Sample records for average removal rate

  1. Assessment of bacterial growth and total organic carbon removal on granular activated carbon contactors.

    PubMed

    Bancroft, K; Maloney, S W; McElhaney, J; Suffet, I H; Pipes, W O

    1983-09-01

    The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study.

  2. Near-ultraviolet removal rates for subgingival dental calculus at different irradiation angles.

    PubMed

    Schoenly, Joshua E; Seka, Wolf D; Rechmann, Peter

    2011-07-01

    The laser ablation rate of subgingival dental calculus irradiated at a 400-nm-wavelength, 7.4-mJ pulse energy, and 85- and 20-deg irradiation angles is measured using laser triangulation. Three-dimensional images taken before and after irradiation create a removal map with 6-μm axial resolution. Fifteen human teeth with subgingival calculus are irradiated in vitro under a cooling water spray with an ∼300-μm-diam, tenth-order super-gaussian beam. The average subgingival calculus removal rates for irradiation at 85 and 20 deg are 11.1±3.6 and 11.5±5.9 μm∕pulse, respectively, for depth removal and 4.5±1.7×10(5) and 4.8±2.3×10(5) μm(3)∕pulse, respectively, for volume removal. The ablation rate is constant at each irradiation site but varies between sites because of the large differences in the physical and optical properties of calculus. Comparison of the average depth- and volume-removal rates does not reveal any dependence on the irradiation angle and is likely due to the surface topology of subgingival calculus samples that overshadows any expected angular dependence.

  3. Near-ultraviolet removal rates for subgingival dental calculus at different irradiation angles

    NASA Astrophysics Data System (ADS)

    Schoenly, Joshua E.; Seka, Wolf D.; Rechmann, Peter

    2011-07-01

    The laser ablation rate of subgingival dental calculus irradiated at a 400-nm-wavelength, 7.4-mJ pulse energy, and 85- and 20-deg irradiation angles is measured using laser triangulation. Three-dimensional images taken before and after irradiation create a removal map with 6-μm axial resolution. Fifteen human teeth with subgingival calculus are irradiated in vitro under a cooling water spray with an ~300-μm-diam, tenth-order super-Gaussian beam. The average subgingival calculus removal rates for irradiation at 85 and 20 deg are 11.1+/-3.6 and 11.5+/-5.9 μm/pulse, respectively, for depth removal and 4.5+/-1.7×105 and 4.8+/-2.3×105 μm3/pulse, respectively, for volume removal. The ablation rate is constant at each irradiation site but varies between sites because of the large differences in the physical and optical properties of calculus. Comparison of the average depth- and volume-removal rates does not reveal any dependence on the irradiation angle and is likely due to the surface topology of subgingival calculus samples that overshadows any expected angular dependence.

  4. Assessment of bacterial growth and total organic carbon removal on granular activated carbon contactors.

    PubMed Central

    Bancroft, K; Maloney, S W; McElhaney, J; Suffet, I H; Pipes, W O

    1983-01-01

    The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study. PMID:6639023

  5. Nutrient removal of a floating plant system receiving low- pollution wastewater: Effects of plant species and influent concentration

    NASA Astrophysics Data System (ADS)

    Duan, J. J.; Zhao, J. N.; Xue, L. H.; Yang, L. Z.

    2016-08-01

    Plant floating bed was adopted in this study to compare the purification effect of four plant species (Oenanthe javanica, Ipomoea aquatica, Hydrocotyle vulgaris, and Iris sibirica) receiving high and low treated domestic sewage. The experiment was conducted for eight months during the low temperature season. The results indicated that the average removal rates of TN and NH4+-N in I. aquatica floating bed were relatively high both under high and low influent concentration during the first stage of the experiment. During the second stage, H. vulgaris showed the best performance for nitrogen treatment, and the average removal rates of TN were 70.7% and 87.7% under high and low influent concentration, while the average removal rates of NH4 +-N were as high as 98.9% and 98.9%, accordingly. Moreover, H. vulgaris contributed most for plant assimilation to nitrogen removal among different plant floating systems. It was also found that the existence of hydrophytes effectively controlled the rise of water pH value and algae growth and reproduction, which helped to improve the aquatic environment. The results provide engineering parameters for the future design of an ecological remediation technology for low-pollution wastewater purification.

  6. Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air.

    PubMed

    Weber, F J; Hartmans, S

    1996-04-05

    Removal of organic compounds like toluene from waste gases with a trickle-bed reactor can result in clogging of the reactor due to the formation of an excessive amount of biomass. We therefore limited the amount of nutrients available for growth, to prevent clogging of the reactor. As a consequence of this nutrient limitation a lower removal rate was observed. However, when a fungal culture was used to inoculate the reactor, the toluene removal rate under nutrient limiting conditions was higher. Over a period of 375 days, an average removal rate of 27 g C/(m(3) h) was obtained with the reactor inoculated with the fungal culture. From the carbon balance over the reactor and the nitrogen availability it was concluded that, under these nutrient-limited conditions, large amounts of carbohydrates are probably formed. We also studied the application of a NaOH wash to remove excess biomass, as a method to prevent clogging. Under these conditions an average toluene removal rate of 35 g C/(m(3) h) was obtained. After about 50 days there was no net increase in the biomass content of the reactor. The amount of biomass which was formed in the reactor equaled the amount removed by the NaOH wash.

  7. Nitrogen removal from purified swine wastewater using biogas by semi-partitioned reactor.

    PubMed

    Waki, Miyoko; Yokoyama, Hiroshi; Ogino, Akifumi; Suzuki, Kazuyoshi; Tanaka, Yasuo

    2008-09-01

    Nitrate and ammonium removal from purified swine wastewater using biogas and air was investigated in continuous reactor operation. A novel type of reactor, a semi-partitioned reactor (SPR), which enables a biological reaction using methane and oxygen in the water phase and discharges these unused gases separately, was operated with a varying gas supply rate. Successful removal of NO(3)(-) and NH(4)(+) was observed when biogas and air of 1L/min was supplied to an SPR of 9L water phase with a NO(2,3)(-)-N and NH(4)(+)-N removal rate of 0.10 g/L/day and 0.060 g/L/day, respectively. The original biogas contained an average of 77.2% methane, and the discharged biogas from the SPR contained an average of 76.9% of unused methane that was useable for energy like heat or electricity production. Methane was contained in the discharged air from the SPR at an average of 2.1%. When gas supply rates were raised to 2L/min and the nitrogen load was increased, NO(3)(-) concentration was decreased, but NO(2)(-) accumulated in the reactor and the NO(2,3)(-)-N and NH(4)(+)-N removal activity declined. To recover the activity, lowering of the nitrogen load and the gas supply rate was needed. This study shows that the SPR enables nitrogen removal from purified swine wastewater using biogas under limited gas supply condition.

  8. Are dialysis adequacy indices independent of solute generation rate?

    PubMed

    Waniewski, Jacek; Debowska, Malgorzata; Lindholm, Bengt

    2014-01-01

    KT/V is by definition independent of solute generation rate. Alternative dialysis adequacy indices (DAIs) such as equivalent renal clearance (EKR), standard KT/V (stdKT/V), and solute removal index (SRI) are estimated as the ratio of solute mass removed to an average solute mass in the body or solute concentration in blood; both nominator and denominator in these formulas depend on the solute generation rate. Our objective was to investigate whether and under which conditions the alternative DAIs are independent of solute generation rate. By using general compartment modeling, we show that for the metabolically stable patient (in whom the solute generated during the dialysis cycle, typically, 1 week, is equal to the solute removed from the body), DAIs estimated for the dialysis cycle are in general independent of the average solute generation rate (although they may depend on the pattern of oscillations in the generation rate). However, the alternative adequacy parameters (such as EKR, stdKT/V, and SRI) may depend on solute generation rate for metabolically unstable patients.

  9. Performance of hybrid constructed wetland systems for treating septic tank effluent.

    PubMed

    Cui, Li-hua; Liu, Wen; Zhu, Xi-zhen; Ma, Mei; Huang, Xi-hua; Xia, Yan-yang

    2006-01-01

    The integrated wetland systems were constructed by combining horizontal-flow and vertical-flow bed, and their purification efficiencies for septic tank effluent were detected when the hydraulic retention time (HRT) was 1 d, 3 d, 5 d under different seasons. The results showed that the removal efficiencies of the organics, phosphorus were steady in the hybrid systems, but the removal efficiency of total nitrogen was not steady due to high total nitrogen concentration in the septic tank effluent. The average removal rates of COD (chemical oxygen demand) were 89%, 87%, 83%, and 86% in summer, autumn, winter and spring, respectively, and it was up to 88%, 85%, 73%, and 74% for BOD5 (5 d biochemical oxygen demand) removal rate in four seasons. The average removal rates of TP (total phosphorous) could reach up to 97%, 98%, 95%, 98% in four seasons, but the removal rate of TN (total nitrogen) was very low. The results of this study also indicated that the capability of purification was the worst in winter. Cultivating with plants could improve the treated effluent quality from the hybrid systems. The results of the operation of the horizontal-flow and vertical-flow cells (hybrid systems) showed that the removal efficiencies of the organics, TP and TN in horizontal-flow and vertical-flow cells were improved significantly with the extension of HRT under the same season. The removal rate of 3 d HRT was obviously higher than that of 1 d HRT, and the removal rate of 5 d HRT was better than that of 3 d HRT, but the removal efficiency was not very obvious with the increment of HRT. Therefore, 3 d HRT might be recommended in the actual operation of the hybrid systems for economic and technical reasons.

  10. Correlation between physicochemical properties of modified clinoptilolite and its performance in the removal of ammonia-nitrogen.

    PubMed

    Dong, Yingbo; Lin, Hai; He, Yinhai

    2017-03-01

    The physicochemical properties of the 24 modified clinoptilolite samples and their ammonia-nitrogen removal rates were measured to investigate the correlation between them. The modified clinoptilolites obtained by acid modification, alkali modification, salt modification, and thermal modification were used to adsorb ammonia-nitrogen. The surface area, average pore width, macropore volume, mecropore volume, micropore volume, cation exchange capacity (CEC), zeta potential, silicon-aluminum ratios, and ammonia-nitrogen removal rate of the 24 modified clinoptilolite samples were measured. Subsequently, the linear regression analysis method was used to research the correlation between the physicochemical property of the different modified clinoptilolite samples and the ammonia-nitrogen removal rate. Results showed that the CEC was the major physicochemical property affecting the ammonia-nitrogen removal performance. According to the impacts from strong to weak, the order was CEC > silicon-aluminum ratios > mesopore volume > micropore volume > surface area. On the contrary, the macropore volume, average pore width, and zeta potential had a negligible effect on the ammonia-nitrogen removal rate. The relational model of physicochemical property and ammonia-nitrogen removal rate of the modified clinoptilolite was established, which was ammonia-nitrogen removal rate = 1.415[CEC] + 173.533 [macropore volume] + 0.683 [surface area] + 4.789[Si/Al] - 201.248. The correlation coefficient of this model was 0.982, which passed the validation of regression equation and regression coefficients. The results of the significance test showed a good fit to the correlation model.

  11. Effects of dynamic operating conditions on nitrification in biological rapid sand filters for drinking water treatment.

    PubMed

    Lee, Carson O; Boe-Hansen, Rasmus; Musovic, Sanin; Smets, Barth; Albrechtsen, Hans-Jørgen; Binning, Philip

    2014-11-01

    Biological rapid sand filters are often used to remove ammonium from groundwater for drinking water supply. They often operate under dynamic substrate and hydraulic loading conditions, which can lead to increased levels of ammonium and nitrite in the effluent. To determine the maximum nitrification rates and safe operating windows of rapid sand filters, a pilot scale rapid sand filter was used to test short-term increased ammonium loads, set by varying either influent ammonium concentrations or hydraulic loading rates. Ammonium and iron (flock) removal were consistent between the pilot and the full-scale filter. Nitrification rates and ammonia-oxidizing bacteria and archaea were quantified throughout the depth of the filter. The ammonium removal capacity of the filter was determined to be 3.4 g NH4-N m(-3) h(-1), which was 5 times greater than the average ammonium loading rate under reference operating conditions. The ammonium removal rate of the filter was determined by the ammonium loading rate, but was independent of both the flow and influent ammonium concentration individually. Ammonia-oxidizing bacteria and archaea were almost equally abundant in the filter. Both ammonium removal and ammonia-oxidizing bacteria density were strongly stratified, with the highest removal and ammonia-oxidizing bacteria densities at the top of the filter. Cell specific ammonium oxidation rates were on average 0.6 × 10(2) ± 0.2 × 10(2) fg NH4-N h(-1) cell(-1). Our findings indicate that these rapid sand filters can safely remove both nitrite and ammonium over a larger range of loading rates than previously assumed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Assessing Chemical Retention Process Controls in Ponds

    NASA Astrophysics Data System (ADS)

    Torgersen, T.; Branco, B.; John, B.

    2002-05-01

    Small ponds are a ubiquitous component of the landscape and have earned a reputation as effective chemical retention devices. The most common characterization of pond chemical retention is the retention coefficient, Ri= ([Ci]inflow-[Ci] outflow)/[Ci]inflow. However, this parameter varies widely in one pond with time and among ponds. We have re-evaluated literature reported (Borden et al., 1998) monthly average retention coefficients for two ponds in North Carolina. Employing a simple first order model that includes water residence time, the first order process responsible for species removal have been separated from the water residence time over which it acts. Assuming the rate constant for species removal is constant within the pond (arguable at least), the annual average rate constant for species removal is generated. Using the annual mean rate constant for species removal and monthly water residence times results in a significantly enhanced predictive capability for Davis Pond during most months of the year. Predictive ability remains poor in Davis Pond during winter/unstratified periods when internal loading of P and N results in low to negative chemical retention. Predictive ability for Piedmont Pond (which has numerous negative chemical retention periods) is improved but not to the same extent as Davis Pond. In Davis Pond, the rate constant for sediment removal (each month) is faster than the rate constant for water and explains the good predictability for sediment retention. However, the removal rate constant for P and N is slower than the removal rate constant for sediment (longer water column residence time for P,N than for sediment). Thus sedimentation is not an overall control on nutrient retention. Additionally, the removal rate constant for P is slower than for TOC (TOC is not the dominate removal process for P) and N is removed slower than P (different in pond controls). For Piedmont Pond, sediment removal rate constants are slower than the removal rate constant for water indicating significant sediment resuspension episodes. It appears that these sediment resuspension events are aperiodic and control the loading and the chemical retention capability of Piedmont Pond for N,P,TOC. These calculated rate constants reflect the differing internal loading processes for each component and suggest means and mechanisms for the use of ponds in water quality management.

  13. [Research of urban eutrophic water repair by water/sediment biological bases].

    PubMed

    Zhou, Hui-Hua; Song, Xiao-Guang; Wu, Ge; Xie, Xin-Yuan

    2013-10-01

    A micro power turbine water aeration system with a water biological base and a sediment biological base was independently developed, aimed at urban water eutrophication. The results showed that the average removal rates of COD, NH+4 -N, TP by the water biological base were 82. 33% , 98. 00% and 54. 73% , respectively; The sediment reduction rate achieved by the sediment biological base could reach 20% within 5 days, and aeration in the overlying water could relieve the nutrient releasing caused by the degradation of organic matter; The effect of nutrient removal and organic matter reduction in sediment by the combined ecological restoration technology was perfect in pilot scale. The average removal rates of COD, NH+4 -N, TP were 52. 0%, 33. 6% and 23.4%, respectively, and the organic content in sediment was reduced from 38. 20% to 12.20% .

  14. [Relationship between the nitrogen removal and oxygen demand in constructed wetlands].

    PubMed

    He, Lian-sheng; Liu, Hong-liang; Xi, Bei-dou; Zhu, Ying-bo; Wei, Zi-min; Huo, Shou-liang

    2006-06-01

    A simplified model of sequential N transformations and sink was applied to investigate the relationship between the nitrogen removal and oxygen demand to verify the validity of full nitrification-denitrification mechanism in a newly-built multi-stages constructed wetlands. Average net rates of N mineralization ranged from 0.01 to 0.28 g x (m2 x d)(-1), nitrification from 0.50 to 1.54 g x (m2 x d)(-1), denitrification from 0.41 to 1.13 g x (m2 x d)(-1)(3.4% approximately 35.4% of measured N removal in different stage) and plant assimilation from 0.07 to 0.26 g x (m2 x d)(-1) in the five tanks. Nitrification and denitrification occurred concurrently with BOD removal, even in the first stage receiving the higher-strength wastewater. Surprisingly, net areal nitrification rates, was correlated with BOD removal rates positively. Nitrification rates were also correlated linearly with average NH4+-N concentrations in the cascade tanks. The nitrogenous oxygen demand (NOD) required to support full nitrification of ammonia and mineralized Org-N in the wetland was in the upper range of that expected to be able to be supplied through surface and plant-mediated oxygen transfer. Some potential alternative nitrogen removal pathways with reduced overall oxygen requirements that have relevance to constructed wetlands were discussed.

  15. Charging and Transport Dynamics of a Flow-Through Electrode Capacitive Deionization System.

    PubMed

    Qu, Yatian; Campbell, Patrick G; Hemmatifar, Ali; Knipe, Jennifer M; Loeb, Colin K; Reidy, John J; Hubert, Mckenzie A; Stadermann, Michael; Santiago, Juan G

    2018-01-11

    We present a study of the interplay among electric charging rate, capacitance, salt removal, and mass transport in "flow-through electrode" capacitive deionization (CDI) systems. We develop two models describing coupled transport and electro-adsorption/desorption which capture salt removal dynamics. The first model is a simplified, unsteady zero-dimensional volume-averaged model which identifies dimensionless parameters and figures of merits associated with cell performance. The second model is a higher fidelity area-averaged model which captures both spatial and temporal responses of charging. We further conducted an experimental study of these dynamics and considered two salt transport regimes: (1) advection-limited regime and (2) dispersion-limited regime. We use these data to validate models. The study shows that, in the advection-limited regime, differential charge efficiency determines the salt adsorption at the early stage of the deionization process. Subsequently, charging transitions to a quasi-steady state where salt removal rate is proportional to applied current scaled by the inlet flow rate. In the dispersion-dominated regime, differential charge efficiency, cell volume, and diffusion rates govern adsorption dynamics and flow rate has little effect. In both regimes, the interplay among mass transport rate, differential charge efficiency, cell capacitance, and (electric) charging current governs salt removal in flow-through electrode CDI.

  16. Primary Arthrodesis versus Open Reduction and Internal Fixation for Low-Energy Lisfranc Injuries in a Young Athletic Population.

    PubMed

    Cochran, Grant; Renninger, Christopher; Tompane, Trevor; Bellamy, Joseph; Kuhn, Kevin

    2017-09-01

    There are 2 Level I studies comparing open reduction and internal fixation (ORIF) and primary arthrodesis (PA) in high-energy Lisfranc injuries. There are no studies comparing ORIF and PA in young athletic patients with low-energy injuries. All operatively managed low-energy Lisfranc injuries sustained by active duty military personnel at a single institution were identified from 2010 to 2015. The injury pattern, method of treatment, and complications were reviewed. Implant removal rates, fitness test scores, return to military duty rates, and Foot and Ankle Ability Measure (FAAM) scores were compared. Thirty-two patients were identified with the average age of 28 years. PA was performed in 14 patients with ORIF in 18. The PA group returned to full duty at an average of 4.5 months whereas the ORIF group returned at an average of 6.7 months ( P = .0066). The PA group ran their fitness test an average of 9 seconds per mile slower than their preoperative average whereas the ORIF group ran it an average of 39 seconds slower per mile ( P = .032). There were no differences between the 2 groups in the FAAM scores at an average of 35 months. Implant removal was performed in 15 (83%) in the ORIF group and 2 (14%) in the PA group ( P = .005). Low-energy Lisfranc injuries treated with primary arthrodesis had a lower implant removal rate, an earlier return to full military activity, and better fitness test scores after 1 year, but there was no difference in FAAM scores after 3 years. Level III, comparative cohort study.

  17. Quantification of online removal of refractory black carbon using laser-induced incandescence in the single particle soot photometer

    DOE PAGES

    Aiken, Allison C.; McMeeking, Gavin R.; Levin, Ezra J. T.; ...

    2016-04-05

    Refractory black carbon (rBC) is an aerosol that has important impacts on climate and human health. rBC is often mixed with other species, making it difficult to isolate and quantify its important effects on physical and optical properties of ambient aerosol. To solve this measurement challenge, a new method to remove rBC was developed using laser-induced incandescence (LII) by Levin et al. in 2014. Application of the method with the Single Particle Soot Photometer (SP2) is used to determine the effects of rBC on ice nucleating particles (INP). Here, we quantify the efficacy of the method in the laboratory usingmore » the rBC surrogate Aquadag. Polydisperse and mobility-selected samples (100–500 nm diameter, 0.44–36.05 fg), are quantified by a second SP2. Removal rates are reported by mass and number. For the mobility-selected samples, the average percentages removed by mass and number of the original size are 88.9 ± 18.6% and 87.3 ± 21.9%, respectively. Removal of Aquadag is efficient for particles >100 nm mass-equivalent diameter (d me), enabling application for microphysical studies. However, the removal of particles ≤100 nm d me is less efficient. Absorption and scattering measurements are reported to assess its use to isolate brown carbon (BrC) absorption. Scattering removal rates for the mobility-selected samples are >90% on average, yet absorption rates are 53% on average across all wavelengths. Therefore, application to isolate effects of microphysical properties determined by larger sizes is promising, but will be challenging for optical properties. Lastly, the results reported also have implications for other instruments employing internal LII, e.g., the Soot Particle Aerosol Mass Spectrometer (SP-AMS).« less

  18. Fast start-up of the CANON process with a SABF and the effects of pH and temperature on nitrogen removal and microbial activity.

    PubMed

    Yue, Xiu; Yu, Guangping; Liu, Zhuhan; Tang, Jiali; Liu, Jian

    2018-04-01

    The long start-up time of the completely autotrophic nitrogen removal over nitrite (CANON) process is one of the main disadvantages of this system. In this paper, the CANON process with a submerged aerated biological filter (SABF) was rapidly started up within 26 days. It gave an average ammonium nitrogen removal rate (ANR) and a total nitrogen removal rate (TNR) of 94.2% and 81.3%, respectively. The phyla Proteobacteria and Planctomycetes were confirmed as the ammonia oxidizing bacteria (AOB) and anaerobic ammonium oxidation bacteria (AnAOB). The genus Candidatus Brocadia was the major contributor of nitrogen removal. pH and temperature affect the performance of the CANON process. This experimental results showed that the optimum pH and temperature were 8.0 and 30 °C, respectively, which gave the highest average ANR and TNR values of 94.6% and 85.1%, respectively. This research could promote the nitrogen removal ability of CANON process in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, beta-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment.

    PubMed

    Paxéus, N

    2004-01-01

    The removal of commonly used pharmaceuticals (ibuprofen, naproxen, diclofenac, gemfibrozil, carbamazepine, atenolol, metoprolol and trimethoprim) and a biocide (triclosan) in operating wastewater treatment plants in five EU countries has been studied. Under normal operating conditions the acidic drugs and triclosan were partially removed with removal rates varying from ca. 20 to >95%. The highest removal rate was found for ibuprofen and triclosan (>90%) followed by naproxen (80%), gemfibrozil (55%) and diclofenac (39%). Ibuprofen undergoes an oxidative transformation to corresponding hydroxy- and carboxy-metabolites, which contributes to its high removal rate. Disturbances in the activated sludge process resulted in lower removal rates for all acidic drugs, mostly for diclofenac (<10% removed) but also for ibuprofen (<60% removed). The treatment of wastewaters by activated sludge usually did not result in any practical removal (<10%) of neutral carbamazepine or basic atenolol, metoprolol and trimethoprim. The removal rates of the investigated drugs and triclosan are discussed in terms of mechanisms responsible for their removal. Discharges of carbamazepine, diclofenac, gemfibrozil, naproxen, triclosan and trimethoprim from WWTPs to the aquatic environment, expressed as the average concentration in the effluent and the daily discharged quantity per person served by WWTPs were assessed.

  20. Dissolved oxygen as a factor influencing nitrogen removal rates in a one-stage system with partial nitritation and Anammox process.

    PubMed

    Cema, G; Płaza, E; Trela, J; Surmacz-Górska, J

    2011-01-01

    A biofilm system with Kaldnes biofilm carrier was used in these studies to cultivate bacteria responsible for both partial nitritation and Anammox processes. Due to co-existence of oxygen and oxygen-free zones within the biofilm depth, both processes can occur in a single reactor. Oxygen that inhibits the Anammox process is consumed in the outer layer of the biofilm and in this way Anammox bacteria are protected from oxygen. The impact of oxygen concentration on nitrogen removal rates was investigated in the pilot plant (2.1 m3), supplied with reject water from the Himmerfjärden Waste Water Treatment Plant. The results of batch tests showed that the highest nitrogen removal rates were obtained for a dissolved oxygen (DO) concentration around 3 g O2 m(-3) At a DO concentration of 4 g O2 m(-3), an increase of nitrite and nitrate nitrogen concentrations in the batch reactor were observed. The average nitrogen removal rate in the pilot plant during a whole operating period oscillated around 1.3 g N m(-2)d(-1) (0.3 +/- 0.1 kg N m(-3)d(-1)) at the average dissolved oxygen concentration of 2.3 g O2 m(-3). The maximum value of a nitrogen removal rate amounted to 1.9 g N m(-2)d(-1) (0.47 kg N m(-3)d(-1)) and was observed for a DO concentration equal to 2.5 g O2 m(-3). It was observed that increase of biofilm thickness during the operational period, had no influence on nitrogen removal rates in the pilot plant.

  1. Catheter drainage of spontaneous pneumothorax: suction or no suction, early or late removal?

    PubMed Central

    So, S Y; Yu, D Y

    1982-01-01

    Twenty-three patients with primary spontaneous pneumothorax and 30 patients with secondary spontaneous pneumothorax treated by intercostal catheter drainage with underwater seal were divided randomly into two groups, one receiving suction drainage (up to 20 cm H2O pressure) and the other no suction. The success rate was 57% for the former and 50% for the latter. The suction group spent an average of five days in hospital, whereas the non-suction group averaged four days. Suction drainage therefore did not have any advantage. To determine how soon the catheter could be removed without complication, patients were also divided randomly into two subgroups--one had the catheter removed, without previous clamping, as soon as the lung was expanded; the other had the catheters left in situ for a further three days. The success rate was 52% for the former, and 53% for the latter. But most of the failure in the early removal group was caused by re-collapse of the lung rather than persistent air leakage; hence removal of the catheter too early was not recommended. PMID:7071793

  2. Prediction of scuffing failure based on competitive kinetics of oxide formation and removal: Application to lubricated sliding of AISI 52100 steel on steel

    NASA Astrophysics Data System (ADS)

    Cutiongco, Eric C.; Chung, Yip-Wah

    1994-07-01

    A method for predicting scuffing failure based on the competitive kinetics of oxide formation and removal has been developed and applied to the sliding of AISI 52100 steel on steel with poly-alpha-olefin as the lubricant. Oxide formation rates were determining using static oxidation tests on coupons of 52100 steel covered with poly-alpha-olefin at temperatures of 140 C to 250 C. Oxide removal rates were determined at different combinations of initial average nominal contact pressures (950 MPa to 1578 MPa) and sliding velocities (0.4 m/s to 1.8 m/s) using a ball-on-disk vacuum tribotester. The nominal asperity flash temperatures generated during the wear tests were calculated and the temperatures corresponding to the intersection of the the Arrhenius plots of oxide formation and removal rates were determined and taken as the critical failure temperatures. The pressure-velocity failure transition diagram was constructed by plotting the critical failure temperatures along isotherms of average nominal asperity flash temperatures calculated at different combinations of contact stress and sliding speed. The predicted failure transition curve agreed well with experimental scuffing data.

  3. Optical coherence tomography image-guided smart laser knife for surgery.

    PubMed

    Katta, Nitesh; McElroy, Austin B; Estrada, Arnold D; Milner, Thomas E

    2018-03-01

    Surgical oncology can benefit from specialized tools that enhance imaging and enable precise cutting and removal of tissue without damage to adjacent structures. The combination of high-resolution, fast optical coherence tomography (OCT) co-aligned with a nanosecond pulsed thulium (Tm) laser offers advantages over conventional surgical laser systems. Tm lasers provide superior beam quality, high volumetric tissue removal rates with minimal residual thermal footprint in tissue, enabling a reduction in unwanted damage to delicate adjacent sub-surface structures such as nerves or micro-vessels. We investigated such a combined Tm/OCT system with co-aligned imaging and cutting beams-a configuration we call a "smart laser knife." A blow-off model that considers absorption coefficients and beam delivery systems was utilized to predict Tm cut depth, tissue removal rate and spatial distribution of residual thermal injury. Experiments were performed to verify the volumetric removal rate predicted by the model as a function of average power. A bench-top, combined Tm/OCT system was constructed using a 15W 1940 nm nanosecond pulsed Tm fiber laser (500 μJ pulse energy, 100 ns pulse duration, 30 kHz repetition rate) for removing tissue and a swept source laser (1310 ± 70 nm, 100 kHz sweep rate) for OCT imaging. Tissue phantoms were used to demonstrate precise surgery with blood vessel avoidance. Depth imaging informed cutting/removal of targeted tissue structures by the Tm laser was performed. Laser cutting was accomplished around and above phantom blood vessels while avoiding damage to vessel walls. A tissue removal rate of 5.5 mm 3 /sec was achieved experimentally, in comparison to the model prediction of approximately 6 mm 3 /sec. We describe a system that combines OCT and laser tissue modification with a Tm laser. Simulation results of the tissue removal rate using a simple model, as a function of average power, are in good agreement with experimental results using tissue phantoms. Lasers Surg. Med. 50:202-212, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Clearcut harvesting costs and production rates for young-growth mixed-conifer stands

    Treesearch

    William A. Atkinson; Dale O. Hall

    1966-01-01

    In clearcutting 90-year-old stands at the Challenge Experimental Forest, all merchantable trees greater than 12 inches d.b.h. were removed. Felling costs averaged $3.86 and required 0.55 man-hours per M bd. ft. in cut volumes averaging 19,700 bd. ft. per acre. Yarding, at a rate of 0.54 hours per M bd. ft., cost $4.42.

  5. [Interception Effect of Ecological Ditch on Nitrogen Transport in Agricultural Runoff in Subtropical China].

    PubMed

    Wang, Di; Li, Hong-fang; Liu, Feng; Wang, Yi; Zhong, Yuan-chun; He, Yang; Xiao, Run-fin; Wu, Jin-shui

    2016-05-15

    Interception effects of an ecological ditch, used to control agricultural non-point source pollution in subtropical China, on nitrogen transport in surface runoff were studied by monthly measuring the runoff volume and concentrations of ammonium nitrogen (NH₄⁺-N), nitrate nitrogen (NO₃⁻-N) and total nitrogen (TN) at the ditch inlet and outlet from 2013 to 2014. In addition, differences of NH₄⁺-N, NO₃⁻-N and TN removal were compared between 2013 and 2014. The results showed that the study ecological ditch worked effectively in N removal with average NH₄⁺-N, NO₃⁻-N and TN removal rates of 77.8%, 58.3%, and 48.7%; and their interception rates were 38.4, 59.6, and 171.1 kg · a⁻¹, respectively. The average proportion of NH₄⁺-N and NO₃⁻-N in TN was 47.5% at inlet, and 33.6% at outlet, which was significantly lower than that at inlet (P < 0.01). All hydrophytes in the ecological ditch were replaced by Myriophyllum aquaticum in 2014, which led to the increased average NO₃⁻-N and TN removal rates of 30.5% and 18.2%, respectively, Compared to in 2013. The vegetation of Myriophyllum aquaticum was beneficial to the improvement of N interception in ecological ditch. These findings clearly demonstrated that ecological ditch can substantially reduce N loss from surface runoff and be used as an important technique to prevent agricultural non-point N pollution.

  6. Stormwater infiltration and surface runoff pollution reduction performance of permeable pavement layers.

    PubMed

    Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen

    2016-02-01

    In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm.

  7. Demographic response of northern spotted owls to barred owl removal

    USGS Publications Warehouse

    Diller, V. Lowell; Hamm, Keith A; Early, Desiree A; Lamphear, David W; Dugger, Katie M.; Yackulic, Charles B.; Schwarz, Carl J.; Carlson, Peter C.; McDonald, Trent L.

    2016-01-01

    Federally listed as threatened in 1990 primarily because of habitat loss, the northern spotted owl (Strix occidentalis caurina) has continued to decline despite conservation efforts resulting in forested habitat being reserved throughout its range. Recently, there is growing evidence the congeneric invasive barred owl (Strix varia) may be responsible for the continued decline primarily by excluding spotted owls from their preferred habitat. We used a long-term demographic study for spotted owls in coastal northern California as the basis for a pilot barred owl removal experiment. Our demography study used capture–recapture, reproductive output, and territory occupancy data collected from 1990 to 2013 to evaluate trends in vital rates and populations. We used a classic before-after-control-impact (BACI) experimental design to investigate the demographic response of northern spotted owls to the lethal removal of barred owls. According to the best 2-species dynamic occupancy model, there was no evidence of differences in barred or northern spotted owl occupancy prior to the initiation of the treatment (barred owl removal). After treatment, barred owl occupancy was lower in the treated relative to the untreated areas and spotted owl occupancy was higher relative to the untreated areas. Barred owl removal decreased spotted owl territory extinction rates but did not affect territory colonization rates. As a result, spotted owl occupancy increased in the treated area and continued to decline in the untreated areas. Prior to and after barred owl removal, there was no evidence that average fecundity differed on the 2 study areas. However, the greater number of occupied spotted owl sites on the treated areas resulted in greater productivity in the treated areas based on empirical counts of fledged young. Prior to removal, survival was declining at a rate of approximately 0.2% per year for treated and untreated areas. Following treatment, estimated survival was 0.859 for the treated areas and 0.822 for the untreated areas. Derived estimates of population change on both study areas showed the same general decline before removal with an estimated slope of –0.0036 per year. Following removal, the rate of population change on the treated areas increased to an average of 1.029 but decreased to an average of 0.870 on the untreated areas. The results from this first experiment demonstrated that lethal removal of barred owls allowed the recovery of northern spotted owl populations in the treated portions of our study area. If additional federally funded barred owl removal experiments provide similar results, this could be the foundation for development of a long-term conservation strategy for northern spotted owls.

  8. Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature.

    PubMed

    Xu, Yi; He, Tengxia; Li, Zhenlun; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue

    2017-01-01

    The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL -1  h -1 , respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature.

  9. Ablation dynamics - from absorption to heat accumulation/ultra-fast laser matter interaction

    NASA Astrophysics Data System (ADS)

    Kramer, Thorsten; Remund, Stefan; Jäggi, Beat; Schmid, Marc; Neuenschwander, Beat

    2018-05-01

    Ultra-short laser radiation is used in manifold industrial applications today. Although state-of-the-art laser sources are providing an average power of 10-100 W with repetition rates of up to several megahertz, most applications do not benefit from it. On the one hand, the processing speed is limited to some hundred millimeters per second by the dynamics of mechanical axes or galvanometric scanners. On the other hand, high repetition rates require consideration of new physical effects such as heat accumulation and shielding that might reduce the process efficiency. For ablation processes, process efficiency can be expressed by the specific removal rate, ablated volume per time, and average power. The analysis of the specific removal rate for different laser parameters, like average power, repetition rate or pulse duration, and process parameters, like scanning speed or material, can be used to find the best operation point for microprocessing applications. Analytical models and molecular dynamics simulations based on the so-called two-temperature model reveal the causes for the appearance of limiting physical effects. The findings of models and simulations can be used to take advantage and optimize processing strategies.

  10. Removal of Cr(VI) from groundwater by Fe(0)

    NASA Astrophysics Data System (ADS)

    Gao, Yanjiao; Liu, Rui

    2017-11-01

    This research was conducted to investigate the treatment of hexavalent chromium (Cr(VI)) by iron powder (Fe(0)) columns of simulated permeable reactive barriers with and without calcium carbonate (CaCO3). Two columns filled with Fe(0) were used as Cr(VI) removal equipment running at a flow velocity of 10 ml/min at room temperature. After 200 days running of the two columns, the results showed that Fe(0) was an effective material for Cr(VI) reduction with an average removal rate of above 84.6%. The performance of Column 2 with CaCO3 was better than Column 1 without CaCO3 in terms of average Cr(VI) removal rate. The presence of CaCO3 buffered the increasing pH caused by Fe(0) corrosion in Column 2 and enhanced the removal rate of Column 2. Scanning Electron Microscopy (SEM) images of Fe(0) in the three stages of running of the two columns illustrated that the coat layer of Column 1 was a little thicker than that of Column 2. Energy-dispersive spectrometry (EDS) results showed that the surface of Fe(0) of Column 2 contained more chromium elements. Raman spectroscopy found that all iron oxide was generated on the Fe(0) surface of Column 1 and Column 2 and chromium class objects were only detected on Fe(0) surface in Column 2.

  11. Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters.

    PubMed

    Hua, Guanghui; Salo, Morgan W; Schmit, Christopher G; Hay, Christopher H

    2016-10-01

    Woodchip bioreactors have been increasingly used as an edge-of-field treatment technology to reduce the nitrate loadings to surface waters from agricultural subsurface drainage. Recent studies have shown that subsurface drainage can also contribute substantially to the loss of phosphate from agricultural soils. The objective of this study was to investigate nitrate and phosphate removal in subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters. The woodchip bioreactor demonstrated average nitrate removal efficiencies of 53.5-100% and removal rates of 10.1-21.6 g N/m(3)/d for an influent concentration of 20 mg N/L and hydraulic retention times (HRTs) of 6-24 h. When the influent nitrate concentration increased to 50 mg N/L, the bioreactor nitrate removal efficiency and rate averaged 75% and 18.9 g N/m(3)/d at an HRT of 24 h. Nitrate removal by the woodchips followed zero-order kinetics with rate constants of 1.42-1.80 mg N/L/h when nitrate was non-limiting. The steel byproduct filter effectively removed phosphate in the bioreactor effluent and the total phosphate adsorption capacity was 3.70 mg P/g under continuous flow conditions. Nitrite accumulation occurred in the woodchip bioreactor and the effluent nitrite concentrations increased with decreasing HRTs and increasing influent nitrate concentrations. The steel byproduct filter efficiently reduced the level of nitrite in the bioreactor effluent. Overall, the results of this study suggest that woodchip denitrification followed by steel byproduct filtration is an effective treatment technology for nitrate and phosphate removal in subsurface drainage. Published by Elsevier Ltd.

  12. Solute kinetics with short-daily home hemodialysis using slow dialysate flow rate.

    PubMed

    Kohn, Orly F; Coe, Fredric L; Ing, Todd S

    2010-01-01

    "NxStage System One()" is increasingly used for daily home hemodialysis. The ultrapure dialysate volumes are typically between 15 L and 30 L per dialysis, substantially smaller than the volumes used in conventional dialysis. In this study, the impact of the use of low dialysate volumes on the removal rates of solutes of different molecular weights and volumes of distribution was evaluated. Serum measurements before and after dialysis and total dialysate collection were performed over 30 times in 5 functionally anephric patients undergoing short-daily home hemodialysis (6 d/wk) over the course of 8 to 16 months. Measured solutes included beta(2) microglobulin (beta(2)M), phosphorus, urea nitrogen, and potassium. The average spent dialysate volume (dialysate plus ultrafiltrate) was 25.4+/-4.7 L and the dialysis duration was 175+/-15 min. beta(2) microglobulin clearance of the polyethersulfone dialyzer averaged 53+/-14 mL/min. Total beta(2)M recovered in the dialysate was 106+/-42 mg per treatment (n=38). Predialysis serum beta(2)M levels remained stable over the observation period. Phosphorus removal averaged 694+/-343 mg per treatment with a mean predialysis serum phosphorus of 5.2+/-1.8 mg/dL (n=34). Standard Kt/V averaged 2.5+/-0.3 per week and correlated with the dialysate-based weekly Kt/V. Weekly beta(2)M, phosphorus, and urea nitrogen removal in patients dialyzing 6 d/wk with these relatively low dialysate volumes compared favorably with values published for thrice weekly conventional and with short-daily hemodialysis performed with machines using much higher dialysate flow rates. Results of the present study were achieved, however, with an average of 17.5 hours of dialysis per week.

  13. Efficacy of reactive mineral-based sorbents for phosphate, bacteria, nitrogen and TOC removal--column experiment in recirculation batch mode.

    PubMed

    Nilsson, Charlotte; Lakshmanan, Ramnath; Renman, Gunno; Rajarao, Gunaratna Kuttuva

    2013-09-15

    Two mineral-based materials (Polonite and Sorbulite) intended for filter wells in on-site wastewater treatment were compared in terms of removal of phosphate (PO4-P), total inorganic nitrogen (TIN), total organic carbon (TOC) and faecal indicator bacteria (Escherichia coli and Enterococci). Using an innovative, recirculating system, septic tank effluent was pumped at a hydraulic loading rate of 3000 L m(2) d(-1) into triplicate bench-scale columns of each material over a 90-day period. The results showed that Polonite performed better with respect to removal of PO4-P, retaining on average 80% compared with 75% in Sorbulite. This difference was attributed to higher CaO content in Polonite and its faster dissolution. Polonite also performed better in terms of removal of bacteria because of its higher pH value. The total average reduction in E. coli was 60% in Polonite and 45% in Sorbulite, while for Enterococci the corresponding value was 56% in Polonite and 34% in Sorbulite. Sorbulite removed TIN more effectively, with a removal rate of 23%, while Polonite removed 11% of TIN, as well as TOC. Organic matter (measured as TOC) was accumulated in the filter materials but was also released periodically. The results showed that Sorbulite could meet the demand in removing phosphate and nitrogen with reduced microbial release from the wastewater treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater.

    PubMed

    Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan

    2010-10-15

    A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98. 2010 Elsevier B.V. All rights reserved.

  15. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    PubMed Central

    2012-01-01

    The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p < 0.001) from 76.8 ± 1.8% to 85.7 ± 1.2%. Analysis of covariance method followed by Tukey post-hoc test of 92 tests did not show a significant change in removal efficiency between liquid flow rates of 1.5, 2.5 and 3.5 L/min (p = 0.811). On the other hand, with fixed pressure loss across the tower, by increasing the liquid/gas (L/G) mass ratio, the average removal efficiency decreased significantly (p = 0.001) from 89.9% at L/G of <2 to 83.1% at L/G of 2–3 and further to 80.2% at L/G of >3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream. PMID:23369487

  16. Potential of hydrolysis of particulate COD in extended anaerobic conditions to enhance biological phosphorous removal.

    PubMed

    Jabari, P; Yuan, Q; Oleszkiewicz, J A

    2016-11-01

    The effect of anaerobic hydrolysis of particulate COD (pCOD) on biological phosphorous removal in extended anaerobic condition was investigated through (i) sequencing batch reactors (SBR)s with anaerobic hydraulic retention time (HRT) of 0.8, 2, and 4 h; (ii) batch tests using biomass from a full scale biological nutrient removal (BNR) plant; and (iii) activated sludge modeling (BioWin 4.1 simulation). The results from long-term SBRs operation showed that phosphorus removal was correlated to the ratio of filtered COD (FCOD) to total phosphorus (TP) in the influent. Under conditions with low FCOD/TP ratio (average of 20) in the influent, extending anaerobic HRT to 4 h in the presence of pCOD did not significantly improve overall phosphorous removal. During the period with high FCOD/TP ratio (average of 37) in the influent, all SBRs removed phosphorous completely, and the long anaerobic HRT did not have negative effect on overall phosphorous removal. The batch tests also showed that pCOD at different concentration during 4 h test did not affect the rate of anaerobic phosphorus release. The rate of anaerobic hydrolysis of pCOD was significantly low and extending the anaerobic HRT was ineffective. The simulation (BioWin 4.1) of SBRs with low influent FCOD/TP ratio showed that the default kinetics of anaerobic hydrolysis in ASM2d overestimated phosphorous removal in the SBRs (high anaerobic hydrolysis of pCOD). The default anaerobic hydrolysis rate in BioWin 4.1 (ten times lower) could produce similar phosphorous removal to that in the experiment. Results showed that the current kinetics of anaerobic hydrolysis in ASM2d could lead to considerable error in predicting phosphorus removal in processes with extended anaerobic HRT. Biotechnol. Bioeng. 2016;113: 2377-2385. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Municipal Waste Water with Integrated Membrane Systems, MBR-RO/NF

    PubMed Central

    Wang, Yonggang; Wang, Xu; Li, Mingwei; Dong, Jing; Sun, Changhong; Chen, Guanyi

    2018-01-01

    This study focuses on the application of combining membrane bioreactor (MBR) treatment with reverse osmosis (RO) or nanofiltration (NF) membrane treatment for removal of pharmaceuticals and personal care products (PPCPs) in municipal wastewater. Twenty-seven PPCPs were measured in real influent with lowest average concentration being trimethoprim (7.12 ng/L) and the highest being caffeine (18.4 ng/L). The results suggest that the MBR system effectively removes the PPCPs with an efficiency of between 41.08% and 95.41%, and that the integrated membrane systems, MBR-RO/NF, can achieve even higher removal rates of above 95% for most of them. The results also suggest that, due to the differences in removal mechanisms of NF/RO membrane, differences of removal rates exist. In this study, the combination of MBR-NF resulted in the removal of 13 compounds to below detection limits and MBR-RO achieved even better results with removal of 20 compounds to below detection limits. PMID:29401723

  18. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Municipal Waste Water with Integrated Membrane Systems, MBR-RO/NF.

    PubMed

    Wang, Yonggang; Wang, Xu; Li, Mingwei; Dong, Jing; Sun, Changhong; Chen, Guanyi

    2018-02-05

    This study focuses on the application of combining membrane bioreactor (MBR) treatment with reverse osmosis (RO) or nanofiltration (NF) membrane treatment for removal of pharmaceuticals and personal care products (PPCPs) in municipal wastewater. Twenty-seven PPCPs were measured in real influent with lowest average concentration being trimethoprim (7.12 ng/L) and the highest being caffeine (18.4 ng/L). The results suggest that the MBR system effectively removes the PPCPs with an efficiency of between 41.08% and 95.41%, and that the integrated membrane systems, MBR-RO/NF, can achieve even higher removal rates of above 95% for most of them. The results also suggest that, due to the differences in removal mechanisms of NF/RO membrane, differences of removal rates exist. In this study, the combination of MBR-NF resulted in the removal of 13 compounds to below detection limits and MBR-RO achieved even better results with removal of 20 compounds to below detection limits.

  19. Use of fluorescence EEM to monitor the removal of emerging contaminants in full scale wastewater treatment plants.

    PubMed

    Sgroi, Massimiliano; Roccaro, Paolo; Korshin, Gregory V; Greco, Valentina; Sciuto, Sebastiano; Anumol, Tarun; Snyder, Shane A; Vagliasindi, Federico G A

    2017-02-05

    This study investigated the applicability of different techniques for fluorescence excitation/emission matrices data interpretations, including peak-picking method, fluorescence regional integration and PARAFAC modelling, to act as surrogates in predicting emerging trace organic compounds (ETOrCs) removal during conventional wastewater treatments that usually comprise primary and secondary treatments. Results showed that fluorescence indexes developed using alternative methodologies but indicative of a same dissolved organic matter component resulted in similar predictions of the removal of the target compounds. The peak index defined by the excitation/emission wavelength positions (λ ex/ λ em ) 225/290nm and related to aromatic proteins and tyrosine-like fluorescence was determined to be a particularly suitable surrogate for monitoring ETOrCs that had very high removal rates (average removal >70%) (i.e., triclosan, caffeine and ibuprofen). The peak index defined by λ ex/ λ em =245/440nm and the PARAFAC component with wavelength of the maxima λ ex/ λ em =245, 350/450, both identified as humic-like fluorescence, were found remarkably well correlated with ETOrCs such as atenolol, naproxen and gemfibrozil that were moderately removed (51-70% average removal). Finally, the PARAFAC component with wavelength of the maxima λ ex/ λ em =<240, 315/380 identified as microbial humic-like fluorescence was the only index correlated with the removal of the antibiotic trimethoprim (average removal 68%). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Heart Rate and Respiratory Rate Influence on Heart Rate Variability Repeatability: Effects of the Correction for the Prevailing Heart Rate

    PubMed Central

    Gąsior, Jakub S.; Sacha, Jerzy; Jeleń, Piotr J.; Zieliński, Jakub; Przybylski, Jacek

    2016-01-01

    Background: Since heart rate variability (HRV) is associated with average heart rate (HR) and respiratory rate (RespRate), alterations in these parameters may impose changes in HRV. Hence the repeatability of HRV measurements may be affected by differences in HR and RespRate. The study aimed to evaluate HRV repeatability and its association with changes in HR and RespRate. Methods: Forty healthy volunteers underwent two ECG examinations 7 days apart. Standard HRV indices were calculated from 5-min ECG recordings. The ECG-derived respiration signal was estimated to assess RespRate. To investigate HR impact on HRV, HRV parameters were corrected for prevailing HR. Results: Differences in HRV parameters between the measurements were associated with the changes in HR and RespRate. However, in multiple regression analysis only HR alteration proved to be independent determinant of the HRV differences—every change in HR by 1 bpm changed HRV values by 16.5% on average. After overall removal of HR impact on HRV, coefficients of variation of the HRV parameters significantly dropped on average by 26.8% (p < 0.001), i.e., by the same extent HRV reproducibility improved. Additionally, the HRV correction for HR decreased association between RespRate and HRV. Conclusions: In stable conditions, HR but not RespRate is the most powerful factor determining HRV reproducibility and even a minimal change of HR may considerably alter HRV. However, the removal of HR impact may significantly improve HRV repeatability. The association between HRV and RespRate seems to be, at least in part, HR dependent. PMID:27588006

  1. Initial experience using the rigid forceps technique to remove wall-embedded IVC filters.

    PubMed

    Avery, Allan; Stephens, Maximilian; Redmond, Kendal; Harper, John

    2015-06-01

    Severely tilted and embedded inferior vena cava (IVC) filters remain the most challenging IVC filters to remove. Heavy endothelialisation over the filter hook can prevent engagement with standard snare and cone recovery techniques. The rigid forceps technique offers a way to dissect the endothelial cap and reliably retrieve severely tilted and embedded filters. By developing this technique, failed IVC retrieval rates can be significantly reduced and the optimum safety profile offered by temporary filters can be achieved. We present our initial experience with the rigid forceps technique described by Stavropoulos et al. for removing wall-embedded IVC filters. We retrospectively reviewed the medical imaging and patient records of all patients who underwent a rigid forceps filter removal over a 22-month period across two tertiary referral institutions. The rigid forceps technique had a success rate of 85% (11/13) for IVC filter removals. All filters in the series showed evidence of filter tilt and embedding of the filter hook into the IVC wall. Average filter tilt from the Z-axis was 19 degrees (range 8-56). Filters observed in the case study were either Bard G2X (n = 6) or Cook Celect (n = 7). Average filter dwell time was 421 days (range 47-1053). There were no major complications observed. The rigid forceps technique can be readily emulated and is a safe and effective technique to remove severely tilted and embedded IVC filters. The development of this technique across both institutions has increased the successful filter removal rate, with perceived benefits to the safety profile of our IVC filter programme. © 2015 The Royal Australian and New Zealand College of Radiologists.

  2. [Feasibility of 3BER-S Process for the Deep Denitrification in Synch with the Removal of PAEs from Reclaimed Water].

    PubMed

    Xu, Peng-cheng; Hao, Rui-xia; Zhang, Ya; Wang, Dong-yue; Zhong, Li-yan; Xu, Hao-dan

    2016-02-15

    In order to investigate the feasibility of deep denitrification and simultaneous removing phthalate esters (PAEs) in the process of reclaimed water treatment uses three-dimensional biofilm-electrode reactor coupled with sulfur autotrophic deep denitrification technology (3BER-S), the technological characteristics and mechanisms were analyzed based on determining the static adsorption capacity of biofilm cultured active carbon fillers in 3BER-S reactor together with the operation results of dynamic denitrification and simultaneous PAEs removing. The results showed that the average adsorption rates of DBP, DEHP were 85.84% and 97.12% in the biofilm cultured active carbon fillers, the equilibrium adsorption capacities were 0.1426 mg x g(-1) and 0.162 mg(-1) and the time spans of reaching adsorption saturation were 120 min and 60 min, respectively; The existence of PAEs had no obvious effect on denitrification, the reactor effluent concentration of TN was in range of 1-2 mg x L(-1) before and after the addition of PAEs, and the average removal rate of TN reached above 94%; 3BER-S denitrification system showed significant ability in removing PAEs, leading to effluent concentrations of DBP and DEHP of no more than 6 microg x L(-1) with removal rates of above 96%; this was due to the synergistic effect of absorption, biodegradation and electrochemistry. After treatment with 3BER-S technology, DBP and DEHP in simulative municipal secondary effluent met the regulated limitation of The Reuse of Urban Recycling Water Quality Standard for Groundwater Recharge (GB/T 19772-2005).

