; and (2) principal component analysis using a peak list compiled from all the XPS composition results. Through this analysis combined with follow-up studies, the following conclusions are reached: (1) ATRP-initiator surface functionalization reaction times have no discernable effect on NaSS film quality; (2) minimum (≤24 h for this system) grafting reaction times should be used on titanium substrates since NaSS film quality decreased and variability increased with increasing reaction times; (3) minimum (≤0.5 mg cm -2 for this system) CuBr 2 concentrations should be used to graft thicker NaSS films; and (4) no deleterious effects were detected with increasing vitamin C concentration.

  1. Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores, J. M.; Washenfelder, Rebecca; Adler, Gabriela

    2014-05-14

    Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions for the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (α-pinene, limonene, and α-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360 – 420 nm range for these aerosols usingmore » broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged α-pinene SOA increased from n = 1.50 (±0.01) for the unreacted SOA to n = 1.57 (± 0.01) after a 1.5h exposure to 1.9 ppm NH3; whereas,the imaginary component (k) remained below k < 0.001 (± 0.002). For the limonene and α-humulene SOA the real part did not change significantly, and we observed a small change in the imaginary component of the RI. The imaginary component increased from k = 0.0 to an average k= 0.029 (± 0.021) for α-humulene SOA, and from k < 0.001 (± 0.002) to an average k = 0.032 (±0.019) for limonene SOA after a 1.5 h exposure to 1.3 and 1.9 ppm of NH3, respectively. Collected filter samples of the aged and unreacted α-pinene SOA and limonene SOA were analyzed off-line with nanospray desorption electrospray ionization high resolution mass spectrometry (nano-DESI/HR-MS), and in-situ with a Time-of-Fligh Aerosol Mass Spectrometer, confirming that the SOA reacted and that various nitrogen-containing reaction products formed. If we assume that NH3 aging reactions scale linearly with time and concentration, then a 1.5 h reaction with 1 ppm NH3 in the laboratory is equivalent to 24 h reaction with 63 ppbv NH3, indicating that the observed aerosol absorption will be limited to atmospheric regions with high NH3 concentrations.« less

  2. Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia.

    PubMed

    Flores, J M; Washenfelder, R A; Adler, G; Lee, H J; Segev, L; Laskin, J; Laskin, A; Nizkorodov, S A; Brown, S S; Rudich, Y

    2014-06-14

    Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions of the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (α-pinene, limonene, and α-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360-420 nm range for these aerosols using broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged α-pinene SOA increased from n = 1.50 (±0.01) for the unreacted SOA to n = 1.57 (±0.01) after 1.5 h of exposure to 1.9 ppm NH3, whereas the imaginary component (k) remained below k < 0.001((+0.002)(-0.001)). For the limonene and α-humulene SOA the real part did not change significantly, and we observed a small change in the imaginary component of the RI. The imaginary component increased from k = 0.000 to an average k = 0.029 (±0.021) for α-humulene SOA, and from k < 0.001((+0.002)(-0.001)) to an average k = 0.032 (±0.019) for limonene SOA after 1.5 h of exposure to 1.3 and 1.9 ppm of NH3, respectively. Collected filter samples of the aged and unreacted α-pinene SOA and limonene SOA were analyzed off-line by nanospray desorption electrospray ionization high resolution mass spectrometry (nano-DESI/HR-MS), and in situ using a Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS), confirming that the SOA reacted and that various nitrogen-containing reaction products formed. If we assume that NH3 aging reactions scale linearly with time and concentration, which will not necessarily be the case in the atmosphere, then a 1.5 h reaction with 1 ppm NH3 in the laboratory is equivalent to 24 h reaction with 63 ppbv NH3, indicating that the observed aerosol absorption will be limited to atmospheric regions with high NH3 concentrations.

  3. Chemical Analysis of Reaction Rims on Olivine Crystals in Natural Samples of Black Dacite Using Energy-Dispersive X-Ray Spectroscopy, Lassen Peak, CA.

    NASA Astrophysics Data System (ADS)

    Graham, N. A.

    2014-12-01

    Lassen Volcanic Center is the southernmost volcanic region in the Cascade volcanic arc formed by the Cascadia Subduction Zone. Lassen Peak last erupted in 1915 in an arc related event producing a black dacite material containing xenocrystic olivine grains with apparent orthopyroxene reaction rims. The reaction rims on these olivine grains are believed to have formed by reactions that ensued from a mixing/mingling event that occurred prior to eruption between the admixed mafic andesitic magma and a silicic dacite host material. Natural samples of the 1915 black dacite from Lassen Peak, CA were prepared into 15 polished thin sections and carbon coated for analysis using a FEI Quanta 250 Scanning Electron Microscope (SEM) to identify and measure mineral textures and disequilibrium reaction rims. Observed mineralogical textures related to magma mixing include biotite and amphibole grains with apparent dehydration/breakdown rims, pyroxene-rimmed quartz grains, high concentration of microlites in glass matrix, and pyroxene/amphibole reaction rims on olivine grains. Olivine dissolution is evidenced as increased iron concentration toward convolute edges of olivine grains as observed by Backscatter Electron (BSE) imagery and elemental mapping using NSS spectral imaging software. In an attempt to quantify the area of reaction rim growth on olivine grains within these samples, high-resolution BSE images of 30 different olivine grains were collected along with Energy-Dispersive X-Ray Spectroscopy (EDS) of different phases. Olivine cores and rims were extracted from BSE images using Photoshop and saved as separate image files. ImageJ software was used to calculate the area (μm2) of the core and rim of these grains. Average pyroxene reaction rim width for 30 grains was determined to be 11.68+/-1.65 μm. Rim widths of all 30 grains were averaged together to produce an overall average rim width for the Lassen Peak black dacite. By quantifying the reaction rims on olivine grains in the natural samples of Lassen Peak dacite as well as the bulk chemistry of the rock, this provides insight into the storage conditions of the magma chamber and the timing necessary for reactions to form these specific volcanic textures which in turn can be used as a basis for better understanding future experimental reconstruction of this magmatic system.

  4. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol.

    PubMed

    Yuan, Zhongshun; Cheng, Shuna; Leitch, Mathew; Xu, Chunbao Charles

    2010-12-01

    Alkaline lignin of a very high molecular weight was successfully degraded into oligomers in a hot-compressed water-ethanol medium with NaOH as the catalyst and phenol as the capping agent at 220-300 degrees C. Under the optimal reaction conditions, i.e., 260 degrees C, 1 h, with the lignin/phenol ratio of 1:1 (w/w), almost complete degradation was achieved, producing <1% solid residue and negligible gas products. The obtained degraded lignin had a number-average molecular weight M(n) and weight-average molecular weight M(w) of 450 and 1000 g/mol respectively, significantly lower than the M(n) and M(w) of 10,000 and 60,000 g/mol of the original lignin. A higher temperature and a longer reaction time favoured phenol combination, but increased the formation of solid residue due to the condensation reactions of the degradation intermediates/products. The degraded lignin products were soluble in organic solvents (such as THF), and were characterized by HPLC/GPC, IR and NMR. A possible mechanism for lignin hydrolytic degradation was also proposed in this study. 2010 Elsevier Ltd. All rights reserved.

  5. A simple derivation of Lorentz self-force

    NASA Astrophysics Data System (ADS)

    Haque, Asrarul

    2014-09-01

    We derive the Lorentz self-force for a charged particle in arbitrary non-relativistic motion by averaging the retarded fields. The derivation is simple and at the same time pedagogically accessible. We obtain the radiation reaction for a charged particle moving in a circle. We pin down the underlying concept of mass renormalization.

  6. On violations of Le Chatelier's principle for a temperature change in small systems observed for short times

    NASA Astrophysics Data System (ADS)

    Dasmeh, Pouria; Searles, Debra J.; Ajloo, Davood; Evans, Denis J.; Williams, Stephen R.

    2009-12-01

    Le Chatelier's principle states that when a system is disturbed, it will shift its equilibrium to counteract the disturbance. However for a chemical reaction in a small, confined system, the probability of observing it proceed in the opposite direction to that predicted by Le Chatelier's principle, can be significant. This work gives a molecular level proof of Le Chatelier's principle for the case of a temperature change. Moreover, a new, exact mathematical expression is derived that is valid for arbitrary system sizes and gives the relative probability that a single experiment will proceed in the endothermic or exothermic direction, in terms of a microscopic phase function. We show that the average of the time integral of this function is the maximum possible value of the purely irreversible entropy production for the thermal relaxation process. Our result is tested against computer simulations of the unfolding of a polypeptide. We prove that any equilibrium reaction mixture on average responds to a temperature increase by shifting its point of equilibrium in the endothermic direction.

  7. The effect of Argon pressure dependent V thin film on the phase transition process of (020) VO2 thin film

    NASA Astrophysics Data System (ADS)

    Meng, Yifan; Huang, Kang; Tang, Zhou; Xu, Xiaofeng; Tan, Zhiyong; Liu, Qian; Wang, Chunrui; Wu, Binhe; Wang, Chang; Cao, Juncheng

    2018-01-01

    It has been proved challenging to fabricate the single crystal orientation of VO2 thin film by a simple method. Based on chemical reaction thermodynamic and crystallization analysis theory, combined with our experimental results, we find out that when stoichiometric number of metallic V in the chemical equation is the same, the ratio of metallic V thin film surface average roughness Ra to thin film average particle diameter d decreases with the decreasing sputtering Argon pressure. Meanwhile, the oxidation reaction equilibrium constant K also decreases, which will lead to the increases of oxidation time, thereby the crystal orientation of the VO2 thin film will also become more uniform. By sputtering oxidation coupling method, metallic V thin film is deposited on c-sapphire substrate at 1 × 10-1 Pa, and then oxidized in the air with the maximum oxidation time of 65s, high oriented (020) VO2 thin film has been fabricated successfully, which exhibits ∼4.6 orders sheet resistance change across the metal-insulator transition.

  8. STUDIES ON DECREASING THE REACTION OF NORMAL SKIN TO DESTRUCTIVE DOSES OF X-RAYS BY PHARMACOLOGICAL MEANS AND ON THE MECHANISM INVOLVED

    PubMed Central

    Auer, John; Witherbee, William D.

    1921-01-01

    When a fixed area of the ears of rabbits is subjected to the action of a standard destructive dose of x-rays (30 skin units) the type of reaction resulting depends upon the previous treatment of the rabbit. (1) In normal rabbits a mild acute inflammation develops in the x-rayed area which leads at once to a perforating gangrene within an average of 15 days. (2) If rabbits are x-rayed and about 2 weeks later injected with horse serum for the first time, a mild acute inflammation appears which heals for a time; then a second, subacute inflammation sets in which leads to a perforating gangrene. The average time of the process from the first inflammation to gangrene is 32 days. (3) If rabbits are sensitized with horse serum and 10 days later are exposed locally to the standard dose of x-rays, the ensuing ear reaction is either similar to the second reaction described above, except that it may last up to 110 days, or the first inflammation leads to a healing which may be apparently permanent (340 + days). (4) If rabbits are first sensitized with horse serum, exposed locally to the standard dose of x-rays 10 days later, and 13 days after the x-ray treatment reinjected with horse serum, the reaction of the x-rayed area of the ears is in general similar to the second reaction described above (inflammation—healing—inflammation—gangrene). The average time of the whole process is about 42 days. On the basis of the general hypothesis that an anaphylactic reaction is initiated in the body when the specific antibody meets its antigen, and that both antibody and antigen are rendered more or less functionally inert by their interaction, the following inferences may be drawn from our experimental results. (1) The protection from the effects of a standard destructive dose of x-rays which a previous sensitization confers, is referable to the presence of anaphylactic antibodies in the x-rayed area. (2) This protection is largely due to the anaphylactic antibodies which are anchored in the x-rayed area, and not to those which are free in the circulation. (3) An anaphylactic reaction renders the anchored anaphylactic antibodies largely impotent as protective factors against the standard destructive x-ray dose, even though sensitization preceded exposure to the x-rays. (4) An area treated with the standard destructive dose of x-rays is unable to produce or to anchor a sufficient amount of anaphylactic antibodies for protection from necrosis, when the x-ray treatment precedes the sensitization, or when the locally anchored anaphylactic antibodies are rendered functionally inactive by a general anaphylactic reaction. It is possible that the procedure of increasing the resistance of the skin to a destructive dose of x-rays by means of a previous sensitization with protein may be applicable in the treatment of certain types of inoperable disease, when it is important to use massive doses of x-rays. Animals which have been sensitized, or sensitized and reinjected with any undenatured alien protein, should not be reemployed as normal controls in any investigation unless trial has shown that these proteinized animals react quantitatively and qualitatively like normal animals. The presence of an abnormal reactor in a group of supposedly normal animals may be an indication of a previous proteinization. PMID:19868536

  9. Transient Macroscopic Chemistry in the DSMC Method

    NASA Astrophysics Data System (ADS)

    Goldsworthy, M. J.; Macrossan, M. N.; Abdel-Jawad, M.

    2008-12-01

    In the Direct Simulation Monte Carlo method, a combination of statistical and deterministic procedures applied to a finite number of `simulator' particles are used to model rarefied gas-kinetic processes. Traditionally, chemical reactions are modelled using information from specific colliding particle pairs. In the Macroscopic Chemistry Method (MCM), the reactions are decoupled from the specific particle pairs selected for collisions. Information from all of the particles within a cell is used to determine a reaction rate coefficient for that cell. MCM has previously been applied to steady flow DSMC simulations. Here we show how MCM can be used to model chemical kinetics in DSMC simulations of unsteady flow. Results are compared with a collision-based chemistry procedure for two binary reactions in a 1-D unsteady shock-expansion tube simulation and during the unsteady development of 2-D flow through a cavity. For the shock tube simulation, close agreement is demonstrated between the two methods for instantaneous, ensemble-averaged profiles of temperature and species mole fractions. For the cavity flow, a high degree of thermal non-equilibrium is present and non-equilibrium reaction rate correction factors are employed in MCM. Very close agreement is demonstrated for ensemble averaged mole fraction contours predicted by the particle and macroscopic methods at three different flow-times. A comparison of the accumulated number of net reactions per cell shows that both methods compute identical numbers of reaction events. For the 2-D flow, MCM required similar CPU and memory resources to the particle chemistry method. The Macroscopic Chemistry Method is applicable to any general DSMC code using any viscosity or non-reacting collision models and any non-reacting energy exchange models. MCM can be used to implement any reaction rate formulations, whether these be from experimental or theoretical studies.

  10. Evaluation of a tunable bandpass reaction cell for an inductively coupled plasma mass spectrometer for the determination of chromium and vanadium in serum and urine

    NASA Astrophysics Data System (ADS)

    Nixon, David E.; Neubauer, Kenneth R.; Eckdahl, Steven J.; Butz, John A.; Burritt, Mary F.

    2002-05-01

    A Dynamic Reaction Cell™ inductively coupled argon plasma mass spectrometer (DRC-ICP-MS) was evaluated for the determination of chromium and vanadium in serum and urine. Reaction cell conditions were evaluated for the elimination of ArC + and ClOH + interferences on chromium at mass 52 and OCl + on vanadium at mass 51. A diluent containing only 1% nitric acid and internal standards (Y and Ga) was used to prepare serum and urine for analysis. Instrument response calibration was achieved by using aqueous acidic standards spiked into pooled sera or urine matrices. The slopes of the calibration curves prepared in urine and serum matrices were nearly identical. On average, chromium detection limits are 2.5 times lower using the DRC than Zeeman graphite furnace atomic absorption spectrometry (ZGFAAS). Vanadium detection limits are approximately 50 times lower. Average detection limits achieved with DRC-ICP-MS are 0.075 μg Cr/l and 0.028 μg V/l. Average results for the analysis of National Institute of Standards and Technology Standard Reference Material (NIST SRM) 1598 Bovine Serum (attained over 22 days) are: 0.14 μg Cr/l and 0.068 μg V/l. The reference concentrations for vanadium and chromium in NIST SRM 1598 are (0.06) μg V/l and 0.14±0.08 μg Cr/l, respectively. Results for chromium and vanadium determinations on ICP-MS survey samples from the Toxocologie du Quebec are equivalent to those reported by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for the same survey samples.

  11. The association between adherence to a Mediterranean style diet and cognition in older people: The impact of medication.

    PubMed

    Hardman, Roy J; Meyer, Denny; Kennedy, Greg; Macpherson, Helen; Scholey, Andrew B; Pipingas, Andrew

    2017-10-31

    Recent reviews indicate that adherence to a Mediterranean diet may be associated with better cognitive functioning. In assessing these relationships in older individuals, previous studies have not taken into account medication usage that may support or compromise cognitive functioning. To investigate the association between adherence to a Mediterranean style diet, cognition and medication usage in cognitively healthy older individuals. Data were assessed from individuals aged 60-90 years (mean = 77.8 years, SD = 6.7) from 15 independent living aged care villages around Melbourne, Australia. Participants' diets were assessed using a food frequency questionnaire (FFQ). Cognition was assessed using reaction times from the Swinburne University Computerised Cognitive Assessment Battery (SUCCAB). Prescribed medications were recorded and analysed using binary measures. Cluster analyses were used to group participants in terms of cognitive measures and medications taken. Analyses controlled for age, gender, average daily kilojoule (kJ) intake and medication cluster. The relationship between cognitive speed clusters and medication clusters was significant (Chi-squared = 10.63, df = 3, p = 0.014). The odds ratio of 1.533 for average daily food intake suggested that for each additional kilojoule of average daily intake, the odds of belonging to the slower reaction time cluster increased by 53% and odds ratio of 0.573 for Mediterranean diet score suggested that for every additional unit, the odds of belonging to the slower reaction time cluster declined by 43%. The relationship between Mediterranean diet score and cognition was only significant when medication use was taken into account. These data demonstrate that when medications are considered, a higher Mediterranean diet score is associated with a faster response on cognitive function tests. The present findings also indicate that it is pertinent to take into account medication use when investigating relationships between dietary status and cognitive performance. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression.

    PubMed

    Horst, Fabian; Eekhoff, Alexander; Newell, Karl M; Schöllhorn, Wolfgang I

    2017-01-01

    Traditionally, gait analysis has been centered on the idea of average behavior and normality. On one hand, clinical diagnoses and therapeutic interventions typically assume that average gait patterns remain constant over time. On the other hand, it is well known that all our movements are accompanied by a certain amount of variability, which does not allow us to make two identical steps. The purpose of this study was to examine changes in the intra-individual gait patterns across different time-scales (i.e., tens-of-mins, tens-of-hours). Nine healthy subjects performed 15 gait trials at a self-selected speed on 6 sessions within one day (duration between two subsequent sessions from 10 to 90 mins). For each trial, time-continuous ground reaction forces and lower body joint angles were measured. A supervised learning model using a kernel-based discriminant regression was applied for classifying sessions within individual gait patterns. Discernable characteristics of intra-individual gait patterns could be distinguished between repeated sessions by classification rates of 67.8 ± 8.8% and 86.3 ± 7.9% for the six-session-classification of ground reaction forces and lower body joint angles, respectively. Furthermore, the one-on-one-classification showed that increasing classification rates go along with increasing time durations between two sessions and indicate that changes of gait patterns appear at different time-scales. Discernable characteristics between repeated sessions indicate continuous intrinsic changes in intra-individual gait patterns and suggest a predominant role of deterministic processes in human motor control and learning. Natural changes of gait patterns without any externally induced injury or intervention may reflect continuous adaptations of the motor system over several time-scales. Accordingly, the modelling of walking by means of average gait patterns that are assumed to be near constant over time needs to be reconsidered in the context of these findings, especially towards more individualized and situational diagnoses and therapy.

  13. In-line near-infrared (NIR) and Raman spectroscopy coupled with principal component analysis (PCA) for in situ evaluation of the transesterification reaction.

    PubMed

    Fontalvo-Gómez, Miriam; Colucci, José A; Velez, Natasha; Romañach, Rodolfo J

    2013-10-01

    Biodiesel was synthesized from different commercially available oils while in-line Raman and near-infrared (NIR) spectra were obtained simultaneously, and the spectral changes that occurred during the reaction were evaluated with principal component analysis (PCA). Raman and NIR spectra were acquired every 30 s with fiber optic probes inserted into the reaction vessel. The reaction was performed at 60-70 °C using magnetic stirring. The time of reaction was 90 min, and during this time, 180 Raman and NIR spectra were collected. NIR spectra were collected using a transflectance probe and an optical path length of 1 mm at 8 cm(-1) spectral resolution and averaging 32 scans; for Raman spectra a 3 s exposure time and three accumulations were adequate for the analysis. Raman spectroscopy showed the ester conversion as evidenced by the displacement of the C=O band from 1747 to 1744 cm(-1) and the decrease in the intensity of the 1000-1050 cm(-1) band and the 1405 cm(-1) band as methanol was consumed in the reaction. NIR spectra also showed the decrease in methanol concentration with the band in the 4750-5000 cm(-1) region; this signal is present in the spectra of the transesterification reaction but not in the neat oils. The variations in the intensity of the methanol band were a main factor in the in-line monitoring of the transesterification reaction using Raman and NIR spectroscopy. The score plot of the first principal component showed the progress of the reaction. The final product was analyzed using (1)H nuclear magnetic resonance ((1)H NMR) spectroscopy and using mid-infrared spectroscopy, confirming the conversion of the oils to biodiesel.

  14. Cost-effectiveness of one-time genetic testing to minimize lifetime adverse drug reactions.

    PubMed

    Alagoz, O; Durham, D; Kasirajan, K

    2016-04-01

    We evaluated the cost-effectiveness of one-time pharmacogenomic testing for preventing adverse drug reactions (ADRs) over a patient's lifetime. We developed a Markov-based Monte Carlo microsimulation model to represent the ADR events in the lifetime of each patient. The base-case considered a 40-year-old patient. We measured health outcomes in life years (LYs) and quality-adjusted LYs (QALYs) and estimated costs using 2013 US$. In the base-case, one-time genetic testing had an incremental cost-effectiveness ratio (ICER) of $43,165 (95% confidence interval (CI) is ($42,769,$43,561)) per additional LY and $53,680 per additional QALY (95% CI is ($53,182,$54,179)), hence under the base-case one-time genetic testing is cost-effective. The ICER values were most sensitive to the average probability of death due to ADR, reduction in ADR rate due to genetic testing, mean ADR rate and cost of genetic testing.

  15. Mirrored continuum and molecular scale simulations of the ignition of high-pressure phases of RDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kibaek; Stewart, D. Scott, E-mail: santc@illinois.edu, E-mail: dss@illinois.edu; Joshi, Kaushik

    2016-05-14

    We present a mirrored atomistic and continuum framework that is used to describe the ignition of energetic materials, and a high-pressure phase of RDX in particular. The continuum formulation uses meaningful averages of thermodynamic properties obtained from the atomistic simulation and a simplification of enormously complex reaction kinetics. In particular, components are identified based on molecular weight bin averages and our methodology assumes that both the averaged atomistic and continuum simulations are represented on the same time and length scales. The atomistic simulations of thermally initiated ignition of RDX are performed using reactive molecular dynamics (RMD). The continuum model ismore » based on multi-component thermodynamics and uses a kinetics scheme that describes observed chemical changes of the averaged atomistic simulations. Thus the mirrored continuum simulations mimic the rapid change in pressure, temperature, and average molecular weight of species in the reactive mixture. This mirroring enables a new technique to simplify the chemistry obtained from reactive MD simulations while retaining the observed features and spatial and temporal scales from both the RMD and continuum model. The primary benefit of this approach is a potentially powerful, but familiar way to interpret the atomistic simulations and understand the chemical events and reaction rates. The approach is quite general and thus can provide a way to model chemistry based on atomistic simulations and extend the reach of those simulations.« less

  16. Trends in 1970-2010 southern California surface maximum temperatures: extremes and heat waves

    NASA Astrophysics Data System (ADS)

    Ghebreegziabher, Amanuel T.

    Daily maximum temperatures from 1970-2010 were obtained from the National Climatic Data Center (NCDC) for 28 South Coast Air Basin (SoCAB) Cooperative Network (COOP) sites. Analyses were carried out on the entire data set, as well as on the 1970-1974 and 2006-2010 sub-periods, including construction of spatial distributions and time-series trends of both summer-average and annual-maximum values and of the frequency of two and four consecutive "daytime" heat wave events. Spatial patterns of average and extreme values showed three areas consistent with climatological SoCAB flow patterns: cold coastal, warm inland low-elevation, and cool further-inland mountain top. Difference (2006-2010 minus 1970-1974) distributions of both average and extreme-value trends were consistent with the shorter period (1970-2005) study of previous study, as they showed the expected inland regional warming and a "reverse-reaction" cooling in low elevation coastal and inland areas open to increasing sea breeze flows. Annual-extreme trends generally showed cooling at sites below 600 m and warming at higher elevations. As the warming trends of the extremes were larger than those of the averages, regional warming thus impacts extremes more than averages. Spatial distributions of hot-day frequencies showed expected maximum at inland low-elevation sites. Regional warming again thus induced increases at both elevated-coastal areas, but low-elevation areas showed reverse-reaction decreases.

  17. Application of artificial intelligent tools to modeling of glucosamine preparation from exoskeleton of shrimp.

    PubMed

    Valizadeh, Hadi; Pourmahmood, Mohammad; Mojarrad, Javid Shahbazi; Nemati, Mahboob; Zakeri-Milani, Parvin

    2009-04-01

    The objective of this study was to forecast and optimize the glucosamine production yield from chitin (obtained from Persian Gulf shrimp) by means of genetic algorithm (GA), particle swarm optimization (PSO), and artificial neural networks (ANNs) as tools of artificial intelligence methods. Three factors (acid concentration, acid solution to chitin ratio, and reaction time) were used as the input parameters of the models investigated. According to the obtained results, the production yield of glucosamine hydrochloride depends linearly on acid concentration, acid solution to solid ratio, and time and also the cross-product of acid concentration and time and the cross-product of solids to acid solution ratio and time. The production yield significantly increased with an increase of acid concentration, acid solution ratio, and reaction time. The production yield is inversely related to the cross-product of acid concentration and time. It means that at high acid concentrations, the longer reaction times give lower production yields. The results revealed that the average percent error (PE) for prediction of production yield by GA, PSO, and ANN are 6.84, 7.11, and 5.49%, respectively. Considering the low PE, it might be concluded that these models have a good predictive power in the studied range of variables and they have the ability of generalization to unknown cases.

  18. Bilateral contact ground reaction forces and contact times during plyometric drop jumping.

    PubMed

    Ball, Nick B; Stock, Christopher G; Scurr, Joanna C

    2010-10-01

    Drop jumping (DJ) is used in training programs aimed to improve lower extremity explosive power. When performing double-leg drop jumps, it is important to provide an equal stimulus to both legs to ensure balanced development of the lower legs. The aim of this study was to bilaterally analyze the ground reactions forces and temporal components of drop jumping from 3 heights. Ten recreationally active male subjects completed 3 bounce-drop jumps from 3 starting heights (0.2, 0.4, and 0.6 m). Two linked force platforms were used to record left- and right-leg peak vertical force, time to peak force, average force, ground contact time, impulse and time differential. Between-height and between-leg comparisons for each variable were made using a multivariate analysis of variance with post hoc Wilcoxon tests (p < 0.05). Results indicated that force and time variables increased as drop jump height increased (p < 0.0001). Post hoc analyses showed that at 0.2- and 0.4-m bilateral differences were present in the time to peak force, average force, and impulse. No bilateral differences for any variables were shown at 0.6-m starting height. The contact time for all jumps was <0.26 seconds. At 0.2 m, only 63% of the subjects had a starting time differential of <0.01 seconds, rising to 96.3% at 0.6 m. The results indicated that 0.6 m is the suggested drop jump height to ensure that no bilateral differences in vertical forces and temporal components occur; however, shorter contact times were found at the lower heights.

  19. Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF.

    PubMed

    Rom, Naomi; Zybin, Sergey V; van Duin, Adri C T; Goddard, William A; Zeiri, Yehuda; Katz, Gil; Kosloff, Ronnie

    2011-09-15

    The decomposition mechanism of hot liquid nitromethane at various compressions was studied using reactive force field (ReaxFF) molecular dynamics simulations. A competition between two different initial thermal decomposition schemes is observed, depending on compression. At low densities, unimolecular C-N bond cleavage is the dominant route, producing CH(3) and NO(2) fragments. As density and pressure rise approaching the Chapman-Jouget detonation conditions (∼30% compression, >2500 K) the dominant mechanism switches to the formation of the CH(3)NO fragment via H-transfer and/or N-O bond rupture. The change in the decomposition mechanism of hot liquid NM leads to a different kinetic and energetic behavior, as well as products distribution. The calculated density dependence of the enthalpy change correlates with the change in initial decomposition reaction mechanism. It can be used as a convenient and useful global parameter for the detection of reaction dynamics. Atomic averaged local diffusion coefficients are shown to be sensitive to the reactions dynamics, and can be used to distinguish between time periods where chemical reactions occur and diffusion-dominated, nonreactive time periods. © 2011 American Chemical Society

  20. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation.

    PubMed

    Lande, Russell

    2009-07-01

    Adaptation to a sudden extreme change in environment, beyond the usual range of background environmental fluctuations, is analysed using a quantitative genetic model of phenotypic plasticity. Generations are discrete, with time lag tau between a critical period for environmental influence on individual development and natural selection on adult phenotypes. The optimum phenotype, and genotypic norms of reaction, are linear functions of the environment. Reaction norm elevation and slope (plasticity) vary among genotypes. Initially, in the average background environment, the character is canalized with minimum genetic and phenotypic variance, and no correlation between reaction norm elevation and slope. The optimal plasticity is proportional to the predictability of environmental fluctuations over time lag tau. During the first generation in the new environment the mean fitness suddenly drops and the mean phenotype jumps towards the new optimum phenotype by plasticity. Subsequent adaptation occurs in two phases. Rapid evolution of increased plasticity allows the mean phenotype to closely approach the new optimum. The new phenotype then undergoes slow genetic assimilation, with reduction in plasticity compensated by genetic evolution of reaction norm elevation in the original environment.

  1. Efficient determination of average valence of manganese in manganese oxides by reaction headspace gas chromatography.

    PubMed

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2017-08-18

    This work investigates a new reaction headspace gas chromatographic (HS-GC) technique for efficient quantifying average valence of manganese (Mn) in manganese oxides. This method is on the basis of the oxidation reaction between manganese oxides and sodium oxalate under the acidic condition. The carbon dioxide (CO 2 ) formed from the oxidation reaction can be quantitatively analyzed by headspace gas chromatography. The data showed that the reaction in the closed headspace vial can be completed in 20min at 80°C. The relative standard deviation of this reaction HS-GC method in the precision testing was within 1.08%, the relative differences between the new method and the reference method (titration method) were no more than 5.71%. The new HS-GC method is automated, efficient, and can be a reliable tool for the quantitative analysis of average valence of manganese in the manganese oxide related research and applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Neutron-induced reaction cross-sections of 93Nb with fast neutron based on 9Be(p,n) reaction

    NASA Astrophysics Data System (ADS)

    Naik, H.; Kim, G. N.; Kim, K.; Zaman, M.; Nadeem, M.; Sahid, M.

    2018-02-01

    The cross-sections of the 93Nb (n , 2 n)92mNb, 93Nb (n , 3 n)91mNb and 93Nb (n , 4 n)90Nb reactions with the average neutron energies of 14.4 to 34.0 MeV have been determined by using an activation and off-line γ-ray spectrometric technique. The fast neutrons were produced using the 9Be (p , n) reaction with the proton energies of 25-, 35- and 45-MeV from the MC-50 Cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). The neutron flux-weighted average cross-sections of the 93Nb(n , xn ; x = 2- 4) reactions were also obtained from the mono-energetic neutron-induced reaction cross-sections of 93Nb calculated using the TALYS 1.8 code, and the neutron flux spectrum based on the MCNPX 2.6.0 code. The present results for the 93Nb(n , xn ; x = 2- 4) reactions are compared with the calculated neutron flux-weighted average values and found to be in good agreement.

  3. Usability of a virtual reality environment simulating an automated teller machine for assessing and training persons with acquired brain injury

    PubMed Central

    2010-01-01

    Objective This study aimed to examine the usability of a newly designed virtual reality (VR) environment simulating the operation of an automated teller machine (ATM) for assessment and training. Design Part I involved evaluation of the sensitivity and specificity of a non-immersive VR program simulating an ATM (VR-ATM). Part II consisted of a clinical trial providing baseline and post-intervention outcome assessments. Setting A rehabilitation hospital and university-based teaching facilities were used as the setting. Participants A total of 24 persons in the community with acquired brain injury (ABI) - 14 in Part I and 10 in Part II - made up the participants in the study. Interventions In Part I, participants were randomized to receive instruction in either an "early" or a "late" VR-ATM program and were assessed using both the VR program and a real ATM. In Part II, participants were assigned in matched pairs to either VR training or computer-assisted instruction (CAI) teaching programs for six 1-hour sessions over a three-week period. Outcome Measures Two behavioral checklists based on activity analysis of cash withdrawals and money transfers using a real ATM were used to measure average reaction time, percentage of incorrect responses, level of cues required, and time spent as generated by the VR system; also used was the Neurobehavioral Cognitive Status Examination. Results The sensitivity of the VR-ATM was 100% for cash withdrawals and 83.3% for money transfers, and the specificity was 83% and 75%, respectively. For cash withdrawals, the average reaction time of the VR group was significantly shorter than that of the CAI group (p = 0.021). We found no significant differences in average reaction time or accuracy between groups for money transfers, although we did note positive improvement for the VR-ATM group. Conclusion We found the VR-ATM to be usable as a valid assessment and training tool for relearning the use of ATMs prior to real-life practice in persons with ABI. PMID:20429955

  4. Enzymatic production of DFA III from fresh dahlia tubers as raw material

    NASA Astrophysics Data System (ADS)

    Budiwati, Thelma A.; Ratnaningrum, D.; Pudjiraharti, S.

    2017-01-01

    Dahlia is an annual ornamental plants and tubers that have not been widely used in Indonesia. Dahlia tubers contain nearly 70 per cent of the starch in the form of inulin. Inulin addition can be used as a food ingredient can also be used as a raw material for making DFA III (ie functional oligosaccharides), using inulin fructotransferase (IFTase) Nonomuraea sp. In this study conducted production of DFA III through enzymatic reactions and yeast fermentation, using inulin from fresh dahlia tubers and fresh dahlia tuber extract. Dahlia tubers which is one source of inulin, do blanching before extracted. Most dahlia tuber extract used directly for enzymatic reactions in the production of DFA III and some extracts are processed to produce inulin by precipitation using ethanol and then inulin is used for the enzymatic reaction. Syrup DFA III was measured volume and viscosity, and then do decolorization and then crystallization. The analysis was done of Thin Layer Chromatography (to see DFA III formed) and HPLC to see the purity of the product. The results showed that the average of inulin from precipitation with ethanol in the two batch of 113,5 g with an average water content of 7.41%, average whiteness degree 62.29% and an average yield 7.345% (w/w, wb dahlia tuber). From the average of DFA III liquid of 480 mL with density of 14.15%, the result of the average of DFA III crystal from enzyme reaction in the two reactor using inulin dahlia tubers as a substrate, was obtained of 55.4 g with an average whiteness degree of 93.8%, and the average of yield 3.56% w/w (wb dahlia tuber) or 48.89% w/w (db inulin). And then from the average of 475 mL with density of 16.85% was obtained an average DFA III crystals of 29 g from the enzyme reaction in the two reactor using fresh dahlia tuber extract as a substrate, with an average whiteness degree o 80.75% and the average of the yield of 1.86% w/w (wb dahlia tuber).

  5. A scrutiny of the premise of the Rice-Ramsperger-Kassel-Marcus theory in isomerization reaction of an Ar7-type molecule

    NASA Astrophysics Data System (ADS)

    Takatsuka, Kazuo; Seko, Chihiro

    1996-12-01

    The validity of the physical premise of the Rice-Ramsperger-Kassel-Marcus (RRKM) theory is investigated in terms of the classical dynamics of isomerization reaction in Ar7-like molecules (clusters). The passage times of classical trajectories through the potential basins of isomers in the structural transitions are examined. In the high energy region corresponding to the so-called liquidlike phase, remarkable uniformity of the average passage times has been found. That is, the average passage time is characterized only by a basin through which a trajectory is currently passing and, hence, does not depend on the next visiting basins. This behavior is out of accord with the ordinary chemical law in that the ``reaction rates'' do not seem to depend on the height of the individual potential barriers. We ascribe this seemingly strange uniformity to the strong mixing (chaos) lying behind the rate process. That is, as soon as a classical path enters a basin, it gets involved into a chaotic zone in which many paths having different channels are entangled among each other, and effectively (in the statistical sense) loses its memory about which basin it came from and where it should visit next time. This model is verified by confirming that the populations of the lifetime of transition from one basin to others are expressed in exponential functions, which should have very similar exponents to each other in each passing-through basin. The inverse of the exponent is essentially proportional to the average passage time, and consequently brings about the uniformity. These populations set a foundation for the multichannel generalization of the RRKM theory. Two cases of the non-RRKM behaviors have been studied. One is a nonstatistical behavior in the low energy region such as the so-called coexistence phase. The other is the short-time behavior. It is well established [M. Berblinger and C. Schlier, J. Chem. Phys. 101, 4750 (1994)] that in a relatively simple and small system such as H+3, the so-called direct paths, which lead to dissociation before the phase-space mixing is completed, increase the probability of short-time passage. In contrast, we have found in our Ar7-like molecules that trajectories of short passage time are fewer than expected by the statistical theory. It is conceived that somewhat a long time in the initial stage of the isomerization is spent by a trajectory to find its ways out to the next basins.

  6. Examining the stability of dual-task posture and reaction time measures in older adults over five sessions: a pilot study.

    PubMed

    Jehu, Deborah A; Paquet, Nicole; Lajoie, Yves

    2016-12-01

    Improved performance may be inherent due to repeated exposure to a testing protocol. However, limited research has examined this phenomenon in postural control. The aim was to determine the influence of repeated administration of a dual-task testing protocol once per week for 5 weeks on postural sway and reaction time. Ten healthy older adults (67.0 ± 6.9 years) stood on a force plate for 30 s in feet apart and semi-tandem positions while completing simple reaction time (SRT) and choice reaction time (CRT) tasks. They were instructed to stand as still as possible while verbally responding as fast as possible to the stimuli. No significant differences in postural sway were shown over time (p > 0.05). A plateau in average CRT emerged as the time effect revealed longer CRT during session 1 compared to sessions 3-5 (p < 0.05). Furthermore, the time effect for within-subject variability of CRT uncovered no plateaus as it was less variable in session 5 than sessions 1-4 (p < 0.05). The lack of a plateau in variability of CRT may have emerged as older adults may require longer to reach optimal performance potential in a dual-task context. Postural sway and SRT were stable over the 5 testing sessions, but variability of CRT continued to improve over time. These findings form a basis for future studies to examine performance-related improvements due to repeated exposure to a testing protocol in a dual-task setting.

  7. The influence of non-ionic radiation on the chicken hatching.

    PubMed

    Veterány, Ladislav; Toman, Robert; Jedlicka, Jaroslav

    2002-11-01

    The study considers the influence of non-ionic radiation (white and monochromatic light) on the hatching of the Hampshire breed chickens. The chicken embryos were most sensitive to the white light (El), reaching the hatching time of 503.63 +/- 3.17 h, the hatchability of 95.12 +/- 3.72% and an average weight of incubated chickens 46.83 +/- 2.82 g. Of the monochromatic lights, the chicken embryos were most sensitive to yellow and green lights (E5, E4) with the hatching time of 505.22 +/- 4.03 and 507.14 +/- 3.95 h, respectively, the hatchability of 94.89 +/- 3.02 and 94.47 +/- 2.93%, respectively and the average weight of incubated chickens 45.72 +/- 1.93 and 45.05 +/- 2.66 g, respectively. The least reaction of chicken was observed with violet light (E2) with the hatching time of 510.04+/- 1.97 h, hatchability of 90.81 +/- 4.05% and the average weight of incubated chickens 42.02 +/- 3.72 g. The effect of violet light brings the same results as we observed in the case of hatching in darkness (control group C), when the hatching time was 510.41 +/- 2.82 h, hatchability 90.42 +/- 3.35% and average weight of incubated chickens 41.98 +/- 3.05 g.

  8. Scaling theory in a model of corrosion and passivation.

    PubMed

    Aarão Reis, F D A; Stafiej, Janusz; Badiali, J-P

    2006-09-07

    We study a model for corrosion and passivation of a metallic surface after small damage of its protective layer using scaling arguments and simulation. We focus on the transition between an initial regime of slow corrosion rate (pit nucleation) to a regime of rapid corrosion (propagation of the pit), which takes place at the so-called incubation time. The model is defined in a lattice in which the states of the sites represent the possible states of the metal (bulk, reactive, and passive) and the solution (neutral, acidic, or basic). Simple probabilistic rules describe passivation of the metal surface, dissolution of the passive layer, which is enhanced in acidic media, and spatially separated electrochemical reactions, which may create pH inhomogeneities in the solution. On the basis of a suitable matching of characteristic times of creation and annihilation of pH inhomogeneities in the solution, our scaling theory estimates the average radius of the dissolved region at the incubation time as a function of the model parameters. Among the main consequences, that radius decreases with the rate of spatially separated reactions and the rate of dissolution in acidic media, and it increases with the diffusion coefficient of H(+) and OH(-) ions in solution. The average incubation time can be written as the sum of a series of characteristic times for the slow dissolution in neutral media, until significant pH inhomogeneities are observed in the dissolved cavity. Despite having a more complex dependence on the model parameters, it is shown that the average incubation time linearly increases with the rate of dissolution in neutral media, under the reasonable assumption that this is the slowest rate of the process. Our theoretical predictions are expected to apply in realistic ranges of values of the model parameters. They are confirmed by numerical simulation in two-dimensional lattices, and the expected extension of the theory to three dimensions is discussed.

  9. Improved synthesis of fine zinc borate particles using seed crystals

    NASA Astrophysics Data System (ADS)

    Gürhan, Deniz; Çakal, Gaye Ö.; Eroğlu, İnci; Özkar, Saim

    2009-03-01

    Zinc borate is a flame retardant additive used in polymers, wood applications and textile products. There are different types of zinc borate having different chemical compositions and structures. In this study, the production of zinc borate having the molecular formula of 2ZnO·3B 2O 3·3.5H 2O was reexamined by studying the effects of reaction parameters on the properties of product as well as the reaction kinetics. Production of zinc borate from the reaction of boric acid and zinc oxide in the presence of seed crystals was performed in a continuously stirred, temperature-controlled batch reactor having a volume of 1.5 L. Samples taken in regular time intervals during the experiments were analyzed for the concentration of zinc oxide and boron oxide in the solid as well as for the conversion of zinc oxide to zinc borate versus time. The zinc borate production reaction was fit to the logistic model. The reaction rate, reaction completion time, composition and particle size distribution of zinc borate product were determined by varying the following parameters: the boric acid to zinc oxide ratio (H 3BO 3:ZnO=3:1, 3.5:1, 5:1 and 7:1), the particle size of zinc oxide (10 and 25 μm), stirring rate (275, 400, 800 and 1600 rpm), temperature (75, 85 and 95 °C) and the size of seed crystals (10 and 2 μm). The products were also analyzed for particle size distribution. The experimental results showed that the reaction rate increases with the increase in H 3BO 3:ZnO ratio, particle size of zinc oxide, stirring rate and temperature. Concomitantly, the reaction completion time is decreased by increasing the H 3BO 3:ZnO ratio, stirring rate and temperature. The average particle sizes of the zinc borate products are in the range 4.3-16.6 μm (wet dispersion analysis).

  10. 8B + 208Pb Elastic Scattering at Coulomb Barrier Energies

    NASA Astrophysics Data System (ADS)

    La Commara, M.; Mazzocco, M.; Boiano, A.; Boiano, C.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Di Meo, P.; Grebosz, J.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lin, C. J.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Soramel, F.; Teranishi, T.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.

    2018-02-01

    The scattering process of weakly-bound nuclei at Coulomb barrier energies provides deep insights on the reaction dynamics induced by exotic nuclei. Within this framework, we measured for the first time the scattering process of the short-lived Radioactive Ion Beam (RIB) 8B (Sp = 0.1375 MeV) from a 208Pb target at 50 MeV beam energy. The 8B RIB was produced by means of the in-flight facility CRIB (RIKEN, Japan) with an average intensity on target of 10 kHz and a purity about 25%. Elastically scattering ions were detected in the angular range θc.m. = 10°-160° by means of the detector array EXPADES. A preliminary optical model analysis indicates a total reaction cross section of about 1 b, a value, once reduced, 2-3 times larger than those obtained for the reactions induced by the stable weakly-bound projectiles 6,7Li on a 208Pb target in the energy range around the Coulomb barrier.

  11. 8B + 208Pb Elastic Scattering at Coulomb Barrier Energies

    NASA Astrophysics Data System (ADS)

    La Commara, M.; Mazzocco, M.; Boiano, A.; Boiano, C.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Di Meo, P.; Grebosz, J.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lin, C. J.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Soramel, F.; Teranishi, T.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.

    2017-11-01

    The scattering process of weakly-bound nuclei at Coulomb barrier energies provides deep insights on the reaction dynamics induced by exotic nuclei. Within this framework, we measured for the first time the scattering process of the short-lived Radioactive Ion Beam (RIB) 8B (S p = 0.1375 MeV) from a 208Pb target at 50 MeV beam energy. The 8B RIB was produced by means of the in-flight facility CRIB (RIKEN, Japan) with an average intensity on target of 10 kHz and a purity about 25%. Elastically scattering ions were detected in the angular range θc.m. = 10°-160° by means of the detector array EXPADES. A preliminary optical model analysis indicates a total reaction cross section of about 1 b, a value, once reduced, 2-3 times larger than those obtained for the reactions induced by the stable weakly-bound projectiles 6,7Li on a 208Pb target in the energy range around the Coulomb barrier.

  12. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology.

    PubMed

    Pandit, Priti R; Fulekar, M H

    2017-08-01

    Worldwide consumption of hen eggs results in availability of large amount of discarded egg waste particularly egg shells. In the present study, the waste shells were utilized for the synthesis of highly active heterogeneous calcium oxide (CaO) nanocatalyst to transesterify dry biomass into methyl esters (biodiesel). The CaO nanocatalyst was synthesied by calcination-hydration-dehydration technique and fully characterized by infrared spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), brunauer-emmett-teller (BET) elemental and thermogravimetric analysis. TEM image showed that the nano catalyst had spherical shape with average particle size of 75 nm. BET analysis indicated that the catalyst specific surface area was 16.4 m 2  g -1 with average pore diameter of 5.07 nm. The effect of nano CaO catalyst was investigated by direct transesterification of dry biomass into biodiesel along with other reaction parameters such as catalyst ratio, reaction time and stirring rate. The impact of the transesterification reaction parameters and microalgal biodiesel yield were analyzed by response surface methodology based on a full factorial, central composite design. The significance of the predicted mode was verified and 86.41% microalgal biodiesel yield was reported at optimal parameter conditions 1.7% (w/w), catalyst ratio, 3.6 h reaction time and stirring rate of 140.6 rpm. The biodiesel conversion was determined by 1 H nuclear magnetic resonance spectroscopy (NMR). The fuel properties of prepared biodiesel were found to be highly comply with the biodiesel standard ASTMD6751 and EN14214. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Factors influencing the thermally-induced strength degradation of B/Al composites

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1982-01-01

    Literature data related to the thermally-induced strength degradation of B/Al composites were examined in the light of fracture theories based on reaction-controlled fiber weakening. Under the assumption of a parabolic time-dependent growth for the interfacial reaction product, a Griffith-type fracture model was found to yield simple equations whose predictions were in good agreement with data for boron fiber average strength and for B/Al axial fracture strain. The only variables in these equations were the time and temperature of the thermal exposure and an empirical factor related to fiber surface smoothness prior to composite consolidation. Such variables as fiber diameter and aluminum alloy composition were found to have little influence. The basic and practical implications of the fracture model equations are discussed.

  14. A preliminary study of head-up display assessment techniques. 2: HUD symbology and panel information search time

    NASA Technical Reports Server (NTRS)

    Guercio, J. G.; Haines, R. F.

    1978-01-01

    Twelve commercial pilots were shown 50 high-fidelity slides of a standard aircraft instrument panel with the airspeed, altitude, ADI, VSI, and RMI needles in various realistic orientations. Fifty slides showing an integrated head-up display (HUD) symbology containing an equivalent number of flight parameters as above (with flight path replacing VSI) were also shown. Each subject was told what flight parameter to search for just before each slide was exposed and was given as long as needed (12 sec maximum) to respond by verbalizing the parameter's displayed value. The results for the 100-percent correct data indicated that: there was no significant difference in mean reaction time (averaged across all five flight parameters) between the instrument panel and HUD slides; and a statistically significant difference in mean reaction time was found in responding to different flight parameters.

  15. A comparison investigation of optical, structural and luminescence properties of CdOxTe1-x and CdTexSe1-x nanoparticles prepared by a simple one pot method

    NASA Astrophysics Data System (ADS)

    Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.

    2018-04-01

    We present L-cysteine capped CdOXTe1-X and CdTeXSe1-X nanoparticles (NPs) prepared in one pot. The as-prepared CdOXTe1-X NPs were found to have a hexagonal crystal structure of CdTe with a cubic phase of CdO. There was, however, change in phase to cubic type when 2 mM of Se was introduced into the CdTe at 60 min of reaction time. The average crystallite sizes obtained from X-ray diffraction analysis for CdOXTe1-X and CdTeXSe1-X NPs were in the range of 10-36 nm. The diffraction peaks shifted to higher diffraction angle with longer growth time. Scanning electron microscope images display change in shape and size as reaction progress. Photoluminescence (PL) emission was observed to shift from 510-566 nm and 620-653 nm for CdOXTe1-X and CdTeXSe1-X NPs respectively followed by variation in the peak intensities. The emission spectra displayed a good symmetry and a narrow full width at half maximum ranging from 41 to 100 nm in both cases. The absorbance analysis of the as-prepared NPs displayed well-resolved absorption bands. The optical band gaps of the as-prepared NPs were found to decrease with increase in reaction time. Reaction parameters such as pH, reaction time, reaction temperature and the molar concentration could have major effects on the optical properties of the as-prepared nanoparticles hence their need to control them.

  16. The Effects of Team Leader Feedback on Situation Assessment in Distributed Anti-Air Warfare Teams

    DTIC Science & Technology

    1992-03-01

    period makes warning signs even more ambiguous, reaction times even shorter, the identity and motives of potential adversaries more vague and the...A Great liule Deal 7. On average, how many measuments did you take per trial (for the scenario trials just completed)? I I I I I I 0 2 4 6 8 10or

  17. Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction

    NASA Astrophysics Data System (ADS)

    Tuan, Nguyen Huy; Van Au, Vo; Khoa, Vo Anh; Lesnic, Daniel

    2017-05-01

    The identification of the population density of a logistic equation backwards in time associated with nonlocal diffusion and nonlinear reaction, motivated by biology and ecology fields, is investigated. The diffusion depends on an integral average of the population density whilst the reaction term is a global or local Lipschitz function of the population density. After discussing the ill-posedness of the problem, we apply the quasi-reversibility method to construct stable approximation problems. It is shown that the regularized solutions stemming from such method not only depend continuously on the final data, but also strongly converge to the exact solution in L 2-norm. New error estimates together with stability results are obtained. Furthermore, numerical examples are provided to illustrate the theoretical results.

  18. Numerical Simulation of Turbulent Combustion Using Vortex Methods

    DTIC Science & Technology

    1988-09-27

    laminar burning velocity times the flame length measured along the line of maximum reaction rate. Following the burning of the eddy core, the strain...is approximately the same as the flame length at t - 0. In the second stage, and as the eddy starts to roll up, the flame front forms a fold within the...Rp, which is the slope of the curve in Fig. 9, can be approximated by the product of the flame length times the average burning velocity along the

  19. Collaborative testing of turbulence models

    NASA Technical Reports Server (NTRS)

    Bradshaw, Peter; Launder, Brian E.; Lumley, John L.

    1991-01-01

    A review is given of an ongoing international project, in which data from experiments on, and simulations of, turbulent flows are distributed to developers of (time-averaged) engineering turbulence models. The predictions of each model are sent to the organizers and redistributed to all the modelers, plus some experimentalists and other experts (total approx. 120), for comment. The 'reaction time' of modelers has proved to be much longer than anticipated, partly because the comparisons with data have prompted many modelers to improve their models or numerics.

  20. Front-End Electron Transfer Dissociation Coupled to a 21 Tesla FT-ICR Mass Spectrometer for Intact Protein Sequence Analysis

    NASA Astrophysics Data System (ADS)

    Weisbrod, Chad R.; Kaiser, Nathan K.; Syka, John E. P.; Early, Lee; Mullen, Christopher; Dunyach, Jean-Jacques; English, A. Michelle; Anderson, Lissa C.; Blakney, Greg T.; Shabanowitz, Jeffrey; Hendrickson, Christopher L.; Marshall, Alan G.; Hunt, Donald F.

    2017-09-01

    High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., 60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed. [Figure not available: see fulltext.

  1. Synthesis of Transesterified Palm Olein-Based Polyol and Rigid Polyurethanes from this Polyol.

    PubMed

    Arniza, Mohd Zan; Hoong, Seng Soi; Idris, Zainab; Yeong, Shoot Kian; Hassan, Hazimah Abu; Din, Ahmad Kushairi; Choo, Yuen May

    Transesterification of palm olein with glycerol can increase the functionality by introducing additional hydroxyl groups to the triglyceride structure, an advantage compared to using palm olein directly as feedstock for producing palm-based polyol. The objective of this study was to synthesize transesterified palm olein-based polyol via a three-step reaction: (1) transesterification of palm olein, (2) epoxidation and (3) epoxide ring opening. Transesterification of palm olein yielded approximately 78 % monoglyceride and has an hydroxyl value of approximately 164 mg KOH g -1 . The effect of formic acid and hydrogen peroxide concentrations on the epoxidation reaction was studied. The relationships between epoxide ring-opening reaction time and residual oxirane oxygen content and hydroxyl value were monitored. The synthesized transesterified palm olein-based polyol has hydroxyl value between 300 and 330 mg KOH g -1 and average molecular weight between 1,000 and 1,100 Da. On the basis of the hydroxyl value and average molecular weight of the polyol, the transesterified palm olein-based polyol is suitable for producing rigid polyurethane foam, which can be designed to exhibit desirable properties. Rigid polyurethane foams were synthesized by substituting a portion of petroleum-based polyol with the transesterified palm olein-based polyol. It was observed that by increasing the amount of transesterified palm olein-based polyol, the core density and compressive strength were reduced but at the same time the insulation properties of the rigid polyurethane foam were improved.

  2. Microscopic calculations of the characteristics of radiative nuclear reactions for double-magic nuclei

    NASA Astrophysics Data System (ADS)

    Achakovskiy, Oleg; Kamerdzhiev, Sergei; Tselyaev, Victor; Shitov, Mikhail

    2016-01-01

    The neutron capture cross sections and average radiative widths Γγ of neutron resonances for two double-magic nuclei 132Sn and 208Pb have been calculated using the microscopic photon strength functions (PSF), which were obtained within the microscopic self-consistent version of the extended theory of finite Fermi systems in the time blocking approximation. For the first time, the microscopic PSFs have been obtained within the fully self-consistent approach with exact accounting for the single particle continuum (for 208Pb). The approach includes phonon coupling effects in addition to the standard RPA approach. The known Skyrme force has been used. The calculations of nuclear reaction characteristics have been performed with the EMPIRE 3.1 nuclear reaction code. Here, three nuclear level density (NLD) models have been used: the so-called phenomenological GSM, the EMPIRE specific (or Enhanced GSM) and the microscopical combinatorial HFB NLD models. For both considered characteristics we found a significant disagreement between the results obtained with the GSM and HFB NLD models. For 208Pb, a reasonable agreement has been found with systematic for the Γγ values with HFB NLD and with the experimental data for the HFB NLD average resonance spacing D0, while for these two quantities the differences between the values obtained with GSM and HFB NLD are of several orders of magnitude. The discrepancies between the results with the phenomenological EGLO PSF and microscopic RPA or TBA are much less for the same NLD model.

  3. Shallow temperature differences along the Deep Creek Range front, Idaho

    NASA Astrophysics Data System (ADS)

    Ore, H. T.; Wiegand, G. H.

    1990-02-01

    The extent of the solvolysis reaction of a tertiary butyl chloride solution placed in vials buried about 1.2 m below the ground surface is dependent on average temperature at that depth over the period of burial. This method is herein used to indicate differences in shallow temperature from the western flank of the Basin and Range Deep Creek Range front, about 5 km westward into Rockland Valley in southeastern Idaho. Ninety-three samples, distributed to allow determination of lateral and vertical sample-site variation in total reaction amount, were analyzed after being in place for 3 months. Results from two sample lines, 3.5 km apart, show that subsurface total reaction amount declines slightly for the first 1.6 km away from the mountain front, rises abruptly to several times initial reaction, slowly declines for the next several km, then tends to slowly rise again. Plots of extent of reaction vs distance for the two traverses are nearly parallel; in both the abrupt increase in total reaction coincides with a line of springs, suggesting that hydrologic activity is at least related to the effects noted.

  4. Ensemble Averaged Probability Density Function (APDF) for Compressible Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2012-01-01

    In this paper, we present a concept of the averaged probability density function (APDF) for studying compressible turbulent reacting flows. The APDF is defined as an ensemble average of the fine grained probability density function (FG-PDF) with a mass density weighting. It can be used to exactly deduce the mass density weighted, ensemble averaged turbulent mean variables. The transport equation for APDF can be derived in two ways. One is the traditional way that starts from the transport equation of FG-PDF, in which the compressible Navier- Stokes equations are embedded. The resulting transport equation of APDF is then in a traditional form that contains conditional means of all terms from the right hand side of the Navier-Stokes equations except for the chemical reaction term. These conditional means are new unknown quantities that need to be modeled. Another way of deriving the transport equation of APDF is to start directly from the ensemble averaged Navier-Stokes equations. The resulting transport equation of APDF derived from this approach appears in a closed form without any need for additional modeling. The methodology of ensemble averaging presented in this paper can be extended to other averaging procedures: for example, the Reynolds time averaging for statistically steady flow and the Reynolds spatial averaging for statistically homogeneous flow. It can also be extended to a time or spatial filtering procedure to construct the filtered density function (FDF) for the large eddy simulation (LES) of compressible turbulent reacting flows.

  5. Random-matrix approach to the statistical compound nuclear reaction at low energies using the Monte-Carlo technique [PowerPoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawano, Toshihiko

    2015-11-10

    This theoretical treatment of low-energy compound nucleus reactions begins with the Bohr hypothesis, with corrections, and various statistical theories. The author investigates the statistical properties of the scattering matrix containing a Gaussian Orthogonal Ensemble (GOE) Hamiltonian in the propagator. The following conclusions are reached: For all parameter values studied, the numerical average of MC-generated cross sections coincides with the result of the Verbaarschot, Weidenmueller, Zirnbauer triple-integral formula. Energy average and ensemble average agree reasonably well when the width I is one or two orders of magnitude larger than the average resonance spacing d. In the strong-absorption limit, the channel degree-of-freedommore » ν a is 2. The direct reaction increases the inelastic cross sections while the elastic cross section is reduced.« less

  6. Noncatalytic hydrogenation of naphthalene in nanosized membrane reactors with accumulated hydrogen and controlled adjustment of their reaction zone volumes

    NASA Astrophysics Data System (ADS)

    Soldatov, A. P.

    2017-05-01

    As part of ongoing studies aimed at designing the next generation of nanosized membrane reactors (NMRs) with accumulated hydrogen, the noncatalytic hydrogenation of naphthalene in pores of ceramic membranes (TRUMEM ultrafiltration membranes with D av = 50 and 90 nm) is performed for the first time, using hydrogen preadsorbed in a hybrid carbon nanostructure: mono- and multilayered oriented carbon nanotubes with graphene walls (OCNTGs) that form on inner pore surfaces. In this technique, the reaction proceeds in the temperature range of 330-390°C at contact times of 10-16 h. The feedstock is an 8% naphthalene solution in decane. The products are analyzed via chromatography on a quartz capillary column coated with polydimethylsiloxane (SE-30). It is established for the first time that in NMRs, the noncatalytic hydrogenation of naphthalene occurs at 370-390°C, forming 1,2,3,4-tetrahydronaphthalene in amounts of up to 0.61%. The rate constants and activation energy (123.5 kJ/mol) of the noncatalytic hydrogenation reaction are determined for the first time. The possibility of designing an NMR with an adjustable reaction zone volume is explored. Changes in the pore structure of the membranes after their modification with pyrocarbon nanosized crystallites (PNCs) are therefore studied as well. It is shown that lengthening the process time reduces pore size: within 23 h after the deposition of PNCs, the average pore radius ( r av) falls from 25 to 3.1 nm. The proposed approach would allow us to design nanoreactors of molecular size and conduct hydrogenation reactions within certain guidelines to synthesize new chemical compounds.

  7. The study of PDF turbulence models in combustion

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    The accurate prediction of turbulent combustion is still beyond reach for today's computation techniques. It is the consensus of the combustion profession that the predictions of chemically reacting flow were poor if conventional turbulence models were used. The main difficulty lies in the fact that the reaction rate is highly nonlinear, and the use of averaged temperature, pressure, and density produces excessively large errors. The probability density function (PDF) method is the only alternative at the present time that uses local instant values of the temperature, density, etc. in predicting chemical reaction rate, and thus it is the only viable approach for turbulent combustion calculations.