  3. Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature

    PubMed Central

    He, Tengxia; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue

    2017-01-01

    The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature. PMID:28293626

  4. Removal of pharmaceuticals, perfluoroalkyl substances and other micropollutants from wastewater using lignite, Xylit, sand, granular activated carbon (GAC) and GAC+Polonite® in column tests - Role of physicochemical properties.

    PubMed

    Rostvall, Ande; Zhang, Wen; Dürig, Wiebke; Renman, Gunno; Wiberg, Karin; Ahrens, Lutz; Gago-Ferrero, Pablo

    2018-06-15

    This study evaluated the performance of five different sorbents (granular activated carbon (GAC), GAC + Polonite ® (GAC + P), Xylit, lignite and sand) for a set of 83 micropollutants (MPs) (pharmaceuticals, perfluoroalkyl substances (PFASs), personal care products, artificial sweeteners, parabens, pesticide, stimulants), together representing a wide range of physicochemical properties. Treatment with GAC and GAC + P provided the highest removal efficiencies, with average values above 97%. Removal rates were generally lower for Xylit (on average 74%) and lignite (on average 68%), although they proved to be highly efficient for a few individual MPs. The average removal efficiency for sand was only 47%. It was observed that the MPs behaved differently depending on their physicochemical properties. The physicochemical properties of PFASs (i.e. molecular weight, topological molecular surface area, log octanol water partition coefficient (K ow ) and distribution coefficient between octanol and water (log D)) were positively correlated to observed removal efficiency for the sorbents Xylit, lignite and sand (p < 0.05), indicating a strong influence of perfluorocarbon chain length and associated hydrophobic characteristics. In contrast, for the other MPs the ratio between apolar and polar surface area (SA/SP) was positively correlated with the removal efficiency, indicating that hydrophobic adsorption may be a key feature of their sorption mechanisms. GAC showed to be the most promising filter medium to improve the removal of MPs in on-site sewage treatment facilities. However, more studies are needed to evaluate the removal of MPs in field trials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Effect of the ultrasound-Fenton oxidation process with the addition of a chelating agent on the removal of petroleum-based contaminants from soil.

    PubMed

    Li, Ying; Li, Fangmin; Li, Fanxiu; Yuan, Fuqian; Wei, Pingfang

    2015-12-01

    The effects of ultrasonic irradiation, the chelating agent modified Fenton reaction, and a combination of ultrasound and the Fenton method in removing petroleum contaminants from a soil were studied. The results showed that the contaminant removal rate of the Fenton treatment combined with an oxalic acid chelating agent was 55.6% higher than that without a chelating agent. The average removal rate of the contaminants using the ultrasound-Fenton treatment was 59.0% higher than that without ultrasonic treatment. A combination of ultrasound and an Fe(2+)/Fe(3+)-oxalate complex-modified Fenton reagent resulted in significantly higher removal rates of n-alkanes (C(n)H(2n+2), n < 28), isoprenoid hydrocarbons, aromatic hydrocarbons, and saturated polycyclic terpenes compared with the ultrasound treatment alone or the Fenton method. The Fenton reaction and the ultrasound-Fenton treatment can unselectively remove multiple components of residual hydrocarbons and a number of benzene rings in polycyclic aromatic hydrocarbons. The chemistry of the heterocyclic compounds and the position and number of substituents can affect the degradation process.

  6. Nitrate Removal Rates in Denitrifying Bioreactors During Storm Flows

    NASA Astrophysics Data System (ADS)

    Pluer, W.; Walter, T.

    2017-12-01

    Field denitrifying bioreactors are designed to reduce excess nitrate (NO3-) pollution in runoff from agricultural fields. Field bioreactors saturate organic matter to create conditions that facilitate microbial denitrification. Prior studies using steady flow in lab-scale bioreactors showed that a hydraulic retention time (HRT) between 4 and 10 hours was optimal for reducing NO3- loads. However, during storm-induced events, flow rate and actual HRT fluctuate. These fluctuations have the potential to disrupt the system in significant ways that are not captured by the idealized steady-flow HRT models. The goal of this study was to investigate removal rate during dynamic storm flows of variable rates and durations. Our results indicate that storm peak flow and duration were not significant controlling variables. Instead, we found high correlations (p=0.004) in average removal rates between bioreactors displaying a predominantly uniform flow pattern compared with bioreactors that exhibited preferential flow (24.4 and 21.4 g N m-3 d-1, respectively). This suggests that the internal flow patterns are a more significant driver of removal rate than external factors of the storm hydrograph. Designing for flow patterns in addition to theoretical HRT will facilitate complete mixing within the bioreactors. This will help maximize excess NO3- removal during large storm-induced runoff events.

  7. A novel algorithm for Bluetooth ECG.

    PubMed

    Pandya, Utpal T; Desai, Uday B

    2012-11-01

    In wireless transmission of ECG, data latency will be significant when battery power level and data transmission distance are not maintained. In applications like home monitoring or personalized care, to overcome the joint effect of previous issues of wireless transmission and other ECG measurement noises, a novel filtering strategy is required. Here, a novel algorithm, identified as peak rejection adaptive sampling modified moving average (PRASMMA) algorithm for wireless ECG is introduced. This algorithm first removes error in bit pattern of received data if occurred in wireless transmission and then removes baseline drift. Afterward, a modified moving average is implemented except in the region of each QRS complexes. The algorithm also sets its filtering parameters according to different sampling rate selected for acquisition of signals. To demonstrate the work, a prototyped Bluetooth-based ECG module is used to capture ECG with different sampling rate and in different position of patient. This module transmits ECG wirelessly to Bluetooth-enabled devices where the PRASMMA algorithm is applied on captured ECG. The performance of PRASMMA algorithm is compared with moving average and S-Golay algorithms visually as well as numerically. The results show that the PRASMMA algorithm can significantly improve the ECG reconstruction by efficiently removing the noise and its use can be extended to any parameters where peaks are importance for diagnostic purpose.

  8. Experimental Study on Treatment of Dyeing Wastewater by Activated Carbon Adsorption, Coagulation and Fenton Oxidation

    NASA Astrophysics Data System (ADS)

    Xiaoxu, SUN; Jin, XU; Xingyu, LI

    2017-12-01

    In this paper dyeing waste water was simulated by reactive brilliant blue XBR, activated carbon adsorption process, coagulation process and chemical oxidation process were used to treat dyeing waste water. In activated carbon adsorption process and coagulation process, the water absorbance values were measured. The CODcr value of water was determined in Fenton chemical oxidation process. Then, the decolorization rate and COD removal rate were calculated respectively. The results showed that the optimum conditions of activated carbon adsorption process were as follows: pH=2, the dosage of activated carbon was 1.2g/L, the adsorption reaction time was 60 min, and the average decolorization rate of the three parallel experiments was 85.30%. The optimum conditions of coagulation experiment were as follows: pH=8~9, PAC dosage was 70mg/L, stirring time was 20min, standing time was 45min, the average decolorization rate of the three parallel experiments was 74.48%. The optimum conditions for Fenton oxidation were Fe2+ 0.05g/L, H2O2 (30%) 14mL/L, pH=3, reaction time 40min. The average CODcr removal rate was 69.35% in three parallel experiments. It can be seen that in the three methods the activated carbon adsorption treatment of dyeing wastewater was the best one.

  9. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  10. Investigation of lab-scale horizontal subsurface flow constructed wetlands treating industrial cork boiling wastewater.

    PubMed

    Gomes, Arlindo C; Silva, Lúcia; Albuquerque, António; Simões, Rogério; Stefanakis, Alexandros I

    2018-09-01

    The feasibility and treatment efficiency of horizontal subsurface flow constructed wetlands (HSFCW) was assessed for the first time for cork boiling wastewater (CBW) through laboratory experiments. CBW is known for its high content of phenolic compounds, complex composition of biorecalcitrant and toxic nature. Two lab-scale units, one planted with Phragmites australis (CWP) and one unplanted (CWC), were used to evaluate the removals of COD, BOD, total phenolic compounds (TPh) and decolourization over a 2.5-years monitoring period under Mediterranean climatic conditions. Seven organic and hydraulic loading rates ranging from 2.6 to 11.5 g COD/m 2 /d and 5.7-9.1 L/m 2 /d were tested under average hydraulic retention time (HRT) of 5 ± 1 days required due to the CWB limited biodegradability (i.e., BOD 5 /COD of 0.19). Average removals of the CWP exceeded those of the CWC and reached 74.6%, 91.7% and 69.1% for COD, BOD 5 and TPh, respectively, with respective mass removals rates up to 7.0, 1.7 and 0.5 (in g/m 2 /d). Decolourization was limited to 35%, since it mainly depends on physical processes rather than biodegradation. CBW concentration of nine phenolic compounds ranged from 1.2 to 38.4 mg/L (for the syringic and ellagic acids, respectively) in the raw CBW, with respective removals in the CWP unit ranging from 41.8 to 76.3%, higher than those in the control unit. Despite CBW high concentration of TPhs (average of 116.3 mg/L), the HSFCW reached organic load removals higher than those of conventional biological treatment methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Wetland management reduces sediment and nutrient loading to the upper Mississippi River

    USGS Publications Warehouse

    Kreiling, Rebecca M.; Schubauer-Berigan, Joseph P.; Richardson, William B.; Bartsch, Lynn; Hughes, Peter E.; Strauss, Eric A.

    2013-01-01

    Restored riparian wetlands in the Upper Mississippi River basin have potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh and an adjacent natural marsh that were connected to Halfway Creek, a small tributary of the Mississippi. We measured sediment, N, and P removal through a mass balance budget approach, N removal through denitrification, and N and P removal through mechanical soil excavation. The marsh complex had average retention rates of approximately 30 Mg sediment ha−1 yr−1, 26 kg total N ha−1 yr−1, and 20 kg total P ha−1 yr−1. Water flowed into the restored marsh only during high-discharge events. Although the majority of retention occurred in the natural marsh, portions of the natural marsh were hydrologically disconnected at low discharge due to historical over-bank sedimentation. The natural marsh removed >60% of sediment, >10% of P, and >5% of N loads (except the first year, when it was a N source). The marsh complex was a source of NH4+ and soluble reactive P. The average denitrification rate for the marsh complex was 2.88 mg N m−2 h−1. Soil excavation removed 3600 Mg of sediment, 5.6 Mg of N, and 2.7 Mg of P from the restored marsh. The marsh complex was effective in removing sediment and nutrients from storm flows; however, retention could be increased if more water was diverted into both restored and natural marshes before entering the river.

  12. Infectious disease control using contact tracing in random and scale-free networks

    PubMed Central

    Kiss, Istvan Z; Green, Darren M; Kao, Rowland R

    2005-01-01

    Contact tracing aims to identify and isolate individuals that have been in contact with infectious individuals. The efficacy of contact tracing and the hierarchy of traced nodes—nodes with higher degree traced first—is investigated and compared on random and scale-free (SF) networks with the same number of nodes N and average connection K. For values of the transmission rate larger than a threshold, the final epidemic size on SF networks is smaller than that on corresponding random networks. While in random networks new infectious and traced nodes from all classes have similar average degrees, in SF networks the average degree of nodes that are in more advanced stages of the disease is higher at any given time. On SF networks tracing removes possible sources of infection with high average degree. However a higher tracing effort is required to control the epidemic than on corresponding random networks due to the high initial velocity of spread towards the highly connected nodes. An increased latency period fails to significantly improve contact tracing efficacy. Contact tracing has a limited effect if the removal rate of susceptible nodes is relatively high, due to the fast local depletion of susceptible nodes. PMID:16849217

  13. Further contributions to the understanding of nitrogen removal in waste stabilization ponds.

    PubMed

    Bastos, R K X; Rios, E N; Sánchez, I A

    2018-06-01

    A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.

  14. Evaluation of mixed valent iron oxides as reactive adsorbents for arsenic removal.

    PubMed

    Mishra, Dhananjay; Farrell, James

    2005-12-15

    The objective of this research was to determine if Fe(II)-bearing iron oxides generate ferric hydroxides at sufficient rates for removing low levels of arsenic in packed-bed reactors, while at the same time avoiding excessive oxide production that contributes to bed clogging in oxygenated waters. Column experiments were performed to determine the effectiveness of three media for arsenic removal over a range in empty bed contact times, influent arsenic concentrations, dissolved oxygen (DO) levels, and solution pH values. Corrosion rates of the media as a function of the water composition were determined using batch and electrochemical methods. Rates of arsenic removal were first order in the As(V) concentration and were greater for media with higher corrosion rates. As(V) removal increased with increasing DO levels primarily due to faster oxidation of the Fe2+ released by media corrosion. To obtain measurable amounts of arsenic removal in 15 mM NaCl electrolyte solutions containing 50 microg/L As(V), the rate of Fe2+ released by the media needed to be at least 15 times greater than the As(V) feed rate into the column. In waters containing 30 mg/L of silica and 50 microg/L of As(V), measurable amounts of arsenic removal were obtained only for Fe2+ release rates that were at least 200 times greater than the As(V) feed rate. Although all columns showed losses in hydraulic conductivity overthe course of 90 days of operation, the conductivity values remained high, and the losses could be reversed by backwashing the media. The reaction products produced by the media in domestic tap water had average As-to-Fe ratios that were approximately 25% higher than those for a commercially available adsorbent.

  15. Stabilized chitosan/Fe(0)-nanoparticle beads to remove heavy metals from polluted sediments.

    PubMed

    Liu, T; Sun, Y; Wang, Z L

    2016-01-01

    Sediment contamination by heavy metals has become a widespread problem that can affect the normal behaviors of rivers and lakes. After chitosan/Fe(0)-nanoparticles (CS-NZVI) beads were cross-linked with glutaraldehyde (GLA), their mechanical strength, stability and separation efficiency from the sediment were obviously improved. Moreover, the average aperture size of GLA-CS-NZVI beads was 20.6 μm and NZVI particles were nearly spherical in shape with a mean diameter of 40.2 nm. In addition, the pH showed an insignificant effect on the removal rates from the sediment. Due to the dissolution of metals species into aqueous solutions as an introduction of the salt, the removal rates of all heavy metals from the sediment were increased with an increase of the salinity. The competitive adsorption of heavy metals between the sediment particles and GLA-CS-NZVI beads became stronger as the sediment particles became smaller, leading to decreased removal rates. Therefore, the removal efficiency could be enhanced by optimizing experimental conditions and choosing appropriate materials for the target contaminants.

  16. Selective Removal of Residual Orthodontic Composite Using a Rapidly Scanned Carbon Dioxide Laser with Spectral Feedback

    NASA Astrophysics Data System (ADS)

    Hirasuna, Krista

    Background and Objective: Excessive heat accumulation within the tooth, incomplete removal of composite, and variable damage to the enamel are shortcomings of using conventional burs to remove residual orthodontic composite after debonding fixed appliances. The objective of this study was to determine if composite could be selectively removed from the enamel surface using a rapidly scanned carbon dioxide laser controlled by spectral feedback. Materials and Methods: A carbon dioxide laser operating at a wavelength of 9.3 microm with a pulse duration of 10-15 micros and a pulse repetition rate of ˜ 200 Hz was used to selectively remove composite from the buccal surfaces of 21 extracted teeth. GrenGloo(TM) composite was used to better visualize residual composite and the amount of enamel lost was measured with optical microscopy. A spectral feedback system utilizing a miniature spectrometer was used to control the laser scanning system. Pulpal temperature measurements were performed during composite removal to determine if there was excessive heat accumulation. Results: The amount of enamel lost averaged 22.7microm +/- 8.9 and 25.3 microm +/- 9.4 for removal at 3.8 and 4.2 J/cm2, respectively. An average maximum temperature rise of 1.9°C +/- 1.5 was recorded, with no teeth approaching the critical value of 5.5°C. The average time of composite removal was 19.3 +/- 4.1 seconds. Conclusions: Residual orthodontic composite can be rapidly removed from the tooth surface using a rapidly scanned CO2 laser with spectral feedback, with minimal temperature rise within the pulp and with minimal damage to the underlying enamel surface.

  17. Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration.

    PubMed

    Li, Shaolin; Wang, Wei; Yan, Weile; Zhang, Wei-xian

    2014-03-01

    A field demonstration was conducted to assess the feasibility of nanoscale zero-valent iron (nZVI) for the treatment of wastewater containing high levels of Cu(II). Pilot tests were performed at a printed-circuit-board manufacturing plant, treating 250,000 L of wastewater containing 70 mg L(-1) Cu(II) with a total of 55 kg of nZVI. A completely mixed reactor of 1,600 L was operated continuously with flow rates ranging from 1000 to 2500 L h(-1). The average Cu(II) removal efficiency was greater than 96% with 0.20 g L(-1) nZVI and a hydraulic retention time of 100 min. The nZVI reactor achieved a remarkably high volumetric loading rate of 1876 g Cu per m(3) per day for Cu(II) removal, surpassing the loading rates of conventional technologies by more than one order of magnitude. The average removal capacity of nZVI for Cu(II) was 0.343 g Cu per gram of Fe. The Cu(II) removal efficiency can be reliably regulated by the solution Eh, which in turn is a function of nZVI input and hydraulic retention time. The ease of separation and recycling of nZVI contribute to process up-scalability and cost effectiveness. Cu(II) was reduced to metallic copper and cuprite (Cu2O). The end product is a valuable composite of iron and copper (∼20-25%), which can partially offset the treatment costs.

  18. Removal of chemical oxygen demand, nitrogen, and heavy metals using a sequenced anaerobic-aerobic treatment of landfill leachates at 10-30 degrees C.

    PubMed

    Kalyuzhnyi, Sergey; Gladchenko, Marina; Epov, Andrey; Appanna, Vasu

    2003-01-01

    As a first step of treatment of landfill leachates (total chemical oxygen demand [COD]: 1.43-3.81 g/L; total nitrogen: 90-162 mg/L), performance of laboratory upflow anaerobic sludge bed reactors was investigated under mesophilic (30 degrees C), submesophilic (20 degrees C), and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRTs) of about 0.3 d, when the average organic loading rates (OLRs) were about 5 g of COD/(L.d), the total COD removal accounted for 81% (on average) with the effluent concentrations close to the anaerobic biodegradability limit (0.25 g of COD/L) for mesophilic and submesophilic regimes. The psychrophilic treatment conducted under an average HRT of 0.34 d and an average OLR of 4.22 g of COD/(L.d) showed a total COD removal of 47%, giving effluents (0.75 g of COD/L) more suitable for subsequent biologic nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulfides inside the sludge bed. The application of aerobic/ anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater.

  19. Temperature and Substrate Control Woodchip Bioreactor Performance in Reducing Tile Nitrate Loads in East-Central Illinois.

    PubMed

    David, Mark B; Gentry, Lowell E; Cooke, Richard A; Herbstritt, Stephanie M

    2016-05-01

    Tile drainage is the major source of nitrate in the upper Midwest, and end-of-tile removal techniques such as wood chip bioreactors have been installed that allow current farming practices to continue, with nitrate removed through denitrification. There have been few multiyear studies of bioreactors examining controls on nitrate removal rates. We evaluated the nitrate removal performance of two wood chip bioreactors during the first 3 yr of operation and examined the major factors that regulated nitrate removal. Bioreactor 2 was subject to river flooding, and performance was not assessed. Bioreactor 1 had average monthly nitrate removal rates of 23 to 44 g N m d in Year 1, which decreased to 1.2 to 11 g N m d in Years 2 and 3. The greater N removal rates in Year 1 and early in Year 2 were likely due to highly degradable C in the woodchips. Only late in Year 2 and in Year 3 was there a strong temperature response in the nitrate removal rate. Less than 1% of the nitrate removed was emitted as NO. Due to large tile inputs of nitrate (729-2127 kg N) at high concentrations (∼30 mg nitrate N L) in Years 2 and 3, overall removal efficiency was low (3 and 7% in Years 2 and 3, respectively). Based on a process-based bioreactor performance model, Bioreactor 1 would have needed to be 9 times as large as the current system to remove 50% of the nitrate load from this 20-ha field. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Newly planted street tree growth and mortality

    Treesearch

    David J. Nowak; Joe R. McBride; Russell A. Beatty

    1990-01-01

    Two-year growth and mortality rates were analyzed for 254 black locust, 199 southern magnolia and 27 London plane trees planted along a major boulevard extending from southern Berkeley through western inner-city Oakland, California. After the first two years, 34% of these newly planted trees were either dead or removed. The average annual mortality rate was 19% with no...

  1. Optimization and evaluation of a bottom substrate denitrification tank for nitrate removal from a recirculating aquaculture system.

    PubMed

    Pungrasmi, Wiboonluk; Playchoom, Cholticha; Powtongsook, Sorawit

    2013-08-01

    A bottom substrate denitrification tank for a recirculating aquaculture system was developed. The laboratory scale denitrification tank was an 8 L tank (0.04 m2 tank surface area), packed to a depth of 5 cm with a bottom substrate for natural denitrifying bacteria. An aquarium pump was used for gentle water mixing in the tank; the dissolved oxygen in the water was maintained in aerobic conditions (e.g. > 2 mg/L) while anoxic conditions predominated only at the bottom substrate layer. The results showed that, among the four substrates tested (soil, sand, pumice stone and vermiculite), pumice was the most preferable material. Comparing carbon supplementation using methanol and molasses, methanol was chosen as the carbon source because it provided a higher denitrification rate than molasses. When methanol was applied at the optimal COD:N ratio of 5:1, a nitrate removal rate of 4591 +/- 133 mg-N/m2 tank bottom area/day was achieved. Finally, nitrate removal using an 80 L denitrification tank was evaluated with a 610 L recirculating tilapia culture system. Nitrate treatment was performed by batch transferring high nitrate water from the nitrification tank into the denitrification tank and mixing with methanol at a COD:N ratio of 5:1. The results from five batches of nitrate treatment revealed that nitrate was successfully removed from water without the accumulation of nitrite and ammonia. The average nitrate removal efficiency was 85.17% and the average denitrification rate of the denitrification tank was 6311 +/- 945 mg-N/m2 tank bottom area/day or 126 +/- 18 mg-N/L of pumice packing volume/day.

  2. Wetland management reduces sediment and nutrient loading to the upper Mississippi river.

    PubMed

    Kreiling, Rebecca M; Schubauer-Berigan, Joseph P; Richardson, William B; Bartsch, Lynn A; Hughes, Peter E; Cavanaugh, Jennifer C; Strauss, Eric A

    2013-01-01

    Restored riparian wetlands in the Upper Mississippi River basin have potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh and an adjacent natural marsh that were connected to Halfway Creek, a small tributary of the Mississippi. We measured sediment, N, and P removal through a mass balance budget approach, N removal through denitrification, and N and P removal through mechanical soil excavation. The marsh complex had average retention rates of approximately 30 Mg sediment ha yr, 26 kg total N ha yr, and 20 kg total P ha yr. Water flowed into the restored marsh only during high-discharge events. Although the majority of retention occurred in the natural marsh, portions of the natural marsh were hydrologically disconnected at low discharge due to historical over-bank sedimentation. The natural marsh removed >60% of sediment, >10% of P, and >5% of N loads (except the first year, when it was a N source). The marsh complex was a source of NH and soluble reactive P. The average denitrification rate for the marsh complex was 2.88 mg N m h. Soil excavation removed 3600 Mg of sediment, 5.6 Mg of N, and 2.7 Mg of P from the restored marsh. The marsh complex was effective in removing sediment and nutrients from storm flows; however, retention could be increased if more water was diverted into both restored and natural marshes before entering the river. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. An investigation of the heat induced during ultrasonic post removal.

    PubMed

    Ettrich, Christopher A; Labossière, Paul E; Pitts, David L; Johnson, James D

    2007-10-01

    The purpose of this study was to investigate the potential for temperature increase along the external root surface during ultrasonic post removal in a simulated clinical environment. Thirty-seven extracted teeth were decoronated, instrumented, and then obturated with gutta-percha and sealer. Post spaces were prepared, followed by cementation of stainless steel posts. A simulated clinical environment was created by using a polymethylmethacrylate sheet with holes custom fitted for the extracted teeth and then suspended over a heated water bath. Two thermocouples were attached at 6 and 12 mm from the top of the post along the external root surface. Teeth were divided into 3 test groups, no coolant, air-cooled, and water-cooled. Temperature changes were recorded by using a Vishay 5000 Strain Smart system. Results demonstrated that a significant difference existed in the average heat rates between the upper and lower thermocouples for no coolant and water-cooled groups at the medium setting and the air-cooled group at the high setting. The average heat rates were significantly different between the 2 thermocouples for all 3 groups when comparing the 2 ultrasonic power settings. Results indicated that the average heat rate was less for the water-cooled group when using a medium power setting.

  4. Evaluation of the process performance of a down-flow hanging sponge reactor for direct treatment of domestic wastewater in Bangkok, Thailand.

    PubMed

    Miyaoka, Yuma; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Banjongproo, Pathan; Yamaguchi, Takashi; Onodera, Takashi; Okadera, Tomohiro; Syutsubo, Kazuaki

    2017-08-24

    This study assesses the performance of an aerobic trickling filter, down-flow hanging sponge (DHS) reactor, as a decentralized domestic wastewater treatment technology. Also, the characteristic eukaryotic community structure in DHS reactor was investigated. Long-term operation of a DHS reactor for direct treatment of domestic wastewater (COD = 150-170 mg/L and BOD = 60-90 mg/L) was performed under the average ambient temperature ranged from 28°C to 31°C in Bangkok, Thailand. Throughout the evaluation period of 550 days, the DHS reactor at a hydraulic retention time of 3 h showed better performance than the existing oxidation ditch process in the removal of organic carbon (COD removal rate = 80-83% and BOD removal rate = 91%), nitrogen compounds (total nitrogen removal rate = 45-51% and NH 4 + -N removal rate = 95-98%), and low excess sludge production (0.04 gTS/gCOD removed). The clone library based on the 18S ribosomal ribonucleic acid gene sequence revealed that phylogenetic diversity of 18S rRNA gene in the DHS reactor was higher than that of the present oxidation ditch process. Furthermore, the DHS reactor also demonstrated sufficient COD and NH 4 + -N removal efficiency under flow rate fluctuation conditions that simulates a small-scale treatment facility. The results show that a DHS reactor could be applied as a decentralized domestic wastewater treatment technology in tropical regions such as Bangkok, Thailand.

  5. Wastewater polishing by a channelized macrophyte-dominated wetland and anaerobic digestion of the harvested phytomass.

    PubMed

    Cohen, Michael F; Hare, Caden; Kozlowski, John; McCormick, Rachel S; Chen, Lily; Schneider, Linden; Parish, Meghan; Knight, Zane; Nelson, Timothy A; Grewell, Brenda J

    2013-01-01

    Constructed wetlands (CW) offer a mechanism to meet increasingly stringent regulatory standards for wastewater treatment while minimizing energy inputs. Additionally, harvested wetland phytomass subjected to anaerobic digestion can serve as a source of biogas methane. To investigate CW wastewater polishing activities and potential energy yield we constructed a pair of secondary wastewater-fed channelized CW modules designed to retain easily harvestable floating aquatic vegetation and maximize exposure of water to roots and sediment. Modules that were regularly harvested averaged a nitrate removal rate of 1.1 g N m(-2) d(-1); harvesting, sedimentation and gasification were responsible for 30.5%, 8.0% and 61.5% of the N losses, respectively. Selective harvesting of a module to maintain dominance of filamentous algae had no effect on nitrate removal rate but lowered productivity by one-half. The average monthly productivity for unselectively harvested modules was 9.3 ± 1.7 g dry wt. m(-2) d(-1) (±SE). Cessation of harvesting in one module resulted in a significant increase in nitrate removal rate and decrease in phosphate removal rate. Compared to the influent, the effluent of the harvested module had significantly lower levels of estrogenic activity, as determined by a quantitative PCR-based juvenile trout bioassay, and significantly lower densities of E. coli. In mixed vertical-flow reactors anaerobic co-digestion of equal dry weight proportions of harvested aquatic vegetation, wine yeast lees and dairy manure was greatly improved when the manure was replaced with the crude glycerol by-product of biodiesel production. Remaining solids were vermicomposted for use as a soil amendment. Our results indicate that incorporation of constructed wetlands into an integrated treatment system can simultaneously enhance the economic and energetic feasibility of wastewater and organic waste treatment processes.

  6. Center removal amount control of magnetorheological finishing process by spiral polishing way

    NASA Astrophysics Data System (ADS)

    Wang, Yajun; He, Jianguo; Ji, Fang; Huang, Wen; Xiao, Hong; Luo, Qing; Zheng, Yongcheng

    2010-10-01

    Spiral polishing is a traditional process of computer-controlled optical surfacing. However, the additional polishing amount is great and the center polishing amount is difficult to control. At first, a simplified mathematics model is presented for magnetorheological finishing, which indicates that the center polishing amount and additional polishing amount are proportional to the length and peak value of magnetorheological finishing influence function, and are inversely proportional to pitch and rotation rate of spiral track, and the center polishing amount is much bigger than average polishing amount. Secondly, the relationships of "tool feed way and center polishing amount", "spiral pitch and calculation accuracy of influence matrix for dwell time function solution", "spiral pitch and center polishing amount" and "peak removal rate, dimensions of removal function and center removal amount" are studied by numerical computation by Archimedes spiral path. It shows that the center polishing amount is much bigger in feed stage than that in backhaul stage when the head of influence function is towards workpiece edge in feeding; and the bigger pitch, the bigger calculation error of influence matrix elements; and the bigger pitch, the smaller center polishing amount, and the smaller peak removal rate and dimensions of removal function, the smaller center removal amount. At last, the polishing results are given, which indicates that the center polishing amount is acceptable with a suitable polishing amount rate of feed stage and backhaul stage, and with a suitable spiral pitch during magnetorheological finishing procedure by spiral motion way.

  7. Evaluation of the performance of the Tyson Foods wastewater treatment plant for nitrogen removal.

    PubMed

    Ubay-Cokgor, E; Randall, C W; Orhon, D

    2005-01-01

    In this paper, the performance of the Tyson Foods wastewater treatment plant with an average flow rate of 6500 m3/d was evaluated before and after upgrading of the treatment system for nitrogen removal. This study was also covered with an additional recommendation of BIOWIN BNR program simulation after the modification period to achieve an additional nutrient removal. The results clearly show that the upgrading was very successful for improved nitrogen removal, with a 57% decrease on the total nitrogen discharge. There also were slight reductions in the discharged loads of biological oxygen demand, total suspended solids, ammonium and total phosphorus with denitrification, even though the effluent flow was higher during operation of the nitrogen removal configuration.

  8. Current status of urban wastewater treatment plants in China.

    PubMed

    Zhang, Q H; Yang, W N; Ngo, H H; Guo, W S; Jin, P K; Dzakpasu, Mawuli; Yang, S J; Wang, Q; Wang, X C; Ao, D

    2016-01-01

    The study reported and analyzed the current state of wastewater treatment plants (WWTPs) in urban China from the perspective of treatment technologies, pollutant removals, operating load and effluent discharge standards. By the end of 2013, 3508 WWTPs have been built in 31 provinces and cities in China with a total treatment capacity of 1.48×10(8)m(3)/d. The uneven population distribution between China's east and west regions has resulted in notably different economic development outcomes. The technologies mostly used in WWTPs are AAO and oxidation ditch, which account for over 50% of the existing WWTPs. According to statistics, the efficiencies of COD and NH3-N removal are good in 656 WWTPs in 70 cities. The overall average COD removal is over 88% with few regional differences. The average removal efficiency of NH3-N is up to 80%. Large differences exist between the operating loads applied in different WWTPs. The average operating loading rate is approximately 83%, and 52% of WWTPs operate at loadings of <80%, treating up to 40% of the wastewater generated. The implementation of discharge standards has been low. Approximately 28% of WWTPs that achieved the Grade I-A Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) were constructed after 2010. The sludge treatment and recycling rates are only 25%, and approximately 15% of wastewater is inefficiently treated. Approximately 60% of WWTPs have capacities of 1×10(4)m(3)/d-5×10(4)m(3)/d. Relatively high energy consumption is required for small-scale processing, and the utilization rate of recycled wastewater is low. The challenges of WWTPs are discussed with the aim of developing rational criteria and appropriate technologies for water recycling. Suggestions regarding potential technical and administrative measures are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Beyond long memory in heart rate variability: An approach based on fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Leite, Argentina; Paula Rocha, Ana; Eduarda Silva, Maria

    2013-06-01

    Heart Rate Variability (HRV) series exhibit long memory and time-varying conditional variance. This work considers the Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors. ARFIMA-GARCH models may be used to capture and remove long memory and estimate the conditional volatility in 24 h HRV recordings. The ARFIMA-GARCH approach is applied to fifteen long term HRV series available at Physionet, leading to the discrimination among normal individuals, heart failure patients, and patients with atrial fibrillation.

  10. Pollutant removal characteristics of a two-influent-line BNR process performing denitrifying phosphorus removal: role of sludge recycling ratios.

    PubMed

    Liu, Hongbo; Leng, Feng; Chen, Piao; Kueppers, Stephan

    2016-11-01

    This paper studied denitrifying phosphorus removal of a novel two-line biological nutrient removal process treating low strength domestic wastewater under different sludge recycling ratios. Mass balance of intracellular compounds including polyhydroxyvalerate, polyhydroxybutyrate and glycogen was investigated together with total nitrogen (TN) and total phosphorus (TP). Results showed that sludge recycling ratios had a significant influence on the use of organics along bioreactors and 73.6% of the average removal efficiency was obtained when the influent chemical oxygen demand (COD) ranged from 175.9 mgL -1 to 189.9 mgL -1 . The process performed better under a sludge recycling ratio of 100% compared to 25% and 50% in terms of ammonia and COD removal rates. Overall, TN removal efficiency for 50% and 100% sludge recycling ratios were 56.4% and 61.9%, respectively, unlike the big gap for carbon utilization and the TP removal rates, indicating that the effect of sludge recycling ratio on the anaerobic compartments had been counteracted by change in the efficiency of other compartments. The higher ratio of sludge recycling was conducive to the removal of TN, not in favor of TP, and less influence on COD. Thus, 25% was considered to be the optimal sludge recycling ratio.

  11. A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters.

    PubMed

    Tatari, K; Smets, B F; Albrechtsen, H-J

    2013-10-15

    A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled and continuous hydraulic and ammonium loading. Flowrates and flow recirculation around the column are chosen to mimic full-scale hydrodynamic conditions, and minimize axial gradients. A reference ammonium loading rate is calculated based on the average loading experienced in the active zone of the full-scale filter. Effluent concentrations of ammonium are analyzed when the bench-scale column is subject to reference loading, from which removal rates are calculated. Subsequently, removal rates above the reference loading are measured by imposing short-term loading variations. A critical loading rate corresponding to the maximum removal rate can be inferred. The assay was successfully applied to characterize biokinetic behavior from a test rapid sand filter; removal rates at reference loading matched those observed from full-scale observations, while a maximum removal capacity of 6.9 g NH4(+)-N/m(3) packed sand/h could easily be determined at 7.5 g NH4(+)-N/m(3) packed sand/h. This assay, with conditions reflecting full-scale observations, and where the biological activity is subject to minimal physical disturbance, provides a simple and fast, yet powerful tool to gain insight in nitrification kinetics in rapid sand filters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Azo dyes wastewater treatment and simultaneous electricity generation in a novel process of electrolysis cell combined with microbial fuel cell.

    PubMed

    Zou, Haiming; Wang, Yan

    2017-07-01

    A new process of electrolysis cell (EC) coupled with microbial fuel cell (MFC) was developed here and its feasibility in methyl red (MR) wastewater treatment and simultaneous electricity generation was assessed. Results indicate that an excellent MR removal and electricity production performance was achieved, where the decolorization and COD removal efficiencies were 100% and 89.3%, respectively and a 0.56V of cell voltage output was generated. Electrolysis voltage showed a positive influence on decolorization rate (DR) but also cause a rapid decrease in current efficiency (CE). Although a low COD removal rate of 38.5% was found in EC system, biodegradability of MR solution was significantly enhanced, where the averaged DR was 85.6%. Importantly, COD removal rate in EC-MFC integrated process had a 50.8% improvement compared with the single EC system. The results obtained here would be beneficial to provide a prospective alternative for azo dyes wastewater treatment and power production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of dissolved oxygen on nitrate removal using polycaprolactone as an organic carbon source and biofilm carrier in fixed-film denitrifying reactors.

    PubMed

    Luo, Guozhi; Xu, Guimei; Gao, Jinfang; Tan, Hongxin

    2016-05-01

    Nitrate-nitrogen (NO3(-)-N) always accumulates in commercial recirculating aquaculture systems (RASs) with aerobic nitrification units. The ability to reduce NO3(-)-N consistently and confidently could help RASs to become more sustainable. The rich dissolved oxygen (DO) content and sensitive organisms stocked in RASs increase the difficulty of denitrifying technology. A denitrifying process using biologically degradable polymers as an organic carbon source and biofilm carrier was proposed because of its space-efficient nature and strong ability to remove NO3(-)-N from RASs. The effect of dissolved oxygen (DO) levels on heterotrophic denitrification in fixed-film reactors filled with polycaprolactone (PCL) was explored in the current experiment. DO conditions in the influent of the denitrifying reactors were set up as follows: the anoxic treatment group (Group A, average DO concentration of 0.28±0.05mg/L), the low-oxygen treatment DO group (Group B, average DO concentration of 2.50±0.24mg/L) and the aerated treatment group (Group C, average DO concentration of 5.63±0.57mg/L). Feeding with 200mg/L of NO3(-)-N, the NO3(-)-N removal rates were 1.53, 1.60 and 1.42kg/m(3) PCL/day in Groups A, B and C, respectively. No significant difference in NO3(-)-N removal rates was observed among the three treatments. It was concluded that the inhibitory effects of DO concentrations lower than 6mg/L on heterotrophic denitrification in the fixed-film reactors filled with PCL can be mitigated. Copyright © 2015. Published by Elsevier B.V.

  14. Combined anaerobic-aerobic treatment of landfill leachates under mesophilic, submesophilic and psychrophilic conditions.

    PubMed

    Kalyuzhnyi, S; Gladchenko, M; Epov, A

    2003-01-01

    As a first step of treatment of landfill leachates (total COD--1,430-3,810 mg/l, total nitrogen 90-162 mg/l), a performance of laboratory UASB reactors has been investigated under mesophilic (30 degrees C), sub-mesophilic (20 degrees C) and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRT) of around 7 h, when the average organic loading rates (OLR) were around 5 g COD/l/day, the total COD removal accounted for 81% (on the average) with the effluent concentrations close to anaerobic biodegradability limit (0.25 g COD/l) for mesophilic and sub-mesophilic regimes. The psychrophilic treatment conducted under the average HRT of 8 h and the average OLR of 4.22 g COD/l/day showed a total COD removal of 47% producing the effluents (0.75 g COD/l) more suitable for subsequent biological nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulphides inside the sludge bed. The application of aerobic/anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater.

  15. Ranking Alaska moose nutrition: Signals to begin liberal antlerless harvests

    USGS Publications Warehouse

    Boertje, Rodney D.; Kellie, Kalin A.; Seaton, C. Tom; Keech, Mark A.; Young, Donald D.; Dale, Bruce W.; Adams, Layne G.; Aderman, Andrew R.

    2007-01-01

    We focused on describing low nutritional status in an increasing moose (Alces alces gigas) population with reduced predation in Game Management Unit (GMU) 20A near Fairbanks, Alaska, USA. A skeptical public disallowed liberal antlerless harvests of this moose population until we provided convincing data on low nutritional status. We ranked nutritional status in 15 Alaska moose populations (in boreal forests and coastal tundra) based on multiyear twinning rates. Data on age-of-first-reproduction and parturition rates provided a ranking consistent with twinning rates in the 6 areas where comparative data were available. Also, short-yearling mass provided a ranking consistent with twinning rates in 5 of the 6 areas where data were available. Data from 5 areas implied an inverse relationship between twinning rate and browse removal rate. Only in GMU 20A did nutritional indices reach low levels where justification for halting population growth was apparent, which supports prior findings that nutrition is a minor factor limiting most Alaska moose populations compared to predation. With predator reductions, the GMU 20A moose population increased from 1976 until liberal antlerless harvests in 2004. During 1997–2005, GMU 20A moose exhibited the lowest nutritional status reported to date for wild, noninsular, North American populations, including 1) delayed reproduction until moose reached 36 months of age and the lowest parturition rate among 36-month-old moose (29%, n = 147); 2) the lowest average multiyear twinning rates from late-May aerial surveys (x̄ = 7%, SE = 0.9%, n = 9 yr, range = 3–10%) and delayed twinning until moose reached 60 months of age; 3) the lowest average mass of female short-yearlings in Alaska (x̄ = 155 ± 1.6 [SE] kg in the Tanana Flats subpopulation, up to 58 kg below average masses found elsewhere); and 4) high removal (42%) of current annual browse biomass compared to 9–26% elsewhere in boreal forests. When average multiyear twinning rates in GMU 20A (sampled during 1960–2005) declined to <10% in the mid- to late 1990s, we began encouraging liberal antlerless harvests, but only conservative annual harvests of 61–76 antlerless moose were achieved during 1996–2001. Using data in the context of our broader ranking system, we convinced skeptical citizen advisory committees to allow liberal antlerless harvests of 600–690 moose in 2004 and 2005, with the objective of halting population growth of the 16,000–17,000 moose; total harvests were 7–8% of total prehunt numbers. The resulting liberal antlerless harvests served to protect the moose population's health and habitat and to fulfill a mandate for elevated yield. Liberal antlerless harvests appear justified to halt population growth when multiyear twinning rates average ≤10% and ≥1 of the following signals substantiate low nutritional status: <50% of 36-month-old moose are parturient, average multiyear short-yearling mass is <175 kg, or >35% of annual browse biomass is removed by moose.

  16. Analysis of enamel surface damage after selective laser ablation of composite from tooth surfaces.

    PubMed

    Chan, Kenneth H; Hirasuna, Krista; Fried, Daniel

    2014-02-01

    Resin-based composites are used for many applications in dentistry. They are difficult to remove without damage to the underlying enamel since they adhere strongly and are color matched to the tooth. The objective of this study was to determine if an automated laser scanning system with spectral feedback could be used for selective removal of residual orthodontic composite from tooth surfaces with minimal damage to the underlying enamel. A CO 2 laser operating at a wavelength of 9.3 μm with a pulse duration of 10-15 μs and a pulse repetition rate of ~200 Hz was used to selectively remove composite from the buccal surfaces of extracted teeth. A spectral feedback system utilizing a miniature spectrometer was used to control the laser scanning system. Pulpal temperature measurements were performed during composite removal to determine if there was excessive heat accumulation. Conventional and digital microscopes were used to assess the amount of enamel lost during removal. The amount of enamel lost averaged between 20 and 25 μm for irradiation intensities from 3.8 to 4.2 J/cm 2 , respectively. An average maximum temperature rise of 1.9±1.5°C was recorded, with no teeth approaching the critical value of 5.5°C. The average time for composite removal from an area of 5 mm 2 was 19.3±4.1 s, fast enough for clinical feasibility. Residual composite can be rapidly removed from tooth surfaces using a CO 2 laser with spectral feedback, with minimal temperature rise within the pulp and with minimal loss of sound enamel.

  17. Removal of total suspended solids from wastewater in constructed horizontal flow subsurface wetlands.

    PubMed

    Manios, T; Stentiford, E I; Millner, P

    2003-06-01

    Subsurface horizontal flow experimental wetlands (reed beds), were designed and built based on a combination of two design methodologies, that of the WRc and Severn Trent Water plc (1996) and that of the USA, EPA (1988). Four different growing media were used with a combination of top soil, gravel, river sand, and mature sewage sludge compost, to determine the best substrate for total suspended solids (TSS) removal. Eight units were constructed, two for each growing media. One bed for each pair was planted with Typha latifolia plants commonly known as cattails. Primary treated domestic wastewater, was continuously fed to the beds for more than six months. All eight beds performed very well. The best performance was achieved by the gravel reed beds with an almost constant removal rate above 95% and an average effluent concentration of less than 10 mg/L. Soil based beds containing top soil and sand, managed to reach values of removal around 90%. The wetlands containing compost in their substrate, produced an effluent with average concentration of less than 30 mg/L and a percentage removal between 80% and 90%. As expected, there was no significant difference in the performance of planted and unplanted wetlands.

  18. Does the biological treatment or membrane separation reduce the antibiotic resistance genes from swine wastewater through a sequencing-batch membrane bioreactor treatment process.

    PubMed

    Sui, Qianwen; Jiang, Chao; Zhang, Junya; Yu, Dawei; Chen, Meixue; Wang, Yawei; Wei, Yuansong

    2018-06-12

    Swine wastes are the reservoir of antibiotic resistance genes (ARGs), which can potentially spread from swine farms to the environment. This study establishes a sequencing-batch membrane bioreactor (SMBR) for ARG removal from swine wastewater, and analyzes the effect of biological treatment and membrane separation on the ARG removal at different solid retention times (SRTs). The SMBR removed 2.91 logs (copy number) of ARGs at a short SRT (12 days). Raising the SRT reduced the removal rates of the detected genes by the biological treatment. Under the relative long SRT (30 days), ARGs and mobile genetic elements (MGEs) were maximized within the reactor and were well removed by membrane separation, with the average genes removal rate of 2.95 (copy number) and 1.18 logs (abundance). At the relatively low SRT, the biological treatment showed the dominant ARG removal effect, while the membrane separation took the advantages of ARG removal especially at the relatively long SRT. The ARG profile was related to the shift of the microbial community structure. The ARGs coexisted with the functional bacteria (ammonia oxidizing bacteria, nitrite oxidizing bacteria and denitrifiers), suggesting they are hosted by the functional bacteria. Copyright © 2018. Published by Elsevier Ltd.

  19. Mechanisms for parasites removal in a waste stabilisation pond.

    PubMed

    Reinoso, Roberto; Blanco, Saúl; Torres-Villamizar, Linda A; Bécares, Eloy

    2011-04-01

    A waste stabilisation pond (WSP) system formed by two anaerobic ponds, a facultative pond and a maturation pond was studied from December 2003 to September 2004 in north-western Spain in order to evaluate its efficiency in the removal of faecal indicator bacteria (total coliforms, Escherichia coli, faecal streptococci), coliphages, helminth eggs and protozoan (oo)cysts (Cryptosporidium and Giardia). Furthermore, sediment samples were collected from the bottom of the ponds to assess the settling rates and thus determine the main pathogen removal mechanisms in the WSPs system. The overall removal ranged from 1.4 log units for coliphages in the cold period to 5.0 log units for E. coli in the hot period. Cryptosporidium oocysts were reduced by an average of 96%, Giardia cysts by 98% and helminth eggs by 100%. The anaerobic ponds showed significantly higher surface removal rates (4.6, 5.2 and 3.7 log (oo)cysts/eggs removed m(-2) day(-1), respectively) than facultative and maturation ponds. Sunlight and water physicochemical conditions were the main factors influencing C. parvum oocysts removal both in the anaerobic and maturation ponds, whereas other factors like predation or natural mortality were more important in the facultative pond. Sedimentation, the most commonly proposed mechanism for cyst removal had, therefore, a negligible influence in the studied ponds.

  20. Removal of pharmaceutical residue in municipal wastewater by DAF (dissolved air flotation)-MBR (membrane bioreactor) and ozone oxidation.

    PubMed

    Choi, Miyoung; Choi, Dong Whan; Lee, Jung Yeol; Kim, Young Suk; Kim, Bun Su; Lee, Byoung Ho

    2012-01-01

    Growing attention is given to pharmaceutical residue in the water environment. It is known that pharmaceuticals are able to survive from a series of wastewater treatment processes. Concerns regarding pharmaceutical residues are attributed to the fact that they are being detected in water and sediment environment ubiquitously. Pharmaceutical treatment using a series of wastewater treatment processes of the DAF (dissolved air flotation)-MBR (membrane bioreactor)-ozone oxidation was conducted in the study. DAF, without addition of coagulant, could remove COD(cr) (chemical oxygen demand by Cr) up to over 70%, BOD 73%, SS 83%, T-N 55%, NH₄(+) 23%, and T-P 65% in influent of municipal wastewater. Average removal rates of water quality parameters by the DAF-MBR system were very high, e.g. COD(cr) 95.88%, BOD₅ 99.66%, COD(mn) (chemical oxygen demand by Mn) 93.63%, T-N 69.75%, NH₄-N 98.46%, T-P 78.23%, and SS 99.51%, which satisfy effluent water quality standards. Despite the high removal rate of the wastewater treatment system, pharmaceuticals were eliminated to be about 50-99% by the MBR system, depending on specific pharmaceuticals. Ibuprofen was well removed by MBR system up to over 95%, while removal rate of bezafibrate ranged between 50 and 90%. With over 5 mg/l of ozone oxidation, most pharmaceuticals which survived the DAF-MBR process were removed completely or resulted in very low survival rate within the range of few micrograms per litre. However, some pharmaceuticals such as bezafibrate and naproxen tended to be resistant to ozone oxidation.

  1. Upstream H/sub 2/S removal from geothermal steam. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    The purpose of this project was to evaluate a new heat exchanger process as a method for removing hydrogen sulfide (H/sub 2/S) gas from geothermal steam upstream of a power plant turbine. The process utilizes a heat exchanger to condense geothermal steam so that noncondensable gases (including H/sub 2/S) can be removed in the form of a concentrated vent stream. Ultimate disposal of the removed H/sub 2/S gas may then be accomplished by use of other processes such as the commercially available Stretford process. The clean condensate is reevaporated on the other side of the heat exchanger using the heatmore » removed from the condensing geothermal steam. The necessary heat transfer is induced by maintaining a slight pressure difference, and consequently a slight temperature difference, between the two sides of the heat exchanger. Evaluation of this condensing and reboiling process was performed primarily through the testing of a small-scale 14 m/sup 2/ (150 ft/sup 2/) vertical tube evaporator heat exchanger at The Geysers Power Plant in northern California. The field test results demonstrated H/sub 2/S removal rates consistently better than 90 percent, with an average removal rate of 94 percent. In addition, the removal rate for all noncondensable gases is about 98 percent. Heat transfer rates were high enough to indicate acceptable economics for application of the process on a commercial scale. The report also includes an evaluation of the cost and performance of various configurations of the system, and presents design and cost estimates for a 2.5 MWe and a 55 MWe unit.« less

  2. Effect of hydraulic retention time on ABR tail water treatment by contact oxidation process under low oxygen condition

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolong; Shi, Chunhong; Wang, Zhenbao; Jiang, Kai

    2018-02-01

    Biological contact oxidation process of low dissolved oxygen was applied to the treatment of ABR tail water, which were pretreatment effluent for Island sewage. The reactor was built and filled with polyurethane suspension filler as carrier for biofilm growth in laboratory. The dissolved oxygen in the reactor is kept at 1.3-1.8mg/L to distinguish between traditional method which is 2.5-3.5mg/L. Influence of hydraulic retention time(HRT) on ABR tail water treatment by the process was studied. Results show that the system has good effect on removal of COD and TN under this condition. When HRT is among 4h to 12h, the removal rate of COD can be maintained at 80-90%.From period 1 to period 3, the removal rate of NH4 +N and TN at the end of each period can be recovered to a higher level, and the average removal rate after stabilization is 99% and 67% respectively which can come up to first grade of the national standard GB18918-2002. It is remarkable that when HRT is 4h, the removal rate of NH4 +-N and TN showed a significant decrease trend, the concentration of effluent was 14.79mg/L and 19.5mg/L, respectively.

  3. Nitrogen and Phosphorus Removal from Wastewater Treatment Plant Effluent via Bacterial Sulfate Reduction in an Anoxic Bioreactor Packed with Wood and Iron

    PubMed Central

    Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko

    2014-01-01

    We investigated the removal of nitrogen and phosphate from the effluent of a sewage treatment plant over a long-term operation in bioreactors packed with different combinations of wood and iron, with a trickling filter packed with foam ceramics for nitrification. The average nitrification rate in the trickling filter was 0.17 kg N/m3∙day and remained at 0.11 kg N/m3∙day even when the water temperature was below 15 °C. The denitrification and phosphate removal rates in the bioreactor packed with aspen wood and iron were higher than those in the bioreactor packed with cedar chips and iron. The bioreactor packed with aspen wood and iron continued to remove nitrate and phosphate for >1200 days of operation. The nitrate removal activity of a biofilm attached to the aspen wood from the bioreactor after 784 days of operation was 0.42 g NO3-N/kg dry weight wood∙ day. There was no increase in the amount of dissolved organic matter in the outflow from the bioreactors. PMID:25247426

  4. Removal of Organic Pollutants from Municipal Wastewater by Applying High-Rate Algal Pond in Addis Ababa, Ethiopia

    NASA Astrophysics Data System (ADS)

    Alemu, Keneni; Assefa, Berhanu; Kifle, Demeke; Kloos, Helmut

    2018-05-01

    The discharge of inadequately treated municipal wastewater has aggravated the pollution load in developing countries including Ethiopia. Conventional wastewater treatment methods that require high capital and operational costs are not affordable for many developing nations, including Ethiopia. This study aimed to investigate the performance of two high-rate algal ponds (HRAPs) in organic pollutant removal from primary settled municipal wastewater under highland tropical climate conditions in Addis Ababa. The experiment was done for 2 months at hydraulic retention times (HRTs) ranging from 2 to 8 days using an organic loading rates ranging 333-65 kg {BOD}5 /ha/day using two HRAPs, 250 and 300 mm deep, respectively. In this experiment, Chlorella sp., Chlamydomonas sp., and Scenedesmus sp., the class of Chlorophyceae, were identified as the dominant species. Chlorophyll-a production was higher in the shallower ponds (250 mm) throughout the course of the study, whereas the deeper HRAP (300 mm) showed better dissolved oxygen production. The maximum COD and {BOD}5 removal of 78.03 and 81.8% was achieved at a 6-day HRT operation in the 250-mm-deep HRAP. Therefore, the 300-mm-deep HRAP is promising for scaling up organic pollutant removal from municipal wastewater at a daily average organic loading rate of 109.3 kg {BOD}5 /ha/day and a 6-day HRT. We conclude that the removal of organic pollutants in HRAP can be controlled by pond depth, organic loading rate, and HRT.

  5. Suture Button Fixation Versus Syndesmotic Screws in Supination-External Rotation Type 4 Injuries: A Cost-Effectiveness Analysis.

    PubMed

    Neary, Kaitlin C; Mormino, Matthew A; Wang, Hongmei

    2017-01-01

    In stress-positive, unstable supination-external rotation type 4 (SER IV) ankle fractures, implant selection for syndesmotic fixation is a debated topic. Among the available syndesmotic fixation methods, the metallic screw and the suture button have been routinely compared in the literature. In addition to strength of fixation and ability to anatomically restore the syndesmosis, costs associated with implant use have recently been called into question. This study aimed to examine the cost-effectiveness of the suture button and determine whether suture button fixation is more cost-effective than two 3.5-mm syndesmotic screws not removed on a routine postoperative basis. Economic and decision analysis; Level of evidence, 2. Studies with the highest evidence levels in the available literature were used to estimate the hardware removal and failure rates for syndesmotic screws and suture button fixation. Costs were determined by examining the average costs for patients who underwent surgery for unstable SER IV ankle fractures at a single level-1 trauma institution. A decision analysis model that allowed comparison of the 2 fixation methods was developed. Using a 20% screw hardware removal rate and a 4% suture button hardware removal rate, the total cost for 2 syndesmotic screws was US$20,836 and the total effectiveness was 5.846. This yielded a total cost of $3564 per quality-adjusted life-year (QALY) over an 8-year time period. The total cost for suture button fixation was $19,354 and the total effectiveness was 5.904, resulting in a total cost of $3294 per QALY over the same time period. A sensitivity analysis was then conducted to assess suture button fixation costs as well as screw and suture button hardware removal rates. Other possible treatment scenarios were also examined, including 1 screw and 2 suture buttons for operative fixation of the syndesmosis. To become more cost-effective, the screw hardware removal rate would have to be reduced to less than 10%. Furthermore, fixation with a single suture button continued to be the dominant treatment strategy compared with 2 suture buttons, 1 screw, and 2 screws for syndesmotic fixation. This cost-effectiveness analysis suggests that for unstable SER IV ankle fractures, suture button fixation is more cost-effective than syndesmotic screws not removed on a routine basis. Suture button fixation was a dominant treatment strategy, because patients spent on average $1482 less and had a higher quality of life by 0.058 QALYs compared with patients who received fixation with 2 syndesmotic screws. Assuming that functional outcomes and failure rates were equivalent, screw fixation only became more cost-effective when the screw hardware removal rate was reduced to less than 10% or when the suture button cost exceeded $2000. In addition, fixation with a single suture button device proved more cost-effective than fixation with either 1 or 2 syndesmotic screws.

  6. Uranium mobility during interaction of rhyolitic obsidian, perlite and felsite with alkaline carbonate solution: T = 120° C, P = 210 kg/cm2

    USGS Publications Warehouse

    Zielinski, Robert A.

    1979-01-01

    Well-characterized samples of rhyolitic obsidian, perlite and felsite from a single lava flow are leached of U by alkaline oxidizing solutions under open-system conditions. Pressure, temperature, flow rate and solution composition are held constant in order to evaluate the relative importance of differences in surface area and crystallinity. Under the experimental conditions U removal from crushed glassy samples proceeds by a mechanism of glass dissolution in which U and silica are dissolved in approximately equal weight fractions. The rate of U removal from crushed glassy samples increases with decreasing average grain size (surface area). Initial rapid loss of a small component (≈ 2.5%) of the total U from crushed felsite. followed by much slower U loss, reflects variable rates of attack of numerous uranium sites. The fractions of U removed during the experiment ranged from 3.2% (felsite) to 27% (perlite). An empirical method for evaluating the relative rate of U loss from contemporaneous volcanic rocks is presented which incorporates leaching results and rock permeability data.

  7. Partial nitritation of raw anaerobic sludge digester liquor by swim-bed and swim-bed activated sludge processes and comparison of their sludge characteristics.

    PubMed

    Qiao, Sen; Kawakubo, Yuki; Koyama, Toichiro; Furukawa, Kenji

    2008-11-01

    This study evaluated performance of swim-bed (SB) reactors packed with a novel acrylic fiber carrier (BF) and swim-bed activated sludge (SBAS) reactor for partial nitritation of anaerobic sludge digester liquor from a municipal wastewater treatment plant. Comparison of characteristics of sludge obtained from both the reactors was also made. The average conversion rates of ammonium to nitrite were 52.3% and 40.0% under relatively high nitrogen loading rates over 3.0 kg-N/m(3)/d, respectively in two reactors. The average BOD(5) removal efficiencies were 74.3% and 64.4%, respectively in the two reactors. The size of the sludge pellets taken from SB and SBAS reactors was found to be approximately three times (229 mum versus 88 mum) of that of the seed sludge. This sludge also had relatively high extracellular proteins levels indicating better sludge settling capability as compared to the sludge taken from SBAS reactor. Although the effluent nitrite/ammonium ratios had fluctuated in both reactor in some extent, the low dissolved oxygen concentration (average of 2.5 versus 0.35 mg/l), low suspended solids (average of 33.3 versus 33.5 mg/l), and about 50% ammonium conversion to nitrite demonstrated the application potential of anammox process for nitrogen removal.

  8. Remediation of incomplete nitrification and capacity increase of biofilters at different drinking water treatment plants through copper dosing.

    PubMed

    Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen

    2018-04-01

    Drinking water treatment plants based on groundwater may suffer from incomplete ammonium removal, which deteriorates drinking water quality and constrains water utilities in the operation of their plants. Ammonium is normally removed through nitrification in biological granular media filters, and recent studies have demonstrated that dosing of copper can stimulate the removal of ammonium. Here, we investigated if copper dosing could generically improve ammonium removal of biofilters, at treatment plants with different characteristics. Copper was dosed at ≤1.5 μg Cu/L to biofilters at 10 groundwater treatment plants, all of which had displayed several years of incomplete nitrification. Plants exceeded the Danish national water quality standard of 0.05 mg NH 4 + /L by a factor of 2-12. Within only 2-3 weeks of dosing, ammonium removal rates increased significantly (up to 150%). Nitrification was fully established, with ammonium effluent concentrations of <0.01 mg NH 4 + -N/L at most plants, regardless of the differences in raw water chemistry, ammonium loading rates, filter design and operation, or treatment plant configuration. However, for filters without primary filtration, it took longer time to reach complete ammonium removal than for filters receiving prefiltered water, likely due to sorption of copper to iron oxides, at plants without prefiltration. With complete ammonium removal, we subjected two plants to short-term loading rate upshifts, to examine the filters' ability to cope with loading rate variations. After 2 months of dosing and an average loading rate of 1.0 g NH 4 + -N/m 3 filter material/h, the loading rate was upshifted by 50%. Yet, a filter managed to completely remove all the influent ammonium, showing that with copper dosing the filter had extra capacity to remove ammonium even beyond its normal loading rates. Depth sampling revealed that the ammonium removal rate of the filter's upper 10 cm increased more than 7-fold from 0.67 to 4.90 g NH 4 + -N/m 3 /h, and that nitrite produced from increased ammonium oxidation was completely oxidized further to nitrate. Hence, no problems with nitrite accumulation or breakthrough occurred. Overall, copper dosing generically enhanced nitrification efficiency and allowed a range of quite different plants to meet water quality standards, even at increased loading rates. The capacity increase is highly relevant in practice, as it makes filters more robust towards sudden ammonium loading rate variations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Long-term ammonia removal in a coconut fiber-packed biofilter: analysis of N fractionation and reactor performance under steady-state and transient conditions.

    PubMed

    Baquerizo, Guillermo; Maestre, Juan P; Machado, Vinicius C; Gamisans, Xavier; Gabriel, David

    2009-05-01

    A comprehensive study of long-term ammonia removal in a biofilter packed with coconut fiber is presented under both steady-state and transient conditions. Low and high ammonia loads were applied to the reactor by varying the inlet ammonia concentration from 90 to 260 ppm(v) and gas contact times ranging from 20 to 36 s. Gas samples and leachate measurements were periodically analyzed and used for characterizing biofilter performance in terms of removal efficiency (RE) and elimination capacity (EC). Also, N fractions in the leachate were quantified to both identify the experimental rates of nitritation and nitratation and to determine the N leachate distribution. Results showed stratification in the biofilter activity and, thus, most of the NH(3) removal was performed in the lower part of the reactor. An average EC of 0.5 kg N-NH(3)m(-3)d(-1) was obtained for the whole reactor with a maximum local average EC of 1.7 kg N-NH(3)m(-3)d(-1). Leachate analyses showed that a ratio of 1:1 of ammonium and nitrate ions in the leachate was obtained throughout steady-state operation at low ammonia loads with similar values for nitritation and nitratation rates. Low nitratation rates during high ammonia load periods occurred because large amounts of ammonium and nitrite accumulated in the packed bed, thus causing inhibition episodes on nitrite-oxidizing bacteria due to free ammonia accumulation. Mass balances showed that 50% of the ammonia fed to the reactor was oxidized to either nitrite or nitrate and the rest was recovered as ammonium indicating that sorption processes play a fundamental role in the treatment of ammonia by biofiltration.

  10. Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater.

    PubMed

    Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan

    2013-08-01

    A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Enhancement of Anaerobic Digestion to Treat Saline Sludge from Recirculating Aquaculture Systems

    PubMed Central

    Luo, Guo-zhi; Ma, Niannian; Li, Ping; Tan, Hong-xin; Liu, Wenchang

    2015-01-01

    The effectiveness of carbohydrate addition and the use of ultrasonication as a pretreatment for the mesophilic anaerobic digestion of saline aquacultural sludge was assessed. Analyses were conducted using an anaerobic sequencing batch reactor (ASBR), which included stopped gas production attributed to the saline inhibition. After increasing the C : N ratio, gas production was observed, and the total chemical oxygen demand (TCOD) removal efficiency increased from 75% to 80%. The TCOD removal efficiency of the sonication period was approximately 85%, compared to 75% for the untreated waste. Ultrasonication of aquaculture sludge was also found to enhance the gas production rate and the TCOD removal efficiency. The average volatile fatty acid (VFA) to alkalinity ratios ranged from 0.1 to 0.05, confirming the stability of the digesters. Furthermore, soluble chemical oxygen demand (SCOD), VFA, and PO4 3− concentrations increased in the effluents. There was a 114% greater gas generation during the ultrasonication period, with an average production of 0.08 g COD/L·day−1. PMID:26301258

  12. Influence of organic load rate (OLR) on the hydrolytic acidification of 2-butenal manufacture wastewater and analysis of bacterial community structure.

    PubMed

    Song, Guangqing; Xi, Hongbo; Zhou, Yuexi; Fu, Liya; Xing, Xin; Wu, Changyong

    2017-11-01

    The influence of organic loading rate (OLR) on the performance of hydrolytic acidification process for treating 2-butenal manufacture wastewater was comprehensively studied, while its impact on microbial community was thoroughly investigated. The results demonstrated that over 21.0% of the average COD removal rate was observed in the range of OLR from 0.52 to 3.98g COD/L·d, whereas it reduced to 15.3% with increasing OLR to 6.09g COD/L·d. The acidification degree dramatically decreased from 17.1% to 4.7% when OLR increased from 3.98 to 6.09g COD/L·d. In addition, the removal rates of three kinds of typical matters were less than 65% at the OLR 6.09g COD/L·d. Illumina MiSeq sequencing revealed that Proteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes were dominant phyla at different OLRs. Finally, multivariate analysis suggested that the genera Longilinea and T78 had a positive correlation with the degradation of three kinds of typical matters and COD removal rates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Below the Disappearing Marshes of an Urban Estuary: Historic Nitrogen Trends and Soil Structure

    EPA Science Inventory

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wa...

  14. Nitrogen removal and mass balance in newly-formed Myriophyllum aquaticum mesocosm during a single 28-day incubation with swine wastewater treatment.

    PubMed

    Liu, Feng; Zhang, Shunan; Wang, Yi; Li, Yong; Xiao, Runlin; Li, Hongfang; He, Yang; Zhang, Miaomiao; Wang, Di; Li, Xi; Wu, Jinshui

    2016-01-15

    The aim of this research was to assess the applicability of Myriophyllum (M.) aquaticum for swine wastewater treatment. Nitrogen (N) removal processes were investigated in M. aquaticum mesocosms with swine wastewater (SW), 50% diluted swine wastewater (50% SW), and two strengths of synthetic wastewater, 200 mg [Formula: see text] L(-1) (200 [Formula: see text] ) and 400 mg [Formula: see text] L(-1) (400 [Formula: see text] ). During a 28-day incubation period, the average [Formula: see text] and TN removal rates were 99.8% and 94.2% for 50% SW and 99.8% and 93.8% for SW, which were greater than 86.5% and 83.7% for 200 [Formula: see text] , and 73.7% and 74.1% for 400 [Formula: see text] , respectively. A maximum areal total nitrogen (TN) removal rate of 157.8 mg N m(-2) d(-1) was found in M. aquaticum mesocosms with SW. During the incubation period, the observed dynamics of [Formula: see text] concentrations in water and gene copy numbers of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), nirK and nirS in soil unraveled strong nitrification and denitrification processes occurring in M. aquaticum mesocosms with swine wastewater. The N mass balance analysis indicated that plant uptake and soil N accumulation accounted for 17.9-42.2% and 18.0-43.8% of the initial TN load, respectively. The coupled nitrification and denitrification process was calculated to account for, on average, 36.8% and 62.8% of TN removal for 50% SW and SW, respectively. These findings demonstrated that the N uptake by M. aquaticum contributed to a considerable proportion of N removal. In particular, the activities of ammonia-oxidizing and denitrification microbes responsible for nitrification and denitrification processes in M. aquaticum mesocosm accelerated [Formula: see text] and TN removal from swine wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Preprototype SAWD subsystem

    NASA Technical Reports Server (NTRS)

    Nalette, T. A.

    1984-01-01

    A regenerable, three man preprototype solid amine, water desorbed (SAWD) CO2 removal and concentation subsystem was designed, fabricated, and successfully acceptance tested by Hamilton Standard. The preprototype SAWD incorporates a single solid amine canister to perform the CO2 removal function, an accumulator to provide the CO2 storage and delivery function, and a microprocessor which automatically controls the subsystem sequential operation and performance. The SAWD subsystem was configured to have a CO2 removal and CO2 delivery capability at the rate of 0.12 kg/hr (0.264 lb/hr) over the relative humidity range of 35 to 70%. The controller was developed to provide fully automatic control over the relative humidity range via custom software that was generated specifically for the SAWD subsystem. The preprototype SAWD subsystem demonstrated a total of 281 hours (208) cycles of operation during ten acceptance tests that were conducted over the 3 to 70% relative humidity range. This operation was comprised of 178 hours (128 cycles) in the CO2 overboard mode and 103 hours (80 cycles) in the CO2 reduction mode. The average CO2 removal/delivery rate met or exceeded the design specification rate of 0.12 kg/hr (0.254 lb/hr) for all ten of the acceptance tests.

  16. Delayed intraocular foreign body removal without endophthalmitis during Operations Iraqi Freedom and Enduring Freedom.

    PubMed

    Colyer, Marcus H; Weber, Eric D; Weichel, Eric D; Dick, John S B; Bower, Kraig S; Ward, Thomas P; Haller, Julia A

    2007-08-01

    To report the long-term follow-up results of intraocular foreign body (IOFB) removal at Walter Reed Army Medical Center during Operation Iraqi Freedom and Operation Enduring Freedom from February 2003 through November 2005 and to determine the prognostic factors for visual outcome in this patient population. Retrospective, noncomparative, interventional case series. Seventy-nine eyes of 70 United States military soldiers deployed in support of operations Iraqi Freedom and Enduring Freedom sustained IOFB injuries and subsequently were treated at the Walter Reed Army Medical Center with a minimum of 6 months of follow-up. The principal procedure performed was 20-gauge 3-port vitrectomy with IOFB removal through limbal or pars plana incision. Final visual acuity, rate of proliferative vitreoretinopathy, rate of endophthalmitis. Average patient age was 27 years, with an average of 331 days of postoperative follow-up. Average IOFB size was 3.7 mm (range, 0.1-20 mm). Median time to IOFB removal was 21 days (mean, 38 days; range, 2-661 days). Mean preoperative visual acuity was 20/400 (1.36 logarithm of mean angle of resolution [logMAR] units) and mean final visual acuity was 20/120 (0.75 logMAR). Of the patients, 53.4% achieved visual acuity of 20/40 or better, whereas 77.5% achieved visual acuity of better than 20/200. There were no cases of endophthalmitis (0/79 eyes; 95% confidence interval, 0%-3.1%), siderosis bulbi, or sympathetic ophthalmia. Among the eyes, 10.3% evolved to no light perception or had been enucleated by the 6-month follow-up visit. Poor visual outcome correlated with extensive intraocular injury (P<0.032). Seventeen of 79 eyes (21%) experienced proliferative vitreoretinopathy. Proliferative vitreoretinopathy correlated with poor initial vision (hand movements or worse; P = 0.035) and extensive intraocular injury (P<0.001). Timing of vitrectomy did not correlate with visual outcome. The most common systemic antibiotic administered was levofloxacin, whereas the most common topical antibiotic administered was moxifloxacin. Poor visual outcome and postoperative complication rates are related to extensive intraocular injury. Delayed IOFB removal with a combination of systemic and topical antibiotic coverage can result in good visual outcome without an apparent increased risk of endophthalmitis or other deleterious side effects.

  17. Nitrifying moving bed biofilm reactor (MBBR) biofilm and biomass response to long term exposure to 1 °C.

    PubMed

    Hoang, V; Delatolla, R; Abujamel, T; Mottawea, W; Gadbois, A; Laflamme, E; Stintzi, A

    2014-02-01

    This study aims to investigate moving bed biofilm reactor (MBBR) nitrification rates, nitrifying biofilm morphology, biomass viability as well as bacterial community shifts during long-term exposure to 1 °C. Long-term exposure to 1 °C is the key operational condition for potential ammonia removal upgrade units to numerous northern region treatment systems. The average laboratory MBBR ammonia removal rate after long-term exposure to 1 °C was measured to be 18 ± 5.1% as compared to the average removal rate at 20 °C. Biofilm morphology and specifically the thickness along with biomass viability at various depths in the biofilm were investigated using variable pressure electron scanning microscope (VPSEM) imaging and confocal laser scanning microscope (CLSM) imaging in combination with viability live/dead staining. The biofilm thickness along with the number of viable cells showed significant increases after long-term exposure to 1 °C. Hence, this study observed nitrifying bacteria with higher activities at warm temperatures and a slightly greater quantity of nitrifying bacteria with lower activities at cold temperatures in nitrifying MBBR biofilms. Using DNA sequencing analysis, Nitrosomonas and Nitrosospira (ammonia oxidizers) as well as Nitrospira (nitrite oxidizer) were identified and no population shift was observed between 20 °C and after long-term exposure to 1 °C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2004-01-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  19. Four-man rated dual catalyst system for the recovery of water from urine

    NASA Technical Reports Server (NTRS)

    Budininkas, P.

    1978-01-01

    The catalytic system was integrated with a 4-man rated urine wick evaporator. During operation, urine vapor produced by the wick-evaporator was treated in the catalytic system to remove ammonia and volatile hydrocarbons, and water was recovered by condensation in a water cooled condenser. The system operated completely automatically and required no manual adjustments, except periodic supply of urine and removal of the recovered water. Although the system was designed for treating 0.325 kg urine per hour, this rate could be achieved only with a fresh wick, then gradually decreased as the wick became saturated with urine solids. The average urine treatment rates achieved during each of the three endurance tests were 0.137, 0.217, and 0.235 kg/hr. The quality of the recovered water meets drinking water standards, with the exception of a generally low pH.

  20. Treatment of phenolic wastewater in an anaerobic fixed bed reactor (AFBR) - recovery after shock loading.

    PubMed

    Bajaj, Mini; Gallert, Claudia; Winter, Josef

    2009-03-15

    An anaerobic fixed bed reactor (AFBR) was run for 550 days with a mixed microbial flora to stabilize synthetic wastewater that contained glucose and phenol as main carbon sources. The influent phenol concentration was gradually increased from 2 to 40 mmol/l within 221 days. The microbial flora was able to adapt to this high phenol concentration with an average of 94% phenol removal. Microbial adaptation at such a high phenol concentration is not reported elsewhere. The maximum phenol removal observed before the phenol shock load was 39.47 mmol/l or 3.7 g phenol/l at a hydraulic retention time (HRT) of 2.5 days and an organic loading rate (OLR) of 5.3 g/l.d which amounts to a phenol removal rate of ca. 15.8 mmol phenol/l.d. The chemical oxygen demand (COD) removal before exposing the reactor to a shock load corresponded with phenol removal. A shock load was induced in the reactor by increasing the phenol concentration from 40 to 50 mmol/l in the influent. The maximum phenol removal rate observed after shock load was 18 mmol/l.d at 5.7 g COD/l.d. But this was not a stable rate and a consistent drop in COD and phenol removal was observed for 1 week, followed by a sharp decline and production of fatty acids. Recovery of the reactor was possible only when no feed was provided to the reactor for 1 month and the phenol concentration was increased gradually. When glucose was omitted from the influent, unknown intermediates of anaerobic phenol metabolism were observed for some time.

  1. Nitrogen removal and nitrate leaching for forage systems receiving dairy effluent.

    PubMed

    Woodard, Kenneth R; French, Edwin C; Sweat, Lewin A; Graetz, Donald A; Sollenberger, Lynn E; Macoon, Bisoondat; Portier, Kenneth M; Wade, Brett L; Rymph, Stuart J; Prine, Gordon M; Van Horn, Harold H

    2002-01-01

    Florida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment). Over four cycles, average loading rates of effluent N were 500, 690, and 910 kg ha(-1) per cycle. Nitrogen removed by the bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (BR) during the first three cycles was 465 kg ha(-1) per cycle for the low loading rate, 528 kg ha(-1) for the medium rate, and 585 kg ha(-1) for the high. For the corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye system (CSR), N removals were 320 kg ha(-1) per cycle for the low rate, 327 kg ha(-1) for the medium, and 378 kg ha(-1) for the high. The higher N removals for BR were attributed to higher N concentration in bermudagrass (18.1-24.2 g kg(-1)) than in corn and forage sorghum (10.3-14.7 g kg(-1)). Dry matter yield declined in the fourth cycle for bermudagrass but N removal continued to be higher for BR than CSR. The BR system was much more effective at preventing NO3(-)-N leaching. For CSR, NO3(-)-N levels in soil water (1.5 m below surface) increased steeply during the period between the harvest of one forage and canopy dosure of the next. Overall, the BR system was better than CSR at removing N from the soil and maintaining low NO3(-)-N concentrations below the rooting zone.

  2. Fabrication and properties of an immobilized P25TiO{sub 2}-montmorillonite bilayer system for the synergistic photocatalytic–adsorption removal of methylene blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngoh, Y.S.; Nawi, M.A., E-mail: masri@usm.my

    2016-04-15

    Highlights: • P25TiO{sub 2} and montmorillonite was integrated via an immobilized bilayer approach. • Synergistic dual photocatalytic–adsorptive removal of MB was observed. • Removal rate of MB was 4 times better than P25TiO{sub 2} alone. • Excellent reusability with sustainable rate of removal of MB. • Treated water can be discharged directly without the need of a filtration system. - Abstract: A bilayer immobilized system consisting of a mesoporous montmorillonite (MT) as the sublayer and a porous P25TiO{sub 2} toplayer was successfully fabricated on a glass plate. The MT sublayer was immobilized onto the glass plate by means of amore » glutaraldehyde (GLA) cross-linked poly (vinyl) alcohol (PVA) as the binder (MT-PVAB) while the top layer constituted of nano-sized TiO{sub 2} bound by the ENR-PVC polymer blends (P-25TiO{sub 2}). The incorporation of MT-PVAB to P-25TiO{sub 2} caused a reduction in the band gap energy while PLS emission spectra suggested higher separation rate for the photo-generated electron–hole pairs in the P-25TiO{sub 2}/MT-PVAB/GP. The photocatalytic–adsorption removal experiments showed that the P-25TiO{sub 2}/MT-PVAB/GP enhanced removal rate of MB by an average of 4 times as compared with the immobilized monolayer P-25TiO{sub 2} on a glass plate (P-25TiO{sub 2}/GP).« less

  3. Impact of management strategies on the global warming potential at the cropping system level.

    PubMed

    Goglio, Pietro; Grant, Brian B; Smith, Ward N; Desjardins, Raymond L; Worth, Devon E; Zentner, Robert; Malhi, Sukhdev S

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha(-1) decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  4. High dose urokinase for restoration of patency of occluded permanent central venous catheters in hemodialysis patients.

    PubMed

    Shavit, L; Lifschitz, M; Plaksin, J; Grenader, T; Slotki, I

    2010-10-01

    Catheter thrombosis is common and results in inadequate dialysis treatment and, frequently, in catheter loss. Since dialysis treatment runs on a strict schedule, occluded catheters need to be restored in a timely and cost effective manner. We present a new shortened protocol of urokinase infusion that allows hemodialysis to be performed within 90 minutes. To chronic hemodialysis patients, who developed complete catheter occlusion, urokinase was infused simultaneously through both lumens of the catheter (125,000 units to each lumen) over 90 minutes. Technical success was defined as restoring blood pump speed to at least 250 ml/min. We determined the average time from catheter placement to first clot event (primary patency PP), recurrent clot event after urokinase treatment (secondary patency SP), catheter salvage rate and cause for removal. 37 catheters developed total thrombosis and urokinase was used to restore patency one or more times (total 47 treatments). Catheter salvage rate was 97 %. The average time of PP was 152 ± 56 days (7 - 784 days). Nine patients (30%) developed recurrent occlusion and the average time of SP was 64 ± 34 days (2 - 364 days). One catheter was removed because of dysfunction due to thrombosis. Other catheters were removed due to infection, fistula maturation or fell out spontaneously. Hemodialysis was performed immediately after treatment with blood speed of 250 ml/min in all patients. Our protocol is highly effective, short, and allows to restore patency of totally occluded central venous catheters with minimal disruption of the dialysis session.

  5. The importance of temporal inequality in quantifying vegetated filter strip removal efficiencies

    NASA Astrophysics Data System (ADS)

    Gall, H. E.; Schultz, D.; Mejia, A.; Harman, C. J.; Raj, C.; Goslee, S.; Veith, T.; Patterson, P. H.

    2017-12-01

    Vegetated filter strips (VFSs) are best management practices (BMPs) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents often present in agricultural runoff. VFSs are generally reported to have high sediment removal efficiencies (i.e., 70 - 95%); however, these values are typically calculated as an average of removal efficiencies observed or simulated for individual events. We argue that due to: (i) positively correlated sediment concentration-discharge relationships; (ii) strong temporal inequality exhibited by sediment transport; and (iii) decreasing VFS performance with increasing flow rates, VFS removal efficiencies over annual time scales may be significantly lower than the per-event values or averages typically reported in the literature and used in decision-making models. By applying a stochastic approach to a two-component VFS model, we investigated the extent of the disparity between two calculation methods: averaging efficiencies from each event over the course of one year, versus reporting the total annual load reduction. We examined the effects of soil texture, concentration-discharge relationship, and VFS slope to reveal the potential errors that may be incurred by ignoring the effects of temporal inequality in quantifying VFS performance. Simulation results suggest that errors can be as low as < 2% and as high as > 20%, with the differences between the two methods of removal efficiency calculations greatest for: (i) soils with high percentage of fine particulates; (ii) VFSs with higher slopes; and (iii) strongly positive concentration-discharge relationships. These results can aid in annual-scale decision making for achieving downstream water quality goals.

  6. Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes.

    PubMed

    Wu, Haiming; Zhang, Jian; Wei, Rong; Liang, Shuang; Li, Cong; Xie, Huijun

    2013-01-01

    Nitrogen removal processing in different constructed wetlands treating different kinds of wastewater often varies, and the contribution to nitrogen removal by various pathways remains unclear. In this study, the seasonal nitrogen removal and transformations as well as nitrogen balance in wetland microcosms treating slightly polluted river water was investigated. The results showed that the average total nitrogen removal rates varied in different seasons. According to the mass balance approach, plant uptake removed 8.4-34.3 % of the total nitrogen input, while sediment storage and N(2)O emission contributed 20.5-34.4 % and 0.6-1.9 % of nitrogen removal, respectively. However, the percentage of other nitrogen loss such as N(2) emission due to nitrification and denitrification was estimated to be 2.0-23.5 %. The results indicated that plant uptake and sediment storage were the key factors limiting nitrogen removal besides microbial processes in surface constructed wetland for treating slightly polluted river water.

  7. Effects of hydraulic retention time and [Formula: see text] ratio on thiosulfate-driven autotrophic denitrification for nitrate removal from micro-polluted surface water.

    PubMed

    Wang, Zheng; Fei, Xiang; He, Sheng-Bing; Huang, Jung-Chen; Zhou, Wei-Li

    2017-11-01

    This study was carried out to investigate the possibility of a thiosulfate-driven autotrophic denitrification for nitrate-N removal from micro-polluted surface water. The aim was to study the effects of [Formula: see text] ratio (S/N molar ratio) and hydraulic retention time (HRT) on the autotrophic denitrification performance. Besides, utilization efficiencies of [Formula: see text] along the biofilter and the restart-up of the bioreactor were also investigated. Autotrophic denitrification using thiosulfate as an electron donor for treating micro-polluted surface water without the addition of external alkalinity proved to be feasible and the biofilter could be readied in two weeks. Average nitrate-N removal efficiencies at HRTs of 0.5, 1 and 2 h were 78.7%, 87.8% and 97.4%, respectively, and corresponding removal rates were 186.24, 103.92 and 58.56 g [Formula: see text], respectively. When water temperature was in the range of 8-12°C and HRT was 1 h, average nitrate-N removal efficiencies of 41.9%, 97.1% and 97.0%, nitrite accumulation concentrations of 1.45, 0.46 and 0.22 mg/L and thiosulfate utilization efficiencies of 100%, 98.8% and 92.1% were obtained at S/N ratios of 1.0, 1.2 and 1.5, respectively. Besides, the autotrophic denitrification rate in the filtration media layer was the highest along the biofilter at an S/N ratio of 1.5. Finally, after a one-month period of starvation, the biofilter could be restarted successfully in three weeks without inoculation of seed sludge.

  8. High failure rate of the laparoscopic-adjustable gastric band as a primary bariatric procedure.

    PubMed

    Kindel, Tammy; Martin, Emily; Hungness, Eric; Nagle, Alex

    2014-01-01

    Determinants of success of a bariatric procedure are many but paramount is the ability to durably produce significant and reliable weight loss. We sought to determine the primary success of the laparoscopic adjustable gastric band (LAGB) by defining failure as clinical weight loss failure with an intact band (excess weight loss [EWL]<20%) or band removal (terminal removal or conversion to a secondary bariatric procedure). A retrospective chart review was performed on patients who underwent an LAGB as a primary bariatric procedure between January 2003 and December 2007. Data collected included body mass index (BMI), weight, postoperative follow-up length, EWL, and adjustment number, as well as complications of the LAGB. Sixteen of 120 patients had the band removed. Nine were terminally removed for unmanageable symptoms, and 7 were converted to an alternative bariatric procedure. The average follow-up for the 104 patients with an intact band was 4.8 years. The average EWL for successful intact bands was 44.9±19.4%; however, an additional 35.6% of patients had an EWL<20%. Patients with an EWL<20% had a significantly higher preoperative BMI and fewer band adjustments. In total, 44% of patients had band failure because of clinical weight loss failure (31%) or eventual band removal (13%). This study finds that the LAGB failed as a primary bariatric procedure for 44% of patients because of either inadequate weight loss or adequate weight loss with unmanageable symptoms. This suggests that the LAGB should be abandoned as a primary bariatric procedure for the majority of morbidly obese patients because of its high failure rate. Copyright © 2014 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  9. [Characteristics of novel wastewater treatment technology by swimming bed combined with aerobic granular sludge].

    PubMed

    Zhang, Yan; Wang, Yong-sheng; Bai, Yu-hua; Chen, Chen; Lü, Jian; Zhang, Jie

    2007-10-01

    Swimming bed combined with aerobic granular sludge as a novel technology for wastewater treatment was developed, which was on the basis of the biofilm process and activated sludge process, and results demonstrated notable performance of high-efficiency treatment capability and sludge reduction. Even when hydraulic retention time (HRT) was only at 3.2 h with average COD volumetric loading of 2.03 kg/(m3 x d) and NH4(+)-N of 0.52 kg/(m3 X d), 90.9% of average COD removal rate and 98.3% of NH4(+)-N removal rate were achieved. Aerobic granular sludge appeared with spherical or rod shape after 16 days operation. Mixed liquor suspended solid (MLSS) concentrations in the reactor reached 5,640 mg/L at the highest during operation period, and the average ratio of mixed liquor volatile suspended solid (MLVSS) to MLSS reached 0.87. Furthermore, microscopic observation of biofilm and aerobic granules revealed much presence of protozoa and metazoa on the biofilm and suspended sludge, and this long food chain can contribute to the sludge reduction. Only 0. 175 5 of sludge yields (MLSS/ CODremoved) was obtained in the experiment, which was only about 50% of the conventional aerobic processes.

  10. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks.

    PubMed

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-03-30

    Adsorptive removal of naproxen and clofibric acid, two typical PPCPs (pharmaceuticals and personal care products), has been studied using metal-organic frameworks (MOFs) for the first time. The removal efficiency decreases in the order of MIL-101>MIL-100-Fe>activated carbon both in adsorption rate and adsorption capacity. The adsorption kinetics and capacity of PPCPs generally depend on the average pore size and surface area (or pore volume), respectively, of the adsorbents. The adsorption mechanism may be explained with a simple electrostatic interaction between PPCPs and the adsorbent. Finally, it can be suggested that MOFs having high porosity and large pore size can be potential adsorbents to remove harmful PPCPs in contaminated water. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. The Effects of Microbial Biofilms on Organotin Release by an Antifouling Paint

    DTIC Science & Technology

    1988-08-01

    Centigrade hr hours ug micrograms cm2 centimeters squared TBT tributyltin DBT dibutyltin GC Gas Chromatography * .v 𔃺. Ii 4 "Abstract The effect of microbial...Figures 1. Average tributyltin release rates for 4 test panels before biofilms hau formed, after biofilms formed, and after biofilm removal...films on the release rate and speciation of tributyltin toxin from an organotin paint was determined. Test panels- were coated with organotin

  12. Helium on Venus - Implications for uranium and thorium

    NASA Technical Reports Server (NTRS)

    Prather, M. J.; Mcelroy, M. B.

    1983-01-01

    Helium is removed at an average rate of 10 to the 6th atoms per square centimeter per second from Venus's atmosphere by the solar wind following ionization above the plasmapause. The surface source of helium-4 on Venus is similar to that on earth, suggesting comparable abundances of crustal uranium and thorium.

  13. Forest statistics for the Piedmont of South Carolina, 1993

    Treesearch

    Mark J. Brown

    1993-01-01

    This report summarizes results from a 1993 inventory of the forest resources of the Piedmont of South Carolina. Current estimates of forest area, associated characteristics, and timber volumes are highlighted and compared with the 1986 and earlier inventory findings. Average annual rates of growth, removals, and mortality since the previous inventory are reported....

  14. Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance.

    PubMed

    Hiddink, Jan Geert; Jennings, Simon; Sciberras, Marija; Szostek, Claire L; Hughes, Kathryn M; Ellis, Nick; Rijnsdorp, Adriaan D; McConnaughey, Robert A; Mazor, Tessa; Hilborn, Ray; Collie, Jeremy S; Pitcher, C Roland; Amoroso, Ricardo O; Parma, Ana M; Suuronen, Petri; Kaiser, Michel J

    2017-08-01

    Bottom trawling is the most widespread human activity affecting seabed habitats. Here, we collate all available data for experimental and comparative studies of trawling impacts on whole communities of seabed macroinvertebrates on sedimentary habitats and develop widely applicable methods to estimate depletion and recovery rates of biota after trawling. Depletion of biota and trawl penetration into the seabed are highly correlated. Otter trawls caused the least depletion, removing 6% of biota per pass and penetrating the seabed on average down to 2.4 cm, whereas hydraulic dredges caused the most depletion, removing 41% of biota and penetrating the seabed on average 16.1 cm. Median recovery times posttrawling (from 50 to 95% of unimpacted biomass) ranged between 1.9 and 6.4 y. By accounting for the effects of penetration depth, environmental variation, and uncertainty, the models explained much of the variability of depletion and recovery estimates from single studies. Coupled with large-scale, high-resolution maps of trawling frequency and habitat, our estimates of depletion and recovery rates enable the assessment of trawling impacts on unprecedented spatial scales.

  15. Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance

    PubMed Central

    Hiddink, Jan Geert; Jennings, Simon; Sciberras, Marija; Szostek, Claire L.; Hughes, Kathryn M.; Ellis, Nick; Rijnsdorp, Adriaan D.; McConnaughey, Robert A.; Mazor, Tessa; Hilborn, Ray; Collie, Jeremy S.; Pitcher, C. Roland; Amoroso, Ricardo O.; Parma, Ana M.; Suuronen, Petri; Kaiser, Michel J.

    2017-01-01

    Bottom trawling is the most widespread human activity affecting seabed habitats. Here, we collate all available data for experimental and comparative studies of trawling impacts on whole communities of seabed macroinvertebrates on sedimentary habitats and develop widely applicable methods to estimate depletion and recovery rates of biota after trawling. Depletion of biota and trawl penetration into the seabed are highly correlated. Otter trawls caused the least depletion, removing 6% of biota per pass and penetrating the seabed on average down to 2.4 cm, whereas hydraulic dredges caused the most depletion, removing 41% of biota and penetrating the seabed on average 16.1 cm. Median recovery times posttrawling (from 50 to 95% of unimpacted biomass) ranged between 1.9 and 6.4 y. By accounting for the effects of penetration depth, environmental variation, and uncertainty, the models explained much of the variability of depletion and recovery estimates from single studies. Coupled with large-scale, high-resolution maps of trawling frequency and habitat, our estimates of depletion and recovery rates enable the assessment of trawling impacts on unprecedented spatial scales. PMID:28716926

  16. Removal efficiency and enzymatic mechanism of dibutyl phthalate (DBP) by constructed wetlands.

    PubMed

    Qi, Xin; Li, Tiancui; Wang, Feihua; Dai, Yanran; Liang, Wei

    2018-06-01

    Four vertical-flow constructed wetland systems were set up in the field in order to study the removal efficiency and possible enzymatic mechanism of the constructed wetlands in treating sewage containing different concentrations of dibutyl phthalate (DBP). Under DBP spiked concentrations of 0.5, 1.0, and 2.0 mg/L, good DBP removal rates of 62.08, 82.17, and 84.17% were achieved, respectively. Meanwhile, certain removal effects of general water quality parameters were observed in all four constructed wetlands: with high average removal rates of nitrate nitrogen (NO 3 - -N) and chemical oxygen demand (COD) of 91.10~93.89 and 82.83~89.17%, respectively, with moderate removal efficiencies of total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH 4 + -N) of 44.59~49.67, 30.58~37.18, and 28.52~37.45%, respectively. Compared to the control, an increase of enzyme activities of urease, phosphatase, dehydrogenase, and nitrate reductase was observed in the treatments with DBP addition. In the presence of 0.5 mg/L of DBP concentration, the urease, phosphatase, and dehydrogenase activities reached the highest levels, with an increase of 350.02, 36.57, and 417.88% compared with the control, respectively. It appeared that the low concentration of DBP might better stimulate the release of enzymes.

  17. [Laboratory evaluation of remediation of nitrobenzene contaminated aquifer by using groundwater circulation well].

    PubMed

    Bai, Jing; Zhao, Yong-Sheng; Sun, Chao; Qin, Chuan-Yu; Yu, Ling

    2014-10-01

    A two-dimension simulated sand box was set up to investigate the influencing factors, such as the initial groundwater level, aeration rate and the initial groundwater rate, that affect groundwater circulation well (GCW) by determining the intensity of groundwater circulation which was characterized by the variation of groundwater level before and after aeration. The optimal operating parameters were used to remediate nitrobenzene contaminated aquifer. The results demonstrated that: GCW could be well operated under the conditions of 45 cm groundwater level, 0.7 m3 · h(-1) aeration rate. The effects of groundwater velocity less than 1.0 m · d(-1) could be ignored. The lateral mobility rate of nitrobenzene was faster than that of longitudinal. The average concentration of nitrobenzene was 246.97 mg · L(-1) on day 50 of leakage. During the remediation of circulation well, an efficient organics remediation region was gradually formed around the circulation well. The organics in this region was removed preferentially, and the concentration decreased continuously. Besides the efficient remediation region, there was a transient region, where the concentration of organics was influenced by the combined effects of adsorption/desorption and migration potential of organics. During the whole remediation process, the concentration of nitrobenzene went through three stages described as rapid removal, slow removal. After 14h aeration, the nitrobenzene average concentration was reduced to 71.19 mg L(-1). The residual nitrobenzene was distributed in regions far away from GCW. Therefore, nitrobenzene contaminated aquifer could be well remediated by GCW, and there were optimal operation conditions and appropriate remediation time which guaranteed the best remediation effect.

  18. A field study of virus removal in septic tank drainfields.

    PubMed

    Nicosia, L A; Rose, J B; Stark, L; Stewart, M T

    2001-01-01

    Two field studies were conducted at a research station in Tampa, Florida to assess the removal of bacteriophage PRD1 from wastewater in septic tank drainfields. Infiltration cells were seeded with PRD1 and bromide and the effects of effluent hydraulic loading rate and rainfall on virus removal were monitored. Septic tank effluent samples were collected after passage through 0.6 m of unsaturated fine sand and PRD1 was detected over an average of 67 d. Bacteriophage PRD1 breakthrough was detected at approximately the same time as bromide in all three cells except for the low-load cell (Study 1), where bromide was never detected. Log10 removals of PRD1 were 1.43 and 1.91 for the high-load cells (hydraulic loading rate = 0.063 m/d) and 2.21 for the low-load cell (hydraulic loading rate = 0.032 m/d). Virus attenuation is attributed to dispersion, dilution, and inactivation. Significant increases in PRD1 elution with rainfall were observed in the first 10 d of the study. Approximately 125 mm of rainfall caused a 1.2 log10 increase of PRD1 detected at the 0.6-m depth. Current Florida onsite wastewater disposal standards, which specify a 0.6-m distance from the drainfield to the water table, may not provide sufficient removal of viruses, particularly during the wet season.

  19. Addition of Sodium Bicarbonate to Irrigation Solution May Assist in Dissolution of Uric Acid Fragments During Ureteroscopy.

    PubMed

    Paonessa, Jessica E; Williams, James C; Lingeman, James E

    2018-04-01

    We hypothesized that adding sodium bicarbonate (bicarb) to normal saline (NS) irrigation during ureteroscopy in patients with uric acid (UA) nephrolithiasis may assist in dissolving small stone fragments produced during laser lithotripsy. In vitro testing was performed to determine whether dissolution of UA fragments could be accomplished within 1 hour. In total 100% UA renal calculi were fragmented, filtered, and separated by size. Fragment sizes were <0.5 mm and 0.5 to 1 mm. Similar amounts of stone material were agitated in solution at room temperature. Four solutions were tested (NS, NS +1 ampule bicarb/L, NS +2, NS +3). Both groups were filtered to remove solutions after fixed periods. Filtered specimens were dried and weighed. Fragment dissolution rates were calculated as percent removed per hour. Additional testing was performed to determine whether increasing the temperature of solution affected dissolution rates. For fragments <0.5 mm, adding 2 or 3 bicarb ampules/L NS produced a dissolution rate averaging 91% ± 29% per hour. This rate averaged 226% faster than NS alone. With fragments 0.5 to 1 mm, addition of 2 or 3 bicarb ampules/L NS yielded a dissolution rate averaging 22% ± 7% per hour, which was nearly five times higher than NS alone. There was a trend for an increase in mean dissolution rate with higher temperature but this increase was not significant (p = 0.30). The addition of bicarbonate to NS more than doubles the dissolution rate of UA stone fragments and fragments less than 0.5 mm can be completely dissolved within 1 hour. Addition of bicarb to NS irrigation is a simple and inexpensive approach that may assist in the dissolution of UA fragments produced during ureteroscopic laser lithotripsy. Further studies are needed to determine whether a clinical benefit exists.

  20. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system.

    PubMed

    Basitere, M; Rinquest, Z; Njoya, M; Sheldon, M S; Ntwampe, S K O

    2017-07-01

    The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.

  1. Tisseel utilized as hemostatic in spine surgery impacts time to drain removal and length of stay.

    PubMed

    Epstein, Nancy E

    2014-01-01

    Although fibrin sealants (FSs) and fibrin glues (FGs) are predominantly utilized to strengthen repairs of cerebrospinal fluid (CSF) fistulas (deliberate/traumatic) during spinal surgery, they are also increasingly utilized to achieve hemostasis. Here, we investigated whether adding Tisseel (Baxter International Inc., Westlake Village, CA, USA), utilized to address increased bleeding during multilevel lumbar laminectomies with non-instrumented fusions, would reduce or equalize the time to drain removal and length of stay (LOS) without contributing to infections or prolonging time to fusion. Prospectively, 39 patients underwent multilevel laminectomies and 1-2 level non-instrumented (in situ) fusions to address stenosis/olisthesis; 22 who demonstrated increased intraoperative bleeding received Tisseel, while 17 without such bleeding did not. The 22 receiving versus 17 not receiving Tisseel, with similar clinical parameters, underwent comparable average multilevel laminectomies (4.36 and 4.25) and 1-2 level fusions (1.4 vs. 1.29 levels). As anticipated, for those receiving Tisseel, the average intraoperative estimated blood loss (EBL), total postoperative blood loss, and total perioperative transfusion requirements [red blood cells (RBC), fresh frozen plasma (FFP), platelets] were higher. However, Tisseel had the added benefit of equalizing the time to postoperative drain removal [e.g. 3.41 days (with) vs. 3.38 days (without)] and LOS [e.g. 5.86 days (with) vs. 5.82 days (without)] without increasing the infection rates (e.g. one superficial infection per group) or average times to fusion (e.g. 5.9 vs. 5.5 months). Adding Tisseel for increased bleeding during multilevel laminectomies/in situ fusions contributed to hemostasis by equalizing the average times to drain removal/LOS compared to patients without increased bleeding and not requiring Tisseel.

  2. Thermophilic biofilter for SO2 removal: performance and microbial characteristics.

    PubMed

    Zhang, Jingying; Li, Lin; Liu, Junxin

    2015-03-01

    A bench-scale thermophilic biofilter was applied to remove SO2 at 60°C in the present study. The SO2 concentration in the inlet stream ranged from 100mg/m(3) to 200mg/m(3). An average SO2 removal efficiency of 93.10% was achieved after developing acclimated organisms that can degrade SO2. The thermophilic biofilter effectively reduced SO2, with a maximum elimination capacity of 50.67g/m(3)/h at a loading rate of 51.44g/m(3)/h. Removal efficiency of the thermophilic biofilter was largely influenced by the water containing rate of the packing materials. The SO2 transfer in the biofilter included adsorption by the packing materials, dissolution in liquid, and microbial degradation. The main product of SO2 degradation was SO4(2-). The temporal shifts in the bacterial community that formed in the biofilter were determined through polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequence analysis. These shifts revealed a correlation between biofilter performance and bacterial community structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Assessment of different pre-treatment methods for the removal of limonene in citrus waste and their effect on methane potential and methane production rate.

    PubMed

    Ruiz, Begoña; de Benito, Amparo; Rivera, José Daniel; Flotats, Xavier

    2016-12-01

    The objective of this study was to assess the limonene removal efficiency of three pre-treatment methods when applied to citrus waste and to evaluate their effects on the biochemical methane potential and the methane production rate using batch anaerobic tests. The methods tested were based on removal (biological pretreatment by fungi) or recovery (steam distillation and ethanol extraction) of limonene. All the treatments decreased the concentration of limonene in orange peel, with average efficiencies of 22%, 44% and 100% for the biological treatment, steam distillation and ethanol extraction, respectively. By-products from limonene biodegradation by fungi exhibited an inhibitory effect also, not making interesting the biological pretreatment. The methane potential and production rate of the treated orange peel increased significantly after applying the recovery strategies, which separated and recovered simultaneously other inhibitory components of the citrus essential oil. Apart from the high recovery efficiency of the ethanol extraction process, it presented a favourable energy balance. © The Author(s) 2016.

  4. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater.

    PubMed

    Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min

    2015-09-15

    A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  6. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE PAGES

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.; ...

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  7. Groundwater depletion in the United States (1900−2008)

    USGS Publications Warehouse

    Konikow, Leonard F.

    2013-01-01

    A natural consequence of groundwater withdrawals is the removal of water from subsurface storage, but the overall rates and magnitude of groundwater depletion in the United States are not well characterized. This study evaluates long-term cumulative depletion volumes in 40 separate aquifers or areas and one land use category in the United States, bringing together information from the literature and from new analyses. Depletion is directly calculated using calibrated groundwater models, analytical approaches, or volumetric budget analyses for multiple aquifer systems. Estimated groundwater depletion in the United States during 1900–2008 totals approximately 1,000 cubic kilometers (km3). Furthermore, the rate of groundwater depletion has increased markedly since about 1950, with maximum rates occurring during the most recent period (2000–2008) when the depletion rate averaged almost 25 km3 per year (compared to 9.2 km3 per year averaged over the 1900–2008 timeframe).

  8. Avian Conservation Practices Strengthen Ecosystem Services in California Vineyards

    PubMed Central

    Jedlicka, Julie A.; Greenberg, Russell; Letourneau, Deborah K.