  8. Intraindividual variability in reaction time predicts cognitive outcomes 5 years later.

    PubMed

    Bielak, Allison A M; Hultsch, David F; Strauss, Esther; Macdonald, Stuart W S; Hunter, Michael A

    2010-11-01

    Building on results suggesting that intraindividual variability in reaction time (inconsistency) is highly sensitive to even subtle changes in cognitive ability, this study addressed the capacity of inconsistency to predict change in cognitive status (i.e., cognitive impairment, no dementia [CIND] classification) and attrition 5 years later. Two hundred twelve community-dwelling older adults, initially aged 64-92 years, remained in the study after 5 years. Inconsistency was calculated from baseline reaction time performance. Participants were assigned to groups on the basis of their fluctuations in CIND classification over time. Logistic and Cox regressions were used. Baseline inconsistency significantly distinguished among those who remained or transitioned into CIND over the 5 years and those who were consistently intact (e.g., stable intact vs. stable CIND, Wald (1) = 7.91, p < .01, Exp(β) = 1.49). Average level of inconsistency over time was also predictive of study attrition, for example, Wald (1) = 11.31, p < .01, Exp(β) = 1.24. For both outcomes, greater inconsistency was associated with a greater likelihood of being in a maladaptive group 5 years later. Variability based on moderately cognitively challenging tasks appeared to be particularly sensitive to longitudinal changes in cognitive ability. Mean rate of responding was a comparable predictor of change in most instances, but individuals were at greater relative risk of being in a maladaptive outcome group if they were more inconsistent rather than if they were slower in responding. Implications for the potential utility of intraindividual variability in reaction time as an early marker of cognitive decline are discussed. (c) 2010 APA, all rights reserved

  9. Calculations of Maxwellian-averaged cross sections and astrophysical reaction rates using the ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, and ENDF/B-VI.8 evaluated nuclear reaction data libraries

    NASA Astrophysics Data System (ADS)

    Pritychenko, B.; Mughaghab, S. F.; Sonzogni, A. A.

    2010-11-01

    We have calculated the Maxwellian-averaged cross sections and astrophysical reaction rates of the stellar nucleosynthesis reactions (n, γ), (n, fission), (n, p), (n, α), and (n, 2n) using the ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, and ENDF/B-VI.8 evaluated nuclear reaction data libraries. These four major nuclear reaction libraries were processed under the same conditions for Maxwellian temperatures (kT) ranging from 1 keV to 1 MeV. We compare our current calculations of the s-process nucleosynthesis nuclei with previous data sets and discuss the differences between them and the implications for nuclear astrophysics.

  10. Optimization of experimental conditions for composite biodiesel production from transesterification of mixed oils of Jatropha and Pongamia

    NASA Astrophysics Data System (ADS)

    Yogish, H.; Chandrashekara, K.; Pramod Kumar, M. R.

    2012-11-01

    India is looking at the renewable alternative sources of energy to reduce its dependence on import of crude oil. As India imports 70 % of the crude oil, the country has been greatly affected by increasing cost and uncertainty. Biodiesel fuel derived by the two step acid transesterification of mixed non-edible oils from Jatropha curcas and Pongamia (karanja) can meet the requirements of diesel fuel in the coming years. In the present study, different proportions of Methanol, Sodium hydroxide, variation of Reaction time, Sulfuric acid and Reaction Temperature were adopted in order to optimize the experimental conditions for maximum biodiesel yield. The preliminary studies revealed that biodiesel yield varied widely in the range of 75-95 % using the laboratory scale reactor. The average yield of 95 % was obtained. The fuel and chemical properties of biodiesel, namely kinematic viscosity, specific gravity, density, flash point, fire point, calorific value, pH, acid value, iodine value, sulfur content, water content, glycerin content and sulfated ash values were found to be within the limits suggested by Bureau of Indian Standards (BIS 15607: 2005). The optimum combination of Methanol, Sodium hydroxide, Sulfuric acid, Reaction Time and Reaction Temperature are established.

  11. Amphibole reaction rims as a record of pre-eruptive magmatic heating: An experimental approach

    USGS Publications Warehouse

    De Angelis, S. H.; Larsen, J.; Coombs, Michelle L.; Dunn, A.; Hayden, Leslie A.

    2015-01-01

    Magmatic minerals record the pre-eruptive timescales of magma ascent and mixing in crustal reservoirs and conduits. Investigations of the mineral records of magmatic processes are fundamental to our understanding of what controls eruption style, as ascent rates and magma mixing processes are well known to control and/or trigger potentially hazardous explosive eruptions. Thus, amphibole reaction rims are often used to infer pre-eruptive magma dynamics, and in particular to estimate magma ascent rates. However, while several experimental studies have investigated amphibole destabilization during decompression, only two investigated thermal destabilization relevant to magma mixing processes. This study examines amphibole decomposition experimentally through isobaric heating of magnesio-hornblende phenocrysts within a natural high-silica andesite glass. The experiments first equilibrated for 24 h at 870 °C and 140 MPa at H2O-saturated conditions and ƒO2 ∼ Re–ReO prior to rapid heating to 880, 900, or 920 °C and hold times of 3–48 h. At 920 °C, rim thicknesses increased from 17 μm after 3 h, to 55 μm after 12 h, and became pseudomorphs after longer durations. At 900 °C, rim thicknesses increased from 7 μm after 3 h, to 80 μm after 24 h, to pseudomorphs after longer durations. At 880 °C, rim thicknesses increased from 7 μm after 3 h, to 18 μm after 36 h, to pseudomorphs after 48 h. Reaction rim microlites vary from 5–16 μm in size, with no systematic relationship between crystal size and the duration or magnitude of heating. Time-averaged rim microlite growth rates decrease steadily with increasing experimental duration (from  to 3.1 to ). Time-averaged microlite nucleation rates also decrease with increasing experimental duration (from  to 5.3 mm−3 s−1). There is no systematic relationship between time-averaged growth or nucleation rates and the magnitude of the heating step. Ortho- and clinopyroxene together constitute 57–90 modal % mineralogy in each reaction rim. At constant temperature, clinopyroxene abundances decrease with increasing experimental duration, from 72 modal % (3 h at 900 °C) to 0% (48 h at 880 °C, and 36 h at 900 and 920 °C). Fe–Ti oxides increase from 6–12 modal % (after 3–6 h) to 26–34 modal % (after 36–48 h). Plagioclase occurs in relatively minor amounts (<1–11 modal %), with anorthite contents that increase from An56 to An88 from 3 to 36 h of heating. Distal glass compositions (>500 μm from reacted amphibole) are consistent with inter-microlite rim glasses (71.3–77.7 wt.% SiO2) within a given experiment and there is a weakly positive correlation between increasing run duration and inter-microlite melt SiO2 (68.9–78.5 wt.%). Our results indicate that experimental heating-induced amphibole reaction rims have thicknesses, textures, and mineralogies consistent with many of the natural reaction rims seen at arc-andesite volcanoes. They are also texturally consistent with experimental decompression reaction rims. On this basis it may be challenging to distinguish between decompression and heating mechanisms in nature.

  12. Motor ability and inhibitory processes in children with ADHD: a neuroelectric study.

    PubMed

    Hung, Chiao-Ling; Chang, Yu-Kai; Chan, Yuan-Shuo; Shih, Chia-Hao; Huang, Chung-Ju; Hung, Tsung-Min

    2013-06-01

    The purpose of the current study was to examine the relationship between motor ability and response inhibition using behavioral and electrophysiological indices in children with ADHD. A total of 32 participants were recruited and underwent a motor ability assessment by administering the Basic Motor Ability Test-Revised (BMAT) as well as the Go/No-Go task and event-related potential (ERP) measurements at the same time. The results indicated that the BMAT scores were positively associated with the behavioral and ERP measures. Specifically, the BMAT average score was associated with a faster reaction time and higher accuracy, whereas higher BMAT subset scores predicted a shorter P3 latency in the Go condition. Although the association between the BMAT average score and the No-Go accuracy was limited, higher BMAT average and subset scores predicted a shorter N2 and P3 latency and a larger P3 amplitude in the No-Go condition. These findings suggest that motor abilities may play roles that benefit the cognitive performance of ADHD children.

  13. Performance evaluation of electrochemical concentration cell ozonesondes

    NASA Technical Reports Server (NTRS)

    Torres, A. L.; Bandy, A. R.

    1977-01-01

    Laboratory calibrations of more than a hundred electrochemical concentration cell (ECC) ozonesondes were determined relative to UV-photometry. The average intercept and slope, 0 plus or minus 5 nb and 0.96 plus or minus 0.06, respectively, indicate reasonable agreement with UV photometry, but with considerable variation from one ECC ozonesonde to another. The time required to reach 85% of the final reaction to a step-change in ozone concentration was found to average 51 seconds. Application of the individual calibrations to 20 sets of 1976 flight data reduced the average of the differences between ozonesonde and Dobson spectrophotometric measurements of total ozone from 3.9 to 1.3%. A similar treatment of a set of 10 1977 flight records improved the average ECC-Dobson agreement from -8.5 to -1.4%. Although systematic differences were reduced, no significant effect on the random variations was evident.

  14. Quantitation of 47 human tear proteins using high resolution multiple reaction monitoring (HR-MRM) based-mass spectrometry.

    PubMed

    Tong, Louis; Zhou, Xi Yuan; Jylha, Antti; Aapola, Ulla; Liu, Dan Ning; Koh, Siew Kwan; Tian, Dechao; Quah, Joanne; Uusitalo, Hannu; Beuerman, Roger W; Zhou, Lei

    2015-02-06

    Tear proteins are intimately related to the pathophysiology of the ocular surface. Many recent studies have demonstrated that the tear is an accessible fluid for studying eye diseases and biomarker discovery. This study describes a high resolution multiple reaction monitoring (HR-MRM) approach for developing assays for quantification of biologically important tear proteins. Human tear samples were collected from 1000 subjects with no eye complaints (411 male, 589 female, average age: 55.5±14.5years) after obtaining informed consent. Tear samples were collected using Schirmer's strips and pooled into a single global control sample. Quantification of proteins was carried out by selecting "signature" peptides derived by trypsin digestion. A 1-h nanoLC-MS/MS run was used to quantify the tear proteins in HR-MRM mode. Good reproducibility of signal intensity (using peak areas) was demonstrated for all 47 HR-MRM assays with an average coefficient of variation (CV%) of 4.82% (range: 1.52-10.30%). All assays showed consistent retention time with a CV of less than 0.80% (average: 0.57%). HR-MRM absolute quantitation of eight tear proteins was demonstrated using stable isotope-labeled peptides. In this study, we demonstrated for the first time the technique to quantify 47 human tear proteins in HR-MRM mode using approximately 1μl of human tear sample. These multiplexed HR-MRM-based assays show great promise of further development for biomarker validation in human tear samples. Both discovery-based and targeted quantitative proteomics can be achieved in a single quadrupole time-of-flight mass spectrometer platform (TripleTOF 5600 system). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Comparison of different spatial transformations applied to EEG data: A case study of error processing.

    PubMed

    Cohen, Michael X

    2015-09-01

    The purpose of this paper is to compare the effects of different spatial transformations applied to the same scalp-recorded EEG data. The spatial transformations applied are two referencing schemes (average and linked earlobes), the surface Laplacian, and beamforming (a distributed source localization procedure). EEG data were collected during a speeded reaction time task that provided a comparison of activity between error vs. correct responses. Analyses focused on time-frequency power, frequency band-specific inter-electrode connectivity, and within-subject cross-trial correlations between EEG activity and reaction time. Time-frequency power analyses showed similar patterns of midfrontal delta-theta power for errors compared to correct responses across all spatial transformations. Beamforming additionally revealed error-related anterior and lateral prefrontal beta-band activity. Within-subject brain-behavior correlations showed similar patterns of results across the spatial transformations, with the correlations being the weakest after beamforming. The most striking difference among the spatial transformations was seen in connectivity analyses: linked earlobe reference produced weak inter-site connectivity that was attributable to volume conduction (zero phase lag), while the average reference and Laplacian produced more interpretable connectivity results. Beamforming did not reveal any significant condition modulations of connectivity. Overall, these analyses show that some findings are robust to spatial transformations, while other findings, particularly those involving cross-trial analyses or connectivity, are more sensitive and may depend on the use of appropriate spatial transformations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Factors influencing the thermally-induced strength degradation of B/Al composites

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1983-01-01

    Literature data related to the thermally-induced strength degradation of B/Al composites were examined in the light of fracture theories based on reaction-controlled fiber weakening. Under the assumption of a parabolic time-dependent growth for the interfacial reaction product, a Griffith-type fracture model was found to yield simple equations whose predictions were in good agreement with data for boron fiber average strength and for B/Al axial fracture strain. The only variables in these equations were the time and temperature of the thermal exposure and an empirical factor related to fiber surface smoothness prior to composite consolidation. Such variables as fiber diameter and aluminum alloy composition were found to have little influence. The basic and practical implications of the fracture model equations are discussed. Previously announced in STAR as N82-24297

  17. Rare reaction channels in real-time time-dependent density functional theory: the test case of electron attachment

    NASA Astrophysics Data System (ADS)

    Lacombe, Lionel; Dinh, P. Huong Mai; Reinhard, Paul-Gerhard; Suraud, Eric; Sanche, Leon

    2015-08-01

    We present an extension of standard time-dependent density functional theory (TDDFT) to include the evaluation of rare reaction channels, taking as an example of application the theoretical modelling of electron attachment to molecules. The latter process is of great importance in radiation-induced damage of biological tissue for which dissociative electron attachment plays a decisive role. As the attachment probability is very low, it cannot be extracted from the TDDFT propagation whose mean field provides an average over various reaction channels. To extract rare events, we augment TDDFT by a perturbative treatment to account for the occasional jumps, namely electron capture in our test case. We apply the modelling to electron attachment to H2O, H3O+, and (H2O)2. Dynamical calculations have been done at low energy (3-16 eV). We explore, in particular, how core-excited states of the targets show up as resonances in the attachment probability. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  18. Static and dynamic balance performance in patients with osteoporotic vertebral compression fracture.

    PubMed

    Wang, Ling-Yi; Liaw, Mei-Yun; Huang, Yu-Chi; Lau, Yiu-Chung; Leong, Chau-Peng; Pong, Ya-Ping; Chen, Chia-Lin

    2013-01-01

    Patients with osteoporotic vertebral compression fracture (OVCF) have postural changes and increased risk of falling. The aim of this study is to compare balance characteristics between patients with OVCF and healthy control subjects. Patients with severe OVCF and control subjects underwent computerised dynamic posturography (CDP) in this case-control study. Forty-seven OVCF patients and 45 controls were recruited. Compared with the control group, the OVCF group had significantly decreased average stability; maximal stability under the `eye open with swayed support surface' (CDP subtest 4) and 'eye closed with swayed support surface' conditions (subtest 5); and decreased ankle strategy during subtests 4 and 5 and under the `swayed vision with swayed support surface' condition (subtest 6). The OVCF group fell more frequently during subtests 5 and 6 and had longer overall reaction time and longer reaction time when moving backward during the directional control test. OVCF patients had poorer static and dynamic balance performance compared with normal control. They had decreased postural stability and ankle strategy with increased fall frequency on a swayed surface; they also had longer reaction times overall and in the backward direction. Therefore, we suggest balance rehabilitation for patients with OVCF to prevent fall.

  19. Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory.

    PubMed

    Tiwari, Ambuj; Ensing, Bernd

    2016-12-22

    Outer sphere electron transfer between two ions in aqueous solution is a rare event on the time scale of first principles molecular dynamics simulations. We have used transition path sampling to generate an ensemble of reactive trajectories of the self-exchange reaction between a pair of Ru 2+ and Ru 3+ ions in water. To distinguish between the reactant and product states, we use as an order parameter the position of the maximally localised Wannier center associated with the transferring electron. This allows us to align the trajectories with respect to the moment of barrier crossing and compute statistical averages over the path ensemble. We compare our order parameter with two typical reaction coordinates used in applications of Marcus theory of electron transfer: the vertical gap energy and the solvent electrostatic potential at the ions.

  20. Topography of Slow Sigma Power during Sleep is Associated with Processing Speed in Preschool Children.

    PubMed

    Doucette, Margaret R; Kurth, Salome; Chevalier, Nicolas; Munakata, Yuko; LeBourgeois, Monique K

    2015-11-04

    Cognitive development is influenced by maturational changes in processing speed, a construct reflecting the rapidity of executing cognitive operations. Although cognitive ability and processing speed are linked to spindles and sigma power in the sleep electroencephalogram (EEG), little is known about such associations in early childhood, a time of major neuronal refinement. We calculated EEG power for slow (10-13 Hz) and fast (13.25-17 Hz) sigma power from all-night high-density electroencephalography (EEG) in a cross-sectional sample of healthy preschool children (n = 10, 4.3 ± 1.0 years). Processing speed was assessed as simple reaction time. On average, reaction time was 1409 ± 251 ms; slow sigma power was 4.0 ± 1.5 μV²; and fast sigma power was 0.9 ± 0.2 μV². Both slow and fast sigma power predominated over central areas. Only slow sigma power was correlated with processing speed in a large parietal electrode cluster (p < 0.05, r ranging from -0.6 to -0.8), such that greater power predicted faster reaction time. Our findings indicate regional correlates between sigma power and processing speed that are specific to early childhood and provide novel insights into the neurobiological features of the EEG that may underlie developing cognitive abilities.

  1. Rate and reaction probability of the surface reaction between ozone and dihydromyrcenol measured in a bench scale reactor and a room-sized chamber

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Morrison, Glenn C.

    2012-02-01

    Low volatility terpenoids emitted from consumer products can react with ozone on surfaces and may significantly alter concentrations of ozone, terpenoids and reaction products in indoor air. We measured the reaction probability and a second-order surface-specific reaction rate for the ozonation of dihydromyrcenol, a representative indoor terpenoid, adsorbed onto polyvinylchloride (PVC), glass, and latex paint coated spheres. The reaction probability ranged from (0.06-8.97) × 10 -5 and was very sensitive to humidity, substrate and mass adsorbed. The average surface reaction probability is about 10 times greater than that for the gas-phase reaction. The second-order surface-specific rate coefficient ranged from (0.32-7.05) × 10 -15 cm 4 s -1 molecule -1and was much less sensitive to humidity, substrate, or mass adsorbed. We also measured the ozone deposition velocity due to adsorbed dihydromyrcenol on painted drywall in a room-sized chamber, Based on that, we calculated the rate coefficient ((0.42-1.6) × 10 -15 cm 4 molecule -1 s -1), which was consistent with that derived from bench-scale experiments for the latex paint under similar conditions. We predict that more than 95% of dihydromyrcenol oxidation takes place on indoor surfaces, rather than in building air.

  2. MO-A-BRD-06: In Vivo Cherenkov Video Imaging to Verify Whole Breast Irradiation Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R; Glaser, A; Jarvis, L

    Purpose: To show in vivo video imaging of Cherenkov emission (Cherenkoscopy) can be acquired in the clinical treatment room without affecting the normal process of external beam radiation therapy (EBRT). Applications of Cherenkoscopy, such as patient positioning, movement tracking, treatment monitoring and superficial dose estimation, were examined. Methods: In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the radiation pulses, during 10 fractions of the treatment. Images from different treatment days were compared by calculating the 2-D correlations corresponding to the averaged image. Anmore » edge detection algorithm was utilized to highlight biological features, such as the blood vessels. Superficial dose deposited at the sampling depth were derived from the Eclipse treatment planning system (TPS) and compared with the Cherenkov images. Skin reactions were graded weekly according to the Common Toxicity Criteria and digital photographs were obtained for comparison. Results: Real time (fps = 4.8) imaging of Cherenkov emission was feasible and feasibility tests indicated that it could be improved to video rate (fps = 30) with system improvements. Dynamic field changes due to fast MLC motion were imaged in real time. The average 2-D correlation was about 0.99, suggesting the stability of this imaging technique and repeatability of patient positioning was outstanding. Edge enhanced images of blood vessels were observed, and could serve as unique biological markers for patient positioning and movement tracking (breathing). Small discrepancies exists between the Cherenkov images and the superficial dose predicted from the TPS but the former agreed better with actual skin reactions than did the latter. Conclusion: Real time Cherenkoscopy imaging during EBRT is a novel imaging tool that could be utilized for patient positioning, movement tracking, treatment monitoring, superficial dose and skin reaction estimation and prediction.« less

  3. Reduction of production rate in Y-shaped microreactors in the presence of viscoelasticity.

    PubMed

    Helisaz, Hamed; Saidi, Mohammad Hassan; Sadeghi, Arman

    2017-10-16

    The viscoelasticity effects on the reaction-diffusion rates in a Y-shaped microreactor are studied utilizing the PTT rheological model. The flow is assumed to be fully developed and considered to be created under a combined action of electroosmotic and pressure forces. In general, finite-volume-based numerical simulations are conducted to handle the problem; however, analytical solutions based on the depthwise averaging approach are also obtained for the case for which there is no reaction between the inlet components. The analytical solutions are found to predict accurate results when the width to height ratio is at least 10 and acceptable results for lower aspect ratios. An investigation of the viscoelasticity effect reveals that it is accompanied by a significant reduction of the production rate and the production efficiency, defined as the ratio of the average product concentration to the inlet concentration of the limiting reactant. In addition, this effect gives rise to a more uniform transport with more symmetric concentration distributions. The pressure effects on the reaction-diffusion rates are also pronounced in the presence of viscoelasticity. Finally, the influences of the product diffusivity are investigated for the first time revealing that the lower it is the thinner the area of significant production becomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Helium escape from the Earth's atmosphere - The charge exchange mechanism revisited

    NASA Technical Reports Server (NTRS)

    Lie-Svendsen, O.; Rees, M. H.; Stamnes, K.

    1992-01-01

    We have studied the escape of neutral helium from the terrestrial atmosphere through exothermic charge exchange reactions between He(+) ions and the major atmospheric constituents N2, O2 and O. Elastic collisions with the neutral background particles were treated quantitatively using a recently developed kinetic theory approach. An interhemispheric plasma transport model was employed to provide a global distribution of He(+) ions as a function of altitude, latitude and local solar time and for different levels of solar ionization. Combining these ion densities with neutral densities from an MSIS model and best estimates for the reaction rate coefficients of the charge exchange reactions, we computed the global distribution of the neutral He escape flux. The escape rates show large diurnal and latitudinal variations, while the global average does not vary by more than a factor of three over a solar cycle. We find that this escape mechanism is potentially important for the overall balance of helium in the Earth's atmosphere. However, more accurate values for the reaction rate coefficients of the charge exchange reactions are required to make a definitive assessment of its importance.

  5. Theoretical and computer models of detonation in solid explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarver, C.M.; Urtiew, P.A.

    1997-10-01

    Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states,more » which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.« less

  6. Response surface methodology applied to the study of the microwave-assisted synthesis of quaternized chitosan.

    PubMed

    dos Santos, Danilo Martins; Bukzem, Andrea de Lacerda; Campana-Filho, Sérgio Paulo

    2016-03-15

    A quaternized derivative of chitosan, namely N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (QCh), was synthesized by reacting glycidyltrimethylammonium chloride (GTMAC) and chitosan (Ch) in acid medium under microwave irradiation. Full-factorial 2(3) central composite design and response surface methodology (RSM) were applied to evaluate the effects of molar ratio GTMAC/Ch, reaction time and temperature on the reaction yield, average degree of quaternization (DQ) and intrinsic viscosity ([η]) of QCh. The molar ratio GTMAC/Ch was the most important factor affecting the response variables and RSM results showed that highly substituted QCh (DQ = 71.1%) was produced at high yield (164%) when the reaction was carried out for 30min. at 85°C by using molar ratio GTMAC/Ch 6/1. Results showed that microwave-assisted synthesis is much faster (≤30min.) as compared to conventional reaction procedures (>4h) carried out in similar conditions except for the use of microwave irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. O-Methylisourea Can React with the α-Amino Group of Lysine: Implications for the Analysis of Reactive Lysine

    PubMed Central

    2017-01-01

    The specificity of O-methylisourea (OMIU) to bind to the ε-amino group of Lys, an important supposition for the OMIU-reactive Lys analysis of foods, feeds, ingredients, and digesta, was investigated. Crystalline l-Lys incubated under standard conditions with OMIU resulted in low homoarginine recoveries. The reaction of OMIU with the α-amino group of Lys was confirmed by MS analysis, with double derivatized Lys being identified. None of the changes in reaction conditions (OMIU pH, OMIU to Lys ratio, and reaction time) with crystalline l-Lys resulted in 100% recovery of homoarginine. The average free Lys content in ileal digesta of growing pigs and broilers was found to be 13% of total Lys, which could result in a significant underestimation of the reactive Lys content. The reaction of OMIU with α-amino groups may necessitate analysis of free Lys to accurately quantify reactive lysine in samples containing a large proportion of Lys with a free α-amino group. PMID:28059513

  8. O-Methylisourea Can React with the α-Amino Group of Lysine: Implications for the Analysis of Reactive Lysine.

    PubMed

    Hulshof, Tetske G; Rutherfurd, Shane M; Sforza, Stefano; Bikker, Paul; van der Poel, Antonius F B; Hendriks, Wouter H

    2017-02-01

    The specificity of O-methylisourea (OMIU) to bind to the ε-amino group of Lys, an important supposition for the OMIU-reactive Lys analysis of foods, feeds, ingredients, and digesta, was investigated. Crystalline l-Lys incubated under standard conditions with OMIU resulted in low homoarginine recoveries. The reaction of OMIU with the α-amino group of Lys was confirmed by MS analysis, with double derivatized Lys being identified. None of the changes in reaction conditions (OMIU pH, OMIU to Lys ratio, and reaction time) with crystalline l-Lys resulted in 100% recovery of homoarginine. The average free Lys content in ileal digesta of growing pigs and broilers was found to be 13% of total Lys, which could result in a significant underestimation of the reactive Lys content. The reaction of OMIU with α-amino groups may necessitate analysis of free Lys to accurately quantify reactive lysine in samples containing a large proportion of Lys with a free α-amino group.

  9. Construction of an Immobilized Thermophilic Esterase on Epoxy Support for Poly(ε-caprolactone) Synthesis.

    PubMed

    Ren, Hui; Xing, Zhen; Yang, Jiebing; Jiang, Wei; Zhang, Gang; Tang, Jun; Li, Quanshun

    2016-06-18

    Developing an efficient immobilized enzyme is of great significance for improving the operational stability of enzymes in poly(ε-caprolactone) synthesis. In this paper, a thermophilic esterase AFEST from the archaeon Archaeoglobus fulgidus was successfully immobilized on the epoxy support Sepabeads EC-EP via covalent attachment, and the immobilized enzyme was then employed as a biocatalyst for poly(ε-caprolactone) synthesis. The enzyme loading and recovered activity of immobilized enzyme was measured to be 72 mg/g and 10.4 U/mg using p-nitrophenyl caprylate as the substrate at 80 °C, respectively. Through the optimization of reaction conditions (enzyme concentration, temperature, reaction time and medium), poly(ε-caprolactone) was obtained with 100% monomer conversion and low number-average molecular weight (Mn < 1300 g/mol). Further, the immobilized enzyme exhibited excellent reusability, with monomer conversion values exceeding 75% during 15 batch reactions. Finally, poly(ε-caprolactone) was enzymatically synthesized with an isolated yield of 75% and Mn value of 3005 g/mol in a gram-scale reaction.

  10. Characterization and emulsifying properties of β-lactoglobulin-gum Acacia Seyal conjugates prepared via the Maillard reaction.

    PubMed

    Bi, Binwei; Yang, Hao; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O

    2017-01-01

    Gum Acacia Seyal (ASY) is less valued than is gum Acacia Senegal, due to its poor emulsifying ability. The present study investigated the Maillard reaction between ASY and β-lactoglobulin (BLG) and its impact on the emulsifying properties of ASY. The reaction products of BLG/ASY mixture (r=1/4), prepared by dry-heating at 60°C and a relative humidity of 79%, as a function of incubation time, were characterized by SDS-PAGE, GPC-MALLS and DSC. The results showed that 12-24h of dry-heating under the given conditions was sufficient for conjugation, meanwhile avoiding the formation of deeply coloured and insoluble melanoidins. More than 64% of the protein was incorporated into ASY, resulting in a two-fold increase in arabinogalactan-protein (AGP) content and 3.5 times increase in weight-average molecular mass of ASY. The conjugation with BLG markedly improved the stability of ASY-stabilized emulsions and their resistance against severe conditions, such as low pH and high saline conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Clinical history as a predictor of penicillin skin test outcome.

    PubMed

    Wong, Benjamin B L; Keith, Paul K; Waserman, Susan

    2006-08-01

    Up to 10% of the population reports an "allergy" to penicillin, whereas approximately 1.1% has positive penicillin skin test results. Where penicillin skin tests are unavailable, some have advocated using history to decide whether to use a penicillin-related antibiotic. To determine if clinical history predicts penicillin skin test results. Retrospective medical record review of 94 consecutive patients who had previously taken penicillin referred for penicillin allergy. Case histories were taken, penicillin skin tests performed, and an oral challenge recommended if skin test results were negative. Of 91 cases studied, the average patient age was 27 years (range, 6 months to 82 years; 36% female). Fifty-two (57%) experienced hives as their main adverse reaction. Sixteen (18%) had at least 1 positive test result. Of this group, 9 had hives as their main symptom, whereas 1 had respiratory problems and 1 had angioedema. Most patients with positive skin test results had experienced their reaction at least 3 years ago. Regression analysis showed that age, sex, and clinical history, including type of reaction, time of reaction after penicillin ingestion, or time since the last reaction, were not associated with skin test positivity. Seventy-two (96%) of the 75 patients who had negative skin test results underwent oral challenge. Seventy had negative challenge results. The negative predictive value of a negative penicillin skin test result was 97%. Clinical history was not predictive of subsequent penicillin skin test results.

  12. Investigation of the speed of reaction on external stimulus in schizophrenic psychosis.

    PubMed

    Zampera, E

    1997-06-01

    In 30 schizophrenic examinees, the latention time was measured. This time is referred to as an interval between the start of the stimulus and the response to the stimulus in the skin-galvanic reflex. Elementary stimulation has been applied, using device's timer tone and clapping of hands, which should simulate and associate the thunderclap. The intensity of psychosis was measured according to the Metric scale of psychotic behavior by Rogina, while the intensity of anxiety was measured by psychological tests: Rorschach's psycho-diagnostic test and Spillberger's questionnaire for anxiety. The reaction to the stimulus and latention time were registered using polygraph unit in order to record skin-galvanic reflex. The research was performed at two separate time points: prior to the therapy with derivatives of the phenothiazine group (the experimental examination group), and 25 days after the therapy (control group). The research has shown that the latention time in schizophrenic examinees does not significantly differ from the corresponding time in healthy controls, and it averages 2.30 seconds. Furthermore, no statistically significant difference in latention time before and after the therapy was observed. However, before the therapy started, i.e. in experimental group," the examinees who were psychotic to a greater extent have shown longer latention than those less psychotic. Additional finding was that the examinees from experimental group who were more anxious according to psychological tests have also shown longer latention time. After the therapy, the reaction to the external stimulus was stronger, which was expressed in increased reaction amplitude in skin-galvanic reflex. The latention time was prolonged, especially in case of examinees that were psychotic to a smaller extent before the therapy. We can conclude that so-called transformed psychotic anxiety was replaced after the therapy with a "new" anxiety-existential fear, i.e. the stronger anxious expectation and confusion appeared because the anxiety in its "free-floating" form remained very high. After the therapy, psychotic protection failed to appear and the reaction characteristics are a consequence of the delaying the confrontation with reality, which was registered as a prolonged latention time, i.e. response to external stimulus.

  13. Computational methods for diffusion-influenced biochemical reactions.

    PubMed

    Dobrzynski, Maciej; Rodríguez, Jordi Vidal; Kaandorp, Jaap A; Blom, Joke G

    2007-08-01

    We compare stochastic computational methods accounting for space and discrete nature of reactants in biochemical systems. Implementations based on Brownian dynamics (BD) and the reaction-diffusion master equation are applied to a simplified gene expression model and to a signal transduction pathway in Escherichia coli. In the regime where the number of molecules is small and reactions are diffusion-limited predicted fluctuations in the product number vary between the methods, while the average is the same. Computational approaches at the level of the reaction-diffusion master equation compute the same fluctuations as the reference result obtained from the particle-based method if the size of the sub-volumes is comparable to the diameter of reactants. Using numerical simulations of reversible binding of a pair of molecules we argue that the disagreement in predicted fluctuations is due to different modeling of inter-arrival times between reaction events. Simulations for a more complex biological study show that the different approaches lead to different results due to modeling issues. Finally, we present the physical assumptions behind the mesoscopic models for the reaction-diffusion systems. Input files for the simulations and the source code of GMP can be found under the following address: http://www.cwi.nl/projects/sic/bioinformatics2007/

  14. Efficient FeCl3/SiO2 as heterogeneous nanocatalysis for the synthesis of benzimidazoles under mild conditions

    NASA Astrophysics Data System (ADS)

    Taher, Mohammad Ali; Karami, Changiz; Arabi, Mehdi Sheikh; Ahmadian, Hossein; Karami, Yasaman

    2016-11-01

    Iron(III) supported on nano silica as a new catalyst has been synthesized. Structural properties of this complex have been studied by TEM, SEM and EDX. The average crystalline size of Iron(III) supported on nano silica is 30-50 nm. Catalytic activity of this catalyst has been investigated by synthesis of benzimidazoles from 1, 2-diaminobenzene and aromatic aldehydes, and also the other variables investigated such as the amount of catalyst, reaction temperature and the effect of various solvents are also studied. The present procedure offers several advantages such as short reaction time, simple workup, recovery and reusability of the catalyst.

  15. A kinetic model for estimating net photosynthetic rates of cos lettuce leaves under pulsed light.

    PubMed

    Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro

    2015-04-01

    Time-averaged net photosynthetic rate (P n) under pulsed light (PL) is known to be affected by the PL frequency and duty ratio, even though the time-averaged photosynthetic photon flux density (PPFD) is unchanged. This phenomenon can be explained by considering that photosynthetic intermediates (PIs) are pooled during light periods and then consumed by partial photosynthetic reactions during dark periods. In this study, we developed a kinetic model to estimate P n of cos lettuce (Lactuca sativa L. var. longifolia) leaves under PL based on the dynamics of the amount of pooled PIs. The model inputs are average PPFD, duty ratio, and frequency; the output is P n. The rates of both PI accumulation and consumption at a given moment are assumed to be dependent on the amount of pooled PIs at that point. Required model parameters and three explanatory variables (average PPFD, frequency, and duty ratio) were determined for the simulation using P n values under PL based on several combinations of the three variables. The model simulation for various PL levels with a wide range of time-averaged PPFDs, frequencies, and duty ratios further demonstrated that P n under PL with high frequencies and duty ratios was comparable to, but did not exceed, P n under continuous light, and also showed that P n under PL decreased as either frequency or duty ratio was decreased. The developed model can be used to estimate P n under various light environments where PPFD changes cyclically.

  16. Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects.

    PubMed Central

    Jokeit, H; Makeig, S

    1994-01-01

    Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783

  17. High pressure stopped-flow apparatus for the rapid mixing and subsequent study of two fluids under high hydrostatic pressures

    NASA Astrophysics Data System (ADS)

    Karan, Daniel M.; Macey, Robert I.

    1980-08-01

    A stopped-flow apparatus is described for the rapid mixing and subsequent study of two dissimilar fluids under pressures up to 1200 bar. The device consists of two identical pressure chambers which contain the two fluids, a third pressure chamber which contains gas to maintain the pressure in the system, an optical port for photometric observation, and various connections. The device has been used to measure reaction times on the order of a hundred milliseconds to tens of seconds, using a maximum of 2 ml of each reagent per experimental determination. The dead time is found to be 5-25 ms with minium average flow velocities of 2.0 m/s. The construction and operation of the device are described and examples of water transport data in red blood cells and the bromophenolblue indicated chemical reaction of NaHCO3 and HCl under pressure are presented.

  18. Rethinking spontaneous giving: Extreme time pressure and ego-depletion favor self-regarding reactions.

    PubMed

    Capraro, Valerio; Cococcioni, Giorgia

    2016-06-02

    Previous experimental studies suggest that cooperation in one-shot anonymous interactions is, on average, spontaneous, rather than calculative. To explain this finding, it has been proposed that people internalize cooperative heuristics in their everyday life and bring them as intuitive strategies in new and atypical situations. Yet, these studies have important limitations, as they promote intuitive responses using weak time pressure or conceptual priming of intuition. Since these manipulations do not deplete participants' ability to reason completely, it remains unclear whether cooperative heuristics are really automatic or they emerge after a small, but positive, amount of deliberation. Consistent with the latter hypothesis, we report two experiments demonstrating that spontaneous reactions in one-shot anonymous interactions tend to be egoistic. In doing so, our findings shed further light on the cognitive underpinnings of cooperation, as they suggest that cooperation in one-shot interactions is not automatic, but appears only at later stages of reasoning.

  19. A new method for solving the quantum hydrodynamic equations of motion: application to two-dimensional reactive scattering.

    PubMed

    Pauler, Denise K; Kendrick, Brian K

    2004-01-08

    The de Broglie-Bohm hydrodynamic equations of motion are solved using a meshless method based on a moving least squares approach and an arbitrary Lagrangian-Eulerian frame of reference. A regridding algorithm adds and deletes computational points as needed in order to maintain a uniform interparticle spacing, and unitary time evolution is obtained by propagating the wave packet using averaged fields. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. The methodology is applied to a two-dimensional model collinear reaction with an activation barrier. Reaction probabilities are computed as a function of both time and energy, and are in excellent agreement with those based on the quantum trajectory method. (c) 2004 American Institute of Physics

  20. Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA).

    PubMed

    Donatello, S; Tong, D; Cheeseman, C R

    2010-01-01

    The recovery of phosphorus from sewage sludge ash samples obtained from 7 operating sludge incinerators in the UK using a sulfuric acid washing procedure to produce a technical grade phosphoric acid product has been investigated. The influences of reaction time, sulfuric acid concentration, liquid to solid ratio and source of ISSA on P recovery have been examined. The optimised conditions were the minimum stoichiometric acid requirement, a reaction time of 120 min and a liquid to solid ratio of 20. Under these conditions, average recoveries of between 72% and 91% of total phosphorus were obtained. Product filtrate was purified by passing through a cation exchange column, concentrated to 80% H(3)PO(4) and compared with technical grade H(3)PO(4) specifications. The economics of phosphate recovery by this method are briefly discussed. 2010 Elsevier Ltd. All rights reserved.

  1. Understanding recovery in children following traffic-related injuries: exploring acute traumatic stress reactions, child coping, and coping assistance.

    PubMed

    Marsac, Meghan L; Donlon, Katharine A; Hildenbrand, Aimee K; Winston, Flaura K; Kassam-Adams, Nancy

    2014-04-01

    Millions of children incur potentially traumatic physical injuries every year. Most children recover well from their injury but many go on to develop persistent traumatic stress reactions. This study aimed to describe children's coping and coping assistance (i.e., the ways in which parents and peers help children cope) strategies and to explore the association between coping and acute stress reactions following an injury. Children (N = 243) rated their acute traumatic stress reactions within one month of injury and reported on coping and coping assistance six months later. Parents completed a measure of coping assistance at the six-month assessment. Children used an average of five to six coping strategies (out of 10), with wishful thinking, social support, and distraction endorsed most frequently. Child coping was associated with parent and peer coping assistance strategies. Significant acute stress reactions were related to subsequent child use of coping strategies (distraction, social withdrawal, problem-solving, blaming others) and to child report of parent use of distraction (as a coping assistance strategy). Findings suggest that children's acute stress reactions may influence their selection of coping and coping assistance strategies. To best inform interventions, research is needed to examine change in coping behaviors and coping assistance over time, including potential bidirectional relationships between trauma reactions and coping.

  2. The use of a microreactor for rapid screening of the reaction conditions and investigation of the photoluminescence mechanism of carbon dots.

    PubMed

    Lu, Yue; Zhang, Ling; Lin, Hengwei

    2014-04-07

    A microreactor is applied and reported, for the first time, in the field of research of carbon dots (CDs), including rapid screening of the reaction conditions and investigation of the photoluminescence (PL) mechanism. Various carbonaceous precursors and solvents were selected and hundreds of reaction conditions were screened (ca. 15 min on average per condition). Through analyzing the screened conditions, tunable PL emission maxima, from about 330 to 550 nm with respectable PL quantum yields, were achieved. Moreover, the relationship between different developmental stages of the CDs and the PL properties was explored by using the microreactor. The PL emission was observed to be independent of the composition, carbonization extent, and morphology/size of the CDs. This study unambiguously presents that a microreactor could serve as a promising tool for the research of CDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations.

    PubMed

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena M

    2017-07-01

    Running-specific prostheses enable athletes with lower limb amputations to run by emulating the spring-like function of biological legs. Current prosthetic stiffness and height recommendations aim to mitigate kinematic asymmetries for athletes with unilateral transtibial amputations. However, it is unclear how different prosthetic configurations influence the biomechanics and metabolic cost of running. Consequently, we investigated how prosthetic model, stiffness, and height affect the biomechanics and metabolic cost of running. Ten athletes with unilateral transtibial amputations each performed 15 running trials at 2.5 or 3.0 m/s while we measured ground reaction forces and metabolic rates. Athletes ran using three different prosthetic models with five different stiffness category and height combinations per model. Use of an Ottobock 1E90 Sprinter prosthesis reduced metabolic cost by 4.3 and 3.4% compared with use of Freedom Innovations Catapult [fixed effect (β) = -0.177; P < 0.001] and Össur Flex-Run (β = -0.139; P = 0.002) prostheses, respectively. Neither prosthetic stiffness ( P ≥ 0.180) nor height ( P = 0.062) affected the metabolic cost of running. The metabolic cost of running was related to lower peak (β = 0.649; P = 0.001) and stance average (β = 0.772; P = 0.018) vertical ground reaction forces, prolonged ground contact times (β = -4.349; P = 0.012), and decreased leg stiffness (β = 0.071; P < 0.001) averaged from both legs. Metabolic cost was reduced with more symmetric peak vertical ground reaction forces (β = 0.007; P = 0.003) but was unrelated to stride kinematic symmetry ( P ≥ 0.636). Therefore, prosthetic recommendations based on symmetric stride kinematics do not necessarily minimize the metabolic cost of running. Instead, an optimal prosthetic model, which improves overall biomechanics, minimizes the metabolic cost of running for athletes with unilateral transtibial amputations. NEW & NOTEWORTHY The metabolic cost of running for athletes with unilateral transtibial amputations depends on prosthetic model and is associated with lower peak and stance average vertical ground reaction forces, longer contact times, and reduced leg stiffness. Metabolic cost is unrelated to prosthetic stiffness, height, and stride kinematic symmetry. Unlike nonamputees who decrease leg stiffness with increased in-series surface stiffness, biological limb stiffness for athletes with unilateral transtibial amputations is positively correlated with increased in-series (prosthetic) stiffness.

  4. Correcting GOES-R Magnetometer Data for Stray Fields

    NASA Technical Reports Server (NTRS)

    Carter, Delano R.; Freesland, Douglas C.; Tadikonda, Sivakumara K.; Kronenwetter, Jeffrey; Todirita, Monica; Dahya, Melissa; Chu, Donald

    2016-01-01

    Time-varying spacecraft magnetic fields or stray fields are a problem for magnetometer systems. While constant fields can be removed with zero offset calibration, stray fields are difficult to distinguish from ambient field variations. Putting two magnetometers on a long boom and solving for both the ambient and stray fields can be a good idea, but this gradiometer solution is even more susceptible to noise than a single magnetometer. Unless the stray fields are larger than the magnetometer noise, simply averaging the two measurements is a more accurate approach. If averaging is used, it may be worthwhile to explicitly estimate and remove stray fields. Models and estimation algorithms are provided for solar array, arcjet and reaction wheel fields.

  5. Luminex® xMAP® technology is an effective strategy for high-definition human leukocyte antigen typing of cord blood units prior to listing.

    PubMed

    Guarene, Marco; Badulli, Carla; Cremaschi, Anna L; Sbarsi, Ilaria; Cacciatore, Rosalia; Tinelli, Carmine; Pasi, Annamaria; Bergamaschi, Paola; Perotti, Cesare G

    2018-05-01

    Allele-level donor-recipient match at HLA-A, HLA-B, HLA-C and HLA-DRB1 loci impacts the outcome after cord blood transplantation for hematologic malignancies and modifies the strategy of donor selection. High definition of both class I and II HLA loci at time of listing is a way to improve the attractiveness of cord blood bank inventories, reducing the time for donor search and procurement and simplifying donor choice, in particular, for patients of non-European heritage. In 2014, Luminex ® xMAP ® technology was introduced in our laboratory practice and was applied to cord blood units typing. In this study, we evaluated the impact of this strategy in comparison with the platform in use until 2013, relying on LiPA reverse polymerase chain reaction-sequence-specific oligonucleotide (revPCR-SSO) plus polymerase chain reaction-sequence-specific primer (PCR-SSP). In 2014, the time for testing was shorter (141 vs 181 days on average), the number of test repetitions was lower (in particular for HLA-A locus, p = 0.026), and the cost reduced (240.7 vs 395.6 euros per unit on average) compared to 2013, demonstrating that Luminex xMAP technology is superior to the previous approach. Luminex xMAP platform has useful application in cord blood banking programs, to achieve high-definition HLA typing of cord blood units at the time of banking in a quick, accurate, and cost-effective manner.

  6. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    NASA Astrophysics Data System (ADS)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely suppressed by these two quasifission processes, since the sub-barrier heavy element yield is likely to be determined by the product of the probabilities of surviving each quasifission process.

  7. Synthesis of Biodiesel in Batch and Packed-Bed Reactors Using Powdered and Granular Sugar Catalyst

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Lim, P. M.; Balan, W. S.; Yaser, A. Z.; Chong, K. P.

    2017-06-01

    Increasing world production of palm oil warrants effective utilization of its waste. In particular, conversion of waste cooking oil into biodiesel has obtained global interest because of renewable energy need and reduction of CO2 emission. In this study, oleic acid used as a model compound for waste cooking oil conversion using esterification reaction catalysed by sugar catalyst (SC) in powdered (P-SC) and granular (G-SC) forms. The catalysts were synthesized via incomplete carbonization of D-glucose followed by functionalization with concentrated sulphuric acid. Catalysts characterizations were done for their physical and chemical properties using modern tools. Batch and packed-bed reactor systems were used to evaluate the reactivity of the catalysts. The results showed that G-SC had slightly higher total acidity and more porous than P-SC. The experimental conditions for batch reaction were temperature of 60°C, molar ratio of 1:20 (Oleic Acid:Methanol) and 2 wt. catalyst with respect to oleic acid. The results showed the maximum oleic acid conversion using G-SC and P-SC were 52 and 48, respectively. Whereas, the continuous reaction with varying feed flow rate as a function of retention time was studied by using 3 g of P-SC in 60 °C and 1:20 molar ratio in a packed-bed reactor. The results showed that a longer retention time which was 6.48 min and feed flow rate 1.38 ml/min, achieved higher average conversion of 9.9 and decreased with further increasing flow rate. G-SC showed a better average conversion of 10.8 at lowest feed flow rate of 1.38 ml/min in continuous reaction experiments. In a broader perspective, large scale continuous biodiesel production is feasible using granular over powdered catalyst mainly due to it lower pressure drop.

  8. Sarcoidosis as an adverse effect of tumor necrosis factor inhibitors.

    PubMed

    Cathcart, Shelley; Sami, Naveed; Elewski, Boni

    2012-05-01

    Tumor necrosis factor inhibitors are valuable tools for dermatologists. As their use increases, rare adverse events are more likely to be encountered. We describe one patient who developed sarcoidosis while being treated for psoriasis with etanercept. We sought to review to previously reported cases and further characterize the nature of this reaction. A literature search was performed with the key words "sarcoidosis, sarcoid, etanercept, infliximab, adalimumab, granulomatous, and drug reaction." All relevant cases in the English language were included and evaluated for demographic data, duration of therapy prior to developing sarcoid, duration of sarcoid signs/symptoms, treatments used and time to resolution after discontinuation of the drug. Including the present case, there are 34 cases of sarcoidosis developing during anti-tumor necrosis factor therapy. All previously reported cases were patients with a primarily rheumatologic diagnosis. In all but one case, discontinuation of the drug resulted in complete resolution of symptoms. The lung and surrounding lymph nodes were the areas most commonly affected. The average amount of time between initiation of therapy and onset of symptoms was 22 months. The average time to resolution of symptoms after discontinuation of the drug was 5.2 months. This is a retrospective case review. These data indicated that sarcoid is a possible adverse effect of tumor necrosis factor inhibitor therapy that should be noted by dermatologists using these drugs. While it has been reported in the rheumatology literature, it may be under-recognized by dermatologists.

  9. Testing the limits of gradient sensing

    PubMed Central

    Lakhani, Vinal

    2017-01-01

    The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis) or grow (chemotropism) towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell’s accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts. PMID:28207738

  10. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer

    NASA Technical Reports Server (NTRS)

    Kleinman, Leonid S.; Reed, X. B., Jr.

    1995-01-01

    An algorithm has been developed for the forced convective diffusion-reaction problem for convection inside and outside a droplet by a recirculating flow field hydrodynamically coupled at the droplet interface with an external flow field that at infinity becomes a uniform streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet or reactions can take place in both phases. The algorithm has been implemented and results are shown here for the case of no reaction and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  11. Chemomechanics with Molecular Force Probes

    DTIC Science & Technology

    2010-03-30

    at scales >50 nm) [ 1 –5]. Such coupling affects the rate at which the chemical reaction occurs and therefore must be accounted for in any kinetic...reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching...it does not display a currently valid OMB control number. 1 . REPORT DATE 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4

  12. Fast chemical reaction in two-dimensional Navier-Stokes flow: initial regime.

    PubMed

    Ait-Chaalal, Farid; Bourqui, Michel S; Bartello, Peter

    2012-04-01

    This paper studies an infinitely fast bimolecular chemical reaction in a two-dimensional biperiodic Navier-Stokes flow. The reactants in stoichiometric quantities are initially segregated by infinite gradients. The focus is placed on the initial stage of the reaction characterized by a well-defined one-dimensional material contact line between the reactants. Particular attention is given to the effect of the diffusion κ of the reactants. This study is an idealized framework for isentropic mixing in the lower stratosphere and is motivated by the need to better understand the effect of resolution on stratospheric chemistry in climate-chemistry models. Adopting a Lagrangian straining theory approach, we relate theoretically the ensemble mean of the length of the contact line, of the gradients along it, and of the modulus of the time derivative of the space-average reactant concentrations (here called the chemical speed) to the joint probability density function of the finite-time Lyapunov exponent λ with two times τ and τ[over ̃]. The time 1/λ measures the stretching time scale of a Lagrangian parcel on a chaotic orbit up to a finite time t, while τ measures it in the recent past before t, and τ[over ̃] in the early part of the trajectory. We show that the chemical speed scales like κ(1/2) and that its time evolution is determined by rare large events in the finite-time Lyapunov exponent distribution. The case of smooth initial gradients is also discussed. The theoretical results are tested with an ensemble of direct numerical simulations (DNSs) using a pseudospectral model.

  13. Calculating Time-Integral Quantities in Depletion Calculations

    DOE PAGES

    Isotalo, Aarno

    2016-06-02

    A method referred to as tally nuclides is presented for accurately and efficiently calculating the time-step averages and integrals of any quantities that are weighted sums of atomic densities with constant weights during the step. The method allows all such quantities to be calculated simultaneously as a part of a single depletion solution with existing depletion algorithms. Some examples of the results that can be extracted include step-average atomic densities and macroscopic reaction rates, the total number of fissions during the step, and the amount of energy released during the step. Furthermore, the method should be applicable with several depletionmore » algorithms, and the integrals or averages should be calculated with an accuracy comparable to that reached by the selected algorithm for end-of-step atomic densities. The accuracy of the method is demonstrated in depletion calculations using the Chebyshev rational approximation method. Here, we demonstrate how the ability to calculate energy release in depletion calculations can be used to determine the accuracy of the normalization in a constant-power burnup calculation during the calculation without a need for a reference solution.« less

  14. Microwave hydrothermal synthesis and characterization of rare-earth stannate nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Shuang; Xu, Hua-lan; Zhong, Sheng-liang; Wang, Lei

    2017-07-01

    Rare-earth stannate (Ln2Sn2O7 (Ln = Y, La-Lu)) nanocrystals with an average diameter of 50 nm were prepared through a facile microwave hydrothermal method at 200°C within 60 min. The products were well characterized. The effect of reaction parameters such as temperature, reaction time, pH value, and alkali source on the preparation was investigated. The results revealed that the pH value plays an important role in the formation process of gadolinium stannate (Gd2Sn2O7) nanoparticles. By contrast, the alkali source had no effect on the phase composition or morphology of the final product. Uniform and sphere-like nanoparticles with an average size of approximately 50 nm were obtained at the pH value of 11.5. A possible formation mechanism was briefly proposed. Gd2Sn2O7:Eu3+ nanoparticles displayed strong orange-red emission. Magnetic measurements revealed that Gd2Sn2O7 nanoparticles were paramagnetic. The other rare-earth stannate Ln2Sn2O7 (Ln = Y, La-Lu) nanocrystals were prepared by similar approaches.

  15. Superdiffusive motion of membrane-targeting C2 domains

    NASA Astrophysics Data System (ADS)

    Campagnola, Grace; Nepal, Kanti; Schroder, Bryce W.; Peersen, Olve B.; Krapf, Diego

    2015-12-01

    Membrane-targeting domains play crucial roles in the recruitment of signalling molecules to the plasma membrane. For most peripheral proteins, the protein-to-membrane interaction is transient. After proteins dissociate from the membrane they have been observed to rebind following brief excursions in the bulk solution. Such membrane hops can have broad implications for the efficiency of reactions on membranes. We study the diffusion of membrane-targeting C2 domains using single-molecule tracking in supported lipid bilayers. The ensemble-averaged mean square displacement (MSD) exhibits superdiffusive behaviour. However, traditional time-averaged MSD analysis of individual trajectories remains linear and does not reveal superdiffusion. Our observations are explained in terms of bulk excursions that introduce jumps with a heavy-tail distribution. These hopping events allow proteins to explore large areas in a short time. The experimental results are shown to be consistent with analytical models of bulk-mediated diffusion and numerical simulations.

  16. Excitation wavelength dependence of excited state intramolecular proton transfer reaction of 4'-N,N-diethylamino-3-hydroxyflavone in room temperature ionic liquids studied by optical Kerr gate fluorescence measurement.

    PubMed

    Suda, Kayo; Terazima, Masahide; Sato, Hirofumi; Kimura, Yoshifumi

    2013-10-17

    Excited state intramolecular proton transfer reactions (ESIPT) of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) in ionic liquids have been studied by steady-state and time-resolved fluorescence measurements at different excitation wavelengths. Steady-state measurements show the relative yield of the tautomeric form to the normal form of DEAHF decreases as excitation wavelength is increased from 380 to 450 nm. The decrease in yield is significant in ionic liquids that have cations with long alkyl chains. The extent of the decrease is correlated with the number of carbon atoms in the alkyl chains. Time-resolved fluorescence measurements using optical Kerr gate spectroscopy show that ESIPT rate has a strong excitation wavelength dependence. There is a large difference between the spectra at a 200 ps delay from different excitation wavelengths in each ionic liquid. The difference is pronounced in ionic liquids having a long alkyl chain. The equilibrium constant in the electronic excited state obtained at a 200 ps delay and the average reaction rate are also correlated with the alkyl chain length. Considering the results of the steady-state fluorescence and time-resolved measurements, the excitation wavelength dependence of ESIPT is explained by state selective excitation due to the difference of the solvation, and the number of alkyl chain carbon atoms is found to be a good indicator of the effect of inhomogeneity for this reaction.

  17. Topography of Slow Sigma Power during Sleep is Associated with Processing Speed in Preschool Children

    PubMed Central

    Doucette, Margaret R.; Kurth, Salome; Chevalier, Nicolas; Munakata, Yuko; LeBourgeois, Monique K.

    2015-01-01

    Cognitive development is influenced by maturational changes in processing speed, a construct reflecting the rapidity of executing cognitive operations. Although cognitive ability and processing speed are linked to spindles and sigma power in the sleep electroencephalogram (EEG), little is known about such associations in early childhood, a time of major neuronal refinement. We calculated EEG power for slow (10–13 Hz) and fast (13.25–17 Hz) sigma power from all-night high-density electroencephalography (EEG) in a cross-sectional sample of healthy preschool children (n = 10, 4.3 ± 1.0 years). Processing speed was assessed as simple reaction time. On average, reaction time was 1409 ± 251 ms; slow sigma power was 4.0 ± 1.5 μV2; and fast sigma power was 0.9 ± 0.2 μV2. Both slow and fast sigma power predominated over central areas. Only slow sigma power was correlated with processing speed in a large parietal electrode cluster (p < 0.05, r ranging from −0.6 to −0.8), such that greater power predicted faster reaction time. Our findings indicate regional correlates between sigma power and processing speed that are specific to early childhood and provide novel insights into the neurobiological features of the EEG that may underlie developing cognitive abilities. PMID:26556377

  18. Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: Temperature dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Tuhin; Gazi, Harun Al Rasid; Biswas, Ranjit

    2009-08-07

    Temperature dependence of the excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in ethyl acetate (EA), acetonitrile (ACN), and ethanol at several concentrations of lithium perchlorate (LiClO{sub 4}) has been investigated by using the steady state and time resolved fluorescence spectroscopic techniques. The temperature range considered is 267-343 K. The temperature dependent spectral peak shifts and reaction driving force (-{Delta}G{sub r}) in electrolyte solutions of these solvents can be explained qualitatively in terms of interaction between the reactant molecule and ion-atmosphere. Time resolved studies indicate that the decay kinetics of P4C is biexponential, regardless of solvents, LiClO{sub 4} concentrations,more » and temperatures considered. Except at higher electrolyte concentrations in EA, reaction rates in solutions follow the Arrhenius-type temperature dependence where the estimated activation energy exhibits substantial electrolyte concentration dependence. The average of the experimentally measured activation energies in these three neat solvents is found to be in very good agreement with the predicted value based on data in room temperature solvents. While the rate constant in EA shows a electrolyte concentration induced parabolic dependence on reaction driving force (-{Delta}G{sub r}), the former in ethanol and ACN increases only linearly with the increase in driving force (-{Delta}G{sub r}). The data presented here also indicate that the step-wise increase in solvent reorganization energy via sequential addition of electrolyte induces the ICT reaction in weakly polar solvents to crossover from the Marcus inverted region to the normal region.« less

  19. Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions.

    PubMed

    Gao, Guangyao; Fu, Bojie; Zhan, Hongbin; Ma, Ying

    2013-05-01

    Predicting the fate and movement of contaminant in soils and groundwater is essential to assess and reduce the risk of soil contamination and groundwater pollution. Reaction processes of contaminant often decreased monotonously with depth. Time-dependent input sources usually occurred at the inlet of natural or human-made system such as radioactive waste disposal site. This study presented a one-dimensional convection-dispersion equation (CDE) for contaminant transport in soils with depth-dependent reaction coefficients and time-dependent inlet boundary conditions, and derived its analytical solution. The adsorption coefficient and degradation rate were represented as sigmoidal functions of soil depth. Solute breakthrough curves (BTCs) and concentration profiles obtained from CDE with depth-dependent and constant reaction coefficients were compared, and a constant effective reaction coefficient, which was calculated by arithmetically averaging the depth-dependent reaction coefficient, was proposed to reflect the lumped depth-dependent reaction effect. With the effective adsorption coefficient and degradation rate, CDE could produce similar BTCs and concentration profiles as those from CDE with depth-dependent reactions in soils with moderate chemical heterogeneity. In contrast, the predicted concentrations of CDE with fitted reaction coefficients at a certain depth departed significantly from those of CDE with depth-dependent reactions. Parametric analysis was performed to illustrate the effects of sinusoidally and exponentially decaying input functions on solute BTCs. The BTCs and concentration profiles obtained from the solutions for finite and semi-infinite domain were compared to investigate the effects of effluent boundary condition. The finite solution produced higher concentrations at the increasing limb of the BTCs and possessed a higher peak concentration than the semi-infinite solution which had a slightly long tail. Furthermore, the finite solution gave a higher concentration in the immediate vicinity of the exit boundary than the semi-infinite solution. The applicability of the proposed model was tested with a field herbicide and tracer leaching experiment in an agricultural area of northeastern Greece. The simulation results indicated that the proposed CDE with depth-dependent reaction coefficients was able to capture the evolution of metolachlor concentration at the upper soil depths. However, the simulation results at deep depths were not satisfactory as the proposed model did not account for preferential flow observed in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Photo-induced morphological winding and unwinding motion of nanoscrolls composed of niobate nanosheets with a polyfluoroalkyl azobenzene derivative

    NASA Astrophysics Data System (ADS)

    Nabetani, Yu; Takamura, Hazuki; Uchikoshi, Akino; Hassan, Syed Zahid; Shimada, Tetsuya; Takagi, Shinsuke; Tachibana, Hiroshi; Masui, Dai; Tong, Zhiwei; Inoue, Haruo

    2016-06-01

    Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials.Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials. Electronic supplementary information (ESI) available: Fig. S1. Photo-isomerization reaction of nanoscrolls. See DOI: 10.1039/c6nr02177h

  1. Validity and reliability of a controlled pneumatic resistance exercise device.

    PubMed

    Paulus, David C; Reynolds, Michael C; Schilling, Brian K

    2008-01-01

    During the concentric portion of the free-weight squat exercise, accelerating the mass from rest results in a fluctuation in ground reaction force. It is characterized by an initial period of force greater than the load while accelerating from rest followed by a period of force lower than the external load during negative acceleration. During the deceleration phase, less force is exerted and muscles are loaded sub-optimally. Thus, using a reduced inertia form of resistance such as pneumatics has the capability to minimize these inertial effects as well as control the force in real time to maximize the force exerted over the exercise cycle. To improve the system response of a preliminary design, a squat device was designed with a reduced mass barbell and two smaller pneumatic cylinders. The resistance was controlled by regulating cylinder pressure such that it is capable of adjusting force within a repetition to maximize force exerted during the lift. The resistance force production of the machine was statically validated with the input voltage and output force R2 =0.9997 for at four increments of the range of motion, and the intraclass correlation coefficient (ICC) between trials at the different heights equaled 0.999. The slew rate at three forces was 749.3 N/s +/- 252.3. Dynamic human subject testing showed the desired input force correlated with average and peak ground reaction force with R2 = 0.9981 and R2 = 0.9315, respectively. The ICC between desired force and average and peak ground reaction force was 0.963. Thus, the system is able to deliver constant levels of static and dynamic force with validity and reliability. Future work will be required to develop the control strategy required for real-time control, and performance testing is required to determine its efficacy.