    2011-01-01

    Insectivorous Western Bluebirds (Sialia mexicana) occupy vineyard nest boxes established by California winegrape growers who want to encourage avian conservation. Experimentally, the provision of available nest sites serves as an alternative to exclosure methods for isolating the potential ecosystem services provided by foraging birds. We compared the abundance and species richness of avian foragers and removal rates of sentinel prey in treatments with songbird nest boxes and controls without nest boxes. The average species richness of avian insectivores increased by over 50 percent compared to controls. Insectivorous bird density nearly quadrupled, primarily due to a tenfold increase in Western Bluebird abundance. In contrast, there was no significant difference in the abundance of omnivorous or granivorous bird species some of which opportunistically forage on grapes. In a sentinel prey experiment, 2.4 times more live beet armyworms (Spodoptera exigua) were removed in the nest box treatment than in the control. As an estimate of the maximum foraging services provided by insectivorous birds, we found that larval removal rates measured immediately below occupied boxes averaged 3.5 times greater than in the control. Consequently the presence of Western Bluebirds in vineyard nest boxes strengthened ecosystem services to winegrape growers, illustrating a benefit of agroecological conservation practices. Predator addition and sentinel prey experiments lack some disadvantages of predator exclusion experiments and were robust methodologies for detecting ecosystem services. PMID:22096555

  9. Avian conservation practices strengthen ecosystem services in California vineyards.

    PubMed

    Jedlicka, Julie A; Greenberg, Russell; Letourneau, Deborah K

    2011-01-01

    Insectivorous Western Bluebirds (Sialia mexicana) occupy vineyard nest boxes established by California winegrape growers who want to encourage avian conservation. Experimentally, the provision of available nest sites serves as an alternative to exclosure methods for isolating the potential ecosystem services provided by foraging birds. We compared the abundance and species richness of avian foragers and removal rates of sentinel prey in treatments with songbird nest boxes and controls without nest boxes. The average species richness of avian insectivores increased by over 50 percent compared to controls. Insectivorous bird density nearly quadrupled, primarily due to a tenfold increase in Western Bluebird abundance. In contrast, there was no significant difference in the abundance of omnivorous or granivorous bird species some of which opportunistically forage on grapes. In a sentinel prey experiment, 2.4 times more live beet armyworms (Spodoptera exigua) were removed in the nest box treatment than in the control. As an estimate of the maximum foraging services provided by insectivorous birds, we found that larval removal rates measured immediately below occupied boxes averaged 3.5 times greater than in the control. Consequently the presence of Western Bluebirds in vineyard nest boxes strengthened ecosystem services to winegrape growers, illustrating a benefit of agroecological conservation practices. Predator addition and sentinel prey experiments lack some disadvantages of predator exclusion experiments and were robust methodologies for detecting ecosystem services.

  10. Combined ultrasound and Fenton (US-Fenton) process for the treatment of ammunition wastewater.

    PubMed

    Li, Yangang; Hsieh, Wen-Pin; Mahmudov, Rovshan; Wei, Xiaomei; Huang, C P

    2013-01-15

    A wastewater collected from a regional ammunition process site was treated with combined US-Fenton process. Factors such as pH, temperature, reaction time, US energy intensity, initial TOC concentration, and the molar ratio of iron to hydrogen peroxide that might affect the treatment efficiency were investigated. The removal of TOC, COD, and color increased with decreasing pH and increasing temperature and US intensity. Color was removed rapidly reaching 85% in 10 min; whereas TOC and COD were removed slowly, only about 20% for both in 10 min and approaching 65 and 92% removal in 120 min, respectively. The optimal molar ratio of Fe(II) to H(2)O(2) for TOC and COD removal was 500. The results showed that the change in the average carbon oxidation number (ACON) was parallel to that of the removal efficiency of TOC, COD, and color. The toxicity of treated wastewater was reduced as assessed by the respiration rate of Escherichia coli. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. High-rate sulphidogenic fluidised-bed treatment of metal-containing wastewater at high temperature.

    PubMed

    Sahinkaya, E; Ozkaya, B; Kaksonen, A H; Puhakka, J A

    2007-01-01

    The applicability of fluidised-bed reactor (FBR) based sulphate reducing bioprocess was investigated for the treatment of iron containing (40-90 mg/L) acidic wastewater at 65 degrees C. The FBR was inoculated with sulphate-reducing bacteria (SRB) originally enriched from a hot mining environment. Ethanol or acetate was supplemented as carbon and electron source for the SRB. A rapid startup with 99.9, 46 and 29% ethanol, sulphate and acetate removals, in respective order, was observed even after 6 days. Iron was almost completely removed with a rate of 90 mg/L.d. The feed pH was decreased gradually from its initial value of 6 to around 3.7 during 100 days of operation. The wastewater pH of 4.3-4.4 was neutralised by the alkalinity produced in acetate oxidation and the average effluent pH was 7.8 +/- 0.8. Although ethanol removal was complete, acetate accumulated. Later the FBR was fed with acetate only. Although acetate was present in the reactor for 295 days, its oxidation rates did not improve, which may be due to low growth rate and poor attachment ability of acetate oxidising SRB. Hence, the oxidation of acetate is the rate limiting step in the sulphidogenic ethanol oxidation by the thermophilic SRB.

  12. Research on Influencing Factors of Biological Filtration Tower Treating Toluene Gas

    NASA Astrophysics Data System (ADS)

    Zhang, Changping; Cao, Ziqing; Lu, Yuqi; Du, Linggai

    2017-05-01

    Through the orthogonal experimental design, the optimal combination of Triton X-100, nitrogen source, Fe2+, temperature, concentration of antibiotics, pH and spray quantity was determined with surfactants, nitrogen and iron elements as additive, by which the key influencing factors were determined. In the test, the removal efficiency of the second groups was higher than that of the eighth groups, which were 89% and 87%, respectively. The best combination of a group of removal was as follows: nitrogen source concentration was 2 g ·L-1, antibiotic concentration was 300 U·mL-1, the concentration of Triton X-100 was 0.05 mL·L-1, Fe2+ concentration was 14 mL·L-1, pH was 7, the temperature was 34°C, spray amount was 6 L ·h-1. The antibiotic concentration was the most important factor on the removal efficiency of the toluene. The concentration of gas in each layer of toluene was detected; the curve of the outlet concentration in the optimal combination and the average state was obtained. The removal efficiency of the optimal combination was much better than the average, and it was found that the removal rate decreased with the increase of the height of the filling layer. The change of oxygen content in each layer was detected which was no significant change. It showed that oxygen was not the limiting factor of the removal of toluene by microorganisms. Keywords: surfactants; biological filtration tower; toluene; orthogonal test

  13. Improved Nitrogen Removal Effect In Continuous Flow A2/O Process Using Typical Extra Carbon Source

    NASA Astrophysics Data System (ADS)

    Wu, Haiyan; Gao, Junyan; Yang, Dianhai; Zhou, Qi; Cai, Bijing

    2010-11-01

    In order to provide a basis for optimal selection of carbon source, three typical external carbon sources (i.e. methanol, sodium acetate and leachate) were applied to examine nitrogen removal efficiency of continuous flow A2/O system with the influent from the effluent of grit chamber in the second Kunming wastewater treatment plant. The best dosage was determined, and the specific nitrogen removal rate and carbon consumption rate were calculated with regard to individual external carbon source in A2/O system. Economy and technology analysis was also conducted to select the suitable carbon source with a low operation cost. Experimental results showed that the external typical carbon source caused a remarkable enhancement of system nitrate degradation ability. In comparison with the blank test, the average TN and NH3-N removal efficiency of system with different dosing quantities of external carbon source was improved by 15.2% and 34.2%, respectively. The optimal dosage of methanol, sodium acetate and leachate was respectively up to 30 mg/L, 40 mg/L and 100 mg COD/L in terms of a high nitrogen degradation effect. The highest removal efficiency of COD, TN and NH3-N reached respectively 92.3%, 73.9% and 100% with methanol with a dosage of 30 mg/L. The kinetic analysis and calculation revealed that the greatest denitrification rate was 0.0107 mg TN/mg MLVSSṡd with sodium acetate of 60 mg/L. As to carbon consumption rate, however, the highest value occurred in the blank test with a rate of 0.1955 mg COD/mg MLVSSṡd. Also, further economic analysis proved leachate to be pragmatic external carbon source whose cost was far cheaper than methanol.

  14. Removal of intraocular foreign body in anterior chamber angle with prism contact lens and 23-gauge foreign body forceps.

    PubMed

    Huang, Yan-Ming; Yan, Hua; Cai, Jin-Hong; Li, Hai-Bo

    2017-01-01

    To introduce a novel approach in removal of anterior chamber angle foreign body (ACFB) using a prism contact lens and 23-gauge foreign body forceps. Data of 42 eyes of 42 patients who had undergone removal of ACFB using a prism contact lens and 23-gauge foreign body forceps from January 2008 to October 2013 were collected and analyzed. Twenty eyes in group A received the conventional approach by using toothed forceps through corneal limbus incision, and 22 eyes in group B underwent the novel method through the opposite corneal limbus incision. The success rate of ACFB once removal was 75% (15/20) in group A, and 100% (22/22) in group B. The average operation time of group A was significantly longer compared with group B (34.9±9.88min vs 22.13±8.85min; P <0.05). The average size of corneal limbus incision in group A was significantly larger than that of group B (4.85±1.89 mm vs 3.95±1.17 mm; P <0.05). The corneal limbus incision suturing were conducted in all eyes in group A, and only 5 eyes in group B. Removal of ACFB using a prism contact lens and 23-gauge foreign body forceps is a safer, more effective, and convenient technique compared with the conventional approach.

  15. A pre-dam-removal assessment of sediment transport for four dams on the Kalamazoo River between Plainwell and Allegan, Michigan

    USGS Publications Warehouse

    Syed, Atiq U.; Bennett, James P.; Rachol, Cynthia M.

    2005-01-01

    Four dams on the Kalamazoo River between the cities of Plainwell and Allegan, Mich., are in varying states of disrepair. The Michigan Department of Environmental Quality (MDEQ) and U.S. Environmental Protection Agency (USEPA) are considering removing these dams to restore the river channels to pre-dam conditions. This study was initiated to identify sediment characteristics, monitor sediment transport, and predict sediment resuspension and deposition under varying hydraulic conditions. The mathematical model SEDMOD was used to simulate streamflow and sediment transport using three modeling scenarios: (1) sediment transport simulations for 730 days (Jan. 2001 to Dec. 2002), with existing dam structures, (2) sediment transport simulations based on flows from the 1947 flood at the Kalamazoo River with existing dam structures, and (3) sediment transport simulations based on flows from the 1947 flood at the Kalamazoo River with dams removed. Sediment transport simulations based on the 1947 flood hydrograph provide an estimate of sediment transport rates under maximum flow conditions. These scenarios can be used as an assessment of the sediment load that may erode from the study reach at this flow magnitude during a dam failure. The model was calibrated using suspended sediment as a calibration parameter and root mean squared error (RMSE) as an objective function. Analyses of the calibrated model show a slight bias in the model results at flows higher than 75 m3/s; this means that the model-simulated suspended-sediment transport rates are higher than the observed rates; however, the overall calibrated model results show close agreement between simulated and measured values of suspended sediment. Simulation results show that the Kalamazoo River sediment transport mechanism is in a dynamic equilibrium state. Model results during the 730-day simulations indicate significant sediment erosion from the study reach at flow rates higher than 55 m3/s. Similarly, significant sediment deposition occurs during low to average flows (monthly mean flows between 25.49 m3/s and 50.97 m3/s) after a high-flow event. If the flow continues to stay in the low to average range the system shifts towards equilibrium, resulting in a balancing effect between sediment deposition and erosion rates. The 1947 flood-flow simulations show approximately 30,000 m3 more instream sediments erosion for the first 21 days of the dams removed scenario than for the existing-dams scenario, with the same initial conditions for both scenarios. Application of a locally weighted regression smoothing (LOWESS) function to simulation results of the dams removed scenario indicates a steep downtrend with high sediment transport rates during the first 21 days. In comparison, the LOWESS curve for the existing-dams scenario shows a smooth transition of sediment transport rates in response to the change in streamflow. The high erosion rates during the dams-removed scenario are due to the absence of the dams; in contrast, the presence of dams in the existing-dams scenario helps reduce sediment erosion to some extent. The overall results of 60-day simulations for the 1947 flood show no significant difference in total volume of eroded sediment between the two scenarios, because the dams in the study reach have low heads and no control gates. It is important to note that the existing-dams and dams-removed scenarios simulations are run for only 60 days; therefore, the simulations take into account the changes in sediment erosion and deposition rates only during that time period. Over an extended period, more erosion of instream sediments would be expected to occur if the dams are not properly removed than under the existing conditions. On the basis of model simulations, removal of dams would further lower the head in all the channels. This lowering of head could produce higher flow velocities in the study reach, which ultimately would result in accelerated erosion rates.

  16. Low temperature MBBR nitrification: Microbiome analysis.

    PubMed

    Young, Bradley; Delatolla, Robert; Kennedy, Kevin; Laflamme, Edith; Stintzi, Alain

    2017-03-15

    This study aims to investigate post carbon removal moving bed biofilm reactor (MBBR) nitrification through the transition from 20 °C to 1 °C and during through long term operation at 1 °C. Four pilot nitrifying MBBR reactors were operated at various ammonia loading rates to elucidate the temperature effects on ammonia removal rates, cell viability and bacterial communities. The transition from 20 °C to 1 °C and during long term operation at 1 °C were modeled using Arrhenius temperature correction coefficients. Specifically, the steady state removal rates at 1 °C on average were 22.8% of the maximum ammonia removal rate at 20 °C, which corresponds to an Arrhenius temperature correction of 1.086 during steady operation at 1 °C. The microbial communities of the nitrifying MBBR biofilm were shown to be significantly more diverse at 20 °C as compared to 1 °C operation. Although less diverse at 1 °C, 2000 species of bacteria were identified in the nitrifying biofilm during operation at this low temperature. Nitrosomonads were shown to be the dominant ammonia oxidizing bacteria (AOB) and Nitrospira was shown to be the dominant nitrite oxidizing bacteria (NOB) in all the pilot MBBR reactors at all temperatures. The performance of the post carbon removal nitrifying MBBR systems were shown to be enhanced at 1 °C by an increase in the viable embedded biomass as well as thicker biofilm. This effectively increases the number of viable cell present during low temperature operation, which partially compensates for the significant decrease in rate of ammonia removal per nitrifying cell. Operation at the highest loading conditions tested in this study at 1 °C were shown to reduce the ammonia removal rate compared to lower loading conditions at 1 °C. The lower performance at higher loading conditions at 1 °C demonstrated an enrichment in the stress response metagenomics pathways of the system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of duckweed (Spriodela polyrrhiza) remediation on the composition of dissolved organic matter in effluent of scale pig farms.

    PubMed

    Li, Lei; Liu, Ming; Wu, Meng; Jiang, Chunyu; Chen, Xiaofen; Ma, Xiaoyan; Liu, Jia; Li, Weitao; Tang, Xiaoxue; Li, Zhongpei

    2017-05-01

    The swine effluent studied was collected from scale pig farms, located in Yujiang County of Jiangxi Province, China, and duckweed (Spriodela polyrrhiza) was selected to dispose the effluent. The purpose of this study was to elucidate the effects of duckweed growth on the dissolved organic matter composition in swine effluent. Throughout the experiment period, the concentrations of organic matter were determined regularly, and the excitation-emission matrix (3DEEM) spectroscopy was used to characterize the fluorescence component. Compared with no-duckweed treatments (controls), the specific ultra-violet absorbance at 254nm (SUVA 254 ) was increased by a final average of 34.4% as the phytoremediation using duckweed, and the removal rate of DOC was increased by a final average of 28.0%. In swine effluent, four fluorescence components were identified, including two protein-like (tryptophan, tyrosine) and two humic-like (fulvic acids, humic acids) components. For all treatments, the concentrations of protein-like components decreased by a final average of 69.0%. As the growth of duckweed, the concentrations of humic-like components were increased by a final average of 123.5% than controls. Significant and positive correlations were observed between SUVA 254 and humic-like components. Compared with the controls, the humification index (HIX) increased by a final average of 9.0% for duckweed treatments. Meanwhile, the duckweed growth leaded to a lower biological index (BIX) and a higher proportion of microbial-derived fulvic acids than controls. In conclusion, the duckweed remediation not only enhanced the removal rate of organic matter in swine effluent, but also increased the percent of humic substances. Copyright © 2016. Published by Elsevier B.V.

  18. Global risk of big earthquakes has not recently increased.

    PubMed

    Shearer, Peter M; Stark, Philip B

    2012-01-17

    The recent elevated rate of large earthquakes has fueled concern that the underlying global rate of earthquake activity has increased, which would have important implications for assessments of seismic hazard and our understanding of how faults interact. We examine the timing of large (magnitude M≥7) earthquakes from 1900 to the present, after removing local clustering related to aftershocks. The global rate of M≥8 earthquakes has been at a record high roughly since 2004, but rates have been almost as high before, and the rate of smaller earthquakes is close to its historical average. Some features of the global catalog are improbable in retrospect, but so are some features of most random sequences--if the features are selected after looking at the data. For a variety of magnitude cutoffs and three statistical tests, the global catalog, with local clusters removed, is not distinguishable from a homogeneous Poisson process. Moreover, no plausible physical mechanism predicts real changes in the underlying global rate of large events. Together these facts suggest that the global risk of large earthquakes is no higher today than it has been in the past.

  19. Global risk of big earthquakes has not recently increased

    PubMed Central

    Shearer, Peter M.; Stark, Philip B.

    2012-01-01

    The recent elevated rate of large earthquakes has fueled concern that the underlying global rate of earthquake activity has increased, which would have important implications for assessments of seismic hazard and our understanding of how faults interact. We examine the timing of large (magnitude M≥7) earthquakes from 1900 to the present, after removing local clustering related to aftershocks. The global rate of M≥8 earthquakes has been at a record high roughly since 2004, but rates have been almost as high before, and the rate of smaller earthquakes is close to its historical average. Some features of the global catalog are improbable in retrospect, but so are some features of most random sequences—if the features are selected after looking at the data. For a variety of magnitude cutoffs and three statistical tests, the global catalog, with local clusters removed, is not distinguishable from a homogeneous Poisson process. Moreover, no plausible physical mechanism predicts real changes in the underlying global rate of large events. Together these facts suggest that the global risk of large earthquakes is no higher today than it has been in the past. PMID:22184228

  20. Effect of experimental manipulation on survival and recruitment of feral pigs

    USGS Publications Warehouse

    Hanson, L.B.; Mitchell, M.S.; Grand, J.B.; Jolley, D.B.; Sparklin, B.D.; Ditchkoff, S.S.

    2009-01-01

    Lethal removal is commonly used to reduce the density of invasive-species populations, presuming it reduces population growth rate; the actual effect of lethal removal on the vital rates contributing to population growth, however, is rarely tested. We implemented a manipulative experiment of feral pig (Sus scrofa) populations at Fort Benning, Georgia, USA, to assess the demographic effects of harvest intensity. Using markrecapture data, we estimated annual survival, recruitment, and population growth rates of populations in a moderately harvested area and a heavily harvested area for 200406. Population growth rates did not differ between the populations. The top-ranked model for survival included a harvest intensity effect; model-averaged survival was lower for the heavily harvested population than for the moderately harvested population. Increased immigration and reproduction likely compensated for the increased mortality in the heavily harvested population. We conclude that compensatory responses in feral pig recruitment can limit the success of lethal control efforts. ?? 2009 CSIRO.

  1. Seasonal ammonia losses from spray-irrigation with secondary-treated recycled water.

    PubMed

    Saez, Jose A; Harmon, Thomas C; Doshi, Sarika; Guerrero, Francisco

    2012-01-01

    This work examines ammonia volatilization associated with agricultural irrigation employing recycled water. Effluent from a secondary wastewater treatment plant was applied using a center pivot irrigation system on a 12 ha agricultural site in Palmdale, California. Irrigation water was captured in shallow pans and ammonia concentrations were quantified in four seasonal events. The average ammonia loss ranged from 15 to 35% (averaging 22%) over 2-h periods. Temporal mass losses were well-fit using a first-order model. The resulting rate constants correlated primarily with temperature and secondarily with wind speed. The observed application rates and timing were projected over an entire irrigation season using meteorological time series data from the site, which yielded volatilization estimates of 0.03 to 0.09 metric tons NH(3)-N/ha per year. These rates are consistent with average rates (0.04 to 0.08 MT NH(3)-N/ha per year) based on 10 to 20 mg NH(3)-N/L effluent concentrations and a 22% average removal. As less than 10% of the treated effluent in California is currently reused, there is potential for this source to increase, but the increase may be offset by a corresponding reduction in synthetic fertilizers usage. This point is a factor for consideration with respect to nutrient management using recycled water.

  2. Anaerobic reactor/high rate pond combined technology for sewage treatment in the Mediterranean area.

    PubMed

    El Hafiane, F; El Hamouri, B

    2005-01-01

    Two high-rate, anaerobic/aerobic units were used to treat the sewage of the Institut Agronomique st Vétérinaire Hassan II (Morocco) campus in a 1,100 m2-plant designed for 1,500 e.p. and receiving 63 m3 per day. The anaerobic pre-treatment consisted of a two-step up-flow anaerobic reactor (TSUAR) comprising two reactors and one external settler all in series. The aerobic line, or post-treatment, consisted of a high-rate algal pond (HRAP) and one maturation pond in series. The system totalized a hydraulic retention time (HRT) of 9 days. A gravel filter (GF) was constructed behind the TSUAR to trap low-density particles. The TSUAR removed 80% of COD and 90% of SS within 48 h. Solids retention time in the reactors averaged 32 d with a specific sludge production of 0.28 g SS g(-1) COD removed. Almost 93% of the sludge evacuated from the settler was stabilized. Specific biogas production from both reactors was 0.25m3 kg(-1) COD removed. Used in this configuration, the HRAP lost its BOD removal activity and increased its nutrients and pathogens removal capabilities (tertiary treatment). Results showed that 85% of total nitrogen and 48% of total phosphorus were removed by the HRAP. Land area requirement of this combination was less than 1 m2 per capita and filtered final effluent was of excellent quality (COD, 82 mg/l; TKN, 8.3 mg/l; total P, 2.7 mg/l, faecal coliforms, 2.4 10(3)/100 ml and zero helminths eggs).

  3. Periodic venting of MABR lumen allows high removal rates and high gas-transfer efficiencies.

    PubMed

    Perez-Calleja, P; Aybar, M; Picioreanu, C; Esteban-Garcia, A L; Martin, K J; Nerenberg, R

    2017-09-15

    The membrane-aerated biofilm reactor (MABR) is a novel treatment technology that employs gas-supplying membranes to deliver oxygen directly to a biofilm growing on the membrane surface. When operated with closed-end membranes, the MABR provides 100-percent oxygen transfer efficiencies (OTE), resulting in significant energy savings. However, closed-end MABRs are more sensitive to back-diffusion of inert gases, such as nitrogen. Back-diffusion reduces the average oxygen transfer rates (OTR), consequently decreasing the average contaminant removal fluxes (J). We hypothesized that venting the membrane lumen periodically would increase the OTR and J. Using an experimental flow cell and mathematical modeling, we showed that back-diffusion gas profiles developed over relatively long timescales. Thus, very short ventings could re-establish uniform gas profiles for relatively long time periods. Using modeling, we systematically explored the effect of the venting interval (time between ventings). At moderate venting intervals, opening the membrane for 20 s every 30 min, the venting significantly increased the average OTR and J without substantially impacting the OTEs. When the interval was short enough, in this case shorter than 20 min, the OTR was actually higher than for continuous open-end operation. Our results show that periodic venting is a promising strategy to combine the advantages of open-end and closed end operation, maximizing both the OTR and OTE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Natural and Anthropogenic Water Treatment: How Riverine Ecosystem Services of Nitrogen Removal Interact with Wastewater Treatment Infrastructure in the Northeast U.S.

    NASA Astrophysics Data System (ADS)

    Stewart, R. J.; Wollheim, W. M.; Whittinghill, K. A.; Mineau, M.; Rosenzweig, B.

    2014-12-01

    The magnitude and spatial distribution of point and non-point dissolved inorganic nitrogen (N) inputs to river systems greatly influences the potential for eutrophication of downstream water bodies. Wastewater treatment plants (WWTPs), the predominant point source of N in the northeast US, remove some but not all of human waste N they receive. Excess enters rivers, which may further mitigate N concentrations by dilution and denitrification. WWTP effluent combines with upstream flows, which may include non-point sources of N due to agriculture or urbanization. Natural N removal capacities in rivers may however be overwhelmed and become N saturated, which reduces their effectiveness. As a result, natural and man-made services of N removal are intimately linked at the river network scale for provisions of suitable water quality and aquatic habitat. We assessed the summer N mitigation capacity of rivers relative to N removal in WWTPs in the northeastern U.S. using a N removal model developed within the Framework for Aquatic Modeling in the Earth System (FrAMES). The spatially distributed river network model predicts average daily dissolved inorganic nitrogen concentrations at a 3-minute river grid resolution, accounting for the mixing of natural areas, nonpoint sources, WWTP effluent, and instream denitrification, which is simulated as a function of river temperature, water residence time, and biogeochemical activity. Model validation was done using N concentration data from 750 USGS gauges across the northeast during the period 2000-2010. Confidence intervals (90%) are estimated for river N concentrations based on key uncertainties in simulated river width, uptake rates, and N loading rates. Model results suggest WWTPs potentially impact 25,770 km of river length (10.7% of total river length in the northeast) and increase N concentrations an average of 42.3% at the facility locations. The in-stream ecosystem service of N removal accounts for 2.7% of the total cumulative N removed by WWTPs during the summer in the region. Despite providing a relatively small proportion of N removal, the expected deterioration of WWTP infrastructure and associated costs of upgrading existing systems puts the role of this riverine ecosystem service into economic perspective.

  5. Ventilation Rates and Airflow Pathways in Patient Rooms: A Case Study of Bioaerosol Containment and Removal.

    PubMed

    Mousavi, Ehsan S; Grosskopf, Kevin R

    2015-11-01

    Most studies on the transmission of infectious airborne disease have focused on patient room air changes per hour (ACH) and how ACH provides pathogen dilution and removal. The logical but mostly unproven premise is that greater air change rates reduce the concentration of infectious particles and thus, the probability of airborne disease transmission. Recently, a growing body of research suggests pathways between pathogenic source (patient) and control (exhaust) may be the dominant environmental factor. While increases in airborne disease transmission have been associated with ventilation rates below 2 ACH, comparatively less data are available to quantify the benefits of higher air change rates in clinical spaces. As a result, a series of tests were conducted in an actual hospital to observe the containment and removal of respirable aerosols (0.5-10 µm) with respect to ventilation rate and directional airflow in a general patient room, and, an airborne infectious isolation room. Higher ventilation rates were not found to be proportionately effective in reducing aerosol concentrations. Specifically, increasing mechanical ventilation from 2.5 to 5.5 ACH reduced aerosol concentrations only 30% on average. However, particle concentrations were more than 40% higher in pathways between the source and exhaust as was the suspension and migration of larger particles (3-10 µm) throughout the patient room(s). Computational analyses were used to validate the experimental results, and, to further quantify the effect of ventilation rate on exhaust and deposition removal in patient rooms as well as other particle transport phenomena. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, D.

    The Savannah River Site (SRS) Actinide Removal Process has been processing salt waste since 2008. This process includes a filtration step in the 512-S facility. Initial operations included the addition, or strike, of monosodium titanate (MST) to remove soluble actinides and strontium. The added MST and any entrained sludge solids were then separated from the supernate by cross flow filtration. During this time, the filter operations have, on many occasions, been the bottleneck process limiting the rate of salt processing. Recently, 512-S- has started operations utilizing “No-MST” where the MST actinide removal strike was not performed and the supernate wasmore » simply pre-filtered prior to Cs removal processing. Direct filtration of decanted tank supernate, as demonstrated in 512-S, is the proposed method of operation for the Hanford Low Activity Waste Pretreatment System (LAWPS) facility. Processing decanted supernate without MST solids has been demonstrated for cross flow filtration to provide a significant improvement in production with the SRS Salt Batches 8 and 9 feed chemistries. The average filtration rate for the first 512-S batch processing cycle using No-MST has increased filtrate production by over 35% of the historical average. The increase was sustained for more than double the amount of filtrate batches processed before cleaning of the filter was necessary. While there are differences in the design of the 512-S and Hanford filter systems, the 512-S system should provide a reasonable indication of LAWPS filter performance with similar feed properties. Based on the data from the 512-S facility and with favorable feed properties, the LAWPS filter, as currently sized at over twice the size of the 512-S filter (532 square feet filtration area versus 235 square feet), has the potential to provide sustained filtrate production at the upper range of the planned LAWPS production rate of 17 gpm.« less

  7. Consequences of actively managing a small Bull Trout population in a fragmented landscape

    USGS Publications Warehouse

    Al-Chokhachy, Robert K.; Moran, Sean; McHugh, Peter; Bernall, Shana; Fredenberg, Wade; DosSantos, Joseph M.

    2015-01-01

    Habitat fragmentation, which affects many native salmonid species, is one of the major factors contributing to the declines in distribution and abundance of Bull Trout Salvelinus confluentus. Increasingly, managers are considering options to maintain and enhance the persistence of isolated local populations through active management strategies. Understanding the ecological consequences of such actions is a necessary step in conservation planning. We used an individual-based model to evaluate the consequences of an ongoing management program aimed at mitigating the anthropogenic fragmentation of the lower Clark Fork River in Montana. Under this program juvenile Bull Trout are trapped and transported from small, headwater source populations to Lake Pend Oreille, Idaho, for rearing, and adults are subsequently recaptured in their upstream migration and returned to the natal population for spawning. We examined one of these populations and integrated empirical estimates of demographic parameters to simulate different management scenarios where moderate (n = 4) and high (n = 8) numbers of age-2, age-3, or age-4 Bull Trout were removed for transport with variable return rates under both demographic stochasticity and environmental perturbations. Our results indicated the risks from removal with no returns increased substantially when removal totals and age of Bull Trout removed from the simulated population increased. Specifically, removing eight age-3 or age-4 individuals resulted in 26% and 62% reductions in average adult population size, respectively, across simulations. We found the risks of transport were not likely alleviated with low (3%) or moderate (6%) return rates, and there were considerable risks of declines for the source population even when return rates were extremely high (>12%). Our simulations indicated little risk of declines for the source population with removals of age-2 Bull Trout, and any risks were alleviated with low return rates. However, we found higher return rates were particularly beneficial in the presence of large, density-independent perturbations.

  8. Geohydrology of the French Creek basin and simulated effects of droughtand ground-water withdrawals, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2004-01-01

    This report describes the results of a study by the U.S. Geological Survey, in cooperation with the Delaware River Basin Commission, to develop a regional ground-water-flow model of the French Creek Basin in Chester County, Pa. The model was used to assist water-resource managers by illustrating the interconnection between ground-water and surface-water systems. The 70.7-mi2 (square mile) French Creek Basin is in the Piedmont Physiographic Province and is underlain by crystalline and sedimentary fractured-rock aquifers. Annual water budgets were calculated for 1969-2001 for the French Creek Basin upstream of streamflow measurement station French Creek near Phoenixville (01472157). Average annual precipitation was 46.28 in. (inches), average annual streamflow was 20.29 in., average annual base flow determined by hydrograph separation was 12.42 in., and estimated average annual ET (evapotranspiration) was 26.10 in. Estimated average annual recharge was 14.32 in. and is equal to 31 percent of the average annual precipitation. Base flow made up an average of 61 percent of streamflow. Ground-water flow in the French Creek Basin was simulated using the finite-difference MODFLOW-96 computer program. The model structure is based on a simplified two-dimensional conceptualization of the ground-water-flow system. The modeled area was extended outside the French Creek Basin to natural hydrologic boundaries; the modeled area includes 40 mi2 of adjacent areas outside the basin. The hydraulic conductivity for each geologic unit was calculated from reported specific-capacity data determined from aquifer tests and was adjusted during model calibration. The model was calibrated for aboveaverage conditions by simulating base-flow and water-level measurements made on May 1, 2001, using a recharge rate of 20 in/yr (inches per year). The model was calibrated for below-average conditions by simulating base-flow and water-level measurements made on September 11 and 17, 2001, using a recharge rate of 6.2 in/yr. Average conditions were simulated by adjusting the recharge rate until simulated streamflow at streamflow-measurement station 01472157 matched the long-term (1968-2001) average base flow of 54.1 cubic feet per second. The recharge rate used for average conditions was 15.7 in/yr. The effect of drought in the French Creek Basin was simulated using a drought year recharge rate of 8 in/yr for 3 months. After 3 months of drought, the simulated streamflow of French Creek at streamflow-measurement station 01472157 decreased 34 percent. The simulations show that after 6 months of average recharge (15.7 in/yr) following drought, streamflow and water levels recovered almost to pre-drought conditions. The effect of increased ground-water withdrawals on stream base flow in the South Branch French Creek Subbasin was simulated under average and drought conditions with pumping rates equal to 50, 75, and 100 percent of the Delaware River Basin Commission Ground Water Protected Area (GWPA) withdrawal limit (1,393 million gallons per year) with all pumped water removed from the basin. For average recharge conditions, the simulated streamflow of South Branch French Creek at the mouth decreased 18, 28, and 37 percent at a withdrawal rate equal to 50, 75, and 100 percent of the GWPA limit, respectively. After 3 months of drought recharge conditions, the simulated streamflow of South Branch French Creek at the mouth decreased 27, 40, and 52 percent at a withdrawal rate equal to 50, 75, and 100 percent of the GWPA limit, respectively. The effect of well location on base flow, water levels, and the sources of water to the well was simulated by locating a hypothetical well pumping 200 gallons per minute in different places in the Beaver Run Subbasin with all pumped water removed from the basin. The smallest reduction in the base flow of Beaver Run was from a well on the drainage divide

  9. Enhanced P, N and C removal from domestic wastewater using constructed wetland employing construction solid waste (CSW) as main substrate.

    PubMed

    Yang, Y; Wang, Z M; Liu, C; Guo, X C

    2012-01-01

    Construction solid waste (CSW), an inescapable by-product of the construction and demolition process, was used as main substrate in a four-stage vertical subsurface flow constructed wetland system to improve phosphorus P removal from domestic wastewater. A 'tidal flow' operation was also employed in the treatment system. Under a hydraulic loading rate (HLR) of 0.76 m3/m2 d for 1st and 3rd stage and HLR of 0.04 m3/m2 d for 2nd and 4th stage of the constructed wetland system respectively and tidal flow operation strategy, average removal efficiencies of 99.4% for P, 95.4% for ammoniacal-nitrogen, 56.5% for total nitrogen and 84.5% for total chemical oxygen demand were achieved during the operation period. The CSW-based constructed wetland system presents excellent P removal performance. The adoption of tidal flow strategy creates the aerobic/anoxic condition intermittently in the treatment system. This can achieve better oxygen transfer and hence lead to more complete nitrification and organic matter removal and enhanced denitrification. Overall, the CSW-based tidal flow constructed wetland system holds great promise for enabling high rate removal of P, ammoniacal-nitrogen and organic matter from domestic wastewater, and transforms CSW from a waste into a useful material.

  10. Rapid formation and pollutant removal ability of aerobic granules in a sequencing batch airlift reactor at low temperature.

    PubMed

    Jiang, Yu; Shang, Yu; Wang, Hongyu; Yang, Kai

    2016-12-01

    The start-up of an aerobic granular sludge (AGS) reactor at low temperature was more difficult than at ambient temperature.The rapid formation and characteristics of AGS in a sequencing batch airlift reactor at low temperature were investigated. The nutrient removal ability of the system was also evaluated. It was found that compact granules with clear boundary were formed within 10 days and steady state was achieved within 25 days. The settling properties of sludge were improved with the increasing secretion of extracellular polymeric substances and removal performances of pollutants were enhanced along with granulation. The average removal efficiencies of COD, NH4(+)-N, total nitrogen (TN), total phosphorus (TP) after aerobic granules maturing were over 90.9%, 94.7%, 75.4%, 80.2%, respectively. The rise of temperature had little impact on pollutant biodegradation while the variation of dissolved oxygen caused obvious changes in TN and TP removal rates. COD concentrations of effluents were below 30 mg l(-1) in most cycles of operation with a wide range of organic loading rates (0.6-3.0 kg COD m(-3) d(-1)). The rapid granulation and good performance of pollutant reduction by the system might provide an alternate for wastewater treatment in cold regions.

  11. Removal and retention of phosphorus by periphyton from wastewater with high organic load.

    PubMed

    Cao, Jinxiang; Hong, Xiaoxing; Pei, Guofeng

    2014-01-01

    The total phosphorus (TP) removal efficiency from organic wastewater (pig farm and distillery wastewater) were estimated by using filamentous green algae (FGA) and benthic algal mats (BAM) treatment systems under laboratory conditions, and the contents of periphyton phosphorus fractions were determined by using a sequential extraction. The removal rates of TP reached 59-78% within the first 8 days of all treatment systems and could achieve average 80% during 30 day period, and the phosphorus removal rates by using BAM was higher than that of FGA. The ability of retention TP of periphyton enhanced gradually, the BAM TP contents were higher than that of FGA, the highest TP concentrations of BAM and FGA were 26.24 and 10.52 mg P g(-1)·dry weight. Inorganic phosphorus (IP) always exceeded 67.5% of TP, but the organic phosphorus fraction only made up less than 20% of TP. The calcium-binding phosphorus (Ca-P) was the dominant fraction and its relative contribution to TP was more than 40%. The TP was also strongly and positively correlated with the IP and Ca-P (p < 0.01) in periphyton. It showed that the periphyton had a potential ability of rapid phosphorus removing and remarkable retention from wastewater with high load phosphorus.

  12. Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers.

    PubMed

    Liu, Tingyi; Yang, Xi; Wang, Zhong-Liang; Yan, Xiaoxing

    2013-11-01

    The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Particle-bound metal transport after removal of a small dam in ...

    EPA Pesticide Factsheets

    The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head dam at the mouth of the river, was removed in August 2011. The removal of the dam was part of an effort to restore the riverine ecosystem after centuries of anthropogenic impact. Sediment traps were deployed below the dam to assess changes in metal concentrations and fluxes (Ag, Cd, Cr, Cu, Ni, Pb, and Zn) from the river system into Pawtuxet Cove. Sediment traps were deployed for an average duration of 24 days each, and deployments continued for 15 months after the dam was removed. Metal concentrations in the trapped suspended particulate matter dropped after dam removal (e.g., 460 to 276 mg/kg for Zn) and remained below preremoval levels for most of the study. However, particle-bound metal fluxes increased immediately after dam removal (e.g., 1206 to 4248 g/day for Zn). Changes in flux rates during the study period indicated that river volumetric flow rates acted as the primary mechanism controlling the flux of metals into Pawtuxet Cove and ultimately upper Narragansett Bay. Even though suspended particulate matter metal concentrations initially dropped after removal of the dam, no discernable effect on the concentration or flux of the study metals exiting the river could be associa

  14. [Effect of comprehensive schistosomiasis control measures with focus on buffalo and sheep removal in Anxiang County].

    PubMed

    Li, Xiao-Song; Li, Fei-Yue; Zhu, Shao-Ping; Zhou, Yi-Biao; Yi, Ping; Luo, Zhi-Hong; Ren, Guang-Hui; Li, Yi-Yi; Tang, Ling; Jiang, Qing-Wu

    2013-06-01

    To understand the effect of comprehensive schistosomiasis control measures with focus on buffalo and sheep removal in Anxiang City, Dongting Lake area. The data of buffalo and sheep removal, routine schistosomiasis control measures such as disease detection and treatment, Oncomelania snail survey and control, as well as health education were collected and analyzed in Anxiang County, Hunan Province from 2004 to 2012. The schistosome infection rates of people, domestic animals and snails decreased from 11.23%, 17.06% and 1.07% in 2004 when the comprehensive measures had not been implemented to 0.58%, 0 and 0 in 2012, respectively. The average density of infected snails decreased from 0.003 4 snails/0.1 m2 to 0. The comprehensive control measures with focus on buffalo and sheep removal are significantly effective, and can control the transmission of schistosomiasis in marshland and lake regions.

  15. On the air cleansing efficiency of an extended green wall: a CFD analysis of mechanistic details of transport processes.

    PubMed

    Joshi, Saumitra V; Ghosh, Sat

    2014-11-21

    The detrimental impact of rising air pollution levels in urban landscapes has become conspicuous over the last decade, particularly in developing countries. This novel numerical study quantifies the cleansing efficiency of green façades draped with a copiously growing tropical creeper Vernonia elaeagnifolia. Turbulent transport of SO2 to the leaf boundary layer and subsequent diffusion across stomatal pores into the mesophyllic cells is modeled at the micro level, including its ionic dissociation in the leaf׳s interior. A SEM analysis indicates stomatal dimensions and density. Whilst previous studies have used either spatially averaged equations or resistance models, a spatially discretized computational approach is adopted in this study. The resulting concentration distribution is used to calculate the deposition velocity on stomatal pores, which is then extrapolated over the entire façade to yield bulk pollutant removal rates. A deposition velocity of 1.53mms(-1) and 0.72mms(-1) is obtained for open and closed pores respectively, with removal rates equal to 1.11×10(-6)s(-1) and 1.05×10(-6)s(-1) for dry and humid weather respectively. Sensitivity studies on the removal rate are carried out based on humidity, stomatal aperture and leaf temperature. The removal rate dependence on the Leaf Area Index (LAI) is also investigated. It is inferred from simulations that vegetated façades are efficient at mitigation of residual pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Removing very low-performing therapists: A simulation of performance-based retention in psychotherapy

    PubMed Central

    Imel, Zac E.; Sheng, Elisa; Baldwin, Scott A.; Atkins, David C.

    2016-01-01

    Therapists can impact the likelihood a given patient will benefit from psychotherapy. However, therapists are rarely held accountable for their patients' outcomes. As a result, low performing providers likely continue to practice alongside providers with high response rates. In the current study, we conducted a Monte Carlo simulation to illustrate a thought experiment—what happens to patient outcomes if therapists with the worst outcomes were removed from practice? We drew initial samples of 50 therapists from three simulated populations of 1,000 therapists with a mean patient response rate of 50% and different effect sizes for therapist variability in outcomes. We simulated 30 patient outcomes for each therapist, with outcome defined as response to treatment versus no response. We removed therapists with response rates in the bottom 5% and replaced them with a random sample of therapists from the population. Over 10 years, the difference in responses between the lowest and highest performing therapists was substantial (between 697 and 997 additional responses to treatment). After repeatedly removing the lowest performing providers 40 times (simulating a 10 year time span), response rates increased substantially. The cumulative number of patient responses (i.e., summing the total number of responses across 10 years) increased by 4266, 6404, and 9307 when therapists accounted for 5%, 10%, or 20% of the patient outcome variance, respectively. These findings indicate that performance-based retention of therapists could improve the quality of psychotherapy in health systems by improving the average response rate and decreasing the probability that a patient will be treated by a therapist who has little chance of helping. PMID:26301424

  17. Phosphate equilibration rate and daily clearance in patients on CAPD, CCPD and APD.

    PubMed

    Gomez, Rafael; Waniewski, Jacek; Zapata, Adelaida; Pietribiasi, Mauro; Lindholm, Bengt

    2017-01-24

    Criteria for how to assess removal rate of inorganic phosphorous (iP) in peritoneal dialysis (PD) and whether iP removal differs between different PD modalities are debated. In a cross-sectional study, 73 prevalent patients on continuous ambulatory PD (n = 16), continuous cyclic PD (n = 8) or automated PD (n = 49) with mean age 54 (range, 18-87) years, 46 males, underwent standard peritoneal equilibration test (PET) and 24-hour collection of dialysate with measurements of iP, urea and creatinine in all samples and bags. There were 11 slow, 53 average, and 9 fast transporters. D/P ratios for iP and creatinine at 4 h of PET were strongly correlated (ρ = 0.86, p<0.0001). Allocation of patients into slow, average and fast transporters according to D/P ratios for iP and creatinine was essentially similar. Whereas the weekly peritoneal clearance of iP (30.8 ± 16.6 L/wk) was lower than that of creatinine (38.4 ± 14.9 L/wk), clearances were strongly correlated (ρ = 0.89, p<0.0001). The correlation between peritoneal weekly clearance of iP and urea KT/V was however weak (ρ = 0.56, p<0.0001. CAPD patients had higher iP clearance than APD patients, 43.2 ± 14.9 versus 24.7 ± 13.4 L/wk (p<0.05); however, serum iP concentrations did not differ. Creatinine is a good surrogate marker for phosphate removal, both as assessed by PET and by 24 hours' clearance, in different PD modalities. Therefore, a separate PET scale for phosphate may not be needed. iP removal was greater with CAPD than APD but serum phosphate levels did not differ.

  18. Are TiO2 nanotubes worth using in photocatalytic purification of air and water?

    PubMed

    Pichat, Pierre

    2014-09-19

    Titanium dioxide nanotubes (TNT) have mainly been used in dye sensitized solar cells, essentially because of a higher transport rate of electrons from the adsorbed photo-excited dye to the Ti electrode onto which TNT instead of TiO2 nanoparticles (TNP) are attached. The dimension ranges and the two main synthesis methods of TNT are briefly indicated here. Not surprisingly, the particular and regular texture of TNT was also expected to improve the photocatalytic efficacy for pollutant removal in air and water with respect to TNP. In this short review, the validity of this expectation is checked using the regrettably small number of literature comparisons between TNT and commercialized TNP referring to films of similar thickness and layers or slurries containing an equal TiO2 mass. Although the irradiated geometrical area differed for each study, it was identical for each comparison considered here. For the removal of toluene (methylbenzene) or acetaldehyde (ethanal) in air, the average ratio of the efficacy of TNT over that of TiO2 P25 was about 1.5, and for the removal of dyes in water, it was around 1. This lack of major improvement with TNT compared to TNP could partially be due to TNT texture disorders as seems to be suggested by the better average performance of anodic oxidation-prepared TNT. It could also come from the fact that the properties influencing the efficacy are more numerous, their interrelations more complex and their effects more important for pollutant removal than for dye sensitized solar cells and photoelectrocatalysis where the electron transport rate is the crucial parameter.

  19. [Denitrification water treatment with zeolite composite filter by intermittent operation].

    PubMed

    Qing, Cheng-Song; Bao, Tao; Chen, Tian-Hu; Chen, Dong; Xie, Jing-Jing

    2012-12-01

    The zeolite composite filters (ZCF) with the size of4-8 mm were prepared using raw zeolite (0.15-0.18 mm) as the main material and the cement as binder. After a combination of material characterizations, such as the void fraction, apparent density, compression strength and surface area, the optimal prepared conditions of composite filters were obtained as follow: weight ratio of m (zeolite): m (cement) = 7 : 3, curing for 15 d under the moisture condition and ambient temperature. Through upflow low-concentration ammonia nitrogen wastewater, ZCF filled in the experimental column was hung with the biological membrane. Thus, intermittent dynamic experiments were conducted, the intermittent operation cycle included adsorption, biological regeneration and drip washing. Until concentration of ammonia nitrogen was more than 2 mg x L(-1) of effluent standards, water in experiment column was firstly emptied, and then blast biological regeneration was conducted. After the filters were bathed with water, the zeolite adsorption-biological regeneration cycle was performed repeatedly. The experimental results show that under conditions of 24 h blast and 5 d of continuous operation period, ammonia nitrogen removal rate is up to 87.6% on average, total nitrogen removal rate reaches 51.2% on average.

  20. Comparison of recirculation configurations for biological nutrient removal in a membrane bioreactor.

    PubMed

    Bekir Ersu, Cagatayhan; Ong, Say Kee; Arslankaya, Ertan; Brown, Patrick

    2008-03-01

    A 12-L lab-scale membrane bioreactor (MBR), consisting of an anaerobic and anoxic compartment followed by an oxic plate-frame membrane compartment, was evaluated for carbonaceous and nutrient removals by varying the recirculation of mixed liquor and permeate. The hydraulic retention times (HRTs) for the anaerobic, anoxic, and oxic compartments were 2, 2, and 8h, respectively. The solids residence time (SRT) for the oxic compartment was 25 days. Five different recirculation configurations were tested by recirculating mixed liquor and/or permeate recirculation equal to the influent flow rate (identified as 100%) into different locations of the anaerobic and anoxic compartments. Of the five configurations, the configuration with 100% mixed liquor recirculation to the anaerobic compartment and 100% permeate recirculation to the anoxic compartment gave the highest percentage removal with an average 92.3+/-0.5% soluble chemical oxygen demand (sCOD), 75.6+/-0.4% total nitrogen (TN), and 62.4+/-1.3% total phosphorus (TP) removal. When the mixed liquor and permeate recirculation rates were varied for the same configuration, the highest TP removal was obtained for 300% mixed liquor recirculation and 100% permeate recirculation (300%/100%) with a TP removal of 88.1+/-1.3% while the highest TN removal (90.3+/-0.3%) was obtained for 200%/300% recirculation. TN and TP concentrations as low as 4.2+/-0.1 and 1.4+/-0.2mg/L respectively were obtained. Mass loading rates were generally low in the range of 0.11-0.22kgCOD/kgMLSS/d due to high biomass concentrations within the oxic reactor (approx. 8000mg/L). The BioWin model was calibrated against one set of the experimental data and was found to predict the experimental data of effluent TN, TP, and NO(3)(-)-N but over-predicted sCOD and NH(3)-N for various recirculation rates. The anoxic heterotrophic yield for the calibrated model was 0.2kg biomass COD/kg COD utilized while the maximum growth rates were found to be 0.45day(-1) for mu(max-autotroph), 3.2day(-1) for mu(max-heterotroph), and 1.5day(-1) for mu(max-PAO).

  1. Performance of a pilot demonstration-scale hybrid constructed wetland system for on-site treatment of polluted urban river water in Northwestern China.

    PubMed

    Zheng, Yucong; Wang, Xiaochang C; Dzakpasu, Mawuli; Ge, Yuan; Zhao, Yaqian; Xiong, Jiaqing

    2016-01-01

    Hybrid constructed wetland (HCW) systems have been used to treat various wastewaters across the world. However, large-scale applications of HCWs are scarce, particularly for on-site improvement of the water quality of highly polluted urban rivers in semi-arid regions. In this study, a large pilot-scale HCW system was constructed to improve the water quality of the Zaohe River in Xi'an, China. With a total area of about 8000 m(2), the pilot HCW system, composed of different configurations of surface and subsurface flow wetlands, was operated for 2 years at an average inflow volume rate of 362 m(3)/day. Local Phragmites australis and Typha orientalis from the riverbank were planted in the HCW system. Findings indicate a higher treatment efficiency for organics and suspended solids than nutrients. The inflow concentrations of 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), NH3-N, and total phosphorus (TP) were 125.6, 350.9, 334.2, 38.5, 27.2, and 3.9 mg/L, respectively. Average removal efficiencies of 94.4, 74.5, 92.0, 56.3, 57.5, and 69.2%, respectively, were recorded. However, the pollutant removal rates were highly seasonal especially for nitrogen. Higher removals were recorded for all pollutants in the autumn while significantly lower removals were recorded in the winter. Plant uptake and assimilation accounted for circa 19-29 and 16-23% of the TN and TP removal, respectively. Moreover, P. australis demonstrated a higher nutrient uptake ability and competitive potential. Overall, the high efficiency of the pilot HCW for improving the water quality of such a highly polluted urban river provided practical evidence of the applicability of the HCW technology for protecting urban water environments.

  2. Methane emissions partially offset “blue carbon” burial in mangroves

    PubMed Central

    Maher, Damien T.

    2018-01-01

    Organic matter burial in mangrove forests results in the removal and long-term storage of atmospheric CO2, so-called “blue carbon.” However, some of this organic matter is metabolized and returned to the atmosphere as CH4. Because CH4 has a higher global warming potential than the CO2 fixed in the organic matter, it can offset the CO2 removed via carbon burial. We provide the first estimate of the global magnitude of this offset. Our results show that high CH4 evasion rates have the potential to partially offset blue carbon burial rates in mangrove sediments on average by 20% (sensitivity analysis offset range, 18 to 22%) using the 20-year global warming potential. Hence, mangrove sediment and water CH4 emissions should be accounted for in future blue carbon assessments.

  3. Highway-runoff quality, and treatment efficiencies of a hydrodynamic-settling device and a stormwater-filtration device in Milwaukee, Wisconsin

    USGS Publications Warehouse

    Horwatich, Judy A.; Bannerman, Roger T.; Pearson, Robert

    2011-01-01

    The treatment efficiencies of two prefabricated stormwater-treatment devices were tested at a freeway site in a high-density urban part of Milwaukee, Wisconsin. One treatment device is categorized as a hydrodynamic-settling device (HSD), which removes pollutants by sedimentation and flotation. The other treatment device is categorized as a stormwater-filtration device (SFD), which removes pollutants by filtration and sedimentation. During runoff events, flow measurements were recorded and water-quality samples were collected at the inlet and outlet of each device. Efficiency-ratio and summation-of-load (SOL) calculations were used to estimate the treatment efficiency of each device. Event-mean concentrations and loads that were decreased by passing through the HSD include total suspended solids (TSS), suspended sediment (SS), total phosphorus (TP), total copper (TCu), and total zinc (TZn). The efficiency ratios for these constituents were 42, 57, 17, 33, and 23 percent, respectively. The SOL removal rates for these constituents were 25, 49, 10, 27, and 16 percent, respectively. Event-mean concentrations and loads that increased by passing through the HSD include chloride (Cl), total dissolved solids (TDS), and dissolved zinc (DZn). The efficiency ratios for these constituents were -347, -177, and 20 percent, respectively. Four constituents—dissolved phosphorus (DP), chemical oxygen demand (COD), total polycyclic aromatic hydrocarbon (PAH), and dissolved copper (DCu)—are not included in the list of computed efficiency ratio and SOL because the variability between sampled inlet and outlet pairs were not significantly different. Event-mean concentrations and loads that decreased by passing through the SFD include TSS, SS, TP, DCu, TCu, DZn, TZn, and COD. The efficiency ratios for these constituents were 59, 90, 40, 21, 66, 23, 66, and 18, respectively. The SOLs for these constituents were 50, 89, 37, 19, 60, 20, 65, and 21, respectively. Two constituents—DP and PAH—are not included in the lists of computed efficiency ratio and SOL because the variability between sampled inlet and outlet pairs were not significantly different. Similar to the HSD, the average efficiency ratios and SOLs for TDS and Cl were negative. Flow rates, high concentrations of SS, and particle-size distributions (PSD) can affect the treatment efficacies of the two devices. Flow rates equal to or greater than the design flow rate of the HSD had minimal or negative removal efficiencies for TSS and SS loads. Similar TSS removal efficiencies were observed at the SFD, but SS was consistently removed throughout the flow regime. Removal efficiencies were high for both devices when concentrations of SS and TSS approached 200 mg/L. A small number of runoff events were analyzed for PSD; the average sand content at the HSD was 33 percent and at the SFD was 71 percent. The 71-percent sand content may reflect the 90-percent removal efficiency of SS at the SFD. Particles retained at the bottom of both devices were largely sand-size or greater.

  4. Landfill leachate management in Istanbul: applications and alternatives.

    PubMed

    Calli, Baris; Mertoglu, Bulent; Inanc, Bulent

    2005-05-01

    Treatment alternatives for Istanbul, Komurcuoda Landfill (KL) leachate that is currently transported to the nearest central wastewater treatment plant were comprehensively investigated with laboratory scale experiments. As flow rate of leachate increases parallel to increment in landfilled solid waste, an individual treatment will be needed to reduce the transportation cost and pollution load on central treatment. However, if the leachate is separately treated and discharged to a brook, in that case more stringent discharge standards will be valid and therefore advanced processes in addition to conventional ones should be included. In laboratory scale experiments, the young landfill leachate having BOD5/COD ratio above 0.6 was successfully treated with efficiencies above 90% in upflow anaerobic reactors if pH is kept below free ammonia inhibition level. Subsequently, nitrification of anaerobically treated leachate was performed with rates of about 8.5 mg NH4+-Ng-1 VSS h-1 and efficiencies above 99% were provided with automated pH regulation by using sodium bicarbonate. Furthermore, denitrification rates as high as 8.1 mg NOx-N g-1VSS h-1 was obtained when carbon source was externally supplied. In addition to nitrification and denitrification, air stripping and struvite precipitation were also applied to remove ammonia in leachate and in average 94% and 98% efficiencies were achieved, respectively. Finally, in average 85% of biologically inert COD was successfully removed by using either ozone or Fenton's oxidation.

  5. Comparing fixation used for calcaneal displacement osteotomies: a look at removal rates and cost.

    PubMed

    Lucas, Douglas E; Simpson, G Alex; Philbin, Terrence M

    2015-02-01

    The calcaneal displacement osteotomy is a procedure frequently used by foot and ankle surgeons for hindfoot angular deformity. Traditional techniques use compression screw fixation that can result in prominent hardware. While the results of the procedure are generally good, a common concern is the development of plantar heel pain related to prominent hardware. The primary purpose of this study is to retrospectively compare clinical outcomes of 2 fixation methods for the osteotomy. Secondarily a cost analysis will compare implant costs to hardware removal costs. Records were reviewed for patients who had undergone a calcaneal displacement osteotomy fixated with either lag screw or a locked lateral compression plate (LLCP). Neuropathy, previous ipsilateral calcaneus surgery, heel pad trauma, or incomplete radiographic follow-up were exclusionary. Thirty-two patients (19.4%) required hardware removal from the screw fixation group compared to 1 (1.6%) of the LLCP group, which is significant (P < .05). Time to radiographic healing was not significantly different (P = .87). The screw fixation group required more follow-up visits over a longer period of time (P < .05). Implant cost was remarkably different with screw fixation costing on average $247.12, compared to the LLCP costing $1175.59. Although the LLCP cost was significantly higher, cost savings were identified when the cost of removal and removal rates were included. This study demonstrates that this device provides adequate stabilization for healing in equivalent time to screw fixation. The LLCP required decreased rates of hardware removal with fewer postoperative visits over a shorter period of time. Significant savings were demonstrated in the LLCP group despite the higher implant cost. Therapeutic, Level III, Retrospective Comparative Study. © 2014 The Author(s).

  6. Operative Cost Comparison: Plating Versus Intramedullary Fixation for Clavicle Fractures.

    PubMed

    Hanselman, Andrew E; Murphy, Timothy R; Bal, George K; McDonough, E Barry

    2016-09-01

    Although clavicle fractures often heal well with nonoperative management, current literature has shown improved outcomes with operative intervention for specific fracture patterns in specific patient types. The 2 most common methods of midshaft clavicle fracture fixation are intramedullary and plate devices. Through retrospective analysis, this study performed a direct cost comparison of these 2 types of fixation at a single institution over a 5-year period. Outcome measures included operative costs for initial surgery and any hardware removal surgeries. This study reviewed 154 patients (157 fractures), and of these, 99 had intramedullary fixation and 58 had plate fixation. A total of 80% (79 of 99) of intramedullary devices and 3% (2 of 58) of plates were removed. Average cost for initial intramedullary placement was $2955 (US dollars) less than that for initial plate placement (P<.001); average cost for removal was $1874 less than that for plate removal surgery (P=.2). Average total cost for all intramedullary surgeries was $1392 less than the average cost for all plating surgeries (P<.001). Average cost for all intramedullary surgeries requiring plate placement and removal was $653 less than the average cost for all plating surgeries that involved only placement (P=.04). Intramedullary fixation of clavicle fractures resulted in a statistically significant cost reduction compared with plate fixation, despite the incidence of more frequent removal surgeries. [Orthopedics.2016; 39(5):e877-e882.]. Copyright 2016, SLACK Incorporated.

  7. Use of microfocused X-ray techniques to investigate the mobilization of arsenic by oxalic acid

    NASA Astrophysics Data System (ADS)

    Wovkulich, Karen; Mailloux, Brian J.; Bostick, Benjamin C.; Dong, Hailiang; Bishop, Michael E.; Chillrud, Steven N.

    2012-08-01

    Improved linkages between aqueous phase transport and solid-phase reactions are needed to better predict and model transport of contaminants through the subsurface. Here we develop and apply a new method for measuring As mobilization in situ within soil columns that utilizes synchrotron-based X-ray fluorescence. By performing these measurements in situ during column transport experiments, we simultaneously monitor grain-scale solid phase reactions and column-scale transport. Arsenic may be effectively mobilized by oxalic acid but the geochemical and mineralogical factors that influence the rate and extent of mobilization are not well understood. Column experiments (˜4 cm long × 0.635 cm ID) using As contaminated sediments from the Vineland Chemical Company Superfund site were performed on the laboratory bench as well as in the synchrotron beamline. Microfocused synchrotron X-ray fluorescence (μSXRF) maps for As and Fe were collected at the same location in the columns (<1 mm2) before and during treatment with 10 mM oxalic acid. The fraction of As and Fe removed by oxalic acid treatment was calculated from the change in flux-normalized counts for each pixel in the map images, and these data were used to calculate kinetic parameters over the studied area. Between 79% and 83% of the As was removed from the sediments by the oxalic acid treatment based on μSXRF data; these removal percentages agreed well with laboratory data based on column effluent (88-95%). Considerably less Fe was removed by oxalic acid treatment, 14-25% based on μSXRF counts, which is somewhat higher than the 7-9% calculated from laboratory column effluent concentrations. Microfocused X-ray absorption near edge spectroscopy (μXANES) on a subset of points indicates most of the Fe was oxidized and present as a mixture of goethite, hematite, and ferrihydrite on sand grain coatings. Treatment with oxalic acid led to subtle shifts in Fe (III) species following oxalic acid treatment, either removing ferrihydrite or transforming it to more stable oxides; however, Fe redox states were not impacted. Kinetics information extracted from μSXRF data compared favorably with rates of As removal from observed As breakthrough curves. The average pseudo-first order As removal rate constant was calculated to be 0.015 min-1 ± 0.002 (± average standard error, N = 400) based on changes in μSXRF counts over time. The spatial variation observed in the rate constant is likely a result of differences in the mineral substrate or As retention mechanism. Geochemical models created using the calculated As removal rate constants showed agreement with As breakthrough curves for both a small column (4.25 cm × 0.635 cm ID) and a larger column (23.5 cm × 4.2 cm ID), indicating that the processes studied using the microprobe are representative and often can be predictive of larger systems. While this work was used to understand the processes that regulate As release and transport, the methods developed here could be used to study a wide variety of reaction processes, including contaminant removal due to chemical treatment, mineral precipitation due to changing redox characteristics, and solid phase transformations.

  8. Use of Microfocused X-ray Techniques to Investigate the Mobilization of As by Oxalic Acid

    PubMed Central

    Wovkulich, Karen; Mailloux, Brian J.; Bostick, Benjamin C.; Dong, Hailiang; Bishop, Michael E.; Chillrud, Steven N.

    2012-01-01

    Improved linkages between aqueous phase transport and solid-phase reactions are needed to better predict and model transport of contaminants through the subsurface. Here we develop and apply a new method for measuring As mobilization in situ within soil columns that utilizes synchrotron-based X-ray fluorescence. By performing these measurements in situ during column transport experiments, we simultaneously monitor grain-scale solid phase reactions and column-scale transport. Arsenic may be effectively mobilized by oxalic acid but the geochemical and mineralogical factors that influence the rate and extent of mobilization are not well understood. Column experiments (~4 cm long × 0.635 cm ID) using As contaminated sediments from the Vineland Chemical Company Superfund site were performed on the laboratory bench as well as in the synchrotron beamline. Microfocused synchrotron X-ray fluorescence (μSXRF) maps for As and Fe were collected at the same location in the columns (<1 mm2) before and during treatment with 10 mM oxalic acid. The fraction of As and Fe removed by oxalic acid treatment was calculated from the change in flux-normalized counts for each pixel in the map images, and these data were used to calculate kinetic parameters over the studied area. Between 79% and 83% of the As was removed from the sediments by the oxalic acid treatment based on μSXRF data; these removal percentages agreed well with laboratory data based on column effluent (88–95%). Considerably less Fe was removed by oxalic acid treatment, 14–25% based on μSXRF counts, which is somewhat higher than the 7–9% calculated from laboratory column effluent concentrations. Microfocused X-ray absorption near edge spectroscopy (μXANES) on a subset of points indicates most of the Fe was oxidized and present as a mixture of goethite, hematite, and ferrihydrite on sand grain coatings. Treatment with oxalic acid led to subtle shifts in Fe (III) species following oxalic acid treatment, either removing ferrihydrite or transforming it to more stable oxides; however, Fe redox states were not impacted. Kinetics information extracted from μSXRF data compared favorably with rates of As removal from observed As breakthrough curves. The average pseudo-first order As removal rate constant was calculated to be 0.015 min−1 ± 0.002 (± average standard error, N=400) based on changes in μSXRF counts over time. The spatial variation observed in the rate constant is likely a result of differences in the mineral substrate or As retention mechanism. Geochemical models created using the calculated As removal rate constants showed agreement with As breakthrough curves for both a small column (4.25 cm × 0.635 cm ID) and a larger column (23.5 cm × 4.2 cm ID), indicating that the processes studied using the microprobe are representative and often can be predictive of larger systems. While this work was used to understand the processes that regulate As release and transport, the methods developed here could be used to study a wide variety of reaction processes, including contaminant removal due to chemical treatment, mineral precipitation due to changing redox characteristics, and solid phase transformations. PMID:23175572

  9. Effects of influent C/N ratios and treatment technologies on integral biogas upgrading and pollutants removal from synthetic domestic sewage.

    PubMed

    Xu, Jie; Wang, Xue; Sun, Shiqing; Zhao, Yongjun; Hu, Changwei

    2017-09-07

    Three different treatment technologies, namely mono-algae culture, algal-bacterial culture, and algal-fungal culture, were applied to remove pollutants form synthetic domestic sewage and to remove CO 2 from biogas in a photobioreactor. The effects of different initial influent C/N ratios on microalgal growth rates and pollutants removal efficiencies by the three microalgal cultures were investigated. The best biogas upgrading and synthetic domestic sewage pollutants removal effect was achieved in the algal-fungal system at the influent C/N ratio of 5:1. At the influent C/N ratio of 5:1, the algal-fungal system achieved the highest mean chemical oxygen demand (COD) removal efficiency of 81.92% and total phosphorus (TP) removal efficiency of 81.52%, respectively, while the algal-bacterial system demonstrated the highest mean total nitrogen (TN) removal efficiency of 82.28%. The average CH 4 concentration in upgraded biogas and the removal efficiencies of COD, TN, and TP were 93.25 ± 3.84% (v/v), 80.23 ± 3.92%, 75.85 ± 6.61%, and 78.41 ± 3.98%, respectively. These results will provide a reference for wastewater purification ad biogas upgrading with microalgae based technology.

  10. Numerical Simulations of Homogeneous Turbulence Using Lagrangian-Averaged Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Mohseni, Kamran; Shkoller, Steve; Kosovic, Branko; Marsden, Jerrold E.; Carati, Daniele; Wray, Alan; Rogallo, Robert

    2000-01-01

    The Lagrangian-averaged Navier-Stokes (LANS) equations are numerically evaluated as a turbulence closure. They are derived from a novel Lagrangian averaging procedure on the space of all volume-preserving maps and can be viewed as a numerical algorithm which removes the energy content from the small scales (smaller than some a priori fixed spatial scale alpha) using a dispersive rather than dissipative mechanism, thus maintaining the crucial features of the large scale flow. We examine the modeling capabilities of the LANS equations for decaying homogeneous turbulence, ascertain their ability to track the energy spectrum of fully resolved direct numerical simulations (DNS), compare the relative energy decay rates, and compare LANS with well-accepted large eddy simulation (LES) models.

  11. An adaptive strategy for active debris removal

    NASA Astrophysics Data System (ADS)

    White, Adam E.; Lewis, Hugh G.

    2014-04-01

    Many parameters influence the evolution of the near-Earth debris population, including launch, solar, explosion and mitigation activities, as well as other future uncertainties such as advances in space technology or changes in social and economic drivers that effect the utilisation of space activities. These factors lead to uncertainty in the long-term debris population. This uncertainty makes it difficult to identify potential remediation strategies, involving active debris removal (ADR), that will perform effectively in all possible future cases. Strategies that cannot perform effectively, because of this uncertainty, risk either not achieving their intended purpose, or becoming a hindrance to the efforts of spacecraft manufactures and operators to address the challenges posed by space debris. One method to tackle this uncertainty is to create a strategy that can adapt and respond to the space debris population. This work explores the concept of an adaptive strategy, in terms of the number of objects required to be removed by ADR, to prevent the low Earth orbit (LEO) debris population from growing in size. This was demonstrated by utilising the University of Southampton’s Debris Analysis and Monitoring Architecture to the Geosynchronous Environment (DAMAGE) tool to investigate ADR rates (number of removals per year) that change over time in response to the current space environment, with the requirement of achieving zero growth of the LEO population. DAMAGE was used to generate multiple Monte Carlo projections of the future LEO debris environment. Within each future projection, the debris removal rate was derived at five-year intervals, by a new statistical debris evolutionary model called the Computational Adaptive Strategy to Control Accurately the Debris Environment (CASCADE) model. CASCADE predicted the long-term evolution of the current DAMAGE population with a variety of different ADR rates in order to identify a removal rate that produced a zero net growth for that particular projection after 200 years. The results show that using an adaptive ADR rate generated by CASCADE, alongside good compliance with existing mitigation measures, increases the probability of achieving a constant LEO population of objects greater than 10 cm. This was shown to be 12% greater compared with removing five objects per year, with the additional advantage of requiring only 3.1 removals per year, on average.

  12. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment.

    PubMed

    Saddoud, Ahlem; Sayadi, Sami

    2007-11-19

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCODm(-3)d(-1) with gradual increase to an average of 13.27 kg TCODm(-3)d(-1). At stable conditions, the treatment efficiency was high with an average COD and BOD(5) reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCODm(-3)d(-1). The removal efficiencies of SCOD and BOD(5) were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines.

  13. Ethylene Removal at Low Temperatures under Biofilter and Batch Conditions

    PubMed Central

    Elsgaard, Lars

    2000-01-01

    Removal of the plant hormone ethylene (C2H4) is often required by horticultural storage facilities, which are operated at temperatures below 10°C. The aim of this study was to demonstrate an efficient, biological C2H4 removal under such low-temperature conditions. Peat-soil, acclimated to degradation of C2H4, was packed in a biofilter (687 cm3) and subjected to an airflow (∼73 ml min−1) with 2 ppm (μl liter−1) C2H4. The C2H4 removal efficiencies achieved at 20, 10, and 5°C, respectively, were 99.0, 98.8, and 98.4%. This corresponded to C2H4 levels of 0.022 to 0.032 ppm in the biofilter outlet air. At 2°C, the average C2H4 removal efficiency dropped to 83%. The detailed temperature response of C2H4 removal was tested under batch conditions by incubation of 1-g soil samples in a temperature gradient ranging from 0 to 29°C with increments of 1°C. The C2H4 removal rate was highest at 26°C (0.85 μg of C2H4 g [dry weight]−1 h−1), but remained at levels of 0.14 to 0.28 μg of C2H4 g (dry weight)−1 h−1 at 0 to 10°C. At 35 to 40°C, the C2H4 removal rate was negligible (0.02 to 0.06 μg of C2H4 g [dry weight]−1 h−1). The Q10 (i.e., the ratio of rates 10°C apart) for C2H4 removal was 1.9 for the interval 0 to 10°C. In conclusion, the present results demonstrated microbial C2H4 removal, which proceeded at 0 to 2°C and produced a moderately psychrophilic temperature response. PMID:10966403

  14. Wide-area estimates of stand structure and water use of tamarix spp. on the lower colorado river: Implications for restoration and water management projects

    USGS Publications Warehouse

    Nagler, P.L.; Glenn, E.P.; Didan, K.; Osterberg, J.; Jordan, F.; Cunningham, J.

    2008-01-01

    Tamarix spp. removal has been proposed to salvage water and allow native vegetation to recolonize western U.S. riparian corridors. We conducted wide-area studies on the Lower Colorado River to answer some of the scientific questions about Tamarix water use and the consequences of removal, combining ground surveys with remote sensing methods. Tamarix stands had moderate rates of evapotranspiration (ET), based on remote sensing estimates, averaging 1.1 m/yr, similar to rates determined for other locations on the river and other rivers. Leaf area index values were also moderate, and stands were relatively open, with areas of bare soil interspersed within stands. At three Tamarix sites in the Cibola National Wildlife Refuge, groundwater salinity at the site nearest to the river (200 m) was relatively low (circa 2,250 mg/L) and was within 3 m of the surface. However, 750 and 1,500 m from the river, the groundwater salinity was 5,000-10,000 mg/L due to removal of water by the Tamarix stands. Despite the high groundwater salinity, the sites away from the river did not have saline surface soils. Only 1% of the mean annual river flow is lost to Tamarix ET on the Lower Colorado River in the United States, and the opportunities for water salvage through Tamarix removal are constrained by its modest ET rates. A possible alternative to Tamarix removal is to intersperse native plants among the stands to improve the habitat value of the riparian zone. ?? 2008 Society for Ecological Restoration International.

  15. An experimental evaluation of potential scavenger effects on snake road mortality detections

    USGS Publications Warehouse

    Hubbard, Kaylan A.; Chalfoun, Anna D.

    2012-01-01

    As road networks expand and collisions between vehicles and wildlife become more common, accurately quantifying mortality rates for the taxa that are most impacted will be critical. Snakes are especially vulnerable to collisions with vehicles because of their physiology and behavior. Reptile road mortality is typically quantified using driving or walking surveys; however, scavengers can rapidly remove carcasses from the road and cause underestimation of mortality. Our objective was to determine the effect that scavengers might have had on our ability to accurately detect reptile road mortality during over 150 h and 4,000 km of driving surveys through arid shrublands in southwest Wyoming, which resulted in only two observations of mortality. We developed unique simulated snake carcasses out of Burbot (Lota lota), a locally invasive fish species, and examined removal rates across three different road types at three study sites. Carcass size was not a significant predictor of time of removal, and carcass removal was comparable during the daytime and nighttime hours. However, removal of simulated carcasses was higher on paved roads than unpaved or two-track roads at all study sites, with an average of 75% of the carcasses missing within 60 h compared to 34% and 31%, respectively. Scavengers may therefore negatively impact the ability of researchers to accurately detect herpetofaunal road mortality, especially for paved roads where road mortality is likely the most prevalent.

  16. Performance of a pilot-scale constructed wetland for stormwater runoff and domestic sewage treatment on the banks of a polluted urban river.

    PubMed

    Guo, Weijie; Li, Zhu; Cheng, Shuiping; Liang, Wei; He, Feng; Wu, Zhenbin

    2014-01-01

    To examine the performance of a constructed wetland system on stormwater runoff and domestic sewage (SRS) treatment in central east China, two parallel pilot-scale integrated constructed wetland (ICW) systems were operated for one year. Each ICW consisted of a down-flow bed, an up-flow bed and a horizontal subsurface flow bed. The average removal rates of chemical oxygen demand (CODCr), total suspended solids (TSS), ammonia (NH4(+)-N), total nitrogen (TN) and total phosphorus (TP) were 63.6, 91.9, 38.7, 43.0 and 70.0%, respectively, and the corresponding amounts of pollutant retention were approximately 368.3, 284.9, 23.2, 44.6 and 5.9 g m(-2) yr(-1), respectively. High hydraulic loading rate (HLR) of 200 mm/d and low water temperatures (<15 °C) resulted in significant decrease in removals for TP and NH4(+)-N, but had no significant effects on removals of COD and TSS. These results indicated that the operation of this ICW at higher HLR (200 mm/d) might be effective and feasible for TSS and COD removal, but for acceptable removal efficiencies of nitrogen and phosphorus it should be operated at lower HLR (100 mm/d). This kind of ICW could be employed as an effective technique for SRS treatment.

  17. The influence of economic business cycles on United States suicide rates.

    PubMed

    Wasserman, I M

    1984-01-01

    A number of social science investigators have shown that a downturn in the economy leads to an increase in the suicide rate. However, the previous works on the subject are flawed by the fact that they employ years as their temporal unit of analysis. This time period is so large that it makes it difficult for investigators to precisely determine the length of the lag effect, while at the same time removing the autocorrelation effects. Also, although most works on suicide and the business cycle employ unemployment as a measure of a downturn in the business cycle, the average duration of unemployment represents a better measure for determining the social impact of an economic downturn. From 1947 to 1977 the average monthly duration of unemployment is statistically related to the suicide rate using multivariate time-series analysis. From 1910 to 1939 the Ayres business index, a surrogate measure for movement in the business cycle, is statistically related to the monthly suicide rate. An examination of the findings confirms that in most cases a downturn in the economy causes an increase in the suicide rate.

  18. Iron-mineral accretion from acid mine drainage and its application in passive treatment

    PubMed Central

    Florence, K.; Sapsford, D.J.; Johnson, D.B.; Kay, C.M.; Wolkersdorfer, C.

    2016-01-01

    ABSTRACT This study demonstrates substantial removal of iron (Fe) from acid mine drainage (pH ≈3) in a passive vertical flow reactor (VFR) with an equivalent footprint of 154 m2 per L/s mine water and residence times of >23 h. Average Fe removal rate was 67% with a high of 85% over the 10-month trial. The fraction of Fe passing a 0.22 µm filter (referred to here as Fe-filt) was seen to be removed in the VFR even when Fe(II) was absent, indicating that the contribution of microbial Fe(II) oxidation and precipitation was not the dominant removal mechanism in the VFR. Removal rates of Fe-filt in the VFR were up to 70% in residence times as low as 8 h compared with laboratory experiments where much smaller changes in Fe-filt were observed over 60 h. Centrifugation indicated that 80–90% of the influent Fe had particle sizes <35 nm. Together with analyses and geochemical modelling, this suggests that the Fe-filt fraction exists as either truly aqueous (but oversaturated) Fe(III) or nanoparticulate Fe(III) and that this metastability persists. When the water was contacted with VFR sludge, the Fe-filt fraction was destabilized, leading to an appreciably higher removal of this fraction. Heterogeneous precipitation and/or aggregation of nanoparticulate Fe(III) precipitates are considered predominant removal mechanisms. Microbial analyses of the mine water revealed the abundance of extracellular polymeric substance-generating Fe-oxidizing bacterium ‘Ferrovum myxofaciens’, which may aid the removal of iron and explain the unusual appearance and physical properties of the sludge. PMID:26675674

  19. Nitrogen removal and nitrate leaching for two perennial, sod-based forage systems receiving dairy effluent.

    PubMed

    Woodard, Kenneth R; French, Edwin C; Sweat, Lewin A; Graetz, Donald A; Sollenberger, Lynn E; Macoon, Bisoondat; Portier, Kenneth M; Rymph, Stuart J; Wade, Brett L; Prine, Gordon M; Van Horn, Harold H

    2003-01-01

    In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.

  20. A full-scale biological treatment system application in the treated wastewater of pharmaceutical industrial park.

    PubMed

    Lei, Ge; Ren, Hongqiang; Ding, Lili; Wang, Feifei; Zhang, Xingsong

    2010-08-01

    A full-scale combined biological system is used for the treatment of treated wastewater discharged from a pharmaceutical industrial park. This treated water is rich in NH(4)(+)-N (average in 86.4 mg/L), low in COD/NH(4)(+)-N (average in 3.4) and low in BOD(5)/COD ratio (average in 0.24) with pH varying from 7.16 to 7.78. The final effluent of the combined treatment process was stably below 100mg/L COD and 20mg/L NH(4)(+)-N, separately, with organic loading rate of 4954 kg COD/d and 92.5 kg NH(4)(+)-N/d. It is found that the BOD(5)/COD ratio could be raised from 0.24 to 0.35, and the production of total VFAs account for 9.57% of the total COD via the treatment of hydrolysis/acidification. MBBR and oxidation ditch represent 35.4% and 60.7% of NH(4)(+)-N removal, 30.2% and 61.5% of COD removal, separately, of the total treatment process. PCR-DGGE is used for microbial community analysis of MBBR and oxidation ditch. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  1. [Comparison of PAHs distribution in stabilized sludge by sludge drying bed and reed bed].

    PubMed

    Cui, Yu-Bo; Sun, Hong-Jie; Ran, Chun-Qiu; Li, Jin-Feng; Xie, Yao

    2013-03-01

    The difference in the removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) in planted and unplanted sludge drying bed was investigated. Pilot-scale sludge drying bed and reed bed had the same size of 3.0 m x 1.0 m x 1.3 m (L x W x H), and the bed height consisted of a 65 cm media layer and a 65 cm super height. Both beds had a ventilation pipe which was mounted on the drainage pipes. The experiment lasted for three years, and the first two years was the sludge loading period, and the third year was the natural stabilization period. In the first two years, a total thickness of 8.4 m of sludge was loaded and the average sludge loading rate was 41.3 kg x (m2 x a)(-1). After the three-year stabilization, the contents of the sixteen PAHs decreased with time in both the sludge drying bed and the reed bed. The total PAHs contents in the surface, middle and bottom sludge layers in the sludge drying bed were 4.161, 3.543 and 3.118 mg x kg(-1) (DW), corresponding to 26.91%, 37.77% and 45.23% of removal; and the values in the reed bed were 2.722, 1.648 and 1.218 mg x kg(-1) (DW), corresponding to 52.18%, 71.05% and 78.60% of removal. The average PAHs removal in the reed bed was 29.86% higher than that in the sludge drying bed. In the stabilized sludge, the removal of low-molecular-weight PAHs predominated. The results suggested that reed played a positive role in the removal of PAHs.

  2. The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill.

    PubMed

    Sanphoti, N; Towprayoon, S; Chaiprasert, P; Nopharatana, A

    2006-10-01

    In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering methane composition (average 63.09%) and COD removal (average 90.60%), slight differences were found among these three reactors.

  3. Experimental studies of rapid bioerosion of coral reefs in the Galápagos Islands

    NASA Astrophysics Data System (ADS)

    Reaka-Kudla, M. L.; Feingold, J. S.; Glynn, W.

    1996-06-01

    Experimental carbonate blocks of coral skeleton, Porites lobata (PL), and cathedral limestone (LS) were deployed for 14.8 months at shallow (5 6 m) and deep (11 13m) depths on a severely bioeroded coral reef, Champion Island, Galápagos Islands, Ecuador. Sea urchins ( Eucidaris thouarsii) were significantly more abundant at shallow versus deep sites. Porites lobata blocks lost an average of 25.4 kg m-2yr-1 (23.71 m-2yr-1 or 60.5% decrease yr-1). Losses did not vary significantly at depths tested. Internal bioeroders excavated an average of 2.6 kg m-2 yr-1 (2.41 m-2 yr-1 or 0.6% decrease yr-1), while external bioeroders removed an average of 22.8 kg m-2 yr-1). (21.31 m-2 yr-1). or 59.9% decrease yr-1). few encrusting organisms were observed on the PL blocks. Cathedral limestone blocks lost an average of 4.1 kg m-2 yr-1). (1.81 m-2 yr-1). or 4.6% decrease yr-'), also with no relation to depth. Internal bioeroders excavated an average of 0.6 kg m-2 yr-1). (0.31 m-2 yr-1). or 0.7% decrease yr-1). and external bioeroders removed an average of 3.5 kg m-2 yr-1). (1.51 m-2 yr-1). or 3.9% decrease yr-1). from the LS blocks. Most (57.6%) encrustation occurred on the bottom of LS blocks, and there was more accretion on block bottoms in deep (61.4 mg cm-2 yr-1). versus shallow (35.0 mg cm-2 yr-1) sites. External bioerosion reduced the average height of the reef framework by 0.2 cm yr-1). for hard substrata (represented by LS) and 2.3 cm yr-1). for soft substrata (represented by PL). The results of this study suggest that coral reef frameworks in the Galápagos Islands are in serious jeopardy. If rates of coral recruitment do not increase, and if rates of bioerosion do not decline, coral reefs in the Galápagos Islands could be eliminated entirely.

  4. Removing arsenic from groundwater in Cambodia using high performance iron adsorbent.

    PubMed

    Kang, Y; Takeda, R; Nada, A; Thavarith, L; Tang, S; Nuki, K; Sakurai, K

    2014-09-01

    In Cambodia, groundwater has been contaminated with arsenic, and purification of the water is an urgent issue. From 2010 to 2012, an international collaborative project between Japan and Cambodia for developing arsenic-removing technology from well water was conducted and supported by the foundation of New Energy and Industrial Technology Development Organization, Japan. Quality of well water was surveyed in Kandal, Prey Veng, and Kampong Cham Provinces, and a monitoring trial of the arsenic removal equipment using our patented amorphous iron (hydr)oxide adsorbent was performed. Of the 37 wells surveyed, arsenic concentration of 24 exceeded the Cambodian guideline value (50 μg L(-1)), and those of 27 exceeded the WHO guideline for drinking water (10 μg L(-1)). Levels of arsenic were extremely high in some wells (>1,000-6,000 μg L(-1)), suggesting that arsenic pollution of groundwater is serious in these areas. Based on the survey results, 16 arsenic removal equipments were installed in six schools, three temples, two health centers, four private houses, and one commune office. Over 10 months of monitoring, the average arsenic concentrations of the treated water were between 0 and 10 μg L(-1) at four locations, 10-50 μg L(-1) at eight locations, and >50 μg L(-1) at four locations. The arsenic removal rate ranged in 83.1-99.7%, with an average of 93.8%, indicating that the arsenic removal equipment greatly lower the risk of arsenic exposure to the residents. Results of the field trial showed that As concentration of the treated water could be reduced to <10 µg L(-1) by managing the As removal equipment properly, suggesting that the amorphous iron (hydr)oxide adsorbent has high adsorbing capacity for As not only in the laboratory environment but also in the field condition. This is one of the succeeding As removal techniques that could reduce As concentration of water below the WHO guideline value for As in situ.

  5. [Formation Mechanism of Aerobic Granular Sludge and Removal Efficiencies in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang

    2015-08-01

    Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation.

  6. Iron coated pottery granules for arsenic removal from drinking water.

    PubMed

    Dong, Liangjie; Zinin, Pavel V; Cowen, James P; Ming, Li Chung

    2009-09-15

    A new media, iron coated pottery granules (ICPG) has been developed for As removal from drinking water. ICPG is a solid phase media that produces a stable Fe-Si surface complex for arsenic adsorption. Scanning electron microscopy (SEM) was used to document the physical attributes (grain size, pore size and distribution, surface roughness) of the ICPG media. Several advantages of the ICPG media such as (a) its granular structure, (b) its ability to absorb As via the F(0) coating on the granules' surface; (c) the inexpensive preparation process for the media from clay material make ICPG media a highly effective media for removing arsenic at normal pH. A column filtration test demonstrated that within the stability region (flow rate lower than 15L/h, EBCT >3 min), the concentration of As in the influent was always lower than 50 microg/L. The 2-week system ability test showed that the media consistently removed arsenic from test water to below the 5 microg/L level. The average removal efficiencies for total arsenic, As(III), and As(V) for a 2-week test period were 98%, 97%, and 99%, respectively, at an average flow rate of 4.1L/h and normal pH. Measurements of the Freundlich and Langmuir isotherms at normal pH show that the Freundlich constants of the ICPG are very close to those of ferric hydroxide, nanoscale zero-valent iron and much higher than those of nanocrystalline titanium dioxide. The parameter 1/n is smaller than 0.55 indicating a favorable adsorption process [K. Hristovski, A. Baumgardner, P. Westerhoff, Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media, J. Hazard. Mater. 147 (2007) 265-274]. The maximum adsorption capacity (q(e)) of the ICPG from the Langmuir isotherm is very close to that of nanoscale zero-valent indicating that zero-valent iron is involved in the process of the As removal from the water. The results of the toxicity characteristic leaching procedure (TCLP) analysis revealed that the media was non-hazardous, as shown by the ND (non-detectable) result for arsenic. The mechanism of As adsorption by ICPG has not been determined. Formation of Fe-Si complexes on the surface of the ICPG system may be responsible for the tight bonding of the As to the IGPC media.

  7. Simplified greywater treatment systems: Slow filters of sand and slate waste followed by granular activated carbon.

    PubMed

    Zipf, Mariah Siebert; Pinheiro, Ivone Gohr; Conegero, Mariana Garcia

    2016-07-01

    One of the main actions of sustainability that is applicable to residential, commercial, and public buildings is the rational use of water that contemplates the reuse of greywater as one of the main options for reducing the consumption of drinking water. Therefore, this research aimed to study the efficiencies of simplified treatments for greywater reuse using slow sand and slow slate waste filtration, both followed by granular activated carbon filters. The system monitoring was conducted over 28 weeks, using analyses of the following parameters: pH, turbidity, apparent color, biochemical oxygen demand (BOD), chemical oxygen demand (COD), surfactants, total coliforms, and thermotolerant coliforms. The system was run at two different filtration rates: 6 and 2 m(3)/m(2)/day. Statistical analyses showed no significant differences in the majority of the results when filtration rate changed from 6 to 2 m(3)/m(2)/day. The average removal efficiencies with regard to the turbidity, apparent color, COD and BOD were 61, 54, 56, and 56%, respectively, for the sand filter, and 66, 61, 60, and 51%, respectively, for the slate waste filter. Both systems showed good efficiencies in removing surfactants, around 70%, while the pH reached values of around 7.80. The average removal efficiencies of the total and thermotolerant coliforms were of 61 and 90%, respectively, for the sand filter, and 67 and 80%, respectively, for the slate waste filter. The statistical analysis found no significant differences between the responses of the two systems, which attest to the fact that the slate waste can be a substitute for sand. The maximum levels of efficiency were high, indicating the potential of the systems, and suggesting their optimization in order to achieve much higher average efficiencies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Liu, Baoliang; Lei, Jilin; Guan, Changtao; Huang, Bin

    2017-07-01

    A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k- ɛ turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k- ɛ model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of ≤ 5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.

  9. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands.

    PubMed

    Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro

    2013-10-15

    The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes.

    PubMed

    McCrackin, Michelle L; Elser, James J

    2010-02-01

    Microbially mediated denitrification is an important process that may ameliorate the effects of nitrogen (N) loading by permanently removing excess N inputs. In this study, we measured the rate of denitrification and nitrous oxide (N2O) production during denitrification in sediments from 32 Norwegian lakes at the high and low ends of a gradient of atmospheric N deposition. Denitrification and N2O production rates averaged 41.7 and 1.1 micromol N x m(-2) x h(-1), respectively, for high-deposition lakes. There was no detectable denitrification or N2O production in low-deposition lakes. Epilimnetic nitrate concentration was strongly correlated with denitrification rate (r2 = 0.67). We also measured the denitrification rate in response to experimental additions of organic carbon, nitrate, and phosphorus. Experimental nitrate additions stimulated denitrification in sediments of all lakes, regardless of N deposition level. In fact, the rate of denitrification in nitrate-amended treatments was the same magnitude for lakes in both deposition areas. These findings suggest that lake sediments possess considerable capacity to remove nitrate and that this capacity has not been saturated under conditions of chronic N loading. Further, nitrous oxide was nearly 3% of the total gaseous product during denitrification in high-deposition lakes, a fraction that is comparable to polluted marine sediments. Our findings suggest that, while lakes play an important role in N removal in the landscape, they may be a source of N2O emissions, especially in areas subject to elevated N inputs.

  11. Start-up of the ananmmox process from the conventional activated sludge in a hybrid bioreactor.

    PubMed

    Duan, Xiumei; Zhou, Jiti; Qiao, Sen; Yin, Xin; Tian, Tian; Xu, Fangdi

    2012-01-01

    The anaerobic ammonium oxidation (anammox) process was successfully started up from conventional activated sludge using a hybrid bioreactor within 2 months. The average removal efficiencies of ammonia and nitrite were both over 80%, and the maximum total nitrogen removal rate of 1.85 kg N/(m3 x day) was obtained on day 362 with the initial sludge concentration of 0.7 g mixed liquor suspended solids (MLSS)/L. Scanning electron microscope (SEM) observation of the granular sludge in the hybrid reactor clearly showed a high degree of compactness and cell sphericity, and the cell size was quite uniform. Transmission electron microscope photos showed that cells were round or oval, the cellular diameter was 0.6-1.0 microm, and the percentage of the anammoxosome compartment was 51%-85% of the whole cell volume. Fluorescence in situ hybridization analysis (FISH) indicated that anammox bacteria became the dominant population in the community (accounting for more than 51% of total bacteria on day 250). Seven planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass and affiliated to Candidatus Kuenenia stuttgartiensis and Candidatus Brocadia sp., a new anammox species. In addition, the average effluent suspended solid (MLSS) concentrations of outlets I (above the non-woven carrier) and II (below the non-woven carrier) were 0.0009 and 0.0035 g/L, respectively. This showed that the non-woven carrier could catch the biomass effectively, which increased biomass and improved the nitrogen removal rate in the reactor.

  12. A comment on "Novel scavenger removal trials increase wind turbine-caused avian fatality estimates"

    USGS Publications Warehouse

    Huso, Manuela M.P.; Erickson, Wallace P.

    2013-01-01

    In a recent paper, Smallwood et al. (2010) conducted a study to compare their “novel” approach to conducting carcass removal trials with what they term the “conventional” approach and to evaluate the effects of the different methods on estimated avian fatality at a wind power facility in California. A quick glance at Table 3 that succinctly summarizes their results and provides estimated fatality rates and 80% confidence intervals calculated using the 2 methods reveals a surprising result. The confidence intervals of all of their estimates and most of the conventional estimates extend below 0. These results imply that wind turbines may have the capacity to create live birds. But a more likely interpretation is that a serious error occurred in the calculation of either the average fatality rate or its standard error or both. Further evaluation of their methods reveals that the scientific basis for concluding that “many estimates of scavenger removal rates prior to [their] study were likely biased low due to scavenger swamping” and “previously reported estimates of avian fatality rates … should be adjusted upwards” was not evident in their analysis and results. Their comparison to conventional approaches was not applicable, their statistical models were questionable, and the conclusions they drew were unsupported.

  13. Aeration control strategies to stimulate simultaneous nitrification-denitrification via nitrite during the formation of aerobic granular sludge.

    PubMed

    Dobbeleers, Thomas; D'aes, Jolien; Miele, Solange; Caluwé, Michel; Akkermans, Veerle; Daens, Dominique; Geuens, Luc; Dries, Jan

    2017-09-01

    In this study, a sequencing batch reactor (SBR), treating synthetic wastewater (COD/N = 5), was operated in two stages. During stage I, an aeration control strategy based on oxygen uptake rate (OUR) was applied, to accomplish nitrogen removal via nitrite >80%. In stage II, the development of aerobic granular sludge (AGS) was examined while two aeration control strategies (OUR and pH slope) maintained the nitrite pathway and optimized the simultaneous nitrification-denitrification (SND) performance. Stimulation of slow-growing organisms, (denitrifying) polyphosphate-accumulating organisms (D)PAO and (denitrifying) glycogen-accumulating organisms (D)GAO leads to full granulation (at day 200, SVI 10  = 47.0 mL/g and SVI 30  = 43.1 mL/g). The average biological nutrient removal efficiencies, for nitrogen and phosphorus, were 94.6 and 83.7%, respectively. Furthermore, the benefits of an increased dissolved oxygen concentration (1.0-2.0 mg O 2 /L) were shown as biomass concentrations increased with approximately 2 g/L, and specific ammonium removal rate and phosphorus uptake rate increased with 33 and 44%, respectively. It was shown that the combination of both aeration phase-length control strategies provided an innovative method to achieve SND via nitrite in AGS.

  14. Removal of contaminants and pathogens from secondary effluents using intermittent sand filters.

    PubMed

    Bali, Mahmoud; Gueddari, Moncef; Boukchina, Rachid

    2011-01-01

    Intermittent infiltration percolation of wastewater through unsaturated sand bed is an extensive treatment technique aimed at eliminating organic matter, oxidizing ammonium and removing pathogens. The main purpose of this study was to determine the depuration efficiencies of a sand filter to remove contaminants from secondary wastewater effluents. Elimination of pathogenic bacteria (total and faecal coliforms, streptococci) and their relationship with the filter depth were investigated. Results showed a high capacity of infiltration percolation process to treat secondary effluents. Total elimination of suspended solids was obtained. Mean removal rate of BOD(5) and COD was more than 97 and more than 81%, respectively. Other water quality parameters such as NH(4)-N, TKN and PO(4)-P showed significant reduction except NO(3)-N which increased significantly in the filtered water. Efficiency of pathogenic bacteria removal was shown to mainly depend on the filter depth. Average reductions of 2.35 log total coliforms, 2.47 log faecal coliforms and 2.11 log faecal streptococci were obtained. The experimental study has shown the influence of the temperature on the output purification of infiltration percolation process.

  15. Achondroplasia and limb lengthening: Results in a UK cohort and review of the literature

    PubMed Central

    Donaldson, James; Aftab, Syed; Bradish, Christopher

    2015-01-01

    Aims We aim to review the results, complications and outcomes of a single surgeon's series of lower limb lengthening in patients with achondroplasia. Methods Ten achondroplastic children underwent limb lengthening. The patients, medical records and radiographs were reviewed. Results The average age at the time of the index operation was 7.8 years. A single surgeon undertook all procedures. The average total length gain was 20.5 cm. The commonest complication was a fractured femur after removal of the frame. Conclusion Although complication rates were high (70%), none were left with any long-term sequelae and all were pleased with the results. PMID:25829758

  16. Seasonal variation in the nature of DOM in a river and drinking water reservoir of a closed catchment.

    PubMed

    Awad, John; van Leeuwen, John; Chow, Christopher W K; Smernik, Ronald J; Anderson, Sharolyn J; Cox, Jim W

    2017-01-01

    Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character depending on its source within catchments and the timing and intensity of rainfall events. Here we report the findings of a study on the character and concentration of DOM in waters collected during different seasons from Myponga River and Reservoir, South Australia. The character of DOM was assessed in terms of its treatability by enhanced coagulation and potential for disinfection by-product i.e. trihalomethane (THM) formation. During the wet seasons (winter and spring), water samples from the river had higher DOC concentrations (X¯: 21 mg/L) and DOM of higher average molecular weight (AMW: 1526 Da) than waters collected during the dry seasons (summer and autumn: DOC: 13 mg/L; AMW: 1385 Da). Even though these features led to an increase in the percentage removal of organics by coagulation with alum (64% for wet compared with 53% for dry season samples) and a lower alum dose rate (10 versus 15 mg alum/mg DOC removal), there was a higher THM formation potential (THMFP) from wet season waters (treated waters: 217 μg/L vs 172 μg/L). For reservoir waters, samples collected during the wet seasons had an average DOC concentration (X¯: 15 mg/L), percentage removal of organics by alum (54%), alum dose rates (13 mg/mg DOC) and THMFP (treated waters: 207 μg/L) that were similar to samples collected during the dry seasons (mean DOC: 15 mg/L; removal of organics: 52%; alum dose rate: 13 mg/mg DOC; THMFP: 212 μg/L for treated waters). These results show that DOM present in river waters and treatability by alum are highly impacted by seasonal environmental variations. However these in reservoir waters exhibit less seasonal variability. Storage of large volumes of water in the reservoir enables mixing of influent waters and stabilization of water quality. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. 14 CFR Appendix F to Part 25

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... not exceed 6 inches and the average flame time after removal of the flame source may not exceed 15... means. The average burn length may not exceed 8 inches, and the average flame time after removal of the... Standards Institute, 1430 Broadway, New York, NY 10018). If the film travels through ducts, the ducts must...

  18. 14 CFR Appendix F to Part 25

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... not exceed 6 inches and the average flame time after removal of the flame source may not exceed 15... means. The average burn length may not exceed 8 inches, and the average flame time after removal of the... Standards Institute, 1430 Broadway, New York, NY 10018). If the film travels through ducts, the ducts must...

  19. 14 CFR Appendix F to Part 25

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... not exceed 6 inches and the average flame time after removal of the flame source may not exceed 15... means. The average burn length may not exceed 8 inches, and the average flame time after removal of the... Standards Institute, 1430 Broadway, New York, NY 10018). If the film travels through ducts, the ducts must...

  20. 14 CFR Appendix F to Part 25

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... not exceed 6 inches and the average flame time after removal of the flame source may not exceed 15... means. The average burn length may not exceed 8 inches, and the average flame time after removal of the... Standards Institute, 1430 Broadway, New York, NY 10018). If the film travels through ducts, the ducts must...

  1. Removal of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) from wastewaters by zero-valent iron (ZVI): predominant removal mechanism for effective SDBS removal.

    PubMed

    Takayanagi, Akari; Kobayashi, Maki; Kawase, Yoshinori

    2017-03-01

    Mechanisms for removal of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in wastewaters by zero-valent iron (ZVI) were systematically examined. The contributions of four removal mechanisms, i.e., reductive degradation, oxidative degradation, adsorption, and precipitation, changed significantly with solution pH were quantified and the effective removal of SDBS by ZVI was found to be attributed to the adsorption capability of iron oxides/hydroxides on ZVI surface at nearly neutral pH instead of the degradation at acidic condition. The fastest SDBS removal rate and the maximum TOC (total organic carbon) removal efficiency were obtained at pH 6.0. The maximum TOC removal at pH 6.0 was 77.8%, and the contributions of degradation, precipitation, and adsorption to TOC removal were 4.6, 14.9, and 58.3%, respectively. At pH 3.0, which is an optimal pH for oxidative degradation by the Fenton reaction, the TOC removal was only 9.8% and the contributions of degradation, precipitation, and adsorption to TOC removal were 2.3, 4.6, and 2.9%, respectively. The electrostatic attraction between dodecyl benzene sulfate anion and the iron oxide/hydroxide layer controlled the TOC removal of SDBS. The kinetic model based on the Langmuir-Hinshelwood/Eley-Rideal approach could successfully describe the experimental results for SDBS removal by ZVI with the averaged correlation coefficient of 0.994. ZVI was found to be an efficient material toward the removal of anionic surfactant at nearly neutral pH under the oxic condition.

  2. Unprecedented rates of land-use transformation in modeled climate change mitigation pathways

    NASA Astrophysics Data System (ADS)

    Turner, P. A.; Field, C. B.; Lobell, D. B.; Sanchez, D.; Mach, K. J.

    2017-12-01

    Integrated assessment models (IAMs) generate climate change mitigation scenarios consistent with global temperature targets. To limit warming to 2°, stylized cost-effective mitigation pathways rely on extensive deployments of carbon dioxide (CO2) removal (CDR) technologies, including multi-gigatonne yearly carbon removal from the atmosphere through bioenergy with carbon capture and storage (BECCS) and afforestation/reforestation. These assumed CDR deployments keep ambitious temperature limits in reach, but associated rates of land-use transformation have not been evaluated. For IAM scenarios from the IPCC Fifth Assessment Report, we compare rates of modeled land-use conversion to recent observed commodity crop expansions. In scenarios with a likely chance of limiting warming to 2° in 2100, the rate of energy cropland expansion supporting BECCS exceeds past commodity crop rates by several fold. In some cases, mitigation scenarios include abrupt reversal of deforestation, paired with massive afforestation/reforestation. Specifically, energy cropland in <2° scenarios expands, on average, by 8.2 Mha yr-1 and 11.7% p.a. across scenarios. This rate exceeds, by more than 3-fold, the observed expansion of soybean, the most rapidly expanding commodity crop. If energy cropland instead increases at rates equal to recent soybean and oil palm expansions, the scale of CO2 removal possible with BECCS is 2.6 to 10-times lower, respectively, than the deployments <2° IAM scenarios rely upon in 2100. IAM mitigation pathways may favor multi-gigatonne biomass-based CDR given undervalued sociopolitical and techno-economic deployment barriers. Heroic modeled rates for land-use transformation imply that large-scale biomass-based CDR is not an easy solution to the climate challenge.

  3. Preprototype independent air revitalization subsystem

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hallick, T. M.; Woods, R. R.

    1982-01-01

    The performance and maturity of a preprototype, three-person capacity, automatically controlled and monitored, self-contained independent air revitalization subsystem were evaluated. The subsystem maintains the cabin partial pressure of oxygen at 22 kPa (3.2 psia) and that of carbon dioxide at 400 Pa (3 mm Hg) over a wide range of cabin air relative humidity conditions. Consumption of water vapor by the water vapor electrolysis module also provides partial humidity control of the cabin environment. During operation, the average carbon dioxide removal efficiency at baseline conditions remained constant throughout the test at 84%. The average electrochemical depolarized concentrator cell voltage at the end of the parametric/endurance test was 0.41 V, representing a very slowly decreasing average cell voltage. The average water vapor electrolysis cell voltage increased only at a rate of 20 mu/h from the initial level of 1.67 V to the final level of 1.69 V at conclusion of the testing.