  2. Preparation and antibacterial activity of oligosaccharides derived from dandelion.

    PubMed

    Qian, Li; Zhou, Yan; Teng, Zhaolin; Du, Chun-Ling; Tian, Changrong

    2014-03-01

    In this study, we prepared oligosaccharides from dandelion (Taraxacum officinale) by hydrolysis with hydrogen peroxide (H2O2) and investigated their antibacterial activity. The optimum hydrolysis conditions, as determined using the response surface methodology, were as follows: reaction time, 5.12h; reaction temperature, 65.53 °C and H2O2 concentration, 3.16%. Under these conditions, the maximum yield of the oligosaccharides reached 25.43%. The sugar content in the sample was 96.8%, and the average degree of polymerisation was approximately 9. The oligosaccharides showed high antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus, indicating that dandelion-derived oligosaccharides have the potential to be used as antibacterial agents. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Effect of Rb2O and Cs2O on Inclusion Removal in 321 Stainless Steels Using Novel Basic Tundish Fluxes

    NASA Astrophysics Data System (ADS)

    Choi, Kyunsuk; Kang, Youngjo; Sohn, Il

    2016-06-01

    Inclusion removal and modification of the 321 stainless steel using Rb2O- and Cs2O-containing novel basic tundish flux has been investigated. The average inclusion diameter was significantly lowered after reaction of the liquid metal with the flux after 45 minutes in an induction furnace set at 1823 K (1550 °C) under an Ar atmosphere. The number of inclusions was also decreased with increased reaction time and the majority of the inherent TiN inclusions were removed after reaction with the proposed novel basic tundish flux. Spinel inclusions were also observed after the reaction, which was due to the reaction of the MgO crucible and the CaO-Al2O3-SiO2-MgO-` x'wt pct R2O flux system at fixed CaO/(Al2O3 + SiO2) of 1.45. The Rb2O and Cs2O seemed to have allowed significant removal of the TiN inclusions due to its ion compensation effect and the supplement of free oxygen ions, while increasing the viscosity of the slag to retain the absorbed inclusions.

  4. On-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processes.

    PubMed

    Guo, Xin; Minakata, Daisuke; Crittenden, John

    2015-08-04

    We have developed an on-the-fly kinetic Monte Carlo (KMC) model to predict the degradation mechanisms and fates of intermediates and byproducts that are produced during aqueous-phase advanced oxidation processes (AOPs). The on-the-fly KMC model is composed of a reaction pathway generator, a reaction rate constant estimator, a mechanistic reduction module, and a KMC solver. The novelty of this work is that we develop the pathway as we march forward in time rather than developing the pathway before we use the KMC method to solve the equations. As a result, we have fewer reactions to consider, and we have greater computational efficiency. We have verified this on-the-fly KMC model for the degradation of polyacrylamide (PAM) using UV light and titanium dioxide (i.e., UV/TiO2). Using the on-the-fly KMC model, we were able to predict the time-dependent profiles of the average molecular weight for PAM. The model provided detailed and quantitative insights into the time evolution of the molecular weight distribution and reaction mechanism. We also verified our on-the-fly KMC model for the destruction of (1) acetone, (2) trichloroethylene (TCE), and (3) polyethylene glycol (PEG) for the ultraviolet light and hydrogen peroxide AOP. We demonstrated that the on-the-fly KMC model can achieve the same accuracy as the computer-based first-principles KMC (CF-KMC) model, which has already been validated in our earlier work. The on-the-fly KMC is particularly suitable for molecules with large molecular weights (e.g., polymers) because the degradation mechanisms for large molecules can result in hundreds of thousands to even millions of reactions. The ordinary differential equations (ODEs) that describe the degradation pathways cannot be solved using traditional numerical methods, but the KMC can solve these equations.

  5. Radiative capture reactions in astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brune, Carl R.; Davids, Barry

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  6. Radiative capture reactions in astrophysics

    DOE PAGES

    Brune, Carl R.; Davids, Barry

    2015-08-07

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  7. Chemical Reactions in Turbulent Mixing Flows

    DTIC Science & Technology

    1991-09-14

    explored Reynolds number effects on turbulent flame length and the influence of buoyancy on turbulent jet flames; 2. completion of a thesis entitled...the dependence of flame length on Reynolds number was begun, and the issue of buoyancy was investigated. L._Lw~ Pt-lO%Rh 2 ൡ g rn wire Flame L ZoneY...105. The flame length at a given Reynolds number was determined from the time-averaged, line- integrated temperature measurements performed by the cold

  8. New Approaches to the Labeling of Estrogen Useful for PET.

    DTIC Science & Technology

    1997-07-01

    Estradiol-17a Figure 1 . The targeted compounds for synthesis with CH3OF were the 16-methoxy estradiol stereoisomers. Four isomers are possible as the a...the chemistry of CH3OF with steroids required the transfer of reaction conditions derived from simple substrates such as enol acetate of 1 - indanone ...average 1 hour per response, including the time for reviewing.instruction»,, searching existing data sources, gathering and maintaining the data needed

  9. Treatment of slaughter wastewater by coagulation sedimentation-anaerobic biological filter and biological contact oxidation process

    NASA Astrophysics Data System (ADS)

    Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.

    2017-08-01

    The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.

  10. Effect of humic acid in leachate on specific methanogenic activity of anaerobic granular sludge.

    PubMed

    Guo, Mengfei; Xian, Ping; Yang, Longhui; Liu, Xi; Zhan, Longhui; Bu, Guanghui

    2015-01-01

    In order to find out the effects of humic acid (HA) in anaerobic-treated landfill leachate on granular sludge, the anaerobic biodegradability of HA as well as the influences of HA on the total cumulative methane production, the anaerobic methanization process and the specific methanogenic activity (SMA) of granular sludge are studied in this paper. Experimental results show that as a non-biodegradable organic pollutant, HA is also difficult to be decomposed by microbes in the anaerobic reaction process. Presence of HA and changes in the concentration have no significant influences on the total cumulative methane production and the anaerobic methanization process of granular sludge. Besides, the total cumulative methane production cannot reflect the inhibition of toxics on the methanogenic activity of granular sludge on the premise of sufficient reaction time. Results also show that HA plays a promoting role on SMA of granular sludge. Without buffering agent the SMA value increased by 19.2% on average due to the buffering and regulating ability of HA, while with buffering agent the SMA value increased by 5.4% on average due to the retaining effect of HA on the morphology of the sludge particles. However, in the presence of leachate the SMA value decreased by 27.6% on average, because the toxic effect of the toxics in the leachate on granular sludge is much larger than the promoting effect of HA.

  11. [Kinetics of heifers and cows walking on an instrumented treadmill].

    PubMed

    Nuss, K; Waldern, N M; Weishaupt, M A; Wiestner, T

    2015-01-01

    Kinetic data of stride characteristics and ground reaction forces of cattle become increasingly important as automated lameness detection may be installed in dairy cow housing systems in the future. Therefore, sound heifers and cows were measured on an instrumented treadmill to collect such basic data. Nine heifers and 10 cows were trained to walk on an instrumented treadmill. Vertical ground reaction forces as well as step and stride timing and length variables were measured for all limbs simultaneously. On average, 16 stride cycles in cows and 24 strides in heifers were analysed in each case. The cows walked on the treadmill at an average speed of 1.2 ± 0.05 m/s (mean ± standard deviation), with a stride rate of 43.0 ± 1.9/min and a stride length of 1.68 ± 0.1 m. The heifers had average values of 1.3 ± 0.04 m/s, 53.7 ± 2.2/min and 1.49 ± 0.05 m, respectively. The stance duration relative to stride duration (the duty factor) was for the cows significantly longer in the forelimbs (67%) than in the hind limbs (64%). Force-time-curves of all limbs showed two peaks, one after landing (FP1) and another during push off (FP2). Vertical ground reaction force was highest for FP1 in the hind limbs, but for FP2 in the forelimbs. At all limbs, force minimum between the peaks occurred shortly before midstance. The vertical impulse carried by both forelimbs amounted to 53.7% of the total stride impulse in cows and to 55.0% in heifers. The location of the centre of body mass varied during the stride cycle but was always located more towards the front limbs. Cows and heifers showed a symmetrical walk with minimal intra-individual variations. Relative stride impulse of the front limbs was higher than that of the hind limbs. Peak vertical force in the hind limbs was highest at landing and in the forelimbs at push off. The present study offers kinetic data of sound cows and heifers which might be helpful as guidelines for automated systems for lameness detection in cattle.

  12. Real-Time Polymerase Chain Reaction for Detection of Schistosoma DNA in Small-Volume Urine Samples Reflects Focal Distribution of Urogenital Schistosomiasis in Primary School Girls in KwaZulu Natal, South Africa

    PubMed Central

    Pillay, Pavitra; Taylor, Myra; Zulu, Siphosenkosi G.; Gundersen, Svein G.; Verweij, Jaco J.; Hoekstra, Pytsje; Brienen, Eric A. T.; Kleppa, Elisabeth; Kjetland, Eyrun F.; van Lieshout, Lisette

    2014-01-01

    Schistosoma haematobium eggs and Schistosoma DNA levels were measured in urine samples from 708 girls recruited from 18 randomly sampled primary schools in South Africa. Microscopic analysis of two 10-mL urine subsamples collected on three consecutive days confirmed high day-to-day variation; 103 (14.5%) girls had positive results at all six examinations, and at least one positive sample was seen in 225 (31.8%) girls. Schistosoma-specific DNA, which was measured in a 200-μL urine subsample by using real-time polymerase chain reaction, was detected in 180 (25.4%) cases, and levels of DNA corresponded significantly with average urine egg excretion. In concordance with microscopic results, polymerase chain reaction results were significantly associated with history of gynecologic symptoms and confirmed highly focal distribution of urogenital schistosomiasis. Parasite-specific DNA detection has a sensitivity comparable to single urine microscopy and could be used as a standardized high-throughput procedure to assess distribution of urogenital schistosomiasis in relatively large study populations by using small sample volumes. PMID:24470560

  13. Mechanisms underlying the influence of saliency on value-based decisions

    PubMed Central

    Chen, Xiaomo; Mihalas, Stefan; Niebur, Ernst; Stuphorn, Veit

    2013-01-01

    Objects in the environment differ in their low-level perceptual properties (e.g., how easily a fruit can be recognized) as well as in their subjective value (how tasty it is). We studied the influence of visual salience on value-based decisions using a two alternative forced choice task, in which human subjects rapidly chose items from a visual display. All targets were equally easy to detect. Nevertheless, both value and salience strongly affected choices made and reaction times. We analyzed the neuronal mechanisms underlying these behavioral effects using stochastic accumulator models, allowing us to characterize not only the averages of reaction times but their full distributions. Independent models without interaction between the possible choices failed to reproduce the observed choice behavior, while models with mutual inhibition between alternative choices produced much better results. Mutual inhibition thus is an important feature of the decision mechanism. Value influenced the amount of accumulation in all models. In contrast, increased salience could either lead to an earlier start (onset model) or to a higher rate (speed model) of accumulation. Both models explained the data from the choice trials equally well. However, salience also affected reaction times in no-choice trials in which only one item was present, as well as error trials. Only the onset model could explain the observed reaction time distributions of error trials and no-choice trials. In contrast, the speed model could not, irrespective of whether the rate increase resulted from more frequent accumulated quanta or from larger quanta. Visual salience thus likely provides an advantage in the onset, not in the processing speed, of value-based decision making. PMID:24167161

  14. A class of exact solutions for biomacromolecule diffusion-reaction in live cells.

    PubMed

    Sadegh Zadeh, Kouroush; Montas, Hubert J

    2010-06-07

    A class of novel explicit analytic solutions for a system of n+1 coupled partial differential equations governing biomolecular mass transfer and reaction in living organisms are proposed, evaluated, and analyzed. The solution process uses Laplace and Hankel transforms and results in a recursive convolution of an exponentially scaled Gaussian with modified Bessel functions. The solution is developed for wide range of biomolecular binding kinetics from pure diffusion to multiple binding reactions. The proposed approach provides solutions for both Dirac and Gaussian laser beam (or fluorescence-labeled biomacromolecule) profiles during the course of a Fluorescence Recovery After Photobleaching (FRAP) experiment. We demonstrate that previous models are simplified forms of our theory for special cases. Model analysis indicates that at the early stages of the transport process, biomolecular dynamics is governed by pure diffusion. At large times, the dominant mass transfer process is effective diffusion. Analysis of the sensitivity equations, derived analytically and verified by finite difference differentiation, indicates that experimental biologists should use full space-time profile (instead of the averaged time series) obtained at the early stages of the fluorescence microscopy experiments to extract meaningful physiological information from the protocol. Such a small time frame requires improved bioinstrumentation relative to that in use today. Our mathematical analysis highlights several limitations of the FRAP protocol and provides strategies to improve it. The proposed model can be used to study biomolecular dynamics in molecular biology, targeted drug delivery in normal and cancerous tissues, motor-driven axonal transport in normal and abnormal nervous systems, kinetics of diffusion-controlled reactions between enzyme and substrate, and to validate numerical simulators of biological mass transport processes in vivo. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Modality-specific, multitask locomotor deficits persist despite good recovery after a traumatic brain injury.

    PubMed

    McFadyen, Bradford J; Cantin, Jean-François; Swaine, Bonnie; Duchesneau, Guylaine; Doyon, Julien; Dumas, Denyse; Fait, Philippe

    2009-09-01

    To study the effects of sensory modality of simultaneous tasks during walking with and without obstacles after moderate to severe traumatic brain injury (TBI). Group comparison study. Gait analysis laboratory within a postacute rehabilitation facility. Volunteer sample (N=18). Persons with moderate to severe TBI (n=11) (9 men, 3 women; age, 37.56+/-13.79 y) and a comparison group (n=7) of subjects without neurologic problems matched on average for body mass index and age (4 men, 3 women; age, 39.19+/-17.35 y). Not applicable. Magnitudes and variability for walking speeds, foot clearance margins (ratio of foot clearance distance to obstacle height), and response reaction times (both direct and as a relative cost because of obstacle avoidance). The TBI group had well-recovered walking speeds and a general ability to avoid obstacles. However, these subjects did show lower trail limb toe clearances (P=.003) across all conditions. Response reaction times to the Stroop tasks were longer in general for the TBI group (P=.017), and this group showed significant increases in response reaction times for the visual modality within the more challenging obstacle avoidance task that was not observed for control subjects. A measure of multitask costs related to differences in response reaction times between obstructed and unobstructed trials also only showed increased attention costs for the visual over the auditory stimuli for the TBI group (P=.002). Mobility is a complex construct, and the present results provide preliminary findings that, even after good locomotor recovery, subjects with moderate to severe TBI show residual locomotor deficits in multitasking. Furthermore, our results suggest that sensory modality is important, and greater multitask costs occur during sensory competition (ie, visual interference).

  16. Visual and cognitive predictors of performance on brake reaction test: Salisbury eye evaluation driving study.

    PubMed

    Zhang, Lei; Baldwin, Kevin; Munoz, Beatriz; Munro, Cynthia; Turano, Kathleen; Hassan, Shirin; Lyketsos, Constantine; Bandeen-Roche, Karen; West, Sheila K

    2007-01-01

    Concern for driving safety has prompted research into understanding factors related to performance. Brake reaction speed (BRS), the speed with which persons react to a sudden change in driving conditions, is a measure of performance. Our aim is to determine the visual, cognitive, and physical factors predicting BRS in a population sample of 1425 older drivers. The Maryland Department of Motor Vehicles roster of persons aged 67-87 and residing in Salisbury, MD, was used for recruitment of the study population. Procedures included the following: habitual, binocular visual acuity using ETDRS charts, contrast sensitivity using a Pelli-Robson chart, visual fields assessed with a 81-point screening Humphrey field at a single intensity threshold, and a questionnaire to ascertain medical conditions. Cognitive status was assessed using a standard battery of tests for attention, memory, visuo-spatial, and scanning. BRS was assessed using a computer-driven device that measured separately the initial reaction speed (IRS) (from light change to red until removing foot from accelerator) and physical response speed (PRS) (removing foot from accelerator to full brake depression). Five trial times were averaged, and time was converted to speed. The median brake reaction time varied from 384 to 5688 milliseconds. Age, gender, and cognition predicted total BRS, a non-informative result as there are two distinct parts to the task. Once separated, decrease in IRS was associated with low scores on cognitive factors and missing points on the visual field. A decrease in PRS was associated with having three or more physical complaints related to legs and feet, and poorer vision search. Vision was not related to PRS. We have demonstrated the importance of segregating the speeds for the two tasks involved in brake reaction. Only the IRS depends on vision. Persons in good physical condition may perform poorly on brake reaction tests if their vision or cognition is compromised.

  17. On the Nature of People's Reaction to Space Weather and Meteorological Weather Changes

    NASA Astrophysics Data System (ADS)

    Khabarova, O. V.; Dimitrova, S.

    2009-12-01

    Our environment includes many natural and artificial agents affecting any person on the Earth in one way or other. This work is focused on two of them - weather and space weather, which are permanently effective. Their cumulative effect is proved by means of the modeling. It is shown that combination of geomagnetic and solar indices and weather strength parameter (which includes six main meteorological parameters) correlates with health state significantly better (up to R=0.7), than separate environmental parameters do. The typical shape of any health characteristics' time-series during human body reaction to any negative impact represents a curve, well-known in medicine as a General Adaptation Syndrome curve by Hans Selye. We demonstrate this on the base of blood pressure time-series and acupunctural experiment data, averaged by group. The first stage of adaptive stress-reaction (resistance to stress) is sometimes observed 1-2 days before geomagnetic storm onset. The effect of "outstripping reaction to magnetic storm", named Tchizhevsky- Velkhover effect, had been known for many years, but its explanation was obtained recently due to the consideration of the near-Earth space plasma processes. It was shown that lowfrequency variations of the solar wind density on a background of the density growth can stimulate the development of the geomagnetic filed (GMF) variations of the wide frequency range. These variations seem to have "bioeffective frequencies", resonant with own frequencies of body organs and systems. The mechanism of human body reaction is supposed to be a parametrical resonance in low-frequency range (which is determined by the resonance in large-scale organs and systems) and a simple forced resonance in GHz-range of variations (the resonance of micro-objects in the organism such as DNA, cell membranes, blood ions etc.) Given examples of mass-reaction of the objects to ULF-range GMF variations during quiet space weather time prove this hypothesis.

  18. Parents' Reactions to Finding Out That Their Children Have Average or above Average IQ Scores.

    ERIC Educational Resources Information Center

    Dirks, Jean; And Others

    1983-01-01

    Parents of 41 children who had been given an individually-administered intelligence test were contacted 19 months after testing. Parents of average IQ children were less accurate in their memory of test results. Children with above average IQ experienced extremely low frequencies of sibling rivalry, conceit or pressure. (Author/HLM)

  19. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task

    NASA Astrophysics Data System (ADS)

    Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.

    2000-06-01

    When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.

  20. Ni62(n,γ) and Ni63(n,γ) cross sections measured at the n_TOF facility at CERN

    NASA Astrophysics Data System (ADS)

    Lederer, C.; Massimi, C.; Berthoumieux, E.; Colonna, N.; Dressler, R.; Guerrero, C.; Gunsing, F.; Käppeler, F.; Kivel, N.; Pignatari, M.; Reifarth, R.; Schumann, D.; Wallner, A.; Altstadt, S.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthier, B.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Dillmann, I.; Domingo-Pardo, C.; Duran, I.; Dzysiuk, N.; Eleftheriadis, C.; Fernández-Ordóñez, M.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Gramegna, F.; Griesmayer, E.; Gurusamy, P.; Harrisopulos, S.; Heil, M.; Ioannides, K.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Karadimos, D.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Lebbos, E.; Leeb, H.; Leong, L. S.; Losito, R.; Lozano, M.; Manousos, A.; Marganiec, J.; Marrone, S.; Martinez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plag, R.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Tlustos, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Versaci, R.; Vlachoudis, V.; Vlastou, R.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.; n TOF Collaboration

    2014-02-01

    The cross section of the Ni62(n,γ) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility n_TOF at CERN. Capture kernels of 42 resonances were analyzed up to 200 keV neutron energy and Maxwellian averaged cross sections (MACS) from kT = 5-100 keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at kT=30 keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the Ni63(n ,γ) reaction was measured for the first time at n_TOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on s-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.

  1. Dimension reduction method for SPH equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Scheibe, Timothy D.

    2011-08-26

    Smoothed Particle Hydrodynamics model of a complex multiscale processe often results in a system of ODEs with an enormous number of unknowns. Furthermore, a time integration of the SPH equations usually requires time steps that are smaller than the observation time by many orders of magnitude. A direct solution of these ODEs can be extremely expensive. Here we propose a novel dimension reduction method that gives an approximate solution of the SPH ODEs and provides an accurate prediction of the average behavior of the modeled system. The method consists of two main elements. First, effective equationss for evolution of averagemore » variables (e.g. average velocity, concentration and mass of a mineral precipitate) are obtained by averaging the SPH ODEs over the entire computational domain. These effective ODEs contain non-local terms in the form of volume integrals of functions of the SPH variables. Second, a computational closure is used to close the system of the effective equations. The computational closure is achieved via short bursts of the SPH model. The dimension reduction model is used to simulate flow and transport with mixing controlled reactions and mineral precipitation. An SPH model is used model transport at the porescale. Good agreement between direct solutions of the SPH equations and solutions obtained with the dimension reduction method for different boundary conditions confirms the accuracy and computational efficiency of the dimension reduction model. The method significantly accelerates SPH simulations, while providing accurate approximation of the solution and accurate prediction of the average behavior of the system.« less

  2. Viscosity Relaxation in Molten HgZnTe

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, S. L.; Kim, Yeong Woo; Baird, James K.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Rotating cup measurements of the viscosity of the pseudo-binary melt, HgZnTe have shown that the isothermal liquid with zinc mole fraction 0.16 requires tens of hours of equilibration time before a steady viscous state can be achieved. Over this relaxation period, the viscosity at 790 C increases by a factor of two, while the viscosity at 810 C increases by 40%. Noting that the Group VI elements tend to polymerize when molten, we suggest that the viscosity of the melt is enhanced by the slow formation of Te atom chains. To explain the build-up of linear Te n-mers, we propose a scheme, which contains formation reactions with second order kinetics that increase the molecular weight, and decomposition reactions with first order kinetics that inactivate the chains. The resulting rate equations can be solved for the time dependence of each molecular weight fraction. Using these molecular weight fractions, we calculate the time dependence of the average molecular weight. Using the standard semi-empirical relation between polymer average molecular weight and viscosity, we then calculate the viscosity relaxation curve. By curve fitting, we find that the data imply that the rate constant for n-mer formation is much smaller than the rate constant for n-mer deactivation, suggesting that Te atoms only weakly polymerize in molten HgZnTe. The steady state toward which the melt relaxes occurs as the rate of formation of an n-mer becomes exactly balanced by the sum of the rate for its deactivation and the rate for its polymerization to form an (n+1)-mer.

  3. Desensitization of Explosive Materials

    DTIC Science & Technology

    1979-12-01

    Decomposition of FEFO and DFF ...... o................. 20 Proposed Reaction Sequence of Initiation ......... o............ 29 Thermal Decomposition of...molecules are admitted to the reactor and, on an average, first decomposition products are analyzed without further reaction . The advantages of the VLPP... Reaction System Decomposition (Pmoles) Nitric acid 24 115 N02/N 204 < I tr Nitric acidc -- 100 aThe reactions were conducted at 100%C for 1 hour in

  4. Seasonal variation of meteor decay times observed at King Sejong Station (62.22°S, 58.78°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Han; Kim, Yong Ha; Lee, Chang-Sup; Jee, Geonhwa

    2010-07-01

    We analyzed meteor decay times measured by a VHF radar at King Sejong Station by classifying strong and weak meteors according to their estimated electron line densities. The height profiles of monthly averaged decay times show a peak whose altitude varies with season at altitudes of 80-85 km. The higher peak during summer is consistent with colder temperatures that cause faster chemical reactions of electron removal. By adopting temperature dependent empirical recombination rates from rocket experiments and meteor electron densities of 2×105-2×106 cm-3 in a decay time model, we are able to account for decreasing decay times below the peak for all seasons without invoking meteor electron removal by hypothetical icy particles.

  5. The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Haidry, Azhar Ali; Gao, Bin; Wang, Tao; Yao, ZhengJun

    2017-08-01

    Monitoring of humidity is of utmost importance as it is essential part of almost every process in our life. Many commercial humidity sensors based on metal oxide semiconductors are available in the market, but there is still need to synthesize low-cost, fast and highly sensitive humidity sensors with no interference from background environment. The aim of this work was to fabricate the ordered mesoporous un-doped and Co-doped TiO2 (0.1-5 mol% Co) and to analyze its humidity sensing properties at room temperatures. The ordered mesoporous powders with high specific surface area (SSA) were prepared by multicomponent self-assembly procedure and then spray-coated onto the sensor substrates with interdigitated gold electrodes. The sensors exhibited excellent stability and reproducible resistance change under various relative humidity percentages (9-90% RH) with negligible effect of background environment. For instance, the response to 90% RH at room temperature was about five orders of magnitude (∼1.39 × 105) and the response time (Tres) was ∼24 s. The reaction/recovery times of the sensors were compared with commercial humidity sensor to show that the reaction times in this work are not given by the surface reaction of water vapor on the sensor surfaces, rather these are mainly influenced by the experimental setup. The sensor response increased up to 3 mol% Co-contents and then decreased for 5 mol% Co-contents. Based on the experimental results, the surface reaction of humidity is discussed related to specific surface area, average grain size and cobalt contents to understand the humidity sensing mechanism.

  6. Rethinking spontaneous giving: Extreme time pressure and ego-depletion favor self-regarding reactions

    PubMed Central

    Capraro, Valerio; Cococcioni, Giorgia

    2016-01-01

    Previous experimental studies suggest that cooperation in one-shot anonymous interactions is, on average, spontaneous, rather than calculative. To explain this finding, it has been proposed that people internalize cooperative heuristics in their everyday life and bring them as intuitive strategies in new and atypical situations. Yet, these studies have important limitations, as they promote intuitive responses using weak time pressure or conceptual priming of intuition. Since these manipulations do not deplete participants’ ability to reason completely, it remains unclear whether cooperative heuristics are really automatic or they emerge after a small, but positive, amount of deliberation. Consistent with the latter hypothesis, we report two experiments demonstrating that spontaneous reactions in one-shot anonymous interactions tend to be egoistic. In doing so, our findings shed further light on the cognitive underpinnings of cooperation, as they suggest that cooperation in one-shot interactions is not automatic, but appears only at later stages of reasoning. PMID:27251762

  7. Simulator Evaluation of Airborne Information for Lateral Spacing (AILS) Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Elliott, Dawn M.

    2001-01-01

    The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2500 ft. This report describes the AILS operational concept and the results of a ground-based flight simulation experiment of one implementation of this concept. The focus of this simulation experiment was to evaluate pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which all aircraft oil one approach intrudes into the path of an aircraft oil the other approach. Results from this study showed that the design-goal mean miss-distance of 1200 ft to potential collision situations was surpassed with an actual mean miss-distance of 2236 ft. Pilot reaction times to the alerting system, which was an operational concern, averaged 1.11 sec, well below the design-goal reaction time 2.0 sec.These quantitative results and pilot subjective data showed that the AILS concept is reasonable from an operational standpoint.

  8. The H + OCS hot atom reaction - CO state distributions and translational energy from time-resolved infrared absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Cartland, Harry E.

    1993-01-01

    Time-resolved infrared diode laser spectroscopy has been used to probe CO internal and translational excitation from the reaction of hot H atoms with OCS. Product distributions should be strongly biased toward the maximum 1.4 eV collision energy obtained from 278 nm pulsed photolysis of HI. Rotations and vibrations are both colder than predicted by statistical density of states theory, as evidenced by large positive surprisal parameters. The bias against rotation is stronger than that against vibration, with measurable population as high as v = 4. The average CO internal excitation is 1920/cm, accounting for only 13 percent of the available energy. Of the energy balance, time-resolved sub-Doppler line shape measurements show that more than 38 percent appears as relative translation of the separating CO and SH fragments. Studies of the relaxation kinetics indicate that some rotational energy transfer occurs on the time scale of our measurements, but the distributions do not relax sufficiently to alter our conclusions. Vibrational distributions are nascent, though vibrational relaxation of excited CO is unusually fast in the OCS bath, with rates approaching 3 percent of gas kinetic for v = 1.

  9. Beauty is in the ease of the beholding: A neurophysiological test of the averageness theory of facial attractiveness

    PubMed Central

    Trujillo, Logan T.; Jankowitsch, Jessica M.; Langlois, Judith H.

    2014-01-01

    Multiple studies show that people prefer attractive over unattractive faces. But what is an attractive face and why is it preferred? Averageness theory claims that faces are perceived as attractive when their facial configuration approximates the mathematical average facial configuration of the population. Conversely, faces that deviate from this average configuration are perceived as unattractive. The theory predicts that both attractive and mathematically averaged faces should be processed more fluently than unattractive faces, whereas the averaged faces should be processed marginally more fluently than the attractive faces. We compared neurocognitive and behavioral responses to attractive, unattractive, and averaged human faces to test these predictions. We recorded event-related potentials (ERPs) and reaction times (RTs) from 48 adults while they discriminated between human and chimpanzee faces. Participants categorized averaged and high attractive faces as “human” faster than low attractive faces. The posterior N170 (150 – 225 ms) face-evoked ERP component was smaller in response to high attractive and averaged faces versus low attractive faces. Single-trial EEG analysis indicated that this reduced ERP response arose from the engagement of fewer neural resources and not from a change in the temporal consistency of how those resources were engaged. These findings provide novel evidence that faces are perceived as attractive when they approximate a facial configuration close to the population average and suggest that processing fluency underlies preferences for attractive faces. PMID:24326966

  10. The Polarized Deuteron Breakup Experiment at COSY

    NASA Astrophysics Data System (ADS)

    Rathmann, F.; Barsov, S.; Dymov, S.; Kacharava, A.; Khoukaz, A.; Komarov, V.; Kulikov, A.; Kurbatov, A.; Lang, N.; Lehmann, I.; Lorentz, B.; Macharashvili, G.; Mussgiller, A.; Paetz gen. Schieck, H.; Schleichert, R.; Seyfarth, H.; Steffens, E.; Ströher, H.; Uzikov, Yu.; Yaschenko, S.; Zalikhanov, B.

    2003-07-01

    A study of the deuteron breakup reaction pd → (pp)n with forward emission of a fast proton pair with small excitation energy Epp < 3 MeV has been performed using the ANKE spectrometer at COSY Jülich. The differential cross section of the breakup reaction, averaged up to 8° over the cm polar angle of the total momentum of the pp pairs, has been obtained at six proton beam energies Tp = 0.6, 0.7, 0.8, 0.95, 1.35, and 1.9 GeV. A first measurement of the vector analyzing power Ayp has been carried out, using a polarization normalization obtained with the EDDA detector. In addition, for the first time asymmetries of p⃗d elastic scattering at Tp = 500 MeV have been recorded with the spectator setup at ANKE.

  11. Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid.

    PubMed

    Xu, Weiyin; Miller, Stephen J; Agrawal, Pradeep K; Jones, Christopher W

    2012-04-01

    Organosolv switchgrass lignin is depolymerized and hydrodeoxygenated with a formic acid hydrogen source, 20 wt % Pt/C catalyst, and ethanol solvent. The combination of formic acid and Pt/C is found to promote production of higher fractions of lower molecular weight compounds in the liquid products. After 4 h of reaction, all of the switchgrass lignin is solubilized and 21 wt % of the biomass is shown to be converted into seven prominent molecular species that are identified and quantified. Reaction time is shown to be an important variable in affecting changes in product distributions and bulk liquid product properties. At 20 h of reaction, the lignin is significantly depolymerized to form liquid products with a 76 % reduction in the weighted average molecular weight. Elemental analysis also shows that the resultant liquid products have a 50 % reduction in O/C and 10 % increase in H/C molar ratios compared to the switchgrass lignin after 20 h. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Stress reactions involving the pars interarticularis in young athletes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, D.W.; Wiltse, L.L.; Dingeman, R.D.

    A stress reaction involving the pars interarticularis of the lumbar spine was confirmed in seven young athletes with a positive technetium pyrophosphate bone scan. No pars defects were detectable on their lumbosacral roentgenograms, which included oblique views. The return to normal levels of radioactive uptake on repeat bone scans correlated closely with their clinical course. If the bony reaction is recognized early, it may heal at a subroentgenographic level and prevent the development of lumbar spondylolysis. These early lesions usually show unilateral increased uptake at one lumbar level on the bone scan and, initially, the athlete localizes the pain tomore » the corresponding unilateral lumbar paraspinous area. The ''one-legged hyperextension test'' is positive on the ipsilateral side and aggravates the pain. Treatment consists of avoiding the aggravating activities and resting. The average time for return to pain-free competition was 7.3 months. These developing defects may be the source of considerable prolonged disability in the young athlete, particularly if undiagnosed and untreated.« less

  13. Completing the nuclear reaction puzzle of the nucleosynthesis of Mo 92

    DOE PAGES

    Tveten, G. M.; Spyrou, A.; Schwengner, R.; ...

    2016-08-22

    One of the greatest questions for modern physics to address is how elements heavier than iron are created in extreme astrophysical environments. A particularly challenging part of that question is the creation of the so-called p-nuclei, which are believed to be mainly produced in some types of supernovae. Here, the lack of needed nuclear data presents an obstacle in nailing down the precise site and astrophysical conditions. In this work, we present for the first time measurements on the nuclear level density and average γ strength function of 92Mo. State-of-the-art p-process calculations systematically underestimate the observed solar abundance of thismore » isotope. Our data provide stringent constraints on the 91Nb(p,γ) 92Mo reaction rate, which is the last unmeasured reaction in the nucleosynthesis puzzle of 92Mo. Based on our results, we conclude that the 92Mo abundance anomaly is not due to the nuclear physics input to astrophysical model calculations.« less

  14. Survival behavior in the cyclic Lotka-Volterra model with a randomly switching reaction rate

    NASA Astrophysics Data System (ADS)

    West, Robert; Mobilia, Mauro; Rucklidge, Alastair M.

    2018-02-01

    We study the influence of a randomly switching reproduction-predation rate on the survival behavior of the nonspatial cyclic Lotka-Volterra model, also known as the zero-sum rock-paper-scissors game, used to metaphorically describe the cyclic competition between three species. In large and finite populations, demographic fluctuations (internal noise) drive two species to extinction in a finite time, while the species with the smallest reproduction-predation rate is the most likely to be the surviving one (law of the weakest). Here we model environmental (external) noise by assuming that the reproduction-predation rate of the strongest species (the fastest to reproduce and predate) in a given static environment randomly switches between two values corresponding to more and less favorable external conditions. We study the joint effect of environmental and demographic noise on the species survival probabilities and on the mean extinction time. In particular, we investigate whether the survival probabilities follow the law of the weakest and analyze their dependence on the external noise intensity and switching rate. Remarkably, when, on average, there is a finite number of switches prior to extinction, the survival probability of the predator of the species whose reaction rate switches typically varies nonmonotonically with the external noise intensity (with optimal survival about a critical noise strength). We also outline the relationship with the case where all reaction rates switch on markedly different time scales.

  15. A Novel Strategy for Human Papillomavirus Detection and Genotyping with SybrGreen and Molecular Beacon Polymerase Chain Reaction

    PubMed Central

    Szuhai, Károly; Sandhaus, Emily; Kolkman-Uljee, Sandra M.; Lemaître, Marc; Truffert, Jean-Christophe; Dirks, Roeland W.; Tanke, Hans J.; Fleuren, Gert Jan; Schuuring, Ed; Raap, Anton K.

    2001-01-01

    Human papillomaviruses (HPVs) play an important role in the pathogenesis of cervical cancer. For identification of the large number of different HPV types found in (pre)malignant lesions, a robust methodology is needed that combines general HPV detection with HPV genotyping. We have developed for formaldehyde-fixed samples a strategy that, in a homogenous, real-time fluorescence polymerase chain reaction (PCR)-based assay, accomplishes general HPV detection by SybrGreen reporting of HPV-DNA amplicons, and genotyping of seven prevalent HPV types (HPV-6, -11, -16, -18, -31, -33, -45) by real-time molecular beacon PCR. The false-positive rate of the HPV SybrGreen-PCR was 4%, making it well suited as a prescreening, general HPV detection technology. The type specificity of the seven selected HPV molecular beacons was 100% and double infections were readily identified. The multiplexing capacity of the HPV molecular beacon PCR was analyzed and up to three differently labeled molecular beacons could be used in one PCR reaction without observing cross talk. The inherent quantitation capacities of real-time fluorescence PCR allowed the determination of average HPV copy number per cell. We conclude that the HPV SybrGreen-PCR in combination with the HPV molecular beacon PCR provides a robust, sensitive, and quantitative general HPV detection and genotyping methodology. PMID:11696426

  16. Statistical effects related to low numbers of reacting molecules analyzed for a reversible association reaction A + B = C in ideally dispersed systems: An apparent violation of the law of mass action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymanski, R., E-mail: rszymans@cbmm.lodz.pl; Sosnowski, S.; Maślanka, Ł.

    2016-03-28

    Theoretical analysis and computer simulations (Monte Carlo and numerical integration of differential equations) show that the statistical effect of a small number of reacting molecules depends on a way the molecules are distributed among the small volume nano-reactors (droplets in this study). A simple reversible association A + B = C was chosen as a model reaction, enabling to observe both thermodynamic (apparent equilibrium constant) and kinetic effects of a small number of reactant molecules. When substrates are distributed uniformly among droplets, all containing the same equal number of substrate molecules, the apparent equilibrium constant of the association is highermore » than the chemical one (observed in a macroscopic—large volume system). The average rate of the association, being initially independent of the numbers of molecules, becomes (at higher conversions) higher than that in a macroscopic system: the lower the number of substrate molecules in a droplet, the higher is the rate. This results in the correspondingly higher apparent equilibrium constant. A quite opposite behavior is observed when reactant molecules are distributed randomly among droplets: the apparent association rate and equilibrium constants are lower than those observed in large volume systems, being the lower, the lower is the average number of reacting molecules in a droplet. The random distribution of reactant molecules corresponds to ideal (equal sizes of droplets) dispersing of a reaction mixture. Our simulations have shown that when the equilibrated large volume system is dispersed, the resulting droplet system is already at equilibrium and no changes of proportions of droplets differing in reactant compositions can be observed upon prolongation of the reaction time.« less

  17. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification.

    PubMed

    Cheng, Kuang-ming; Hung, Yao-wen; Chen, Cheng-cheung; Liu, Cheng-che; Young, Jenn-jong

    2014-09-22

    A one-step route for the green synthesis of highly stable and nanosized silver metal particles with narrow distribution is reported. In this environmentally friendly synthetic method, silver nitrate was used as silver precursor and biocompatible chondroitin sulfate (ChS) was used as both reducing agent and stabilizing agent. The reaction was carried out in a stirring aqueous medium at the room temperature without any assisted by microwave, autoclave, laser irradiation, γ-ray irradiation or UV irradiation. The transparent colorless solution was converted to the characteristics light red then deep red-brown color as the reaction proceeds, indicating the formation of silver nanoparticles (Ag NPs). The Ag NPs were characterized by UV-visible spectroscopy (UV-vis), photon correlation spectroscopy, laser Doppler anemometry, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were Ag NPs capped with ChS. In this report, dynamic light scattering (DLS) was used as a routinely analytical tool for measuring size and distribution in a liquid environment. The effects of the reaction time, reaction temperature, concentration and the weight ratio of ChS/Ag+ on the particle size and zeta potential were investigated. The TEM image clearly shows the morphology of the well-dispersed ChS-capped Ag NPs are spherical in shape, and the average size (<20 nm) is much smaller than the Z-average value (76.7 nm) measured by DLS. Meanwhile, the ChS-capped Ag NPs coated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) were prepared by an ionic gelation method and the surface charge of Ag NPs was switched from negative to positive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction on a neural network PES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welsch, Ralph, E-mail: rwelsch@uni-bielefeld.de; Manthe, Uwe, E-mail: uwe.manthe@uni-bielefeld.de

    2015-02-14

    Initial state-selected reaction probabilities of the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction are calculated in full and reduced dimensionality on a recent neural network potential [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. The quantum dynamics calculation employs the quantum transition state concept and the multi-layer multi-configurational time-dependent Hartree approach and rigorously studies the reaction for vanishing total angular momentum (J = 0). The calculations investigate the accuracy of the neutral network potential and study the effect resulting from a reduced-dimensional treatment. Very good agreement is found betweenmore » the present results obtained on the neural network potential and previous results obtained on a Shepard interpolated potential energy surface. The reduced-dimensional calculations only consider motion in eight degrees of freedom and retain the C{sub 3v} symmetry of the methyl fragment. Considering reaction starting from the vibrational ground state of methane, the reaction probabilities calculated in reduced dimensionality are moderately shifted in energy compared to the full-dimensional ones but otherwise agree rather well. Similar agreement is also found if reaction probabilities averaged over similar types of vibrational excitation of the methane reactant are considered. In contrast, significant differences between reduced and full-dimensional results are found for reaction probabilities starting specifically from symmetric stretching, asymmetric (f{sub 2}-symmetric) stretching, or e-symmetric bending excited states of methane.« less

  19. Influence of mastication rate on dynamic flavour release analysed by combined model mouth/proton transfer reaction-mass spectrometry

    NASA Astrophysics Data System (ADS)

    van Ruth, Saskia M.; Buhr, Katja

    2004-12-01

    The influence of mastication rate on the dynamic release of seven volatile flavour compounds from sunflower oil was evaluated by combined model mouth/proton transfer reaction-mass spectrometry (PTR-MS). Air/oil partition coefficients were measured by static headspace gas chromatography. The dynamic release of the seven volatile flavour compounds from sunflower oil was significantly affected by the compounds' hydrophobicity and the mastication rate employed in the model mouth. The more hydrophobic compounds were released at a higher rate than their hydrophilic counterparts. Increase in mastication rate increased the maximum concentration measured by 36% on average, and the time to reach this maximum by 35% on average. Mastication affected particularly the release of the hydrophilic compounds. The maximum concentration of the compounds correlated significantly with the compounds' air/oil partition coefficients. The initial release rates over the first 15 s were affected by the type of compound, but not by the mastication rate. During the course of release, the proportions of the hydrophilic compounds to the overall flavour mixture in air decreased. The contribution of the hydrophobic compounds increased. Higher mastication rates, however, increased the proportions of the hydrophilic compounds and decreased those of the hydrophobic compounds.

  20. Facile Synthesis of Ultralong and Thin Copper Nanowires and Its Application to High-Performance Flexible Transparent Conductive Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Yaxiong; Liu, Ping; Zeng, Baoqing; Liu, Liming; Yang, Jianjun

    2018-03-01

    A hydrothermal method for synthesizing ultralong and thin copper nanowires (CuNWs) with average diameter of 35 nm and average length of 100 μm is demonstrated in this paper. The concerning raw materials include copric (II) chloride dihydrate (CuCl2·2H2O), octadecylamine (ODA), and ascorbic acid, which are all very cheap and nontoxic. The effect of different reaction time and different molar ratios to the reaction products were researched. The CuNWs prepared by the hydrothermal method were applied to fabricate CuNW transparent conductive electrode (TCE), which exhibited excellent conductivity-transmittance performance with low sheet resistance of 26.23 Ω /\\square and high transparency at 550 nm of 89.06% (excluding Polyethylene terephthalate (PET) substrate). The electrode fabrication process was carried out at room temperature, and there was no need for post-treatment. In order to decrease roughness and protect CuNW TCEs against being oxidized, we fabricated CuNW/poly(methyl methacrylate) (PMMA) hybrid TCEs (HTCEs) using PMMA solution. The CuNW/PMMA HTCEs exhibited low surface roughness and chemical stability as compared with CuNW TCEs.

  1. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    PubMed

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A solution for measuring accurate reaction time to visual stimuli realized with a programmable microcontroller.

    PubMed

    Ohyanagi, Toshio; Sengoku, Yasuhito

    2010-02-01

    This article presents a new solution for measuring accurate reaction time (SMART) to visual stimuli. The SMART is a USB device realized with a Cypress Programmable System-on-Chip (PSoC) mixed-signal array programmable microcontroller. A brief overview of the hardware and firmware of the PSoC is provided, together with the results of three experiments. In Experiment 1, we investigated the timing accuracy of the SMART in measuring reaction time (RT) under different conditions of operating systems (OSs; Windows XP or Vista) and monitor displays (a CRT or an LCD). The results indicated that the timing error in measuring RT by the SMART was less than 2 msec, on average, under all combinations of OS and display and that the SMART was tolerant to jitter and noise. In Experiment 2, we tested the SMART with 8 participants. The results indicated that there was no significant difference among RTs obtained with the SMART under the different conditions of OS and display. In Experiment 3, we used Microsoft (MS) PowerPoint to present visual stimuli on the display. We found no significant difference in RTs obtained using MS DirectX technology versus using the PowerPoint file with the SMART. We are certain that the SMART is a simple and practical solution for measuring RTs accurately. Although there are some restrictions in using the SMART with RT paradigms, the SMART is capable of providing both researchers and health professionals working in clinical settings with new ways of using RT paradigms in their work.

  3. Reliability of the dynavision™ d2 for assessing reaction time performance.

    PubMed

    Wells, Adam J; Hoffman, Jay R; Beyer, Kyle S; Jajtner, Adam R; Gonzalez, Adam M; Townsend, Jeremy R; Mangine, Gerald T; Robinson, Edward H; McCormack, William P; Fragala, Maren S; Stout, Jeffrey R

    2014-01-01

    Recently, the Dynavision™ D2 Visuomotor Training Device (D2) has emerged as a tool in the assessment of reaction time (RT); however, information regarding the reliability of the D2 have been limited, and to date, reliability data have been limited to non- generalizable samples. Therefore, the purpose of this study was to establish intraclass correlation coefficients (ICC2,1) for the D2 that are generalizable across a population of recreationally active young adults. Forty-two recreationally active men and women (age: 23.41 ± 4.84 years; height: 1.72 ± 0.11 m; mass: 76.62 ± 18.26 Kg) completed 6 trials for three RT tasks of increasing complexity. Each trial was separated by at least 48-hours. A repeated measures ANOVA was used to detect differences in performance across the six trials. Intraclass correlation coefficients (ICC2,1) standard error of measurement (SEM), and minimal differences (MD) were used to determine the reliability of the D2 from the two sessions with the least significant difference score. Moderate to strong reliability was demonstrated for visual RT (ICC2,1: 0.84, SEM: 0.033), and reactive ability in both Mode A and Mode B tasks (Mode A hits: ICC2,1: 0.75, SEM: 5.44; Mode B hits: ICC2,1: 0.73, SEM: 8.57). Motor RT (ICC2,1: 0.63, SEM: 0.035s) showed fair reliability, while average RT per hit for Modes A and B showed moderate reliability (ICC2,1: 0.68, SEM: 0.43 s and ICC2,1: 0.72, SEM: 0.03 s respectively). It appears that one familiarization trial is necessary for the choice reaction time (CRT) task while three familiarization trials are necessary for reactive RT tasks. In conclusion, results indicate that the Dynavision™ D2 is a reliable device to assess neuromuscular reactivity given that an adequate practice is provided. The data presented are generalizable to a population of recreationally active young adults. Key PointsThe Dynavision™ D2 is a light-training reaction device, developed to train sensory motor integration through the visual system, offering the ability to assess visual and motor reaction to both central and peripheral stimuli, with a capacity to integrate increasing levels of cognitive challenge.The Dynavision™ D2 is a reliable instrument for assessing reaction time in recreationally active young adults.It is recommended that one familiarization trial is necessary for the choice reaction time task assessment to learn the test protocol, while three familiarization trials are needed for reactive ability in Mode A and Mode B before a subsequent reliable baseline score can be established.Significant training effects were observed for all reaction time tests and should be taken into account with continuous trials.

  4. Measurement of 89Y(n,2n) spectral averaged cross section in LR-0 special core reactor spectrum

    NASA Astrophysics Data System (ADS)

    Košťál, Michal; Losa, Evžen; Baroň, Petr; Šolc, Jaroslav; Švadlenková, Marie; Koleška, Michal; Mareček, Martin; Uhlíř, Jan

    2017-12-01

    The present paper describes reaction rate measurement of 89Y(n,2n)88Y in a well-defined reactor spectrum of a special core assembled in the LR-0 reactor and compares this value with results of simulation. The reaction rate is derived from the measurement of activity of 88Y using gamma-ray spectrometry of irradiated Y2O3 sample. The resulting cross section value averaged in spectrum is 43.9 ± 1.5 μb, averaged in the 235U spectrum is 0.172 ± 0.006 mb. This cross-section is important as it is used as high energy neutron monitor and is therefore included in the International Reactor Dosimetry and Fusion File. Calculations of reaction rates were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010, CENDL-3.1 and IRDFF nuclear data libraries. The agreement with uranium description by CIELO library is very good, while in ENDF/B-VII.0 description of uranium, underprediction about 10% in average can be observed.

  5. Direct Visualization of Catalytically Active Sites at the FeO–Pt(111) Interface

    DOE PAGES

    Kudernatsch, Wilhelmine; Peng, Guowen; Zeuthen, Helene; ...

    2015-05-31

    Within the area of surface science, one of the “holy grails” is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations. Time-lapsed STM imaging on this inverse model catalyst in O 2 andmore » CO environments revealed catalytic activity occurring at the FeO–Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction. This is an important result since previous evidence for the catalytic activity of the FeO–Pt(111) interface is essentially based on averaging techniques in conjunction with DFT calculations. As a result, the presented STM results are in accord with DFT+U calculations, in which we compare possible CO oxidation pathways on oxidized Fe-edges and O-edges. We found that the CO oxidation reaction is more favorable on the oxidized Fe-edges, both thermodynamically and kinetically.« less

  6. Core-shell-structured nanothermites synthesized by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Qin, Lijun; Gong, Ting; Hao, Haixia; Wang, Keyong; Feng, Hao

    2013-12-01

    Thermite materials feature very exothermic solid-state redox reactions. However, the energy release rates of traditional thermite mixtures are limited by the reactant diffusion velocities. In this work, atomic layer deposition (ALD) is utilized to synthesize thermite materials with greatly enhanced reaction rates. By depositing certain types of metal oxides (oxidizers) onto a commercial Al nanopowder, core-shell-structured nanothermites can be produced. The average film deposition rate on the Al nanopowder is 0.17 nm/cycle for ZnO and 0.031 nm/cycle for SnO2. The thickness of the oxidizer layer can be precisely controlled by adjusting the ALD cycle number. The compositions, morphologies, and structures of the ALD nanothermites are characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The characterization results reveal nearly perfect coverage of the Al nanoparticles by uniform ALD oxidizer layers and confirm the formation of core-shell nanoparticles. Combustion properties of the nanothermites are probed by laser ignition technique. Reactions of the core-shell-structured nanothermites are several times faster than the mixture of nanopowders. The promoted reaction rate is mostly attributed to the uniform distribution of reactants on the nanometer scale. These core-shell-structured nanothermites provide a potential pathway to control and enhance thermite reactions.

  7. Correcting GOES-R Magnetometer Data for Stray Fields

    NASA Technical Reports Server (NTRS)

    Carter, Delano; Freesland, Douglas; Tadikonda, Sivakumar; Kronenwetter, Jeffrey; Todirita, Monica; Dahya, Melissa; Chu, Donald

    2016-01-01

    Time-varying spacecraft magnetic fields, i.e. stray fields, are a problem for magnetometer systems. While constant fields can be removed by calibration, stray fields are difficult to distinguish from ambient field variations. Putting two magnetometers on a long boom and solving for both the ambient and stray fields can help, but this gradiometer solution is more sensitive to noise than a single magnetometer. As shown here for the R-series Geostationary Operational Environmental Satellites (GOES-R), unless the stray fields are larger than the noise, simply averaging the two magnetometer readings gives a more accurate solution. If averaging is used, it may be worthwhile to estimate and remove stray fields explicitly. Models and estimation algorithms to do so are provided for solar array, arcjet and reaction wheel fields.

  8. Neutron production mechanism in a plasma focus.

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Shomo, L. P.; Williams, M. D.; Hermansdorfer, H.

    1971-01-01

    The neutrons emitted by a plasma focus were analyzed by using a time-of-flight method. Flight paths as large as 80 m were used to obtain better than 10% energy resolution. The energy spectrum of neutrons from d-d reactions in the plasma focus shows a sharp onset with average maximum energies of 2.8 and 3.2 MeV in the radial and the axial directions, respectively. The average half-width of the energy spectrum was 270 keV with a shot-to-shot variation between 150 and 400 keV. Simultaneous measurements in the axial and radial directions showed no appreciable difference in the half-widths and thus indicated randomly oriented ion velocities in the plasma. A converging ion model is described which is found to be in agreement with the measured quantities.

  9. The effects of assisted cycling therapy (ACT) and voluntary cycling on reaction time and measures of executive function in adolescents with Down syndrome.

    PubMed

    Ringenbach, S D R; Holzapfel, S D; Mulvey, G M; Jimenez, A; Benson, A; Richter, M

    2016-11-01

    Reports of positive effects of aerobic exercise on cognitive function in persons with Down syndrome are extremely limited. However, a novel exercise intervention, termed assisted cycling therapy (ACT), has resulted in acutely improved cognitive planning ability and reaction times as well as improved cognitive planning after 8 weeks of ACT in adolescents and young adults with Down syndrome. Here, we report the effects of 8 weeks of ACT on reaction time, set-shifting, inhibition and language fluency in adolescents with Down syndrome. Adolescents with Down syndrome (age: ~18 years) were randomly assigned to 8 weeks of ACT (n = 17) or voluntary cycling (VC: n = 16), and a convenience sample (n = 11) was assigned to be an inactive comparison group (NC: n = 11). During ACT, the cycling cadence of the participants was augmented to an average cadence that was 80% faster than the voluntary cadence of the VC group. The increase in cadence was achieved with an electric motor in the stationary bicycle. Reaction time, set-shifting, inhibition and language fluency were assessed before and after 8 weeks of intervention. Power output and heart rates of the ACT and VC groups were almost identical, but the ACT cadence was significantly faster. The ACT group, but not the VC or NC groups, showed significantly improved reactions times (Hedges' g = -0.42) and inhibitory control (g = 0.18). Only the VC group showed improved set-shifting ability (g = 0.57). The ACT and VC groups displayed improved semantic language fluency (g = 0.25, g = 0.22, respectively). These and previous results support the hypothesis of increased neuroplasticity and prefrontal cortex function following ACT and, to a smaller extent, following VC. Both ACT and VC appear to be associated with cortical benefits, but based on current and previous results, ACT seems to maximize the benefits. © 2016 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  10. Method and Apparatus for Monitoring of Daily Activity in Terms of Ground Reaction Forces

    NASA Technical Reports Server (NTRS)

    Whalen, Robert T. (Inventor); Breit, Gregory A. (Inventor)

    2001-01-01

    A device to record and analyze habitual daily activity in terms of the history of gait-related musculoskeletal loading is disclosed. The device consists of a pressure-sensing insole placed into the shoe or embedded in a shoe sole, which detects contact of the foot with the ground. The sensor is coupled to a portable battery-powered digital data logger clipped to the shoe or worn around the ankle or waist. During the course of normal daily activity, the system maintains a record of time-of-occurrence of all non-spurious foot-down and lift-off events. Off line, these data are filtered and converted to a history of foot-ground contact times, from which measures of cumulative musculoskeletal loading, average walking- and running-specific gait speed, total time spent walking and running, total number of walking steps and running steps, and total gait-related energy expenditure are estimated from empirical regressions of various gait parameters to the contact time reciprocal. Data are available as cumulative values or as daily averages by menu selection. The data provided by this device are useful for assessment of musculoskeletal and cardiovascular health and risk factors associated with habitual patterns of daily activity.

  11. Controlling the size and magnetic properties of nano CoFe2O4 by microwave assisted co-precipitation method

    NASA Astrophysics Data System (ADS)

    Prabhakaran, T.; Mangalaraja, R. V.; Denardin, Juliano C.

    2018-02-01

    In this report, cobalt ferrite nanoparticles synthesized using microwave assisted co-precipitation method was reported. Efforts have been made to control the particles size, distribution, morphology and magnetic properties of cobalt ferrite nanoparticles by varying the concentration of NaOH solution and microwave irradiation time. It was observed that the rate of nucleation and crystal growth was influenced by the tuning parameters. In that way, the average crystallite size of single phase cobalt ferrite nanoparticles was controlled within 9-11 and 10-12 nm with an increase of base concentration and microwave irradiation time, respectively. A narrow size distribution of nearly spherical nanoparticles was achieved through the present procedure. A soft ferromagnetism at room temperature with the considerable saturation magnetization of 58.4 emu g-1 and coercivity of 262.7 Oe was obtained for the cobalt ferrites synthesized with 2.25 M of NaOH solution for 3 and 7 min of microwave irradiation time, respectively. The cobalt ferrite nanoparticles synthesized with a shorter reaction time of 3-7 min was found to be advantageous over other methods that involved conventional heating procedures and longer reaction time to achieve the better magnetic properties for the technological applications.

  12. Free-Propagator Reweighting Integrator for Single-Particle Dynamics in Reaction-Diffusion Models of Heterogeneous Protein-Protein Interaction Systems

    PubMed Central

    Hummer, Gerhard

    2015-01-01

    We present a new algorithm for simulating reaction-diffusion equations at single-particle resolution. Our algorithm is designed to be both accurate and simple to implement, and to be applicable to large and heterogeneous systems, including those arising in systems biology applications. We combine the use of the exact Green's function for a pair of reacting particles with the approximate free-diffusion propagator for position updates to particles. Trajectory reweighting in our free-propagator reweighting (FPR) method recovers the exact association rates for a pair of interacting particles at all times. FPR simulations of many-body systems accurately reproduce the theoretically known dynamic behavior for a variety of different reaction types. FPR does not suffer from the loss of efficiency common to other path-reweighting schemes, first, because corrections apply only in the immediate vicinity of reacting particles and, second, because by construction the average weight factor equals one upon leaving this reaction zone. FPR applications include the modeling of pathways and networks of protein-driven processes where reaction rates can vary widely and thousands of proteins may participate in the formation of large assemblies. With a limited amount of bookkeeping necessary to ensure proper association rates for each reactant pair, FPR can account for changes to reaction rates or diffusion constants as a result of reaction events. Importantly, FPR can also be extended to physical descriptions of protein interactions with long-range forces, as we demonstrate here for Coulombic interactions. PMID:26005592

  13. LES/RANS Simulation of a Supersonic Reacting Wall Jet

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; Boles, John A.; Baurle, Robert A.

    2010-01-01

    This work presents results from large-eddy / Reynolds-averaged Navier-Stokes (LES/RANS) simulations of the well-known Burrows-Kurkov supersonic reacting wall-jet experiment. Generally good agreement with experimental mole fraction, stagnation temperature, and Pitot pressure profiles is obtained for non-reactive mixing of the hydrogen jet with a non-vitiated air stream. A lifted flame, stabilized between 10 and 22 cm downstream of the hydrogen jet, is formed for hydrogen injected into a vitiated air stream. Flame stabilization occurs closer to the hydrogen injection location when a three-dimensional combustor geometry (with boundary layer development resolved on all walls) is considered. Volumetric expansion of the reactive shear layer is accompanied by the formation of large eddies which interact strongly with the reaction zone. Time averaged predictions of the reaction zone structure show an under-prediction of the peak water concentration and stagnation temperature, relative to experimental data and to results from a Reynolds-averaged Navier-Stokes calculation. If the experimental data can be considered as being accurate, this result indicates that the present LES/RANS method does not correctly capture the cascade of turbulence scales that should be resolvable on the present mesh. Instead, energy is concentrated in the very largest scales, which provide an over-mixing effect that excessively cools and strains the flame. Predictions improve with the use of a low-dissipation version of the baseline piecewise parabolic advection scheme, which captures the formation of smaller-scale structures superimposed on larger structures of the order of the shear-layer width.

  14. Effect of red bull energy drink on auditory reaction time and maximal voluntary contraction.

    PubMed

    Goel, Vartika; Manjunatha, S; Pai, Kirtana M

    2014-01-01

    The use of "Energy Drinks" (ED) is increasing in India. Students specially use these drinks to rejuvenate after strenuous exercises or as a stimulant during exam times. The most common ingredient in EDs is caffeine and a popular ED available and commonly used is Red Bull, containing 80 mg of caffeine in 250 ml bottle. The primary aim of this study was to investigate the effects of Red Bull energy drink on Auditory reaction time and Maximal voluntary contraction. A homogeneous group containing twenty medical students (10 males, 10 females) participated in a crossover study in which they were randomized to supplement with Red Bull (2 mg/kg body weight of caffeine) or isoenergetic isovolumetric noncaffeinated control drink (a combination of Appy Fizz, Cranberry juice and soda) separated by 7 days. Maximal voluntary contraction (MVC) was recorded as the highest of the 3 values of maximal isometric force generated from the dominant hand using hand grip dynamometer (Biopac systems). Auditory reaction time (ART) was the average of 10 values of the time interval between the click sound and response by pressing the push button using hand held switch (Biopac systems). The energy and control drinks after one hour of consumption significantly reduced the Auditory reaction time in males (ED 232 ± 59 Vs 204 ± 34 s and Control 223 ± 57 Vs 210 ± 51 s; p < 0.05) as well as in females (ED 227 ± 56 Vs 214 ± 48 s and Control 224 ± 45 Vs 215 ± 36 s; p < 0.05) but had no effect on MVC in either sex (males ED 381 ± 37 Vs 371 ± 36 and Control 375 ± 61 Vs 363 ± 36 Newton, females ED 227 ± 23 Vs 227 ± 32 and Control 234 ± 46 Vs 228 ± 37 Newton). When compared across the gender groups, there was no significant difference between males and females in the effects of any of the drinks on the ART but there was an overall significantly lower MVC in females compared to males. Both energy drink and the control drink significantly improve the reaction time but may not have any effect on muscular performance. Energy drink per se is no better than control drink, which may indicate that there is no role of caffeine in the beneficial effect seen after the drinks.

  15. Report on 50 cases of severe acute hypotension at donor plasmaphereses: treatment and course.

    PubMed

    Evers, Josef; Schreiber, George B; Taborski, Uwe

    2017-05-29

    This paper reports our experience in 50 cases with severe hypotensive reactions at plasma donations (synonymous with donor plasmaphereses). Plasma donors who developed a severe acute hypotensive reaction at donor plasmapheresis, and were treated by placing the donor in the Trendelenburg position and rapid infusion of 1,000 mL saline were investigated. Plasmaphereses were performed with the Haemonetics® plasma collecting system 2 (PCS2). The results were analyzed using Excel. We observed 50 severe hypotensive reactions in plasma donors. The average systolic and diastolic blood pressures (SBP, DBP) were 128/75 mmHg - and heart rates were 78 beats/min (B/M) before plasmaphereses, 83/56 mmHg - 60 B/M at the event, and after treatment 119/71 mmHg - 69 B/M at the time of discharge. The volume of collected plasma was 602 ± 240 mL including anticoagulant (AC). The time until the event was 45 ± 20 minutes. With treatment 49 ± 18 minutes after the event all plasma donors had normal blood pressures and heart rates and could safely leave the center. Treatment by placing the donor in the Trendelenburg position and rapid infusion of 1,000 mL saline appears to be an effective procedure for resolving severe acute hypotension associated with donor plasmaphereses.

  16. Evaluation of carbon-based nanosorbents synthesised by ethylene decomposition on stainless steel substrates as potential sequestrating materials for nickel ions in aqueous solution.

    PubMed

    Lee, X J; Lee, L Y; Foo, L P Y; Tan, K W; Hassell, D G

    2012-01-01

    The present work covers the preparation of carbon-based nanosorbents by ethylene decomposition on stainless steel mesh without the use of external catalyst for the treatment of water containing nickel ions (Ni2+). The reaction temperature was varied from 650 to 850 degrees C, while reaction time and ethylene to nitrogen flow ratio were maintained at 30 min and 1:1 cm3/min, respectively. Results show that nanosorbents synthesised at a reaction temperature of 650 degrees C had the smallest average diameter (75 nm), largest BET surface area (68.95 m2/g) and least amount of impurity (0.98 wt.% Fe). A series of batch-sorption tests were performed to evaluate the effects of initial pH, initial metal concentration and contact time on Ni2+ removal by the nanosorbents. The equilibrium data fitted well to Freundlich isotherm. The kinetic data were best correlated to a pseudo second-order model indicating that the process was of chemisorption type. Further analysis by the Boyd kinetic model revealed that boundary layer diffusion was the controlling step. This primary study suggests that the prepared material with Freundlich constants compared well with those in the literature, is a promising sorbent for the sequestration of Ni2+ in aqueous solutions.

  17. Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; Wang, Mengyi; Kang, Qinjun

    Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less

  18. High-dynamic-range neutron time-of-flight detector used to infer the D(t,n){sup 4}He and D(d,n){sup 3}He reaction yield and ion temperature on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, C. J., E-mail: cforrest@lle.rochester.edu; Glebov, V. Yu.; Goncharov, V. N.

    Upgraded microchannel-plate–based photomultiplier tubes (MCP-PMT’s) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C{sub 15}H{sub 11}NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT’s, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 10{sup 6}. With these enhancements, the 13.4-m nTOF can measure the D(t,n){sup 4}He and D(d,n){sup 3}He reaction yields and average ion temperatures in a singlemore » line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 10{sup 9} to 1 × 10{sup 14} and the ion temperature with an accuracy approaching 5% for both the D(t,n){sup 4}He and D(d,n){sup 3}He reactions.« less

  19. Preparation of AgInS2 nanoparticles by a facile microwave heating technique; study of effective parameters, optical and photovoltaic characteristics

    NASA Astrophysics Data System (ADS)

    Tadjarodi, Azadeh; Cheshmekhavar, Amir Hossein; Imani, Mina

    2012-12-01

    In this work, AgInS2 (AIS) semiconductor nanoparticles were synthesized by an efficient and facile microwave heating technique using several sulfur sources and solvents in the different reaction times. The SEM images presented the particle morphology for all of the obtained products in the arranged reaction conditions. The particle size of 70 nm was obtained using thioacetamide (TAA), ethylene glycol (EG) as the sulfur source and solvent, respectively at the reaction time of 5 min. It was found that the change of the mentioned parameters lead to alter on the particle size of the resulting products. The average particle size was estimated using a microstructure measurement program and Minitab statistical software. The optical band gap energy of 1.96 eV for the synthesized AIS nanoparticles was determined by the diffuse reflectance spectroscopy (DRS). AgInS2/CdS/CuInSe2 heterojunction solar cell was constructed and photovoltaic parameters, i.e., open-circuit voltage (Voc), short-circuit current (Jsc) and fill factor (FF) were estimated by photocurrent-voltage (I-V) curve. The calculated fill factor of 30% and energy conversion efficiency of 1.58% revealed the capability of AIS nanoparticles to use in the solar cell devices.

  20. Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping

    DOE PAGES

    Chen, Li; Wang, Mengyi; Kang, Qinjun; ...

    2018-04-26

    Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less

  1. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Mengyi; Kang, Qinjun; Tao, Wenquan

    2018-06-01

    Solubility trapping is crucial for permanent CO2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO2-water two-phase flow, multicomponent (CO2(aq), H+, HCO3-, CO32- and OH-) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO2(aq) concentration, scCO2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is required by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Finally, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.

  2. Correlation between discrete probability and reaction front propagation rate in heterogeneous mixtures

    NASA Astrophysics Data System (ADS)

    Naine, Tarun Bharath; Gundawar, Manoj Kumar

    2017-09-01

    We demonstrate a very powerful correlation between the discrete probability of distances of neighboring cells and thermal wave propagation rate, for a system of cells spread on a one-dimensional chain. A gamma distribution is employed to model the distances of neighboring cells. In the absence of an analytical solution and the differences in ignition times of adjacent reaction cells following non-Markovian statistics, invariably the solution for thermal wave propagation rate for a one-dimensional system with randomly distributed cells is obtained by numerical simulations. However, such simulations which are based on Monte-Carlo methods require several iterations of calculations for different realizations of distribution of adjacent cells. For several one-dimensional systems, differing in the value of shaping parameter of the gamma distribution, we show that the average reaction front propagation rates obtained by a discrete probability between two limits, shows excellent agreement with those obtained numerically. With the upper limit at 1.3, the lower limit depends on the non-dimensional ignition temperature. Additionally, this approach also facilitates the prediction of burning limits of heterogeneous thermal mixtures. The proposed method completely eliminates the need for laborious, time intensive numerical calculations where the thermal wave propagation rates can now be calculated based only on macroscopic entity of discrete probability.

  3. Photophysical Behaviors of Single Fluorophores Localized on Zinc Oxide Nanostructures

    PubMed Central

    Fu, Yi; Zhang, Jian; Lakowicz, Joseph R.

    2012-01-01

    Single-molecule fluorescence spectroscopy has now been widely used to investigate complex dynamic processes which would normally be obscured in an ensemble-averaged measurement. In this report we studied photophysical behaviors of single fluorophores in proximity to zinc oxide nanostructures by single-molecule fluorescence spectroscopy and time-correlated single-photon counting (TCSPC). Single fluorophores on ZnO surfaces showed enhanced fluorescence brightness to various extents compared with those on glass; the single-molecule time trajectories also illustrated pronounced fluctuations of emission intensities, with time periods distributed from milliseconds to seconds. We attribute fluorescence fluctuations to the interfacial electron transfer (ET) events. The fluorescence fluctuation dynamics were found to be inhomogeneous from molecule to molecule and from time to time, showing significant static and dynamic disorders in the interfacial electron transfer reaction processes. PMID:23109903

  4. Teledermatologist expert skin advice: A unique model of care for managing skin disorders and adverse drug reactions in hepatitis C patients.

    PubMed

    Charlston, Samuel; Siller, Gregory

    2018-03-23

    To conduct an audit of teledermatologist expert skin advice, a store and forward tele-dermatological service, to determine its effectiveness and user satisfaction in managing cutaneous adverse drug reactions in patients with hepatitis C, and to demonstrate a unique collaborative model of care for patients receiving specialised drug therapy. A retrospective analysis of data on teledermatologist expert skin advice referrals from January 2014 to December 2015 was performed. The primary outcomes assessed included number of referrals, referral locations, diagnoses, response times, quality of clinical information provided and user satisfaction ratings. Altogether 43 consultations from 29 referring sites were received from Australian metropolitan and rural settings. Of the patients, 43 were diagnosed with an adverse drug reaction related to the use of either telaprevir or simeprevir. The average time taken for the dermatologist to reply electronically with a final diagnosis and management plan was 1 h 57 min. As many as 26% of referrals required additional photos to establish a diagnosis due to poor-quality images or insufficient detail. Altogether 18 clinicians completed the customer satisfaction survey, all of whom rated teledermatologist expert skin advice nine or above on a scale of one to 10. Teledermatologist expert skin advice was regarded by clinicians as a valuable patient care service. The platform is a novel modality that supports patients undergoing specialised treatments at risk of cutaneous adverse drug reaction. © 2018 The Australasian College of Dermatologists.

  5. Disodium N,N-bis-(dithiocarboxy)ethanediamine: synthesis, performance, and mechanism of action toward trace ethylenediaminetetraacetic acid copper (II).

    PubMed

    Xiao, Xiao; Ye, Maoyou; Yan, Pingfang; Qiu, Yiqin; Sun, Shuiyu; Ren, Jie; Dai, Yongkang; Han, Dajian

    2016-10-01

    A new effective multi-dithiocarbamate heavy metal precipitant, disodium N,N-bis-(dithiocarboxy) ethanediamine (BDE), was synthesized by mixing ethanediamine with carbon disulfide under alkaline conditions, and it was utilized for removing trace ethylenediaminetetraacetic acid copper (II) (EDTA-Cu) from wastewater. Its structure was confirmed by ultraviolet spectra, Fourier transform infrared spectra, scanning electron microscopy, thermogravimetric analysis, and elemental analysis. The removal performance of EDTA-Cu by BDE was evaluated according to BDE dosage, initial concentration, pH, and reaction time through single-factor experiments. With the optimized conditions of a pH range of 3-9, dosage ratio of BDE/Cu of 1:1, PAM dosage of 1 mg/L, and reaction time of 4 min, the removal efficiency of Cu(2+) was more than 98 % from simulated wastewater containing EDTA-Cu with initial concentrations of 5-100 mg/L. Treatment of actual EDTA-Cu wastewater showed that BDE performed superior effectiveness, and the average residential concentration of Cu(2+) was 0.115 mg/L. Besides, the stability of chelated precipitate and the reaction mechanism of BDE and EDTA-Cu were also introduced. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) indicated that the chelated precipitate was non-hazardous and stable in weak acid and alkaline conditions. The BDE reacts with EDTA-Cu at a stoichiometric ratio, and the removal of Cu(2+) was predominantly achieved through the replacement reaction of BDE and EDTA-Cu.

  6. Dolomite dissolution rates and possible Holocene dedolomitization of water-bearing units in the Edwards aquifer, south-central Texas

    USGS Publications Warehouse

    Deike, R.G.

    1990-01-01

    Rates of dolomite dissolution can be used to test the concept, based on geomorphologic evidence, that a major part of the Edwards aquifer could have formed within the Holocene, a timeframe of approximately 10,000 years. During formation of the aquifer in the Edwards limestone (Cretaceous, Albian) of the Balcones fault zone, dolomite dissolution and porosity development were synchronous and the result of mixing-zone dedolomitization. Initiation of the mixing zone in the early Holocene (???11,000 years before present) is suggested by the maximum age of formation of major discharge sites that allowed the influx of meteoric water into brine-filled, dolomitic preaquifer units. Dedolomitization, the dissolution of dolomite and net precipitation of calcite, has left aquifer units that are calcitic, and 40 vol.% interconnected pore space. The mass of dolomite missing is obtained by comparison of stratigraphically equivalent altered and unaltered units. One dissolution rate (1.76 ?? 10-4 mmol dolomite kgH2O-1yr-1) is determined from this mass, 104yr reaction time, and a log-linear function describing the increase in mass discharge (three orders of magnitude) during aquifer formation. The second estimated dissolution rate is obtained from the mass transfer of dolomite to solution calculated from the increase in magnesium in pore fluids selected from the modern aquifer to represent a typical flowpath during aquifer formation. A reaction time of 104yr for this mass transfer yields a rate of 0.56 ?? 10-4 mmol dolomite kgH2O-1yr-1. Both of these rates are comparable to modern rates of dolomite dissolution (0.3 to 4.5 ?? 10-4 mmol dolomite kgH2O-1yr-1) calculated from measured reaction times in the Tertiary Floridan aquifer system in Florida and the Madison aquifer in the Mississippian Madison Limestone of the Northern Great Plains. Similarity of these rates to the estimated paleo-rates of dolomite dissolution supports a 104 yr reaction timeframe. The Holocene reaction time also can be compared to a series of reaction times calculated by assuming that the mass of dolomite missing from the Edwards was removed at rates observed in the Floridan and Madison aquifers. These reaction times (for complete removal of dolomite) range from 2700 to 58,500 yr and span the Pleistocene-Holocene boundary. Finally, an estimated dolomite reaction rate during dedolomitization of the Edwards aquifer based on surface area of exposed dolomite [mmol cm-2s-1 (millimoles per square centimeter per second)] may be approximated from reaction times. This rate is directly a function of the mass of dolomite removed and the surface area exposed per pore volume passing through the rock. The surface area is available from the observed dolomite rhomb size in unaltered rock. The rate of pore fluid movement is obtained from the averaged annual discharge. Rates during formation of the Edwards aquifer calculated from all reaction times range from 10-13 to 10-14 mmol dolomite cm-2s-1. These rates are faster than rates (10-18 mmol cm-2s-1), measured in the pure laboratory system, CaMg(CO3)2CO2H2O, but slower than rates determined in an alpine stream study (10-10 to 10-11 mmol cm-2s-1) where cold glacial melt water flows over dolostone. Dolomite dissolution rates from both the Edwards and other aquifers support the concept that a major part of the Edwards aquifer could have formed within the Holocene. ?? 1990.

  7. [Food protein-induced enterocolitis syndrome (FPIES) in 14 children].

    PubMed

    Delahaye, C; Chauveau, A; Kiefer, S; Dumond, P

    2017-04-01

    Food protein-induced enterocolitis syndrome (FPIES) is a particular non-IgE-mediated food allergy, manifested by profuse and repetitive vomiting with hypotonia and lethargy in its acute form. A retrospective descriptive single-center study was conducted. Subjects included in this study were children with acute FPIES who consulted the allergy outpatient clinic of the Nancy Regional University Hospital between November 2013 and June 2016. Among the 14 patients (eight boys and six girls), nine had a history of atopy: a family history for six (42.8%) and a personal history for five (35.7%). Three had chronic FPIES turning into acute FPIES. Cow milk was the most common triggering food (50%), followed by fish (21.4%), mussels (14.3%), wheat (7.1%), egg (7.1%), and poultry (7.1%). The average time from ingestion to symptom onset was 90minutes. The symptoms were typical and diarrhea was not systematic (42.8%). Six children were hospitalized, some of them several times, including once in intensive care for one patient. The treatments established were, in order of frequency: oral or intravenous rehydration, corticosteroids, antihistamines, and antiemetics. Diagnosis time was 7.6 months on average; it was significantly shorter for milk than for solid foods (1.4 vs. 12 months, P-value=0.02), on average after two episodes. Another diagnosis than FPIES was raised at first for five patients (acute gastroenteritis, gastroesophageal reflux, and bowel obstruction caused by bowel volvulus). Allergy tests were initially negative. Two chronic FPIES cases (one milk FPIES and one milk and wheat FPIES) developed an acute FPIES to another food (fish and mussels); one patient changed from an acute fish FPIES to an IgE-mediated phenotype over time. FPIES resolved for four patients: three milk FPIES, on average 15.7 months after the first reaction, and one wheat FPIES, 2.5 years after the first reaction. A child with a white fish FPIES was able to introduce salmon and tuna. FPIES is a pathology that has suffered from a lack of knowledge, delaying diagnosis for many months. The progression of chronic forms to acute forms and acute forms to an IgE-mediated allergy is not rare. Doctors need more detailed knowledge: profuse and repetitive vomiting accompanied by hypotonia and/or lethargy should suggest the diagnosis of acute FPIES. To improve the management of acute FPIES, a treatment protocol is proposed here. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Near white light emission of silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Lee, Soojin; Han, Il-Ki; Cho, Woon-Jo

    2003-11-01

    Silicon nanoparticles in the range from 2 nm to 5 nm was prepared from Zintl salt, soldium silicide (NaSi) by sonochemical method. This synthesis permits the reaction completed as fast as in a few hours and the easy alkyl-modification of nanocrystals surface at room temperature and ambient pressure. The average size of nanoparticles measured by the dynamic light scattering analysis was 2.7 nm. The high-resolution transmission electron micrograph cofirmed the material identity of nanoparticles as crystalline silicon. FT-IR spectra are consistent with the surface states of nanocrystals that is chlorine- or butyl-capped. The emission peak center moved to longer wavelength (up to 430 nm) with the reaction time, under a 325 nm excitation. The luminescence of silicon colloids looks bright bluish-white under excitation using a commercial low-intensity UV lamp.

  9. Combustion chamber analysis code

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Lai, Y. G.; Krishnan, A.; Avva, R. K.; Giridharan, M. G.

    1993-01-01

    A three-dimensional, time dependent, Favre averaged, finite volume Navier-Stokes code has been developed to model compressible and incompressible flows (with and without chemical reactions) in liquid rocket engines. The code has a non-staggered formulation with generalized body-fitted-coordinates (BFC) capability. Higher order differencing methodologies such as MUSCL and Osher-Chakravarthy schemes are available. Turbulent flows can be modeled using any of the five turbulent models present in the code. A two-phase, two-liquid, Lagrangian spray model has been incorporated into the code. Chemical equilibrium and finite rate reaction models are available to model chemically reacting flows. The discrete ordinate method is used to model effects of thermal radiation. The code has been validated extensively against benchmark experimental data and has been applied to model flows in several propulsion system components of the SSME and the STME.

  10. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    NASA Astrophysics Data System (ADS)

    Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.

    2015-12-01

    The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.

  11. A novel tool for continuous fracture aftercare - Clinical feasibility and first results of a new telemetric gait analysis insole.

    PubMed

    Braun, Benedikt J; Bushuven, Eva; Hell, Rebecca; Veith, Nils T; Buschbaum, Jan; Holstein, Joerg H; Pohlemann, Tim

    2016-02-01

    Weight bearing after lower extremity fractures still remains a highly controversial issue. Even in ankle fractures, the most common lower extremity injury no standard aftercare protocol has been established. Average non weight bearing times range from 0 to 7 weeks, with standardised, radiological healing controls at fixed time intervals. Recent literature calls for patient-adapted aftercare protocols based on individual fracture and load scenarios. We show the clinical feasibility and first results of a new, insole embedded gait analysis tool for continuous monitoring of gait, load and activity. Ten patients were monitored with a new, independent gait analysis insole for up to 3 months postoperatively. Strict 20 kg partial weight bearing was ordered for 6 weeks. Overall activity, load spectrum, ground reaction forces, clinical scoring and general health data were recorded and correlated. Statistical analysis with power analysis, t-test and Spearman correlation was performed. Only one patient completely adhered to the set weight bearing limit. Average time in minutes over the limit was 374 min. Based on the parameters load, activity, gait time over 20 kg weight bearing and maximum ground reaction force high and low performers were defined after 3 weeks. Significant difference in time to painless full weight bearing between high and low performers was shown. Correlation analysis revealed a significant correlation between weight bearing and clinical scoring as well as pain (American Orthopaedic Foot and Ankle Society (AOFAS) Score rs=0.74; Olerud-Molander Score rs=0.93; VAS pain rs=-0.95). Early, continuous gait analysis is able to define aftercare performers with significant differences in time to full painless weight bearing where clinical or radiographic controls could not. Patient compliance to standardised weight bearing limits and protocols is low. Highly individual rehabilitation patterns were seen in all patients. Aftercare protocols should be adjusted to real-time patient conditions, rather than fixed intervals and limits. With a real-time measuring device high performers could be identified and influenced towards optimal healing conditions early, while low performers are recognised and missing healing influences could be corrected according to patient condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Performance changes in NBA basketball players vary in starters vs. nonstarters over a competitive season.

    PubMed

    Gonzalez, Adam M; Hoffman, Jay R; Rogowski, Joseph P; Burgos, William; Manalo, Edwin; Weise, Keon; Fragala, Maren S; Stout, Jeffrey R

    2013-03-01

    The purpose of this study was to compare starters (S) with nonstarters (NS), on their ability to maintain strength, power, and quickness during a competitive National Basketball Association (NBA) season. Twelve NBA players were assessed at the beginning and end of the competitive season. However, because of trades and injury, only 7 (S = 4, NS = 3) players (28.2 ± 3.4 years; 200.9 ± 9.4 cm; 104.7 ± 13.9 kg; 7.2 ± 1.9% body fat) participated in both testing sessions and underwent analysis. Anthropometric performance (repetitive vertical jump power [VJP], squat power [SQT power], and reaction time) and subjective feelings of energy, focus, alertness, and fatigue were recorded during each testing session. Results were interpreted using magnitude-based statistics to make inferences on true differences between starters and nonstarters using the unequal variances t-statistic. Starters played an average of 27.8 ± 6.9 minutes per game and nonstarters played an average of 11.3 ± 7.0 minutes per game. During the course of the season, changes in VJP indicated that starters were likely to increase VJP (Δ = 77.3 ± 78.1 W) compared to nonstarters (Δ= -160.0 ± 151.0 W). There also appeared to be a possible beneficial effect on maintaining reaction time in starters (Δ = 0.005 ± 0.074 seconds) compared with nonstarters (Δ = 0.047 ± 0.073 seconds). In addition, no clear differences in ΔSQT power were seen between starters (Δ = 110.8 ± 141.4 W) and nonstarters (Δ = 143.5 ± 24.7 W). Changes in subjective feelings of energy indicated that starters were very likely to maintain their energy over the course of a season. It also appeared possible that starters were able to have a more positive response to subjective measures of fatigue and alertness than nonstarters, with only trivial differences between starters and nonstarters in regards to maintaining focus. Results of this study suggest that NBA players may enhance lower-body power, repetitive jump ability, and reaction during a competitive season, which appear to be enhanced with the stimulus of playing time.

  13. Chapter 1. Determination of elements in natural-water, biota, sediment, and soil samples using collision/reaction cell inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.; Kanagy, Leslie K.; Cree, Mark E.

    2006-01-01

    A new analytical method for the determination of elements in filtered aqueous matrices using inductively coupled plasma-mass spectrometry (ICP-MS) has been implemented at the U.S. Geological Survey National Water Quality Laboratory that uses collision/reaction cell technology to reduce molecular ion interferences. The updated method can be used to determine elements in filtered natural-water and other filtered aqueous matrices, including whole-water, biota, sediment, and soil digestates. Helium or hydrogen is used as the collision or reaction gas, respectively, to eliminate or substantially reduce interferences commonly resulting from sample-matrix composition. Helium is used for molecular ion interferences associated with the determination of As, Co, Cr, Cu, K, Mg, Na, Ni, V, W and Zn, whereas hydrogen is used for Ca, Fe, Se, and Si. Other elements that are not affected by molecular ion interference also can be determined simply by not introducing a collision/reaction gas into the cell. Analysis time is increased by about a factor of 2 over the previous method because of the additional data acquisition time in the hydrogen and helium modes. Method detection limits for As, Ca, Co, Cr, Cu, Fe, K, Mg, Na, Ni, Se, Si (as SiO2), V, W, and Zn, all of which use a collision/reaction gas, are 0.06 microgram per liter (?g/L) As, 0.04 milligram per liter (mg/L) Ca, 0.02 ?g/L Co, 0.02 ?g/L Cr, 0.04 ?g/L Cu, 1 ?g/L Fe, 0.007 mg/L K, 0.009 mg/L Mg, 0.09 mg/L Na, 0.05 ?g/L Ni, 0.04 ?g/L Se, 0.03 mg/L SiO2, 0.05 ?g/L V, 0.03 ?g/L W, and 0.04 ?g/L Zn. Most method detection limits are lower or relatively unchanged compared to earlier methods except for Co, K, Mg, Ni, SiO2, and Tl, which are less than a factor of 2 higher. Percentage bias for samples spiked at about one-third and two-thirds of the concentration of the highest calibration standard ranged from -8.1 to 7.9 percent for reagent water, -14 to 21 percent for surface water, and -16 to 16 percent for ground water. The percentage bias for reagent water spiked at trace-element concentrations of 0.5 to 3 ?g/L averaged 4.4 percent with a range of -6 to 16 percent, whereas the average percentage bias for Ca, K, Mg, Na, and SiO2 was 1.4 percent with a range of -4 to 10 percent for spikes of 0.5 to 3 mg/L. Elemental results for aqueous standard reference materials compared closely to the certified concentrations; all elements were within 1.5 F-pseudosigma of the most probable concentration. In addition, results from 25 filtered natural-water samples and 25 unfiltered natural-water digestates were compared with results from previously used methods using linear regression analysis. Slopes from the regression analyses averaged 0.98 and ranged from 0.87 to 1.29 for filtered natural-water samples; for unfiltered natural-water digestates, the average slope was 1.0 and ranged from 0.83 to 1.22. Tests showed that accurate measurements can be made for samples having specific conductance less than 7,500 microsiemens per centimeter (?S/cm) without dilution; earlier ICP-MS methods required dilution for samples with specific conductance greater than 2,500 ?S/cm.

  14. Early age noise exposure increases loudness perception - A novel animal model of hyperacusis.

    PubMed

    Alkharabsheh, Ana'am; Xiong, Fen; Xiong, Binbin; Manohar, Senthilvelan; Chen, Guangdi; Salvi, Richard; Sun, Wei

    2017-04-01

    The neural mechanisms that give rise to hyperacusis, a reduction in loudness tolerance, are largely unknown. Some reports suggest that hyperacusis is linked to childhood hearing loss. However, the evidence for this is largely circumstantial. In order to rigorously test this hypothesis, we studied loudness changes in rats caused by intense noise exposure (12 kHz narrow band noise, 115 dB SPL, 4 h) at postnatal 16 days. Rats without noise exposure were used as controls. The exposed noise group (n = 7) showed a mean 40-50 dB hearing loss compared to the control group (n = 8) at high frequencies (>= 8 kHz) and less hearing loss at lower frequencies. Loudness was evaluated using sound reaction time and loudness response functions in an operant conditioning-based behavioral task using narrow-band noise (40-110 dB SPL, centered at 2, 4 and 12 kHz). Interestingly, the sound reaction time of the noise group was significantly shorter than the control group at supra-threshold levels. The average reaction time was less than 100 ms in the noise group at 100 dB SPL, which was three times shorter than the control group. Our results indicate that early noise-induced hearing loss leads to a significant increase of loudness, a behavior indicative of hyperacusis. Our results are consistent with clinical reports suggesting that hearing loss at an early age is a significant risk factor for hyperacusis. Published by Elsevier B.V.

  15. One year test-retest reliability of neurocognitive baseline scores in 10- to 12-year olds.

    PubMed

    Moser, Rosemarie Scolaro; Schatz, Philip; Grosner, Emily; Kollias, Kelly

    2017-01-01

    How often youth athletes 10-12 years of age should undergo neurocognitive baseline testing remains an unanswered question. We sought to examine the test-retest reliability of annual ImPACT data in a sample of middle school athletes. Participants were 30 youth athletes, ages 10-12 years (Mean = 11.6, SD = 0.6) selected from a larger database of 10-18 year old athletes, who completed two consecutive annual baseline evaluations using the online version of ImPACT. Athlete assent and parental consent were obtained for all participants. Assessments were conducted either individually or in small groups of 2 to 3 athletes, under the supervision of a neuropsychologist or post-doctoral fellow. Test-retest coefficients were as follows: Verbal Memory .71, Visual Memory .35, Visual Motor Speed .69, Reaction Time .34. Intra-class Correlation Coefficients (single/average) were as follows: Verbal Memory .70/.83, Visual Memory .35/.52, Visual Motor Speed .69/.82, Reaction Time .34/.50. Regression-based measures to correct for practice effects revealed that only a small percentage of cases fell outside 90 and 95% confidence intervals, reflecting stability across assessments. Findings indicate that test-retest reliability of Verbal Memory and Visual Motor Speed are generally stable in 10-12 year old athletes. Nevertheless, Visual Memory Index, Reaction Time Index, and Symptom Checklist scores appear to be less reliable over time, especially compared to published data on high school athletes, suggesting the utility of re-testing on an annual basis in this younger age group.

  16. Physicochemical model of detonation synthesis of nanoparticles from metal carboxylates

    NASA Astrophysics Data System (ADS)

    Tolochko, B. P.; Chernyshev, A. P.; Ten, K. A.; Pruuel, E. R.; Zhogin, I. L.; Zubkov, P. I.; Lyakhov, N. Z.; Luk'yanchikov, L. A.; Sheromov, M. A.

    2008-02-01

    We have shown previously that when metal carboxylates are subjected to a shock-wave action, diamond nanoparticles and nanoparticles of metals (Ag, Bi, Co, Fe, Pb) are formed and their characteristic size is about 30-200 Å. The metal nanoparticles formed are covered by an amorphous-carbon layer up to 20 Å thick. In this work we put forward a physicochemical model of the formation of diamond and metal nanoparticles from metal carboxylates upon shock-wave action. The energy released upon detonation inside the precursor is lower than in regions not occupied by the stearates. The characteristic time of temperature equalization has been estimated to be on the order of ˜10-3 s, which is greater by a factor of ˜103 than the characteristic reaction time. Due to the adiabatic nature of the processes occurring, the typical temperature of a "particle" will be lower than the temperature of the surrounding medium. In the framework of the model suggested, it has been assumed that the growth of metal clusters should occur by the diffusion mechanism; i.e., the "building material" is supplied through diffusion. The calculation using our previous experimental data on the reaction time and average size of metal particles has shown that the diffusion properties of the medium in which the metal nanoparticles are formed are close to those of the liquid state of the substance. The temperature and pressure under detonation conditions markedly exceed the analogous parameters characteristic of experiments on the thermodestruction of metal carboxylates. The small time of existence of the reaction mixture is compensated by the high mobility and concentration of reagents.

  17. Dynamics of the reactions of O(1D) with HCl, DCl, and Cl2

    NASA Astrophysics Data System (ADS)

    Matsumi, Yutaka; Tonokura, Kenichi; Kawasaki, Masahiro; Tsuji, Kazuhide; Obi, Kinichi

    1993-05-01

    The reactions O(1D)+HCl→OH+Cl (1a) and OCl+H (1b), O(1D)+DCl→OD+Cl (2a) and OCl+D (2b), and O(1D)+Cl2→OCl+Cl (3) are studied at an average collision energy of 7.6, 7.7, and 8.8 kcal/mol for (1), (2), and (3), respectively. H, D, and Cl atoms are detected by the resonance-enhanced multiphoton ionization technique. The average kinetic energies released to the products are estimated from Doppler profile measurements of the product atoms. The relative yields [OCl+H]/[OH+Cl] and [OCl+D]/[OD+Cl] are directly measured, and a strong isotope effect (H/D) on the relative yields is found. The fine-structure branding ratios [Cl(2P1/2]/[Cl(2P3/2)] of the reaction products are also measured. The results suggest that nonadiabatic couplings take place at the exit channels of the reactions (1a) and (2a), while the reaction (3) is totally adiabatic.

  18. Flame balls dynamics in divergent channel

    NASA Astrophysics Data System (ADS)

    Fursenko, R.; Minaev, S.

    2011-12-01

    A three-dimensional reaction-diffusion model for lean low-Lewis-number premixed flames with radiative heat losses propagating in divergent channel is studied numerically. Effects of inlet gas velocity and heat-loss intensity on flame structure at low Lewis numbers are investigated. It is found that continuous flame front exists at small heat losses and the separate flame balls settled within restricted domain inside the divergent channel at large heat losses. It is shown that the time averaged flame balls coordinate may be considered as important characteristic analogous to coordinate of continuous flame stabilized in divergent channel.

  19. Effects of reagent rotational excitation on the H + CHD₃ → H₂ + CD₃ reaction: a seven dimensional time-dependent wave packet study.

    PubMed

    Zhang, Zhaojun; Zhang, Dong H

    2014-10-14

    Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD3 in J0 = 1, 2 rotationally excited initial states with k0 = 0 - J0 (the projection of CHD3 rotational angular momentum on its C3 axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K0) equal to k0 are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagent CHD3 with respect to the relative velocity between the reagents H and CHD3. However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K0 specified cross sections for the K0 = k0 initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K0 averaging for the J0 = 1, 2 initial states with all different k0 are essentially identical to the corresponding CS and CC results for the J0 = 0 initial state, meaning that the initial rotational excitation of CHD3 up to J0 = 2, regardless of its initial k0, does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J0 = 1, 2 initial states are the same as those for the J0 = 0 initial state.

  20. Effects of vision and cognitive load on static postural control in subjects with and without patellofemoral pain syndrome.

    PubMed

    Zeinalzadeh, Afsaneh; Talebian, Saeed; Naghdi, Soofia; Salavati, Mahyar; Nazary-Moghadam, Salman; Zeynalzadeh Ghoochani, Bahareh

    2018-04-01

    To compare the effects of vision and cognitive load on static postural control in subjects with and without patellofemoral pain syndrome (PFPS). Twenty-eight PFPS patients and 28 controls participated in the study. Postural control was assessed in isolation as well as with visual manipulation and cognitive loading on symptomatic limb. The outcome measures of postural control were quantified in terms of area, anterior-posterior (AP), medial-lateral (ML), and mean velocity (MV) of the displacements of center of pressure (COP). In addition, cognitive performance (auditory Stroop task) was measured in the forms of average reaction time and error ratio in baseline (sitting) and different postural conditions. PFPS subjects showed greater increases in area (p = 0.01), AP (p = 0.01), and ML (p = 0.05) displacements of COP in the blindfolded tasks as compared to control group. However, cognitive load did not differently affect postural control in the two groups. Although PFPS and control group had similar reaction times in the sitting position (p = 0.29), PFPS subjects had longer reaction times than healthy subjects in dual task conditions (p = 0.04). Visual inputs seem to be essential for discriminating postural control between PFPS and healthy individuals. PFPS patients biased toward decreasing cognitive performance more than healthy subjects when they perform the single leg stance and cognitive task concurrently.

  1. Monitoring transcranial direct current stimulation induced changes in cortical excitability during the serial reaction time task.

    PubMed

    Ambrus, Géza Gergely; Chaieb, Leila; Stilling, Roman; Rothkegel, Holger; Antal, Andrea; Paulus, Walter

    2016-03-11

    The measurement of the motor evoked potential (MEP) amplitudes using single pulse transcranial magnetic stimulation (TMS) is a common method to observe changes in motor cortical excitability. The level of cortical excitability has been shown to change during motor learning. Conversely, motor learning can be improved by using anodal transcranial direct current stimulation (tDCS). In the present study, we aimed to monitor cortical excitability changes during an implicit motor learning paradigm, a version of the serial reaction time task (SRTT). Responses from the first dorsal interosseous (FDI) and forearm flexor (FLEX) muscles were recorded before, during and after the performance of the SRTT. Online measurements were combined with anodal, cathodal or sham tDCS for the duration of the SRTT. Negative correlations between the amplitude of online FDI MEPs and SRTT reaction times (RTs) were observed across the learning blocks in the cathodal condition (higher average MEP amplitudes associated with lower RTs) but no significant differences in the anodal and sham conditions. tDCS did not have an impact on SRTT performance, as would be predicted based on previous studies. The offline before-after SRTT MEP amplitudes showed an increase after anodal and a tendency to decrease after cathodal stimulation, but these changes were not significant. The combination of different interventions during tDCS might result in reduced efficacy of the stimulation that in future studies need further attention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. [The efficacy and safety of cefixime and amoxicillin/clavulanate in the treatment of asymptomatic bacteriuria in pregnant women: a randomized, prospective, multicenter study].

    PubMed

    Rafal'skiĭ, V V; Dovgan', E V; Kozyrev, Iu V; Gustovarova, T A; Khlybova, S V; Novoselova, A V; Filippenko, N G; Likhikh, D G

    2013-01-01

    The study was aimed to the evaluation of efficacy and safety of cefixime and amoxicillin/clavulanate in the treatment of asymptomatic bacteriuria in pregnant women. A prospective, multicenter, randomized study that included 112 pregnant women with asymptomatic bacteriuria was performed. 58 women were randomized in group 1 (cefixime [suprax solutab] 400 mg 1 time a day, 7 days), 54 women were included in group 2 (amoxicillin/clavulanate [amoksiklav] 625 mg 3 times a day, 7 days). The average age of the patients in group 1 was 25.2 +/- 6.6; in group 2--26.6 +/- 5.8 years. Physical examination, evaluation of complaints, collection of data on adverse reactions, and bacteriological analysis of urine were performed after enrollment in the study at visit 2 (day 10 +/- 1) and 3 (day 35 +/- 2). Comparable effectiveness of cefixime and amoxicillin/clavulanate in the treatment of asymptomatic bacteriuria in pregnant women was found. Eradication of the pathogen and sustained bacteriological response were observed in 94.8 and 92.7% of women treated with cefixime, and in 98.2 and 92.5% of women treated with amoxicillin/clavulanate, respectively (P > 0.05). At the same time, the use of amoxicillin/clavulanate compared with cefixime significantly higher was followed by the development of adverse reactions (13% and 1.7; respectively; P = 0.02). Seven-day courses of cefixime at a dose 400 mg 1 time a day and amoxicillin/clavulanate at a dose of 625 mg 3 times a day are high-effective treatment regimens for asymptomatic bacteriuria in pregnant women in Russia. The use of amoxicillin/clavulanate is significantly more often accompanied by the development of adverse reactions compared with cefixime.

  3. Simulator study of young driver's instinctive response of lower extremity to a collision.

    PubMed

    Gao, Zhenhai; Li, Chuzhao; Hu, Hongyu; Zhao, Hui; Chen, Chaoyang; Yu, Huili

    2016-05-18

    A driver's instinctive response of the lower extremity in braking movement consists of two parts, including reaction time and braking reaction behavior. It is critical to consider these two components when conducting studies concerning driver's brake movement intention and injury analysis. The purposes of this study were to investigate the driver reaction time to an oncoming collision and muscle activation of lower extremity muscles at the collision moment. The ultimate goal is to provide data that aid in both the optimization of intervention time of an active safety system and the improvement of precise protection performance of a passive safety system. A simulated collision scene was constructed in a driving simulator, and 40 young volunteers (20 male and 20 female) were recruited for tests. Vehicle control parameters and electromyography characteristics of eight muscles of the lower extremity were recorded. The driver reaction time was divided into pre-motor time (PMT) and muscle activation time (MAT). Muscle activation level (ACOL) at the collision moment was calculated and analysed. PMT was shortest for the tibialis anterior (TA) muscle (243∼317 ms for male and 278∼438 ms for female). Average MAT of the TA ranged from 28-55 ms. ACOL was large (5∼31% for male and 5∼23% for female) at 50 km/h, but small (<12%) at 100 km/h. ACOL of the gluteus maximus was smallest (<3%) in the 25 and 100 km/h tests. ACOL of RF of men was significantly smaller than that of women at different speeds. Ankle dorsiflexion is firstly activated at the beginning of the emergency brake motion. Males showed stronger reaction ability than females, as suggested by male's shorter PMT. The detection of driver's brake intention is upwards of 55ms sooner after introducing the electromyography. Muscle activation of the lower extremity is an important factor for 50 km/h collision injury analysis. For higher speed collisions, this might not be a major factor. The activations of certain muscles may be ignored for crash injury analysis at certain speeds, such as gluteus maximus at 25 or 100 km/h. Furthermore, the activation of certain muscles should be differentiated between males and females during injury analysis.

  4. Anomalous Impact in Reaction-Diffusion Financial Models

    NASA Astrophysics Data System (ADS)

    Mastromatteo, I.; Tóth, B.; Bouchaud, J.-P.

    2014-12-01

    We generalize the reaction-diffusion model A +B → /0 in order to study the impact of an excess of A (or B ) at the reaction front. We provide an exact solution of the model, which shows that the linear response breaks down: the average displacement of the reaction front grows as the square root of the imbalance. We argue that this model provides a highly simplified but generic framework to understand the square-root impact of large orders in financial markets.

  5. Under-reporting of adverse drug reactions: a challenge for pharmacovigilance in India.

    PubMed

    Tandon, Vishal R; Mahajan, Vivek; Khajuria, Vijay; Gillani, Zahid

    2015-01-01

    The aim was to evaluate the extent and factors responsible for underreporting (UR) of adverse drug reactions (ADRs) in India. A retrospective observational, cross-sectional prospective questionnaire-based analysis was undertaken to evaluate the extent and factors for UR of ADRs in pharmacovigilance. At the time, this report was prepared, 90 ADR Monitoring Centers (AMC) were operational in India. Indian AMC functional rate was 56.45%. The average number of Individual Case Safety Reports reported by our center via VigiFlow per month was 48.038. In a period of the 3 years the total number of ADRs reported was 3024. The average number of reports per month was 80.08. Active surveillance versus spontaneous reporting contributed 66.13% versus 33.86% of the total ADRs (P < 0.0001). Outpatient Department (OPD) contribution was 76.05% and indoor contribution was 23.94% of total reports (P < 0.0001). Department of Medicine (33%), followed by oncology (19.27%) and chest disease (13.49%) contributed maximally. The contribution of Pharmacology ADR monitoring OPD was 16.20%. Eye, ear, nose and throat and surgery, private Medical Colleges, hospitals in periphery, sub-district and district contributed no ADRs. ADR detection rates by clinical presentation, biochemical investigation and diagnostic tools were 84.33%, 14.57%, and 1.09% respectively (P < 0.0001). Reporting by postgraduate, registrars, consultants and nurses were 72.65%, 6.58%, 16.56% and 4.19% respectively (P < 0.0001). PG students in Pharmacology contributed an average number of 5.61 ADR reports/month. The lack of knowledge and awareness about Pharmacovigilance Programme of India (PvPI), lethargy, indifference, insecurity, complacency, workload, lack of training were the common factors responsible for UR. Major academic activity, exams, thesis and synopsis submission time influenced reporting of ADRs by postgraduate students. UR is a matter of concern PvPI. Multiple interventions are needed to improve ADR reporting.

  6. Study of the total reaction cross section via QMD

    NASA Astrophysics Data System (ADS)

    Yang, Lin-Meng; Guo, Wen-Jun; Zhang, Fan; Ni, Sheng

    2013-10-01

    This paper presents a new empirical formula to calculate the average nucleon-nucleon (N-N) collision number for the total reaction cross sections (σR). Based on the initial average N-N collision number calculated by quantum molecular dynamics (QMD), quantum correction and Coulomb correction are taken into account within it. The average N-N collision number is calculated by this empirical formula. The total reaction cross sections are obtained within the framework of the Glauber theory. σR of 23Al+12C, 24Al+12C, 25 Al+12C, 26Al+12C and 27Al+12C are calculated in the range of low energy. We also calculate the σR of 27Al+12C with different incident energies. The calculated σR are compared with the experimental data and the results of Glauber theory including the σR of both spherical nuclear and deformed nuclear. It is seen that the calculated σR are larger than σR of spherical nuclear and smaller than σR of deformed nuclear, whereas the results agree well with the experimental data in low-energy range.

  7. ZnO nanorods as catalyts for biodiesel production from olive oil

    NASA Astrophysics Data System (ADS)

    Molina, Carmen Maria Miralda

    The motivation to determine a viable alternative to petroleum based energy has risen in recent years due to increased greenhouse gas emissions, environmental pollution, and the fear of exhausting oil and natural gas reserves. Biodiesel derived from the transesterification of vegetable oils or animal fats has emerged as a viable alternative to petroleum diesel. However, for this to become an option available to the average consumer it is vital to find an effective catalyst. Metal oxides have emerged as potential heterogeneous catalysts. ZnO in particular is attractive because it is abundant. The use of nanostructures has been shown to improve the catalytic performance of ZnO. ZnO nanorods were synthesized using a solution approach. The crystalline structure, morphology, and surface area were confirmed using XRD, SEM, and BET surface area respectively. The characterized nanorods were used as catalysts for the production of biodiesel. The nanorods achieved conversions of 94.8% at 150°C for reaction times of eight hours. They also demonstrated better catalytic performance, attributed to their increased degree of crystallinity, than conventional ZnO. A kinetic study at 150°C to determine the reaction rate parameters was also conducted. Due to the presence of three distinct phases in the reaction, initially the reaction rate is dominated by mass transfer limitations. However, these are eventually overcome and the reaction proceeds with a pseudo-first order with respect to the oil and a reaction rate constant of 0.5136 h-1.

  8. Energetics of bacterial photosynthesis.

    PubMed

    Lebard, David N; Matyushov, Dmitry V

    2009-09-10

    We report the results of extensive numerical simulations and theoretical calculations of electronic transitions in the reaction center of Rhodobacter sphaeroides photosynthetic bacterium. The energetics and kinetics of five electronic transitions related to the kinetic scheme of primary charge separation have been analyzed and compared to experimental observations. Nonergodic formulation of the reaction kinetics is required for the calculation of the rates due to a severe breakdown of the system ergodicity on the time scale of primary charge separation, with the consequent inapplicability of the standard canonical prescription to calculate the activation barrier. Common to all reactions studied is a significant excess of the charge-transfer reorganization energy from the width of the energy gap fluctuations over that from the Stokes shift of the transition. This property of the hydrated proteins, breaking the linear response of the thermal bath, allows the reaction center to significantly reduce the reaction free energy of near-activationless electron hops and thus raise the overall energetic efficiency of the biological charge-transfer chain. The increase of the rate of primary charge separation with cooling is explained in terms of the temperature variation of induction solvation, which dominates the average donor-acceptor energy gap for all electronic transitions in the reaction center. It is also suggested that the experimentally observed break in the Arrhenius slope of the primary recombination rate, occurring near the temperature of the dynamical transition in proteins, can be traced back to a significant drop of the solvent reorganization energy close to that temperature.

  9. Study on coal char ignition by radiant heat flux.

    NASA Astrophysics Data System (ADS)

    Korotkikh, A. G.; Slyusarskiy, K. V.

    2017-11-01

    The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90-200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.

  10. Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system.

    PubMed

    Li, Yan; Wu, Yining; Liu, Bingchuan; Luan, Hongwei; Vadas, Timothy; Guo, Wanqian; Ding, Jie; Li, Baikun

    2015-09-01

    A self-sustained hybrid bioelectrochemical system consisting of microbial fuel cell (MFC) and microbial electrolysis cell (MEC) was developed to reduce multiple metals simultaneously by utilizing different reaction potentials. Three heavy metals representing spontaneous reaction (chromium, Cr) and unspontaneous reaction (lead, Pb and nickel, Ni) were selected in this batch-mode study. The maximum power density of the MFC achieved 189.4 mW m(-2), and the energy recovery relative to the energy storage circuit (ESC) was ∼ 450%. At the initial concentration of 100 mg L(-1), the average reduction rate of Cr(VI) was 30.0 mg L(-1) d(-1), Pb(II) 32.7 mg L(-1) d(-1), and Ni(II) 8.9 mg L(-1) d(-1). An electrochemical model was developed to predict the change of metal concentration over time. The power output of the MFC was sufficient to meet the requirement of the ESC and MEC, and the "self-sustained metal reduction" was achieved in this hybrid system. Published by Elsevier Ltd.

  11. Probabilistic pathway construction.

    PubMed

    Yousofshahi, Mona; Lee, Kyongbum; Hassoun, Soha

    2011-07-01

    Expression of novel synthesis pathways in host organisms amenable to genetic manipulations has emerged as an attractive metabolic engineering strategy to overproduce natural products, biofuels, biopolymers and other commercially useful metabolites. We present a pathway construction algorithm for identifying viable synthesis pathways compatible with balanced cell growth. Rather than exhaustive exploration, we investigate probabilistic selection of reactions to construct the pathways. Three different selection schemes are investigated for the selection of reactions: high metabolite connectivity, low connectivity and uniformly random. For all case studies, which involved a diverse set of target metabolites, the uniformly random selection scheme resulted in the highest average maximum yield. When compared to an exhaustive search enumerating all possible reaction routes, our probabilistic algorithm returned nearly identical distributions of yields, while requiring far less computing time (minutes vs. years). The pathways identified by our algorithm have previously been confirmed in the literature as viable, high-yield synthesis routes. Prospectively, our algorithm could facilitate the design of novel, non-native synthesis routes by efficiently exploring the diversity of biochemical transformations in nature. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Preparation and characterizaton of CaO nanoparticle for biodiesel production

    NASA Astrophysics Data System (ADS)

    Gupta, Jharna; Agarwal, Madhu

    2016-04-01

    Nanoparticle of CaO from calcium Nitrate (CaO/CaN) and Snail shell (CaO/SS) are successfully synthesized by method as described in the literature and used as an active and stable catalyst for the biodiesel production. These catalysts are characterized by Fourier-transform infrared spectra (FT-IR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA). The average crystalline size in nanometer was also calculated by Debye-Scherrer equation. The performance of the CaO/CaN and CaO/SS were tested for their catalytic activity via transesterification process and it was found that biodiesel yield has been increased from 93 to 96%. The optimum conditions for the highest yield were 8wt% catalyst loading, 65°C temperature, 12:1 methanol/oil molar ratio, and 6 h for reaction time. The nano catalyst from snail shell exhibits excellent catalytic activity and stability for the transesterification reaction, which suggested that this catalyst would be potentially used as a solid base nano catalyst for biodiesel production. In order to examine the reusability of catalyst developed from snail shell, five transesterification reaction cycles were also performed.

  13. People's Reactions to Nuclear War: Implications for Psychologists.

    ERIC Educational Resources Information Center

    Fiske, Susan T.

    1987-01-01

    Reviews available data documenting modal adults' beliefs, feelings, and actions regarding nuclear war. Examines discrepancies between peoples's beliefs and their relative lack of affective and behavioral response. Reviews data on possible psychological and social sources of those reactions. Contrasts average citizens, antinuclear activists, and…

  14. Waste tyre pyrolysis: modelling of a moving bed reactor.

    PubMed

    Aylón, E; Fernández-Colino, A; Murillo, R; Grasa, G; Navarro, M V; García, T; Mastral, A M

    2010-12-01

    This paper describes the development of a new model for waste tyre pyrolysis in a moving bed reactor. This model comprises three different sub-models: a kinetic sub-model that predicts solid conversion in terms of reaction time and temperature, a heat transfer sub-model that calculates the temperature profile inside the particle and the energy flux from the surroundings to the tyre particles and, finally, a hydrodynamic model that predicts the solid flow pattern inside the reactor. These three sub-models have been integrated in order to develop a comprehensive reactor model. Experimental results were obtained in a continuous moving bed reactor and used to validate model predictions, with good approximation achieved between the experimental and simulated results. In addition, a parametric study of the model was carried out, which showed that tyre particle heating is clearly faster than average particle residence time inside the reactor. Therefore, this fast particle heating together with fast reaction kinetics enables total solid conversion to be achieved in this system in accordance with the predictive model. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Energetic neutron beams generated from femtosecond laser plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulick, C.; Dollar, F.; Chvykov, V.

    2013-03-25

    Experiments at the HERCULES laser facility have produced directional neutron beams with energies up to 16.8({+-}0.3) MeV using {sub 1}{sup 2}d(d,n){sub 2}{sup 3}He,{sub 7}{sup 3}Li(p,n){sub 4}{sup 7}Be,and{sub 3}{sup 7}Li(d,n){sub 4}{sup 8}Be reactions. Efficient {sub 1}{sup 2}Li(d,n){sub 4}{sup 8}Be reactions required the selective acceleration of deuterons through the introduction of a deuterated plastic or cryogenically frozen D{sub 2}O layer on the surface of a thin film target. The measured neutron yield was {<=}1.0 ({+-}0.5) Multiplication-Sign 10{sup 7} neutrons/sr with a flux 6.2({+-}3.7) times higher in the forward direction than at 90{sup Degree-Sign }. This demonstrates that femtosecond lasers are capable ofmore » providing a time averaged neutron flux equivalent to commercial {sub 1}{sup 2}d(d,n){sub 2}{sup 3}He generators with the advantage of a directional beam with picosecond bunch duration.« less

  16. Cuprous Oxide Scale up: Gram Production via Bulk Synthesis using Classic Solvents at Low Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, A.; Han, T. Y.

    Cuprous oxide is a p-type semiconducting material that has been highly researched for its interesting properties. Many small-scale syntheses have exhibited excellent control over size and morphology. As the demand for cuprous oxide grows, the synthesis method need to evolve to facilitate large-scale production. This paper supplies a facile bulk synthesis method for Cu₂O on average, 1-liter reaction volume can produce 1 gram of particles. In order to study the shape and size control mechanisms on such a scale, the reaction volume was diminished to 250 mL producing on average 0.3 grams of nanoparticles per batch. Well-shaped nanoparticles have beenmore » synthesized using an aqueous solution of CuCl₂, NaOH, SDS surfactant, and NH₂OH-HCl at mild temperatures. The time allotted between the addition of NaOH and NH₂OH-HCl was determined to be critical for Cu(OH)2 production, an important precursor to the final produce The effects of stirring rates on a large scale was also analyzed during reagent addition and post reagent addition. A morphological change from rhombic dodecahedra to spheres occurred as the stirring speed was increased. The effects of NH₂OH-HCl concentration were also studied to control the etching effects of the final product.« less

  17. Making sense of snapshot data: ergodic principle for clonal cell populations

    PubMed Central

    2017-01-01

    Population growth is often ignored when quantifying gene expression levels across clonal cell populations. We develop a framework for obtaining the molecule number distributions in an exponentially growing cell population taking into account its age structure. In the presence of generation time variability, the average acquired across a population snapshot does not obey the average of a dividing cell over time, apparently contradicting ergodicity between single cells and the population. Instead, we show that the variation observed across snapshots with known cell age is captured by cell histories, a single-cell measure obtained from tracking an arbitrary cell of the population back to the ancestor from which it originated. The correspondence between cells of known age in a population with their histories represents an ergodic principle that provides a new interpretation of population snapshot data. We illustrate the principle using analytical solutions of stochastic gene expression models in cell populations with arbitrary generation time distributions. We further elucidate that the principle breaks down for biochemical reactions that are under selection, such as the expression of genes conveying antibiotic resistance, which gives rise to an experimental criterion with which to probe selection on gene expression fluctuations. PMID:29187636

  18. Making sense of snapshot data: ergodic principle for clonal cell populations.

    PubMed

    Thomas, Philipp

    2017-11-01

    Population growth is often ignored when quantifying gene expression levels across clonal cell populations. We develop a framework for obtaining the molecule number distributions in an exponentially growing cell population taking into account its age structure. In the presence of generation time variability, the average acquired across a population snapshot does not obey the average of a dividing cell over time, apparently contradicting ergodicity between single cells and the population. Instead, we show that the variation observed across snapshots with known cell age is captured by cell histories, a single-cell measure obtained from tracking an arbitrary cell of the population back to the ancestor from which it originated. The correspondence between cells of known age in a population with their histories represents an ergodic principle that provides a new interpretation of population snapshot data. We illustrate the principle using analytical solutions of stochastic gene expression models in cell populations with arbitrary generation time distributions. We further elucidate that the principle breaks down for biochemical reactions that are under selection, such as the expression of genes conveying antibiotic resistance, which gives rise to an experimental criterion with which to probe selection on gene expression fluctuations. © 2017 The Author(s).

  19. Mean field treatment of heterogeneous steady state kinetics

    NASA Astrophysics Data System (ADS)

    Geva, Nadav; Vaissier, Valerie; Shepherd, James; Van Voorhis, Troy

    2017-10-01

    We propose a method to quickly compute steady state populations of species undergoing a set of chemical reactions whose rate constants are heterogeneous. Using an average environment in place of an explicit nearest neighbor configuration, we obtain a set of equations describing a single fluctuating active site in the presence of an averaged bath. We apply this Mean Field Steady State (MFSS) method to a model of H2 production on a disordered surface for which the activation energy for the reaction varies from site to site. The MFSS populations quantitatively reproduce the KMC results across the range of rate parameters considered.

  20. Biochemical thermodynamics: applications of Mathematica.

    PubMed

    Alberty, Robert A

    2006-01-01

    The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94 reactants. Thus loading this package makes available 774 mathematical functions for these properties. These functions can be added and subtracted to obtain changes in these properties in biochemical reactions and apparent equilibrium constants.

  1. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-09-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information for determining potential reaction mechanisms and sequences. Additionally, bond-scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double-bond-equivalence-to-carbon ratio (DBE/#C). The trajectory of LG photooxidation on this plot suggests formation of polycarbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an aerosol mass spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the ambient atmosphere.

  2. Low-level hydrogen sulfide and central nervous system dysfunction.

    PubMed

    Kilburn, Kaye H; Thrasher, Jack D; Gray, Michael R

    2010-08-01

    Forty-nine adults living in Lovington, Tatum, and Artesia, the sour gas/oil sector of Southeastern New Mexico, were tested for neurobehavioral impairment. Contributing hydrogen sulfide were (1) an anaerobic sewage plant; (2) two oil refineries; (3) natural gas/oil wells and (4) a cheese-manufacturing plant and its waste lagoons. Comparisons were to unexposed Wickenburg, Arizona, adults. Neurobehavioral functions were measured in 26 Lovington adults including 23 people from Tatum and Artesia, New Mexico, and 42 unexposed Arizona people. Participants completed questionnaires including chemical exposures, symptom frequencies and the Profile of Mood States. Measurements included balance, reaction time, color discrimination, blink reflex, visual fields, grip strength, hearing, vibration, problem solving, verbal recall, long-term memory, peg placement, trail making and fingertip number writing errors (FTNWE). Average numbers of abnormalities and test scores were adjusted for age, gender, educational level, height and weight, expressed as percent predicted (% pred) and compared by analysis of variance (ANOVA). Ages and educational attainment of the three groups were not statistically significantly different (ssd). Mean values of Lovington residents were ssd from the unexposed Arizona people for simple and choice reaction times, balance with eyes open and closed, visual field score, hearing and grip strength. Culture Fair, digit symbol substitution, vocabulary, verbal recall, peg placement, trail making A and B, FTNWE, information, picture completion and similarities were also ssd. The Lovington adults who averaged 11.8 abnormalities were ssd from, Tatum-Artesia adults who had 3.6 and from unexposed subjects with 2.0. Multiple source community hydrogen sulfide exposures impaired neurobehavioral functions.

  3. Facile synthesis of self-assembled ultrathin α-FeOOH nanorod/graphene oxide composites for supercapacitors.

    PubMed

    Wei, Yuxue; Ding, Ruimin; Zhang, Chenghua; Lv, Baoliang; Wang, Yi; Chen, Chengmeng; Wang, Xiaoping; Xu, Jian; Yang, Yong; Li, Yongwang

    2017-10-15

    A one-pot facile, impurity-free hydrothermal method to synthesize ultrathin α-FeOOH nanorods/graphene oxide (GO) composites is reported. It is directly synthesized from GO and iron acetate in water solution without inorganic or organic additives. XRD, Raman, FT-IR, XPS and TEM are used to characterize the samples. The nanorods in composites are single crystallite with an average diameter of 6nm and an average length of 75nm, which are significantly smaller than GO-free α-FeOOH nanorods. This can be attributed to the confinement effect and special electronic influence of GO. The influences of experimental conditions including reaction time and reactant concentration on the sizes of nanorods have been investigated. It reveals that the initial Fe 2+ concentration and reaction time play an important role in the synthetic process. Furthermore, a possible nucleation-growth mechanism is proposed. As electrode materials for supercapacitors, the α-FeOOH nanorods/GO composite with 20% iron loading has the largest specific capacitance (127Fg -1 at 10Ag -1 ), excellent rate capability (100Fg -1 at 20Ag -1 ) and good cyclic performance (85% capacitance retention after 2000 cycles), which is much better than GO-free α-FeOOH nanorods. This unique structure results in rapid electrolyte ions diffusion, fast electron transport and high charging-discharging rate. In virtue of the superior electrochemical performance, the α-FeOOH nanorods/GO composite material has a promising application in high-performance supercapacitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Reference data on reaction time and aging using the Nintendo Wii Balance Board: A cross-sectional study of 354 subjects from 20 to 99 years of age.

    PubMed

    Blomkvist, Andreas W; Eika, Fredrik; Rahbek, Martin T; Eikhof, Karin D; Hansen, Mette D; Søndergaard, Malene; Ryg, Jesper; Andersen, Stig; Jørgensen, Martin G

    2017-01-01

    Falls among older adults is one of the major public health challenges facing the rapidly changing demography. The valid assessment of reaction time (RT) and other well-documented risk factors for falls are mainly restricted to specialized clinics due to the equipment needed. The Nintendo Wii Balance Board has the potential to be a multi-modal test and intervention instrument for these risk factors, however, reference data are lacking. To provide RT reference data and to characterize the age-related changes in RT measured by the Nintendo Wii Balance Board. Healthy participants were recruited at various locations and their RT in hands and feet were tested by six assessors using the Nintendo Wii Balance Board. Reference data were analysed and presented in age-groups, while the age-related change in RT was tested and characterized with linear regression models. 354 participants between 20 and 99 years of age were tested. For both hands and feet, mean RT and its variation increased with age. There was a statistically significant non-linear increase in RT with age. The averaged difference between male and female was significant, with males being faster than females for both hands and feet. The averaged difference between dominant and non-dominant side was non-significant. This study reported reference data with percentiles for a new promising method for reliably testing RT. The RT data were consistent with previously known effects of age and gender on RT.