  4. Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands.

    PubMed

    Boutilier, L; Jamieson, R; Gordon, R; Lake, C; Hart, W

    2009-09-01

    Bacteria fate and transport within constructed wetlands must be understood if engineered wetlands are to become a reliable form of wastewater treatment. This study investigated the relative importance of microbial treatment mechanisms in constructed wetlands treating both domestic and agricultural wastewater. Escherichia coli (E. coli) inactivation, adsorption, and settling rates were measured in the lab within two types of wastewater (dairy wastewater lagoon effluent and domestic septic tank effluent). In situ E. coli inactivation was also measured within a domestic wastewater treatment wetland and the adsorption of E. coli was also measured within the wetland effluent. Inactivation of E. coli appears to be the most significant contributor to E. coli removal within the wastewaters and wetland environments examined in this study. E. coli survived longer within the dairy wastewater (DW) compared to the domestic wastewater treatment wetland water (WW). First order rate constants for E. coli inactivation within the WW in the lab ranged from 0.09 day(-1) (d(-1)) at 7.6 degrees C to 0.18d(-1) at 22.8 degrees C. The average in situ rate constant observed within the domestic wetland ranged from 0.02 d(-1) to 0.03 d(-1) at an average water temperature of 17 degrees C. First order rate constants for E. coli inactivation within the DW ranged from 0.01 d(-1) at 7.7 degrees C to 0.04 d(-1) at 24.6 degrees C. Calculated distribution coefficients (K(d)) were 19,000 mL g(-1), 324,000 mL g(-1), and 293 mL g(-1) for E. coli with domestic septic tank effluent (STE), treated wetland effluent (WLE), and DW, respectively. Approximately 50%, 20%, and 90% of E. coli were "free floating" or associated with particles <5 microm in size within the STE, WLE, and DW respectively. Although 10-50% of E. coli were found to associate with particles >5 microm within both the STE and DW, settling did not appear to contribute to E. coli removal within sedimentation experiments, indicating that the particles the bacteria were associated with had very small settling velocities. The results of this study highlight the importance of wastewater characterization when designing a treatment wetland system for bacterial removal. This study illustrated the level of variability in E. coli removal processes that can be observed within different wastewater, and wetland environments.

  5. Modelling detection probabilities to evaluate management and control tools for an invasive species

    USGS Publications Warehouse

    Christy, M.T.; Yackel Adams, A.A.; Rodda, G.H.; Savidge, J.A.; Tyrrell, C.L.

    2010-01-01

    For most ecologists, detection probability (p) is a nuisance variable that must be modelled to estimate the state variable of interest (i.e. survival, abundance, or occupancy). However, in the realm of invasive species control, the rate of detection and removal is the rate-limiting step for management of this pervasive environmental problem. For strategic planning of an eradication (removal of every individual), one must identify the least likely individual to be removed, and determine the probability of removing it. To evaluate visual searching as a control tool for populations of the invasive brown treesnake Boiga irregularis, we designed a mark-recapture study to evaluate detection probability as a function of time, gender, size, body condition, recent detection history, residency status, searcher team and environmental covariates. We evaluated these factors using 654 captures resulting from visual detections of 117 snakes residing in a 5-ha semi-forested enclosure on Guam, fenced to prevent immigration and emigration of snakes but not their prey. Visual detection probability was low overall (= 0??07 per occasion) but reached 0??18 under optimal circumstances. Our results supported sex-specific differences in detectability that were a quadratic function of size, with both small and large females having lower detection probabilities than males of those sizes. There was strong evidence for individual periodic changes in detectability of a few days duration, roughly doubling detection probability (comparing peak to non-elevated detections). Snakes in poor body condition had estimated mean detection probabilities greater than snakes with high body condition. Search teams with high average detection rates exhibited detection probabilities about twice that of search teams with low average detection rates. Surveys conducted with bright moonlight and strong wind gusts exhibited moderately decreased probabilities of detecting snakes. Synthesis and applications. By emphasizing and modelling detection probabilities, we now know: (i) that eradication of this species by searching is possible, (ii) how much searching effort would be required, (iii) under what environmental conditions searching would be most efficient, and (iv) several factors that are likely to modulate this quantification when searching is applied to new areas. The same approach can be use for evaluation of any control technology or population monitoring programme. ?? 2009 The Authors. Journal compilation ?? 2009 British Ecological Society.

  6. Effect of loss control service on reported injury incidence.

    PubMed

    Nave, Michael E; Veltri, Anthony

    2004-01-01

    A retrospective analysis evaluated the effectiveness of an insurance carrier's flexible loss control service strategy in reducing workers' compensation policyholders' reported injury and illness claims. To assess the effects of a loss control service strategy on workers' compensation claim frequency rates, on medical-only claim rates, on severity-claim rates, and on claim cost among a group of California employers. Eighty-two small- and medium-sized companies with workers' compensation policies expiring in 1999 were randomly selected from a population of policyholders assigned to loss control consultants for two or more years. Claim performance data were obtained for each company's first expired in-force policy year and its 1999 expired policy year. The retrospective design was combined with a control component based on a randomly selected comparison group of 45 companies whose first policy year with the insurer expired in 1999 and who received safety services from the loss control staff. The flexible loss control consultation service strategy was associated with lower average claim rates and costs. Companies assigned to a loss control consultant for two or more years (the "outcome group") had an average claim rate of 1.24 per $10,000 premium, compared with a rate of 1.62 in the "initial group" and a rate of 1.60 in the "comparison group." The average severity-claim rate of the outcome group was 0.32, compared with the initial-year and comparison-group means of 0.48 and 0.46, respectively. The average medical-only claim rate was 0.92, compared with the initial- and comparison-group means of 1.14 and 1.14. The outcome group's average loss ratio was over 10% lower than that of the initial and comparison groups. Statistical analysis indicated that differences among the groups' claim rates and severity-claim rates were [F=(2,206) 4.938, P=0.008] and [F=(2,206) 8.208, P<0.001], respectively. A loss control service strategy that provides service flexibility and develops partnership between employer and consultant can help reduce the frequency and severity of workers' compensation claims. Barriers to consultation service flexibility, both internal and external, should be identified and removed to enhance service efficacy.

  7. Heterogeneity in horse ferritins. A comparative study of surface charge, iron content and kinetics of iron uptake.

    PubMed Central

    Russell, S M; Harrison, P M

    1978-01-01

    Horse ferritins from different organs show heterogeneity on electrofocusing in Ampholine gradients. Both ferritin and apoferritin from liver and spleen could be fractionated with respect to surface charge by serial precipitation with (NH4)2SO4. In the ferritin fractions, increasing iron content parallels increasing isoelectric point. After removal of their iron, those fractions which originally contained most iron accumulated added iron at the fastest rates. When unfractionated ferritins from different organs were compared the average isoelectric point increased in order spleen less than liver less than kidney less than heart. The order of initial rates of iron uptake by the apoferritins was spleen greater than kidney greater than heart and initial average iron contents also followed this order. The relatively low rates of iron accumulation by iron-poor molecules may have been due to structural alteration, to degradation, to activation of the iron-rich molecules or to other factors. Images Fig. 1. Fig. 2. PMID:736908

  8. Cutting efficiency of a mid-infrared laser on human enamel.

    PubMed

    Levy, G; Koubi, G F; Miserendino, L J

    1998-02-01

    In this study, the cutting ability of a newly developed dental laser was compared with a dental high-speed handpiece and rotary bur for removal of enamel. Measurements of the volume of tissue removed, energy emitted, and time of exposure were used to quantify the ablation rate (rate of tissue removal) for each test group and compared. Cutting efficiency (mm3/s) of the laser was calculated based on the mean volume of tissue removed per pulse (mm3/pulse) and unit energy expended (mm3/J) over the range of applied powers (2, 4, 6, and 8 W). The specimens were then examined by light microscopy and scanning electron micrographs for qualitative analysis of the amount of remaining debris and the presence of the smear layer on the prepared enamel surface. Calculations of the cutting efficiency of the laser over the range of powers tested revealed a linear relationship with the level of applied power. The maximum average rate of tissue removal by the laser was 0.256 mm3/s at 8 W, compared with 0.945 mm3/s by the dental handpiece. Light microscopy and scanning electron micrograph examinations revealed a reduction in the amount of remaining debris and smear layer in the laser-prepared enamel surfaces, compared with the conventional method. Based on the results of this study, the cutting efficiency of the high-speed handpiece and dental bur was 3.7 times greater than the laser over the range of powers tested, but the laser appeared to create a cleaner enamel surface with minimal thermal damage. Further modifications of the laser system are suggested for improvement of laser cutting efficiency.

  9. [NH4+-N removal stability of zeolite media packed multistage-biofilm system for coke-plant wastewater treatment].

    PubMed

    Zhao, Wen-Tao; Huang, Xia; He, Miao; Zhang, Peng-Yi; Zuo, Chen-Yan

    2009-02-15

    The practical ammonia stripping effectiveness of coke-plant wastewater treatment may vary widely, and high NH4+-N shock loading will lead to the fluctuation of residual NH4+-N concentration of biological effluent. A zeolite media packed multistage-biofilm system (ZMBS) was used for coke-plant wastewater treatment for enhancing the NH4+-N treatment ability of the bio-system to shock loading, as well as achieving high COD removal efficiency. Treatment performance during steady-state and shock loading and transformation of organic pollutants in the system were investigated systematically. The experiment results indicated that when the system was operated at NH4+-N loading 0.21 kg/(m3 x d) and COD loading < or = 1.35 kg/(m3 x d), the average effluent NH4+-N and COD concentrations were (2.2 +/- 1.2) mg/L, (228 +/- 60) mg/L with average removal efficiencies of (99.1 +/- 0.5)% and (86.0 +/- 2.6)%. During the twice NH4+-N shock loadings [0.03 kg/(m3 x d) and 0.06 kg/(m3 x d)], ZMBS showed a strong resisting ability with average removal efficiencies of 99.0% and 92.9% higher than those of a compared system's 96.8% and 89.3%. By monitoring the change of water quality along the length of the ZMBS's cells, two function zones for different pollutant removal were found to exist, named as decarbonization/nitrification (C/N) zone and nitrification (N) zone, and the NH4+-N removal rate in N zone was 2-8 times as that in C/N zone. TOC concentrations of organic matters with relative molecular weight < 1 x 10(3), 1 x 10(3) to 1 x 10(4), and > 1 x 10(4), were 227.6, 104.8 and 35.0 mg/L in raw wastewater, and 31.2, 22.9 and 31.5 mg/L in the effluent, respectively. Organic matters with relative molecular weight < 1 x 10(3) and 1 x 10(3) to 1 x 10(4) in raw wastewater were removed effectively by ZMBS, but those with relative molecular weight > 1x 10(3) were the main remained substances in the effluent.

  10. Multi-stage hybrid subsurface flow constructed wetlands for treating piggery and dairy wastewater in cold climate.

    PubMed

    Zhang, Xiaomeng; Inoue, Takashi; Kato, Kunihiko; Izumoto, Hayato; Harada, June; Wu, Da; Sakuragi, Hiroaki; Ietsugu, Hidehiro; Sugawara, Yasuhide

    2017-01-01

    This study followed three field-scale hybrid subsurface flow constructed wetland (CW) systems constructed in Hokkaido, northern Japan: piggery O (2009), dairy G (2011), and dairy S (2006). Treatment performance was monitored from the outset of operation for each CW. The ranges of overall purification efficiency for these systems were 70-86%, 40-85%, 71-90%, 91-96%, 94-98%, 84-97%, and 70-97% for total N (TN), NH 4 -N, total P, chemical oxygen demand (COD), biochemical oxygen demand, suspended solid, and total Coliform, respectively. The hybrid system's removal rates were highest when influent loads were high. COD removal rates were 46.4 ± 49.2, 94.1 ± 36.6, and 25.1 ± 15.5 g COD m -2 d -1 in piggery O, dairy G, and dairy S, with average influent loads of 50.5 ± 51.5, 98.9 ± 37.1, and 26.9 ± 16.0 g COD m -2 d -1 , respectively. The systems had overall COD removal efficiencies of around 90%. TN removal efficiencies were 62 ± 19%, 82 ± 9%, and 82 ± 15% in piggery O, dairy G, and dairy S, respectively. NH 4 -N removal efficiency was adversely affected by the COD/TN ratio. Results from this study prove that these treatment systems have sustained and positive pollutant removal efficiencies, which were achieved even under extremely cold climate conditions and many years after initial construction.

  11. Using methylene blue as a marker to find and remove tiny metallic foreign bodies embedded in the soft tissues of children: A randomised controlled trial.

    PubMed

    Su, Yuxi; Nan, Guoxin

    2016-05-01

    Embedment of metallic foreign bodies in the soft tissues is commonly encountered in the emergency room. Most foreign bodies are easily removed, but removal is difficult if the foreign body is very small or deeply embedded. To determine the usefulness of methylene blue staining in the surgical removal of tiny metallic foreign bodies embedded in the soft tissue. This prospective study involved 41 children treated between May 2007 and May 2012. The patients were randomly divided into a methylene blue group and a control group. In the control group, foreign bodies were located using a C-arm and removed via direct incision. In the methylene blue group, foreign bodies were located using a C-arm, marked with an injection of methylene blue and then removed surgically. The clinical outcomes, complications, operation time, surgical success rate, incision length, frequency of C-arm use, and length and depth of the foreign body were compared between the two groups. The surgical success rate was significantly higher in the methylene blue group. The average operation time was significantly shorter in the methylene blue group. The C-arm was used significantly less frequently in the methylene blue group than in the control group. The incision length was significantly shorter in the methylene blue group than in the control group. Methylene blue staining facilitated the location and removal of tiny metallic foreign bodies from the soft tissue, and significantly reduced operation time, incision length and radiation exposure compared to the conventional method. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  12. Hydro-geomorphology of the middle Elwha River, Washington, following dam removal

    NASA Astrophysics Data System (ADS)

    Morgan, J. A.; Nelson, P. A.; Brogan, D. J.

    2017-12-01

    Dam removal is an increasingly common river restoration practice, which can produce dramatic increases in sediment supply to downstream reaches. There remains, however, considerable uncertainty in how mesoscale morphological units (e.g., riffles and pools) respond to the flow and sediment supply changes associated with dam removal. The recent removal of Glines Canyon Dam on the Elwha River in Washington State provides a natural setting to explore how increased sediment supply due to dam removal may affect downstream reaches. Here, we present observations and surveys documenting how a 1 km reach, located approximately 5 km downstream of the former dam site, has evolved following dam removal. Annual topographic/bathymetric surveys were conducted in 2014-2016 using RTK-GNSS methods, and these surveys were coupled with airborne lidar to create continuous surface maps of the valley bottom. Differencing the elevation models reveals channel widening and migration due to lateral bank retreat and bar aggradation. Analysis of aerial imagery dating back to 1939 suggests that rates of both widening and meander migration have increased following dam removal. We also used results from depth-averaged hydrodynamic modeling with a fuzzy c-means clustering approach to delineate riffle and pool units; this analysis suggests that both riffles and pools stayed relatively consistent from 2014-2015, while both areas decreased from 2015 to 2016. Without any considerable changes to the hydrologic regime these higher rates of change are implied to be the result of the increased sediment supply. Our results, which indicate an increased dynamism due directly to the amplified sediment supply, have the potential to further inform river managers and restoration specialists who oversee projects related to changing sediment regimes.

  13. Treatment of synthetic wastewater and hog waste with reduced sludge generation by the multi-environment BioCAST technology.

    PubMed

    Yerushalmi, L; Alimahmoodi, M; Mulligan, C N

    2013-01-01

    Simultaneous removal of carbon, nitrogen and phosphorus was examined along with reduced generation of biological sludge during the treatment of synthetic wastewater and hog waste by the BioCAST technology. This new multi-environment wastewater treatment technology contains both suspended and immobilized microorganisms, and benefits from the presence of aerobic, microaerophilic, anoxic and anaerobic conditions for the biological treatment of wastewater. The influent concentrations during the treatment of synthetic wastewater were 1,300-4,000 mg chemical oxygen demand (COD)/L, 42-115 mg total nitrogen (TN)/L, and 19-40 mg total phosphorus (TP)/L. The removal efficiencies reached 98.9, 98.3 and 94.1%, respectively, for carbon, TN and TP during 225 days of operation. The removal efficiencies of carbon and nitrogen showed a minimal dependence on the nitrogen-to-phosphorus (N/P) ratio, while the phosphorus removal efficiency showed a remarkable dependence on this parameter, increasing from 45 to 94.1% upon the increase of N/P ratio from 3 to 4.5. The increase of TN loading rate had a minimal impact on COD removal rate which remained around 1.7 kg/m(3) d, while it contributed to increased TP removal efficiency. The treatment of hog waste with influent COD, TN and TP concentrations of 960-2,400, 143-235 and 25-57 mg/L, respectively, produced removal efficiencies up to 89.2, 69.2 and 47.6% for the three contaminants, despite the inhibitory effects of this waste towards biological activity. The treatment system produced low biomass yields with average values of 3.7 and 8.2% during the treatment of synthetic wastewater and hog waste, respectively.

  14. Removal of Total Coliforms, Thermotolerant Coliforms, and Helminth Eggs in Swine Production Wastewater Treated in Anaerobic and Aerobic Reactors

    PubMed Central

    Zacarias Sylvestre, Silvia Helena; Lux Hoppe, Estevam Guilherme; de Oliveira, Roberto Alves

    2014-01-01

    The present work evaluated the performance of two treatment systems in reducing indicators of biological contamination in swine production wastewater. System I consisted of two upflow anaerobic sludge blanket (UASB) reactors, with 510 and 209 L in volume, being serially arranged. System II consisted of a UASB reactor, anaerobic filter, trickling filter, and decanter, being also organized in series, with volumes of 300, 190, 250, and 150 L, respectively. Hydraulic retention times (HRT) applied in the first UASB reactors were 40, 30, 20, and 11 h in systems I and II. The average removal efficiencies of total and thermotolerant coliforms in system I were 92.92% to 99.50% and 94.29% to 99.56%, respectively, and increased in system II to 99.45% to 99.91% and 99.52% to 99.93%, respectively. Average removal rates of helminth eggs in system I were 96.44% to 99.11%, reaching 100% as in system II. In reactor sludge, the counts of total and thermotolerant coliforms ranged between 105 and 109 MPN (100 mL)−1, while helminth eggs ranged from 0.86 to 9.27 eggs g−1 TS. PMID:24812560

  15. Engineered ecosystem for on-site wastewater treatment in tropical areas.

    PubMed

    de Sá Salomão, André Luis; Marques, Marcia; Severo, Raul Gonçalves; da Cruz Roque, Odir Clécio

    2012-01-01

    There is a worldwide demand for decentralized wastewater treatment options. An on-site engineered ecosystem (EE) treatment plant was designed with a multistage approach for small wastewater generators in tropical areas. The array of treatment units included a septic tank, a submersed aerated filter, and a secondary decanter followed by three vegetated tanks containing aquatic macrophytes intercalated with one tank of algae. During 11 months of operation with a flow rate of 52 L h(-1), the system removed on average 93.2% and 92.9% of the chemical oxygen demand (COD) and volatile suspended solids (VSS) reaching final concentrations of 36.3 ± 12.7 and 13.7 ± 4.2 mg L(-1), respectively. Regarding ammonia-N (NH(4)-N) and total phosphorus (TP), the system removed on average 69.8% and 54.5% with final concentrations of 18.8 ± 9.3 and 14.0 ± 2.5 mg L(-1), respectively. The tanks with algae and macrophytes together contributed to the overall nutrient removal with 33.6% for NH(4)-N and 26.4% for TP. The final concentrations for all parameters except TP met the discharge threshold limits established by Brazilian and EU legislation. The EE was considered appropriate for the purpose for which it was created.

  16. Increased wound complication with intramedullary screw fixation of clavicle fractures: Is it thermal necrosis?

    PubMed

    Domos, Peter; Tytherleigh-Strong, Graham; Van Rensburg, Lee

    2017-01-01

    Adult mid-shaft clavicle fractures are common injuries. For displaced fractures, open reduction with plate or intramedullary (IM) fixation is the widely used techniques. All methods have their own potential drawbacks, especially related to local soft tissue complications. There is little information about outcome and management of local wound complications after clavicle fracture fixations. Ninety-seven patients underwent open reduction and internal fixation, 17 were treated with IM screw fixation and 80 with plate fixation. Wound complication occurred in eight patients (8.2%) and rates differed significantly between IM and plate fixations (29.4% vs. 3.8%). Patients were assessed on average 58.3 months with visual analogue pain scores (VASs), Oxford Shoulder Score (OSS), and QuickDash (QD) score. Five patients had wound breakdown and three patients had wound erythema. In seven patients with stable fixation, it was possible to "dress and suppress" with average 3 weeks of oral antibiotics. One patient had unstable fixation and required longer antibiotic treatment with early screw removal. One patient developed a chronic discharging wound, requiring debridement and later plate removal. At final follow-up, all wounds remained healed, bony union was achieved in all. The average scores were: VAS 1, OSS 46, and QD 4.5. Good function with dry healed wound and united clavicle can be achieved. Further studies are required to investigate the difference in soft tissue complication rates, which may be due to the IM technique of retrograde drilling with a guide wire and due to aseptic thermal bone necrosis, rather than true infection.

  17. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l;more » and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.« less

  18. Optimization of an integrated sponge--granular activated carbon fluidized bed bioreactor as pretreatment to microfiltration in wastewater reuse.

    PubMed

    Xing, W; Ngo, H H; Guo, W S; Listowski, A; Cullum, P

    2012-06-01

    A specific integrated fluidized bed bioreactor (iFBBR) was optimized in terms of organic loading rate (OLR), hydraulic retention time (HRT) and frequency of new sustainable flocculant (NSBF) addition for primary treated sewage effluent (PTSE) treatment. It was observed that iFBBR achieved the best performance with the operating conditions of 4 times/day NSBF addition, HRT of 90 min and OLR of 8.64 kg COD/day m(3). The removal efficiencies were found to be more than 93% of dissolved organic carbon (DOC), 61% of total nitrogen (T-N) and 60% of total phosphorus (T-P). iFBBR as pretreatment of submerged microfiltration (SMF) is successful in increasing the critical flux and reducing the membrane fouling. NSBF-iFBBR-SMF hybrid system led to very high organic removal efficiency with an average DOC removal of 97% from synthetic PTSE. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Cadmium removal in a biosorption column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volesky, B.; Prasetyo, I.

    New biosorbent material derived from a ubiquitous brown marine alga Ascophyllum nodosum has been examined in packed-bed flow-through sorption columns. It effectively removed 10 mg/L of cadmium down to 1.5 ppb levels in the effluent, representing 99.985% removal. The experimental methodology used was based on the early Bohart and Adams sorption model, resulting in quantitative determination of the characteristic process parameters which can be used for performance comparison and process design. An average metal loading of the biosorbent (N[sub 0]) determined was 30 mg Cd/g, corresponding closely to that observed for the batch equilibrium metal concentration of 10 mg Cd/L.more » The critical bed depth (D[sub min]) for the potable water effluent quality standard varied with the column feed flow rate from 20 to 50 cm. The sorption column mass transfer and dispersion coefficients were determined, which are also required for solving the sorption model equations.« less

  20. Demography of the Pryor Mountain wild horses, 1993-2007

    USGS Publications Warehouse

    Roelle, James E.; Singer, Francis J.; Zeigenfuss, Linda C.; Ransom, Jason I.; Coates-Markle, Linda; Schoenecker, Kathryn A.

    2010-01-01

    Wild horses (Equus caballus) at Pryor Mountain were studied by direct observation from 1993 through 2007. All horses present were individually identifiable on the basis of coat coloration, head and leg markings, gender, and band associations. Of the 609 horses either present prior to foaling in 1993 or born since, ages were precisely known for 491 (observed as a foal). Ages for 52 horses were estimated through tooth eruption and wear patterns, and for the remaining 66 horses through body size, morphology, and anecdotal evidence concerning when they were present on the range. At varying intensities, never less than 30 days per year, all horses were inventoried and their band associations noted. Foals were paired with dams based on observations of attachment during the early days and weeks of life. Year of death was determined by identification of the carcass where possible. In the absence of finding a carcass, an animal that was not observed for 2 years was considered to have died in the year that it went missing. Animals that were removed from the herd and mares that were part of a contraception study were excluded from calculations of survival and foaling rates, respectively, as appropriate. The average prefoaling population over the 15 years of the study was 148.8 animals (range = 120-187), and the annual foal crop averaged 32.1 (range = 23-40). Large removals (19-60 animals) in four years helped maintain the herd at this level; apparent growth rate (calculated as though removals had not occurred) was 9.6 percent annually (? = 1.096, range = 0.977-1.220). This annual growth rate is relatively low compared to that for many western horse herds, at least in part because of a decline in foal survival. Sex ratio of the foal crop varied widely among years, but pooled across years did not differ from 50:50. Sex ratio in the herd changed mostly as a result of removals. The average age of both males and females in the herd increased during the course of the study. Annual survival of males did not differ from that of females, nor did gender affect annual survival of foals. Pooled across years, ages, and sexes, the annual survival rate was 0.899. Annual foal survival rate was 0.697 and declined through time, with a tendency toward recovery in 2005-2007. Foal survival was higher in larger bands, but did not differ between foals born to primiparous and multiparous mares. A few 2-year-old mares produced foals; foaling rate (excluding contracepted mares and foals they produced) increased through age 10, remained high through age 15, and declined thereafter. Overall foaling rate for mares =3 years of age was 0.576 foals per mare, with no apparent trend during the period of our study. Foaling rate in years following gathers was somewhat lower than in other years. There was a positive relation between foaling rate and band size. Primiparous mares were somewhat less likely to foal in the following year than were multiparous mares. Most stallions that acquired a harem did so at age 5 or 6, and the average age of harem stallions increased during our study. Most harems had 1-3 mares =2 years of age, but harem size varied with age of the stallion, increasing through about age 11 and declining thereafter. About 6 percent of bands had a satellite stallion (=5 years of age), but the mean number of mares did not differ between single- and multistallion bands. Most stallions left their natal band at age 2 or 3, but 17 percent remained with their natal band until age 4 or 5. Foal survival rate was positively related to precipitation, suggesting a possible link to forage production and availability mediated through mare fitness. There also was evidence for density-dependent population regulation, as both population growth rate and survival rate were negatively correlated with population size from the previous year. These and other factors were not sufficient to stabilize the population during our period of study, however, as evidenced by the necess

  1. Trends and management of wolf-livestock conflicts in Minnesota

    USGS Publications Warehouse

    Fritts, S.H.; Paul, W.J.; Mech, L.D.; Scott, D.P.

    1992-01-01

    The nature and extent of wolf-livestock conflicts in Minnesota during 1975-86 was studied as part of a wolf depredation control program. The level of wolf (Canis lupus) depredation on livestock in Minnesota, as determined from the total number of complaints verified annually during 1975-86, showed a slight upward trend but did not increase significantly. A significant portion of the annual variation in verified complaints-perhaps the best index on severity of the depredation problem was explained by variation in severity of the winter before the depredation season (inverse relation). The addition of a time variable did not account for a significant portion of the remaining variation. Verified complaints of depredations averaged 30 per year, affecting an average of 21 farms (0.33% of producers) annually. Conflicts were highly seasonal and involved primarily cattle (mainly calves), sheep, and domestic turkeys. Annual variation in losses of sheep and turkeys was higher than for cattle. In recent years, sheep and turkey losses in two northwestern counties have increased; preventive control may be warranted in those areas. Site-specific trapping and removal of wolves in response to depredations was the primary control method, resulting in captures of 437 wolves in 12 depredation seasons. For the wolf range as a whole, no relation was found between wolf removal and subsequent depredation rates; however, wolf removal seemed to reduce depredations locally at some farms. When adults and yearlings were removed, no subsequent losses occurred in about 55% of instances; removal of young of the year reduced losses in 22%. Removal of breeding wolves did not reduce the incidence of subsequent losses more than removal of nonbreeding adults and yearlings did. The low number of conflicts for 1975-86 was remarkable considering the frequent contact between wolves and livestock. However, an update of complaints for 1987-89 revealed a definite upward trend in depredations (Epilogue). Improvements in farm management practices may reduce the present number of conflicts.

  2. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch.

    PubMed

    Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang

    2013-07-01

    Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrak, R.; Wildman, D.

    The key elements have been constructed for a fast chopper system capable of removing single 2.5 MeV proton bunches spaced at 325 MHz. The average chopping rate is ~ 1 MHz. The components include a pulse delaying microstrip structure for deflecting the beam, high voltage (1.2 kV) fast (ns rise time) pulsers, and an associated wideband combiner. Various designs for the deflecting structures have been studied. Measurements of the microstrip structures' coverage factors and pulse shapes are presented.

  4. Nitrate removal in deep sediments of a nitrogen-rich river network: A test of a conceptual model

    USGS Publications Warehouse

    Stelzer, Robert S.; Bartsch, Lynn

    2012-01-01

    Many estimates of nitrogen removal in streams and watersheds do not include or account for nitrate removal in deep sediments, particularly in gaining streams. We developed and tested a conceptual model for nitrate removal in deep sediments in a nitrogen-rich river network. The model predicts that oxic, nitrate-rich groundwater will become depleted in nitrate as groundwater upwelling through sediments encounters a zone that contains buried particulate organic carbon, which promotes redox conditions favorable for nitrate removal. We tested the model at eight sites in upwelling reaches of lotic ecosystems in the Waupaca River Watershed that varied by three orders of magnitude in groundwater nitrate concentration. We measured denitrification potential in sediment core sections to 30 cm and developed vertical nitrate profiles to a depth of about 1 m with peepers and piezometer nests. Denitrification potential was higher, on average, in shallower core sections. However, core sections deeper than 5 cm accounted for 70%, on average, of the depth-integrated denitrification potential. Denitrification potential increased linearly with groundwater nitrate concentration up to 2 mg NO3-N/L but the relationship broke down at higher concentrations (> 5 mg NO3-N/L), a pattern that suggests nitrate saturation. At most sites groundwater nitrate declined from high concentrations at depth to much lower concentrations prior to discharge into the surface water. The profiles suggested that nitrate removal occurred at sediment depths between 20 and 40 cm. Dissolved oxygen concentrations were much higher in deep sediments than in pore water at 5 cm sediment depth at most locations. The substantial denitrification potential in deep sediments coupled with the declines in nitrate and dissolved oxygen concentrations in upwelling groundwater suggest that our conceptual model for nitrate removal in deep sediments is applicable to this river network. Our results suggest that nitrate removal rates can be high in deep sediments of upwelling stream reaches, which may have implications for efforts to understand and quantify nitrogen transport and removal at larger scales.

  5. HMO market penetration and hospital cost inflation in California.

    PubMed

    Robinson, J C

    1991-11-20

    OBJECTIVE--Health maintenance organizations (HMOs) have stimulated price competition in California hospital markets since 1983, when the state legislature eliminated barriers to selective contracting by conventional health insurance plans. This study measures the impact of HMO-induced price competition on the rate of inflation in average cost per admission for 298 private, non-HMO hospitals between 1982 and 1988. DATA--HMO market penetration was calculated using discharge abstract data on insurance coverage, ZIP code of residence, and hospital of choice for 3.35 million patients in 1983 and 3.41 million patients in 1988. Data on hospital characteristics were obtained from the American Hospital Association and other sources. -HMO coverage grew from an average of 8.3% of all admissions in local hospital markets in 1983 to 17.0% of all admissions in 1988. The average rate of growth in costs per admission between 1982 and 1988 was 9.4% lower in markets with relatively high HMO penetration compared with markets with relatively low HMO penetration (95% confidence interval, 5.2 to 13.8). Cost savings for these 298 hospitals are estimated at $1.04 billion for 1988. CONCLUSION--Price competition between HMOs and conventional health insurers can significantly reduce hospital cost inflation if legislative barriers to selective contracting are removed. The impact of competition in California was modest, however, when evaluated in terms of the 74.5% average rate of California hospital cost inflation during these years.

  6. Optical losses of solar mirrors due to atmospheric contamination at Liberal, Kansas and Oologah, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dake, L.S.; Lind, M.A.

    An assessment is presented of the effect of outdoor exposure on mirrors located at two sites selected for potential solar cogeneration/repowering facilities: Liberal, Kansas and Oologah, Oklahoma. Mirror coupons were placed on tracking heliostat simulators located in the proposed heliostat fields and were removed periodically. The spectral hemispherical and diffuse reflectances of these coupons were measured. Representative samples were analyzed for the chemical composition of the dust particulates using SEM/EDX. Other samples were washed with a high pressure spray and recharacterized to determine the effects of the residual dust. Average specular reflectance losses over the entire test period (up tomore » 504 days) were 6 to 12%, with a range of 1 to 30%. Specular reflectance losses varied widely from day to day depending on local weather conditions. The losses due to scattering were 2 to 5 times greater than the losses due to absorptance. The average degradation rate over the first thirty days was an order of magnitude larger than the average degradation rate over the entire sampling period. Specular reflectance loss rates averaged 0.5% per day and greater between periods of natural cleaning. The chemical composition of the dust on the mirrors was characteristic of the indigenous soil, with some samples also showing the presence of sulfur and chlorine, possibly from cooling tower drift.« less

  7. Use of bioreactor landfill for nitrogen removal to enhance methane production through ex situ simultaneous nitrification-denitrification and in situ denitrification.

    PubMed

    Sun, Xiaojie; Zhang, Hongxia; Cheng, Zhaowen

    2017-08-01

    High concentrations of nitrate-nitrogen (NO 3 - -N) derived from ex situ nitrification phase can inhibit methane production during ex situ nitrification and in situ denitrification bioreactor landfill. A combined process comprised of ex situ simultaneous nitrification-denitrification (SND) in an aged refuse bioreactor (ARB) and in situ denitrification in a fresh refuse bioreactor (FRB) was conducted to reduce the negative effect of high concentrationsof NO 3 - -N. Ex situ SND can be achieved because NO 3 - -N concentration can be reduced and the removal rate of ammonium-nitrogen (NH 4 + -N) remains largely unchanged when the ventilation rate of ARB-A2 is controlled. The average NO 3 - -N concentrations of effluent were 470mg/L in ex situ nitrification ARB-A1 and 186mg/L in ex situ SND ARB-A2. The average NH 4 + -N removal rates of ARB-A1 and ARB-A2 were 98% and 94%, respectively. Based on the experimental data from week 4 to week 30, it is predicted that NH 4 + -N concentration in FRB-F1 of the ex situ nitrification and in situ denitrification process would reach 25mg/L after 63weeks, and about 40weeks for the FRB-F2 of ex situ SND and in situ denitrification process . Ex situ SND and in situ denitrification process can improve themethane production of FRB-F2. The lag phase time of methane production for the FRB-F2 was 11weeks. This phase was significantly shorter than the 15-week phases of FRB-F1 in ex situ nitrification and in situ denitrification process. A seven-week stabilizationphase was required to increase methane content from 5% to 50% for FRB-F2. Methane content in FRB-F1 did not reach 50% but reached the 45% peak after 20weeks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Performance of the fixed-bed of granular activated carbon for the removal of pesticides from water supply.

    PubMed

    Alves, Alcione Aparecida de Almeida; Ruiz, Giselle Louise de Oliveira; Nonato, Thyara Campos Martins; Müller, Laura Cecilia; Sens, Maurício Luiz

    2018-02-26

    The application of a fixed bed adsorption column of granular activated carbon (FBAC-GAC), in the removal of carbaryl, methomyl and carbofuran at a concentration of 25 μg L -1 for each carbamate, from the public water supply was investigated. For the determination of the presence of pesticides in the water supply, the analytical technique of high-performance liquid chromatography with post-column derivatization was used. Under conditions of constant diffusivity, the FBAC-GAC was saturated after 196 h of operation on a pilot scale. The exhaust rate of the granular activated carbon (GAC) in the FBAC-GAC until the point of saturation was 0.02 kg GAC m -3 of treated water. By comparing a rapid small-scale column test and FBAC-GAC, it was confirmed that the predominant intraparticle diffusivity in the adsorption column was constant diffusivity. Based on the results obtained on a pilot scale, it was possible to estimate the values to be applied in the FBAC-GAC (full scale) to remove the pesticides, which are particle size with an average diameter of 1.5 mm GAC; relationship between the internal diameter of the column and the average diameter of GAC ≥50 in order to avoid preferential flow near the adsorption column wall; surface application rate 240 m 3  m -2  d -1 and an empty bed contact time of 3 min. BV: bed volume; CD: constant diffusivity; EBCT: empty bed contact time; FBAC-GAC: fixed bed adsorption column of granular activated carbon; GAC: granular activated carbon; MPV: maximum permitted values; NOM: natural organic matter; PD: proportional diffusivity; pH PCZ : pH of the zero charge point; SAR: surface application rate; RSSCT: rapid small-scale column test; WTCS: water treated conventional system.

  9. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass.

    PubMed

    Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before. Copyright 1998 John Wiley & Sons, Inc.

  10. A novel anoxic-aerobic biofilter process using new composite packing material for the treatment of rural domestic wastewater.

    PubMed

    Pan, L T; Han, Y

    2016-01-01

    A pilot scale experiment was conducted to evaluate the characteristics of contaminants removal in a continuously two-stage biological process composed of an anoxic biofilter (AF) and an biological aerated filter (BAF). This novel process was developed by introducing new composite packing material (MZF) into bioreactors to treat rural domestic wastewater. A comparative study conducted by the same process with ceramsite as packing material under the same conditions showed that a MZF system with a Fe proportion in the packing material performed better in chemical oxygen demand (COD) removal (average 91.5%), ammonia (NH4(+)-N) removal (average 98.3%), total nitrogen (TN) removal (average 64.8%) and total phosphorus (TP) removal (average 90%). After treatment of the MZF system, the concentrations of COD, NH4(+)-N, TN and TP in effluent were 20.3 mg/L, 0.5 mg/L, 11.5 mg/L and 0.3 mg/L, respectively. The simultaneously high efficiencies of nitrification, denitrification and phosphorus removal were achieved by the coupling effects of biological and chemical processes in the MZF system. The results of this study showed that the application of MZF might be a favorable choice as packing material in biofilters for treatment of rural domestic wastewater.

  11. Cadmium removal from urban stormwater runoff via bioretention technology and effluent risk assessment for discharge to surface water.

    PubMed

    Wang, Jianlong; Zhang, Pingping; Yang, Liqiong; Huang, Tao

    2016-01-01

    Bioretention technology, a low-impact development stormwater management measure, was evaluated for its ability to remove heavy metals (specifically cadmium, Cd) from urban stormwater runoff. Fine sand, zeolite, sand and quartz sand were selected as composite bioretention media. The effects of these materials on the removal efficiency, chemical forms, and accumulation and migration characteristics of Cd were examined in laboratory scale bioretention columns. Heretofore, few studies have examined the removal of Cd by bioretention. A five-step sequential extraction method, a single-contamination index method, and an empirical migration equation were used in the experiments. The average Cd removal efficiency of quartz sand approached 99%, and removal by the other media all exceeded 90%. The media types markedly affected the forms of Cd found in the columns as well as its vertical migration rate. The Cd accumulated in the four media was mainly in residual form; moreover, accumulation of Cd occurred mainly in the surface layer of the bioretention column. The migration depth of Cd in the four media increased with elapsed time, in the following sequence: zeolite>quartz sand>fine sand>sand. In contrast, the migration rate decreased with elapsed time, and the migration rate of Cd was lowest in sand (0.015 m per annum over the first ten years). The comprehensive risk index analysis indicated that the risk arising from Cd discharge to surface water was "intermediate", and that the degree of risk was lowest in sand, then quartz sand, zeolite, and fine sand in sequence. These results indicate that the adsorption and accumulation of Cd in the four media are more significant than the migration of Cd. In addition, the results of Cd risk assessment for the effluent indicate that each of the four media can serve as long-term adsorption material in a bioretention facility for purifying stormwater runoff. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Property-process relations in simulated clinical abrasive adjusting of dental ceramics.

    PubMed

    Yin, Ling

    2012-12-01

    This paper reports on property-process correlations in simulated clinical abrasive adjusting of a wide range of dental restorative ceramics using a dental handpiece and diamond burs. The seven materials studied included four mica-containing glass ceramics, a feldspathic porcelain, a glass-infiltrated alumina, and a yttria-stabilized tetragonal zirconia. The abrasive adjusting process was conducted under simulated clinical conditions using diamond burs and a clinical dental handpiece. An attempt was made to establish correlations between process characteristics in terms of removal rate, chipping damage, and surface finish and material mechanical properties of hardness, fracture toughness and Young's modulus. The results show that the removal rate is mainly a function of hardness, which decreases nonlinearly with hardness. No correlations were noted between the removal rates and the complex relations of hardness, Young's modulus and fracture toughness. Surface roughness was primarily a linear function of diamond grit size and was relatively independent of materials. Chipping damage in terms of the average chipping width decreased with fracture toughness except for glass-infiltrated alumina. It also had higher linear correlations with critical strain energy release rates (R²=0.66) and brittleness (R²=0.62) and a lower linear correlation with indices of brittleness (R²=0.32). Implications of these results can provide guidance for the microstructural design of dental ceramics, optimize performance, and guide the proper selection of technical parameters in clinical abrasive adjusting conducted by dental practitioners. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Comparison of residual NAPL source removal techniques in 3D metric scale experiments

    NASA Astrophysics Data System (ADS)

    Atteia, O.; Jousse, F.; Cohen, G.; Höhener, P.

    2017-07-01

    This study compared four treatment techniques for the removal of a toluene/n-decane as NAPL (Non Aqueous Phase Liquid) phase mixture in identical 1 cubic meter tanks filled with different kind of sand. These four treatment techniques were: oxidation with persulfate, surfactant washing with Tween80®, sparging with air followed by ozone, and thermal treatment at 80 °C. The sources were made with three lenses of 26 × 26 × 6.5 cm, one having a hydraulic conductivity similar to the whole tank and the two others a value 10 times smaller. The four techniques were studied after conditioning the tanks with tap water during approximately 80 days. The persulfate treatment tests showed average removal of the contaminants but significant flux decrease if density effects are considered. Surfactant flushing did not show a highly significant increase of the flux of toluene but allowed an increased removal rate that could lead to an almost complete removal with longer treatment time. Sparging removed a significant amount but suggests that air was passing through localized gas channels and that the removal was stagnating after removing half of the contamination. Thermal treatment reached 100% removal after the target temperature of 80 °C was kept during more than 10 d. The experiments emphasized the generation of a high-spatial heterogeneity in NAPL content. For all the treatments the overall removal was similar for both n-decane and toluene, suggesting that toluene was removed rapidly and n-decane more slowly in some zones, while no removal existed in other zones. The oxidation and surfactant results were also analyzed for the relation between contaminant fluxes at the outlet and mass removal. For the first time, this approach clearly allowed the differentiation of the treatments. As a conclusion, experiments showed that the most important differences between the tested treatment techniques were not the global mass removal rates but the time required to reach 99% decrease in the contaminant fluxes, which were different for each technique. This paper presents the first comparison of four remediation techniques at the scale of 1 m3 tanks including heterogeneities. Sparging, persulfate and surfactant only remove 50% of the mass, while it is more than 99% for thermal. In terms of flux removal oxidant addition performs better when density effects are used.

  14. Influence of vascular network design on gas transfer in lung assist device technology.

    PubMed

    Bassett, Erik K; Hoganson, David M; Lo, Justin H; Penson, Elliot J N; Vacanti, Joseph P

    2011-01-01

    Blood oxygenators are vital for the critically ill, but their use is limited to the hospital setting. A portable blood oxygenator or a lung assist device for ambulatory or long-term use would greatly benefit patients with chronic lung disease. In this work, a biomimetic blood oxygenator system was developed which consisted of a microfluidic vascular network covered by a gas permeable silicone membrane. This system was used to determine the influence of key microfluidic parameters-channel size, oxygen exposure length, and blood shear rate-on blood oxygenation and carbon dioxide removal. Total gas transfer increased linearly with flow rate, independent of channel size and oxygen exposure length. On average, CO(2) transfer was 4.3 times higher than oxygen transfer. Blood oxygen saturation was also found to depend on the flow rate per channel but in an inverse manner; oxygenation decreased and approached an asymptote as the flow rate per channel increased. These relationships can be used to optimize future biomimetic vascular networks for specific lung applications: gas transfer for carbon dioxide removal in patients with chronic obstructive pulmonary disease or oxygenation for premature infants requiring complete lung replacement therapy.

  15. The possibility of applying spectral redundancy in DWDM systems on existing long-distance FOCLs for increasing the data transmission rate and decreasing nonlinear effects and double Rayleigh scattering without changes in the communication channel

    NASA Astrophysics Data System (ADS)

    Nekuchaev, A. O.; Shuteev, S. A.

    2014-04-01

    A new method of data transmission in DWDM systems along existing long-distance fiber-optic communication lines is proposed. The existing method, e.g., uses 32 wavelengths in the NRZ code with an average power of 16 conventional units (16 units and 16 zeros on the average) and transmission of 32 bits/cycle. In the new method, one of 124 wavelengths with a duration of one cycle each (at any time instant, no more than 16 obligatory different wavelengths) and capacity of 4 bits with an average power of 15 conventional units and rate of 64 bits/cycle is transmitted at every instant of a 1/16 cycle. The cross modulation and double Rayleigh scattering are significantly decreased owing to uniform distribution of power over time at different wavelengths. The time redundancy (forward error correction (FEC)) is about 7% and allows one to achieve a coding enhancement of about 6 dB by detecting and removing deletions and errors simultaneously.

  16. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  17. Robot-assisted laparoscopic pyeloplasty: minimum 1-year follow-up

    NASA Astrophysics Data System (ADS)

    Patel, Vipul; Thaly, Rahul; Shah, Ketul

    2007-02-01

    Objectives: To evaluate the feasibility and efficacy of robotic-assisted laparoscopic pyeloplasty. Laparoscopic pyeloplasty has been shown to have a success rate comparable to that of the open surgical approach. However, the steep learning curve has hindered its acceptance into mainstream urologic practice. The introduction of robotic assistance provides advantages that have the potential to facilitate precise dissection and intracorporeal suturing. Methods: A total of 50 patients underwent robotic-assisted laparoscopic dismembered pyeloplasty. A four-trocar technique was used. Most patients were discharged home on day 1, with stent removal at 3 weeks. Patency of the ureteropelvic junction was assessed in all patients with mercaptotriglycylglycine Lasix renograms at 1, 3, 6, 9, and 12 months, then every 6 months for 1 year, and then yearly. Results: Each patient underwent a successful procedure without open conversion or transfusion. The average estimated blood loss was 40 ml. The operative time averaged 122 minutes (range 60 to 330) overall. Crossing vessels were present in 30% of the patients and were preserved in all cases. The time for the anastomosis averaged 20 minutes (range 10 to 100). Intraoperatively, no complications occurred. Postoperatively, the average hospital stay was 1.1 days. The stents were removed at an average of 20 days (range 14 to 28) postoperatively. The average follow-up was 11.7 months; at the last follow-up visit, each patient was doing well. Of the 50 patients, 48 underwent one or more renograms, demonstrating stable renal function, improved drainage, and no evidence of recurrent obstruction. Conclusions: Robotic-assisted laparoscopic pyeloplasty is a feasible technique for ureteropelvic junction reconstruction. The procedure provides a minimally invasive alternative with good short-term results.

  18. Contemporary Surface Seasonal Oscillation and Vertical Deformation in Tibetan Plateau and Nepal Derived from the GPS, Leveling and GRACE Data

    NASA Astrophysics Data System (ADS)

    Shen, W.; Pan, Y.; Hwang, C.; Ding, H.

    2015-12-01

    We use 168 Continuous Global Positioning System (CGPS) stations distributed in the Tibetan Plateau (TP) and Nepal from lengths of 2.5 to 14 years to estimate the present-day velocity field in this area, including the horizontal and vertical deformations under the frame ITRF2008. We estimate and remove common mode errors in regional GPS time series using the principal component analysis (PCA), obtaining a time series with high signal to noise ratio. Following the maximum estimation analysis, a power law plus white noise stochastic model are adopted to estimate the velocity field. The highlight of Tibetan region is the crust vertical deformation. GPS vertical time series present seasonal oscillations caused by temporal mass loads, hence GRACE data from CSR are used to study the mass loads change. After removing the mass load deformations from GPS vertical rates, the results are improved. Leveling data about 48 years in this region are also used to estimate the rates of vertical movements. Our study suggests that the boundary of south Nepal is still sinking due to the fact that the India plate is crashing into the Eurasian plate. The uplift rates from south to north of TP reduce gradually. Himalayas region and north Nepal uplift around 6 mm/yr in average. The uplift rate along East TP in Qinhai is around 2.7 mm/yr in average. In contrast, the southeast of Tibetan Plateau, south Yunnan and Tarim in Xinjiang sink with different magnitudes. Our observation results suggest complicated mechanism of the mass migration in TP. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).

  19. Therapeutic plasma exchange: a paired comparison of Fresenius AS104 vs. COBE Spectra.

    PubMed

    Burgstaler, E A; Pineda, A A

    2001-01-01

    For therapeutic plasma exchange (TPE), continuous flow separators are known to be efficient as exemplified by Fresenius AS104 and COBE Spectra. The AS104 uses an interface monitoring system in the centrifuge during TPE, whereas Spectra uses computer algorithms to establish the plasma-cell interface. To determine the plasma collection efficiency (PLCE), anticoagulant (AC) volumes used, and platelets (PLT) lost of the AS104 and the Spectra, we performed a prospective paired comparison of 20 TPE (each machine). The study included 17 patients, 1.3 plasma volume exchanges (without AC), equal inlet rates, and AC ratio of 13:1. Processing times did not include reinfuse mode. Platelet loss was determined by sampling the collection bags. Inlet rates were between 60-110 ml/min. Diagnosis included peripheral neuropathies, TTP and cryoglobulinemia. The AS104 had significantly (P<0.0001) lower average whole blood processed (F:6,601 vs. S:8,584 ml), AC volume (F:532 vs. S:719 ml), and processing time (F:80 vs. S:102 minutes) than Spectra. The AS104 had significantly (P<0.0001) higher average plasma flow rates (F:53 vs. S:44 ml/minute), plasma collection efficiency (F:90 vs. S:69%), and platelet loss (F:2.0 vs. S:0.14 x 10(11) plt) than Spectra. Platelet loss correlated with inlet flow rate with the AS104 but not with the Spectra. The AS104 has a significantly higher collection efficiency than Spectra allowing it to remove the same amount of plasma in significantly less time, by processing significantly less blood, using significantly less AC, but removing significantly more platelets than Spectra. Copyright 2001 Wiley-Liss, Inc.

  20. Distraction rate and latency: factors in the outcome of paediatric maxillary distraction.

    PubMed

    Higuera, Stephen; Cole, Patrick; Stephenson, J B; Hollier, Larry

    2009-12-01

    Over 50 years ago, current tenets of distraction osteogenesis were developed through work on the lower extremity; however, the application of these tenets in the paediatric craniofacial skeleton remains questionable. Prompted by recent concern that traditional aspects of distraction may be either outdated or wholly inapplicable to the paediatric maxilla, we retrospectively evaluated maxillary distraction protocol using a 24-h latency period in conjunction with a distraction rate of 2mm/day. Following maxillary advancement via a distraction protocol consisting of a 24-h latency period and a distraction rate of 2mm/day, seven consecutive paediatric cases were evaluated. Standard profile photos and cephalometric films taken preoperatively, at device removal and at 1-year follow-up were compared. With the sella as the point of registration, pre- and post-distraction films were superimposed on the sella-nasion plane. Sella-nasion-subspinale, the angle of convexity, the distance from incisal edges to the y-axis, and angulation of the upper incisor to the sella-nasion plane were analysed to evaluate hard-tissue changes. Patient age ranged from 3 to 14 years (mean=7.43 years). Maxillary distraction length averaged 11 mm (range=10-12 mm). Interval from device application to removal averaged 98 days (range=75-180 days). The interval of the active distraction ranged from 11 to 65 days (mean=24 days). From distraction completion to device removal averaged 85 days (range=60-150). Follow-up intervals ranged from 52 to 24 months (mean=34 months). All patients demonstrated substantial clinical advancement of the maxilla with correction of midfacial deficiencies. A single patient developed mild cellulitis at one skin-device interface; no other complications were noted. Cephalometric and clinical evaluations at 1 year post-distraction demonstrated stable results, and parental satisfaction was qualitatively high. The surgical dogma of lower-extremity distraction osteogenesis is not absolute and may not be optimal for use in the paediatric maxilla. Our results demonstrate effective maxillary correction following application of a 24-h latency period coupled with rapid distraction at 2mm/day. Our success with a short latency period and more rapid device expanse may be a product of the significant vascularity and improved healing potential of the paediatric maxilla.