  5. Reference data on reaction time and aging using the Nintendo Wii Balance Board: A cross-sectional study of 354 subjects from 20 to 99 years of age

    PubMed Central

    Rahbek, Martin T.; Eikhof, Karin D.; Hansen, Mette D.; Søndergaard, Malene; Ryg, Jesper; Andersen, Stig; Jørgensen, Martin G.

    2017-01-01

    Background Falls among older adults is one of the major public health challenges facing the rapidly changing demography. The valid assessment of reaction time (RT) and other well-documented risk factors for falls are mainly restricted to specialized clinics due to the equipment needed. The Nintendo Wii Balance Board has the potential to be a multi-modal test and intervention instrument for these risk factors, however, reference data are lacking. Objective To provide RT reference data and to characterize the age-related changes in RT measured by the Nintendo Wii Balance Board. Method Healthy participants were recruited at various locations and their RT in hands and feet were tested by six assessors using the Nintendo Wii Balance Board. Reference data were analysed and presented in age-groups, while the age-related change in RT was tested and characterized with linear regression models. Results 354 participants between 20 and 99 years of age were tested. For both hands and feet, mean RT and its variation increased with age. There was a statistically significant non-linear increase in RT with age. The averaged difference between male and female was significant, with males being faster than females for both hands and feet. The averaged difference between dominant and non-dominant side was non-significant. Conclusion This study reported reference data with percentiles for a new promising method for reliably testing RT. The RT data were consistent with previously known effects of age and gender on RT. PMID:29287063

  6. Method for promoting Michael addition reactions

    DOEpatents

    Shah, Pankaj V.; Vietti, David E.; Whitman, David William

    2010-09-21

    Homogeneously dispersed solid reaction promoters having an average particle size from 0.01 .mu.m to 500 .mu.m are disclosed for preparing curable mixtures of at least one Michael donor and at least one Michael acceptor. The resulting curable mixtures are useful as coatings, adhesives, sealants and elastomers.

  7. Processing Of Neem And Jatropha Methyl Esters -Alternative Fuels From Vegetable Oil

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, S.; Manavalan, S.; Gnanavel, C.; Balakrishnan, G.

    2017-03-01

    Biodiesel is an alternative fuel for diesel engine. The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine. This paper deals with the manufacturing process of Biodiesel from jatropha and neem oil. Biodiesel was prepared from neem oil and jatropha oil, the transestrified having kinematic viscosity of 3 & 2.6 centistokes, methanol ratio is 6:1 & 5.1respectively. The secondary solution is preheated at 65 C & 60 C and reaction temperature is maintained at 60C & 55 C and reaction time is 60 minutes approximately with NaOH catalyst and low viscosity oil is allowed to settle 24 hours. The average yield of neem and jatropha methyl esters was about 85%. These methyl esters shows excellent alternative under optimum condition for fossil fuels.

  8. Eco-dyeing with biocolourant based on natural compounds

    PubMed Central

    Gong, Jixian; Ren, Yanfei; Zhang, Jianfei

    2018-01-01

    Biomass pigments have been regarded as promising alternatives to conventional synthetic dyestuffs for the development of sustainable and clean dyeing. This investigation focused on in situ dyeing of fabrics with biopigments derived from tea polyphenols via non-enzymatic browning reaction. The average particle size of dyed residual liquor with natural tea polyphenol was 717.0 nm (ranging from 615.5 to 811.2 nm), and the Integ value of dyed wool fabrics was the greatest compared to those of counterparts. In addition, the Integ values of dyed fabrics with residual liquor were much bigger than those with the first reaction solutions when dyed by identical dyeing liquor. As a result, the dyeing process could be carried out many times because the concentration of the residual liquor was relatively superior. All dyed fabrics acquired admirable rubbing as well as washing fastness, and the relevant dyeing mechanism has been analysed in the paper. PMID:29410827

  9. Excellent amino acid racemization results from Holocene sand dollars

    NASA Astrophysics Data System (ADS)

    Kosnik, M.; Kaufman, D. S.; Kowalewski, M.; Whitacre, K.

    2015-12-01

    Amino acid racemization (AAR) is widely used as a cost-effective method to date molluscs in time-averaging and taphonomic studies, but it has not been attempted for echinoderms despite their paleobiological importance. Here we demonstrate the feasibility of AAR geochronology in Holocene aged Peronella peronii (Echinodermata: Echinoidea) collected from Sydney Harbour (Australia). Using standard HPLC methods we determined the extent of AAR in 74 Peronella tests and performed replicate analyses on 18 tests. We sampled multiple areas of two individuals and identified the outer edge as a good sampling location. Multiple replicate analyses from the outer edge of 18 tests spanning the observed range of D/Ls yielded median coefficients of variation < 4% for Asp, Phe, Ala, and Glu D/L values, which overlaps with the analytical precision. Correlations between D/L values across 155 HPLC injections sampled from 74 individuals are also very high (pearson r2 > 0.95) for these four amino acids. The ages of 11 individuals spanning the observed range of D/L values were determined using 14C analyses, and Bayesian model averaging was used to determine the best AAR age model. The averaged age model was mainly composed of time-dependent reaction kinetics models (TDK, 71%) based on phenylalanine (Phe, 94%). Modelled ages ranged from 14 to 5539 yrs, and the median 95% confidence interval for the 74 analysed individuals is ±28% of the modelled age. In comparison, the median 95% confidence interval for the 11 calibrated 14C ages was ±9% of the median age estimate. Overall Peronella yields exceptionally high-quality AAR D/L values and appears to be an excellent substrate for AAR geochronology. This work opens the way for time-averaging and taphonomic studies of echinoderms similar to those in molluscs.

  10. Effects of zero point vibration on the reaction dynamics of water dimer cations following ionization.

    PubMed

    Tachikawa, Hiroto

    2017-06-30

    Reactions of water dimer cation (H2O)2+ following ionization have been investigated by means of a direct ab initio molecular dynamics method. In particular, the effects of zero point vibration and zero point energy (ZPE) on the reaction mechanism were considered in this work. Trajectories were run on two electronic potential energy surfaces (PESs) of (H2O)2+: ground state ( 2 A″-like state) and the first excited state ( 2 A'-like state). All trajectories on the ground-state PES lead to the proton-transferred product: H 2 O + (Wd)-H 2 O(Wa) → OH(Wd)-H 3 O + (Wa), where Wd and Wa refer to the proton donor and acceptor water molecules, respectively. Time of proton transfer (PT) varied widely from 15 to 40 fs (average time of PT = 30.9 fs). The trajectories on the excited-state PES gave two products: an intermediate complex with a face-to-face structure (H 2 O-OH 2 ) + and a PT product. However, the proton was transferred to the opposite direction, and the reverse PT was found on the excited-state PES: H 2 O(Wd)-H 2 O + (Wa) → H 3 O + (Wd)-OH(Wa). This difference occurred because the ionizing water molecule in the dimer switched between the ground and excited states. The reaction mechanism of (H2O)2+ and the effects of ZPE are discussed on the basis of the results. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Photo-neutron reaction cross-sections for natMo in the bremsstrahlung end-point energies of 12-16 and 45-70 MeV

    NASA Astrophysics Data System (ADS)

    Naik, H.; Kim, G. N.; Kapote Noy, R.; Schwengner, R.; Kim, K.; Zaman, M.; Shin, S. G.; Gey, Y.; Massarczyk, R.; John, R.; Junghans, A.; Wagner, A.; Cho, M.-H.

    2016-07-01

    The natMo( γ, xn)90, 91, 99Mo reaction cross-sections were experimentally determined for the bremsstrahlung end-point energies of 12, 14, 16, 45, 50, 55, 60 and 70MeV by activation and off-line γ -ray spectrometric technique and using the 20MeV electron linac (ELBE) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and the 100MeV electron linac at the Pohang Accelerator Laboratory (PAL), Pohang, Korea. The natMo( γ, xn)88, 89, 90, 91, 99Mo reaction cross-sections as a function of photon energy were also calculated using the computer code TALYS 1.6. The flux-weighted average cross-sections were obtained from the literature data and the calculated values of TALYS based on mono-energetic photons and are found to be in general agreement with the present results. The flux-weighted average experimental and theoretical cross-sections for the natMo( γ, xn)88, 89, 90, 91, 99Mo reactions increase with the bremsstrahlung end-point energy, which indicates the role of excitation energy. After a certain energy, the individual natMo( γ, xn) reaction cross-sections decrease with the increase of bremsstrahlung energy due to opening of other reactions, which indicates sharing of energy in different reaction channels. The 100Mo( γ, n) reaction cross-section is important for the production of 99Mo , which is a probable alternative to the 98Mo(n, γ) and 235U(n, f ) reactions.

  12. Ultra-Long Time Dynamics of Contaminant Plume Mixing Induced by Transient Forcing Factors in Geologic Formations

    NASA Astrophysics Data System (ADS)

    Rajabi, F.; Battiato, I.

    2016-12-01

    Long term predictions of the impact of anthropogenic stressors on the environment is essential to reduce the risks associated with processes such as CO2 sequestration and nuclear waste storage in the subsurface. On the other hand, transient forcing factors (e.g. time-varying injection or pumping rate) with evolving heterogeneity of time scales spanning from days to years can influence transport phenomena at the pore scale. A comprehensive spatio-temporal prediction of reactive transport in porous media under time-dependent forcing factors for thousands of years requires the formulation of continuum scale models for time-averages. Yet, as every macroscopic model, time-averaged models can loose predictivity and accuracy when certain conditions are violated. This is true whenever lack of temporal and spatial scale separation occurs and it makes the continuum scale equation a poor assumption for the processes at the pore scale. In this work, we consider mass transport of a dissolved species undergoing a heterogeneous reaction and subject to time-varying boundary conditions in a periodic porous medium. By means of homogenization method and asymptotic expansion technique, we derive a macro-time continuum-scale equation as well as expressions for its effective properties. Our analysis demonstrates that the dynamics at the macro-scale is strongly influenced by the interplay between signal frequency at the boundary and transport processes at the pore level. In addition, we provide the conditions under which the space-time averaged equations accurately describe pore-scale processes. To validate our theoretical predictions, we consider a thin fracture with reacting walls and transient boundary conditions at the inlet. Our analysis shows a good agreement between numerical simulations and theoretical predictions. Furthermore, our numerical experiments show that mixing patterns of the contaminant plumes at the pore level strongly depend on the signal frequency.

  13. Measurement and interpretation of skin prick test results.

    PubMed

    van der Valk, J P M; Gerth van Wijk, R; Hoorn, E; Groenendijk, L; Groenendijk, I M; de Jong, N W

    2015-01-01

    There are several methods to read skin prick test results in type-I allergy testing. A commonly used method is to characterize the wheal size by its 'average diameter'. A more accurate method is to scan the area of the wheal to calculate the actual size. In both methods, skin prick test (SPT) results can be corrected for histamine-sensitivity of the skin by dividing the results of the allergic reaction by the histamine control. The objectives of this study are to compare different techniques of quantifying SPT results, to determine a cut-off value for a positive SPT for histamine equivalent prick -index (HEP) area, and to study the accuracy of predicting cashew nut reactions in double-blind placebo-controlled food challenge (DBPCFC) tests with the different SPT methods. Data of 172 children with cashew nut sensitisation were used for the analysis. All patients underwent a DBPCFC with cashew nut. Per patient, the average diameter and scanned area of the wheal size were recorded. In addition, the same data for the histamine-induced wheal were collected for each patient. The accuracy in predicting the outcome of the DBPCFC using four different SPT readings (i.e. average diameter, area, HEP-index diameter, HEP-index area) were compared in a Receiver-Operating Characteristic (ROC) plot. Characterizing the wheal size by the average diameter method is inaccurate compared to scanning method. A wheal average diameter of 3 mm is generally considered as a positive SPT cut-off value and an equivalent HEP-index area cut-off value of 0.4 was calculated. The four SPT methods yielded a comparable area under the curve (AUC) of 0.84, 0.85, 0.83 and 0.83, respectively. The four methods showed comparable accuracy in predicting cashew nut reactions in a DBPCFC. The 'scanned area method' is theoretically more accurate in determining the wheal area than the 'average diameter method' and is recommended in academic research. A HEP-index area of 0.4 is determined as cut-off value for a positive SPT. However, in clinical practice, the 'average diameter method' is also useful, because this method provides similar accuracy in predicting cashew nut allergic reactions in the DBPCFC. Trial number NTR3572.

  14. Hydride transfer catalysed by Escherichia coli and Bacillus subtilis dihydrofolate reductase: coupled motions and distal mutations.

    PubMed

    Hammes-Schiffer, Sharon; Watney, James B

    2006-08-29

    This paper reviews the results from hybrid quantum/classical molecular dynamics simulations of the hydride transfer reaction catalysed by wild-type (WT) and mutant Escherichia coli and WT Bacillus subtilis dihydrofolate reductase (DHFR). Nuclear quantum effects such as zero point energy and hydrogen tunnelling are significant in these reactions and substantially decrease the free energy barrier. The donor-acceptor distance decreases to ca 2.7 A at transition-state configurations to enable the hydride transfer. A network of coupled motions representing conformational changes along the collective reaction coordinate facilitates the hydride transfer reaction by decreasing the donor-acceptor distance and providing a favourable geometric and electrostatic environment. Recent single-molecule experiments confirm that at least some of these thermally averaged equilibrium conformational changes occur on the millisecond time-scale of the hydride transfer. Distal mutations can lead to non-local structural changes and significantly impact the probability of sampling configurations conducive to the hydride transfer, thereby altering the free-energy barrier and the rate of hydride transfer. E. coli and B. subtilis DHFR enzymes, which have similar tertiary structures and hydride transfer rates with 44% sequence identity, exhibit both similarities and differences in the equilibrium motions and conformational changes correlated to hydride transfer, suggesting a balance of conservation and flexibility across species.

  15. Massively parallel free-flight simulations of a passive bumblebee in turbulence

    NASA Astrophysics Data System (ADS)

    Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Farge, Marie; Lehmann, Fritz; Sesterhenn, Jörn

    2017-11-01

    High-resolution direct numerical simulations of a flapping bumblebee in fully developed turbulence are presented. The model insect is considered in free flight with all six degrees of coupled to the fluid solver. We study the influence of inflow turbulence with varying intensity on the passive response of the animal. The passive response is relevant for insects due to the finite reaction time after which changes in orientation are transduced into changes in the wingbeat kinematics. The impact on the cycle-averaged aerodynamical forces, moments and power consumption is assessed. We also analyze the leading edge vortex at the insect wings, which enhances lift production, and show that even strong inflow turbulence is insignificant for its flow topology in an ensemble-averaged sense. Orthogonal wavelet decomposition quantifies the scale dependence of the generated swirling flow and its intermittency. Financial support from the ANR (Grant 15-CE40-0019) and DFG (Grant SE 8246-1), project AIFIT, is gratefully acknowledged and CPU time from the supercomputer center Idris in Orsay, project i20152a1664.

  16. Mental and Physical Workload, Salivary Stress Biomarkers and Taste Perception: Mars Desert Research Station Expedition

    PubMed Central

    Rai, Balwant; Kaur, Jasdeep

    2012-01-01

    Background: Very few studies have been conducted on the effects of simulation of Mars conditions on taste. Aims: This study was planned to find the effects of physical and mental workload on taste sensitivity and salivary stress biomarkers. Materials and Methods: Twelve crew members were selected. Taste reactions and intensity of the taste sensations to quinine sulfate, citric acid, and sucrose were tested before and after mental and physical tasks for one hour. Also, psychological mood states by profile of mood state, salivary, salivary alpha amylase and cortisol, and current stress test scores were measured before and after mental and physical tasks. Results: Average time intensity evaluation showed that after the mental and physical tasks, the perceived duration of bitter, sour, and sweet taste sensations was significantly shortened relative to control group. There were good correlations between average time intensity of sweetness, bitterness, sourness and cortisol levels. Conclusions: Taste alterations due to stress can have an effect on the health and confidence of astronauts in long- term space missions. Thus, this issue remains one of the important issues for future human explorations. PMID:23181230

  17. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants

    PubMed Central

    Sul, Young-Taeg

    2010-01-01

    TiO2 nanotubes are fabricated on TiO2 grit-blasted, screw-shaped rough titanium (ASTM grade 4) implants (3.75 × 7 mm) using potentiostatic anodization at 20 V in 1 M H3PO4 + 0.4 wt.% HF. The growth behavior and surface properties of the nanotubes are investigated as a function of the reaction time. The results show that vertically aligned nanotubes of ≈700 nm in length, with highly ordered structures of ≈40 nm spacing and ≈15 nm wall thickness may be grown independent of reaction time. The geometrical properties of nanotubes increase with reaction time (mean pore size, pore size distribution [PSD], and porosity ≈90 nm, ≈40–127 nm and 45%, respectively for 30 minutes; ≈107 nm, ≈63–140 nm and 56% for one hour; ≈108 nm, ≈58–150 nm and 60% for three hours). It is found that the fluorinated chemistry of the nanotubes of F-TiO2, TiOF2, and F-Ti-O with F ion incorporation of ≈5 at.%, and their amorphous structure is the same regardless of the reaction time, while the average roughness (Sa) gradually decreases and the developed surface area (Sdr) slightly increases with reaction time. The results of studies on animals show that, despite their low roughness values, after six weeks the fluorinated TiO2 nanotube implants in rabbit femurs demonstrate significantly increased osseointegration strengths (41 vs 29 Ncm; P = 0.008) and new bone formation (57.5% vs 65.5%; P = 0.008) (n = 8), and reveal more frequently direct bone/cell contact at the bone–implant interface by high-resolution scanning electron microscope observations as compared with the blasted, moderately rough implants that have hitherto been widely used for clinically favorable performance. The results of the animal studies constitute significant evidence that the presence of the nanotubes and the resulting fluorinated surface chemistry determine the nature of the bone responses to the implants. The present in vivo results point to potential applications of the TiO2 nanotubes in the field of bone implants and bone tissue engineering. PMID:20463928

  18. Synthesis of monodisperse spherical nanometer ZrO{sub 2} (Y{sub 2}O{sub 3}) powders via the coupling route of w/o emulsion with urea homogenous precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Ying; Dong, Shijie, E-mail: dongsjsj@163.com; Wang, Huihu

    2012-03-15

    Graphical abstract: In this paper, the weight loss and reaction evolution of ZrO{sub 2} precursor powders are determined by TG-DTA, and 600 Degree-Sign C is the most reasonable calcination temperature of precursor according to the TG-DTA. At the same time, we study the effect of reaction conditions upon the particle sizes, such as concentration of zirconium nitrate solution, reaction temperature and urea content. TEM micrographs of zirconia powders indicated that ZrO{sub 2} nano-powders prepared via the coupling route of w/o emulsion with homogenous precipitation possess spherical shape and excellent dispersing. Highlights: Black-Right-Pointing-Pointer The monodisperse spherical nanometer ZrO{sub 2} (Y{sub 2}O{submore » 3}) powders have been prepared via the coupling route of w/o emulsion with urea homogenous precipitation. Black-Right-Pointing-Pointer The principle of the coupling route of emulsion with homogenous precipitation has been studied. Black-Right-Pointing-Pointer The concentration of zirconium nitrate, reaction temperature of water bath and the quantity of urea effect regularly on the average particle size of products. -- Abstract: Using xylol as the oil phase, span-80 as the surfactant, and an aqueous solution containing zirconium (3 mol% Y{sub 2}O{sub 3}) and urea as the water phase, tetragonal phase ZrO{sub 2} nano-powders have been prepared via the coupling route of w/o emulsion with urea homogenous precipitation. The effects of the zirconium concentration, the reaction temperature and the urea content on the average size of the products have been examined. The as-prepared ZrO{sub 2} powders and the precursor powders were characterized by TGA-DTA, XRD, TEM and BET. Experimental results indicate that ZrO{sub 2} powders prepared via the coupling route of w/o emulsion with urea homogenous precipitation possess some excellent characteristics, such as well-rounded spherical shape and excellent dispersing.« less

  19. The evaluation of the average energy parameters for spectra of quasimonoenergetic neutrons produced in (p,n)-reactions on solid tritium targets

    NASA Astrophysics Data System (ADS)

    Sosnin, A. N.; Shorin, V. S.

    1989-10-01

    Fast neutron cross-section measurements using quasimonoenergetic (p,n) neutron sources require the determination of the average neutron spectrum parameters such as the mean energy < E> and the variance D. In this paper a simple model has been considered for determining the < E>- andD-values. The approach takes into account the actual layout of the solid tritium target and the irradiated sample. It is valid for targets with a thickness of less than 1 mg/cm 2. It has been shown that the first and the second tritium distribution function moments < x> and < x2> are connected by simple analytical expressions with average characteristics of the neutron yield measured above the (p,n) reaction threshold energy. Our results are compared with accurate calculations for Sc-T targets.

  20. Characterization of neutron emission from mega-ampere deuterium gas puff Z-pinch at microsecond implosion times

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.

    2013-08-01

    Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.

  1. Speed/accuracy trade-off between the habitual and the goal-directed processes.

    PubMed

    Keramati, Mehdi; Dezfouli, Amir; Piray, Payam

    2011-05-01

    Instrumental responses are hypothesized to be of two kinds: habitual and goal-directed, mediated by the sensorimotor and the associative cortico-basal ganglia circuits, respectively. The existence of the two heterogeneous associative learning mechanisms can be hypothesized to arise from the comparative advantages that they have at different stages of learning. In this paper, we assume that the goal-directed system is behaviourally flexible, but slow in choice selection. The habitual system, in contrast, is fast in responding, but inflexible in adapting its behavioural strategy to new conditions. Based on these assumptions and using the computational theory of reinforcement learning, we propose a normative model for arbitration between the two processes that makes an approximately optimal balance between search-time and accuracy in decision making. Behaviourally, the model can explain experimental evidence on behavioural sensitivity to outcome at the early stages of learning, but insensitivity at the later stages. It also explains that when two choices with equal incentive values are available concurrently, the behaviour remains outcome-sensitive, even after extensive training. Moreover, the model can explain choice reaction time variations during the course of learning, as well as the experimental observation that as the number of choices increases, the reaction time also increases. Neurobiologically, by assuming that phasic and tonic activities of midbrain dopamine neurons carry the reward prediction error and the average reward signals used by the model, respectively, the model predicts that whereas phasic dopamine indirectly affects behaviour through reinforcing stimulus-response associations, tonic dopamine can directly affect behaviour through manipulating the competition between the habitual and the goal-directed systems and thus, affect reaction time.

  2. The Simplest Chronoscope V: A Theory of Dual Primary and Secondary Reaction Time Systems.

    PubMed

    Montare, Alberto

    2016-12-01

    Extending work by Montare, visual simple reaction time, choice reaction time, discriminative reaction time, and overall reaction time scores obtained from college students by the simplest chronoscope (a falling meterstick) method were significantly faster as well as significantly less variable than scores of the same individuals from electromechanical reaction timers (machine method). Results supported the existence of dual reaction time systems: an ancient primary reaction time system theoretically activating the V5 parietal area of the dorsal visual stream that evolved to process significantly faster sensory-motor reactions to sudden stimulations arising from environmental objects in motion, and a secondary reaction time system theoretically activating the V4 temporal area of the ventral visual stream that subsequently evolved to process significantly slower sensory-perceptual-motor reactions to sudden stimulations arising from motionless colored objects. © The Author(s) 2016.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isotalo, Aarno

    A method referred to as tally nuclides is presented for accurately and efficiently calculating the time-step averages and integrals of any quantities that are weighted sums of atomic densities with constant weights during the step. The method allows all such quantities to be calculated simultaneously as a part of a single depletion solution with existing depletion algorithms. Some examples of the results that can be extracted include step-average atomic densities and macroscopic reaction rates, the total number of fissions during the step, and the amount of energy released during the step. Furthermore, the method should be applicable with several depletionmore » algorithms, and the integrals or averages should be calculated with an accuracy comparable to that reached by the selected algorithm for end-of-step atomic densities. The accuracy of the method is demonstrated in depletion calculations using the Chebyshev rational approximation method. Here, we demonstrate how the ability to calculate energy release in depletion calculations can be used to determine the accuracy of the normalization in a constant-power burnup calculation during the calculation without a need for a reference solution.« less

  4. Observations of chlorine monoxide over Scott Base, Antarctica, during the ozone hole, 1996-2005

    USGS Publications Warehouse

    Connor, Brian; Solomon, Philip; Barrett, James; Mooney, Thomas; Parrish, Alan

    2007-01-01

    We report observations of chlorine monoxide, ClO, in the lower stratosphere, made from Scott Base (77.85º S, 166.77º E) in springtime during each year, 1996-2005. The ClO amounts in the atmosphere are retrieved from remote measurements of microwave emission spectra. ClO column densities of up to about 2.5 × 1015 cm-2 are recorded during September, when chlorine is present in chemically active forms due to reactions on the surface of Polar Stratospheric Cloud (PSC) particles. Maximum mixing ratios of ClO are approximately 2 ppbv. The annual average of ClO column density during the activation period is anticorrelated with similar averages of ozone column measured at nearby Arrival Heights, with correlation coefficient of –0.81, and with averages of ozone mass integrated over the entire polar region, with similar correlation coefficients. There was a substantial decrease in ClO amounts during 2002-2004. There has been no systematic change in the timing of chlorine deactivation attributable to secular change in the Antarctic vortex

  5. The hybrid RANS/LES of partially premixed supersonic combustion using G/Z flamelet model

    NASA Astrophysics Data System (ADS)

    Wu, Jinshui; Wang, Zhenguo; Bai, Xuesong; Sun, Mingbo; Wang, Hongbo

    2016-10-01

    In order to describe partially premixed supersonic combustion numerically, G/Z flamelet model is developed and compared with finite rate model in hybrid RANS/LES simulation to study the strut-injection supersonic combustion flow field designed by the German Aerospace Center. A new temperature calculation method based on time-splitting method of total energy is introduced in G/Z flamelet model. Simulation results show that temperature predictions in partially premixed zone by G/Z flamelet model are more consistent with experiment than finite rate model. It is worth mentioning that low temperature reaction zone behind the strut is well reproduced. Other quantities such as average velocity and average velocity fluctuation obtained by developed G/Z flamelet model are also in good agreement with experiment. Besides, simulation results by G/Z flamelet also reveal the mechanism of partially premixed supersonic combustion by the analyses of the interaction between turbulent burning velocity and flow field.

  6. Acoustic characteristics used by Japanese macaques for individual discrimination.

    PubMed

    Furuyama, Takafumi; Kobayasi, Kohta I; Riquimaroux, Hiroshi

    2017-10-01

    The vocalizations of primates contain information about speaker individuality. Many primates, including humans, are able to distinguish conspecifics based solely on vocalizations. The purpose of this study was to investigate the acoustic characteristics used by Japanese macaques in individual vocal discrimination. Furthermore, we tested human subjects using monkey vocalizations to evaluate species specificity with respect to such discriminations. Two monkeys and five humans were trained to discriminate the coo calls of two unfamiliar monkeys. We created a stimulus continuum between the vocalizations of the two monkeys as a set of probe stimuli (whole morph). We also created two sets of continua in which only one acoustic parameter, fundamental frequency ( f 0 ) or vocal tract characteristic (VTC), was changed from the coo call of one monkey to that of another while the other acoustic feature remained the same ( f 0 morph and VTC morph, respectively). According to the results, the reaction times both of monkeys and humans were correlated with the morph proportion under the whole morph and f 0 morph conditions. The reaction time to the VTC morph was correlated with the morph proportion in both monkeys, whereas the reaction time in humans, on average, was not correlated with morph proportion. Japanese monkeys relied more consistently on VTC than did humans for discriminating monkey vocalizations. Our results support the idea that the auditory system of primates is specialized for processing conspecific vocalizations and suggest that VTC is a significant acoustic feature used by Japanese macaques to discriminate conspecific vocalizations. © 2017. Published by The Company of Biologists Ltd.

  7. Relationship Between Motor Vehicle Collisions and Results of Perimetry, Useful Field of View, and Driving Simulation in Drivers With Glaucoma.

    PubMed

    Tatham, Andrew J; Boer, Erwin R; Gracitelli, Carolina P B; Rosen, Peter N; Medeiros, Felipe A

    2015-05-01

    To examine the relationship between Motor Vehicle Collisions (MVCs) in drivers with glaucoma and standard automated perimetry (SAP), Useful Field of View (UFOV), and driving simulator assessment of divided attention. A cross-sectional study of 153 drivers from the Diagnostic Innovations in Glaucoma Study. All subjects had SAP and divided attention was assessed using UFOV and driving simulation using low-, medium-, and high-contrast peripheral stimuli presented during curve negotiation and car following tasks. Self-reported history of MVCs and average mileage driven were recorded. Eighteen of 153 subjects (11.8%) reported a MVC. There was no difference in visual acuity but the MVC group was older, drove fewer miles, and had worse binocular SAP sensitivity, contrast sensitivity, and ability to divide attention (UFOV and driving simulation). Low contrast driving simulator tasks were the best discriminators of MVC (AUC 0.80 for curve negotiation versus 0.69 for binocular SAP and 0.59 for UFOV). Adjusting for confounding factors, longer reaction times to driving simulator divided attention tasks provided additional value compared with SAP and UFOV, with a 1 standard deviation (SD) increase in reaction time (approximately 0.75 s) associated with almost two-fold increased odds of MVC. Reaction times to low contrast divided attention tasks during driving simulation were significantly associated with history of MVC, performing better than conventional perimetric tests and UFOV. The association between conventional tests of visual function and MVCs in drivers with glaucoma is weak, however, tests of divided attention, particularly using driving simulation, may improve risk assessment.

  8. DNA Walkers as Transport Vehicles of Nanoparticles Along a Carbon Nanotube Track.

    PubMed

    Pan, Jing; Cha, Tae-Gon; Chen, Haorong; Li, Feiran; Choi, Jong Hyun

    2017-01-01

    DNA-based molecular motors are synthetic analogs of naturally occurring protein motors. Typical DNA walkers are constructed from synthetic short DNA strands and are powered by various free energy changes during hybridization reactions. Due to the constraints set by their small physical dimension and slow kinetics, most DNA walkers are characterized by ensemble measurements that result in averaged kinetics data. Here we present a synthetic DNA walker system that exploits the extraordinary physicochemical properties of nanomaterials and the functionalities of DNA molecules, which enables real-time control and monitoring of single-DNA walkers over an extended period.

  9. Normobaric hypoxia overnight impairs cognitive reaction time.

    PubMed

    Pramsohler, Stephan; Wimmer, Stefan; Kopp, Martin; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Martin; Netzer, Nikolaus Cristoph

    2017-05-15

    Impaired reaction time in patients suffering from hypoxia during sleep, caused by sleep breathing disorders, is a well-described phenomenon. High altitude sleep is known to induce periodic breathing with central apneas and oxygen desaturations, even in perfectly healthy subjects. However, deficits in reaction time in mountaineers or workers after just some nights of hypoxia exposure are not sufficiently explored. Therefore, we aimed to investigate the impact of sleep in a normobaric hypoxic environment on reaction time divided by its cognitive and motoric components. Eleven healthy non acclimatized students (5f, 6m, 21 ± 2.1 years) slept one night at a simulated altitude of 3500 m in a normobaric hypoxic room, followed by a night with polysomnography at simulated 5500 m. Preexisting sleep disorders were excluded via BERLIN questionnaire. All subjects performed a choice reaction test (SCHUHFRIED RT, S3) at 450 m and directly after the nights at simulated 3500 and 5500 m. We found a significant increase of cognitive reaction time with higher altitude (p = 0.026). No changes were detected in movement time (p = n.s.). Reaction time, the combined parameter of cognitive- and motoric reaction time, didn't change either (p = n.s.). Lower SpO 2 surprisingly correlated significantly with shorter cognitive reaction time (r = 0.78, p = 0.004). Sleep stage distribution and arousals at 5500 m didn't correlate with reaction time, cognitive reaction time or movement time. Sleep in hypoxia does not seem to affect reaction time to simple tasks. The component of cognitive reaction time is increasingly delayed whereas motoric reaction time seems not to be affected. Low SpO 2 and arousals are not related to increased cognitive reaction time therefore the causality remains unclear. The fact of increased cognitive reaction time after sleep in hypoxia, considering high altitude workers and mountaineering operations with overnight stays, should be further investigated.

  10. Nuclear polarization effects in big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Voronchev, Victor T.; Nakao, Yasuyuki

    2015-10-01

    A standard nuclear reaction network for big bang nucleosynthesis (BBN) simulations operates with spin-averaged nuclear inputs—unpolarized reaction cross sections. At the same time, the major part of reactions controlling the abundances of light elements is spin dependent, i.e., their cross sections depend on the mutual orientation of reacting particle spins. Primordial magnetic fields in the BBN epoch may to a certain degree polarize particles and thereby affect some reactions between them, introducing uncertainties in standard BBN predictions. To clarify the points, we have examined the effects of induced polarization on key BBN reactions—p (n ,γ )d , d (d ,p )t , d (d ,n )He 3 , t (d ,n )α , He 3 (n ,p )t , He 3 (d ,p )α , Li 7 (p ,α )α , Be 7 (n ,p )Li 7 —and the abundances of elements with A ≤7 . It has been obtained that the magnetic field with the strength B0≤1012 G (at the temperature of 109 K ) has almost no effect on the reaction cross sections, and the spin polarization mechanism plays a minor role in the element production, changing the abundances at most by 0.01%. However, if the magnetic field B0 reaches 1015 G its effect on the key reactions appears and becomes appreciable at B0≳1016 G . In particular, it has been found that such a field can increase the p (n ,γ )d cross section (relevant to the starting point of BBN) by a factor of 2 and at the same time almost block the He 3 (n ,p )t reaction responsible for the interconversion of A =3 nuclei in the early Universe. This suggests that the spin polarization effects may become important in nonstandard scenarios of BBN considering the existence of local magnetic bubbles inside which the field can reach ˜1015 G .

  11. Activation barriers for series of exothermic homologous reactions. VI. Reactions of lanthanide and transition metal atoms.

    NASA Astrophysics Data System (ADS)

    Blue, Alan S.; Fontijn, Arthur

    2001-09-01

    Semiempirical configuration interaction (SECI) theory to predict activation barriers, E, as given by k(T)=ATn exp(-E(RT), has been applied to homologous series of lanthanide (LN) and transition metal (TM) atom oxidation reactions. This was achieved by considering as homologous series reactions of elements differing only by the number of electrons in one subshell. Comparison between SECI and experimental results leads to an average deviation for the LN+N2O reactions of 0.66 kJ mol-1, and up to 5.5 kJ mol-1 for other series. Thirty-one activation barriers are reported.

  12. No evidence of reaction time slowing in autism spectrum disorder.

    PubMed

    Ferraro, F Richard

    2016-01-01

    A total of 32 studies comprising 238 simple reaction time and choice reaction time conditions were examined in individuals with autism spectrum disorder (n = 964) and controls (n = 1032). A Brinley plot/multiple regression analysis was performed on mean reaction times, regressing autism spectrum disorder performance onto the control performance as a way to examine any generalized simple reaction time/choice reaction time slowing exhibited by the autism spectrum disorder group. The resulting regression equation was Y (autism spectrum disorder) = 0.99 × (control) + 87.93, which accounted for 92.3% of the variance. These results suggest that there are little if any simple reaction time/choice reaction time slowing in this sample of individual with autism spectrum disorder, in comparison with controls. While many cognitive and information processing domains are compromised in autism spectrum disorder, it appears that simple reaction time/choice reaction time remain relatively unaffected in autism spectrum disorder. © The Author(s) 2014.

  13. Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20.

    PubMed

    Isayev, Olexandr; Gorb, Leonid; Qasim, Mo; Leszczynski, Jerzy

    2008-09-04

    CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane or HNIW) is a high-energy nitramine explosive. To improve atomistic understanding of the thermal decomposition of CL-20 gas and solid phases, we performed a series of ab initio molecular dynamics simulations. We found that during unimolecular decomposition, unlike other nitramines (e.g., RDX, HMX), CL-20 has only one distinct initial reaction channelhomolysis of the N-NO2 bond. We did not observe any HONO elimination reaction during unimolecular decomposition, whereas the ring-breaking reaction was followed by NO 2 fission. Therefore, in spite of limited sampling, that provides a mostly qualitative picture, we proposed here a scheme of unimolecular decomposition of CL-20. The averaged product population over all trajectories was estimated at four HCN, two to four NO2, two to four NO, one CO, and one OH molecule per one CL-20 molecule. Our simulations provide a detailed description of the chemical processes in the initial stages of thermal decomposition of condensed CL-20, allowing elucidation of key features of such processes as composition of primary reaction products, reaction timing, and Arrhenius behavior of the system. The primary reactions leading to NO2, NO, N 2O, and N2 occur at very early stages. We also estimated potential activation barriers for the formation of NO2, which essentially determines overall decomposition kinetics and effective rate constants for NO2 and N2. The calculated solid-phase decomposition pathways correlate with available condensed-phase experimental data.

  14. Allergen cross reactions: a problem greater than ever thought?

    PubMed

    Pfiffner, P; Truffer, R; Matsson, P; Rasi, C; Mari, A; Stadler, B M

    2010-12-01

    Cross reactions are an often observed phenomenon in patients with allergy. Sensitization against some allergens may cause reactions against other seemingly unrelated allergens. Today, cross reactions are being investigated on a per-case basis, analyzing blood serum specific IgE (sIgE) levels and clinical features of patients suffering from cross reactions. In this study, we evaluated the level of sIgE compared to patients' total IgE assuming epitope specificity is a consequence of sequence similarity. Our objective was to evaluate our recently published model of molecular sequence similarities underlying cross reactivity using serum-derived data from IgE determinations of standard laboratory tests. We calculated the probabilities of protein cross reactivity based on conserved sequence motifs and compared these in silico predictions to a database consisting of 5362 sera with sIgE determinations. Cumulating sIgE values of a patient resulted in a median of 25-30% total IgE. Comparing motif cross reactivity predictions to sIgE levels showed that on average three times fewer motifs than extracts were recognized in a given serum (correlation coefficient: 0.967). Extracts belonging to the same motif group co-reacted in a high percentage of sera (up to 80% for some motifs). Cumulated sIgE levels are exaggerated because of a high level of observed cross reactions. Thus, not only bioinformatic prediction of allergenic motifs, but also serological routine testing of allergic patients implies that the immune system may recognize only a small number of allergenic structures. © 2010 John Wiley & Sons A/S.

  15. Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics.

    PubMed

    Hanel, Rudolf; Pöchacker, Manfred; Thurner, Stefan

    2010-12-28

    Linearized catalytic reaction equations (modelling, for example, the dynamics of genetic regulatory networks), under the constraint that expression levels, i.e. molecular concentrations of nucleic material, are positive, exhibit non-trivial dynamical properties, which depend on the average connectivity of the reaction network. In these systems, an inflation of the edge of chaos and multi-stability have been demonstrated to exist. The positivity constraint introduces a nonlinearity, which makes chaotic dynamics possible. Despite the simplicity of such minimally nonlinear systems, their basic properties allow us to understand the fundamental dynamical properties of complex biological reaction networks. We analyse the Lyapunov spectrum, determine the probability of finding stationary oscillating solutions, demonstrate the effect of the nonlinearity on the effective in- and out-degree of the active interaction network, and study how the frequency distributions of oscillatory modes of such a system depend on the average connectivity.

  16. The Effect of Hydraulic Loading Rate and Influent Source on the Binding Capacity of Phosphorus Filters

    PubMed Central

    Herrmann, Inga; Jourak, Amir; Hedström, Annelie; Lundström, T. Staffan; Viklander, Maria

    2013-01-01

    Sorption by active filter media can be a convenient option for phosphorus (P) removal and recovery from wastewater for on-site treatment systems. There is a need for a robust laboratory method for the investigation of filter materials to enable a reliable estimation of their longevity. The objectives of this study were to (1) investigate and (2) quantify the effect of hydraulic loading rate and influent source (secondary wastewater and synthetic phosphate solution) on P binding capacity determined in laboratory column tests and (3) to study how much time is needed for the P to react with the filter material (reaction time). To study the effects of these factors, a 22 factorial experiment with 11 filter columns was performed. The reaction time was studied in a batch experiment. Both factors significantly (α = 0.05) affected the P binding capacity negatively, but the interaction of the two factors was not significant. Increasing the loading rate from 100 to 1200 L m−2 d−1 decreased P binding capacity from 1.152 to 0.070 g kg−1 for wastewater filters and from 1.382 to 0.300 g kg−1 for phosphate solution filters. At a loading rate of 100 L m−2 d−1, the average P binding capacity of wastewater filters was 1.152 g kg−1 as opposed to 1.382 g kg−1 for phosphate solution filters. Therefore, influent source or hydraulic loading rate should be carefully controlled in the laboratory. When phosphate solution and wastewater were used, the reaction times for the filters to remove P were determined to be 5 and 15 minutes, respectively, suggesting that a short residence time is required. However, breakthrough in this study occurred unexpectedly quickly, implying that more time is needed for the P that has reacted to be physically retained in the filter. PMID:23936313

  17. Changes in patellofemoral pain resulting from repetitive impact landings are associated with the magnitude and rate of patellofemoral joint loading.

    PubMed

    Atkins, Lee T; James, C Roger; Yang, Hyung Suk; Sizer, Phillip S; Brismée, Jean-Michel; Sawyer, Steven F; Powers, Christopher M

    2018-03-01

    Although a relationship between elevated patellofemoral forces and pain has been proposed, it is unknown which joint loading variable (magnitude, rate) is best associated with pain changes. The purpose of this study was to examine associations among patellofemoral joint loading variables and changes in patellofemoral pain across repeated single limb landings. Thirty-one females (age: 23.5(2.8) year; height: 166.8(5.8) cm; mass: 59.6(8.1) kg) with PFP performed 5 landing trials from 0.25 m. The dependent variable was rate of change in pain obtained from self-reported pain scores following each trial. Independent variables included 5-trial averages of peak, time-integral, and average and maximum development rates of the patellofemoral joint reaction force obtained using a previously described model. Pearson correlation coefficients were calculated to evaluate individual associations between rate of change in pain and each independent variable (α = 0.05). Stepwise linear multiple regression (α enter  = 0.05; α exit  = 0.10) was used to identify the best predictor of rate of change in pain. Subjects reported an average increase of 0.38 pain points with each landing trial. Although, rate of change in pain was positively correlated with peak force (r = 0.44, p = 0.01), and average (r = 0.41, p = 0.02) and maximum force development rates (r = 0.39, p = 0.03), only the peak force entered the predictive model explaining 19% of variance in rate of change in pain (r 2  = 0.19, p = 0.01). Peak patellofemoral joint reaction force was the best predictor of the rate of change in pain following repetitive singe limb landings. The current study supports the theory that patellofemoral joint loading contributes to changes in patellofemoral pain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. FIFRELIN - TRIPOLI-4® coupling for Monte Carlo simulations with a fission model. Application to shielding calculations

    NASA Astrophysics Data System (ADS)

    Petit, Odile; Jouanne, Cédric; Litaize, Olivier; Serot, Olivier; Chebboubi, Abdelhazize; Pénéliau, Yannick

    2017-09-01

    TRIPOLI-4® Monte Carlo transport code and FIFRELIN fission model have been coupled by means of external files so that neutron transport can take into account fission distributions (multiplicities and spectra) that are not averaged, as is the case when using evaluated nuclear data libraries. Spectral effects on responses in shielding configurations with fission sampling are then expected. In the present paper, the principle of this coupling is detailed and a comparison between TRIPOLI-4® fission distributions at the emission of fission neutrons is presented when using JEFF-3.1.1 evaluated data or FIFRELIN data generated either through a n/g-uncoupled mode or through a n/g-coupled mode. Finally, an application to a modified version of the ASPIS benchmark is performed and the impact of using FIFRELIN data on neutron transport is analyzed. Differences noticed on average reaction rates on the surfaces closest to the fission source are mainly due to the average prompt fission spectrum. Moreover, when working with the same average spectrum, a complementary analysis based on non-average reaction rates still shows significant differences that point out the real impact of using a fission model in neutron transport simulations.

  19. Chemical Kinetics at the Single-Molecule Level

    ERIC Educational Resources Information Center

    Levitus, Marcia

    2011-01-01

    For over a century, chemists have investigated the rates of chemical reactions using experimental conditions involving huge numbers of molecules. As a consequence, the description of the kinetics of the reaction in terms of average values was good enough for all practical purposes. From the pedagogical point of view, such a description misses the…

  20. Mixing-controlled reactive transport on travel times in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Luo, J.; Cirpka, O.

    2008-05-01

    Modeling mixing-controlled reactive transport using traditional spatial discretization of the domain requires identifying the spatial distributions of hydraulic and reactive parameters including mixing-related quantities such as dispersivities and kinetic mass-transfer coefficients. In most applications, breakthrough curves of conservative and reactive compounds are measured at only a few locations and models are calibrated by matching these breakthrough curves, which is an ill posed inverse problem. By contrast, travel-time based transport models avoid costly aquifer characterization. By considering breakthrough curves measured on different scales, one can distinguish between mixing, which is a prerequisite for reactions, and spreading, which per se does not foster reactions. In the travel-time based framework, the breakthrough curve of a solute crossing an observation plane, or ending in a well, is interpreted as the weighted average of concentrations in an ensemble of non-interacting streamtubes, each of which is characterized by a distinct travel-time value. Mixing is described by longitudinal dispersion and/or kinetic mass transfer along individual streamtubes, whereas spreading is characterized by the distribution of travel times which also determines the weights associated to each stream tube. Key issues in using the travel-time based framework include the description of mixing mechanisms and the estimation of the travel-time distribution. In this work, we account for both apparent longitudinal dispersion and kinetic mass transfer as mixing mechanisms, thus generalizing the stochastic-convective model with or without inter-phase mass transfer and the advective-dispersive streamtube model. We present a nonparametric approach of determining the travel-time distribution, given a breakthrough curve integrated over an observation plane and estimated mixing parameters. The latter approach is superior to fitting parametric models in cases where the true travel-time distribution exhibits multiple peaks or long tails. It is demonstrated that there is freedom for the combinations of mixing parameters and travel-time distributions to fit conservative breakthrough curves and describe the tailing. Reactive transport cases with a bimolecular instantaneous irreversible reaction and a dual Michaelis-Menten problem demonstrate that the mixing introduced by local dispersion and mass transfer may be described by apparent mean mass transfer with coefficients evaluated by local breakthrough curves.

  1. Evaluating the utility of administering a reaction time task in an ecological momentary assessment study.

    PubMed

    Waters, Andrew J; Li, Yisheng

    2008-03-01

    Cognitive processes underlying drug use have typically been assessed in laboratory settings. More detailed and ecologically valid data may be possible if assessments were conducted in an ecological momentary assessment (EMA) setting. We evaluated the feasibility and utility of administering a reaction time task on a hand-held computer (personal digital assistant, PDA) in an EMA setting. Twenty-two smokers and 22 non-smokers carried around the PDA for 1 week as they went about their daily lives. They were beeped at random times four times per day (random assessments, RAs). Participants were also instructed to press an "anxiety assessment" (AA) button on the PDA whenever they felt suddenly anxious. At each assessment (RA, AA), participants responded to items assessing subjective, pharmacological, and contextual variables, and subsequently completed a Stroop task (classic-Stroop, emotional-Stroop, or smoking-Stroop task). Participants responded to 81.2% of RAs, completed assessments in an average of 4.44 min, reported no interruptions on the majority of assessments (62.4%), and produced data with adequate reliability. Using generalized estimating equation (GEE) analyses, age was associated with the classic-Stroop effect, state anxiety was associated with the emotional-Stroop effect, and Fagerstrom Test for Nicotine Dependence scores were associated with the smoking-Stroop effect. The study provided evidence for the feasibility and utility of the approach.

  2. Solid-phase organic synthesis of difluoroalkyl entities using a novel fluorinating cleavage strategy: part 2. Synthesis of three small gem-difluorinated compound libraries using a dithiane linker.

    PubMed

    Wiehn, Matthias S; Fürniss, Daniel; Bräse, Stefan

    2009-01-01

    Three small compound biaryl libraries featuring a novel fluorinating cleavage strategy for preparation of a difluoromethyl group were assembled on solid supports. The average reaction yield per step was up to 96% in a synthetic sequence over five to six steps. Key features were Suzuki coupling reactions, transesterification with potassium cyanide and amidation reaction with trimethyl aluminum on solid supports.

  3. Synthesis and Anticoagulant Activity of Polyureas Containing Sulfated Carbohydrates

    PubMed Central

    2015-01-01

    Polyurea-based synthetic glycopolymers containing sulfated glucose, mannose, glucosamine, or lactose as pendant groups have been synthesized by step-growth polymerization of hexamethylene diisocyanate and corresponding secondary diamines. The obtained polymers were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, and Fourier transform infrared spectroscopy. The nonsulfated polymers showed similar results to the commercially available biomaterial polyurethane TECOFLEX in a platelet adhesion assay. The average degree of sulfation after reaction with SO3 was calculated from elemental analysis and found to be between three and four −OSO3 groups per saccharide. The blood-compatibility of the synthetic polymers was measured using activated partial thromboplastin time, prothrombin time, thrombin time, anti-IIa, and anti-Xa assays. Activated partial thromboplastin time, prothrombin time, and thrombin time results indicated that the mannose and lactose based polymers had the highest anticoagulant activities among all the sulfated polymers. The mechanism of action of the polymers appears to be mediated via an anti-IIa pathway rather than an anti-Xa pathway. PMID:25329742

  4. Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources

    NASA Astrophysics Data System (ADS)

    Waring, Michael S.; Wells, J. Raymond

    2015-04-01

    Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predict O3, OH, and NO3 concentrations and their impacts on conversion of typical residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We accounted for established oxidant sources, as well as explored the importance of two newly realized indoor sources: (i) the photolysis of nitrous acid (HONO) indoors to generate OH and (ii) the reaction of stabilized Criegee intermediates (SCI) with NO2 to generate NO3. We found total VOC conversion to be dominated by reactions both with O3, which almost solely reacted with D-limonene, and also with OH, which reacted with D-limonene, other terpenes, alcohols, aldehydes, and aromatics. VOC oxidation rates increased with air exchange, outdoor O3, NO2 and D-limonene sources, and indoor photolysis rates; and they decreased with O3 deposition and nitric oxide (NO) sources. Photolysis was a strong OH formation mechanism for high NO, NO2, and HONO settings, but SCI/NO2 reactions weakly generated NO3 except for only a few cases.

  5. Study of aniline polymerization reactions through the particle size formation in acidic and neutral medium

    NASA Astrophysics Data System (ADS)

    Aribowo, Slamet; Hafizah, Mas Ayu Elita; Manaf, Azwar; Andreas

    2018-04-01

    In the present paper, we reported particle size kinetic studies on the conducting polyaniline (PANI) which synthesized through a chemical oxidative polymerization technique from aniline monomer. PANI was prepared using ammonium persulfate (APS) as oxidizing agent which carried out in acidic and neutral medium at various batch temperatures of respectively 20, 30 and 50 °C. From the studies, it was noticed that the complete polymerization reaction progressed within 480 minutes duration time. The pH of the solution during reaction kinetic reached values 0.8 - to 1.2 in acidic media, while in the neutral media the pH value reached values 3.8 - 4.9. The batch temperature controlled the polymerization reaction in which the reaction progressing, which followed by the temperature rise of solution above the batch temperature before settled down to the initial temperature. An increment in the batch temperature gave highest rise in the solution temperature for the two media which cannot be more than 50 °C. The final product of polymerization reaction was PANI confirmed by Fourier Transform Infra-Red (FTIR) spectrophotometer for molecule structure identification. The averages particle size of PANI which carried out in the two different media is evidently similar in the range 30 - 40 μm and insensitive to the batch temperature. However, the particle size of PANI which obtained from the polymerization reaction at a batch temperature of 50 °C under acidic condition reached ˜53.1 μm at the tip of the propagation stage which started in the first 5 minutes. The size is obviously being the largest among the batch temperatures. Whereas, under neutral condition the particle size is much larger which reached the size 135 μm at the batch temperature of 20 °C. It is concluded that the particle size formation during the polymerization reaction being one of the important parameter to determine particle growing of polymer which indicated the reaction kinetics mechanism of synthesize polyaniline.

  6. Reaction time and anticipatory skill of athletes in open and closed skill-dominated sport.

    PubMed

    Nuri, Leila; Shadmehr, Azadeh; Ghotbi, Nastaran; Attarbashi Moghadam, Behrouz

    2013-01-01

    In sports, reaction time and anticipatory skill are critical aspects of perceptual abilities. To date, no study has compared reaction time and anticipatory skill of athletes from open and closed skill-dominated sport. Accordingly, the present study investigated whether a difference exists in sensory-cognitive skills between these two different sport domains. Eleven volleyball players and 11 sprinters participated in this experiment. Reaction time and anticipatory skill of both groups were recorded by a custom-made software called SART (speed anticipation and reaction time test). This software consists of six sensory-cognitive tests that evaluate visual choice reaction time, visual complex choice reaction time, auditory choice reaction time, auditory complex choice reaction time, and anticipatory skill of the high speed and low speed of the ball. For each variable, an independent t-test was performed. Results suggested that sprinters were better in both auditory reaction times (P<0.001 for both tests) and volleyball players were better in both anticipatory skill tests (P = 0.007 and P = 0.04 for anticipatory skill of the high speed and low speed of the ball, respectively). However, no significant differences were found in both visual choice reaction time tests (P > 0.05 for both visual reaction time tests). It is concluded that athletes have greater sensory-cognitive skills related to their specific sport domain either open or closed.

  7. A comparative study on visual choice reaction time for different colors in females.

    PubMed

    Balakrishnan, Grrishma; Uppinakudru, Gurunandan; Girwar Singh, Gaur; Bangera, Shobith; Dutt Raghavendra, Aswini; Thangavel, Dinesh

    2014-01-01

    Reaction time is one of the important methods to study a person's central information processing speed and coordinated peripheral movement response. Visual choice reaction time is a type of reaction time and is very important for drivers, pilots, security guards, and so forth. Previous studies were mainly on simple reaction time and there are very few studies on visual choice reaction time. The aim of our study was to compare the visual choice reaction time for red, green, and yellow colors of 60 healthy undergraduate female volunteers. After giving adequate practice, visual choice reaction time was recorded for red, green, and yellow colors using reaction time machine (RTM 608, Medicaid, Chandigarh). Repeated measures of ANOVA and Bonferroni multiple comparison were used for analysis and P < 0.05 was considered statistically significant. The results showed that both red and green had significantly less choice visual choice reaction (P values <0.0001 and 0.0002) when compared with yellow. This could be because individual color mental processing time for yellow color is more than red and green.

  8. A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings

    USGS Publications Warehouse

    Borrok, D.; Turner, B.F.; Fein, J.B.

    2005-01-01

    Adsorption onto bacterial cell walls can significantly affect the speciation and mobility of aqueous metal cations in many geologic settings. However, a unified thermodynamic framework for describing bacterial adsorption reactions does not exist. This problem originates from the numerous approaches that have been chosen for modeling bacterial surface protonation reactions. In this study, we compile all currently available potentiometric titration datasets for individual bacterial species, bacterial consortia, and bacterial cell wall components. Using a consistent, four discrete site, non-electrostatic surface complexation model, we determine total functional group site densities for all suitable datasets, and present an averaged set of 'universal' thermodynamic proton binding and site density parameters for modeling bacterial adsorption reactions in geologic systems. Modeling results demonstrate that the total concentrations of proton-active functional group sites for the 36 bacterial species and consortia tested are remarkably similar, averaging 3.2 ?? 1.0 (1??) ?? 10-4 moles/wet gram. Examination of the uncertainties involved in the development of proton-binding modeling parameters suggests that ignoring factors such as bacterial species, ionic strength, temperature, and growth conditions introduces relatively small error compared to the unavoidable uncertainty associated with the determination of cell abundances in realistic geologic systems. Hence, we propose that reasonable estimates of the extent of bacterial cell wall deprotonation can be made using averaged thermodynamic modeling parameters from all of the experiments that are considered in this study, regardless of bacterial species used, ionic strength, temperature, or growth condition of the experiment. The average site densities for the four discrete sites are 1.1 ?? 0.7 ?? 10-4, 9.1 ?? 3.8 ?? 10-5, 5.3 ?? 2.1 ?? 10-5, and 6.6 ?? 3.0 ?? 10-5 moles/wet gram bacteria for the sites with pKa values of 3.1, 4.7, 6.6, and 9.0, respectively. It is our hope that this thermodynamic framework for modeling bacteria-proton binding reactions will also provide the basis for the development of an internally consistent set of bacteria-metal binding constants. 'Universal' constants for bacteria-metal binding reactions can then be used in conjunction with equilibrium constants for other important metal adsorption and complexation reactions to calculate the overall distribution of metals in realistic geologic systems.

  9. Ankle moment generation and maximum-effort curved sprinting performance.

    PubMed

    Luo, Geng; Stefanyshyn, Darren

    2012-11-15

    Turning at high speed along acute curves is crucial for athletic performance. One determinant of curved sprinting speed is the ground reaction force that can be created by the supporting limb; the moment generated at the ankle joint may influence such force generation. Body lean associated with curved sprints positions the ankle joints in extreme in-/eversion, and may hinder the ankle moment generation. To examine the influence of ankle moment generation on curved sprinting performance, 17 male subjects performed maximum-effort curved sprints in footwear with and without a wedge. The wedged footwear was constructed with the intention to align the ankle joints closer to their neutral frontal-plane configuration during counter-clockwise curved sprints so greater joint moments might be generated. We found, with the wedged footwear, the average eversion angle of the inside leg ankle was reduced, and the plantarflexion moment generation increased significantly. Meanwhile, the knee extension moment remained unchanged. With the wedged footwear, stance-average centripetal ground reaction force increased significantly while no difference in the vertical ground reaction force was detected. The subjects created a greater centripetal ground reaction impulse in the wedged footwear despite a shortened stance phase when compared to the control. Stance-average curved sprinting speed improved by 4.3% with the wedged footwear. The changes in ankle moment and curved sprinting speed observed in the current study supports the notion that the moment generation at the ankle joint may be a performance constraint for curved sprinting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Ozone reaction characteristics of indoor floor dust examined in the emission cell "FLEC".

    PubMed

    Vibenholt, Anni; Clausen, Per Axel; Wolkoff, Peder

    2014-07-01

    Ozone reacts with C-C double bonds in common indoor VOCs and SVOCs contained in indoor dust and may be catalytically degraded on dust surfaces. The reaction between floor dust and ozone was investigated in the FLEC emission cell at different ozone concentrations and relative humidities (0%, 25%, and 50% RH). One gram of dust was spread on a clean stainless steel plate which was placed in the FLEC. Steady state reaction rate (kDust) at 2.2 ppm ozone was determined for four different floor dust samples collected in Danish homes and offices. This high concentration was necessary in order to measure and determine the consumption in the outlet air from the FLEC. Measurements were corrected for FLEC wall effects by subtraction of the steady state reaction rate between ozone and a FLEC on a stainless steel plate without dust (kFLEC). The composition of organic compounds in the dust was analyzed by pressurized liquid extraction and thermal desorption GC-MS before and after ozone exposure. kFLEC was independent of the ozone concentration and the reaction was treated as first order. The same was indicated for kDust since it remained unchanged at 2.2 and 1.6 ppm ozone for one dust sample. However, the measured kDust in the FLEC should be considered an average rate constant due to the FLEC geometry. kDust was in the range 0.039-0.14s(-1) pr. g dust at 50% RH. kDust was 3 times higher at 25% RH than at 50% RH and 6 times higher than at 0% RH. The inhomogeneity of the dust was assessed by experiments in triplicate with a new portion of dust each time. The relative standard deviation of kDust at 50% RH was 6-20%. The major identified compounds before and after ozone exposure included aldehydes, saturated and unsaturated linear alkanoic acids, benzoic acid and their methyl esters, dimethyl esters, phthalates and traces of α-pinene and limonene. Substantial increase of C7-C9 aldehydes was observed after ozone exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. [Changes of pulse rate caused by sonic bomms during sleep (author's transl)].

    PubMed

    Griefahn, B

    1975-12-05

    In two experimental series (19 resp. 53 nights, 2 different persons in each series, test-time 10.30 p.m. to 3.00 a.m.) pulse rate after sonic booms had been recorded during sleep. In the first 3 nights the subjects slept undisturbed by noise. In the following 11 resp. 30 nights sonic booms were applied alternately 2 or 4 times. In the main series after 10 more nights without any noise 4 nights with 8 and 16 sonic booms alternately followed. The last 6 undisturbed nights in both series were used as comparison phase. The interval between two sonic booms was 40 min in nights with 2 booms, 20 min in nights with 4 sonic booms and in the nights with 8 and 16 sonic booms 8.6 resp. 4.6 min. Sound level of the sonic booms ranged from 0.48 mbar to 1.45 mbar, 1 mbar [83.5 dB (A)] in the average. The first sonic boom was applied if one of the two subjects had entered the deepest stage of sleep. Sonic booms induced a biphasic reaction in pulse rate. After an initial increase in frequency with a maximum in the 4th sec pulse rate decreased below the value before sonic boom; it was followed by a slow increase towards the baseline value. This reaction was analysed with special regard to the following factors: 1. Intensity. Due to very fast increase of noise intensity there was no significant correlation between the intensity of sonic boom and the pulse reaction. 2. Exogenic variables. There is no significant connection between postboom pulse rate and noiseless time before the sonic boom, the duration of the test series and the ambient temperature. 3. Endogenic variables. No correlation could be found between the stage of sleep and the reaction. On the contrary a very significant correlation was found between the maximum of postboom increase of pulse rate and the pulse rate before boom. With increasing pulse rate the extent of reaction becomes smaller.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritychenko, B., E-mail: pritychenko@bnl.go; Mughaghab, S.F.; Sonzogni, A.A.

    We have calculated the Maxwellian-averaged cross sections and astrophysical reaction rates of the stellar nucleosynthesis reactions (n, {gamma}), (n, fission), (n, p), (n, {alpha}), and (n, 2n) using the ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, and ENDF/B-VI.8 evaluated nuclear reaction data libraries. These four major nuclear reaction libraries were processed under the same conditions for Maxwellian temperatures (kT) ranging from 1 keV to 1 MeV. We compare our current calculations of the s-process nucleosynthesis nuclei with previous data sets and discuss the differences between them and the implications for nuclear astrophysics.

  13. Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding.

    PubMed

    Zinn, K R; Chaudhuri, T R; Cheng, T P; Morris, J S; Meyer, W A

    1994-02-01

    Positron emission tomography offers advantages for radioimmunodiagnosis of cancer but requires radionuclides of appropriate half-life that have high specific activity and high radio-purity. This work was designed to develop a viable method to produce and purify 64Cu, which has high specific activity, for positron emission tomography. 64Cu was produced at the University of Missouri Research Reactor by the nuclear reaction, 64Zn(n,p)64Cu. Highly pure zinc metal (99.9999%) was irradiated in a specially designed boron nitrite lined container, which minimized thermal neutron reactions during irradiation. A new two-step procedure was developed to chemically separate the no-carrier-added 64Cu from the zinc metal target. 64Cu recovery for 24 runs averaged 0.393 (+/- 0.007) mCi per milligram of zinc irradiated. The boron-lined irradiation container reduced unwanted zinc radionuclides 14.3-fold. Zinc radionuclides and non-radioactive zinc were separated successfully from the 64Cu. The new separation technique was fast (2 hours total time) and highly efficient for removing the zinc. The zinc separation factor for this technique averaged 8.5 x 10(-8), indicating less than 0.0000085% of the zinc remained after separation. Thus far, the highest 64Cu specific activity at end of irradiation was 683 Ci/mg Cu, with an average of 512 Ci/mg Cu for the last six analyzed runs. The boron-lined irradiation container has sufficient capacity for 75-fold larger-sized zinc targets (up to 45 g). The new separation technique was excellent for separating 64Cu, which appears to be a radionuclide with great potential for positron emission tomography.

  14. LES study of the impact of moist thermals on the oxidative capacity of the atmosphere in southern West Africa

    NASA Astrophysics Data System (ADS)

    Brosse, Fabien; Leriche, Maud; Mari, Céline; Couvreux, Fleur

    2018-05-01

    The hydroxyl radical (OH) is a highly reactive species and plays a key role in the oxidative capacity of the atmosphere. We explore the potential impact of a convective boundary layer on reconciling the calculation-measurement differences for OH reactivity (the inverse of OH lifetime) attributable to the segregation of OH and its reactants by thermals and the resulting modification of averaged reaction rates. The large-eddy simulation version of the Meso-NH model is used, coupled on-line with a detailed chemistry mechanism to simulate two contrasted biogenic and urban chemical regimes. In both environments, the top of the boundary layer is the region with the highest calculated segregation intensities but with the opposite sign. In the biogenic environment, the inhomogeneous mixing of isoprene and OH leads to a maximum decrease of 30 % of the mean reaction rate in this zone. In the anthropogenic case, the effective rate constant for OH reacting with aldehydes is 16 % higher than the averaged value. OH reactivity is always higher by 15 to 40 % inside thermals in comparison to their surroundings as a function of the chemical environment and time of the day. Since thermals occupy a small fraction of the simulated domain, the impact of turbulent motions on domain-averaged total OH reactivity reaches a maximum decrease of 9 % for the biogenic case and a maximum increase of 5 % for the anthropogenic case. Accounting for the segregation of air masses by turbulent motions in regional and global models may increase OH reactivity in urban environments but lower OH reactivity in biogenic environments. In both cases, segregation alone is insufficient for resolving the underestimation between observed and modeled OH reactivity.

  15. Characterization of oxidized tannins: comparison of depolymerization methods, asymmetric flow field-flow fractionation and small-angle X-ray scattering.

    PubMed

    Vernhet, Aude; Dubascoux, Stéphane; Cabane, Bernard; Fulcrand, Hélène; Dubreucq, Eric; Poncet-Legrand, Céline

    2011-09-01

    Condensed tannins are a major class of plant polyphenols. They play an important part in the colour and taste of foods and beverages. Due to their chemical reactivity, tannins are not stable once extracted from plants. A number of chemical reactions can take place, leading to structural changes of the native structures to give so-called derived tannins and pigments. This paper compares results obtained on native and oxidized tannins with different techniques: depolymerization followed by high-performance liquid chromatography analysis, small-angle X-ray scattering (SAXS) and asymmetric flow field-flow fractionation (AF4). Upon oxidation, new macromolecules were formed. Thioglycolysis experiments showed no evidence of molecular weight increase, but thioglycolysis yields drastically decreased. When oxidation was performed at high concentration (e.g., 10 g L(-1)), the weight average degree of polymerization determined from SAXS increased, whereas it remained stable when oxidation was done at low concentration (0.1 g L(-1)), indicating that the reaction was intramolecular, yet the conformations were different. Differences in terms of solubility were observed; ethanol being a better solvent than water. We also separated soluble and non-water-soluble species of a much oxidized fraction. Thioglycolysis showed no big differences between the two fractions, whereas SAXS and AF4 showed that insoluble macromolecules have a weight average molecular weight ten times higher than the soluble ones.

  16. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE PAGES

    Pandey, Sachin; Rajaram, Harihar

    2016-12-05

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  17. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Sachin; Rajaram, Harihar

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  18. Effective coating of titania nanoparticles with alumina via atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Azizpour, H.; Talebi, M.; Tichelaar, F. D.; Sotudeh-Gharebagh, R.; Guo, J.; van Ommen, J. R.; Mostoufi, N.

    2017-12-01

    Alumina films were deposited on titania nanoparticles via atomic layer deposition (ALD) in a fluidized bed reactor at 180 °C and 1 bar. Online mass spectrometry was used for real time monitoring of effluent gases from the reactor during each reaction cycle in order to determine the optimal dosing time of precursors. Different oxygen sources were used to see which oxygen source, in combination with trimethyl aluminium (TMA), provides the highest alumina growth per cycle (GPC). Experiments were carried out in 4, 7 and 10 cycles using the optimal dosing time of precursors. Several characterization methods, such as high resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and instrumental neutron activation analysis (INAA), were conducted on the products. Formation of the alumina film was confirmed by EDX mapping and EDX line profiling, FTIR and TEM. When using either water or deuterium oxide as the oxygen source, the thickness of the alumina film was greater than that of ozone. The average GPC measured by TEM for the ALD of TMA with water, deuterium oxide and ozone was about 0.16 nm, 0.15 nm and 0.11 nm, respectively. The average GPC calculated using the mass fraction of aluminum from INAA was close to those measured from TEM images. Excess amounts of precursors lead to a higher average growth of alumina film per cycle due to insufficient purging time. XRD analysis demonstrated that amorphous alumina was coated on titania nanoparticles. This amorphous layer was easily distinguished from the crystalline core in the TEM images. Decrease in the photocatalytic activity of titania nanoparticles after alumina coating was confirmed by measuring degradation of Rhodamine B by ultraviolet irradiation.

  19. Rapid and sensitive quantification of isotopic mixtures using a rapidly-swept external cavity quantum cascade laser

    DOE PAGES

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.

    2016-05-23

    A rapidly-swept external-cavity quantum cascade laser with an open-path Herriott cell is used to quantify gas-phase chemical mixtures of D 2O and HDO at a rate of 40 Hz (25-ms measurement time). The chemical mixtures were generated by evaporating D 2O liquid near the open-path Herriott cell, allowing the H/D exchange reaction with ambient H 2O to produce HDO. Fluctuations in the ratio of D 2O and HDO on timescales of <1 s due to the combined effects of plume transport and the H/D exchange chemical reaction are observed. Noise-equivalent concentrations (1σ) (NEC) of 147.0 ppbv and 151.6 ppbv inmore » a 25-ms measurement time are determined for D 2O and HDO, respectively, with a 127-m optical path. These NECs are improved to 23.0 and 24.0 ppbv with a 1-s averaging time for D 2O and HDO, respectively. NECs <200 ppbv are also estimated for N2O, 1,1,1,2–tetrafluoroethane (F134A), CH 4, acetone and SO 2 for a 25-ms measurement time. Finally, the isotopic precision for measurement of the [D 2O]/[HDO] concentration ratio of 33‰ and 5‰ is calculated for the current experimental conditions for measurement times of 25 ms and 1 s, respectively.« less

  20. COAL/POLYMER COPROCESSING WITH EFFICIENT USE OF HYDROGEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Linda J. Broadbelt; Matthew J. DeWitt; Hsi-Wu Wong

    2000-09-30

    The final project period was devoted to investigating the binary mixture pyrolysis of polypropylene and polystyrene. Their interactions were assessed in order to provide a baseline for experiments with multicomponent mixtures of polymers with coal. Pyrolysis of polypropylene, polystyrene and their binary mixture was investigated at temperatures of 350 C and 420 C with reaction times from 1 to 180 minutes. Two different loadings, 10 mg and 20 mg, were studied for neat polypropylene and polystyrene to assess the effect of total pressure on product yields and selectivities. For neat pyrolysis of polypropylene, total conversion was much higher at 420more » C, and no significant effect of loading on the total conversion was observed. Four classes of products, alkanes, alkenes, dienes, and aromatic compounds, were observed, and their distribution was explained by a typical free radical mechanism. For neat polystyrene pyrolysis, conversion reached approximately 75% at 350 C, while at 420 C the conversion reached a maximum around 90% at 10 minutes and decreased at longer times because of condensation reactions. The selectivities to major products were slightly different for the two different loadings due to the effect of total reaction pressure on secondary reactions. For binary mixture pyrolysis, the overall conversion was higher than the average of the two neat cases. The conversion of polystyrene remained the same, but a significant enhancement in the polypropylene conversion was observed. This suggests that the less reactive polypropylene was initiated by polystyrene-derived radicals. These results are summarized in detail in an attached manuscript that is currently in preparation. The other results obtained during the lifetime of this grant are documented in the set of attached manuscripts.« less

  1. Progress in the development of PDF turbulence models for combustion

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    A combined Monte Carlo-computational fluid dynamic (CFD) algorithm was developed recently at Lewis Research Center (LeRC) for turbulent reacting flows. In this algorithm, conventional CFD schemes are employed to obtain the velocity field and other velocity related turbulent quantities, and a Monte Carlo scheme is used to solve the evolution equation for the probability density function (pdf) of species mass fraction and temperature. In combustion computations, the predictions of chemical reaction rates (the source terms in the species conservation equation) are poor if conventional turbulence modles are used. The main difficulty lies in the fact that the reaction rate is highly nonlinear, and the use of averaged temperature produces excessively large errors. Moment closure models for the source terms have attained only limited success. The probability density function (pdf) method seems to be the only alternative at the present time that uses local instantaneous values of the temperature, density, etc., in predicting chemical reaction rates, and thus may be the only viable approach for more accurate turbulent combustion calculations. Assumed pdf's are useful in simple problems; however, for more general combustion problems, the solution of an evolution equation for the pdf is necessary.

  2. Results of experiments related to contact of mine-spoils water with coal, West Decker and Big Sky Mines, southeastern Montana

    USGS Publications Warehouse

    Davis, R.E.; Dodge, K.A.

    1986-01-01

    Batch-mixing experiments using spoils water and coal from the West Decker and Big Sky Mines were conducted to determine possible chemical changes in water moving from coal-mine spoils through a coal aquifer. The spoils water was combined with air-dried and oven-dried chunks of coal and air-dried and oven-dried crushed coal at a 1:1 weight ratio, mixed for 2 hr, and separated after a total contact time of 24 hr. The dissolved-solids concentration in water used in the experiments decreased an average 210 mg/liter (5-10%). Other chemical changes included general decreases in the concentrations of magnesium, potassium, and bicarbonate, and general increases in the concentrations of barium and boron. The magnitude of the changes increased as the surface area of the coal increased. The quantity of extractable cations and exchangeable cations on the post-mixing coal was larger than on the pre-mixing coal. Equilibrium and mass-transfer relations indicate that adsorption reactions or ion-exchange and precipitation reactions, or both, probably are the major reactions responsible for the chemical changes observed in the experiments. (Authors ' abstract)

  3. Preparation and characterizaton of CaO nanoparticle for biodiesel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Jharna, E-mail: onlinejharna@gmail.com; Agarwal, Madhu, E-mail: madhunaresh@gmail.com

    Nanoparticle of CaO from calcium Nitrate (CaO/CaN) and Snail shell (CaO/SS) are successfully synthesized by method as described in the literature and used as an active and stable catalyst for the biodiesel production. These catalysts are characterized by Fourier-transform infrared spectra (FT-IR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA). The average crystalline size in nanometer was also calculated by Debye–Scherrer equation. The performance of the CaO/CaN and CaO/SS were tested for their catalytic activity via transesterification process and it was found that biodiesel yield has been increased from 93 to 96%. The optimum conditions for the highest yield weremore » 8wt% catalyst loading, 65°C temperature, 12:1 methanol/oil molar ratio, and 6 h for reaction time. The nano catalyst from snail shell exhibits excellent catalytic activity and stability for the transesterification reaction, which suggested that this catalyst would be potentially used as a solid base nano catalyst for biodiesel production. In order to examine the reusability of catalyst developed from snail shell, five transesterification reaction cycles were also performed.« less

  4. Gallium ion-assisted room temperature synthesis of small-diameter ZnO nanorods.

    PubMed

    Cho, Seungho; Kim, Semi; Lee, Kun-Hong

    2011-09-15

    We report a method for synthesizing small-diameter ZnO nanorods at room temperature (20 °C), under normal atmospheric pressure (1 atm), and using a relatively short reaction time (1 h) by adding gallium salts to the reaction solution. The ZnO nanorods were, on average, 92 nm in length and 9 nm in diameter and were single crystalline in nature. Quantitative analyses revealed that gallium atoms were not incorporated into the synthesized nanocrystals. On the basis of the experimental results, we propose a mechanism for the formation of small-diameter ZnO nanorods in the presence of gallium ions. The optical properties were probed by UV-Vis diffuse reflectance spectroscopy. The absorption band of the small-diameter ZnO nanorods was blue-shifted relative to the absorption band of the ~230 nm diameter ZnO nanorods (control samples). Control experiments demonstrated that the absence of metal ion-containing precipitants (except ZnO) at room temperature is essential, and that the ZnO nanorod diameter distributions were narrow for the stirred reaction solution and broad when prepared without stirring. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Microgravity Effects on Chronoamperometric Ammonia Oxidation Reaction at Platinum Nanoparticles on Modified Mesoporous Carbon Supports

    NASA Astrophysics Data System (ADS)

    Poventud-Estrada, Carlos M.; Acevedo, Raúl; Morales, Camila; Betancourt, Luis; Diaz, Diana C.; Rodriguez, Manuel A.; Larios, Eduardo; José-Yacaman, Miguel; Nicolau, Eduardo; Flynn, Michael; Cabrera, Carlos R.

    2017-10-01

    The effect of microgravity on the electrochemical oxidation of ammonia at platinum nanoparticles supported on modified mesoporous carbons (MPC) with three different pore diameters (64, 100, and 137 Å) was studied via the chronoamperometric technique in a half-cell. The catalysts were prepared by a H2 reductive process of PtCl6^{4-} in presence of the mesoporous carbon support materials. A microgravity environment was obtained with an average gravity of less than 0.02 g created aboard an airplane performing parabolic maneuvers. Results show the chronoamperommetry of the ammonia oxidation reaction in 1.0 M NH4OH at 0.60 V vs. RHE under microgravity conditions. The current density, in all three catalysts, decreased while in microgravity conditions when compared to ground based experiments. Under microgravity, all three catalysts yielded a decrease in ammonia oxidation reaction current density between 25 to 63% versus terrestrial experimental results, in time scales between 1 and 15 s. The Pt catalyst prepared with mesoporous carbon of 137 Å porous showed the smallest changes, between 25 to 48%. Nanostructuring catalyst materials have an effect on the level of current density decrease under microgravity conditions.

  6. Proprioceptive reaction times and long-latency reflexes in humans.

    PubMed

    Manning, C D; Tolhurst, S A; Bawa, P

    2012-08-01

    The stretch of upper limb muscles results in two electromyographic (EMG) peaks, M1 and M2. The amplitude of M2 peak can generally be modified by giving prior instruction to the subject on how to react to the applied perturbation. The unresolved question is whether the amplitude modulation results from change in the gain of the reflex pathway contributing to M2, or by superposition of reaction time (RT) activity. The following study attempted to resolve this question by examining the overlap between proprioceptive RT and M2 activities. Subject's right wrist flexors were stretched, and he/she was instructed either (1) not to intervene (passive task) or (2) to react as fast as possible by simultaneously flexing both wrists (active or compensate task). Under passive and active conditions, M1 and M2 were observed from EMG of right wrist flexors, and during the active condition, RT activities were additionally observed from both sides. The onset and offset of M2 (M1(onset), M2(offset)) were measured from the passive averages, while the RT was measured from the averaged EMG response of the left wrist flexors. For between-subject correlations, the data were divided into two sets: (1) subjects with RT shorter than M2(offset) (fast group) and (2) subjects with RT more than 10 ms longer than their M2(offset) (slow group). Modulation during M2 period was large for the fast group, and it was almost zero for the slow group. These results indicate that the superimposition of RT activity mainly contributes to the instruction-dependent modulation of M2 peak.

  7. Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control.

    PubMed

    Yoshida, Jun-ichi

    2010-10-01

    This article addresses a fascinating aspect of flash chemistry, high-resolution reaction-time control by virtue of a flow microreactor system, and its applications. The length of time that the solution remains inside the reactor is called the residence time. The residence time between the addition of a reagent and that of a quenching agent or the next reagent in a flow microreactor is the reaction time, and the reaction time can be greatly reduced by adjusting the length of a reaction channel in a flow microreactor. This feature is quite effective for conducting reactions involving short-lived reactive intermediates. A reactive species can be generated and transferred to another location to be used in the next reaction before it decomposes by adjusting the residence time in the millisecond to second timescale. The principle of such high-resolution reaction-time control, which can be achieved only by flow microreactors, and its applications to synthetic reactions including Swern-Moffatt-type oxidation, as well as the generation and reactions of aryllithium compounds bearing electrophilic substituents, such as alkoxycarbonyl groups, are presented. Integration of such reactions using integrated flow microreactor systems is also demonstrated. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  8. Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region

    NASA Astrophysics Data System (ADS)

    Bamford, Holly A.; Baker, Joel E.

    Gas and particle phase concentrations of 26 nitro-PAHs were quantified in ambient air collected in downtown Baltimore, MD, an urban region, and in Fort Meade, MD, a suburban area 20 km south-southeast of Baltimore, during January and July 2001. Total (gas+particle) concentrations for individual nitro-PAH compounds varied by as much as five times from sample to sample within each month. 2-Nitrofluoranthene and 9-nitroanthracene were the most abundant of the nitro-PAHs quantitatively analyzed in the air at both sites, accounting for approximately half of the total nitro-PAH concentrations during January and July. Concentrations at Baltimore were on average two to three times higher than those measured at the Fort Meade site. Concentrations for most nitro-PAHs were higher in January than in July, suggesting a reduction in photodecay of nitro-PAHs during January promoted the accumulation of nitro-PAHs. Concentrations of nitro-PAHs produced from gas-phase reactions were significantly correlated with concentrations of oxides of nitrogen (NO x) measured simultaneously at the Fort Meade site. 3-Nitrophenanthrene and 4-nitrophenanthrene were negatively correlated with NO x and were the only nitro-PAHs correlated with O 3, suggesting a different formation mechanism for these compounds compared to the other nitro-PAHs found in this study. The relative contribution of gas-phase reactions and primary emission sources of nitro-PAHs were evaluated using source specific concentration ratios of 2-nitrofluoranthene and 1-nitropyrene (2-NF/1-NP). The mean ratios of 2-NF/1-NP at both sites were statistically higher in July than January, indicating gas-phase reactions were an important source of 2-nitrofluoranthene in the summer. However, in January, gas-phase reactions were reduced, the NO 3-initiated reaction in particular, and primary emissions may significantly contribute to ambient nitro-PAH levels. The two dominant gas-phase production pathways of nitro-PAHs from the OH and NO 3-initiated reactions were investigated using concentration ratios of 2-nitrofluoranthene and 2-nitropyrene (2-NF/2-NP). At both sites, 2-NF/2-NP ratios indicated that the daytime OH-initiated reaction was the dominant gas-phase formation pathway. The estimated contributions of nitro-PAHs produced through gas-phase reactions via the OH pathway during July were >45% and during January were >83% at both Fort Meade and Baltimore.

  9. Kinetics of autocatalysis in small systems

    NASA Astrophysics Data System (ADS)

    Arslan, Erdem; Laurenzi, Ian J.

    2008-01-01

    Autocatalysis is a ubiquitous chemical process that drives a plethora of biological phenomena, including the self-propagation of prions etiological to the Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. To explain the dynamics of these systems, we have solved the chemical master equation for the irreversible autocatalytic reaction A +B→2A. This solution comprises the first closed form expression describing the probabilistic time evolution of the populations of autocatalytic and noncatalytic molecules from an arbitrary initial state. Grand probability distributions are likewise presented for autocatalysis in the equilibrium limit (A+B⇌2A), allowing for the first mechanistic comparison of this process with chemical isomerization (B⇌A) in small systems. Although the average population of autocatalytic (i.e., prion) molecules largely conforms to the predictions of the classical "rate law" approach in time and the law of mass action at equilibrium, thermodynamic differences between the entropies of isomerization and autocatalysis are revealed, suggesting a "mechanism dependence" of state variables for chemical reaction processes. These results demonstrate the importance of chemical mechanism and molecularity in the development of stochastic processes for chemical systems and the relationship between the stochastic approach to chemical kinetics and nonequilibrium thermodynamics.

  10. Selection of suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using quantitative real-time polymerase chain reaction.

    PubMed

    Zornhagen, K W; Kristensen, A T; Hansen, A E; Oxboel, J; Kjaer, A

    2015-12-01

    Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is a sensitive technique for quantifying gene expression. Stably expressed reference genes are necessary for normalization of RT-qPCR data. Only a few articles have been published on reference genes in canine tumours. The objective of this study was to demonstrate how to identify suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using RT-qPCR. Primer pairs for 17 potential reference genes were designed and tested in archival tumour biopsies from six dogs. The geNorm algorithm was used to analyse the most suitable reference genes. Eight potential reference genes were excluded from this final analysis because of their dissociation curves. β-Glucuronidase (GUSB) and proteasome subunit, beta type, 6 (PSMB6) were most stably expressed with an M value of 0.154 and a CV of 0.053 describing their average stability. We suggest that choice of reference genes should be based on specific testing in every new experimental set-up. © 2014 John Wiley & Sons Ltd.

  11. Effect of acute exposure to a complex fragrance on lexical decision performance.

    PubMed

    Gaygen, Daniel E; Hedge, Alan

    2009-01-01

    This study tested the effect of acute exposure to a commercial air freshener, derived from fragrant botanical extracts, at an average concentration of 3.16 mg/m(3) total volatile organic compounds on the lexical decision performance of 28 naive participants. Participants attended two 18-min sessions on separate days and were continuously exposed to the fragrance in either the first (F/NF) or second (NF/F) session. Participants were not instructed about the fragrance. Exposure to the fragrance did not affect high-frequency word recognition. However, there was an order of administration effect for low-frequency word recognition accuracy. When the fragrance was administered first before the no-odor control condition, it did not affect accuracy, but when it was administered second after the control condition, it significantly decreased low-frequency word recognition accuracy. Reaction times to low-frequency words were significantly slower than those for high-frequency words, but no effect of either fragrance or order of administration on reaction times was found. The presence of fragrance in the second session apparently served as a distraction that impaired lexical task performance accuracy. The introduction of fragrances into buildings may not necessarily facilitate all aspects of work performance as anticipated.

  12. Quantum hydrodynamics: capturing a reactive scattering resonance.

    PubMed

    Derrickson, Sean W; Bittner, Eric R; Kendrick, Brian K

    2005-08-01

    The hydrodynamic equations of motion associated with the de Broglie-Bohm formulation of quantum mechanics are solved using a meshless method based upon a moving least-squares approach. An arbitrary Lagrangian-Eulerian frame of reference and a regridding algorithm which adds and deletes computational points are used to maintain a uniform and nearly constant interparticle spacing. The methodology also uses averaged fields to maintain unitary time evolution. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. A new and more robust artificial viscosity algorithm is presented which gives accurate scattering results and is capable of capturing quantum resonances. The methodology is applied to a one-dimensional model chemical reaction that is known to exhibit a quantum resonance. The correlation function approach is used to compute the reactive scattering matrix, reaction probability, and time delay as a function of energy. Excellent agreement is obtained between the scattering results based upon the quantum hydrodynamic approach and those based upon standard quantum mechanics. This is the first clear demonstration of the ability of moving grid approaches to accurately and robustly reproduce resonance structures in a scattering system.

  13. Investigation of optimal conditions for production of highly crystalline nanocellulose with increased yield via novel Cr(III)-catalyzed hydrolysis: Response surface methodology.

    PubMed

    Chen, You Wei; Lee, Hwei Voon; Abd Hamid, Sharifah Bee

    2017-12-15

    For the first time, a highly efficient Cr(NO 3 ) 3 catalysis system was proposed for optimization the yield and crystallinity of nanocellulose end product. A five-level three-factor central composite design coupled with response surface methodology was employed to elucidate parameters interactions between three design factors, namely reaction temperature (x 1 ), reaction time (x 2 ) and concentration of Cr(NO 3 ) 3 (x 3 ) over a broad range of process conditions and determine the effect on crystallinity index and product yield. The developed models predicted the maximum nanocellulose yield of 87% at optimum process conditions of 70.6°C, 1.48h, and 0.48M Cr(NO 3 ) 3 . At these conditions, the obtained nanocellulose presented high crystallinity index (75.3%), spider-web-like interconnected network morphology with the average width of 31.2±14.3nm. In addition, the yielded nanocellulose rendered a higher thermal stability than that of original cellulosic source and expected to be widely used as reinforcement agent in bio-nanocomposites materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Initial angular momentum and flow in high energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth

    2018-03-01

    We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.

  15. Effects of reagent rotational excitation on the H + CHD{sub 3} → H{sub 2} + CD{sub 3} reaction: A seven dimensional time-dependent wave packet study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhaojun; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn

    Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD{sub 3} in J{sub 0} = 1, 2 rotationally excited initial states with k{sub 0} = 0 − J{sub 0} (the projection of CHD{sub 3} rotational angular momentum on its C{sub 3} axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K{sub 0}) equal to k{sub 0} are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagentmore » CHD{sub 3} with respect to the relative velocity between the reagents H and CHD{sub 3}. However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K{sub 0} specified cross sections for the K{sub 0} = k{sub 0} initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K{sub 0} averaging for the J{sub 0} = 1, 2 initial states with all different k{sub 0} are essentially identical to the corresponding CS and CC results for the J{sub 0} = 0 initial state, meaning that the initial rotational excitation of CHD{sub 3} up to J{sub 0} = 2, regardless of its initial k{sub 0}, does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J{sub 0} = 1, 2 initial states are the same as those for the J{sub 0} = 0 initial state.« less

  16. The Effect of Lateral Ankle Ligament Repair in Muscle Reaction Time in Patients with Mechanical Ankle Instability.

    PubMed

    Li, H-Y; Zheng, J-J; Zhang, J; Hua, Y-H; Chen, S-Y

    2015-11-01

    Studies have shown that functional ankle instability can result in prolonged muscle reaction time. However, the deficit in muscle reaction time in patients with mechanical ankle instability (MAI) and the effect of lateral ankle ligament repair on muscle reaction time are unclear. The purpose of this study was to identify the deficit in muscle reaction time, and to evaluate the role of lateral ligament repair in improving muscle reaction time in MAI patients. Sixteen MAI patients diagnosed with lateral ankle ligament tears by ultrasonography and magnetic resonance imaging underwent arthroscopic debridement and open lateral ankle ligament repair with a modified Broström procedure. One day before the operation, reaction times of the tibialis anterior and peroneus longus muscles were recorded following sudden inversion perturbation while walking on a custom walkway, and anterior drawer test (ADT) and American Orthopaedic Foot and Ankle Society (AOFAS) scale score were evaluated. Six months postoperatively, muscle reaction time, ADT and AOFAS scale score were reevaluated, and muscle reaction times in 15 healthy controls were also recorded. Preoperatively, the affected ankles in the MAI group had significantly delayed tibialis anterior and peroneus longus muscles reaction times compared with controls. Six months after the operation, median AOFAS scale scores were significantly greater than preoperatively, and ADT was negative in the MAI group. However, the affected ankles in the MAI group showed no difference in muscle reaction time compared with preoperative values. MAI patients had prolonged muscle reaction time. The modified Broström procedure produced satisfactory clinical outcomes in MAI patients, but did not shorten reaction times of the tibialis anterior and peroneus longus muscles. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Optimizing the synthesis conditions of silver nanoparticles using corn starch and their catalytic reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Salaheldin, Hosam I.

    2018-06-01

    In this study, silver nanoparticles (SNPs) were synthesised in an aqueous solution of corn starch. To fabricate the SNPs, reaction conditions, such as varying silver nitrate () concentration, time, temperature and solution pH of the reaction, were optimized. Since, the optimum reaction conditions were found 1 mmo l‑1, 15 min and , respectively. Then, to study the role of pH on SNP synthesis, varying pH values of the solution (3, 5, 7, 9 and 11) were investigated. Subsequently, the obtained silver/starch nanocomposites were characterised using different techniques. The x-ray diffraction (XRD) results revealed that the particles were face-centred cubic (FCC), and had an average particle size of 7.5 nm. This was confirmed by high-resolution transmission electron microscopy (HR-TEM) images. Moreover, the synthesised SNPs, at different pH values, were used as nanocatalyst for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. Under optimum reaction conditions, the higher catalytic activity was obtained with SNPs synthesised at pH 11 compared to lower pH of 7 or 9. Therefore, the rapid, reproducible, cost-effective silver/starch nanocomposite can be widely used for various applications such as drug manufacturing (e.g. analgesics and antipyretics) and the removal of pollutants from wastewater.

  18. Effects of load on ground reaction force and lower limb kinematics during concentric squats.

    PubMed

    Kellis, Eleftherios; Arambatzi, Fotini; Papadopoulos, Christos

    2005-10-01

    The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1 +/- 0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67 +/- 0.20 to 3.21 +/- 0.29 times body weight and increased significantly as external load increased (P < 0.05). Bar linear velocity ranged from 0.54 +/- 0.11 to 2.50 +/- 0.50 m x s(-1) and decreased significantly with increasing external load (P < 0.05). Hip, knee and ankle angles at maximum ground reaction force were affected by external load (P < 0.05). The force-barbell velocity curves were fitted using linear models with coefficients (r2) ranging from 0.59 to 0.96. The results suggest that maximal force exertion during squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force-velocity relationship was linear and independent from the set of data used for its determination.

  19. Tip-enhanced fluorescence with radially polarized illumination for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA

    NASA Astrophysics Data System (ADS)

    Wei, Shih-Chung; Chuang, Tsung-Liang; Wang, Da-Shin; Lu, Hui-Hsin; Gu, Frank X.; Sung, Kung-Bin; Lin, Chii-Wann

    2015-02-01

    A tip nanobiosensor for monitoring DNA replication was presented. The effects of excitation power and polarization on tip-enhanced fluorescence (TEF) were assessed with the tip immersed in fluorescein isothiocyanate solution first. The photon count rose on average fivefold with radially polarized illumination at 50 mW. We then used polymerase-functionalized tips for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA. The amplicon-SYBR Green I complex was detected and compared to real-time loop-mediated isothermal amplification. The signals of the reaction using 4 and 0.004 ng/μl templates were detected 10 and 30 min earlier, respectively. The results showed the potential of TEF in developing a nanobiosensor for real-time DNA amplification.

  20. Mass-yield distributions of fission products in bremsstrahlung-induced fission of 232Th

    NASA Astrophysics Data System (ADS)

    Naik, H.; Kim, G. N.; Kim, K.

    2018-01-01

    The cumulative yields of various fission products within the 77-153 mass regions in the 2.5-GeV bremsstrahlung-induced fission of 232Th have been determined by using the recoil catcher and an off-line γ-ray spectrometric technique at the Pohang Accelerator Laboratory, Korea. The mass-yield distributions were obtained from the cumulative yields after charge-distribution corrections. The peak-to-valley (P /V ) ratio, the average value of light mass ( ) and heavy mass ( ), and the average postfission number of neutrons ( expt) were obtained from the mass yield of the 232Th(γ ,f ) reaction. The present and literature data in the 232Th(γ ,f ) reaction were compared with the similar data in the 238U(γ ,f ) reaction at various excitation energies to examine the role of potential energy surface and the effect of standard I and standard II asymmetric modes of fission. It was found that (i) even at the bremsstrahlung end-point energy of 2.5 GeV, the mass-yield distribution in the 232Th(γ ,f ) reaction is triple humped, unlike 238U(γ ,f ) reaction, where it is double humped. (ii) The peak-to-valley (P /V ) ratio decreases with the increase of excitation energies. However, the P /V ratio of the 232Th(γ ,f ) reaction is always lower than that of the 238U(γ ,f ) reaction due to the presence of a third peak in the former. (iii) In both the 232Th(γ ,f ) and 238U(γ ,f ) reactions, the nuclear structure effect almost vanishes at the bremsstrahlung end-point energies of 2.5-3.5 GeV.

  1. Adverse reactions in a population of Sydney pet rabbits vaccinated against rabbit calicivirus.

    PubMed

    Tung, T; Phalen, D; Toribio, J-Alml

    2015-11-01

    To determine the general clinical presentation and incidence of adverse reactions to Cylap® RCD vaccinations, of a nature serious enough for veterinary attention, in a Sydney population of pet rabbits. A retrospective survey using hospital databases. Nine veterinary hospitals in Sydney participated in a database search for the number of rabbits vaccinated within a 2-year period. The hospitals involved had an identified interest in rabbit medicine and included general, specialist and teaching hospitals. Details of the rabbit, vaccination event and any possible reaction were collected and analysed. Of 933 events recorded in 705 rabbits, 17 (1.8%) adverse reactions were observed. Of the adverse events, local injection site reactions (alopecia, abrasions and scabbing) were most common. Other reactions, including systemic signs of gastrointestinal tract stasis, lethargy and forelimb lameness, were also documented. Overall, rabbits presented for vaccination were mostly male (57.7%) and desexed (71.3%), with an average age of 28.1 months (median 19.0, range 1.4-149.8 months) and an average weight at first vaccination of 2.12 kg (median 2.08 kg, range 0.18-5.6 kg). A significant association between increasing age and decreased incidence of adverse events was demonstrated (P value, 0.038). The benefits of vaccination against RCV outweigh the risks of an adverse reaction occurring. Data from this study show that adverse reactions occur infrequently, are generally mild and self-resolving, and decrease in incidence with increasing age. These results are similar to previous field research on wild rabbit colonies and reports from government and industry. © 2015 Australian Veterinary Association.

  2. Life Outside the Golden Window: Statistical Angles on the Signal-to-Noise Problem

    NASA Astrophysics Data System (ADS)

    Wagman, Michael

    2018-03-01

    Lattice QCD simulations of multi-baryon correlation functions can predict the structure and reactions of nuclei without encountering the baryon chemical potential sign problem. However, they suffer from a signal-to-noise problem where Monte Carlo estimates of observables have quantum fluctuations that are exponentially larger than their average values. Recent lattice QCD results demonstrate that the complex phase of baryon correlations functions relates the baryon signal-to-noise problem to a sign problem and exhibits unexpected statistical behavior resembling a heavy-tailed random walk on the unit circle. Estimators based on differences of correlation function phases evaluated at different Euclidean times are discussed that avoid the usual signal-to-noise problem, instead facing a signal-to-noise problem as the time interval associated with the phase difference is increased, and allow hadronic observables to be determined from arbitrarily large-time correlation functions.

  3. Modulating intracellular acidification by regulating the incubation time of proton caged compounds.

    PubMed

    Carbone, Marilena; Sabbatella, Gianfranco; Antonaroli, Simonetta; Orlando, Viviana; Biagioni, Stefano; Nucara, Alessandro

    2016-09-01

    A proton caged compound, the 1-(2-nitrophenyl)- ethylhexadecyl sulfonate (HDNS), was dosed into HEK-293 at different incubation times. Samples were irradiated with filtered UV light for inducing photolysis of the HDNS and then probed by infrared spectroscopy. The intracellular acidification reaction can be followed by monitoring the consequent CO2 peak intensity variation. The total CO2 produced is similar for all the samples, hence it is only a function of the initial HDNS concentration. The way it is achieved, though, is different for the different incubation times and follows kinetics, which results in a combination of a linear CO2 increase and a steep CO2 increase followed by a decay. This is interpreted in terms of confinement of the HDNS into intracellular vesicles of variable average size and sensitive to UV light when they reach critical dimensions.

  4. Effects of packaging and heat transfer kinetics on drug-product stability during storage under uncontrolled temperature conditions.

    PubMed

    Nakamura, Toru; Yamaji, Takayuki; Takayama, Kozo

    2013-05-01

    To predict the stability of pharmaceutical preparations under uncontrolled temperature conditions accurately, a method to compute the average reaction rate constant taking into account the heat transfer from the atmosphere to the product was developed. The average reaction rate constants computed with taken into consideration heat transfer (κ(re) ) were then compared with those computed without taking heat transfer into consideration (κ(in) ). The apparent thermal diffusivity (κ(a) ) exerted some influence on the average reaction rate constant ratio (R, R = κ(re) /κ(in) ). In the regions where the κ(a) was large (above 1 h(-1) ) or very small, the value of R was close to 1. On the contrary, in the middle region (0.001-1 h(-1) ), the value of R was less than 1.The κ(a) of the central part of a large-size container and that of the central part of a paper case of 10 bottles of liquid medicine (100 mL) fell within this middle region. On the basis of the above-mentioned considerations, heat transfer may need to be taken into consideration to enable a more accurate prediction of the stability of actual pharmaceutical preparations under nonisothermal atmospheres. Copyright © 2013 Wiley Periodicals, Inc.

  5. Reaction Time and Joint Kinematics During Functional Movement in Recently Concussed Individuals.

    PubMed

    Lynall, Robert C; Blackburn, J Troy; Guskiewicz, Kevin M; Marshall, Stephen W; Plummer, Prudence; Mihalik, Jason P

    2018-05-01

    To compare movement reaction time and joint kinematics between athletes with recent concussion and matched control recreational athletes during 3 functional tasks. Cross-sectional. Laboratory. College-aged recreational athletes (N=30) comprising 2 groups (15 participants each): (1) recent concussion group (median time since concussion, 126d; range, 28-432d) and (2) age- and sex-matched control group with no recent concussions. We investigated movement reaction time and joint kinematics during 3 tasks: (1) jump landing, (2) anticipated cut, and (3) unanticipated cut. Reaction time and reaction time cost (jump landing reaction time-cut reaction time/jump landing reaction time×100%), along with trunk, hip, and knee joint angles in the sagittal and frontal planes at initial ground contact. There were no reaction time between-group differences, but the control group displayed improved reaction time cost (10.7%) during anticipated cutting compared with the concussed group (0.8%; P=.030). The control group displayed less trunk flexion than the concussed group during the nondominant anticipated cut (5.1° difference; P=.022). There were no other kinematic between-group differences (P≥.079). We observed subtle reaction time and kinematic differences between individuals with recent concussion and those without concussion more than a month after return to activity after concussion. The clinical interpretation of these findings remains unclear, but may have future implications for postconcussion management and rehabilitation. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R.

    Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this study investigates the OH-radical initiated oxidation of aqueous tartaric acid (C 4 H 6 O 6 ) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysismore » in Real Time) coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C 4 functionalization product (C 4 H 4 O 6 ) and three C 3 fragmentation products (C 3 H 4 O 4 , C 3 H 2 O 4 , and C 3 H 2 O 5 ). The C 4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO 2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C 4 H 4 O 6 ), the major reaction product. While in general, C-C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OS C ), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OS C = 1.5). These results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms.« less

  7. Theoretical and experimental analysis of analyte transport in a fiber-optic, protein C immuno-biosensor.

    PubMed

    Tang, Liang; Kwon, Hyun J; Kang, Kyung A

    2004-12-30

    Protein C (PC) is an important anticoagulant in human blood plasma, and early diagnosis of PC deficiency is critical for preventing dangerous thromboembolic complications. A fiber-optic PC immuno-biosensor has been under development in our research group for real-time PC-deficiency diagnosis. The sensor has demonstrated a good sensitivity and specificity for quantifying PC in buffered solutions. However, for plasma samples, with a limited sample reaction time, the sensor produced only 30% of the signal intensity of PC in buffer. The high plasma viscosity (1.9 cP) was speculated as the major reason for signal intensity reduction. In this investigation, the sensing performance of the fiber-optic PC biosensor is systematically characterized in terms of physical and chemical properties of the sample media. Theoretical and experimental analyses indicate that the reduced diffusion rate of PC molecules in viscous samples caused the sensing system to be more mass-transfer-limited. Convective flow of sample/reagent solutions during immunoreactions can increase the rate of the analyte mass transport from the bulk solution to the sensor surface, with reaction kinetics changing from mass-transfer-limited to reaction-limited as flow velocity increases. It was shown that PC sensor performance was significantly improved for plasma samples with convection. The effect of the flow velocity and incubation times for samples and reagents on the sensor performance was also systematically analyzed to optimize the assay protocol for PC sensing. Currently, a 6-cm-long immuno-biosensor is capable of quantifying PC in plasma (1 mL) in the heterozygous PC deficiency range (0.5 to 2.5 microg/mL) within 5 minutes, at an average signal-to-noise ratio of 50. 2004 Wiley Periodicals, Inc.

  8. Enhanced sequential reaction time task performance in a rat model of mesial temporal lobe epilepsy with classic hippocampal sclerosis.

    PubMed

    Will, Johanna L; Eckart, Moritz T; Rosenow, Felix; Bauer, Sebastian; Oertel, Wolfgang H; Schwarting, Rainer K W; Norwood, Braxton A

    2013-06-15

    The human serial reaction time task (SRTT) has widely been used to study the neural basis of implicit learning. It is well documented, in both human and animal studies, that striatal dopaminergic processes play a major role in this task. However, findings on the role of the hippocampus - which is mainly associated with declarative memory - in implicit learning and performance are less univocal. We used a SRTT to evaluate implicit learning and performance in rats with perforant pathway stimulation-induced hippocampal neuron loss; a clinically-relevant animal model of mesial temporal lobe epilepsy (MTLS-HS). As has been previously reported for the Sprague-Dawley strain, 8h of continuous stimulation in male Wistar rats reliably induced widespread neuron loss in areas CA3 and CA1 with a characteristic sparing of CA2 and the granule cells. Histological analysis revealed that hippocampal volume was reduced by an average of 44%. Despite this severe hippocampal injury, rats showed superior performance in our instrumental SRTT, namely shorter reaction times, and without a loss in accuracy, especially during the second half of our 16-days testing period. These results demonstrate that a hippocampal lesion can improve performance in a rat SRTT, which is probably due to enhanced instrumental performance. In line with our previous findings based on ibotenic-acid induced hippocampal lesion, these data support the hypothesis that loss or impairment of hippocampal function can enhance specific task performance, especially when it is dependent on procedural (striatum-dependent) mechanisms with minimal spatial requirements. As the animal model used here exhibits the defining characteristics of MTLE-HS, these findings may have implications for the study and management of patients with MTLE. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Brain-behavioral adaptability predicts response to cognitive behavioral therapy for emotional disorders: A person-centered event-related potential study.

    PubMed

    Stange, Jonathan P; MacNamara, Annmarie; Kennedy, Amy E; Hajcak, Greg; Phan, K Luan; Klumpp, Heide

    2017-06-23

    Single-trial-level analyses afford the ability to link neural indices of elaborative attention (such as the late positive potential [LPP], an event-related potential) with downstream markers of attentional processing (such as reaction time [RT]). This approach can provide useful information about individual differences in information processing, such as the ability to adapt behavior based on attentional demands ("brain-behavioral adaptability"). Anxiety and depression are associated with maladaptive information processing implicating aberrant cognition-emotion interactions, but whether brain-behavioral adaptability predicts response to psychotherapy is not known. We used a novel person-centered, trial-level analysis approach to link neural indices of stimulus processing to behavioral responses and to predict treatment outcome. Thirty-nine patients with anxiety and/or depression received 12 weeks of cognitive behavioral therapy (CBT). Prior to treatment, patients performed a speeded reaction-time task involving briefly-presented pairs of aversive and neutral pictures while electroencephalography was recorded. Multilevel modeling demonstrated that larger LPPs predicted slower responses on subsequent trials, suggesting that increased attention to the task-irrelevant nature of pictures interfered with reaction time on subsequent trials. Whereas using LPP and RT averages did not distinguish CBT responders from nonresponders, in trial-level analyses individuals who demonstrated greater ability to benefit behaviorally (i.e., faster RT) from smaller LPPs on the previous trial (greater brain-behavioral adaptability) were more likely to respond to treatment and showed greater improvements in depressive symptoms. These results highlight the utility of trial-level analyses to elucidate variability in within-subjects, brain-behavioral attentional coupling in the context of emotion processing, in predicting response to CBT for emotional disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation.

    PubMed

    Zhou, Tingting; Song, Huajie; Liu, Yi; Huang, Fenglei

    2014-07-21

    To gain an atomistic-level understanding of the thermal and chemical responses of condensed energetic materials under thermal shock, we developed a thermal shock reactive dynamics (TS-RD) computational protocol using molecular dynamics simulation coupled with ReaxFF force field. β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) was selected as a a target explosive due to its wide usage in the military and industry. The results show that a thermal shock initiated by a large temperature gradient between the "hot" region and the "cold" region results in thermal expansion of the particles and induces a thermal-mechanical wave propagating back and forth in the system with an averaged velocity of 3.32 km s(-1). Heat propagating along the direction of thermal shock leads to a temperature increment of the system and thus chemical reaction initiation. Applying a continuum reactive heat conduction model combined with the temperature distribution obtained from the RD simulation, a heat conduction coefficient is derived as 0.80 W m(-1) K(-1). The chemical reaction mechanisms during thermal shock were analyzed, showing that the reaction is triggered by N-NO2 bond breaking followed by HONO elimination and ring fission. The propagation rates of the reaction front and reaction center are obtained to be 0.069 and 0.038 km s(-1), based on the time and spatial distribution of NO2. The pressure effect on the thermal shock was also investigated by employing uniaxial compression before the thermal shock. We find that compression significantly accelerates thermal-mechanical wave propagation and heat conduction, resulting in higher temperature and more excited molecules and thus earlier initiation and faster propagation of chemical reactions.

  11. On the use of hydroxyl radical kinetics to assess the number-average molecular weight of dissolved organic matter.

    PubMed

    Appiani, Elena; Page, Sarah E; McNeill, Kristopher

    2014-10-21

    Dissolved organic matter (DOM) is involved in numerous environmental processes, and its molecular size is important in many of these processes, such as DOM bioavailability, DOM sorptive capacity, and the formation of disinfection byproducts during water treatment. The size and size distribution of the molecules composing DOM remains an open question. In this contribution, an indirect method to assess the average size of DOM is described, which is based on the reaction of hydroxyl radical (HO(•)) quenching by DOM. HO(•) is often assumed to be relatively unselective, reacting with nearly all organic molecules with similar rate constants. Literature values for HO(•) reaction with organic molecules were surveyed to assess the unselectivity of DOM and to determine a representative quenching rate constant (k(rep) = 5.6 × 10(9) M(-1) s(-1)). This value was used to assess the average molecular weight of various humic and fulvic acid isolates as model DOM, using literature HO(•) quenching constants, kC,DOM. The results obtained by this method were compared with previous estimates of average molecular weight. The average molecular weight (Mn) values obtained with this approach are lower than the Mn measured by other techniques such as size exclusion chromatography (SEC), vapor pressure osmometry (VPO), and flow field fractionation (FFF). This suggests that DOM is an especially good quencher for HO(•), reacting at rates close to the diffusion-control limit. It was further observed that humic acids generally react faster than fulvic acids. The high reactivity of humic acids toward HO(•) is in line with the antioxidant properties of DOM. The benefit of this method is that it provides a firm upper bound on the average molecular weight of DOM, based on the kinetic limits of the HO(•) reaction. The results indicate low average molecular weight values, which is most consistent with the recent understanding of DOM. A possible DOM size distribution is discussed to reconcile the small nature of DOM with the large-molecule behavior observed in other studies.

  12. Design Constraints on a Synthetic Metabolism

    PubMed Central

    Bilgin, Tugce; Wagner, Andreas

    2012-01-01

    A metabolism is a complex network of chemical reactions that converts sources of energy and chemical elements into biomass and other molecules. To design a metabolism from scratch and to implement it in a synthetic genome is almost within technological reach. Ideally, a synthetic metabolism should be able to synthesize a desired spectrum of molecules at a high rate, from multiple different nutrients, while using few chemical reactions, and producing little or no waste. Not all of these properties are achievable simultaneously. We here use a recently developed technique to create random metabolic networks with pre-specified properties to quantify trade-offs between these and other properties. We find that for every additional molecule to be synthesized a network needs on average three additional reactions. For every additional carbon source to be utilized, it needs on average two additional reactions. Networks able to synthesize 20 biomass molecules from each of 20 alternative sole carbon sources need to have at least 260 reactions. This number increases to 518 reactions for networks that can synthesize more than 60 molecules from each of 80 carbon sources. The maximally achievable rate of biosynthesis decreases by approximately 5 percent for every additional molecule to be synthesized. Biochemically related molecules can be synthesized at higher rates, because their synthesis produces less waste. Overall, the variables we study can explain 87 percent of variation in network size and 84 percent of the variation in synthesis rate. The constraints we identify prescribe broad boundary conditions that can help to guide synthetic metabolism design. PMID:22768162

  13. Probing the kinetic energy-release dynamics of H-atom products from the gas-phase reaction of O(3P) with vinyl radical C2H3.

    PubMed

    Jang, Su-Chan; Choi, Jong-Ho

    2014-11-21

    The gas-phase radical-radical reaction dynamics of ground-state atomic oxygen O((3)P) with vinyl radicals C2H3 has been studied by combining the results of vacuum-ultraviolet laser-induced fluorescence spectroscopy in a crossed beam configuration with ab initio calculations. The two radical reactants O((3)P) and C2H3 were produced by photolysis of NO2 and supersonic flash pyrolysis of C2H3I, respectively. Doppler profile analysis of the kinetic energy release of the nascent H-atom products from the title reaction O((3)P) + C2H3→ H((2)S) + CH2CO (ketene) revealed that the average translational energy of the products and the average fraction of the total available energy were 7.03 ± 0.30 kcal mol(-1) and 7.2%. The empirical data combined with CBS-QB3 level ab initio theory and statistical calculations demonstrated that the title oxygen-hydrogen exchange reaction is a major reaction channel, through an addition-elimination mechanism involving the formation of a short-lived, dynamical complex on the doublet potential energy surface. On the basis of systematic comparison with several exchange reactions of hydrocarbon radicals, the observed kinetic energy release can be explained in terms of the weak impulse at the moment of decomposition in the loose transition state with a product-like geometry and a small reverse barrier along the exit channel.

  14. A new method for speciated CH3O2 radical detection and HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry) studies of the CH3O2 self-reaction

    NASA Astrophysics Data System (ADS)

    Onel, Lavinia; Brennan, Alexander; Seakins, Paul W.; Whalley, Lisa; Heard, Dwayne

    2016-04-01

    A new method has been developed for the speciated detection of CH3O2 radicals by FAGE (Fluorescence Assay by Gas Expansion) by titrating CH3O2 to CH3O by reaction with added NO and then detecting the resultant CH3O by LIF (laser induced fluorescence). The limit of detection of the technique is ˜108 cm-3 CH3O2 for a unity signal-to-noise ratio and 5 min averaging time. The method has been used for time monitoring of CH3O2 during its self-reaction within HIRAC at 1 bar and room temperature to determine a preliminary value of the rate coefficient of 4.2 × 10-13 cm3 s-1, which lies in the range of the previous results, (2.7 - 5.2) × 10-13 cm3 s-1.1 In addition to detection of CH3O2, products of the CH3O2 self-reaction were also observed for the two reaction channels over a range of temperatures from 260 - 320 K: (a) 2CH3O2 → CH2O + CH3OH; (b) 2CH3O2 → 2CH3O + O2, namely HO2 radicals (from reaction of CH3O + O2) and formaldehyde monitored by FAGE and formaldehyde and methanol observed by FTIR. A good agreement has been obtained between the FTIR and FAGE measurements of CH2O which increased to ˜ 2 ppmv over the experiments. Using the concentrations of CH3OH and CH2O, the branching ratio for channel (a) at room temperature has been determined as ra = 0.66 ± 0.06. The result is in very good agreement with the value recommended in the review of Tyndall et al.2 of ra = 0.63 ± 0.06. No temperature dependence of ra has been observed from 296 K to 321 K. 1. http://iupac.pole-ether.fr/ 2. G. S. Tyndall et al., J. Geophys. Res. 106, 12157 (2001).

  15. Development of a Thiolysis HPLC Method for the Analysis of Procyanidins in Cranberry Products.

    PubMed

    Gao, Chi; Cunningham, David G; Liu, Haiyan; Khoo, Christina; Gu, Liwei

    2018-03-07

    The objective of this study was to develop a thiolysis HPLC method to quantify total procyanidins, the ratio of A-type linkages, and A-type procyanidin equivalents in cranberry products. Cysteamine was utilized as a low-odor substitute of toluene-α-thiol for thiolysis depolymerization. A reaction temperature of 70 °C and reaction time of 20 min, in 0.3 M of HCl, were determined to be optimum depolymerization conditions. Thiolytic products of cranberry procyanidins were separated by RP-HPLC and identified using high-resolution mass spectrometry. Standards curves of good linearity were obtained on thiolyzed procyanidin dimer A2 and B2 external standards. The detection and quantification limits, recovery, and precision of this method were validated. The new method was applied to quantitate total procyanidins, average degree of polymerization, ratio of A-type linkages, and A-type procyanidin equivalents in cranberry products. Results showed that the method was suitable for quantitative and qualitative analysis of procyanidins in cranberry products.

  16. Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Marlot, Caroline; Barraud, Elodie; Le Gallet, Sophie; Eichhorn, Marc; Bernard, Frédéric

    2012-07-01

    YAG nanopowders with an average grain size of 30 nm have been successfully synthesized by the co-precipitation method using nitrates with precipitant of ammonium hydrogen carbonate. The influence of precipitation conditions such as pH, aging time and calcination temperature on the formation of secondary phases has been studied. The accurate control of pH value at every stage of precipitation process is crucial to avoid the presence of YAM (Yttrium Aluminium Monoclinic, Y4Al2O9) and yttrium oxide (Y2O3) after calcination. The reaction mechanisms have been investigated using different techniques such as infrared spectroscopy, x-ray diffraction and thermal analyses. The YAG phase is formed around 1050 °C passing through an intermediate phase called YAP (Yttrium Aluminium Perovskite, YAlO3). Local chemical heterogeneities are responsible for the deviation of the Y:Al ratio and the formation of YAP during heat treatment.

  17. Coal char oxidation kinetics in air medium

    NASA Astrophysics Data System (ADS)

    Slyusarskiy, K. V.; Jankovskiy, S. A.; Korotkikh, A. G.; Sorokin, I. V.

    2017-01-01

    Research on oxidation in air medium process of three different coal chars with various carbon content was presented. The anthracite, T-grade bituminous coal and 2B-grade lignite char powders with particle size less than 80 µm were studied. The coal char oxidation was studied by isothermal method using coupled TG-DSC analyzer Netzsch STA 449 Jupiter F3 in the temperature range 1000-1200 °C. Experiments were carried out at ambient pressure. Volumetric flow rate of oxidation medium into analyzer chamber was 250 ml/min and consisted of oxygen and argon with volumetric ratio 24:1. Based on experimental data, the average rate of carbon oxidation reaction values were defined at each temperature. Kinetic constants (frequency factor and activation energy) of reaction were defined as well via 1st order Arrhenius equation. Activation energy values are in good agreement with the data presented in the literature. Activation energy values for anthracite char are 1.6-1.7 times higher than those for bituminous coal and lignite chars, respectively.

  18. Low temperature synthesis & characterization of lead-free BCZT ceramics using molten salt method

    NASA Astrophysics Data System (ADS)

    Jai Shree, K.; Chandrakala, E.; Das, Dibakar

    2018-04-01

    Piezoelectric properties are greatly influenced by the synthesis route, microstructure, stoichiometry of the chemical composition, purity of the starting materials. In this study, molten salt method was used to prepare lead-free BCZT ceramics. Molten salt method is one of the simplestmethods to prepare chemically-purified, single phase powders in high yield often at lower temperatures and shorten reaction time. Calcination of the molten salt synthesized powders resulted in asingle-phase perovskite structure at 1000 °C which is ˜ 350 °C less than the conventional solid-sate reaction method. With increasing calcination temperature the average template size was increased (˜ 0.5-2 µm). Formation of well dispersive templates improves the sinterability at lower temperatures. Lead-free BCZT ceramics sintered at 1500 °C for 2 h resulted in homogenous and highly dense microstructure with ˜92% of the theoretical density and a grain size of ˜ 35 µm. This highly dense microstructure could enhance the piezoelectric properties of the system.

  19. Fabrication of Li2TiO3 pebbles using PVA-boric acid reaction for solid breeding materials

    NASA Astrophysics Data System (ADS)

    Park, Yi-Hyun; Cho, Seungyon; Ahn, Mu-Young

    2014-12-01

    Lithium metatitanate (Li2TiO3) is a candidate breeding material of the Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM). The breeding material is used in pebble-bed form to reduce the uncertainty of the interface thermal conductance. In this study, Li2TiO3 pebbles were successfully fabricated by the slurry droplet wetting method using the cross-linking reaction between polyvinyl alcohol (PVA) and boric acid. The effects of fabrication parameters on the shaping of Li2TiO3 green body were investigated. In addition, the basic characteristics of the sintered pebble were also evaluated. The shape of Li2TiO3 green bodies was affected by slurry viscosity, PVA content and boric acid content. The grain size and average crush load of sintered Li2TiO3 pebble were controlled by the sintering time. The boron was completely removed during the final sintering process.

  20. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Murali Krishna, I.; Bhagavanth Reddy, G.; Veerabhadram, G.; Madhusudhan, A.

    2016-06-01

    An economically viable and "green" process has been developed for the synthesis of silver nanoparticles (AgNPs) with an average size of 7 nm using non-toxic and renewable salmalia malabarica gum (SMG) as reducing and capping agent without using any chemical reducing agent. The effect of various parameters such as concentration of SMG and silver nitrate and reaction time for the synthesis of AgNPs was studied. The synthesized AgNPs are systematically characterized by UV/Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and Transmission electron microscopy. The resultant SMG-capped AgNPs are highly stable and had significant antibacterial action on both Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). The catalytic action of the SMG-capped AgNPs to initiate the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4 has also been reported. The kinetics of the reaction was found to be of pseudo-first-order with respect to the 4-NP.

  1. Crowdsourcing Samples in Cognitive Science.

    PubMed

    Stewart, Neil; Chandler, Jesse; Paolacci, Gabriele

    2017-10-01

    Crowdsourcing data collection from research participants recruited from online labor markets is now common in cognitive science. We review who is in the crowd and who can be reached by the average laboratory. We discuss reproducibility and review some recent methodological innovations for online experiments. We consider the design of research studies and arising ethical issues. We review how to code experiments for the web, what is known about video and audio presentation, and the measurement of reaction times. We close with comments about the high levels of experience of many participants and an emerging tragedy of the commons. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Reductive spectrophotometry of divalent tin sensitization on soda lime glass

    NASA Astrophysics Data System (ADS)

    Bejugam, Vinith; Wei, Xingfei; Roper, D. Keith

    2016-07-01

    Rapid and facile evaluation of tin (II) sensitization could lead to improved understanding of metal deposition in electroless (EL) plating. This report used a balanced redox reaction between 3,3‧,5,5‧-tetramethylbenzidine dihydrochloride (TMB-HCL) and N-bromosuccinimide (NBS) to evaluate effects of sensitization conditions (i.e., sensitization time, analyte concentration, aqueous immersion, and acid content) on the accumulated mass of surface-associated divalent tin ion. The accumulated mass of tin (II) increased as the sensitization time increased up to 30 s in proportion to aqueous tin (II) chloride concentrations between 2.6 and 26 mM at a trifluoroacetic acid (TFA) content of 68 mM. The average mass peaked at 7.3 nanomoles (nmol) per cm2 after a 5 s aqueous immersion post-sensitization, and then decreased with increasing aqueous immersion post-sensitization. The total average tin (II) + tin (IV) accumulated on soda lime glass measured by inductively coupled plasma optical emission spectrometry (ICP-OES) was 17% higher at 30 s sensitization, suggesting a fraction of the tin (II) present may have oxidized to tin (IV). These results indicated that in situ spectrophotometric evaluation of tin (II) could support development of EL plating for electronics, catalysis, and solar cells.

  3. Effect of ring-opening polymerization condition on the characteristic and mechanical properties of hydroxyapatite/poly(ethylene glutarate) biomaterials.

    PubMed

    Monvisade, Pathavuth; Siriphannon, Punnama; Tapcharoen, Walailak

    2009-09-01

    Preparation of hydroxyapatite/poly(ethylene glutarate) (HAp/PEG) composites was carried out by ring-opening polymerization (ROP) of cyclic oligo(ethylene glutarate) in porous HAp scaffolds using various reaction temperatures and times. The content of ROP-PEG interpenetrated into the porous HAp scaffold was about 13-18 wt % with the values of number average molecular weight (overline_M{n}) and weight average molecular weight (overline_M{W}) of 2120-3630 and 2760-5250 g/mol, respectively. The increase in polymerization time and temperature brought about increase in molecular weight of ROP-PEG, but decrease in its content. Compressive strength and compressive modulus of the HAp/PEG composites were about 5.8-20.1 and 105-208 MPa, respectively. These mechanical properties depend upon the effects of distribution, content, and molecular weight of ROP-PEG in the composites. In vitro bioactivity of the HAp/PEG composites was studied by soaking them in simulated body fluid (SBF) for 28 days. The formation of HAp nanocrystal on the composite surfaces through the consumption of calcium and phosphorus from the SBF solution was observed after soaking, indicating the bioactivity of these HAp/PEG composites.