  1. Role of UASBs in River Water Quality Conservation in India

    NASA Astrophysics Data System (ADS)

    Gali, Veeresh; Thakur, Manisha; Gupta, Ashok Kumar; Ganguly, Rajiv

    2018-03-01

    Appropriate low-cost treatment technologies are a prerequisite for sound management of natural water resources against pollution in developing countries. Among the existing technologies available, UASB is found to be economically viable for India when considering all factors including operation and maintenance cost and treatment efficiency. However, this technology suffers setbacks in meeting the effluent guidelines prescribed by the government of India. Post treatment is supplemental to this process to meet the effluent standards in terms of removal of organic matter, suspended solids, pathogens and nutrients. Recent stringent effluent guidelines notified by the Ministry of Environment, Forests and Climate Change, Government of India has further reduced the limits of BOD by 3 times, COD and TSS by 5 times, NH4-N and total Nitrogen by 10 times as compared to the previous guidelines. Fecal Coliforms has been specified as <100MPN/100mL. In this paper, the present scenario of UASB based STPs and their role in river conservation is reviewed against the backdrop of stringent effluent guidelines. The minimum removal rates of BOD, COD and TSS in these plants are around 42 - 44% and the average removal rates are reported to be 66%, 61% and 65% respectively. The enhanced removal of BOD (97%), COD (98%) and TSS has been reported in STPs in conjunction with post treatment facilities such as facultative aerated lagoons, aeration tanks and polishing ponds.

  2. A study of emergency American football helmet removal techniques.

    PubMed

    Swartz, Erik E; Mihalik, Jason P; Decoster, Laura C; Hernandez, Adam E

    2012-09-01

    The purpose was to compare head kinematics between the Eject Helmet Removal System and manual football helmet removal. This quasi-experimental study was conducted in a controlled laboratory setting. Thirty-two certified athletic trainers (sex, 19 male and 13 female; age, 33 ± 10 years; height, 175 ± 12 cm; mass, 86 ± 20 kg) removed a football helmet from a healthy model under 2 conditions: manual helmet removal and Eject system helmet removal. A 6-camera motion capture system recorded 3-dimensional head position. Our outcome measures consisted of the average angular velocity and acceleration of the head in each movement plane (sagittal, frontal, and transverse), the resultant angular velocity and acceleration, and total motion. Paired-samples t tests compared each variable across the 2 techniques. Manual helmet removal elicited greater average angular velocity in the sagittal and transverse planes and greater resultant angular velocity compared with the Eject system. No differences were observed in average angular acceleration in any single plane of movement; however, the resultant angular acceleration was greater during manual helmet removal. The Eject Helmet Removal System induced greater total head motion. Although the Eject system created more motion at the head, removing a helmet manually resulted in more sudden perturbations as identified by resultant velocity and acceleration of the head. The implications of these findings relate to the care of all cervical spine-injured patients in emergency medical settings, particularly in scenarios where helmet removal is necessary. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.

    PubMed

    Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki

    2010-10-15

    Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Implications of Using Corn Stalks as a Biofuel Source: A Joint ARS and DOE Project

    NASA Astrophysics Data System (ADS)

    Wilhelm, W. W.; Cushman, J.

    2003-12-01

    Corn stover is a readily source of biomass for cellulosic ethanol production, and may provide additional income for growers. Published research shows that residue removal changes the rate of soil physical, chemical, and biological processes, and in turn, crop growth. Building a sustainable cellulosic ethanol industry based on corn residue requires residue management practices that do not reduce long-term productivity. To develop such systems, impacts of stover removal on the soil and subsequent crops must be quantified. The ARS/DOE Biofuel Project is the cooperative endeavor among scientists from six western Corn Belt US Dept. of Agriculture, Agricultural Research Service (ARS) locations and US Dept. of Energy. The objectives of the project are to determine the influence of stover removal on crop productivity, soil aggregation, quality, carbon content, and seasonal energy balance, and carbon sequestration. When residue is removed soil temperatures fluctuate more and soil water evaporation is greater. Residue removal reduces the amount of soil organic carbon (SOC), but the degree of reduction is highly dependent on degree of tillage, quantity of stover removed, and frequency of stover removal. Of the three cultural factors (stover removal, tillage, and N fertilization) tillage had the greatest effect on amount of corn-derived SOC. No tillage tends to increase the fraction of aggregates in the 2.00 to 0.25 mm size range at all removal rates. Stover harvest reduces corn-derived SOC by 35% compared to retaining stover on the soil averaged over all tillage systems. Corn stover yield has not differed across stover removal treatments in these studies. In the irrigated study, grain yield increased with stover removal. In the rain-fed studies, grain yield has not differed among residue management treatments. Incorporating the biomass ethanol fermentation by-product into a soil with low SOC showed a positive relationship between the amount of lignin added and the subsequent humic acid concentration and aggregate stability. These and future outcomes from this effort will provide DOE and the developing biomass ethanol industry knowledge and guidelines on the environmental and crop productivity consequences of large-scale collection of corn stover.

  5. An evaluation of the urban stormwater pollutant removal efficiency of catch basin inserts.

    PubMed

    Morgan, Robert A; Edwards, Findlay G; Brye, Kristofor R; Burian, Stephen J

    2005-01-01

    In a storm sewer system, the catch basin is the interface between surface runoff and the sewer. Responding to the need to improve the quality of stormwater from urban areas and transportation facilities, and spurred by Phase I and II Stormwater Rules from the U.S. Environmental Protection Agency, several companies market catch basin inserts as best management practices for urban water quality management. However, little data have been collected under controlled tests that indicate the pollutant removal efficiency of these inserts when the inflow is near what can be expected to occur in the field. A stormwater simulator was constructed to test inserts under controlled and replicable conditions. The inserts were tested for removal efficiency of total suspended solids (TSS) and total petroleum hydrocarbons (TPH) at an inflow rate of 757 to 814 L/min, with influent pollutant concentrations of 225 mg/L TSS and 30 mg/L TPH. These conditions are similar to stormwater runoff from small commercial sites in the southeastern United States. Results from the tests indicate that at the test flowrate and pollutant concentration, average TSS removal efficiencies ranged from 11 to 42% and, for TPH, the removal efficiency ranged from 10 to 19%.

  6. Observation of NO3 radicals by LP-DOAS during CAREBEIJING 2014

    NASA Astrophysics Data System (ADS)

    Lu, Xue; Qin, Min; Xie, Pinhua; Duan, Jun; Fang, Wu; Liu, Jianguo; Liu, Wenqing

    2016-04-01

    NO3 radical is a significant species during night, affecting the formation of secondary organic aerosol (SOA) in night. It is also the most pivotal oxidation in night, involved in the removal process of NOx and VOCs, which is directly related to atmosphere cleanliness. During the CAREBEIJING field campaign (June 5 - July 10, 2014), NO3 radical was measured with a long path differential optical absorption spectroscopy (LP-DOAS) at Wangdu Site (38.68°N; 115.18°E) in the north of China. In this poster, the principle and fitting analyses of LPDOAS were presented; a retrieval example and a time series of NO3 radicals' concentration with good continuity were showed. The detection limit (1σ) of NO3 with 3.4km optical path is 3.4ppt. The observed mean NO3 mixing ratios were 21 ppt. Under the assumption of steady state, the NO3 production rates were calculated averaging at 1.013ppb/h. The calculated NO3 lifetime has an average of 102.6 s. The correlation between the NO3 mixing ratio and its production rates is about 0.78, which indicates the importance of direct sinks. However, the slope of the logarithmic correlation between NO3 lifetime and NO2 mixing ratio is -0.44, revealing the removal of NO3 is not strongly dependent on the indirect loss process herein.

  7. Autofusion in the immature spine treated with growing rods.

    PubMed

    Cahill, Patrick J; Marvil, Sean; Cuddihy, Laury; Schutt, Corey; Idema, Jocelyn; Clements, David H; Antonacci, M Darryl; Asghar, Jahangir; Samdani, Amer F; Betz, Randal R

    2010-10-15

    Retrospective case review of skeletally immature patients treated with growing rods. Patients received an average of 9.6 years follow-up care. (1) to identify the rate of autofusion in the growing spine with the use of growing rods; (2) to quantify how much correction can be attained with definitive instrumented fusion after long-term treatment with growing rods; and (3) to describe the extent of Smith-Petersen osteotomies required to gain correction of an autofused spine following growing rod treatment. The safety and use of growing rods for curve correction and maintenance in the growing spine population has been established in published reports. While autofusion has been reported, the prevalence and sequelae are not known. Nine skeletally immature children with scoliosis were identified who had been treated using growing rods. A retrospective review of the medical records and radiographs was conducted and the following data collected: complications, pre- and postoperative Cobb angles at time of initial surgery (growing rod placement), pre- and postoperative Cobb angles at time of final surgery (growing rod removal and definitive fusion), total spine length as measured from T1-S1, % correction since initiation of treatment and at definitive fusion, total number of surgeries, and number of patients found to have autofusion at the time of device removal. The rate of autofusion in children treated with growing rods was 89%. The average percent of the Cobb angle correction obtained at definitive fusion was 44%. On average, 7 osteotomies per patient were required at the time of definitive fusion due to autofusion. Although growing rods have efficacy in the control of deformity within the growing spine, they also have adverse effects on the spine. Immature spines treated with a growing rod have high rates of unintended autofusion which can possibly lead to difficult and only moderate correction at the time of definitive fusion.

  8. Outstanding adsorption performance of high aspect ratio and super-hydrophobic carbon nanotubes for oil removal.

    PubMed

    Kayvani Fard, Ahmad; Mckay, Gordon; Manawi, Yehia; Malaibari, Zuhair; Hussien, Muataz A

    2016-12-01

    Oil removal from water is a highly important area due to the large production rate of emulsified oil in water, which is considered one of the major pollutants, having a negative effect on human health, environment and wildlife. In this study, we have reported the application of high quality carbon nanotube bundles produced by an injected vertical chemical vapor deposition (IV-CVD) reactor for oil removal. High quality, bundles, super hydrophobic, and high aspect ratio carbon nanotubes were produced. The average diameters of the produced CNTs ranged from 20 to 50 nm while their lengths ranged from 300 to 500 μm. Two types of CNTs namely, P-CNTs and C-CNTs, (Produced CNTs from the IV-CVD reactor and commercial CNTs) were used for oil removal from water. For the first time, thermogravimetric analysis (TGA) was conducted to measure maximum oil uptake using CNT and it was found that P-CNT can take oil up to 17 times their weight. The effect of adsorbent dosage, contact time, and agitation speed were examined on the oil spill clean-up efficiency using batch sorption experiments. Higher efficiency with almost 97% removal was achieved using P-CNTs compared to 87% removal using C-CNTs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Computer simulation of vasectomy for wolf control

    USGS Publications Warehouse

    Haight, R.G.; Mech, L.D.

    1997-01-01

    Recovering gray wolf (Canis lupus) populations in the Lake Superior region of the United States are prompting state management agencies to consider strategies to control population growth. In addition to wolf removal, vasectomy has been proposed. To predict the population effects of different sterilization and removal strategies, we developed a simulation model of wolf dynamics using simple rules for demography and dispersal. Simulations suggested that the effects of vasectomy and removal in a disjunct population depend largely on the degree of annual immigration. With low immigration, periodic sterilization reduced pup production and resulted in lower rates of territory recolonization. Consequently, average pack size, number of packs, and population size were significantly less than those for an untreated population. Periodically removing a proportion of the population produced roughly the same trends as did sterilization; however, more than twice as many wolves had to be removed than sterilized. With high immigration, periodic sterilization reduced pup production but not territory recolonization and produced only moderate reductions in population size relative to an untreated population. Similar reductions in population size were obtained by periodically removing large numbers of wolves. Our analysis does not address the possible effects of vasectomy on larger wolf populations, but it suggests that the subject should be considered through modeling or field testing.

  10. Olfactory groove meningiomas from neurosurgical and ear, nose, and throat perspectives: approaches, techniques, and outcomes.

    PubMed

    Spektor, Sergey; Valarezo, Javier; Fliss, Dan M; Gil, Ziv; Cohen, Jose; Goldman, Jose; Umansky, Felix

    2005-10-01

    To review the surgical approaches, techniques, outcomes, and recurrence rates in a series of 80 olfactory groove meningioma (OGM) patients operated on between 1990 and 2003. Eighty patients underwent 81 OGM surgeries. Tumor diameter varied from 2 to 9 cm (average, 4.6 cm). In 35 surgeries (43.2%), the tumor was removed through bifrontal craniotomy; nine operations (11.1%) were performed through a unilateral subfrontal approach; 18 surgeries (22.2%) were performed through a pterional approach; seven surgeries (8.6%) were carried out using a fronto-orbital craniotomy; and 12 procedures (14.8%) were accomplished via a subcranial approach. Nine patients (11.3%) had undergone surgery previously and had recurrent tumor. Total removal was obtained in 72 patients (90.0%); subtotal removal was achieved in 8 patients (10.0%). Two patients, one with total and one with subtotal removal, had atypical (World Health Organization Grade II) meningiomas, whereas 78 patients had World Health Organization Grade I tumors. There was no operative mortality and no new permanent focal neurological deficit besides anosmia. Twenty-five patients (31.3%) experienced surgery-related complications. There were no recurrences in 75 patients (93.8%) 6 to 164 months (mean, 70.8 mo) after surgery. Three patients (3.8%) were lost to follow-up. In two patients (2.5%) with subtotal removal, the residual evidenced growth on computed tomography and/or magnetic resonance imaging 1 year after surgery. One of them had an atypical meningioma. The second, a multiple meningiomata patient, was operated on twice in this series. A variety of surgical approaches are used for OGM resection. An approach tailored to the tumor's size, location, and extension, combined with modern microsurgical cranial base techniques, allows full OGM removal with minimal permanent morbidity, excellent neurological outcome, and very low recurrence rates.

  11. Microbial mediated iron redox cycling in Fe (hydr)oxides for nitrite removal.

    PubMed

    Lu, Yongsheng; Xu, Lu; Shu, Weikang; Zhou, Jizhi; Chen, Xueping; Xu, Yunfeng; Qian, Guangren

    2017-01-01

    Nitrite, at an environmentally relevant concentration, was significantly reduced with iron (hydr)oxides mediated by Shewanella oneidensis MR-1. The average nitrite removal rates of 1.28±0.08 and 0.65±0.02(mgL -1 )h -1 were achieved with ferrihydrite and magnetite, respectively. The results showed that nitrite removal was able to undergo multiple redox cycles with iron (hydr)oxides mediated by Shewanella oneidensis MR-1. During the bioreduction of the following cycles, biogenic Fe(II) was subsequently chemically oxidized to Fe(III), which is associated with nitrite reduction. There was 11.18±1.26mgL -1 of NH 4 + -N generated in the process of redox cycling of ferrihydrite. Additionally, results obtained by using X-ray diffraction showed that ferrihydrite and magnetite remained mainly stable in the system. This study indicated that redox cycling of Fe in iron (hydr)oxides was a potential process associated with NO 2 - -N removal from solution, and reduced most nitrite abiotically to gaseous nitrogen species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Partial nitrification in an air-lift reactor with long-term feeding of increasing ammonium concentrations.

    PubMed

    Chai, Li-Yuan; Ali, Mohammad; Min, Xiao-Bo; Song, Yu-Xia; Tang, Chong-Jian; Wang, Hai-Ying; Yu, Cheng; Yang, Zhi-Hui

    2015-06-01

    The partial nitrification (PN) performance under high ammonium concentrations was evaluated in an airlift reactor (ALR). The ALR was operated for 253days with stepwise elevation of ammonium concentration to 1400mg/L corresponding nitrogen loading rate of 2.1kg/m(3)/d. The ammonium removal rate was finally developed to 2.0kg/m(3)/d with average removal efficiency above 91% and nitrite accumulation percentage of 80%. Results showed that the combined effect of limited DO, high bicarbonate, pH and free ammonia (FA) contributed to the stable nitrite accumulation substantially. The biomass in the ALR was improved with the inception of granulation. Precipitates on biomass surface was unexpectedly experienced which might improve the settleability of PN biomass. Organic functional groups attached to the PN biomass suggested the possible absorbability to different types of pollutant. The results provided important evidence for the possibility of applying an ALR to treat high strength ammonium wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. High-rate anaerobic treatment system for solid/lipid-rich wastewater using anaerobic baffled reactor with scum recovery.

    PubMed

    Fujihira, Takuya; Seo, Shogo; Yamaguchi, Takashi; Hatamoto, Masashi; Tanikawa, Daisuke

    2018-04-27

    A laboratory scale experiment was conducted to investigate the treatment of solid/lipid-rich wastewater with an anaerobic baffled reactor (ABR) and a down-flow hanging sponge (DHS) reactor. In this study, experimental periods were divided into three phases to explore efficient treatment of solids and lipids in wastewater. In ABR, >90% of the influent chemical oxygen demand (COD) was removed and >70% of the removed COD was converted to methane under steady-state conditions during each phase. During this period, >4.5 kg COD m -3  d -1 was achieved on an average in Phases 1 and 3. Biogas contributed to scum formation, and the scum was categorized into lipid-rich and sludge-containing types, which have energy potentials of 53.4 and 212 kcal/kg-wet weight, respectively. Therefore, by recovering solids and lipids, which formed persistent scum, ABR can be applied as a high-rate treatment for solid/lipid-rich wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Experimentation on the anaerobic filter reactor for biogas production using rural domestic wastewater

    NASA Astrophysics Data System (ADS)

    Leju Celestino Ladu, John; Lü, Xi-wu; Zhong, Zhaoping

    2017-08-01

    The biogas production from anaerobic filter (AF) reactor was experimented in Taihu Lake Environmental Engineering Research Center of Southeast University, Wuxi, China. Two rounds of experimental operations were conducted in a laboratory scale at different Hydraulic retention time (HRT) and wastewater temperature. The biogas production rate during the experimentation was in the range of 4.63 to 11.78 L/d. In the first experimentation, the average gas production rate was 10.08 L/d, and in the second experimentation, the average gas production rate was 4.97 L/d. The experimentation observed the favorable Hydraulic Retention Time and wastewater temperature in AF was three days and 30.95°C which produced the gas concentration of 11.78 L/d. The HRT and wastewater temperature affected the efficiency of the AF process on the organic matter removal and nutrients removal as well. It can be deduced from the obtained results that HRT and wastewater temperature directly affects the efficiency of the AF reactor in biogas production. In conclusion, anaerobic filter treatment of organic matter substrates from the rural domestic wastewater increases the efficiency of the AF reactor on biogas production and gives a number of benefits for the management of organic wastes as well as reduction in water pollution. Hence, the operation of the AF reactor in rural domestic wastewater treatment can play an important element for corporate economy of the biogas plant, socio-economic aspects and in the development of effective and feasible concepts for wastewater management, especially for people in rural low-income areas.

  15. Development and significance of a fetal electrocardiogram recorded by signal-averaged high-amplification electrocardiography.

    PubMed

    Hayashi, Risa; Nakai, Kenji; Fukushima, Akimune; Itoh, Manabu; Sugiyama, Toru

    2009-03-01

    Although ultrasonic diagnostic imaging and fetal heart monitors have undergone great technological improvements, the development and use of fetal electrocardiograms to evaluate fetal arrhythmias and autonomic nervous activity have not been fully established. We verified the clinical significance of the novel signal-averaged vector-projected high amplification ECG (SAVP-ECG) method in fetuses from 48 gravidas at 32-41 weeks of gestation and in 34 neonates. SAVP-ECGs from fetuses and newborns were recorded using a modified XYZ-leads system. Once noise and maternal QRS waves were removed, the P, QRS, and T wave intervals were measured from the signal-averaged fetal ECGs. We also compared fetal and neonatal heart rates (HRs), coefficients of variation of heart rate variability (CV) as a parasympathetic nervous activity, and the ratio of low to high frequency (LF/HF ratio) as a sympathetic nervous activity. The rate of detection of a fetal ECG by SAVP-ECG was 72.9%, and the fetal and neonatal QRS and QTc intervals were not significantly different. The neonatal CVs and LF/HF ratios were significantly increased compared with those in the fetus. In conclusion, we have developed a fetal ECG recording method using the SAVP-ECG system, which we used to evaluate autonomic nervous system development.

  16. Converter slag-coal cinder columns for the removal of phosphorous and other pollutants.

    PubMed

    Yang, Jian; Wang, Su; Lu, Zhibo; Yang, Jian; Lou, Shanjie

    2009-08-30

    A mixture of converter slag and coal cinder as adsorbent for the removal of phosphorous and other pollutants was studied in the paper. The maximum P adsorption capacity, pH of solution, contact time and initial phosphate concentration were evaluated in batch experiments for the two materials firstly. The data of P sorption were best fitted to Langumir equation, and the maximum adsorption capacities of converter slag and coal cinder were 2.417 and 0.398 mg P/g, respectively. The pH of solutions with converter slag and coal cinder changed dramatically with time and closed to 8 in 8h, and the influence of initial pH on phosphate removal by coal cinder was more significant than by converter slag. Phosphate removal rate by converter slag decreased with increase of initial phosphate concentrations. Subsequently, two flow-through columns (Column 1#, V(converter slag):V(coal cinder)=1:5; Column 2#, V(converter slag):V(coal cinder)=1:3) were operated for the removal of phosphorous and other pollutants from the effluents of a vermifilter for nearly eleven months. Results indicated the average removal efficiency of total phosphorus, dissolved phosphorus, COD and NH(4)(+)-N by Column 1# were 44%, 56%, 31% and 67%, and by Column 2# were 42%, 54%, 24% and 57%, respectively. Column 1# had higher removal efficiency for P and other pollutants.

  17. The relationship between peripheral intravenous catheter indwell time and the incidence of phlebitis.

    PubMed

    Powell, Jessica; Tarnow, Karen Gahan; Perucca, Roxanne

    2008-01-01

    The purpose of this study was to determine any relationship between peripheral IV catheter indwell time and phlebitis in hospitalized adults. A retrospective review of quarterly quality assurance data-monitoring indwell time, phlebitis rating, and site and tubing labels-was performed. Of 1,161 sites, only 679 had documented indwell time to use. Average indwell time was 1.9 days, and overall phlebitis rate was 3.7%. Analysis of variance revealed a significant association between phlebitis and indwell time. However, asymptomatic peripheral IVs may not need to be removed at regular intervals because there were healthy, asymptomatic sites with indwell time up to 10 days.

  18. Performance evaluation of different filter media in turbidity removal from water by application of modified qualitative indices.

    PubMed

    Gholikandi, G Badalians; Dehghanifard, E; Sepehr, M Noori; Torabian, A; Moalej, S; Dehnavi, A; Yari, Ar; Asgari, Ar

    2012-01-01

    Water filtration units have been faced problems in water turbidity removal related to their media, which is determined by qualitative indices. Moreover, Current qualitative indices such as turbidity and escaping particle number could not precisely determine the efficiency of the media in water filtration, so defining new indices is essential. In this study, the efficiency of Anthracite-Silica and LECA-Silica media in turbidity removal were compared in different operating condition by using modified qualitative indices. The pilot consisted of a filter column (one meter depth) which consisted of a layer of LECA (450 mm depth) and a layer of Silica sand (350 mm depth. Turbidities of 10, 20, and 30 NTU, coagulant concentrations of 4, 8, and 12 ppm and filtration rates of 10, 15, and 20 m/h were considered as variables. The LECA-Silica media is suitable media for water filtration. Averages of turbidity removal efficiencies in different condition for the LECA-Silica media were 85.8±5.37 percent in stable phase and 69.75±3.37 percent in whole operation phase, while the efficiency of total system were 98.31±0.63 and 94.49±2.97 percent, respectively. The LECA layer efficiency in turbidity removal was independent from filtration rates and due to its low head loss; LECA can be used as a proper medium for treatment plants. Results also showed that the particle index (PI) was a suitable index as a substitute for turbidity and EPN indices.

  19. Treatment of a chocolate industry wastewater in a pilot-scale low-temperature UASB reactor operated at short hydraulic and sludge retention time.

    PubMed

    Esparza-Soto, M; Arzate-Archundia, O; Solís-Morelos, C; Fall, C

    2013-01-01

    The aim of this work was to evaluate the performance of a 244-L pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of chocolate-processing industry wastewater under low-temperature conditions (18 ± 0.6 °C) for approximately 250 d. The applied organic loading rate (OLR) was varied between 4 and 7 kg/m(3)/d by varying the influent soluble chemical oxygen demand (CODsol), while keeping the hydraulic retention time constant (6.4 ± 0.3 h). The CODsol removal efficiency was low (59-78%). The measured biogas production increased from 240 ± 54 to 431 ± 61 L/d during the experiments. A significant linear correlation between the measured biogas production and removed OLR indicated that 81.69 L of biogas were produced per kg/m(3) of CODsol removed. Low average reactor volatile suspended solids (VSS) (2,700-4,800 mg/L) and high effluent VSS (177-313 mg/L) were derived in a short sludge retention time (SRT) (4.9 d). The calculated SRT was shorter than those reported in the literature, but did not affect the reactor's performance. Average sludge yield was 0.20 kg-VSS/kg-CODsol. The low-temperature anaerobic treatment was a good option for the pre-treatment of chocolate-processing industry wastewater.

  20. Wide topical negative pressure wound dressing treatment for patients undergoing abdominal dermolipectomy following massive weight loss.

    PubMed

    Dragu, Adrian; Schnürer, Stefan; Unglaub, Frank; Wolf, Maya B; Beier, Justus P; Kneser, Ulrich; Horch, Raymund E

    2011-11-01

    Postbariatric plastic surgery is considered to be a high-risk procedure, which entails such frequent minor complications as postoperative seroma, bleeding and wound dehiscence. These occur with a high incidence, especially, following postbariatric abdominal dermolipectomy. In order to reduce these complication rates, a new type of dressing with wide abdominal topical negative pressure (TNP) application was applied. We performed abdominal dermolipectomy in 23 obese patients. The average body mass index was 32.8 kg/m(2), and the median age of the patients was 42.9 years. Ten patients received conventional standard dressings (control group I), whereas the other 13 patients received a wide TNP dressing including the ventral and lateral trunk (negative pressure group II). Postoperative exudate volumes were collected, tallied and documented for each group separately until all drains could be removed. The conventionally treated control group (I) showed a significantly higher postoperative secretion volume compared with the negative pressure group (II). In addition, the average time to postoperative final drain removal was significantly lower in the negative pressure group (II) compared with the control group (I). The results indicate that widely applied external TNP wound dressing on the ventral and lateral trunk following postbariatric abdominal dermolipectomy leads to a significant reduction in exudate formation, enables early drain removal and thus, decreases length of hospitalization.

  1. The reasons behind the performance superiority of a high rate algal pond over three facultative ponds in series.

    PubMed

    El Hamouri, B; Rami, A; Vasel, J L

    2003-01-01

    Results from a tracer study were used to determine and to compare actual and standard (k(20 degrees C)) first order reaction rate constants for COD removal in a High Rate Algal Pond (HRAP) and in 3 facultative ponds (FP) in series. An annual average k(20 degreesC) of 0.123 day(-1) was found for the HRAP while the values of 0.097, 0.025 and 0.003 d(-1) were found for facultative ponds 1, 2 and 3 respectively. Also, comparing nominal and tracer study hydraulic retention times showed large differences for the FP but not for the HRAP indicating that the former were suffering from severe short-circuiting. Loading rate within the range of operation exhibited a positive correlation with k(20 degrees C) for the HRAP but did not show such a relationship for any of the FP. Optimal chlorophyll-a concentration was found to be 3 mg/l for the HRAP and only 1.1 mg/l for the FP. Pollutant specific removal rates (SRR), that translate the hydrodynamic efficiency and the rate of COD biodegradation into pond performance per m2 and per day were calculated. They show that the adoption of the HRAP in place of a series of 3 FP reduces the net land area requirement (LAR) by at least 40%.

  2. Corrosion control when using secondary treated municipal wastewater as alternative makeup water for cooling tower systems.

    PubMed

    Hsieh, Ming-Kai; Li, Heng; Chien, Shih-Hsiang; Monnell, Jason D; Chowdhury, Indranil; Dzombak, David A; Vidic, Radisav D

    2010-12-01

    Secondary treated municipal wastewater is a promising alternative to fresh water as power plant cooling water system makeup water, especially in arid regions. Laboratory and field testing was conducted in this study to evaluate the corrosiveness of secondary treated municipal wastewater for various metals and metal alloys in cooling systems. Different corrosion control strategies were evaluated based on varied chemical treatment. Orthophosphate, which is abundant in secondary treated municipal wastewater, contributed to more than 80% precipitative removal of phosphorous-based corrosion inhibitors. Tolyltriazole worked effectively to reduce corrosion of copper (greater than 95% inhibition effectiveness). The corrosion rate of mild steel in the presence of free chlorine 1 mg/L (as Cl2) was approximately 50% higher than in the presence of monochloramine 1 mg/L (as Cl2), indicating that monochloramine is a less corrosive biocide than free chlorine. The scaling layers observed on the metal alloys contributed to corrosion inhibition, which could be seen by comparing the mild steel 21-day average corrosion rate with the last 5-day average corrosion rate, the latter being approximately 50% lower than the former.

  3. Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations.

    PubMed

    Pal, Debasis; Ghosh, Aditi; Sen, Ranjan; Pal, Atasi

    2016-08-10

    A continuous-wave (CW) as well as quasi-continuous wave (QCW) thulium-doped all-fiber laser at 1.94 μm has been designed for targeting applications in urology. The thulium-doped active fiber with an octagonal-shaped inner cladding is pumped at 793 nm to achieve stable CW laser power of 10 W with 32% lasing efficiency (against launched pump power). The linear variation of laser power with pump offers a scope of further power scaling. A QCW operation with variation of duty cycle from 0.5% to 90%, repetition rate from 0.1 Hz to 1 kHz, and pulse width from 40 μs to 2 s has been presented. Laser power of 9.5 W in CW mode of operation and average power of 5.2 W with energy range of 10.4-104 mJ in QCW mode of operation has been employed to fragment calcium oxalate monohydrate kidney stones (size of 1.5-4 cm) having different colors and composition. Dependence of ablation threshold, ablation rate, and average fragmented particle size on the average power and energy has been studied. One minute of laser exposure results in fragmentation of a stone surface with ablation rate of 8  mg/min having minimum particle size of 6.54 μm with an average size of 20-100 μm ensuring the natural removal of fragmented parts through the urethra.

  4. Precise Point Positioning with Partial Ambiguity Fixing.

    PubMed

    Li, Pan; Zhang, Xiaohong

    2015-06-10

    Reliable and rapid ambiguity resolution (AR) is the key to fast precise point positioning (PPP). We propose a modified partial ambiguity resolution (PAR) method, in which an elevation and standard deviation criterion are first used to remove the low-precision ambiguity estimates for AR. Subsequently the success rate and ratio-test are simultaneously used in an iterative process to increase the possibility of finding a subset of decorrelated ambiguities which can be fixed with high confidence. One can apply the proposed PAR method to try to achieve an ambiguity-fixed solution when full ambiguity resolution (FAR) fails. We validate this method using data from 450 stations during DOY 021 to 027, 2012. Results demonstrate the proposed PAR method can significantly shorten the time to first fix (TTFF) and increase the fixing rate. Compared with FAR, the average TTFF for PAR is reduced by 14.9% for static PPP and 15.1% for kinematic PPP. Besides, using the PAR method, the average fixing rate can be increased from 83.5% to 98.2% for static PPP, from 80.1% to 95.2% for kinematic PPP respectively. Kinematic PPP accuracy with PAR can also be significantly improved, compared to that with FAR, due to a higher fixing rate.

  5. Precise Point Positioning with Partial Ambiguity Fixing

    PubMed Central

    Li, Pan; Zhang, Xiaohong

    2015-01-01

    Reliable and rapid ambiguity resolution (AR) is the key to fast precise point positioning (PPP). We propose a modified partial ambiguity resolution (PAR) method, in which an elevation and standard deviation criterion are first used to remove the low-precision ambiguity estimates for AR. Subsequently the success rate and ratio-test are simultaneously used in an iterative process to increase the possibility of finding a subset of decorrelated ambiguities which can be fixed with high confidence. One can apply the proposed PAR method to try to achieve an ambiguity-fixed solution when full ambiguity resolution (FAR) fails. We validate this method using data from 450 stations during DOY 021 to 027, 2012. Results demonstrate the proposed PAR method can significantly shorten the time to first fix (TTFF) and increase the fixing rate. Compared with FAR, the average TTFF for PAR is reduced by 14.9% for static PPP and 15.1% for kinematic PPP. Besides, using the PAR method, the average fixing rate can be increased from 83.5% to 98.2% for static PPP, from 80.1% to 95.2% for kinematic PPP respectively. Kinematic PPP accuracy with PAR can also be significantly improved, compared to that with FAR, due to a higher fixing rate. PMID:26067196

  6. Evaluation of a multifiltration water reclamation subsystem to reclaim domestic clothes wash water

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.

    1973-01-01

    An evaluation has been performed of a multifiltration water reclamation subsystem to determine its capability to recover water from domestic clothes wash water. A total of 32.89 kg (72.5 lb) of clothes were washed during eight wash cycles which used 1.4 lb of detergent, 145 gallons of hot water and 133.9 gallons of cold water. Water recovered at a weighted average process rate of 3.81 gallons per hour met the majority of the 23 requirements established for potable water by the U.S. Public Health Service. Average power consumed during this evaluation was approximately 71 watt-hours per gallon of water recovered. Filter replacement, which was required primarily for the control of micro-organisms in the recovered water averaged 4.86 filters per 100 gallons of wash water processed. The subsystem removed approximately 98 percent and virtually 100 percent of the phosphates and surfactants, respectively, from the wash water.

  7. A preview of Delaware's timber resource

    Treesearch

    Joseph E. Barnard; Teresa M. Bowers

    1973-01-01

    The recently completed forest survey of Delaware indicated little change in the total forest area since the 1957 estimate. Softwood volume and the acreage of softwood types decreased considerably. Hardwoods now comprise two-thirds of the volume and three-fourths of the forest area. Total average annual growth exceeded removals, but softwood removals exceeded average...

  8. Colony Failure Linked to Low Sperm Viability in Honey Bee (Apis mellifera) Queens and an Exploration of Potential Causative Factors.

    PubMed

    Pettis, Jeffery S; Rice, Nathan; Joselow, Katie; vanEngelsdorp, Dennis; Chaimanee, Veeranan

    2016-01-01

    Queen health is closely linked to colony performance in honey bees as a single queen is normally responsible for all egg laying and brood production within the colony. In the U. S. in recent years, queens have been failing at a high rate; with 50% or greater of queens replaced in colonies within 6 months when historically a queen might live one to two years. This high rate of queen failure coincides with the high mortality rates of colonies in the US, some years with >50% of colonies dying. In the current study, surveys of sperm viability in US queens were made to determine if sperm viability plays a role in queen or colony failure. Wide variation was observed in sperm viability from four sets of queens removed from colonies that beekeepers rated as in good health (n = 12; average viability = 92%), were replacing as part of normal management (n = 28; 57%), or where rated as failing (n = 18 and 19; 54% and 55%). Two additional paired set of queens showed a statistically significant difference in viability between colonies rated by the beekeeper as failing or in good health from the same apiaries. Queens removed from colonies rated in good health averaged high viability (ca. 85%) while those rated as failing or in poor health had significantly lower viability (ca. 50%). Thus low sperm viability was indicative of, or linked to, colony performance. To explore the source of low sperm viability, six commercial queen breeders were surveyed and wide variation in viability (range 60-90%) was documented between breeders. This variability could originate from the drones the queens mate with or temperature extremes that queens are exposed to during shipment. The role of shipping temperature as a possible explanation for low sperm viability was explored. We documented that during shipment queens are exposed to temperature spikes (<8 and > 40°C) and these spikes can kill 50% or more of the sperm stored in queen spermathecae in live queens. Clearly low sperm viability is linked to colony performance and laboratory and field data provide evidence that temperature extremes are a potential causative factor.

  9. Biogeochemical Processes Related to Metal Removal and Toxicity Reduction in the H-02 Constructed Wetland, Savannah River Site

    NASA Astrophysics Data System (ADS)

    Burgess, E. A.; Mills, G. L.; Harmon, M.; Samarkin, V.

    2011-12-01

    The H-02 wetland system was designed to treat building process water and storm water runoff from multiple sources associated with the Tritium Facility at the DOE-Savannah River Site, Aiken, SC. The wetland construction included the addition of gypsum (calcium sulfate) to foster a sulfate-reducing bacterial population. Conceptually, the wetland functions as follows: ? Cu and Zn initially bind to both dissolved and particulate organic detritus within the wetland. ? A portion of this organic matter is subsequently deposited into the surface sediments within the wetland. ? The fraction of Cu and Zn that is discharged in the wetland effluent is organically complexed, less bioavailable, and consequently, less toxic. ? The Cu and Zn deposited in the surface sediments are eventually sequestered into insoluble sulfide minerals in the wetland. Development of the H-02 system has been closely monitored; sampling began in August 2007, shortly after its construction. This monitoring has included the measurement of water quality parameters, Cu and Zn concentrations in surface water and sediments, as well as, characterization of the prokaryotic (e.g., bacterial) component of wetland biogeochemical processes. Since the beginning of the study, the mean influent Cu concentration was 31.5±12.1 ppb and the mean effluent concentration was 11.9±7.3 ppb, corresponding to an average Cu removal of 64%. Zn concentrations were more variable, averaging 39.2±13.8 ppb in the influent and 25.7±21.3 ppb in the effluent. Average Zn removal was 52%. The wetland also ameliorated high pH values associated with influent water to values similar to those measured at reference sites. Seasonal variations in DOC concentration corresponded to seasonal variations in Cu and Zn removal efficiency. The concentration of Cu and Zn in the surface layer of the sediments has increased over the lifetime of the wetland and, like removal efficiency, demonstrated seasonal variation. Within its first year, the H-02 wetland showed biomarkers for sulfate-reducing bacteria. Sulfate-reduction and methane-oxidation rates in the sediments were determined using radiotracer techniques. Sulfate-reduction was detected in all depths of sediment cores, even in surface detritus layers. Gas measurements from H-02 sediments demonstrated that methane is available to support a methane oxidizing community, and active methane-oxidation was detected in the sediments and overlying water. Our results demonstrate that the H-02 wetlands are functioning successfully to remove Cu and Zn from influent waters. The continued success and long-term sustainability of the functioning H-02 system is predicated on maintaining in situ biogeochemistry. However, the relative importance of various biogeochemical cycles remains unclear. For example, the Cu and Zn deposited in the sediments are associated with organic detritus at the sediment surface; the extent and rate at which the metals will redistribute to more recalcitrant sulfide mineral phases remain to be determined. Thus, the H-02 wetland system is a valuable resource not only for metal removal at SRS, but also can further enhance the understanding of wetland function within the scientific and regulatory communities.

  10. A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEG recordings.

    PubMed

    Tamburro, Gabriella; Fiedler, Patrique; Stone, David; Haueisen, Jens; Comani, Silvia

    2018-01-01

    EEG may be affected by artefacts hindering the analysis of brain signals. Data-driven methods like independent component analysis (ICA) are successful approaches to remove artefacts from the EEG. However, the ICA-based methods developed so far are often affected by limitations, such as: the need for visual inspection of the separated independent components (subjectivity problem) and, in some cases, for the independent and simultaneous recording of the inspected artefacts to identify the artefactual independent components; a potentially heavy manipulation of the EEG signals; the use of linear classification methods; the use of simulated artefacts to validate the methods; no testing in dry electrode or high-density EEG datasets; applications limited to specific conditions and electrode layouts. Our fingerprint method automatically identifies EEG ICs containing eyeblinks, eye movements, myogenic artefacts and cardiac interference by evaluating 14 temporal, spatial, spectral, and statistical features composing the IC fingerprint. Sixty-two real EEG datasets containing cued artefacts are recorded with wet and dry electrodes (128 wet and 97 dry channels). For each artefact, 10 nonlinear SVM classifiers are trained on fingerprints of expert-classified ICs. Training groups include randomly chosen wet and dry datasets decomposed in 80 ICs. The classifiers are tested on the IC-fingerprints of different datasets decomposed into 20, 50, or 80 ICs. The SVM performance is assessed in terms of accuracy, False Omission Rate (FOR), Hit Rate (HR), False Alarm Rate (FAR), and sensitivity ( p ). For each artefact, the quality of the artefact-free EEG reconstructed using the classification of the best SVM is assessed by visual inspection and SNR. The best SVM classifier for each artefact type achieved average accuracy of 1 (eyeblink), 0.98 (cardiac interference), and 0.97 (eye movement and myogenic artefact). Average classification sensitivity (p) was 1 (eyeblink), 0.997 (myogenic artefact), 0.98 (eye movement), and 0.48 (cardiac interference). Average artefact reduction ranged from a maximum of 82% for eyeblinks to a minimum of 33% for cardiac interference, depending on the effectiveness of the proposed method and the amplitude of the removed artefact. The performance of the SVM classifiers did not depend on the electrode type, whereas it was better for lower decomposition levels (50 and 20 ICs). Apart from cardiac interference, SVM performance and average artefact reduction indicate that the fingerprint method has an excellent overall performance in the automatic detection of eyeblinks, eye movements and myogenic artefacts, which is comparable to that of existing methods. Being also independent from simultaneous artefact recording, electrode number, type and layout, and decomposition level, the proposed fingerprint method can have useful applications in clinical and experimental EEG settings.

  11. A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEG recordings

    PubMed Central

    Tamburro, Gabriella; Fiedler, Patrique; Stone, David; Haueisen, Jens

    2018-01-01

    Background EEG may be affected by artefacts hindering the analysis of brain signals. Data-driven methods like independent component analysis (ICA) are successful approaches to remove artefacts from the EEG. However, the ICA-based methods developed so far are often affected by limitations, such as: the need for visual inspection of the separated independent components (subjectivity problem) and, in some cases, for the independent and simultaneous recording of the inspected artefacts to identify the artefactual independent components; a potentially heavy manipulation of the EEG signals; the use of linear classification methods; the use of simulated artefacts to validate the methods; no testing in dry electrode or high-density EEG datasets; applications limited to specific conditions and electrode layouts. Methods Our fingerprint method automatically identifies EEG ICs containing eyeblinks, eye movements, myogenic artefacts and cardiac interference by evaluating 14 temporal, spatial, spectral, and statistical features composing the IC fingerprint. Sixty-two real EEG datasets containing cued artefacts are recorded with wet and dry electrodes (128 wet and 97 dry channels). For each artefact, 10 nonlinear SVM classifiers are trained on fingerprints of expert-classified ICs. Training groups include randomly chosen wet and dry datasets decomposed in 80 ICs. The classifiers are tested on the IC-fingerprints of different datasets decomposed into 20, 50, or 80 ICs. The SVM performance is assessed in terms of accuracy, False Omission Rate (FOR), Hit Rate (HR), False Alarm Rate (FAR), and sensitivity (p). For each artefact, the quality of the artefact-free EEG reconstructed using the classification of the best SVM is assessed by visual inspection and SNR. Results The best SVM classifier for each artefact type achieved average accuracy of 1 (eyeblink), 0.98 (cardiac interference), and 0.97 (eye movement and myogenic artefact). Average classification sensitivity (p) was 1 (eyeblink), 0.997 (myogenic artefact), 0.98 (eye movement), and 0.48 (cardiac interference). Average artefact reduction ranged from a maximum of 82% for eyeblinks to a minimum of 33% for cardiac interference, depending on the effectiveness of the proposed method and the amplitude of the removed artefact. The performance of the SVM classifiers did not depend on the electrode type, whereas it was better for lower decomposition levels (50 and 20 ICs). Discussion Apart from cardiac interference, SVM performance and average artefact reduction indicate that the fingerprint method has an excellent overall performance in the automatic detection of eyeblinks, eye movements and myogenic artefacts, which is comparable to that of existing methods. Being also independent from simultaneous artefact recording, electrode number, type and layout, and decomposition level, the proposed fingerprint method can have useful applications in clinical and experimental EEG settings. PMID:29492336

  12. High renesting rates in arctic-breeding Dunlin (Calidris alpina): A clutch-removal experiment

    USGS Publications Warehouse

    Gates, H. River; Lanctot, Richard B.; Powell, Abby N.

    2013-01-01

    The propensity to replace a clutch is a complex component of avian reproduction and poorly understood. We experimentally removed clutches from an Arctic-breeding shorebird, the Dunlin (Calidris alpina arcticola), during early and late stages of incubation to investigate replacement clutch rates, renesting interval, and mate and site fidelity between nesting attempts. In contrast to other Arctic studies, we documented renesting by radiotracking individuals to find replacement clutches. We also examined clutch size and mean egg volume to document changes in individual females’ investment in initial and replacement clutches. Finally, we examined the influence of adult body mass, clutch volume, dates of clutch initiation and nest loss, and year on the propensity to renest. We found high (82–95%) and moderate (35–50%) rates of renesting for early and late incubation treatments. Renesting intervals averaged 4.7–6.8 days and were not different for clutches removed early or late in incubation. Most pairs remained together for renesting attempts. Larger females were more likely to replace a clutch; female body mass was the most important parameter predicting propensity to renest. Clutches lost later in the season were less likely to be replaced. We present evidence that renesting is more common in Arctic-breeding shorebirds than was previously thought, and suggest that renesting is constrained by energetic and temporal factors as well as mate availability. Obtaining rates of renesting in species breeding at different latitudes will help determine when this behavior is likely to occur; such information is necessary for demographic models that include individual and population-level fecundity estimates.

  13. Large (9 mm) Deep Anterior Lamellar Keratoplasty with Clearance of a 6-mm Optical Zone Optimizes Outcomes of Keratoconus Surgery.

    PubMed

    Busin, Massimo; Leon, Pia; Nahum, Yoav; Scorcia, Vincenzo

    2017-07-01

    To evaluate the outcomes of a 9-mm deep anterior lamellar keratoplasty (DALK) with removal of the deep stroma limited to the central 6-mm optical zone. Prospective, noncomparative, interventional case series. A total of 80 consecutive keratoconic eyes without deep stromal scarring, with at least 1 postoperative examination 1 month after complete suture removal. A standardized DALK was performed, including (1) deep trephination of the recipient bed 450 to 550 μm in depth and 9 mm in diameter; (2) pneumatic dissection; (3) debulking of approximately 80% of the anterior stroma; (4) removal of the deep stroma (bubble roof) from a central 6-mm optical zone; and (5) transplantation of a 9-mm anterior corneal lamella cut by microkeratome-assisted dissection (400-μm head) and sutured with a double running 10-0 nylon suture. Success rate and type of pneumatic dissection obtained; best spectacle-corrected visual acuity (BSCVA), refractive astigmatism (RA), and topographic astigmatism (TA), central corneal thickness (CCT) and endothelial cell density 12 months postoperatively; and intraoperative and postoperative complications. Pneumatic dissection created a "big bubble" in 67 of 80 eyes (83.7%), all of them but 1 (1.5%) being of type 1 according to the classification by Dua et al. After complete suture removal, BSCVA averaged 0.09±0.72 logarithm of the minimum angle of resolution (logMAR) and was ≥20/20 in 28 eyes (35%), ≥20/25 in 54 eyes (67.5%), and ≥20/40 in 76 eyes (95%); RA averaged 3.10±1.30 diopters (D), with 73 eyes (91%) within 4.5 D and none above 6 D; regular TA was detected in 72 eyes (90%); mean CCT was 492±62.10 μm; postoperative endothelial cell density averaged 2026±397cells/mm 2 with a mean cell loss of 11.2%. Intraoperative complications included loss of suction (n = 1) and perforation (n = 4). No conversion to penetrating keratoplasty was necessary. After surgery, double anterior chamber was observed in 2 cases (2.5%), both managed successfully by air filling of the anterior chamber. Stromal rejection was observed in 6 eyes (7.5%) and was reversed with topical steroids in all cases. In keratoconic eyes without deep stromal scars, the combination of a graft larger than conventional ones with limited removal of deep stroma can improve visual and refractive outcomes of DALK, while minimizing the rate of complications. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  14. Seasonal variation of meteor decay times observed at King Sejong Station (62.22°S, 58.78°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Han; Kim, Yong Ha; Lee, Chang-Sup; Jee, Geonhwa

    2010-07-01

    We analyzed meteor decay times measured by a VHF radar at King Sejong Station by classifying strong and weak meteors according to their estimated electron line densities. The height profiles of monthly averaged decay times show a peak whose altitude varies with season at altitudes of 80-85 km. The higher peak during summer is consistent with colder temperatures that cause faster chemical reactions of electron removal. By adopting temperature dependent empirical recombination rates from rocket experiments and meteor electron densities of 2×105-2×106 cm-3 in a decay time model, we are able to account for decreasing decay times below the peak for all seasons without invoking meteor electron removal by hypothetical icy particles.

  15. Coblation versus unipolar electrocautery tonsillectomy: a prospective, randomized, single-blind study in adult patients.

    PubMed

    Noordzij, J Pieter; Affleck, Brian D

    2006-08-01

    To determine if the coblation tonsillectomy (subcapsular dissection) results in less postoperative pain, equivalent intraoperative blood loss, equivalent postoperative hemorrhage rates, and faster healing compared with tonsillectomy was performed using unipolar electrocautery in adult patients. The authors conducted a prospective clinical trial. Forty-eight patients underwent tonsillectomy and were randomly assigned to have one tonsil removed with coblation and the other with unipolar electrocautery. Outcome measures included time to remove each tonsil, intraoperative blood loss, patient-reported pain, postoperative hemorrhage, and amount of healing 2 weeks after surgery. Mean time to remove a single tonsil with coblation and electrocautery was 8.22 minutes and 6.33 minutes, respectively (P = .011). Mean intraoperative blood loss for each technique was less than 10 mL. Postoperative pain was significantly less with coblation as compared with electrocautery: 18.6% less painful during the first week of recovery. Seventy percent of blinded patients identified the coblation side as less painful during the overall 14-day convalescent period. Postoperative hemorrhage rates (2.1% for coblation and 6.2% for electrocautery) were not significantly different. No difference in tonsillar fossa healing was observed between the two techniques 2 weeks after surgery. During nine of the 48 surgeries, wires on the tip of the coblation handpiece experienced thinning to the point of discontinuity while removing a single tonsil. Coblation subcapsular tonsillectomy was less painful than electrocautery tonsillectomy in this 48-patient group. On average, intraoperative blood loss was less than 10 mL for both techniques. Postoperative hemorrhage rates and the degree of tonsillar fossa healing were similar between the two techniques. The coblation handpiece experienced degradation of vital wires in 18% of cases necessitating the use of a second, new handpiece.

  16. Treatment and Energy Valorisation of an Agro-Industrial Effluent in Upflow Anaerobic Sludge Reactor (UASB)

    NASA Astrophysics Data System (ADS)

    Martins, Ramiro; Boaventura, Rui; Paulista, Larissa

    2017-12-01

    The accelerated growth of the population brings with it an increase in the generation of agro-industrial effluents. The inadequate discharge of these effluents significantly affects the quality of water resources. In this way, it becomes important to invest in treatment processes for agro-industrial effluents, particularly low-cost ones. In this context, the present study includes the design and construction of an UASB reactor and optimization of the anaerobic digestion treatment of the raw effluent from sweet chestnut production in the agro-industrial company Sortegel. The efficiency of the system was evaluated through the determination / monitoring of oxygen chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total suspended solids (TSS), biogas production rate and quality (% methane). The reactor was fed for 25 weeks and operated under mesophilic conditions (temperature 30-40 °C). Different values were tested for the hydraulic retention time (HRT) and volumetric flow rate (VF): 0.66 days (VF=1509 L.m-3.d-1); 1.33 days (VF=755 L.m-3.d-1); 2.41 d days (VF=415 L.m-3.d-1). The average COD removal efficiency reached values of 69%, 82% and 75%, respectively, and simultaneously the associated BOD5 removal efficiency was 84%, 91% and 70%. As regards TSS, removal values were 78%, 94% and 63%. In addition, high methane production rates were obtained, between 2500 and 4800 L CH4.kg-1 COD removed d-1. For all the hydraulic retention times tested, high concentrations of methane in the biogas were recorded: 66-75%, 70% and 75% for HRT of 0.66, 1.33 and 2.41 days, respectively.