  4. A simple method relating specific rate constants k(E,J) and Thermally averaged rate constants k(infinity)(T) of unimolecular bond fission and the reverse barrierless association reactions.

    PubMed

    Troe, J; Ushakov, V G

    2006-06-01

    This work describes a simple method linking specific rate constants k(E,J) of bond fission reactions AB --> A + B with thermally averaged capture rate constants k(cap)(T) of the reverse barrierless combination reactions A + B --> AB (or the corresponding high-pressure dissociation or recombination rate constants k(infinity)(T)). Practical applications are given for ionic and neutral reaction systems. The method, in the first stage, requires a phase-space theoretical treatment with the most realistic minimum energy path potential available, either from reduced dimensionality ab initio or from model calculations of the potential, providing the centrifugal barriers E(0)(J). The effects of the anisotropy of the potential afterward are expressed in terms of specific and thermal rigidity factors f(rigid)(E,J) and f(rigid)(T), respectively. Simple relationships provide a link between f(rigid)(E,J) and f(rigid)(T) where J is an average value of J related to J(max)(E), i.e., the maximum J value compatible with E > or = E0(J), and f(rigid)(E,J) applies to the transitional modes. Methods for constructing f(rigid)(E,J) from f(rigid)(E,J) are also described. The derived relationships are adaptable and can be used on that level of information which is available either from more detailed theoretical calculations or from limited experimental information on specific or thermally averaged rate constants. The examples used for illustration are the systems C6H6+ <==> C6H5+ + H, C8H10+ --> C7H7+ + CH3, n-C9H12+ <==> C7H7+ + C2H5, n-C10H14+ <==> C7H7+ + C3H7, HO2 <==> H + O2, HO2 <==> HO + O, and H2O2 <==> 2HO.

  5. Genome-wide association analysis to identify genotype × environment interaction for milk protein yield and level of somatic cell score as environmental descriptors in German Holsteins.

    PubMed

    Streit, M; Reinhardt, F; Thaller, G; Bennewitz, J

    2013-01-01

    Genotype by environment interaction (G × E) has been widely reported in dairy cattle. If the environment can be measured on a continuous scale, reaction norms can be applied to study G × E. The average herd milk production level has frequently been used as an environmental descriptor because it is influenced by the level of feeding or the feeding regimen. Another important environmental factor is the level of udder health and hygiene, for which the average herd somatic cell count might be a descriptor. In the present study, we conducted a genome-wide association analysis to identify single nucleotide polymorphisms (SNP) that affect intercept and slope of milk protein yield reaction norms when using the average herd test-day solution for somatic cell score as an environmental descriptor. Sire estimates for intercept and slope of the reaction norms were calculated from around 12 million daughter records, using linear reaction norm models. Sires were genotyped for ~54,000 SNP. The sire estimates were used as observations in the association analysis, using 1,797 sires. Significant SNP were confirmed in an independent validation set consisting of 500 sires. A known major gene affecting protein yield was included as a covariable in the statistical model. Sixty (21) SNP were confirmed for intercept with P ≤ 0.01 (P ≤ 0.001) in the validation set, and 28 and 11 SNP, respectively, were confirmed for slope. Most but not all SNP affecting slope also affected intercept. Comparison with an earlier study revealed that SNP affecting slope were, in general, also significant for slope when the environment was modeled by the average herd milk production level, although the two environmental descriptors were poorly correlated. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Genetic and environmental contributions to the associations between intraindividual variability in reaction time and cognitive function.

    PubMed

    Finkel, Deborah; Pedersen, Nancy L

    2014-01-01

    Intraindividual variability (IIV) in reaction time has been related to cognitive decline, but questions remain about the nature of this relationship. Mean and range in movement and decision time for simple reaction time were available from 241 individuals aged 51-86 years at the fifth testing wave of the Swedish Adoption/Twin Study of Aging. Cognitive performance on four factors was also available: verbal, spatial, memory, and speed. Analyses indicated that range in reaction time could be used as an indicator of IIV. Heritability estimates were 35% for mean reaction and 20% for range in reaction. Multivariate analysis indicated that the genetic variance on the memory, speed, and spatial factors is shared with genetic variance for mean or range in reaction time. IIV shares significant genetic variance with fluid ability in late adulthood, over and above and genetic variance shared with mean reaction time.

  7. The influenced of reaction time on the degradation of palm oil empty fruit bunch (EFB) in hydrothermal carbonization

    NASA Astrophysics Data System (ADS)

    Sarwono, Rakhman; Kurniawan, Hendris Hendarsyah

    2017-11-01

    Hydrothermal carbonization (HTC) of empty fruit bunch (EFB) of palm oil in different reaction times were investigated. Experiments were carried out in an autoclave at different reaction time of 3,6,9, 15, 20, 25 and 40 hours. With a fixed solid/liquid ratio of 5 gram of EFB in 50 ml water as a solvent, and temperature reaction of 250 °C. Increase the reaction time the soluble products are also increased. The liquid products were analyzed using GCMS to determine the chemical composition. The chemical composition were greatly affected by the reaction time. The main component was glycolic acid, by increasing the reaction time made the varieties of chemical compositions in liquid products, especially for the glycolic acid component, it was decreased slightly. The higher heating value (HHV) also increase slighly by increasing the reaction time both solid and liquid products.

  8. Inheritance of the bark reaction resistance mechanism in Pinus monticola infected by Cronartium ribicola

    Treesearch

    Ray J. Hoff

    1986-01-01

    Necrotic reactions in branch or main stems of western white pine (Pinus monticola Dougl.) caused by infection by the blister rust fungus (Cronartium ribicola J. C. Fisch. ex Rabenh.) are a major mechanism of resistance. Overall, 26 percent of the seedlings eliminated the fungus via this defense system. Heritability based upon crossing family groups averaged 33 percent...

  9. Dissolution Front Instabilities in Reacting Porous Media

    NASA Astrophysics Data System (ADS)

    Raoof, Amir; Spiers, Chris; Hassanizadeh, Majid

    2013-04-01

    The main objective of this research is to gain a better understanding of the relation between regime of reaction and dissolution front instability, leading to formation of channels or wormholes. Potential applications are geological sequestration of CO2 and acid-gas injection during enhanced oil recovery. The microscopic pore space is modeled using a multi-directional pore network, allowing for a distribution of pore coordination number, together with distribution of pore sizes. In order to simulate transport of multi-component chemical species, mass balance equations are solved within each element of the network (i.e., pore body and pore throat). We have considered advective and diffusive transport processes within the pore spaces together with multi-component chemical reactions, including both equilibrium and kinetic reactions. Using dimensionless scaling groups (such as Damköhler number and Péclet-Damköhler number) we characterized the dissolution front behavior, and by averaging over the network domain we calculated the evolution of porosity and permeability as well as flux-averaged concentration breakthrough curves. We obtain constitutive relations linking porosity and permeability, under conditions relevant to geological storage of CO2. Effect of distribution of reactive minerals is also evaluated and regime of reaction is shown to play a key role.

  10. Correlations between reaction product yields as a tool for probing heavy-ion reaction scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawlikowicz, W.; Heavy-Ion Laboratory, Warsaw University, PL-02-093 Warsaw; Agnihotri, D. K.

    2010-01-15

    Experimental multidimensional joint distributions of neutrons and charged reaction products were analyzed for {sup 136}Xe + {sup 209}Bi reactions at E/A=28, 40, and 62 MeV and were found to exhibit several different types of prominent correlation patterns. Some of these correlations have a simple explanation in terms of the system excitation energy and pose little challenge to most statistical decay theories. However, several other types of correlation patterns are difficult to reconcile with some, but not other, possible reaction scenarios. In this respect, correlations between the average atomic numbers of intermediate-mass fragments, on the one hand, and light particle multiplicities,more » on the other, are notable. This kind of multiparticle correlation provides a useful tool for probing reaction scenarios, which is different from the traditional approach of interpreting inclusive yields of individual reaction products.« less

  11. Committor of elementary reactions on multistate systems

    NASA Astrophysics Data System (ADS)

    Király, Péter; Kiss, Dóra Judit; Tóth, Gergely

    2018-04-01

    In our study, we extend the committor concept on multi-minima systems, where more than one reaction may proceed, but the feasible data evaluation needs the projection onto partial reactions. The elementary reaction committor and the corresponding probability density of the reactive trajectories are defined and calculated on a three-hole two-dimensional model system explored by single-particle Langevin dynamics. We propose a method to visualize more elementary reaction committor functions or probability densities of reactive trajectories on a single plot that helps to identify the most important reaction channels and the nonreactive domains simultaneously. We suggest a weighting for the energy-committor plots that correctly shows the limits of both the minimal energy path and the average energy concepts. The methods also performed well on the analysis of molecular dynamics trajectories of 2-chlorobutane, where an elementary reaction committor, the probability densities, the potential energy/committor, and the free-energy/committor curves are presented.

  12. Multiple oxygen and sulfur isotope compositions of secondary atmospheric sulfate in the city of Wuhan, central China

    NASA Astrophysics Data System (ADS)

    Li, X.; Bao, H.; Zhou, A.; Wang, D.

    2012-12-01

    Secondary atmospheric sulfate (SAS) is the oxidation product and sink for sulfur gases of biological, volcanic, and anthropogenic origins on Earth. SAS can be produced from gas-phase OH-radical oxidation and five aqueous-phase chemical reactions including aqueous-phase S (IV) oxidation reactions by H2O2, O3, oxygen catalyzed by Fe3+ and Mn2+, and methyle hydrogen peroxide and peroxyacetic acid. The tropospheric sulfur oxidation pathway is therefore determined by cloud-water pH, dissolved [Fe2+] or [Mn2+] content, S emission rate, meteorological condition, and other factors. The S isotope composition is a good tracer for the source while the O isotopes, especially the triple O isotope compositions are a good tracer for S oxidation pathway. Jerkins and Bao (2006) provided the first set of multiple stable isotope compositions (δ34S, δ18O and Δ17O) for SAS collected from bulk atmosphere in Baton Rouge in the relatively rural southern USA. Their study revealed a long-tern average Δ17O value of ~+0.7‰ for SAS, and speculated that much of the Earth mid-latitudes may have a similar average SAS Δ17O value. Additional sampling campaign at different sites is necessarily for constructing and testing models on sulfur oxidation and transport in the troposphere. A total of 33 sulfate samples were collected from bulk atmospheric deposition over a 950-day period from May 2009 to December 2011 in the city of Wuhan, Hubei Province, China. Differing from Baton Rouge, Wuhan is an industrial metropolis with a population of 9.8 million and a high particulate matter content (115 μg/m3). It also has a subtropical monsoon climate, with rainwater pH at ~5.3 year-around. The rainwater ion concentrations have seasonal variations, typically low in summer and high in winter. The anions are dominated by SO42-, at an average concentration of 8.5 mg/L. There is little sulfate contribution from sea-salt (SS) sulfate or dusts in Wuhan. The isotopic compositions for bulk atmospheric sulfate range from 0.00‰ to 1.02‰ for the Δ17O, 8.0‰ to 17.8‰ for the δ18O, and 2.1‰ to 24.1‰ for the δ34S. No apparent correlation is found among Δ17O, δ18O, or δ34S values. No significant temporal pattern exists for the Δ17O over the collection period. The positive Δ17O values for SAS have a time-weighted average of 0.52 ± 0.23‰, lower than the average in Baton Rouge, raising the possibility that the high particulate matter content in Wuhan may have played a role in promoting S oxidation via surface and/or Fe(III)-catalyzed pathways that do not generate positive 17O anomaly in product sulfate. The average Δ17O value also supports the assertion that the long-term average Δ17O value for SAS in the mid-latitude sites fall within a range (0.6~0.8‰) that is much lower than that in polar areas. The SAS δ18O values in Wuhan lie within the range reported for other sites (+5.0‰ to +19.6‰), with a time-weighted average value of 12.0 ± 2.3‰. Not counting three outlier (>13‰), the δ34S values are at a narrow range with a time-weighted average of +4.5 ±1.3‰ (n=30), which is higher than those from Baton Rouge but is typical for the heavily populated regions in China.

  13. Protein dynamics observed by tunable mid-IR quantum cascade lasers across the time range from 10ns to 1s.

    PubMed

    Schultz, Bernd-Joachim; Mohrmann, Hendrik; Lorenz-Fonfria, Victor A; Heberle, Joachim

    2018-01-05

    We have developed a spectrometer based on tunable quantum cascade lasers (QCLs) for recording time-resolved absorption spectra of proteins in the mid-infrared range. We illustrate its performance by recording time-resolved difference spectra of bacteriorhodopsin in the carboxylic range (1800-1700cm -1 ) and on the CO rebinding reaction of myoglobin (1960-1840cm -1 ), at a spectral resolution of 1cm -1 . The spectrometric setup covers the time range from 4ns to nearly a second with a response time of 10-15ns. Absorption changes as low as 1×10 -4 are detected in single-shot experiments at t>1μs, and of 5×10 -6 in kinetics obtained after averaging 100 shots. While previous time-resolved IR experiments have mostly been conducted on hydrated films of proteins, we demonstrate here that the brilliance of tunable quantum cascade lasers is superior to perform ns time-resolved experiments even in aqueous solution (H 2 O). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    USGS Publications Warehouse

    Harvey, Judson W.; Fuller, Christopher C.

    1998-01-01

    We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheic-flow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/λs, of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/λh= 2.6 hours), and in laboratory batch experiments using streambed sediment (1/λ = 2.7 hours). The modeled depths of subsurface storage zones (ds = 4–17 cm) and modeled residence times of water in storage zones (ts = 3–12 min) were both consistent with direct measurements in hyporheic flow paths (dh = 0–15 cm, th = 1–25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (fs = 8.9%, andfh = 9.3%rpar;. Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The cumulative effect of hyporheic exchange in Pinal Creek basin was to remove approximately 20% of the dissolved manganese flowing out of the drainage basin. Our results illustrate that the cumulative significance of reactive uptake in the hyporheic zone depends on the balance between chemical reaction rates, hyporheic porewater residence time, and turnover of streamflow through hyporheic flow paths. The similarity between the hyporheic reaction timescale (1/λs ≈ 1.3 hours), and the hyporheic porewater residence timescale (ts ≈ 8 min) ensured that there was adequate time for the reaction to progress. Furthermore, it was the similarity between the turnover length for stream water flow through hyporheic flow paths (Ls = stream velocity/storage-zone exchange coefficient ≈ 1.3 km) and the length of Pinal Creek (L ≈ 7 km), which ensured that all stream water passed through hyporheic flow paths several times. As a means to generalize our findings to other sites where similar types of hydrologic and chemical information are available, we suggest a cumulative significance index for hyporheic reactions, Rs = λstsL/Ls (dimensionless); higher values indicate a greater potential for hyporheic reactions to influence geochemical mass balance. Our experience in Pinal Creek basin suggests that values of Rs > 0.2 characterize systems where hyporheic reactions are likely to influence geochemical mass balance at the drainage-basin scale.

  15. Master Equation Analysis of Thermal and Nonthermal Microwave Effects.

    PubMed

    Ma, Jianyi

    2016-10-11

    Master equation is a successful model to describe the conventional heating reaction, it is expanded to capture the "microwave effect" in this work. The work equation of "microwave effect" included master equation presents the direct heating, indirect heating, and nonthermal effect about the microwave field. The modified master equation provides a clear physics picture to the nonthermal microwave effect: (1) The absorption and the emission of the microwave, which is dominated by the transition dipole moment between two corresponding states and the intensity of the microwave field, provides a new path to change the reaction rate constants. (2) In the strong microwave field, the distribution of internal states of the molecules will deviate from the equilibrium distribution, and the system temperature defined in the conventional heating reaction is no longer available. According to the general form of "microwave effect" included master equation, a two states model for unimolecular dissociation is proposed and is used to discuss the microwave nonthermal effect particularly. The average rate constants can be increased up to 2400 times for some given cases without the temperature changed in the two states model. Additionally, the simulation of a model system was executed using our State Specified Master Equation package. Three important conclusions can be obtained in present work: (1) A reasonable definition of the nonthermal microwave effect is given in the work equation of "microwave effect" included master equation. (2) Nonthermal microwave effect possibly exists theoretically. (3) The reaction rate constants perhaps can be changed obviously by the microwave field for the non-RRKM and the mode-specified reactions.

  16. Variability of vertical ground reaction forces collected with one and two force plates in healthy dogs.

    PubMed

    Stejskal, M; Torres, B T; Sandberg, G S; Sapora, J A; Dover, R K; Budsberg, S C

    2015-01-01

    To compare peak vertical force (PVF) and vertical impulse (VI) data collected with one and two force plates during the same collection time period in healthy dogs at a trot. Seventeen healthy client-owned adult dogs. Vertical ground reaction force (GRF) data were collected in a crossover study design, with four sessions on two consecutive days, and then two weeks apart (days 1, 2, 15, and 16) using both one and two force plates collection methods. A repeated measures model analysis of variance (ANOVA) was used to test for differences in force plate PVF, VI, and average time per trial (ATT) between days, weeks, and systems (1 plate versus 2 plates). Coefficients of variation for PVF and VI were also calculated separately by forelimbs and hindlimbs, plates, day, and week. The time required to obtain a valid trial was significantly longer using a single force plate when compared with two force plates. Comparing GRF data for all dogs, significant differences in PVF data were found between one and two force plates, however, these differences were diminutive in absolute magnitude, and of unknown clinical importance. Examination of the coefficients of variation for PVF and VI during the different collection periods yielded similar results. Use of two force plates decreased trial repetition and collection time. Vertical GRF data had a similar coefficient of variation with either one or two force plates collection techniques in healthy dogs.

  17. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate.

    PubMed

    Kashitarash, Zahra Esfahani; Taghi, Samadi Mohammad; Kazem, Naddafi; Abbass, Afkhami; Alireza, Rahmani

    2012-12-27

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants.

  18. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate

    PubMed Central

    2012-01-01

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants. PMID:23369361

  19. Development of various reaction abilities and their relationships with favorite play activities in preschool children.

    PubMed

    Miyaguchi, Kazuyoshi; Demura, Shinich; Sugiura, Hiroki; Uchiyama, Masanobu; Noda, Masahiro

    2013-10-01

    This study examines the development of various reaction movements in preschool children and the relationship between reaction times and favorite play activities. The subjects were 167 healthy preschool children aged 4-6 (96 boys and 71 girls). This study focused on the reaction times of the upper limbs (reaction 1: release; reaction 2: press) and the whole body (reaction 3: forward jump). The activities frequently played in preschools are largely divided into dynamic play activities (tag, soccer, gymnastics set, dodge ball, and jump rope) and static play activities (drawing, playing house, reading, playing with sand, and building blocks). The subjects chose 3 of 10 cards picturing their favorite play activities, depicting 10 different activities. All intraclass correlation coefficients of measured reaction times were high (0.73-0.79). In addition, each reaction time shortened with age. Reaction 1 showed a significant and low correlation with reaction 3 (r = 0.37). The effect size of the whole body reaction time was the largest. Whole body reaction movement, which is largely affected by the exercise output function, develops remarkably in childhood. Children who liked "tag" were faster in all reaction times. The children who chose "soccer" were faster in reactions 2 and 3. In contrast, children who liked "playing house" tended to have slower reaction times. Dynamic activities, such as tag and soccer, promote development of reaction speed and agility in movements involving the whole body. Preschool teachers and physical educators should re-examine the effect of tag and use it periodically as one of the exercise programs to avoid unexpected falls and injuries in everyday life.

  20. Variance-reduced simulation of lattice discrete-time Markov chains with applications in reaction networks

    NASA Astrophysics Data System (ADS)

    Maginnis, P. A.; West, M.; Dullerud, G. E.

    2016-10-01

    We propose an algorithm to accelerate Monte Carlo simulation for a broad class of stochastic processes. Specifically, the class of countable-state, discrete-time Markov chains driven by additive Poisson noise, or lattice discrete-time Markov chains. In particular, this class includes simulation of reaction networks via the tau-leaping algorithm. To produce the speedup, we simulate pairs of fair-draw trajectories that are negatively correlated. Thus, when averaged, these paths produce an unbiased Monte Carlo estimator that has reduced variance and, therefore, reduced error. Numerical results for three example systems included in this work demonstrate two to four orders of magnitude reduction of mean-square error. The numerical examples were chosen to illustrate different application areas and levels of system complexity. The areas are: gene expression (affine state-dependent rates), aerosol particle coagulation with emission and human immunodeficiency virus infection (both with nonlinear state-dependent rates). Our algorithm views the system dynamics as a ;black-box;, i.e., we only require control of pseudorandom number generator inputs. As a result, typical codes can be retrofitted with our algorithm using only minor changes. We prove several analytical results. Among these, we characterize the relationship of covariances between paths in the general nonlinear state-dependent intensity rates case, and we prove variance reduction of mean estimators in the special case of affine intensity rates.

  1. Determination of acetylsalicylic acid in commercial tablets by SERS using silver nanoparticle-coated filter paper

    NASA Astrophysics Data System (ADS)

    Sallum, Loriz Francisco; Soares, Frederico Luis Felipe; Ardila, Jorge Armando; Carneiro, Renato Lajarim

    2014-12-01

    In this work, filter paper was used as a low cost substrate for silver nanoparticles in order to perform the detection and quantification of acetylsalicylic acid by SERS in a commercial tablet. The reaction conditions were 150 mM of ammonium hydroxide, 50 mM of silver nitrate, 500 mM of glucose, 12 min of the reaction time, 45 °C temperature, pretreatment with ammonium hydroxide and quantitative filter paper (1-2 μm). The average size of silver nanoparticles deposited on the paper substrate was 180 nm. Adsorption time of acetylsalicylic acid on the surface of the silver-coated filter paper was studied and an adsorption time of 80 min was used to build the analytical curve. It was possible to obtain a calibration curve with good precision with a coefficient of determination of 0.933. The method proposed in this work was capable to quantify acetylsalicylic acid in commercial tablets, at low concentration levels, with relative error of 2.06% compared to the HPLC. The preparation of filter paper coated with silver nanoparticles using Tollen's reagent presents several advantages such as low cost of synthesis, support and reagents; minimum amount of residuals, which are easily treated, despite the SERS spectroscopy presenting fast analysis, with low sample preparation and low amount of reactants as in HPLC analysis.

  2. Surface morphology control of cross-linked polymer particles via dispersion polymerization.

    PubMed

    Peng, Bo; Imhof, Arnout

    2015-05-14

    Cross-linked polymer colloids (poly(methyl methacrylate) and polystyrene) with diverse shapes were prepared in polar solvents (ethanol, methanol and water) via dispersion polymerization, in which a linear addition of the cross-linker was used during reaction. Apart from spherical particles we found dented spheres or particles covered with nodules, or a combination of both. A comprehensive investigation was carried out, mainly concentrating on the effect of the experimental conditions (e.g., the addition start time and total addition time, cross-linker density and the solvency of the solvents) on particle morphologies. Consequently, we suggest a number of effective ways for the synthesis of regular (spherical) colloidal particles through maintaining a relatively low concentration of the cross-linker during the entire reaction, or forcing the co-polymerization (of monomer and cross-linker) locus to the continuous medium, or using a high quality or quantity of the stabilizer. Moreover, the size of the particles was also precisely manipulated by varying the polarity of the solvents, the concentration of the cross-linker, and the amount and average molecular weight of the stabilizer. In addition, the formation of the heavily dented particles with a very rough surface prepared under a pure or oxygen-'contaminated' nitrogen environment was monitored over time. The results accumulated in this article are of use for a better understanding of the mechanism of the polymerization and control over the structure and property of polymer particles.

  3. Extreme reaction times determine fluctuation scaling in human color vision

    NASA Astrophysics Data System (ADS)

    Medina, José M.; Díaz, José A.

    2016-11-01

    In modern mental chronometry, human reaction time defines the time elapsed from stimulus presentation until a response occurs and represents a reference paradigm for investigating stochastic latency mechanisms in color vision. Here we examine the statistical properties of extreme reaction times and whether they support fluctuation scaling in the skewness-kurtosis plane. Reaction times were measured for visual stimuli across the cardinal directions of the color space. For all subjects, the results show that very large reaction times deviate from the right tail of reaction time distributions suggesting the existence of dragon-kings events. The results also indicate that extreme reaction times are correlated and shape fluctuation scaling over a wide range of stimulus conditions. The scaling exponent was higher for achromatic than isoluminant stimuli, suggesting distinct generative mechanisms. Our findings open a new perspective for studying failure modes in sensory-motor communications and in complex networks.

  4. Adaptations to a new physical training program in the combat controller training pipeline.

    PubMed

    Walker, Thomas B; Lennemann, Lynette M; Anderson, Vint; Lyons, William; Zupan, Michael F

    2011-01-01

    The United States Air Force combat controller (CCT) training pipeline is extremely arduous and historically has a high attrition rate of 70 to 80%. The primary objective of this study was to evaluate the impact of incorporating a 711 Human Performance Wing (HPW) / Biobehavior, Bioassessment, and Biosurveillance Branch (RHPF)-developed physical fitness-training program into the combat controller (CCT) 5-level training physical fitness program. One-hundred-nine CCT trainees were tested and trained during their initial eight weeks at the 720th Special Tactics Training Squadron (STTS) at Hurlburt Field. Modifications to their physical training program were principally aimed at reducing overtraining and overuse injury, educating trainees and cadre on how to train smarter, and transitioning from traditional to "functional" PT. A battery of physiological measurements and a psychological test were administered prior to and immediately after trainees undertook an 8-week modified physical fitness training program designed to reduce overtraining and injury and improve performance. We performed multiple physical tests for cardiovascular endurance (VO₂max and running economy), "anaerobic" capacity (Wingate power and loaded running tests), body composition (skinfolds), power (Wingate and vertical jump), and reaction time (Makoto eye-hand test). We used the Mental Toughness Questionnaire 48 (MTQ-48) for the psychological test. We observed several significant improvements in physical and physiological performance over the eight weeks of training. Body composition improved by 16.2% (p < 0.05). VO₂max, time-to-exhaustion, and ventilatory threshold were all significantly higher after implementation of the new program than before it. We observed strong trends towards improvement in work accomplished during loaded running (p = 0.07) and in average power per body mass during lower body Wingate (p = 0.08). Other measures of lower body power did not change significantly over the training period, but did show mild trends towards improvement. Upper body average and peak power per kilogram of body mass both improved significantly by 5.8% and 8.1%, respectively. Reaction time was significantly better posttraining as demonstrated by a 7% improvement during the reactive test. Reactive accuracy also improved significantly with the post test accuracy percentage jumping from 61% to 76%. Furthermore, overuse injuries, a major source of attrition fell by a dramatic 67%. The modifications resulted in significant improvement in trainees? graduation rate. In the eight classes prior to implementation of these changes, average CCT graduating class size was nine trainees. For the eight classes following the changes, average CCT graduating class rose to 16.5 trainees, an increase of 83%. Due to its success, STTS leadership expanded the modifications from the eight weeks prior to CDS to include the entire second year of the pipeline. 2011.

  5. Mass-Related Dynamical Barriers in Triatomic Reactions

    NASA Astrophysics Data System (ADS)

    Yanao, T.; Koon, W. S.; Marsden, J. E.

    2006-06-01

    A methodology is given to determine the effect of different mass distributions for triatomic reactions using the geometry of shape space. Atomic masses are incorporated into the non-Euclidean shape space metric after the separation of rotations. Using the equations of motion in this non-Euclidean shape space, an averaged field of velocity-dependent fictitious forces is determined. This force field, as opposed to the force arising from the potential, dominates branching ratios of isomerization dynamics of a triatomic molecule. This methodology may be useful for qualitative prediction of branching ratios in general triatomic reactions.

  6. Determination of neutron multiplication coefficients for fuel elements irradiated by spallation neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Chitra; Kumar, V.

    2010-02-15

    A neutron multiplication coefficient, k{sub eff}, has been estimated for spallation neutron flux using the data of spectrum average cross sections of all absorption, fission, and nonelastic reaction channels of {sup 232}Th, {sup 238}U, {sup 235}U, and {sup 233}U fuel elements. It has been revealed that in spallation neutron flux (i) nonfission, nonabsorption reactions play an important role in the calculation of k{sub eff}, (ii) one can obtain a high value of k{sub eff} even for fertile {sup 232}Th fuel, which is hardly possible in a conventional fast reactor, and (iii) spectrum average absorption cross sections of neutron poisons ofmore » a conventional reactor are relatively very small.« less

  7. Effects of reaction time variability and age on brain activity during Stroop task performance.

    PubMed

    Tam, Angela; Luedke, Angela C; Walsh, Jeremy J; Fernandez-Ruiz, Juan; Garcia, Angeles

    2015-09-01

    Variability in reaction time during task performance may reflect fluctuations in attention and cause reduced performance in goal-directed tasks, yet it is unclear whether the mechanisms behind this phenomenon change with age. Using fMRI, we tested young and cognitively healthy older adults with the Stroop task to determine whether aging affects the neural mechanisms underlying intra-individual reaction time variability. We found significant between-group differences in BOLD activity modulated by reaction time. In older adults, longer reaction times were associated with greater activity in frontoparietal attentional areas, while in younger adults longer reaction times were associated with greater activity in default mode network areas. Our results suggest that the neural correlates of reaction time variability change with healthy aging, reinforcing the concept of functional plasticity to maintain high cognitive function throughout the lifespan.

  8. A free, easy-to-use, computer-based simple and four-choice reaction time programme: the Deary-Liewald reaction time task.

    PubMed

    Deary, Ian J; Liewald, David; Nissan, Jack

    2011-03-01

    Reaction time tasks are used widely in basic and applied psychology. There is a need for an easy-to-use, freely available programme that can run simple and choice reaction time tasks with no special software. We report the development of, and make available, the Deary-Liewald reaction time task. It is initially tested here on 150 participants, aged from 18 to 80, alongside another widely used reaction time device and tests of fluid and crystallised intelligence and processing speed. The new task's parameters perform as expected with respect to age and intelligence differences. The new task's parameters are reliable, and have very high correlations with the existing task. We also provide instructions for downloading and using the new reaction time programme, and we encourage other researchers to use it.

  9. Dose-dependent model of caffeine effects on human vigilance during total sleep deprivation.

    PubMed

    Ramakrishnan, Sridhar; Laxminarayan, Srinivas; Wesensten, Nancy J; Kamimori, Gary H; Balkin, Thomas J; Reifman, Jaques

    2014-10-07

    Caffeine is the most widely consumed stimulant to counter sleep-loss effects. While the pharmacokinetics of caffeine in the body is well-understood, its alertness-restoring effects are still not well characterized. In fact, mathematical models capable of predicting the effects of varying doses of caffeine on objective measures of vigilance are not available. In this paper, we describe a phenomenological model of the dose-dependent effects of caffeine on psychomotor vigilance task (PVT) performance of sleep-deprived subjects. We used the two-process model of sleep regulation to quantify performance during sleep loss in the absence of caffeine and a dose-dependent multiplier factor derived from the Hill equation to model the effects of single and repeated caffeine doses. We developed and validated the model fits and predictions on PVT lapse (number of reaction times exceeding 500 ms) data from two separate laboratory studies. At the population-average level, the model captured the effects of a range of caffeine doses (50-300 mg), yielding up to a 90% improvement over the two-process model. Individual-specific caffeine models, on average, predicted the effects up to 23% better than population-average caffeine models. The proposed model serves as a useful tool for predicting the dose-dependent effects of caffeine on the PVT performance of sleep-deprived subjects and, therefore, can be used for determining caffeine doses that optimize the timing and duration of peak performance. Published by Elsevier Ltd.

  10. Keeping an eye on pain: investigating visual attention biases in individuals with chronic pain using eye-tracking methodology

    PubMed Central

    Fashler, Samantha R; Katz, Joel

    2016-01-01

    Attentional biases to painful stimuli are evident in individuals with chronic pain, although the directional tendency of these biases (ie, toward or away from threat-related stimuli) remains unclear. This study used eye-tracking technology, a measure of visual attention, to evaluate the attentional patterns of individuals with and without chronic pain during exposure to injury-related and neutral pictures. Individuals with (N=51) and without chronic pain (N=62) completed a dot-probe task using injury-related and neutral pictures while their eye movements were recorded. Mixed-design analysis of variance evaluated the interaction between group (chronic pain, pain-free) and picture type (injury-related, neutral). Reaction time results showed that regardless of chronic pain status, participants responded faster to trials with neutral stimuli in comparison to trials that included injury-related pictures. Eye-tracking measures showed within-group differences whereby injury-related pictures received more frequent fixations and visits, as well as longer average visit durations. Between-group differences showed that individuals with chronic pain had fewer fixations and shorter average visit durations for all stimuli. An examination of how biases change over the time-course of stimulus presentation showed that during the late phase of attention, individuals with chronic pain had longer average gaze durations on injury pictures relative to pain-free individuals. The results show the advantage of incorporating eye-tracking methodology when examining attentional biases, and suggest future avenues of research. PMID:27570461

  11. Spontaneous Fluctuations in Sensory Processing Predict Within-Subject Reaction Time Variability.

    PubMed

    Ribeiro, Maria J; Paiva, Joana S; Castelo-Branco, Miguel

    2016-01-01

    When engaged in a repetitive task our performance fluctuates from trial-to-trial. In particular, inter-trial reaction time variability has been the subject of considerable research. It has been claimed to be a strong biomarker of attention deficits, increases with frontal dysfunction, and predicts age-related cognitive decline. Thus, rather than being just a consequence of noise in the system, it appears to be under the control of a mechanism that breaks down under certain pathological conditions. Although the underlying mechanism is still an open question, consensual hypotheses are emerging regarding the neural correlates of reaction time inter-trial intra-individual variability. Sensory processing, in particular, has been shown to covary with reaction time, yet the spatio-temporal profile of the moment-to-moment variability in sensory processing is still poorly characterized. The goal of this study was to characterize the intra-individual variability in the time course of single-trial visual evoked potentials and its relationship with inter-trial reaction time variability. For this, we chose to take advantage of the high temporal resolution of the electroencephalogram (EEG) acquired while participants were engaged in a 2-choice reaction time task. We studied the link between single trial event-related potentials (ERPs) and reaction time using two different analyses: (1) time point by time point correlation analyses thereby identifying time windows of interest; and (2) correlation analyses between single trial measures of peak latency and amplitude and reaction time. To improve extraction of single trial ERP measures related with activation of the visual cortex, we used an independent component analysis (ICA) procedure. Our ERP analysis revealed a relationship between the N1 visual evoked potential and reaction time. The earliest time point presenting a significant correlation of its respective amplitude with reaction time occurred 175 ms after stimulus onset, just after the onset of the N1 peak. Interestingly, single trial N1 latency correlated significantly with reaction time, while N1 amplitude did not. In conclusion, our findings suggest that inter-trial variability in the timing of extrastriate visual processing contributes to reaction time variability.

  12. Spontaneous Fluctuations in Sensory Processing Predict Within-Subject Reaction Time Variability

    PubMed Central

    Ribeiro, Maria J.; Paiva, Joana S.; Castelo-Branco, Miguel

    2016-01-01

    When engaged in a repetitive task our performance fluctuates from trial-to-trial. In particular, inter-trial reaction time variability has been the subject of considerable research. It has been claimed to be a strong biomarker of attention deficits, increases with frontal dysfunction, and predicts age-related cognitive decline. Thus, rather than being just a consequence of noise in the system, it appears to be under the control of a mechanism that breaks down under certain pathological conditions. Although the underlying mechanism is still an open question, consensual hypotheses are emerging regarding the neural correlates of reaction time inter-trial intra-individual variability. Sensory processing, in particular, has been shown to covary with reaction time, yet the spatio-temporal profile of the moment-to-moment variability in sensory processing is still poorly characterized. The goal of this study was to characterize the intra-individual variability in the time course of single-trial visual evoked potentials and its relationship with inter-trial reaction time variability. For this, we chose to take advantage of the high temporal resolution of the electroencephalogram (EEG) acquired while participants were engaged in a 2-choice reaction time task. We studied the link between single trial event-related potentials (ERPs) and reaction time using two different analyses: (1) time point by time point correlation analyses thereby identifying time windows of interest; and (2) correlation analyses between single trial measures of peak latency and amplitude and reaction time. To improve extraction of single trial ERP measures related with activation of the visual cortex, we used an independent component analysis (ICA) procedure. Our ERP analysis revealed a relationship between the N1 visual evoked potential and reaction time. The earliest time point presenting a significant correlation of its respective amplitude with reaction time occurred 175 ms after stimulus onset, just after the onset of the N1 peak. Interestingly, single trial N1 latency correlated significantly with reaction time, while N1 amplitude did not. In conclusion, our findings suggest that inter-trial variability in the timing of extrastriate visual processing contributes to reaction time variability. PMID:27242470

  13. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics.

    PubMed

    Zheng, Mo; Li, Xiaoxia; Guo, Li

    2013-04-01

    Reactive force field (ReaxFF), a recent and novel bond order potential, allows for reactive molecular dynamics (ReaxFF MD) simulations for modeling larger and more complex molecular systems involving chemical reactions when compared with computation intensive quantum mechanical methods. However, ReaxFF MD can be approximately 10-50 times slower than classical MD due to its explicit modeling of bond forming and breaking, the dynamic charge equilibration at each time-step, and its one order smaller time-step than the classical MD, all of which pose significant computational challenges in simulation capability to reach spatio-temporal scales of nanometers and nanoseconds. The very recent advances of graphics processing unit (GPU) provide not only highly favorable performance for GPU enabled MD programs compared with CPU implementations but also an opportunity to manage with the computing power and memory demanding nature imposed on computer hardware by ReaxFF MD. In this paper, we present the algorithms of GMD-Reax, the first GPU enabled ReaxFF MD program with significantly improved performance surpassing CPU implementations on desktop workstations. The performance of GMD-Reax has been benchmarked on a PC equipped with a NVIDIA C2050 GPU for coal pyrolysis simulation systems with atoms ranging from 1378 to 27,283. GMD-Reax achieved speedups as high as 12 times faster than Duin et al.'s FORTRAN codes in Lammps on 8 CPU cores and 6 times faster than the Lammps' C codes based on PuReMD in terms of the simulation time per time-step averaged over 100 steps. GMD-Reax could be used as a new and efficient computational tool for exploiting very complex molecular reactions via ReaxFF MD simulation on desktop workstations. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Blood-Brain Barrier Opening in Behaving Non-Human Primates via Focused Ultrasound with Systemically Administered Microbubbles

    NASA Astrophysics Data System (ADS)

    Downs, Matthew E.; Buch, Amanda; Karakatsani, Maria Eleni; Konofagou, Elisa E.; Ferrera, Vincent P.

    2015-10-01

    Over the past fifteen years, focused ultrasound coupled with intravenously administered microbubbles (FUS) has been proven an effective, non-invasive technique to open the blood-brain barrier (BBB) in vivo. Here we show that FUS can safely and effectively open the BBB at the basal ganglia and thalamus in alert non-human primates (NHP) while they perform a behavioral task. The BBB was successfully opened in 89% of cases at the targeted brain regions of alert NHP with an average volume of opening 28% larger than prior anesthetized FUS procedures. Safety (lack of edema or microhemorrhage) of FUS was also improved during alert compared to anesthetized procedures. No physiological effects (change in heart rate, motor evoked potentials) were observed during any of the procedures. Furthermore, the application of FUS did not disrupt reaching behavior, but in fact improved performance by decreasing reaction times by 23 ms, and significantly decreasing touch error by 0.76 mm on average.

  15. Silver nanostructures synthesis via optically induced electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Li, Pan; Liu, Na; Yu, Haibo; Wang, Feifei; Liu, Lianqing; Lee, Gwo-Bin; Wang, Yuechao; Li, Wen Jung

    2016-06-01

    We present a new digitally controlled, optically induced electrochemical deposition (OED) method for fabricating silver nanostructures. Projected light patterns were used to induce an electrochemical reaction in a specialized sandwich-like microfluidic device composed of one indium tin oxide (ITO) glass electrode and an optically sensitive-layer-covered ITO electrode. Silver polyhedral nanoparticles, triangular and hexagonal nanoplates, and nanobelts were controllably synthesized in specific positions at which projected light was illuminated. The silver nanobelts had rectangular cross-sections with an average width of 300 nm and an average thickness of 100 nm. By controlling the applied voltage, frequency, and time, different silver nanostructure morphologies were obtained. Based on the classic electric double-layer theory, a dynamic process of reduction and crystallization can be described in terms of three phases. Because it is template- and surfactant-free, the digitally controlled OED method facilitates the easy, low cost, efficient, and flexible synthesis of functional silver nanostructures, especially quasi-one-dimensional nanobelts.

  16. Saccadic inhibition can cause the remote distractor effect, but the remote distractor effect may not be a useful concept.

    PubMed

    McIntosh, Robert D; Buonocore, Antimo

    2014-05-30

    We have suggested that the remote distractor effect (RDE), the elevation of average saccadic reaction time (SRT) induced by a task-irrelevant distractor, may be explained as a statistical consequence of a characteristic reshaping of the SRT distribution known as saccadic inhibition (SI; Buonocore & McIntosh, 2008). In a recent paper, Walker and Benson (2013) argue against this idea and claim that the RDE and SI are partly dissociable. Here, we examine this claim, taking the opportunity to clarify potential ambiguities about how SI affects average SRT, and how the presence of SI can be inferred from SRT distributions.We highlight what we consider to be the most interesting aspects of Walker and Benson’s data, and suggest that a more flexible and nuanced view of SI can account for them. In considering the relation between SI and the RDE, we conclude that the RDE may no longer be a useful concept for eye movement researchers. © 2014 ARVO.

  17. Maximum stress estimation model for multi-span waler beams with deflections at the supports using average strains.

    PubMed

    Park, Sung Woo; Oh, Byung Kwan; Park, Hyo Seon

    2015-03-30

    The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this paper, a maximum stress estimation model for a waler beam based on average strains measured from vibrating wire strain gauges (VWSGs), the most frequently used sensors in construction field, is presented. The model is derived by defining the relationship between the maximum stress and the average strains measured from VWSGs. In addition to the maximum stress, support reactions, deflections at supports, and the magnitudes of distributed loads for the beam structure can be identified by the estimation model using the average strains. Using simulation tests on two multi-span beams, the performance of the model is evaluated by estimating maximum stress, deflections at supports, support reactions, and the magnitudes of distributed loads.

  18. Arrhenius Rate: constant volume burn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    A constant volume burn occurs for an idealized initial state in which a large volume of reactants at rest is suddenly raised to a high temperature and begins to burn. Due to the uniform spatial state, there is no fluid motion and no heat conduction. This reduces the time evolu tion to an ODE for the reaction progress variable. With an Arrhenius reaction rate, two characteristics of thermal ignition are illustrated: induction time and thermal runaway. The Frank-Kamenetskii approximation then leads to a simple expression for the adiabatic induction time. For a first order reaction, the analytic solution is derivedmore » and used to illustrate the effect of varying the activation temperature; in particular, on the induction time. In general, the ODE can be solved numerically. This is used to illustrate the effect of varying the reaction order. We note that for a first order reaction, the time evolution of the reaction progress variable has an exponential tail. In contrast, for a reaction order less than one, the reaction completes in a nite time. The reaction order also affects the induction time.« less

  19. Excited state intramolecular proton transfer reaction of 4'-N,N-diethylamino-3-hydroxyflavone and solvation dynamics in room temperature ionic liquids studied by optical Kerr gate fluorescence measurement.

    PubMed

    Kimura, Yoshifumi; Fukuda, Masanori; Suda, Kayo; Terazima, Masahide

    2010-09-16

    Fluorescence dynamics of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) and its methoxy derivative (DEAMF) in various room temperature ionic liquids (RTILs) have been studied mainly by an optical Kerr gate method. DEAMF showed a single band fluorescence whose peak shifted with time by the solvation dynamics. The averaged solvation time determined by the fluorescence peak shift was proportional to the viscosity of the solvent except for tetradecyltrihexylphosphonium bis(trifluoromethanesulfonyl)amide. The solvation times were consistent with reported values determined with different probe molecules. DEAHF showed dual fluorescence due to the normal and tautomer forms produced by the excited state intramolecular proton transfer (ESIPT), and the relative intensities were dependent on the time and the solvent cation or anion species. By using the information of the fluorescence spectrum of DEAMF, the fluorescence spectrum of DEAHF at each delay time after the photoexcitation was decomposed into the normal and the tautomer fluorescence components, respectively. The normal component showed a very fast decay simulated by a biexponential function (2-3 and 20-30 ps) with an additional slower decay component. The tautomer component showed a rise with the time constants corresponding to the faster decay of the normal form with an additional instantaneous rise. The faster dynamics of the normal and tautomer population changes were assigned to the ESIPT process, while the slower decay of the fluorescence was attributed to the population decay from the excited state through the radiative and nonradiative processes. The average ESIPT time was much faster than the averaged solvation time of RTILs. Basically, the ESIPT kinetics in RTILs is similar to those in conventional liquid solvents like acetonitrile (Chou et al. J. Phys. Chem. A 2005, 109, 3777). The faster ESIPT is interpreted in terms of the activation barrierless process from the Franck-Condon state before the solvation of the normal state in the electronic excited state. With the advance of the solvation in the excited state, the normal form becomes relatively more stable than the tautomer form, which makes the ESIPT become an activation process.

  20. Carbinolamine Formation and Dehydration in a DNA Repair Enzyme Active Site

    PubMed Central

    Dodson, M. L.; Walker, Ross C.; Lloyd, R. Stephen

    2012-01-01

    In order to suggest detailed mechanistic hypotheses for the formation and dehydration of a key carbinolamine intermediate in the T4 pyrimidine dimer glycosylase (T4PDG) reaction, we have investigated these reactions using steered molecular dynamics with a coupled quantum mechanics–molecular mechanics potential (QM/MM). We carried out simulations of DNA abasic site carbinolamine formation with and without a water molecule restrained to remain within the active site quantum region. We recovered potentials of mean force (PMF) from thirty replicate reaction trajectories using Jarzynski averaging. We demonstrated feasible pathways involving water, as well as those independent of water participation. The water–independent enzyme–catalyzed reaction had a bias–corrected Jarzynski–average barrier height of approximately for the carbinolamine formation reaction and ) for the reverse reaction at this level of representation. When the proton transfer was facilitated with an intrinsic quantum water, the barrier height was approximately in the forward (formation) reaction and for the reverse. In addition, two modes of unsteered (free dynamics) carbinolamine dehydration were observed: in one, the quantum water participated as an intermediate proton transfer species, and in the other, the active site protonated glutamate hydrogen was directly transferred to the carbinolamine oxygen. Water–independent unforced proton transfer from the protonated active site glutamate carboxyl to the unprotonated N–terminal amine was also observed. In summary, complex proton transfer events, some involving water intermediates, were studied in QM/MM simulations of T4PDG bound to a DNA abasic site. Imine carbinolamine formation was characterized using steered QM/MM molecular dynamics. Dehydration of the carbinolamine intermediate to form the final imine product was observed in free, unsteered, QM/MM dynamics simulations, as was unforced acid-base transfer between the active site carboxylate and the N–terminal amine. PMID:22384015

  1. Technical results and effects of operator experience on uterine artery embolization for fibroids: the Ontario Uterine Fibroid Embolization Trial.

    PubMed

    Pron, Gaylene; Bennett, John; Common, Andrew; Sniderman, Kenneth; Asch, Murray; Bell, Stuart; Kozak, Roman; Vanderburgh, Leslie; Garvin, Greg; Simons, Martin; Tran, Cuong; Kachura, John

    2003-05-01

    To document the technical results and spectrum of practice of uterine artery embolization (UAE) for fibroids in the health care setting in Canada. The effects of interventional radiologist's (IR's) experience with UAE on procedure and fluoroscopy time were also investigated. The study involved a multicenter prospective single-arm clinical treatment trial and included the practices of 11 IRs at eight university-affiliated teaching and community hospitals. Vascular access with percutaneous femoral artery approach was followed by transcatheter delivery of polyvinyl alcohol (PVA) particles into uterine arteries with fluoroscopic guidance. Technical success, complications, procedural time, fluoroscopy time, and effects of operator experience were outcomes analyzed. Between November 1998 and November 2000, 570 embolization procedures were performed in 555 patients. UAE was bilaterally successful in 97% (95% CI: 95%-98%). Variant anatomy was the most common reason for failure to embolize bilaterally. The procedural complication rate was 5.3% (95% CI: 3.6%-7.4%). Of the 30 events, three involved major complications (one seizure and two allergic reactions) that resulted in additional care or extended hospital stay. Procedure time and fluoroscopy time averaged 61 minutes (95% CI; 58-63 minutes) and 18.9 minutes (95% CI; 18-19.8) and varied significantly among IRs (P <.001; P <.001). The average 27% reduction in procedure time (20 minutes; P <.001) and 24% reduction in fluoroscopy time (5.1 minutes; P <.001) with increasing UAE experience were significant. A high level of technical success with few complications was obtained with a variety of operators in diverse practice settings. Increased experience in UAE significantly reduced procedure and fluoroscopy time.

  2. A comparative study of simple auditory reaction time in blind (congenitally) and sighted subjects.

    PubMed

    Gandhi, Pritesh Hariprasad; Gokhale, Pradnya A; Mehta, H B; Shah, C J

    2013-07-01

    Reaction time is the time interval between the application of a stimulus and the appearance of appropriate voluntary response by a subject. It involves stimulus processing, decision making, and response programming. Reaction time study has been popular due to their implication in sports physiology. Reaction time has been widely studied as its practical implications may be of great consequence e.g., a slower than normal reaction time while driving can have grave results. To study simple auditory reaction time in congenitally blind subjects and in age sex matched sighted subjects. To compare the simple auditory reaction time between congenitally blind subjects and healthy control subjects. STUDY HAD BEEN CARRIED OUT IN TWO GROUPS: The 1(st) of 50 congenitally blind subjects and 2(nd) group comprises of 50 healthy controls. It was carried out on Multiple Choice Reaction Time Apparatus, Inco Ambala Ltd. (Accuracy±0.001 s) in a sitting position at Government Medical College and Hospital, Bhavnagar and at a Blind School, PNR campus, Bhavnagar, Gujarat, India. Simple auditory reaction time response with four different type of sound (horn, bell, ring, and whistle) was recorded in both groups. According to our study, there is no significant different in reaction time between congenital blind and normal healthy persons. Blind individuals commonly utilize tactual and auditory cues for information and orientation and they reliance on touch and audition, together with more practice in using these modalities to guide behavior, is often reflected in better performance of blind relative to sighted participants in tactile or auditory discrimination tasks, but there is not any difference in reaction time between congenitally blind and sighted people.

  3. Reaction bonded silicon nitride prepared from wet attrition-milled silicon. [fractography

    NASA Technical Reports Server (NTRS)

    Herball, T. P.; Glasgow, T. K.; Shaw, N. J.

    1980-01-01

    Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 volume percent hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400 C. Fracture initiation appeared to be associated with subsurface flaws in high strength specimens and both subsurface and surface flaws in low strength specimens.

  4. Reaction bonded silicon nitride prepared from wet attrition-milled silicon

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.; Shaw, N. J.

    1980-01-01

    Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 vol% hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400 C. Fracture initiation appeared to be associated with subsurface flaws in high-strength specimens and both subsurface and surface flaws in low-strength specimens.

  5. Inter-session reliability and sex-related differences in hamstrings total reaction time, pre-motor time and motor time during eccentric isokinetic contractions in recreational athlete.

    PubMed

    Ayala, Francisco; De Ste Croix, Mark; Sainz de Baranda, Pilar; Santonja, Fernando

    2014-04-01

    The purposes were twofold: (a) to ascertain the inter-session reliability of hamstrings total reaction time, pre-motor time and motor time; and (b) to examine sex-related differences in the hamstrings reaction times profile. Twenty-four men and 24 women completed the study. Biceps femoris and semitendinosus total reaction time, pre-motor time and motor time measured during eccentric isokinetic contractions were recorded on three different occasions. Inter-session reliability was examined through typical percentage error (CVTE), percentage change in the mean (CM) and intraclass correlations (ICC). For both biceps femoris and semitendinosus, total reaction time, pre-motor time and motor time measures demonstrated moderate inter-session reliability (CVTE<10%; CM<3%; ICC>0.7). The results also indicated that, although not statistically significant, women reported consistently longer hamstrings total reaction time (23.5ms), pre-motor time (12.7ms) and motor time (7.5ms) values than men. Therefore, an observed change larger than 5%, 9% and 8% for total reaction time, pre-motor time and motor time respectively from baseline scores after performing a training program would indicate that a real change was likely. Furthermore, while not statistically significant, sex differences were noted in the hamstrings reaction time profile which may play a role in the greater incidence of ACL injuries in women. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Identification and yields of 1,4-hydroxynitrates formed from the reactions of C8-C16 n-alkanes with OH radicals in the presence of NO(x).

    PubMed

    Yeh, Geoffrey K; Ziemann, Paul J

    2014-09-25

    A series of C8-C16 n-alkanes were reacted with OH radicals in the presence of NOx in an environmental chamber and particulate 1,4-hydroxynitrate reaction products were collected by filtration, extracted, and analyzed by high-performance liquid chromatography with UV absorption and electron ionization mass spectrometry (HPLC/UV/MS). Observed mass spectral patterns can be explained by using proposed ion fragmentation mechanisms, permitting the identification of each hydroxynitrate isomer. Reversed-phase retention of these compounds was dictated by the length of the longer of two alkyl chains attached to the 1,4-hydroxynitrate subunit. 1,4-Hydroxynitrates were quantified in particles using an authentic analytical standard for calibration, and the results were combined with gas chromatography measurements of the n-alkanes to determine the molar yields. Yields based on analyses of particles increased with increasing carbon number from 0.00 for C8 to an average plateau value of 0.130 ± 0.008 for C14-C16, due primarily to corresponding increases in gas-to-particle partitioning. The value at the plateau, where essentially all 1,4-hydroxynitrates were in particles, was equal to the average total yield of C14-C16 1,4-hydroxynitrates. The average branching ratio for the formation of C14-C16 1,4-hydroxynitrates from the reaction of NO with the corresponding 1,4-hydroxyperoxy radicals was 0.184 ± 0.011. This value is ∼20% higher than the plateau value of 0.15 for reactions of secondary 1,2-hydroxyperoxy radicals and ∼40% lower than the plateau value of 0.29 for reactions of secondary alkyl peroxy radicals, both of which were reported previously. The branching ratios determined here were used with values reported previously to calculate the yields of C7-C18 alkyl nitrates, 1,4-hydroxynitrates, and 1,4-hydroxycarbonyls, the three products formed from the reactions of these n-alkanes.

  7. Reaction mechanism and reaction coordinates from the viewpoint of energy flow

    PubMed Central

    2016-01-01

    Reaction coordinates are of central importance for correct understanding of reaction dynamics in complex systems, but their counter-intuitive nature made it a daunting challenge to identify them. Starting from an energetic view of a reaction process as stochastic energy flows biased towards preferred channels, which we deemed the reaction coordinates, we developed a rigorous scheme for decomposing energy changes of a system, both potential and kinetic, into pairwise components. The pairwise energy flows between different coordinates provide a concrete statistical mechanical language for depicting reaction mechanisms. Application of this scheme to the C7eq → C7ax transition of the alanine dipeptide in vacuum revealed novel and intriguing mechanisms that eluded previous investigations of this well studied prototype system for biomolecular conformational dynamics. Using a cost function developed from the energy decomposition components by proper averaging over the transition path ensemble, we were able to identify signatures of the reaction coordinates of this system without requiring any input from human intuition. PMID:27004858

  8. Reaction mechanism and reaction coordinates from the viewpoint of energy flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenjin; Ma, Ao, E-mail: aoma@uic.edu

    Reaction coordinates are of central importance for correct understanding of reaction dynamics in complex systems, but their counter-intuitive nature made it a daunting challenge to identify them. Starting from an energetic view of a reaction process as stochastic energy flows biased towards preferred channels, which we deemed the reaction coordinates, we developed a rigorous scheme for decomposing energy changes of a system, both potential and kinetic, into pairwise components. The pairwise energy flows between different coordinates provide a concrete statistical mechanical language for depicting reaction mechanisms. Application of this scheme to the C{sub 7eq} → C{sub 7ax} transition of themore » alanine dipeptide in vacuum revealed novel and intriguing mechanisms that eluded previous investigations of this well studied prototype system for biomolecular conformational dynamics. Using a cost function developed from the energy decomposition components by proper averaging over the transition path ensemble, we were able to identify signatures of the reaction coordinates of this system without requiring any input from human intuition.« less

  9. Assessing DNA recovery from chewing gum.

    PubMed

    Eychner, Alison M; Schott, Kelly M; Elkins, Kelly M

    2017-01-01

    The purpose of this study was to evaluate which DNA extraction method yields the highest quantity of DNA from chewing gum. In this study, several popular extraction methods were tested, including Chelex-100, phenol-chloroform-isoamyl alcohol (PCIA), DNA IQ, PrepFiler, and QIAamp Investigator, and the quantity of DNA recovered from chewing gum was determined using real-time polymerase chain reaction with Quantifiler. Chewed gum control samples were submitted by anonymous healthy adult donors, and discarded environmental chewing gum samples simulating forensic evidence were collected from outside public areas (e.g., campus bus stops, streets, and sidewalks). As expected, results indicate that all methods tested yielded sufficient amplifiable human DNA from chewing gum using the wet-swab method. The QIAamp performed best when DNA was extracted from whole pieces of control gum (142.7 ng on average), and the DNA IQ method performed best on the environmental whole gum samples (29.0 ng on average). On average, the QIAamp kit also recovered the most DNA from saliva swabs. The PCIA method demonstrated the highest yield with wet swabs of the environmental gum (26.4 ng of DNA on average). However, this method should be avoided with whole gum samples (no DNA yield) due to the action of the organic reagents in dissolving and softening the gum and inhibiting DNA recovery during the extraction.

  10. Prediction of human gait trajectories during the SSP using a neuromusculoskeletal modeling: A challenge for parametric optimization.

    PubMed

    Seyed, Mohammadali Rahmati; Mostafa, Rostami; Borhan, Beigzadeh

    2018-04-27

    The parametric optimization techniques have been widely employed to predict human gait trajectories; however, their applications to reveal the other aspects of gait are questionable. The aim of this study is to investigate whether or not the gait prediction model is able to justify the movement trajectories for the higher average velocities. A planar, seven-segment model with sixteen muscle groups was used to represent human neuro-musculoskeletal dynamics. At first, the joint angles, ground reaction forces (GRFs) and muscle activations were predicted and validated for normal average velocity (1.55 m/s) in the single support phase (SSP) by minimizing energy expenditure, which is subject to the non-linear constraints of the gait. The unconstrained system dynamics of extended inverse dynamics (USDEID) approach was used to estimate muscle activations. Then by scaling time and applying the same procedure, the movement trajectories were predicted for higher average velocities (from 2.07 m/s to 4.07 m/s) and compared to the pattern of movement with fast walking speed. The comparison indicated a high level of compatibility between the experimental and predicted results, except for the vertical position of the center of gravity (COG). It was concluded that the gait prediction model can be effectively used to predict gait trajectories for higher average velocities.

  11. Validity of the site-averaging approximation for modeling the dissociative chemisorption of H{sub 2} on Cu(111) surface: A quantum dynamics study on two potential energy surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tianhui; Fu, Bina, E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn; Zhang, Dong H., E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn

    A new finding of the site-averaging approximation was recently reported on the dissociative chemisorption of the HCl/DCl+Au(111) surface reaction [T. Liu, B. Fu, and D. H. Zhang, J. Chem. Phys. 139, 184705 (2013); T. Liu, B. Fu, and D. H. Zhang, J. Chem. Phys. 140, 144701 (2014)]. Here, in order to investigate the dependence of new site-averaging approximation on the initial vibrational state of H{sub 2} as well as the PES for the dissociative chemisorption of H{sub 2} on Cu(111) surface at normal incidence, we carried out six-dimensional quantum dynamics calculations using the initial state-selected time-dependent wave packet approach, withmore » H{sub 2} initially in its ground vibrational state and the first vibrational excited state. The corresponding four-dimensional site-specific dissociation probabilities are also calculated with H{sub 2} fixed at bridge, center, and top sites. These calculations are all performed based on two different potential energy surfaces (PESs). It is found that the site-averaging dissociation probability over 15 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability for H{sub 2} (v = 0) and (v = 1) on the two PESs.« less

  12. Predicting Risk of Motor Vehicle Collisions in Patients with Glaucoma: A Longitudinal Study.

    PubMed

    Gracitelli, Carolina P B; Tatham, Andrew J; Boer, Erwin R; Abe, Ricardo Y; Diniz-Filho, Alberto; Rosen, Peter N; Medeiros, Felipe A

    2015-01-01

    To evaluate the ability of longitudinal Useful Field of View (UFOV) and simulated driving measurements to predict future occurrence of motor vehicle collision (MVC) in drivers with glaucoma. Prospective observational cohort study. 117 drivers with glaucoma followed for an average of 2.1 ± 0.5 years. All subjects had standard automated perimetry (SAP), UFOV, driving simulator, and cognitive assessment obtained at baseline and every 6 months during follow-up. The driving simulator evaluated reaction times to high and low contrast peripheral divided attention stimuli presented while negotiating a winding country road, with central driving task performance assessed as "curve coherence". Drivers with MVC during follow-up were identified from Department of Motor Vehicle records. Survival models were used to evaluate the ability of driving simulator and UFOV to predict MVC over time, adjusting for potential confounding factors. Mean age at baseline was 64.5 ± 12.6 years. 11 of 117 (9.4%) drivers had a MVC during follow-up. In the multivariable models, low contrast reaction time was significantly predictive of MVC, with a hazard ratio (HR) of 2.19 per 1 SD slower reaction time (95% CI, 1.30 to 3.69; P = 0.003). UFOV divided attention was also significantly predictive of MVC with a HR of 1.98 per 1 SD worse (95% CI, 1.10 to 3.57; P = 0.022). Global SAP visual field indices in the better or worse eye were not predictive of MVC. The longitudinal model including driving simulator performance was a better predictor of MVC compared to UFOV (R2 = 0.41 vs R2 = 0.18). Longitudinal divided attention metrics on the UFOV test and during simulated driving were significantly predictive of risk of MVC in glaucoma patients. These findings may help improve the understanding of factors associated with driving impairment related to glaucoma.

  13. Optimal multisensory decision-making in a reaction-time task.

    PubMed

    Drugowitsch, Jan; DeAngelis, Gregory C; Klier, Eliana M; Angelaki, Dora E; Pouget, Alexandre

    2014-06-14

    Humans and animals can integrate sensory evidence from various sources to make decisions in a statistically near-optimal manner, provided that the stimulus presentation time is fixed across trials. Little is known about whether optimality is preserved when subjects can choose when to make a decision (reaction-time task), nor when sensory inputs have time-varying reliability. Using a reaction-time version of a visual/vestibular heading discrimination task, we show that behavior is clearly sub-optimal when quantified with traditional optimality metrics that ignore reaction times. We created a computational model that accumulates evidence optimally across both cues and time, and trades off accuracy with decision speed. This model quantitatively explains subjects's choices and reaction times, supporting the hypothesis that subjects do, in fact, accumulate evidence optimally over time and across sensory modalities, even when the reaction time is under the subject's control.

  14. Inmunohistochemical detection of mastocytes in tissue from patients with actinic prurigo

    PubMed Central

    Martínez-Luna, Eduwiges; Bologna-Molina, Ronell; Mosqueda-Taylor, Adalberto; Cuevas-González, Juan-Carlos; Rodríguez-Lobato, Erika; Martínez-Velasco, María-Abril

    2015-01-01

    Background Actinic prurigo (AP) is a type of photodermatosis, the pathophysiology of which has not been determined. AP has been suggested to be a hypersensitivity reaction to the presence of eosinophils and the local production of IgE. Material and Methods Descriptive study, using paraffin blocks of tissue that have been diagnosed with AP from the Dermopathology department, Hospital General Dr. Manuel Gea González. In 66 blocks from 63 patients, eosinophils were identified by hematoxylin and eosin staining, and mastocytes were labeled by immunohistochemistry. Three random microphotographs (40x) were used, and cell counts were calculated as the mean count in the 3 microphotographs. Results Forty cases (63.5%) were female, and 23 (36.5%) were male. The mean age was 26.49 ±14.09 years; regarding the evolution time of the disease, the average was 11.93 years ±11.39. In 38 of 63 cases (60%), the lip, skin, and conjunctiva were affected clinically. In 22 of 63 cases (34%), AP cheilitis was the sole manifestation, and in 4 of 63 cases (6%), there were lesions in the skin and conjunctiva. The mean eosinophil count was 9 per case, the average number of mastocytes/field was 28.48 (range 0 to 66) Kruskal-Wallis p=0.001. Conclusions There are elements in AP that mediate the reaction of hypersensitivity type IV b, necessitating the identification of triggering factors. Key words:Actinic prurigo, eosinophil, hypersensitivity IV b, IgE, mastocytes. PMID:26644844

  15. Micronization, characterization and in-vitro dissolution of shellac from PGSS supercritical CO2 technique.

    PubMed

    Labuschagne, Philip W; Naicker, Brendon; Kalombo, Lonji

    2016-02-29

    The purpose of this investigation was to determine whether shellac, a naturally occurring material with enteric properties, could be processed in supercritical CO2 (sc-CO2) using the particles from gas saturated solution (PGSS) process and how process parameters affect the physico-chemical properties of shellac. In-situ attenuated total reflection fourier transform infra-red (ATR-FTIR) spectroscopy showed that CO2 dissolves in shellac with solubility reaching a maximum of 13% (w/w) at 300 bar pressure and 40 °C and maximum swelling of 28%. The solubility of sc-CO2 in shellac allowed for the formation of porous shellac structures of which the average pore diameter and pore density could be controlled by adjustment of operating pressure and temperature. In addition, it was possible to produce shellac microparticles ranging in average diameter from 180 to 300 μm. It was also shown that processing shellac in sc-CO2 resulted in accelerated esterification reactions, potentially limiting the extent of post-processing "ageing" and thus greater stability. Due to additional hydrolysis reactions enhanced by the presence of sc-CO2, the solubility of shellac at pH 7.5 was increased by between 4 and 7 times, while dissolution rates were also increased. It was also shown that the in-vitro dissolution profiles of shellac could be modified by slight adjustment in operating temperatures. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Correlation of Periodontal Disease With Inflammatory Arthritis in the Time Before Modern Medical Intervention.

    PubMed

    Rothschild, Bruce

    2017-03-01

    Controversy exists regarding possible correlation of periodontal disease with rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Confounding factors may relate to stringency of inflammatory disease diagnosis and the effect of therapeutic intervention for RA on periodontal disease. These factors are investigated in this study. Forty-five individuals with documented RA (n = 15), spondyloarthropathy (n = 15), and calcium pyrophosphate deposition disease (CPPD) (n = 15), from the Hamann-Todd collection of human skeletons compiled from 1912 to 1938, and 15 individuals contemporarily incorporated in the collection were examined for tooth loss, cavity occurrence, average and maximum lingual and buccal depth of space between tooth and bone, periosteal reaction, serpentine bone resorption, abscess formation, and root penetration of the bone surface and analyzed by analysis of variance. Tooth loss was common, but actual number of teeth lost, cavity occurrence, average and maximum lingual and buccal depth of space between tooth and bone, periosteal reaction, serpentine grooving surrounding teeth (considered a sign of inflammation), abscess formation, and root exposure (penetration of bone surface) were indistinguishable among controls and individuals with RA, spondyloarthropathy, and CPPD. Although many factors can affect periodontal disease, presence of inflammatory arthritis does not appear to be one of them. The implication is that dental disease was common in the general population and not necessarily associated with arthritis, at least before the advent of modern rheumatologic medications. As specific diagnosis did not affect prevalence, perhaps current prevalence controversy may relate to current intervention, a subject for further study.

  17. No Evidence of Reaction Time Slowing in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Ferraro, F. Richard

    2016-01-01

    A total of 32 studies comprising 238 simple reaction time and choice reaction time conditions were examined in individuals with autism spectrum disorder (n?=?964) and controls (n?=?1032). A Brinley plot/multiple regression analysis was performed on mean reaction times, regressing autism spectrum disorder performance onto the control performance as…

  18. CPAP Adherence is Associated With Attentional Improvements in a Group of Primarily Male Patients With Moderate to Severe OSA.

    PubMed

    Deering, Sean; Liu, Lin; Zamora, Tania; Hamilton, Joanne; Stepnowsky, Carl

    2017-12-15

    Obstructive sleep apnea (OSA) is a widespread condition that adversely affects physical health and cognitive functioning. The prevailing treatment for OSA is continuous positive airway pressure (CPAP), but therapeutic benefits are dependent on consistent use. Our goal was to investigate the relationship between CPAP adherence and measures of sustained attention in patients with OSA. Our hypothesis was that the Psychomotor Vigilance Task (PVT) would be sensitive to attention-related improvements resulting from CPAP use. This study was a secondary analysis of a larger clinical trial. Treatment adherence was determined from CPAP use data. Validated sleep-related questionnaires and a sustained-attention and alertness test (PVT) were administered to participants at baseline and at the 6-month time point. Over a 6-month time period, the average CPAP adherence was 3.32 h/night (standard deviation [SD] = 2.53), average improvement in PVT minor lapses was -4.77 (SD = 13.2), and average improvement in PVT reaction time was -73.1 milliseconds (standard deviation = 211). Multiple linear regression analysis showed that higher CPAP adherence was significantly associated with a greater reduction in minor lapses in attention after 6 months of continuous treatment with CPAP therapy (β = -0.72, standard error = 0.34, P = .037). The results of this study showed that higher levels of CPAP adherence were associated with significant improvements in vigilance. Because the PVT is a performance-based measure that is not influenced by prior learning and is not subjective, it may be an important supplement to patient self-reported assessments. Name: Effect of Self-Management on Improving Sleep Apnea Outcomes, URL: https://clinicaltrials.gov/ct2/show/NCT00310310, Identifier: NCT00310310. © 2017 American Academy of Sleep Medicine

  19. Neuroticism Combined With Slower and More Variable Reaction Time: Synergistic Risk Factors for 7-Year Cognitive Decline in Females

    PubMed Central

    Shickle, Darren A.; Roberts, Beverly A.; Deary, Ian J.

    2012-01-01

    Objective. Among adults, slower and more variable reaction times are associated with worse cognitive function and increased mortality risk. Therefore, it is important to elucidate risk factors for reaction time change over the life course. Method. Data from the Health and Lifestyle Survey (HALS) were used to examine predictors of 7-year decline in reaction time (N = 4,260). Regression-derived factor scores were used to summarize general change across 4 reaction time variables: simple mean, 4-choice mean, simple variability, and 4-choice variability (53.52% of variance). Results. Age (B = .02, p < .001) and HALS1 baseline reaction time (B = −.10, p = .001) were significant risk factors for males (N = 1,899). In addition to these variables, in females (N = 2,361), neuroticism was significant and interacted synergistically with baseline reaction time (B = .06, p = .04). Adjustment for physiological variables explained the interaction with neuroticism, suggesting that candidate mechanisms had been identified. Discussion. A priority for future research is to replicate interactions between personality and reaction time in other samples and find specific mechanisms. Stratification of population data on cognitive health by personality and reaction time could improve strategies for identifying those at greater risk of cognitive decline. PMID:22367712

  20. [Reaction time of drivers who caused road traffic accidents].

    PubMed

    Durić, Predrag; Filipović, Danka

    2009-01-01

    Human factor is the single cause of road traffic injuries in 57%, and together with other factors in more than 90% of all road traffic accidents. Human factor includes many aspects, where reaction time is very important. Thirty healthy drivers 28-40 y.o. with 50-500 km passed per week, having caused at least one road traffic accident in the last ten years were selected, provided they were not under the influence of alcohol and drugs during traffic accident. The same number of control were selected. Both cases and controls were tested to reaction time. We found statistically significant difference between car drivers who caused car accidents and those who did not in both simple and choice reaction times. Car drivers who caused road traffic accidents have longer reaction time (both simple and choice reaction time), but as the tasks were more complex, that difference was less visible. Since drivers involved in this study had introductory phase before measuring their reaction times, they faced with unpleasant sound when they made mistake, which forced them to be aware not to make a mistake in further tasks, so they showed longer reaction times. Measuring of reaction time seems to be important, and as we have showed they are different in drivers who have caused road traffic accidents and those who have do not.

  1. 21 CFR 178.3860 - Release agents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-octadecylcarbamate) (CAS Reg. No. 70892-21-6) produced by the reaction between stoichiometrically equivalent amounts of octadecyl isocyanate and vinyl alcohol/vinyl acetate copolymer; minimum average molecular weight...

  2. SCScore: Synthetic Complexity Learned from a Reaction Corpus.

    PubMed

    Coley, Connor W; Rogers, Luke; Green, William H; Jensen, Klavs F

    2018-02-26

    Several definitions of molecular complexity exist to facilitate prioritization of lead compounds, to identify diversity-inducing and complexifying reactions, and to guide retrosynthetic searches. In this work, we focus on synthetic complexity and reformalize its definition to correlate with the expected number of reaction steps required to produce a target molecule, with implicit knowledge about what compounds are reasonable starting materials. We train a neural network model on 12 million reactions from the Reaxys database to impose a pairwise inequality constraint enforcing the premise of this definition: that on average, the products of published chemical reactions should be more synthetically complex than their corresponding reactants. The learned metric (SCScore) exhibits highly desirable nonlinear behavior, particularly in recognizing increases in synthetic complexity throughout a number of linear synthetic routes.

  3. Mechanisms of SN2 reactions: insights from a nearside/farside analysis.

    PubMed

    Hennig, Carsten; Schmatz, Stefan

    2015-10-28

    A nearside/farside analysis of differential cross sections has been performed for the complex-forming SN2 reaction Cl(-) + CH3Br → ClCH3 + Br(-). It is shown that for low rotational quantum numbers a direct "nearside" reaction mechanism plays an important role and leads to anisotropic differential cross sections. For high rotational quantum numbers, indirect mechanisms via a long-lived intermediate complex are prevalent (independent of a nearside/farside configuration), leading to isotropic cross sections. Quantum mechanical interference can be significant at specific energies or angles. Averaging over energies and angles reveals that the nearside/farside decomposition in a semiclassical interpretation can reasonably account for the analysis of the reaction mechanism.

  4. Ozone reaction with interior building materials: Influence of diurnal ozone variation, temperature and humidity

    NASA Astrophysics Data System (ADS)

    Rim, Donghyun; Gall, Elliott T.; Maddalena, Randy L.; Nazaroff, William W.

    2016-01-01

    Elevated tropospheric ozone concentrations are associated with increased morbidity and mortality. Indoor ozone chemistry affects human exposure to ozone and reaction products that also may adversely affect health and comfort. Reactive uptake of ozone has been characterized for many building materials; however, scant information is available on how diurnal variation of ambient ozone influences ozone reaction with indoor surfaces. The primary objective of this study is to investigate ozone-surface reactions in response to a diurnally varying ozone exposure for three common building materials: ceiling tile, painted drywall, and carpet tile. A secondary objective is to examine the effects of air temperature and humidity. A third goal is to explore how conditioning of materials in an occupied office building might influence subsequent ozone-surface reactions. Experiments were performed at bench-scale with inlet ozone concentrations varied to simulate daytime (ozone elevated) and nighttime (ozone-free in these experiments) periods. To simulate office conditions, experiments were conducted at two temperatures (22 °C and 28 °C) and three relative humidity values (25%, 50%, 75%). Effects of indoor surface exposures were examined by placing material samples in an occupied office and repeating bench-scale characterization after exposure periods of 1 and 2 months. Deposition velocities were observed to be highest during the initial hour of ozone exposure with slow decrease in the subsequent hours of simulated daytime conditions. Daily-average ozone reaction probabilities for fresh materials are in the respective ranges of (1.7-2.7) × 10-5, (2.8-4.7) × 10-5, and (3.0-4.5) × 10-5 for ceiling tile, painted drywall, and carpet tile. The reaction probability decreases by 7%-47% across the three test materials after two 8-h periods of ozone exposure. Measurements with the samples from an occupied office reveal that deposition velocity can decrease or increase with time. Influence of temperature and humidity on ozone-surface reactivity was not strong.

  5. Mining adverse drug reactions from online healthcare forums using hidden Markov model.

    PubMed

    Sampathkumar, Hariprasad; Chen, Xue-wen; Luo, Bo

    2014-10-23

    Adverse Drug Reactions are one of the leading causes of injury or death among patients undergoing medical treatments. Not all Adverse Drug Reactions are identified before a drug is made available in the market. Current post-marketing drug surveillance methods, which are based purely on voluntary spontaneous reports, are unable to provide the early indications necessary to prevent the occurrence of such injuries or fatalities. The objective of this research is to extract reports of adverse drug side-effects from messages in online healthcare forums and use them as early indicators to assist in post-marketing drug surveillance. We treat the task of extracting adverse side-effects of drugs from healthcare forum messages as a sequence labeling problem and present a Hidden Markov Model(HMM) based Text Mining system that can be used to classify a message as containing drug side-effect information and then extract the adverse side-effect mentions from it. A manually annotated dataset from http://www.medications.com is used in the training and validation of the HMM based Text Mining system. A 10-fold cross-validation on the manually annotated dataset yielded on average an F-Score of 0.76 from the HMM Classifier, in comparison to 0.575 from the Baseline classifier. Without the Plain Text Filter component as a part of the Text Processing module, the F-Score of the HMM Classifier was reduced to 0.378 on average, while absence of the HTML Filter component was found to have no impact. Reducing the Drug names dictionary size by half, on average reduced the F-Score of the HMM Classifier to 0.359, while a similar reduction to the side-effects dictionary yielded an F-Score of 0.651 on average. Adverse side-effects mined from http://www.medications.com and http://www.steadyhealth.com were found to match the Adverse Drug Reactions on the Drug Package Labels of several drugs. In addition, some novel adverse side-effects, which can be potential Adverse Drug Reactions, were also identified. The results from the HMM based Text Miner are encouraging to pursue further enhancements to this approach. The mined novel side-effects can act as early indicators for health authorities to help focus their efforts in post-marketing drug surveillance.

  6. Importance of Unimolecular HO 2 Elimination in the Heterogeneous OH Reaction of Highly Oxygenated Tartaric Acid Aerosol

    DOE PAGES

    Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R.

    2016-07-09

    Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this paper investigates the OH-radical initiated oxidation of aqueous tartaric acid (C 4H 6O 6) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysis in Real Time)more » coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C 4 functionalization product (C 4H 4O 6) and three C 3 fragmentation products (C 3H 4O 4, C 3H 2O 4, and C 3H 2O 5). The C 4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO 2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C 4H 4O 6), the major reaction product. While in general, C–C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OS C), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OS C = 1.5). Finally, these results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms.« less

  7. Solvent Reaction Field Potential inside an Uncharged Globular Protein: A Bridge between Implicit and Explicit Solvent Models?

    PubMed Central

    Baker, Nathan A.; McCammon, J. Andrew

    2008-01-01

    The solvent reaction field potential of an uncharged protein immersed in Simple Point Charge/Extended (SPC/E) explicit solvent was computed over a series of molecular dynamics trajectories, intotal 1560 ns of simulation time. A finite, positive potential of 13 to 24 kbTec−1 (where T = 300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0 Å from the solute surface, on average 0.008 ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit-solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99. PMID:17949217

  8. Single-molecule enzymology based on the principle of the Millikan oil drop experiment.

    PubMed

    Leiske, Danielle L; Chow, Andrea; Dettloff, Roger; Farinas, Javier

    2014-03-01

    The ability to monitor the progress of single-molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan oil drop experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single-enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions that result in a change in substrate charge, polymerization on a single DNA template was detected. A custom oligonucleotide was synthesized that allowed for the attachment of single DNA templates to gold nanoparticles with a single polymer tether. The nanoparticles were then tethered to the surface of a microfluidic channel where the positions of the nanoparticles, subjected to an oscillating electric field, were monitored using dark field microscopy. With short averaging times, the signal-to-noise level was low enough to discriminate changes in charge of less than 1.2%. Polymerization of a long DNA template demonstrated the ability to use the system to monitor single-molecule enzymatic activity. Finally, nanoparticle surfaces were modified with thiolated moieties to reduce and/or shield the number of unproductive charges and allow for improved sensitivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Single-Molecule Enzymology Based On The Principle Of The Millikan Oil Drop Experiment

    PubMed Central

    Leiske, Danielle L.; Chow, Andrea; Dettloff, Roger; Farinas, Javier

    2014-01-01

    The ability to monitor the progress of single molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan Oil Drop Experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions which result in a change in substrate charge, polymerization on a single DNA template was detected. A custom oligonucleotide was synthesized which allowed for the attachment of single DNA templates to gold nanoparticles with a single polymer tether. The nanoparticles were then tethered to the surface of a microfluidic channel where the positions of the nanoparticles, subjected to an oscillating electric field, were monitored using darkfield microscopy. With short averaging times, the signal-to-noise level was low enough to discriminate changes in charge of less than 1.2%. Polymerization of a long DNA template demonstrated the ability to use the system to monitor single molecule enzymatic activity. Finally, nanoparticle surfaces were modified with thiolated moieties in order to reduce and/or shield the number of unproductive charges and allow for improved sensitivity. PMID:24291542

  10. Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry.

    PubMed

    Maclean, Brendan; Tomazela, Daniela M; Abbatiello, Susan E; Zhang, Shucha; Whiteaker, Jeffrey R; Paulovich, Amanda G; Carr, Steven A; Maccoss, Michael J

    2010-12-15

    Proteomics experiments based on Selected Reaction Monitoring (SRM, also referred to as Multiple Reaction Monitoring or MRM) are being used to target large numbers of protein candidates in complex mixtures. At present, instrument parameters are often optimized for each peptide, a time and resource intensive process. Large SRM experiments are greatly facilitated by having the ability to predict MS instrument parameters that work well with the broad diversity of peptides they target. For this reason, we investigated the impact of using simple linear equations to predict the collision energy (CE) on peptide signal intensity and compared it with the empirical optimization of the CE for each peptide and transition individually. Using optimized linear equations, the difference between predicted and empirically derived CE values was found to be an average gain of only 7.8% of total peak area. We also found that existing commonly used linear equations fall short of their potential, and should be recalculated for each charge state and when introducing new instrument platforms. We provide a fully automated pipeline for calculating these equations and individually optimizing CE of each transition on SRM instruments from Agilent, Applied Biosystems, Thermo-Scientific and Waters in the open source Skyline software tool ( http://proteome.gs.washington.edu/software/skyline ).

  11. A fluorescence-based alkaline phosphatase-coupled polymerase assay for identification of inhibitors of dengue virus RNA-dependent RNA polymerase.

    PubMed

    Niyomrattanakit, Pornwaratt; Abas, Siti Nurdiana; Lim, Chin Chin; Beer, David; Shi, Pei-Yong; Chen, Yen-Liang

    2011-02-01

    The flaviviral RNA-dependent RNA polymerase (RdRp) is an attractive drug target. To discover new inhibitors of dengue virus RdRp, the authors have developed a fluorescence-based alkaline phosphatase-coupled polymerase assay (FAPA) for high-throughput screening (HTS). A modified nucleotide analogue (2'-[2-benzothiazoyl]-6'-hydroxybenzothiazole) conjugated adenosine triphosphate (BBT-ATP) and 3'UTR-U(30) RNA were used as substrates. After the polymerase reaction, treatment with alkaline phosphatase liberates the BBT fluorophore from the polymerase reaction by-product, BBT(PPi), which can be detected at excitation and emission wavelengths of 422 and 566 nm, respectively. The assay was evaluated by examining the time dependency, assay reagent effects, reaction kinetics, and signal stability and was validated with 3'dATP and an adenosine-nucleotide triphosphate inhibitor, giving IC(50) values of 0.13 µM and 0.01 µM, respectively. A pilot screen of a diverse compound library of 40,572 compounds at 20 µM demonstrated good performance with an average Z factor of 0.81. The versatility and robustness of FAPA were evaluated with another substrate system, BBT-GTP paired with 3'UTR-C(30) RNA. The FAPA method presented here can be readily adapted for other nucleotide-dependent enzymes that generate PPi.

  12. One-step synthesis and characterization of polyaniline nanofiber/silver nanoparticle composite networks as antibacterial agents.

    PubMed

    Poyraz, Selcuk; Cerkez, Idris; Huang, Tung Shi; Liu, Zhen; Kang, Litao; Luo, Jujie; Zhang, Xinyu

    2014-11-26

    Through a facile and effective seeding polymerization reaction via a one-step redox/complexation process, which took place in aqueous medium at ambient temperature, silver nanoparticles (Ag NPs) embedded polyaniline nanofiber (PANI NF) networks were synthesized as antibacterial agents. During the reaction, not only NF morphology formation of the resulting conducting polymers (CPs) but also amplification of the aqueous silver nitrate (AgNO3) solutions' oxidative potentials were managed by vanadium pentoxide (V2O5) sol-gel nanofibers, which acted as well-known nanofibrous seeding agents and the auxiliary oxidative agent at the same time. The PANI/Ag nanocomposites were proven to exhibit excellent antibacterial property against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Antibacterial property performance and average life span of the nanocomposite network were optimized through the homogeneous distribution/embedment of Ag NPs within one-dimensional (1-D) PANI NF matrix. The antibacterial efficacy tests and nanocomposite material characterization results further indicated that the sole components of PANI/Ag have a synergistic effect to each other in terms of antibacterial property. Thus, this well-known catalytic seeding approach via a one-step oxidative polymerization reaction can be considered as a general methodology and a substantial fabrication tool to synthesize Ag NP decorated nanofibrillar PANI networks as advanced antibacterial agents.

  13. Solvent reaction field potential inside an uncharged globular protein: A bridge between implicit and explicit solvent models?

    NASA Astrophysics Data System (ADS)

    Cerutti, David S.; Baker, Nathan A.; McCammon, J. Andrew

    2007-10-01

    The solvent reaction field potential of an uncharged protein immersed in simple point charge/extended explicit solvent was computed over a series of molecular dynamics trajectories, in total 1560ns of simulation time. A finite, positive potential of 13-24 kbTec-1 (where T =300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0Å from the solute surface, on average 0.008ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99.

  14. Real-time PCR detection and quantification of nine potential sources of fecal contamination by analysis of mitochondrial Cytochrome b targets

    USGS Publications Warehouse

    Schill, W.B.; Mathes, M.V.

    2008-01-01

    We designed and tested real-time PCR probe/primer sets to detect and quantify Cytochrome b sequences of mitochondrial DNA (mtDNA) from nine vertebrate species of pet (dog), farm (cow, chicken, sheep, horse, pig), wildlife (Canada goose, white-tailed deer), and human. Linear ranges of the assays were from 101 to 108 copies/??l. To formally test the performance of the assays, twenty blinded fecal suspension samples were analyzed by real-time PCR to identify the source of the feces. Sixteen of the twenty samples were correctly and unambiguously identified. Average sensitivity was calculated to be 0.850, while average specificity was found to be 0.994. One beef cow sample was not detected, but mtDNA from 11 other beef cattle of both sexes and varying physiological states was found in concentrations similar (3.45 ?? 107 copies/g) to thatfound in human feces (1.1 ?? 107 copies/g). Thus, environmental conditions and sample handling are probably important factors for successful detection of fecal mtDNA. When sewage samples were analyzed, only human mtDNA (7.2 ?? 104 copies/100 mL) was detected. With a detection threshold of 250 copies/reaction, an efficient concentration and purification method resulted in a final detection limit for human feces of 1.8 mg/100 mL water.

  15. Reaction Event Counting Statistics of Biopolymer Reaction Systems with Dynamic Heterogeneity.

    PubMed

    Lim, Yu Rim; Park, Seong Jun; Park, Bo Jung; Cao, Jianshu; Silbey, Robert J; Sung, Jaeyoung

    2012-04-10

    We investigate the reaction event counting statistics (RECS) of an elementary biopolymer reaction in which the rate coefficient is dependent on states of the biopolymer and the surrounding environment and discover a universal kinetic phase transition in the RECS of the reaction system with dynamic heterogeneity. From an exact analysis for a general model of elementary biopolymer reactions, we find that the variance in the number of reaction events is dependent on the square of the mean number of the reaction events when the size of measurement time is small on the relaxation time scale of rate coefficient fluctuations, which does not conform to renewal statistics. On the other hand, when the size of the measurement time interval is much greater than the relaxation time of rate coefficient fluctuations, the variance becomes linearly proportional to the mean reaction number in accordance with renewal statistics. Gillespie's stochastic simulation method is generalized for the reaction system with a rate coefficient fluctuation. The simulation results confirm the correctness of the analytic results for the time dependent mean and variance of the reaction event number distribution. On the basis of the obtained results, we propose a method of quantitative analysis for the reaction event counting statistics of reaction systems with rate coefficient fluctuations, which enables one to extract information about the magnitude and the relaxation times of the fluctuating reaction rate coefficient, without a bias that can be introduced by assuming a particular kinetic model of conformational dynamics and the conformation dependent reactivity. An exact relationship is established between a higher moment of the reaction event number distribution and the multitime correlation of the reaction rate for the reaction system with a nonequilibrium initial state distribution as well as for the system with the equilibrium initial state distribution.

  16. Modeling deflagration waves out of hot spots

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2017-01-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.

  17. On similarity of various reactor spectra and 235U prompt fission neutron spectrum.

    PubMed

    Košťál, Michal; Matěj, Zdeněk; Losa, Evžen; Huml, Ondřej; Štefánik, Milan; Cvachovec, František; Schulc, Martin; Jánský, Bohumil; Novák, Evžen; Harutyunyan, Davit; Rypar, Vojtěch

    2018-05-01

    A well-defined neutron spectrum is an essential tool not only for calibration and testing of neutron detectors used in dosimetry and spectroscopy but also for validation and verification of evaluated cross sections. A new evaluation of thermal-neutron induced 235 U PFNS was performed by the International Atomic Energy Agency (IAEA) in the CIELO (Collaborative International Evaluated Library Organisation Project) project; new measurements of Spectral Averaged Cross sections averaged in the evaluated spectrum are to be obtained. In general, a neutron spectrum in the core is not identical to the pure fission one because fission neutrons undergo many scattering reactions, but it can be shown that PFNS and reactor spectra become undistinguishable from a certain energy boundary. This limit is important for experiments, because when the studied reaction threshold is over this limit, the spectral averaged cross sections in PFNS can be derived from the measured reactions in the reactor core. The evaluation of the neutron spectrum measurements in three different thermal-reactor cores shows that this lower limit is around the energy of 5.5 - 6 MeV. Above this energy the reactor spectra becomes identical with the 235 U PFNS. IAEA CIELO PFNS is within 5% of the measured PFNS from 10 to 14 MeV in a LR-0 reactor, while ENDF/B-VII evaluated PFNS underestimated measured neutron spectra. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Statistical Model Analysis of (n,p) Cross Sections and Average Energy For Fission Neutron Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odsuren, M.; Khuukhenkhuu, G.

    2011-06-28

    Investigation of charged particle emission reaction cross sections for fast neutrons is important to both nuclear reactor technology and the understanding of nuclear reaction mechanisms. In particular, the study of (n,p) cross sections is necessary to estimate radiation damage due to hydrogen production, nuclear heating and transmutations in the structural materials of fission and fusion reactors. On the other hand, it is often necessary in practice to evaluate the neutron cross sections of the nuclides for which no experimental data are available.Because of this, we carried out the systematical analysis of known experimental (n,p) and (n,a) cross sections for fastmore » neutrons and observed a systematical regularity in the wide energy interval of 6-20 MeV and for broad mass range of target nuclei. To explain this effect using the compound, pre-equilibrium and direct reaction mechanisms some formulae were deduced. In this paper, in the framework of the statistical model known experimental (n,p) cross sections averaged over the thermal fission neutron spectrum of U-235 are analyzed. It was shown that the experimental data are satisfactorily described by the statistical model. Also, in the case of (n,p) cross sections the effective average neutron energy for fission spectrum of U-235 was found to be around 3 MeV.« less

  19. Moldauer's sum rule as a test of the consistency of transmission coefficients in Hauser Feshbach theory

    NASA Astrophysics Data System (ADS)

    Brown, David; Nobre, Gustavo; Herman, Michal

    2017-09-01

    For neutron induced reactions below 20 MeV incident energy, the Unresolved Resonance Region (URR) connects the fast neutron region with the Resolved Resonance Region (RRR). The URR is problematic since resonances are not resolvable experimentally yet the fluctuations in the neutron cross sections play a discernible and technologically important role - the URR in a typical nucleus is in the 100 keV - 2 MeV window where the typical fission spectrum peaks. The URR also represents the transition between R-matrix theory used to describe isolated resonances and Hauser-Feshbach theory which accurately describes the average cross sections. In practice, only average or systematic features of the resonances in the URR are known and are tabulated in evaluations in a nuclear data library such as ENDF/B-VII.1. Here we apply Moldauer's ``sum rule for resonance reactions'' to compute the effective transmission coefficients for reactions in the RRR and URR regions. We compare these to the transmission coefficients used in the fast region in the EMPIRE Hauser-Feshbach code, demonstrating the consistency (or lack thereof) between these different physical regimes. This work suggests a better approach to evaluating the URR average parameters using the results from the fast region modeling. This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-SC0012704 (BNL).

  20. Microwave-Assisted Solvothermal Synthesis of VO2 Hollow Spheres and Their Conversion into V2O5 Hollow Spheres with Improved Lithium Storage Capability.

    PubMed

    Pan, Jing; Zhong, Li; Li, Ming; Luo, Yuanyuan; Li, Guanghai

    2016-01-22

    Monodispersed hierarchically structured V2O5 hollow spheres were successfully obtained from orthorhombic VO2 hollow spheres, which are in turn synthesized by a simple template-free microwave-assisted solvothermal method. The structural evolution of VO2 hollow spheres has been studied and explained by a chemically induced self-transformation process. The reaction time and water content in the reaction solution have a great influence on the morphology and phase structure of the resulting products in the solvothermal reaction. The diameter of the VO2 hollow spheres can be regulated simply by changing vanadium ion content in the reaction solution. The VO2 hollow spheres can be transformed into V2O5 hollow spheres with nearly no morphological change by annealing in air. The nanorods composed of V2O5 hollow spheres have an average length of about 70 nm and width of about 19 nm. When used as a cathode material for lithium-ion batteries, the V2O5 hollow spheres display a diameter-dependent electrochemical performance, and the 440 nm hollow spheres show the highest specific discharge capacity of 377.5 mAhg(-1) at a current density of 50 mAg(-1) , and are better than the corresponding solid spheres and nanorod assemblies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. In situ pH within particle beds of bioactive glasses.

    PubMed

    Zhang, Di; Hupa, Mikko; Hupa, Leena

    2008-09-01

    The in vitro behavior of three bioactive glasses with seven particle size distributions was studied by measuring the in situ pH inside the particle beds for 48h in simulated body fluid (SBF). After immersion, the surface of the particles was characterized with a field emission scanning electron microscope equipped with an energy-dispersive X-ray analyzer. In addition, the results were compared with the reactions of the same glasses formed as plates. A similar trend in pH as a function of immersion time was observed for all systems. However, the pH inside the particle beds was markedly higher than that in the bulk SBF of the plates. The pH decreased as power functions with increasing particle size, i.e. with decreasing surface area. The in vitro reactivity expressed as layer formation strongly depended on the particle size and glass composition. The average thickness of the total reaction layer decreased with the increase in sample surface area. Well-developed silica and calcium phosphate layers typically observed on glass plates could be detected only on some particles freely exposed to the solution. No distinct reaction layers were observed on the finest particles, possibly because the layers spread out on the large surface area. Differences in the properties of the bulk SBF and the solution inside the particle bed were negligible for particles larger than 800microm. The results enhance our understanding of the in vitro reactions of bioactive glasses in various product forms and sizes.

  2. Computer-assisted automatic synthesis II. Development of a fully automated apparatus for preparing substituted N–(carboxyalkyl)amino acids

    PubMed Central

    Hayashi, Nobuyoshi; Sugawara, Tohru; Shintani, Motoaki; Kato, Shinji

    1989-01-01

    A versatile automated apparatus, equipped with an artificial intelligence has been developed which may be used to prepare and isolate a wide variety of compounds. The prediction of the optimum reaction conditions and the reaction control in real time, are accomplished using novel kinetic equations and substituent effects in an artificial intelligence software which has already reported [1]. This paper deals with the design and construction of the fully automated system, and its application to the synthesis of a substituted N-(carboxyalkyl)amino acid. The apparatus is composed of units for perfoming various tasks, e.g. reagent supply, reaction, purification and separation, each linked to a control system. All synthetic processes including washing and drying of the apparatus after each synthetic run were automatically performed from the mixing of the reactants to the isolation of the products as powders with purities of greater than 98%. The automated apparatus has been able to run for 24 hours per day, and the average rate of synthesis of substituted N-(carboxyalkyl)amino acids has been three compounds daily. The apparatus is extremely valuable for synthesizing many derivatives of one particular compound structure. Even if the chemical yields are low under the optimum conditions, it is still possible to obtain a sufficient amount of the desired product by repetition of the reaction. Moreover it was possible to greatly reduce the manual involvement of the many syntheses which are a necessary part of pharmaceutical research. PMID:18924679

  3. Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor

    NASA Astrophysics Data System (ADS)

    Sadanandan, R.; Stöhr, M.; Meier, W.

    2008-03-01

    In highly turbulent environments, combustion is strongly influenced by the effects of turbulence chemistry interactions. Simultaneous measurement of the flow field and flame is, therefore, obligatory for a clear understanding of the underlying mechanisms. In the current studies simultaneous PIV and OH-PLIF measurements were conducted in an enclosed gas turbine model combustor for investigating the influence of turbulence on local flame characteristics. The swirling CH4/air flame that was investigated had a thermal power of 10.3 kW with an overall equivalence ratio of ϕ=0.75 and exhibited strong thermoacoustic oscillations at a frequency of approximately 295 Hz. The measurements reveal the formation of reaction zones at regions where hot burned gas from the recirculation zones mixes with the fresh fuel/air mixture at the nozzle exit. However, this does not seem to be a steady phenomenon as there always exist regions where the mixture has failed to ignite, possibly due to the high local strain rates present, resulting in small residence time available for a successful kinetic runaway to take place. The time averaged PIV images showed flow fields typical of enclosed swirl burners, namely a big inner recirculation zone and a small outer recirculation zone. However, the instantaneous images show the existence of small vortical structures close to the shear layers. These small vortical structures are seen playing a vital role in the formation and destruction of reaction zone structures. One does not see a smooth laminar flame front in the instantaneous OH-PLIF images, instead isolated regions of ignition and extinction highlighting the strong interplay between turbulence and chemical reactions.

  4. Assessing Cognitive Performance in Badminton Players: A Reproducibility and Validity Study

    PubMed Central

    van de Water, Tanja; Faber, Irene; Elferink-Gemser, Marije

    2017-01-01

    Abstract Fast reaction and good inhibitory control are associated with elite sports performance. To evaluate the reproducibility and validity of a newly developed Badminton Reaction Inhibition Test (BRIT), fifteen elite (25 ± 4 years) and nine non-elite (24 ± 4 years) Dutch male badminton players participated in the study. The BRIT measured four components: domain-general reaction time, badminton-specific reaction time, domain-general inhibitory control and badminton-specific inhibitory control. Five participants were retested within three weeks on the badminton-specific components. Reproducibility was acceptable for badminton-specific reaction time (ICC = 0.626, CV = 6%) and for badminton-specific inhibitory control (ICC = 0.317, CV = 13%). Good construct validity was shown for badminton-specific reaction time discriminating between elite and non-elite players (F = 6.650, p < 0.05). Elite players did not outscore non-elite players on domain-general reaction time nor on both components of inhibitory control (p > 0.05). Concurrent validity for domain-general reaction time was good, as it was associated with a national ranking for elite (p = 0.70, p < 0.01) and non-elite (p = 0.70, p < 0.05) players. No relationship was found between the national ranking and badminton-specific reaction time, nor both components of inhibitory control (p > 0.05). In conclusion, reproducibility and validity of inhibitory control assessment was not confirmed, however, the BRIT appears a reproducible and valid measure of reaction time in badminton players. Reaction time measured with the BRIT may provide input for training programs aiming to improve badminton players’ performance. PMID:28210347

  5. Assessing Cognitive Performance in Badminton Players: A Reproducibility and Validity Study.

    PubMed

    van de Water, Tanja; Huijgen, Barbara; Faber, Irene; Elferink-Gemser, Marije

    2017-01-01

    Fast reaction and good inhibitory control are associated with elite sports performance. To evaluate the reproducibility and validity of a newly developed Badminton Reaction Inhibition Test (BRIT), fifteen elite (25 ± 4 years) and nine non-elite (24 ± 4 years) Dutch male badminton players participated in the study. The BRIT measured four components: domain-general reaction time, badminton-specific reaction time, domain-general inhibitory control and badminton-specific inhibitory control. Five participants were retested within three weeks on the badminton-specific components. Reproducibility was acceptable for badminton-specific reaction time (ICC = 0.626, CV = 6%) and for badminton-specific inhibitory control (ICC = 0.317, CV = 13%). Good construct validity was shown for badminton-specific reaction time discriminating between elite and non-elite players (F = 6.650, p < 0.05). Elite players did not outscore non-elite players on domain-general reaction time nor on both components of inhibitory control (p > 0.05). Concurrent validity for domain-general reaction time was good, as it was associated with a national ranking for elite (p = 0.70, p < 0.01) and non-elite (p = 0.70, p < 0.05) players. No relationship was found between the national ranking and badminton-specific reaction time, nor both components of inhibitory control (p > 0.05). In conclusion, reproducibility and validity of inhibitory control assessment was not confirmed, however, the BRIT appears a reproducible and valid measure of reaction time in badminton players. Reaction time measured with the BRIT may provide input for training programs aiming to improve badminton players' performance.

  6. Effect of Reaction Developing Training on Audio-Visual Feet Reaction Time in Wrestlers

    ERIC Educational Resources Information Center

    Kaya, Mustafa

    2016-01-01

    Reaction time is one of the most determinative elements for a successful sports performance. The purpose of this study was to investigate the effect of 12-week feet reaction developing trainings upon feet reaction time of females at 11-13 age interval. Volunteer sportsmen between 11 and 13 age interval who were active in Tokat Provincial…

  7. Bilateral asymmetries in max effort single-leg vertical jumps.

    PubMed

    Stephens, Thomas M; Lawson, Brooke R; Reiser, Raoul F

    2005-01-01

    While asymmetries in the lower extremity during jumping may have implications during rehabilitation, it is not clear if healthy subjects should be expected to jump equivalently on each leg. Therefore, the goal of this study was to determine if asymmetries exist in maximal effort single-leg vertical jumps. After obtaining university-approved informed consent, 13 men and 12 women with competitive volleyball playing experience and no injuries of the lower-extremity that would predispose them to asymmetries participated. After thorough warm-up, five maximal effort vertical jumps with countermovement were performed on each leg (random order) with ground reaction forces and lower extremity kinematics recorded. The best three jumps from each leg were analyzed, assigning the leg with the highest jump height average as the dominant side. Asymmetry was assessed by determining statistical significance in the dominant versus non-dominant sides (p < 0.05). A significant interaction existed between side and gender for thigh length and peak vertical ground reaction force. Women had a significantly shorter thigh and men a greater peak vertical ground reaction force on their dominant side. All other parameters were assessed as whole group. Jumps were significantly greater off the dominant leg (2.8 cm on average). No other differences between sides were observed. Significant differences in magnitude (p < 0.05) existed between the men and women in jump height, several anthropometric parameters, minimum ankle and hip angles, and vertical ground reaction forces (peak and average). In conclusion, though a person may jump slightly higher on one leg relative to the other, and women may jump slightly differently than men, the magnitude of the difference should be relatively small and due to the multi-factorial nature of jump performance, individual parameters related to performance may not be consistently different.

  8. The time course of corticospinal excitability during a simple reaction time task.

    PubMed

    Kennefick, Michael; Maslovat, Dana; Carlsen, Anthony N

    2014-01-01

    The production of movement in a simple reaction time task can be separated into two time periods: the foreperiod, which is thought to include preparatory processes, and the reaction time interval, which includes initiation processes. To better understand these processes, transcranial magnetic stimulation has been used to probe corticospinal excitability at various time points during response preparation and initiation. Previous research has shown that excitability decreases prior to the "go" stimulus and increases following the "go"; however these two time frames have been examined independently. The purpose of this study was to measure changes in CE during both the foreperiod and reaction time interval in a single experiment, relative to a resting baseline level. Participants performed a button press movement in a simple reaction time task and excitability was measured during rest, the foreperiod, and the reaction time interval. Results indicated that during the foreperiod, excitability levels quickly increased from baseline with the presentation of the warning signal, followed by a period of stable excitability leading up to the "go" signal, and finally a rapid increase in excitability during the reaction time interval. This excitability time course is consistent with neural activation models that describe movement preparation and response initiation.

  9. Optimization of reaction parameters in hydrothermal synthesis: a strategy towards the formation of CuS hexagonal plates

    PubMed Central

    2013-01-01

    Background For decades, copper sulphide has been renowned as the superior optical and semiconductor materials. Its potential applications can be ranged from solar cells, lithium-ion batteries, sensors, and catalyst systems. The synthesis methodologies of copper sulphide with different controlled morphology have been widely explored in the literature. Nevertheless, the understanding on the formation chemistry of CuS is still limited. The ultimate approach undertaking in this article is to investigate the formation of CuS hexagonal plates via the optimization of reaction parameters in hydrothermal reaction between copper (II) nitrate and sodium thiosulphate without appending any assistant agent. Results Covellite (CuS) hexagonal plates were formed at copper ion: thiosulphate ion (Cu2+:S2O32−) mole ratio of 1:2 under hydrothermal treatment of 155°C for 12 hours. For synthesis conducted at reaction temperature lower than 155°C, copper sulphate (CuSO4), krohnite (NaCu2(SO4)(H2O)2] and cyclooctasulphur (S8) were present as main impurities with covellite (CuS). When Cu2+:S2O32− mole ratio was varied to 1: 1 and 1: 1.5, phase pure plate-like natrochalcite [NaCu2(SO4)(H2O)] and digenite (Cu9S5) were produced respectively. Meanwhile, mixed phases of covellite (CuS) and cyclooctasulphur (S8) were both identified when Cu2+:S2O32− mole ratio was varied to 1: 2.5, 1: 3 and 1: 5 as well as when reaction time was shortened to 1 hour. Conclusions CuS hexagonal plates with a mean edge length of 1 μm, thickness of 100 nm and average crystallite size of approximately (45 ± 2) nm (Scherrer estimation) were successfully synthesized via assisting agent- free hydrothermal method. Under a suitable Cu2+:S2O32− mole ratio, we evidenced that the formation of covellite (CuS) is feasible regardless of the reaction temperature applied. However, a series of impurities were attested with CuS if reaction temperature was not elevated high enough for the additional crystallite phase decomposition. It was also identified that Cu2+:S2O32− mole ratio plays a vital role in controlling the amount of cyclooctasulphur (S8) in the final powder obtained. Finally, reaction time was recognized as an important parameter in impurity decomposition as well as increasing the crystallite size and crystallinity of the CuS hexagonal plates formed. PMID:23575312

  10. A new method for CH3O2 and C2H5O2 radical detection and kinetic studies of the CH3O2 self-reaction in HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)

    NASA Astrophysics Data System (ADS)

    Onel, L. C.; Brennan, A.; Ingham, T.; Kirk, D.; Leggott, A.; Seakins, P. W.; Whalley, L.; Heard, D. E.

    2016-12-01

    Peroxy (RO2) radicals such as methylperoxy (CH3O2) and ethylperoxy (C2H5O2) are significant atmospheric species in the ozone formation in the presence of NO. At low concentrations of NO, the self-reaction of RO2 and RO2 + HO2 are important radical termination reactions. Despite their importance, at present typically only the sum of RO2 is measured in the atmosphere, making no distinction between different RO2 species.A new method has been developed for the direct detection of CH3O2 and C2H5O2 by FAGE (Fluorescence Assay by Gas Expansion) by titrating the peroxy radicals to RO (R = CH3 and C2H5) by reaction with NO and then detecting the resultant RO by laser induced fluorescence. The method has the potential to directly measure atmospheric levels of CH3O2 and potentially other RO2 species. The limit of detection is 3.8 × 108 molecule cm-3 for CH3O2 and 4.9 × 109 molecule cm-3 for C2H5O2 for a signal-to-noise ratio of 2 and a 4 min averaging time. The method has been used for time-resolved monitoring of CH3O2 during its self-reaction within HIRAC at 1 bar and at room temperature to determine a rate coefficient that is lower than the range of the previous results obtained by UV absorption measurements (http://iupac.pole-ether.fr/). A range of products of the CH3O2 self-reaction were also observed for the two reaction channels, (a) leading to formaldehyde and methanol and (b) forming methoxy (CH3O) radicals, over a range of temperatures from 296 - 340 K: CH3O and HO2 radicals (from reaction of CH3O + O2) were monitored by FAGE, formaldehyde was measured by FAGE and FTIR, and methanol was observed by FTIR. Good agreement was observed between the FTIR and FAGE measurements of formaldehyde. Using the concentrations of methanol and formaldehyde, the branching ratios at room temperature have been determined and are in very good agreement with the values recommended by IUPAC. Little temperature dependence of the branching ratios has been observed from 296 K to 340 K.

  11. Structural changes upon excitation of D1-D2-Cyt b559 photosystem II reaction centers depend on the beta-carotene content.

    PubMed

    Losi, Aba; Yruela, Inmaculada; Reus, Michael; Holzwarth, Alfred R; Braslavsky, Silvia E

    2003-07-01

    Different preparations of D1-D2-Cyt b559 complexes from spinach with different beta-carotene (Car) content [on average from <0.5 to 2 per reaction center (RC)] were studied by means of laser-induced optoacoustic spectroscopy. phiP680(+)Pheo(-) does not depend on the preparation (or on the Car content) inasmuch as the magnitude of the prompt heat (produced within 20 ns) does not vary for the different samples upon excitation at 675 and 620 nm. The energy level of the primary charge-separated state, P680(+)Pheo(-), was determined as EP680(+)Pheo(-) = 1.55 eV. Thus, an enthalpy change accompanying charge separation from excited P680 of deltaH*P680Pheo-->P680(+)Pheo(-) = -0.27 eV is obtained. Calculations using the heat evolved during the time-resolved decay of P680(+)Pheo(-) (< or = 100 ns) affords a triplet (3[P680Pheo]) quantum yield phi3[P680Pheo] = 0.5 +/- 0.14. The structural volume change, deltaV1, corresponding to the formation of P680(+)Pheo(-), strongly depends on the Car content; it is ca. -2.5 A3 molecule(-1) for samples with <0.5 Car on average, decreases (in absolute value) to -0.5 +/- 0.2 A3 for samples with an average of 1 Car, and remains the same for samples with two Cars per RC. This suggests that the Car molecules induce changes in the ground-state RC conformation, an idea which was confirmed by preferential excitation of Car with blue light, which produced different carotene triplet lifetimes in samples with 2 Car compared to those containing less carotene. We conclude that the two beta-carotenes are not structurally equivalent. Upon blue-light excitation (480 nm, preferential carotene absorption) the fraction of energy stored is ca. 60% for the 9Chl-2Car sample, whereas it is 40% for the preparations with one or less Cars on average, indicating different paths of energy distribution after Car excitation in these RCs with remaining chlorophyll antennae.

  12. Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis.

    PubMed

    Agins, H J; Alcock, N W; Bansal, M; Salvati, E A; Wilson, P D; Pellicci, P M; Bullough, P G

    1988-03-01

    We conducted extensive histological examination of the tissues that were adjacent to the prosthesis in nine hips that had a failed total arthroplasty. The prostheses were composed of titanium alloy (Ti-6Al-4V) and ultra-high molecular weight polyethylene. The average time that the prosthesis had been in place in the tissue was 33.5 months (range, eleven to fifty-seven months). Seven arthroplasties were revised because of aseptic loosening and two, for infection. In eight hips cement had been used and in one (that had a porous-coated implant for fifty-two months) no cement had been utilized. Intense histiocytic and plasma-cell reaction was noted in the pseudocapsular tissue. There was copious metallic staining of the lining cells. Polyethylene debris and particles of cement with concomitant giant-cell reaction were present in five hips. Atomic absorption spectrophotometry revealed values for titanium of fifty-sic to 3700 micrograms per gram of dry tissue (average, 1047 micrograms per gram; normal, zero microgram per gram), for aluminum of 2.1 to 396 micrograms per gram (average, 115 micrograms per gram; normal, zero micrograms per gram), and for vanadium of 2.9 to 220 micrograms per gram (average, sixty-seven micrograms per gram; normal, 1.2 micrograms per gram). The highest values were found in the hip in which surgical revision was performed at fifty-seven months. The concentrations of the three elements in the soft tissues were similar to those in the metal of the prostheses. The factors to which failure was attributed were: vertical orientation of the acetabular component (five hips), poor cementing technique on the femoral side (three hips), infection (two hips), and separation of a sintered pad made of pure titanium (one hip). A femoral component that is made of titanium alloy can undergo severe wear of the surface and on the stem, where it is loose, with liberation of potentially toxic local concentrations of metal debris into the surrounding tissues. It may contribute to infection and loosening.

  13. Practical development of continuous supercritical fluid process using high pressure and high temperature micromixer

    NASA Astrophysics Data System (ADS)

    Kawasaki, Shin-Ichiro; Sue, Kiwamu; Ookawara, Ryuto; Wakashima, Yuichiro; Suzuki, Akira

    2015-12-01

    In the synthesis of metal oxide fine particles by continuous supercritical hydrothermal method, the particle characteristics are greatly affected by not only the reaction conditions (temperature, pressure, residence time, concentration, etc.), but also the heating rate from ambient to reaction temperature. Therefore, the heating method by direct mixing of starting solution at room temperature with supercritical water is a key technology for the particle production having smaller size and narrow distribution. In this paper, mixing engineering study through comparison between conventional T-shaped mixers and recently developed swirl mixers was carried out in the hydrothermal synthesis of NiO nanoparticles from Ni(NO3)2 aqueous solution at 400 °C and 30 MPa. Inner diameter in the mixers and total flow rates were varied. Furthermore, the heating rate was calculated by computational fluid dynamics (CFD) simulation. Relationship between the heating rate and the average particle size were discussed. It was clarified that the miniaturization of mixer inner diameter and the use of the swirl flow were effective for improving mixing performance and contributed to produce small and narrow distribution particle under same experimental condition of flow rate, temperature, pressure, residence time, and concentration of the starting materials. We have focused the mixer optimization due to a difference in fluid viscosity.

  14. Oil shale combustor model developed by Greek researchers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    Work carried out in the Department of Chemical Engineering at the University of Thessaloniki, Thessaloniki, Greece has resulted in a model for the combustion of retorted oil shale in a fluidized bed combustor. The model is generally applicable to any hot-solids retorting process, whereby raw oil shale is retorted by mixing with a hot solids stream (usually combusted spent shale), and then the residual carbon is burned off the spent shale in a fluidized bed. Based on their modelling work, the following conclusions were drawn by the researchers. (1) For the retorted particle size distribution selected (average particle diameter 1600more » microns) complete carbon conversion is feasible at high pressures (2.7 atmosphere) and over the entire temperature range studied (894 to 978 K). (2) Bubble size was found to have an important effect, especially at conditions where reaction rates are high (high temperature and pressure). (3) Carbonate decomposition increases with combustor temperature and residence time. Complete carbon conversion is feasible at high pressures (2.7 atmosphere) with less than 20 percent carbonate decomposition. (4) At the preferred combustor operating conditions (high pressure, low temperature) the main reaction is dolomite decomposition while calcite decomposition is negligible. (5) Recombination of CO/sub 2/ with MgO occurs at low temperatures, high pressures, and long particle residence times.« less

  15. Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Aircraft Turbine Engines.

    PubMed

    Kilic, Dogushan; Brem, Benjamin T; Klein, Felix; El-Haddad, Imad; Durdina, Lukas; Rindlisbacher, Theo; Setyan, Ari; Huang, Rujin; Wang, Jing; Slowik, Jay G; Baltensperger, Urs; Prevot, Andre S H

    2017-04-04

    Nonmethane organic gas emissions (NMOGs) from in-service aircraft turbine engines were investigated using a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) at an engine test facility at Zurich Airport, Switzerland. Experiments consisted of 60 exhaust samples for seven engine types (used in commercial aviation) from two manufacturers at thrust levels ranging from idle to takeoff. Emission indices (EIs) for more than 200 NMOGs were quantified, and the functional group fractions (including acids, carbonyls, aromatics, and aliphatics) were calculated to characterize the exhaust chemical composition at different engine operation modes. Total NMOG emissions were highest at idling with an average EI of 7.8 g/kg fuel and were a factor of ∼40 lower at takeoff thrust. The relative contribution of pure hydrocarbons (particularly aromatics and aliphatics) of the engine exhaust decreased with increasing thrust while the fraction of oxidized compounds, for example, acids and carbonyls increased. Exhaust chemical composition at idle was also affected by engine technology. Older engines emitted a higher fraction of nonoxidized NMOGs compared to newer ones. Idling conditions dominated ground level organic gas emissions. Based on the EI determined here, we estimate that reducing idle emissions could substantially improve air quality near airports.

  16. Preparation and reactions of an iodinated imidoester reagent with actin and alpha-actinin.

    PubMed

    Bright, G R; Spooner, B S

    1983-06-01

    The chemical iodination of an imidoester (methyl-p-hydroxybenzimidate, Wood et al. (1975) Anal. Biochem. 68, 339) and subsequent coupling of iodinated imidoester (IIE) to protein is an indirect method of iodinating proteins that is specific for the epsilon amino group of lysine residues and maintains the positive charge on the amino group at physiological pH. Purification of the IIE from chloramine-T and free iodine by benzene extraction eliminates the need for isoelectric precipitation and produces a more time- and cost-efficient IIE preparation and purification protocol. The separation of free from protein-bound label by chromatography, using centrifugal elution, provides a separation method that is rapid and efficient, without the generation of large volumes of radioactive wastes characteristic of conventional chromatographic and dialysis methods. To optimize the parameters of labeling protein with IIE, a systematic assessment of the effects of pH, reactant concentrations, and reaction time was made using purified cardiac actin and gizzard alpha-actinin. The parameters were defined to achieve an average labeling ratio of one IIE per protein polypeptide. The data demonstrate that both proteins appear to be labeled at the same rate and define several determining factors that limit the rate and extent of IIE incorporation into protein.

  17. Ground reaction force, spinal kinematics and their relationship to lower back pain and injury in cricket fast bowling: A review.

    PubMed

    Senington, Billy; Lee, Raymond Y; Williams, Jonathan Mark

    2018-03-09

    Fast bowlers display a high risk of lower back injury and pain. Studies report factors that may increase this risk, however exact mechanisms remain unclear. To provide a contemporary analysis of literature, up to April 2016, regarding fast bowling, spinal kinematics, ground reaction force (GRF), lower back pain (LBP) and pathology. Key terms including biomechanics, bowling, spine and injury were searched within MEDLINE, Google Scholar, SPORTDiscuss, Science Citation Index, OAIster, CINAHL, Academic Search Complete, Science Direct and Scopus. Following application of inclusion criteria, 56 studies (reduced from 140) were appraised for quality and pooled for further analysis. Twelve times greater risk of lumbar injury was reported in bowlers displaying excessive shoulder counter-rotation (SCR), however SCR is a surrogate measure which may not describe actual spinal movement. Little is known about LBP specifically. Weighted averages of 5.8 ± 1.3 times body weight (BW) vertically and 3.2 ± 1.1 BW horizontally were calculated for peak GRF during fast bowling. No quantitative synthesis of kinematic data was possible due to heterogeneity of reported results. Fast bowling is highly injurious especially with excessive SCR. Studies adopted similar methodologies, constrained to laboratory settings. Future studies should focus on methods to determine biomechanics during live play.

  18. Kinetic study of alkaline protease 894 for the hydrolysis of the pearl oyster Pinctada martensii

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Chen, Hua; Cai, Bingna; Liu, Qingqin; Sun, Huili

    2013-05-01

    A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.

  19. A New Method for Carbon Isotopic Analysis of Nanogram Quantities of Carbon from Dissolved Chitin Using A Spooling-wire Microcombustion Interface

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Nelson, D. M.; Clegg, B. F.; Berry, J.; Hu, F.

    2016-12-01

    δ13C analysis of specific taxa or compounds is commonly used for investigating past environmental change, including methane dynamics in lakes. However, most analytical methods require large sample sizes, prohibiting routine analysis of fossils of individual taxa found in sediment deposits. For example, 10-100 individual head capsules of fossil midges are required for δ13C analysis using an elemental analyzer (EA) interfaced with an isotope-ratio mass spectrometer (IRMS). Here we present a new method that uses a spooling-wire microcombustion (SWiM) device interfaced with an IRMS for measuring δ13C values of carbon dissolved from individual head capsules of chitinous aquatic zooplankton. We extracted chitin (a major biochemical component of insect exoskeleton) from modern midge material obtained from four commercial suppliers. We first assessed the effects of sample treatments on carbon yields and δ13C values of dissolved chitin by varying the concentration of HCl used for dissolution, the duration of reaction in HCl, and the temperature of dissolution. We then investigated potential fractionation of carbon isotopes associated with chitin dissolution, by comparing δ13C values of dissolved chitin obtained via SWiM-IRMS with those from untreated head capsules obtained via a EA-IRMS. The average δ13C values of untreated head capsules varied between -25.1 and -30.1‰. Higher acid concentrations and temperatures, as well as longer reaction times, increased dissolution of carbon from the head capsules and the precision of δ13C values. For example, carbon yields from reaction of head capsules with 6N HCl at 25°C increased from 1 to 3 Vs as reaction times increased from 1 to 24 hours. Acid concentration and reaction time had the greatest influence on carbon yields and isotopic precision. The δ13C values of dissolved chitin mirrored the δ13C values of untreated head capsules with minimal offset of absolute values, which suggests no systematic fractionation associated with dissolution. Overall, these results indicate that carbon isotopic analysis of dissolved chitin using the SWiM-IRMS system offers a reliable new method to determine taxa-specific δ13C values for chitinous aquatic zooplankton. In ongoing work, we are applying this tool to reconstruct past methane dynamics in Arctic lakes during the Holocene.

  20. Factors influencing the latency of simple reaction time

    PubMed Central

    Woods, David L.; Wyma, John M.; Yund, E. William; Herron, Timothy J.; Reed, Bruce

    2015-01-01

    Simple reaction time (SRT), the minimal time needed to respond to a stimulus, is a basic measure of processing speed. SRTs were first measured by Francis Galton in the 19th century, who reported visual SRT latencies below 190 ms in young subjects. However, recent large-scale studies have reported substantially increased SRT latencies that differ markedly in different laboratories, in part due to timing delays introduced by the computer hardware and software used for SRT measurement. We developed a calibrated and temporally precise SRT test to analyze the factors that influence SRT latencies in a paradigm where visual stimuli were presented to the left or right hemifield at varying stimulus onset asynchronies (SOAs). Experiment 1 examined a community sample of 1469 subjects ranging in age from 18 to 65. Mean SRT latencies were short (231, 213 ms when corrected for hardware delays) and increased significantly with age (0.55 ms/year), but were unaffected by sex or education. As in previous studies, SRTs were prolonged at shorter SOAs and were slightly faster for stimuli presented in the visual field contralateral to the responding hand. Stimulus detection time (SDT) was estimated by subtracting movement initiation time, measured in a speeded finger tapping test, from SRTs. SDT latencies averaged 131 ms and were unaffected by age. Experiment 2 tested 189 subjects ranging in age from 18 to 82 years in a different laboratory using a larger range of SOAs. Both SRTs and SDTs were slightly prolonged (by 7 ms). SRT latencies increased with age while SDT latencies remained stable. Precise computer-based measurements of SRT latencies show that processing speed is as fast in contemporary populations as in the Victorian era, and that age-related increases in SRT latencies are due primarily to slowed motor output. PMID:25859198

Top