  17. Investigation of Anaerobic Fluidized Bed Reactor/ Aerobic Moving Bed Bio Reactor (AFBR/MMBR) System for Treatment of Currant Wastewater

    PubMed Central

    JAFARI, Jalil; MESDAGHINIA, Alireza; NABIZADEH, Ramin; FARROKHI, Mehrdad; MAHVI, Amir Hossein

    2013-01-01

    Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR)-Aerobic Moving Bed Bio Reactor (MBBR) in series arrangement to treat Currant wastewater. Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2–2.3 mm, particle density of 1250 kg/m3. The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3. Results: When system operated at 35 ºC, chemical oxygen demand (COD) removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR) of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT) of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively. Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR) of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewater. PMID:26056640

  18. Region-confined restoration method for motion-blurred star image of the star sensor under dynamic conditions.

    PubMed

    Ma, Liheng; Bernelli-Zazzera, Franco; Jiang, Guangwen; Wang, Xingshu; Huang, Zongsheng; Qin, Shiqiao

    2016-06-10

    Under dynamic conditions, the centroiding accuracy of the motion-blurred star image decreases and the number of identified stars reduces, which leads to the degradation of the attitude accuracy of the star sensor. To improve the attitude accuracy, a region-confined restoration method, which concentrates on the noise removal and signal to noise ratio (SNR) improvement of the motion-blurred star images, is proposed for the star sensor under dynamic conditions. A multi-seed-region growing technique with the kinematic recursive model for star image motion is given to find the star image regions and to remove the noise. Subsequently, a restoration strategy is employed in the extracted regions, taking the time consumption and SNR improvement into consideration simultaneously. Simulation results indicate that the region-confined restoration method is effective in removing noise and improving the centroiding accuracy. The identification rate and the average number of identified stars in the experiments verify the advantages of the region-confined restoration method.

  19. The start-up of denitrifying phosphorus removal system by using nitrite as electron acceptor

    NASA Astrophysics Data System (ADS)

    Li, W.; Liu, J.; Sun, H. Z.; Fu, J. X.; Gao, Y.; Sun, J.

    2017-08-01

    The inoculation of short-cut denitrifying polyphosphate-accumulating organisms (DPAOs) mainly included two-phase inoculation and three-phase inoculation. The short-cut denitrifying phosphorus removal bacteria were quickly inoculated by sequencing batch reactor (SBR) to treatment domestic wastewater. The results showed that the average effluent concentration of TP was 0.85 mg/L after 132 cycles by 44 days in two-phase inoculation. The removal rates of NO2 --N, TP and COD were 94.73%, 95.47% and 89.96% after 126 cycles by 42 days in three-phase inoculation, and the effluent concentrations were separately 1.31 mg/L, 0.45 mg/L and 17.07 mg/L, which reached the first A class requirement of Urban sewage treatment plant pollutant discharge standard. It was indicated that the efficiency of three-phase inoculation was higher. Anoxic phosphorus uptake was influenced seriously by anaerobic residual carbon, and it was the difference of the two inoculations.

  20. Simulation of water removal process and optimization of aeration strategy in sewage sludge composting.

    PubMed

    Zhou, Hai-Bin; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Chen, Jun; Pan, Tian-Hao; Liu, Hong-Tao; Gu, Run-Yao

    2014-11-01

    Reducing moisture in sewage sludge is one of the main goals of sewage sludge composting and biodrying. A mathematical model was used to simulate the performance of water removal under different aeration strategies. Additionally, the correlations between temperature, moisture content (MC), volatile solids (VS), oxygen content (OC), and ambient air temperature and aeration strategies were predicted. The mathematical model was verified based on coefficients of correlation between the measured and predicted results of over 0.80 for OC, MC, and VS, and 0.72 for temperature. The results of the simulation showed that water reduction was enhanced when the average aeration rate (AR) increased to 15.37 m(3) min(-1) (6/34 min/min, AR: 102.46 m(3) min(-1)), above which no further increase was observed. Furthermore, more water was removed under a higher on/off time of 7/33 (min/min, AR: 87.34 m(3) min(-1)), and when ambient air temperature was higher. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Investigation of furfural biodegradation in a continuous inflow cyclic biological reactor.

    PubMed

    Moussavi, Gholamreza; Leili, Mostafa; Nadafi, Kazem

    2016-01-01

    The performance of a continuous inflow cyclic biological reactor (CBR) containing moving media was investigated for the degradation of high concentrations of furfural. The effects of hydraulic retention time (HRT) and furfural initial concentrations (loading rate), as main operating parameters, on the bioreactor performance were studied. The results indicated that the CBR could remove over 98% of furfural and 71% of its chemical oxygen demand (COD) at inlet furfural concentrations up to 1,200 mg L(-1) (2.38 g L(-1) d(-1)), a 6-h cycle time and HRT of 12.1 h. The removal efficiency decreased slightly from 98 to 94% when HRT decreased from 12.1 to 10.5 h. The average removal efficiency of furfural and COD during the 345-day operational period under steady-state conditions were 97.7% and 82.1%, respectively. The efficiency also increased approximately 17.2% after addition of synthetic polyurethane cubes as moving media at a filling ratio of 10%.

  2. A Robust Random Forest-Based Approach for Heart Rate Monitoring Using Photoplethysmography Signal Contaminated by Intense Motion Artifacts.

    PubMed

    Ye, Yalan; He, Wenwen; Cheng, Yunfei; Huang, Wenxia; Zhang, Zhilin

    2017-02-16

    The estimation of heart rate (HR) based on wearable devices is of interest in fitness. Photoplethysmography (PPG) is a promising approach to estimate HR due to low cost; however, it is easily corrupted by motion artifacts (MA). In this work, a robust approach based on random forest is proposed for accurately estimating HR from the photoplethysmography signal contaminated by intense motion artifacts, consisting of two stages. Stage 1 proposes a hybrid method to effectively remove MA with a low computation complexity, where two MA removal algorithms are combined by an accurate binary decision algorithm whose aim is to decide whether or not to adopt the second MA removal algorithm. Stage 2 proposes a random forest-based spectral peak-tracking algorithm, whose aim is to locate the spectral peak corresponding to HR, formulating the problem of spectral peak tracking into a pattern classification problem. Experiments on the PPG datasets including 22 subjects used in the 2015 IEEE Signal Processing Cup showed that the proposed approach achieved the average absolute error of 1.65 beats per minute (BPM) on the 22 PPG datasets. Compared to state-of-the-art approaches, the proposed approach has better accuracy and robustness to intense motion artifacts, indicating its potential use in wearable sensors for health monitoring and fitness tracking.

  3. Direct oxygen uptake from air by novel glycogen accumulating organism dominated biofilm minimizes excess sludge production.

    PubMed

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2018-05-29

    The cost associated with treatment and disposal of excess sludge produced is one of the greatest operational expenses in wastewater treatment plants. In this study, we quantify and explain greatly reduced excess sludge production in the novel glycogen accumulating organism (GAO) dominated drained biofilm system previously shown to be capable of extremely energy efficient removal of organic carbon (biological oxygen demand or BOD) from wastewater. The average excess sludge production rate was 0.05 g VSS g -1 BOD (acetate) removed, which is about 9-times lower than that of comparative studies using the same acetate based synthetic wastewater. The substantially lower sludge yield was attributed to a number of features such as the high oxygen consumption facilitated by direct oxygen uptake from air, high biomass content (21.41 g VSS L -1 of reactor), the predominance of the GAO (Candidatus competibacter) with a low growth yield and the overwhelming presence of the predatory protozoa (Tetramitus) in the biofilm. Overall, the combination of low-energy requirement for air supply (no compressed air supply) and the low excess sludge production rate, could make this novel "GAO drained biofilm" process one of the most economical ways of biological organic carbon removal from wastewater. Copyright © 2018. Published by Elsevier B.V.

  4. The influence of carboxymethylcellulose (CMC) on the reactivity of Fe NPs toward decabrominated diphenyl ether: The Ni doping, temperature, pH, and anion effects.

    PubMed

    Tso, Chih-Ping; Shih, Yang-Hsin

    2017-01-15

    Polybrominated diphenyl ethers (PBDEs) are commonly used brominated flame retardants in many products. They have accumulated in the environment and become widely dispersed. In this study, carboxymethylcellulose (CMC) was applied to modify nanoscale zerovalent iron (NZVI) and bimetallic Ni/Fe nanoparticles (NPs) to prevent NP aggregation. In this study the removal kinetics of the decabrominated diphenyl ethers (DBDE) with CMC-stabilized Fe NPs were evaluated. CMC-stabilized Ni/Fe NPs with an average size of 86.7nm contained metallic Fe 0 and reduced Ni. The colloidal stability decreased with a decrease in pH, which was further accompanied by a change in the removal rate of DBDE. Our results showed that anions do not change the removal rates of DBDE, with the exception of 10mM NO 3 - , which induced the formation of Fe (hydro)oxides on the Fe NP surface, which could further coagulate with DBDE. This study provides important information for our understanding of the influence of CMC coatings on the reactivity of Fe NPs. Because CMC coatings prevent the passivation of Fe in the presence of anions, CMC-coated Fe NPs show potential for the in-situ remediation of PBDEs in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Radial Head Prosthesis Removal: a Retrospective Case Series of 14 Patients

    PubMed Central

    Neuhaus, Valentin; Christoforou, Dimitrios C.; Kachooei, Amir Reza; Jupiter, Jesse B.; Ring, David C.; Mudgal, Chaitanya S.

    2015-01-01

    Background: The purpose of this study was to report the preoperative complaints and postoperative outcome of patients after removal of the radial head prosthesis. Methods: This is a retrospective review of 14 adult patients (6 females and 8 males) from 2007 to 2011, who underwent radial head prosthesis removal by three surgeons. The average time between implantation and removal was 23 months (range from 2 weeks to 12 years, median 12 months). Results: The leading reported complaints before removal were restricted mobility of the elbow (active range of motion of less than 100 degrees) in 6, pain in 3, and pain together with restricted mobility in 4 patients. The objective findings before removal were restricted mobility of the elbow in 10 (71%), capitellar cartilage wear, loose implants, and heterotopic ossification each in 8 (57%), subluxation of the radio-capitellar joint or malpositioning of the stem in 5 (36%), and chronic infection in 2 (14%) patients. All patients with pain had wear of the capitellar cartilage on radiographs. The ulnar nerve was decompressed in four patients at the time of removal. Four patients underwent a subsequent operation for postoperative ulnar nerve symptoms 5 to 21 months after removal. Four patients were still complaining about persistent pain at the last follow-up visit. Except two patients, the total range of motion improved with a mean of 34 degrees (range 5 to 70) after a mean follow-up of 11 months. Conclusions: Removal of radial head prosthesis improved function and lessened pain in our case series. The reoperation rate was yet nearly 30% due to ulnar neuritis. Selective ulnar nerve decompression at the time of removal must be evaluated, especially in patients with expected large gain in range of motion after removal. PMID:26110173

  6. The influence of third molars in the line of mandibular angle fractures on wound and bone healing.

    PubMed

    Ulbrich, N; Ettl, T; Waiss, W; Gosau, M; Moralis, A; Reichert, T E; Mueller, S

    2016-07-01

    The objective of this study was to evaluate postoperative complications after removal or retention of the third molar in the line of mandibular angle fractures. This retrospective study included the data of 98 patients with a molar in the line of a mandibular angle fracture treated with internal reduction and mini-plate fixation at our department over 9 years. Patients were classified into two groups: tooth removal during osteosynthesis (n = 45) and tooth retention (n = 55). The primary target criterion was the incidence of minor (outpatient treatment, local measures) and major (surgical revision, rehospitalisation) complications. Time between trauma and surgery was 1.4 days (range 0 to 12), and the average follow-up 291 days (range 66 to 863). Regarding the eruption status, 26 of 52 (50.0 %) impacted third molars, 11 of 19 (57.9 %) incompletely erupted and 8 of 27 (29.6 %) completely erupted molars had been removed during open reduction. Overall, 17 (17.3 %) patients had postoperative minor (n = 7) or major (n = 10) complications, in detail 10/45 (22.0 %) patients after tooth removal and 7/55 (13 %) patients after tooth retention (p = 0.286). Complication rates between impacted and incompletely erupted third molars (impacted molars 15.0 %, incompletely erupted molars 10.0 %) did not differ significantly, but completely erupted molars had a complication rate of 26.0 %. Mandibular angle fractures with a completely erupted third molar show the highest complication rate after open reduction and osteosynthesis. Retention of a non-infectious third molar facilitates open reduction and does not increase the complication risk. The study helps with the decision of removing or retention of a third molar during surgical treatment of a mandibular angle fracture.

  7. The regional and global significance of nitrogen removal in lakes and reservoirs

    USGS Publications Warehouse

    Harrison, J.A.; Maranger, R.J.; Alexander, Richard B.; Giblin, A.E.; Jacinthe, P.-A.; Mayorga, Emilio; Seitzinger, S.P.; Sobota, D.J.; Wollheim, W.M.

    2009-01-01

    Human activities have greatly increased the transport of biologically available nitrogen (N) through watersheds to potentially sensitive coastal ecosystems. Lentic water bodies (lakes and reservoirs) have the potential to act as important sinks for this reactive N as it is transported across the landscape because they offer ideal conditions for N burial in sediments or permanent loss via denitrification. However, the patterns and controls on lentic N removal have not been explored in great detail at large regional to global scales. In this paper we describe, evaluate, and apply a new, spatially explicit, annual-scale, global model of lentic N removal called NiRReLa (Nitrogen Retention in Reservoirs and Lakes). The NiRReLa model incorporates small lakes and reservoirs than have been included in previous global analyses, and also allows for separate treatment and analysis of reservoirs and natural lakes. Model runs for the mid-1990s indicate that lentic systems are indeed important sinks for N and are conservatively estimated to remove 19.7 Tg N year-1 from watersheds globally. Small lakes (<50 km2) were critical in the analysis, retaining almost half (9.3 Tg N year -1) of the global total. In model runs, capacity of lakes and reservoirs to remove watershed N varied substantially at the half-degree scale (0-100%) both as a function of climate and the density of lentic systems. Although reservoirs occupy just 6% of the global lentic surface area, we estimate they retain ~33% of the total N removed by lentic systems, due to a combination of higher drainage ratios (catchment surface area:lake or reservoir surface area), higher apparent settling velocities for N, and greater average N loading rates in reservoirs than in lakes. Finally, a sensitivity analysis of NiRReLa suggests that, on-average, N removal within lentic systems will respond more strongly to changes in land use and N loading than to changes in climate at the global scale. ?? 2008 Springer Science+Business Media B.V.

  8. Organic matter degradation in a greywater recycling system using a multistage moving bed biofilm reactor (MBBR).

    PubMed

    Saidi, Assia; Masmoudi, Khaoula; Nolde, Erwin; El Amrani, Btissam; Amraoui, Fouad

    2017-12-01

    Greywater is an important non-conventional water resource which can be treated and recycled in buildings. A decentralized greywater recycling system for 223 inhabitants started operating in 2006 in Berlin, Germany. High load greywater undergoes advanced treatment in a multistage moving bed biofilm reactor (MBBR) followed by sand filtration and UV disinfection. The treated water is used safely as service water for toilet flushing. Monitoring of the organic matter degradation was pursued to describe the degradation processes in each stage and optimize the system. Results showed that organic matter reduction was achieved for the most part in the first three reactors, whereas the highest reduction rate was observed in the third reactor in terms of COD (chemical oxygen demand), dissolved organic carbon and BOD 7 (biological oxygen demand). The results also showed that the average loading rate entering the system was 3.7 kg COD/d, while the removal rate was 3.4 kg COD/d in a total bioreactor volume of 11.7 m³. In terms of BOD, the loading rate was 2.8 kg BOD/d and it was almost totally removed. This system requires little space (0.15 m²/person) and maintenance work of less than one hour per month and it shows operational stability under peak loads.

  9. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    PubMed

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  10. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal.

    PubMed

    Yang, Shuai; Yang, Fenglin; Fu, Zhimin; Lei, Ruibo

    2009-04-01

    A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated for simultaneously removing organic carbon and nitrogen in wastewater. Its performance was compared with a conventional membrane bioreactor (CMBR) at various influent COD/TN ratios of 8.9-22.1. The operational parameters were optimized to increase the treatment efficiency. COD removal efficiency averaged at 95.6% and 96.2%, respectively, for MBMBR and CMBR during the 4 months experimental period. The MBMBR system demonstrated good performance on nitrogen removal at different COD/TN ratios. When COD/TN was 8.9 and the total nitrogen (TN) load was 7.58 mg/l h, the TN and ammonium nitrogen removal efficiencies of the MBMBR were maintained over 70.0% and 80.0%, respectively, and the removed total nitrogen (TN) load reached to 5.31 mg/l h. Multifunctional microbial reactions in the carrier, such as simultaneous nitrification and denitrification (SND), play important roles in nitrogen removal. In comparison, the CMBR did not perform so well. Its TN removal was not stable, and the removed total nitrogen (TN) load was only 1.02 mg/l h at COD/TN ratio 8.9. The specific oxygen utilization rate (SOUR) showed that the biofilm has a better microbial activity than an activated sludge. Nevertheless, the membrane fouling behavior was more severe in the MBMBR than in the CMBR due to a thick and dense cake layer formed on the membrane surface, which was speculated to be caused by the filamentous bacteria in the MBMBR.

  11. Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: A laboratory column study.

    PubMed

    Yargicoglu, Erin N; Reddy, Krishna R

    2017-05-15

    Alternate landfill covers designed to enhance microbial methane (CH 4 ) oxidation and reduce the negative impacts of landfill gas emissions on global climate have recently been proposed and investigated. In this study, the use of biochar as a soil amendment is examined in order to assess the feasibility and effectiveness for enhanced CH 4 removal in landfill covers when incorporated under high compaction conditions and relatively low soil moisture. Four different cover configurations were tested in large soil columns for ∼510 days and potential CH 4 oxidation rates were determined following long-term incubation in small batch assays. Cover designs tested include: a thin biochar layer at 15-18 cm; 2% mixed soil-biochar layer at 20-40 cm; 2% mixed soil-uncharred wood pellets at 20-40 cm; and soil obtained from intermediate cover at an active landfill site. The placement of a thin biochar layer in the cover significantly impacted moisture distribution and infiltration, which in turn affected CH 4 oxidation potential with depth. An increase in CH 4 removal rates was observed among all columns over the 500 day incubation period, with steady-state CH 4 removal efficiencies ranging from ∼60 to 90% in the final stages of incubation (inlet load ∼80 g CH 4  m -2  d -1 ). The thin biochar layer had the lowest average removal efficiency as a result of reduced moisture availability below the biochar layer. The addition of 2% biochar to soil yielded similar CH 4 oxidation rates in terminal assays as the 2% uncharred wood pellet amendment. CH 4 oxidation rates in terminal assays were positively correlated with soil moisture, which was affected by the materials' water holding capacity. The high water holding capacity of biochar led to higher oxidation rates within the thin biochar layer, supporting the initial hypothesis that biochar may confer more favorable physical conditions for methanotrophy. Ultimate performance was apparently affected by soil type and CH 4 exposure history, with the highest oxidation rates observed in the unamended field soil with higher initial methanotrophic activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparison of subsurface damages on mono-crystalline silicon between traditional nanoscale machining and laser-assisted nanoscale machining via molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Dai, Houfu; Li, Shaobo; Chen, Genyu

    2018-01-01

    Molecular dynamics is employed to compare nanoscale traditional machining (TM) with laser-assisted machining (LAM). LAM is that the workpiece is locally heated by an intense laser beam prior to material removal. We have a comprehensive comparison between LAM and TM in terms of atomic trajectories, phase transformation, radial distribution function, chips, temperature distribution, number of atoms in different temperature, grinding temperature, grinding force, friction coefficient and atomic potential energy. It can be found that there is a decrease of atoms with five and six nearest neighbors, and LAM generates more chips than that in the TM. It indicates that LAM reduces the subsurface damage of workpiece, gets a better-qualified ground surface and improves the material removal rate. Moreover, laser energy makes the materials fully softened before being removed, the number of atoms with temperature above 500 K is increased, and the average temperature of workpiece higher and faster to reach the equilibrium in LAM. It means that LAM has an absolute advantage in machining materials and greatly reduces the material resistance. Not only the tangential force (Fx) and the normal force (Fy) but also friction coefficients become smaller as laser heating reduces the strength and hardness of the material in LAM. These results show that LAM is a promising technique since it can get a better-qualified workpiece surface with larger material removal rates, less grinding force and lower friction coefficient.

  13. Transthoracic versus transhiatal esophagectomy - influence on patient survival.

    PubMed

    Łochowski, Mariusz; Łochowska, Barbara; Kozak, Józef

    2017-01-01

    To evaluate the survival of patients after surgery of the esophagus/cardia using the transthoracic and transhiatal methods. In the years 2007-2011, 102 patients were radically treated for cancer of the esophagus/cardia: 24 women and 78 men at the average age of 59.5. There were 38 transthoracic procedures and 64 transhiatal procedures. All patients had a conduit made from the stomach, led through lodges in the esophagus and combined with the stump of the esophagus in the neck following the Collard method. Two-pole lymphadenectomies were performed in all patients. Patients after transthoracic procedures had statistically more ( p < 0.05) lymph nodes removed than patients after transhiatal procedures. The 5-year survival rates in transhiatal and transthoracic procedures did not statistically differ, being 8% and 0% respectively. The length of patient survival was influenced by metastases in the nearby lymph nodes ( p < 0.0001) and the presence of adenocarcinoma. Surgical access (transhiatal and transthoracic surgery) does not affect the 5-year survival rates. Transhiatal surgery allows a greater number of lymph nodes to be removed. The main factor influencing the 5-year survival rate is the presence of metastases in the nearby lymph nodes.

  14. Impact of nitrogen loading rates on treatment performance of domestic wastewater and fouling propensity in submerged membrane bioreactor (MBR).

    PubMed

    Khan, Sher Jamal; Ilyas, Shazia; Zohaib-Ur-Rehman

    2013-08-01

    In this study, performance of laboratory-scale membrane bioreactor (MBR) was evaluated in treating high strength domestic wastewater under two nitrogen loading rates (NLR) i.e., 0.15 and 0.30 kg/m(3)/d in condition 1 and 2, respectively, while organic loading rate (OLR) was constant at 3 kg/m(3)/d in both conditions. Removal efficiencies of COD were above 95.0% under both NLR conditions. Average removal efficiencies of ammonium nitrogen (NH₄(+)-N), total nitrogen (TN) and total phosphorus (TP) were found to be higher in condition 1 (90.5%, 74.0%, and 38.0%, respectively) as compared to that in Condition 2 (89.3%, 35.0%, and 14.0%, respectively). With increasing NLR, particle size distribution shifted from narrow (67-133 μm) towards broader distribution (3-300 μm) inferring lower cake layer porosity over membrane fibers. Soluble extracellular polymer substance (sEPS) concentration increased at higher NLR due to biopolymers released from broken flocs. Higher cake layer resistance (Rc) contributed towards shorter filtration runs during condition 2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Hydrologic and climatic changes in three small watersheds after timber harvest.

    Treesearch

    W.B. Fowler; J.D. Helvey; E.N. Felix

    1987-01-01

    No significant increases in annual water yield were shown for three small watersheds in northeastern Oregon after shelterwood cutting (30-percent canopy removal, 50-percent basal area removal) and clearcutting. Average maximum air temperature increased after harvest and average minimum air temperature decreased by up to 2.6 °C. Both maximum and minimum water...

  16. Limb lengthening in Turner syndrome.

    PubMed Central

    Noonan, K. J.; Leyes, M.; Forriol, F.

    1997-01-01

    We report the results and complications of eight consecutive patients who underwent bilateral tibial lengthenings for dwarfism associated with Turner syndrome. Lengthening was performed via distraction osteogenesis with monolateral external fixation. Tibias were lengthened an average distance of 9.2 centimeters or 33 percent of the original tibial length. The average total treatment time was 268 days. The overall complication rate was 169 percent for each tibia lengthened and each segment required an average of 1.7 additional procedures. Seven cases (44 percent) required Achilles tendon lengthening and nine cases (56 percent) developed angulation before or after fixator removal; six of these segments required corrective osteotomy for axial malalignment. Two cases (12.5 percent) developed distraction site nonunion and required plating and bone grafting. From this series we conclude that tibial lengthening via distraction osteogenesis can be used to treat disproportionate short stature in patients with Turner syndrome. However, the benefit of a cosmetic increase in height may not compensate for the high complication rate. Efforts to determine the psychosocial and functional benefits of limb lengthening in patients with short stature is necessary to determine the true cost-benefit ratio of this procedure. Images Figure 1a Figure 1b Figure 1c PMID:9234980

  17. Biofiltration of volatile ethanol using sugar cane bagasse inoculated with Candida utilis.

    PubMed

    Christen, P; Domenech, F; Michelena, G; Auria, R; Revah, S

    2002-01-28

    Candida utilis (C. utilis) growing on sugar cane bagasse complemented with a mineral salt solution was studied for gaseous ethanol removal in a biofilter. Ethanol loads from 93.7 to 511.9 g/h m(3) were used, by varying both inlet ethanol concentration (9.72 to 52.4 g/m(3)) and air flow rate (1.59 x 10(-3) to 2.86 x 10(-3) m(3)/h). At a loading rate of 93.7 g/h m(3), a steady-state was maintained for 300 h. Ethanol removal was complete, and 76.3% of the carbon consumed was found in carbon dioxide. At an higher aeration rate (ethanol load=153.8 g/h m(3)), the biofilter displayed an average removal efficiency (RE) of 70%, and an elimination capacity (EC) of 107.7 g/h m(3). Only 64.4% of the carbon consumed was used for CO(2) production. Acetaldehyde and ethyl acetate in the outlet gas attained 7.86 and 20.4% in terms of carbon balance, respectively. In both cases, the transient phase was less than one day. At a high inlet ethanol concentration (52.4 g/m(3)), no steady-state was observed and the process stopped during the third day. In the three cases, final biomass was poor, ranging from 10.5 to 14.8 mg/g dm. Final pH 4.0-4.6, indicated that acidifying non-volatile metabolites, such as acetate, accumulated in the reactor.

  18. Optimization of a horizontal-flow biofilm reactor for the removal of methane at low temperatures.

    PubMed

    Clifford, E; Kennelly, C; Walsh, R; Gerrity, S; Reilly, E O; Collins, G

    2012-10-01

    Three pilot-scale, horizontal-flow biofilm reactors (HFBRs 1-3) were used to treat methane (CH4)-contaminated air to assess the potential of this technology to manage emissions from agricultural activities, waste and wastewater treatment facilities, and landfills. The study was conducted over two phases (Phase 1, lasting 90 days and Phase 2, lasting 45 days). The reactors were operated at 10 degrees C (typical of ambient air and wastewater temperatures in northern Europe), and were simultaneously dosed with CH4-contaminated air and a synthetic wastewater (SWW). The influent loading rates to the reactors were 8.6 g CH4/m3/hr (4.3 g CH4/m2 TPSA/hr; where TPSA is top plan surface area). Despite the low operating temperatures, an overall average removal of 4.63 g CH4/m3/day was observed during Phase 2. The maximum removal efficiency (RE) for the trial was 88%. Potential (maximum) rates of methane oxidation were measured and indicated that biofilm samples taken from various regions in the HFBRs had mostly equal CH4 removal potential. In situ activity rates were dependent on which part of the reactor samples were obtained. The results indicate the potential of the HFBR, a simple and robust technology, to biologically treat CH4 emissions. The results of this study indicate that the HFBR technology could be effectively applied to the reduction of greenhouse gas emissions from wastewater treatment plants and agricultural facilities at lower temperatures common to northern Europe. This could reduce the carbon footprint of waste treatment and agricultural livestock facilities. Activity tests indicate that methanotrophic communities can be supported at these temperatures. Furthermore, these data can lead to improved reactor design and optimization by allowing conditions to be engineered to allow for improved removal rates, particularly at lower temperatures. The technology is simple to construct and operate, and with some optimization of the liquid phase to improve mass transfer, the HFBR represents a viable, cost-effective solution for these emissions.

  19. Recursive optimal pruning with applications to tree structured vector quantizers

    NASA Technical Reports Server (NTRS)

    Kiang, Shei-Zein; Baker, Richard L.; Sullivan, Gary J.; Chiu, Chung-Yen

    1992-01-01

    A pruning algorithm of Chou et al. (1989) for designing optimal tree structures identifies only those codebooks which lie on the convex hull of the original codebook's operational distortion rate function. The authors introduce a modified version of the original algorithm, which identifies a large number of codebooks having minimum average distortion, under the constraint that, in each step, only modes having no descendents are removed from the tree. All codebooks generated by the original algorithm are also generated by this algorithm. The new algorithm generates a much larger number of codebooks in the middle- and low-rate regions. The additional codebooks permit operation near the codebook's operational distortion rate function without time sharing by choosing from the increased number of available bit rates. Despite the statistical mismatch which occurs when coding data outside the training sequence, these pruned codebooks retain their performance advantage over full search vector quantizers (VQs) for a large range of rates.

  20. Measurements of NO3 radicals by LP-DOAS near Beijing during the HOPE-J3A campaign

    NASA Astrophysics Data System (ADS)

    Lu, Xue; Qin, Min; Xie, Pinhua; Duan, Jun; Fang, Wu

    2017-04-01

    NO3 radicals is the driving force of night atmospheric chemistry. It reacts with the organic species to form peroxides and SOA, and plays an important role in the formation of HNO3 by non-photochemical reactions of nitrogen oxides, which are related to the haze formation of polluted and strong oxidizing atmosphere. In this poster, we present two field campaigns for NO3 radicals taken at a suburban sites near Beijing during different seasons. The observed mean NO3 mixing ratios in November, December and June are 20.5, 14.6 and 38.4 ppt, respectively. The calculated NO3 production rates were averaging at 655.2, 242.8 and 428.9 ppt/h, respectively. The calculated NO3 steady state lifetime has an average of 183, 396 and 508 s. The results show a wide seasonal variability of the concentrations, production rates, lifetime and removal paths of NO3 radicals at the site.

  1. Design and performance of limestone drains to increase pH and remove metals from acidic mine drainage, Chapter 2

    USGS Publications Warehouse

    Cravotta,, Charles A.; Watzlaf, George R.

    2002-01-01

    Data on the construction characteristics and the composition of influent and effluent at 13 underground, limestone-filled drains in Pennsylvania and Maryland are reported to evaluate the design and performance of limestone drains for the attenuation of acidity and dissolved metals in acidic mine drainage. On the basis of the initial mass of limestone, dimensions of the drains, and average flow rates, the initial porosity and average detention time for each drain were computed. Calculated porosity ranged from 0.12 to 0.50 with corresponding detention times at average flow from 1.3 to 33 h. The effectiveness of treatment was dependent on influent chemistry, detention time, and limestone purity. At two sites where influent contained elevated dissolved Al (>5 mg/liter), drain performance declined rapidly; elsewhere the drains consistently produced near-neutral effluent, even when influent contained small concentrations of dissolved Fe^+ (<5 mg/liter). Rates of limestone dissolution computed on the basis of average long-term Ca ion flux normalized by initial mass and purity of limestone at each of the drains ranged from 0.008 to 0.079 year-1. Data for alkalinity concentration and flux during 11-day closed-container tests using an initial mass of 4kg crushed limestone and a solution volume of 2.3 liter yielded dissolution rate constants that were comparable to these long-term field rates. An analytical method is proposed using closed-container test data to evaluate long-term performance (longevity) or to estimate the mass of limestone needed for a limestone treatment. This method condisers flow rate, influent alkalinity, steady-state alkalinity of effluent, and desired effluent alkalinity or detention time at a future time(s) and aplies first-order rate laws for limestone dissolution (continuous) and production of alkalinity (bounded).

  2. Improving bioelectricity generation and COD removal of sewage sludge in microbial desalination cell.

    PubMed

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Darzi, Ghasem Najafpour

    2018-05-01

    Improving wastewater treatment process and water desalination are two important solutions for increasing the available supply of fresh water. Microbial desalination cells (MDCs) with common electrolytes display relatively low organic matter removal and high cost. In this study, sewage sludge was used as the substrate in the Microbial desalination cell (MDC) under three different initial salt concentrations (5, 20 and 35 g.L -1 ) and the maximum salt removal rates of 50.6%, 64% and 69.6% were obtained under batch condition, respectively. The MDC also produced the maximum power density of 47.1 W m -3 and the averaged chemical oxygen demand (COD) removal of 58.2 ± 0.89% when the initial COD was 6610 ± 83 mg L -1 . Employing treated sludge as catholyte enhanced COD removal and power density to 87.3% and 54.4 W m -3 , respectively, with counterbalancing pH variation in treated effluent. These promising results showed, for the first time, that the excess sewage sludge obtained from biological wastewater treatment plants could be successfully used as anolyte and catholyte in MDC, achieving organic matter biodegradation along with salt removal and energy production. In addition, using treated sludge as catholyte will improve the performance of MDC and introduce a more effective method for both sludge treatment and desalination.

  3. Post-anoxic denitrification via nitrite driven by PHB in feast-famine sequencing batch reactor.

    PubMed

    Chen, Hong-Bo; Yang, Qi; Li, Xiao-Ming; Wang, Yan; Luo, Kun; Zeng, Guang-Ming

    2013-08-01

    Recently, it was found that excess phosphorus removal could be induced by aerobic/extended-idle regime. In this study, an anoxic period was introduced after the aeration to realize simultaneous nitrogen and phosphorus removal. The results demonstrated that stable partial nitrification could be achieved by controlling the aeration duration at 2.5h because it could not only obtain a desirable ammonia oxidation to nitrite but also avoid the extensive aeration converting nitrite to nitrate, and moreover, the accumulated poly-3-hydroxybutyrate still remain in a relative sufficient concentration (1.5mmolCg(-1) VSS), which could subsequently served as internal carbon source for post-anoxic denitrification. The nitrite accumulation ratio was observed to have relatively high correlation with biological nutrient removal. Over stages with stable high-level nitrite accumulation, the process achieved desirable and stable nitrogen and phosphorus removal efficiencies averaging 95% and 99% respectively. Fluorescence in situ hybridization analysis showed that the faster growth rate of the ammonia oxidizing bacteria than the nitrite oxidizing bacteria was the main reason for achieving nitrite accumulation. In addition, the secondary phosphorus release was negligible and the process maintained excellent nutrient removal under low influent ammonia nitrogen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Investigation on evaluation criteria of backwashing effects for a pilot-scale BAF treating petrochemical wastewater.

    PubMed

    Fu, Liya; Wu, Changyong; Zhou, Yuexi; Zuo, Jiane; Ding, Yan

    2017-10-01

    Parameters for evaluation criteria of air-water backwashing effects of a pilot-scale biological aerated filter (BAF) treating petrochemical wastewater were investigated. The parameters included the suspended solids (SS) and specific oxygen uptake rate (SOUR) of the backwashing effluent, recovery of the BAF after backwashing, and the removal of the biomass/bioactivity attached on the filter media after backwashing. Results showed that the weight of the total sludge produced in the backwashing effluent increased with the increase in water-backwashing intensity, while the total SOUR of backwashing effluent rose notably with the increase of air-backwashing intensity. The optimal backwashing intensity of 14 L/(m 2 · s) for air and 4 L/(m 2 · s) for water were obtained. When the BAF was backwashed on this condition, the BAF recovered with high average removal of chemical oxygen demand (COD) and ammonia nitrogen [Formula: see text] of 14.3% and 50.3%, respectively. High amount of biomass removal at 15.8% and low level of bioactivity removal at 8.8% attached on the filter media were also found. Concentrations of the benzene, toluene, ethylbenzene and (o-, m-, p-) xylenes (BTEX) and phenol in the backwashed sludge were analyzed, showing that the backwashing was essential to remove some aromatic compounds adsorbed in the microorganisms.

  5. Effect of a strengthened ecological floating bed on the purification of urban landscape water supplied with reclaimed water.

    PubMed

    Wang, Wen-Huai; Wang, Yi; Li, Zhi; Wei, Cun-Zhi; Zhao, Jing-Chan; Sun, Lu-Qin

    2018-05-01

    A floating bed (FB) system vegetated with calamus, iris, lythrum, and Hydrocotyle vulgaris, and a strengthened FB (SFB) system with zeolite and sponge iron as fillers were simultaneously applied to purify urban landscape water in different zones. The urban landscape water, an artificial lake of approximately 326m 2 , was supplied with reclaimed water during a six-month experiment. Results indicated that the concentrations of nitrogen (N) and phosphorus (P) in the SFB zone (SFBZ) were significantly lower than those in the control zone (CZ) and the FB zone (FBZ) after six months of operation. The average removal efficiencies (AREs) in the SFBZ, FBZ and CZ were 89.98%, 77.39% and 56.37%, respectively, for ammonia nitrogen (NH 4 + -N); 92.49%, 79.55% and 47.85%, respectively, for phosphate (PO 4 3- -P). Meanwhile, the average concentration of Chlorophyll a and the algae density in SFBZ during the experiment were 12.54μg/L and 1.31×10 4 cells/mL, which were lower, obviously, than those in the FBZ and CZ. Moreover, the contribution rates analysis of nutrient removal exhibited that the plant absorption in the removal of N and P occupied 27.85% and 26.36%, whereas the filler adsorption occupied 7.93% and 11.93%, respectively, in the SFB. Thus, the water quality of the artificial lake was improved greatly by the SFB which hybridized fillers and FB together. Finally, it was found that the AREs of NH 4 + -N and PO 4 3- -P in the SFBZ could reach 73.93% and 84.56%, approximately 1.39 and 1.41 times that of the FBZ during the winter. Therefore, the application of an SFB can keep a stable water quality in urban landscape water and avoid the lower removal rate of an FB at low-temperature. In summary, the SFB could effectively improve the water quality of urban landscape water supplied with reclaimed water even in winter. Copyright © 2017. Published by Elsevier B.V.

  6. Movies with smoking make less money.

    PubMed

    Glantz, Stanton A; Polansky, Jonathan R

    2012-11-01

    To determine the relationship between presence of smoking in films and total box office receipts. Regression analysis of box office receipts as a function of film rating, production budget, year of release and presence of smoking for 1232 films released in the USA between 2002 and 2010. R-rated films made, on average, 87% (95% CI 83% to 90%) of what PG-13 films of similar smoking status made and smoking films made 87% (95% CI 79% to 96%) of what comparably rated smoke-free films made. Larger budget films made more money. There was no significant effect of release year or G/PG rating compared with PG-13-rated movies. Because PG-13 films without smoking (median $48.6 million) already make 41% more money at the box office than R-rated movies with smoking (median $34.4 million), implementing an R rating for smoking to remove it from youth-rated films will not conflict with the economic self-interest of producer-distributors.

  7. Comparison of drinking water treatment process streams for optimal bacteriological water quality.

    PubMed

    Ho, Lionel; Braun, Kalan; Fabris, Rolando; Hoefel, Daniel; Morran, Jim; Monis, Paul; Drikas, Mary

    2012-08-01

    Four pilot-scale treatment process streams (Stream 1 - Conventional treatment (coagulation/flocculation/dual media filtration); Stream 2 - Magnetic ion exchange (MIEX)/Conventional treatment; Stream 3 - MIEX/Conventional treatment/granular activated carbon (GAC) filtration; Stream 4 - Microfiltration/nanofiltration) were commissioned to compare their effectiveness in producing high quality potable water prior to disinfection. Despite receiving highly variable source water quality throughout the investigation, each stream consistently reduced colour and turbidity to below Australian Drinking Water Guideline levels, with the exception of Stream 1 which was difficult to manage due to the reactive nature of coagulation control. Of particular interest was the bacteriological quality of the treated waters where flow cytometry was shown to be the superior monitoring tool in comparison to the traditional heterotrophic plate count method. Based on removal of total and active bacteria, the treatment process streams were ranked in the order: Stream 4 (average log removal of 2.7) > Stream 2 (average log removal of 2.3) > Stream 3 (average log removal of 1.5) > Stream 1 (average log removal of 1.0). The lower removals in Stream 3 were attributed to bacteria detaching from the GAC filter. Bacterial community analysis revealed that the treatments affected the bacteria present, with the communities in streams incorporating conventional treatment clustering with each other, while the community composition of Stream 4 was very different to those of Streams 1, 2 and 3. MIEX treatment was shown to enhance removal of bacteria due to more efficient flocculation which was validated through the novel application of the photometric dispersion analyser. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Efficacy and adverse events of cold vs hot polypectomy: A meta-analysis.

    PubMed

    Fujiya, Mikihiro; Sato, Hiroki; Ueno, Nobuhiro; Sakatani, Aki; Tanaka, Kazuyuki; Dokoshi, Tatsuya; Fujibayashi, Shugo; Nomura, Yoshiki; Kashima, Shin; Gotoh, Takuma; Sasajima, Junpei; Moriichi, Kentaro; Watari, Jiro; Kohgo, Yutaka

    2016-06-21

    To compare previously reported randomized controlled studies (RCTs) of cold and hot polypectomy, we systematically reviewed and clarify the utility of cold polypectomy over hot with respect to efficacy and adverse events. A meta-analysis was conducted to evaluate the predominance of cold and hot polypectomy for removing colon polyps. Published articles and abstracts from worldwide conferences were searched using the keywords "cold polypectomy". RCTs that compared either or both the effects or adverse events of cold polypectomy with those of hot polypectomy were collected. The patients' demographics, endoscopic procedures, No. of examined lesions, lesion size, macroscopic and histologic findings, rates of incomplete resection, bleeding amount, perforation, and length of procedure were extracted from each study. A forest plot analysis was used to verify the relative strength of the effects and adverse events of each procedure. A funnel plot was generated to assess the possibility of publication bias. Ultimately, six RCTs were selected. No significant differences were noted in the average lesion size (less than 10 mm) between the cold and hot polypectomy groups in each study. Further, the rates of complete resection and adverse events, including delayed bleeding, did not differ markedly between cold and hot polypectomy. The average procedural time in the cold polypectomy group was significantly shorter than in the hot polypectomy group. Cold polypectomy is a time-saving procedure for removing small polyps with markedly similar curability and safety to hot polypectomy.

  9. Percutaneous Lead Extraction in Infection of Cardiac Implantable Electronic Devices: a Systematic Review

    PubMed Central

    Menezes Júnior, Antônio da Silva; Magalhães, Thaís Rodrigues; Morais, Alana de Oliveira Alarcão

    2018-01-01

    Introduction In the last two decades, the increased number of implants of cardiac implantable electronic devices has been accompanied by an increase in complications, especially infection. Current recommendations for the appropriate treatment of cardiac implantable electronic devices-related infections consist of prolonged antibiotic therapy associated with complete device extraction. The purpose of this study was to analyze the importance of percutaneous extraction in the treatment of these devices infections. Methods A systematic review search was performed in the PubMed, BVS, Cochrane CENTRAL, CAPES, SciELO and ScienceDirect databases. A total of 1,717 studies were identified and subsequently selected according to the eligibility criteria defined by relevance tests by two authors working independently. Results Sixteen studies, describing a total of 3,354 patients, were selected. Percutaneous extraction was performed in 3,081 patients. The average success rate for the complete percutaneous removal of infected devices was 92.4%. Regarding the procedure, the incidence of major complications was 2.9%, and the incidence of minor complications was 8.4%. The average in-hospital mortality of the patients was 5.4%, and the mortality related to the procedure ranged from 0.4 to 3.6%. The mean mortality was 20% after 6 months and 14% after a one-year follow-up. Conclusion Percutaneous extraction is the main technique for the removal of infected cardiac implantable electronic devices, and it presents low rates of complications and mortality related to the procedure.

  10. Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater.

    PubMed

    Keating, Ciara; Chin, Jason P; Hughes, Dermot; Manesiotis, Panagiotis; Cysneiros, Denise; Mahony, Therese; Smith, Cindy J; McGrath, John W; O'Flaherty, Vincent

    2016-01-01

    We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (∼2%) within the sludge bed and fixed-film biofilms. 4', 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4 and 1.5 kg COD m(-3) d(-1) and hydraulic retention times of 8-24 h, while phosphate removal efficiency ranged from 28 to 78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12°C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina MiSeq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterized polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter, and Acinetobacter was recorded at low numbers. However, it is unknown as yet if these were responsible for the luxury polyP uptake observed in this system. The possibility of efficient phosphate removal and recovery from wastewater during AD would represent a major advance in the scope for widespread application of anaerobic wastewater treatment technologies.

  11. Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater

    PubMed Central

    Keating, Ciara; Chin, Jason P.; Hughes, Dermot; Manesiotis, Panagiotis; Cysneiros, Denise; Mahony, Therese; Smith, Cindy J.; McGrath, John W.; O’Flaherty, Vincent

    2016-01-01

    We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (∼2%) within the sludge bed and fixed-film biofilms. 4′, 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4 and 1.5 kg COD m-3 d-1 and hydraulic retention times of 8–24 h, while phosphate removal efficiency ranged from 28 to 78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12°C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina MiSeq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterized polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter, and Acinetobacter was recorded at low numbers. However, it is unknown as yet if these were responsible for the luxury polyP uptake observed in this system. The possibility of efficient phosphate removal and recovery from wastewater during AD would represent a major advance in the scope for widespread application of anaerobic wastewater treatment technologies. PMID:26973608

  12. Sedimentation survey of Lago Cerrillos, Ponce, Puerto Rico, April-May 2008

    USGS Publications Warehouse

    Soler-López, Luis R.

    2011-01-01

    Lago Cerrillos dam, located in the municipality of Ponce in southern Puerto Rico, was constructed in 1991 as part of the multipurpose Rio Portugues and Bucana Project. This project provides flood protection, water supply, and recreation facilities for the municipio of Ponce. The reservoir had an original storage capacity of 38.03 million cubic meters at maximum conservation pool elevation of 174.65 meters above mean sea level and a drainage area of 45.32 square kilometers. Sedimentation in Lago Cerrillos reservoir has reduced the storage capacity from 38.03 million cubic meters in 1991 to 37.26 million cubic meters in 2008, which represents a total storage loss of about 2 percent. During July 29 to August 23, 2002, 8,492 cubic meters of sediment were removed from the Rio Cerrillos mouth of the reservoir. Taking into account this removed material, the total water-storage loss as of 2008 is 778,492 cubic meters, and the long-term annual water-storage capacity loss rate is about 45,794 cubic meters per year or about 0.12 percent per year. The Lago Cerrillos net sediment-contributing drainage area has an average sediment yield of about 1,069 cubic meters per square kilometer per year. Sediment accumulation in Lago Cerrillos is not uniformly distributed and averages about 3 meters in thickness. This represents a sediment deposition rate of about 18 centimeters per year. On the basis of the 2008 reservoir storage capacity of 37.26 million cubic meters per year and a long-term sedimentation rate of 45,794 cubic meters per year, Lago Cerrillos is estimated to have a useful life of about 814 years or until the year 2822.

  13. [Endoscopic realignment with drainage via a peel-away sheath for the treatment of urethral rupture: A report of 21 cases].

    PubMed

    Han, Cong-Xiang; Xu, Wei-Jie; Li, Wei; Yu, Zhong-Ying; Li, Jin-Yu; Lin, Xia-Cong; Zhao, Li

    2016-07-01

    To study the clinical effect endoscopic realignment with drainage via a peel-away sheath in the treatment of urethral rupture. We treated 21 urethral rupture patients by endoscopic realignment with drainage via a peel-away sheath using normal saline for irrigation under the normal nephroscope or Li Xun nephroscope, followed by analysis of the clinical results. The operation was successfully accomplished in 20 cases but failed in 1 and none experienced urinary extravasation. In the 14 cases of bulbar urethral rupture, the mean operation time was (5.1±1.6) min and the mean Foley catheter indwelling time was (26.0±5.1) d. Urethral stricture developed in 57.1% (8/14) of the cases after catheter removal, of which 1 was cured by internal urethrotomy and the other 7 by urethral sound dilation, with an average maximum urinary flow rate of (18.8±1.8) ml/s at 12 months after operation. In the 6 cases of posterior urethral rupture, the mean operation time was (15.8±7.5) min and the mean Foley catheter indwelling time was 8 weeks. Urethral stricture developed in all the 6 cases after catheter removal, of which 3 cases were cured by urethral dilation, 1 by internal urethrotomy, and 2 by open urethroplasty. The average maxium urinary flow rate of the 4 cases exempt from open surgery was (17.9±1.9) ml/s at 12 months after operation. Endoscopic realignment with drainage via a peel-away sheath can keep the operative field clear, avoid intraoperative rinse extravasation, shorten the operation time, improve the operation success rate, and achieve satisfactory early clinical outcomes in the treatment of either bulbar or posterior urethral rupture.

  14. Optimizing a Sensor Network with Data from Hazard Mapping Demonstrated in a Heavy-Vehicle Manufacturing Facility.

    PubMed

    Berman, Jesse D; Peters, Thomas M; Koehler, Kirsten A

    2018-05-28

    To design a method that uses preliminary hazard mapping data to optimize the number and location of sensors within a network for a long-term assessment of occupational concentrations, while preserving temporal variability, accuracy, and precision of predicted hazards. Particle number concentrations (PNCs) and respirable mass concentrations (RMCs) were measured with direct-reading instruments in a large heavy-vehicle manufacturing facility at 80-82 locations during 7 mapping events, stratified by day and season. Using kriged hazard mapping, a statistical approach identified optimal orders for removing locations to capture temporal variability and high prediction precision of PNC and RMC concentrations. We compared optimal-removal, random-removal, and least-optimal-removal orders to bound prediction performance. The temporal variability of PNC was found to be higher than RMC with low correlation between the two particulate metrics (ρ = 0.30). Optimal-removal orders resulted in more accurate PNC kriged estimates (root mean square error [RMSE] = 49.2) at sample locations compared with random-removal order (RMSE = 55.7). For estimates at locations having concentrations in the upper 10th percentile, the optimal-removal order preserved average estimated concentrations better than random- or least-optimal-removal orders (P < 0.01). However, estimated average concentrations using an optimal-removal were not statistically different than random-removal when averaged over the entire facility. No statistical difference was observed for optimal- and random-removal methods for RMCs that were less variable in time and space than PNCs. Optimized removal performed better than random-removal in preserving high temporal variability and accuracy of hazard map for PNC, but not for the more spatially homogeneous RMC. These results can be used to reduce the number of locations used in a network of static sensors for long-term monitoring of hazards in the workplace, without sacrificing prediction performance.

  15. Emergency face-mask removal effectiveness: a comparison of traditional and nontraditional football helmet face-mask attachment systems.

    PubMed

    Swartz, Erik E; Belmore, Keith; Decoster, Laura C; Armstrong, Charles W

    2010-01-01

    Football helmet face-mask attachment design changes might affect the effectiveness of face-mask removal. To compare the efficiency of face-mask removal between newly designed and traditional football helmets. Controlled laboratory study. Applied biomechanics laboratory. Twenty-five certified athletic trainers. The independent variable was face-mask attachment system on 5 levels: (1) Revolution IQ with Quick Release (QR), (2) Revolution IQ with Quick Release hardware altered (QRAlt), (3) traditional (Trad), (4) traditional with hardware altered (TradAlt), and (5) ION 4D (ION). Participants removed face masks using a cordless screwdriver with a back-up cutting tool or only the cutting tool for the ION. Investigators altered face-mask hardware to unexpectedly challenge participants during removal for traditional and Revolution IQ helmets. Participants completed each condition twice in random order and were blinded to hardware alteration. Removal success, removal time, helmet motion, and rating of perceived exertion (RPE). Time and 3-dimensional helmet motion were recorded. If the face mask remained attached at 3 minutes, the trial was categorized as unsuccessful. Participants rated each trial for level of difficulty (RPE). We used repeated-measures analyses of variance (α  =  .05) with follow-up comparisons to test for differences. Removal success was 100% (48 of 48) for QR, Trad, and ION; 97.9% (47 of 48) for TradAlt; and 72.9% (35 of 48) for QRAlt. Differences in time for face-mask removal were detected (F(4,20)  =  48.87, P  =  .001), with times ranging from 33.96 ± 14.14 seconds for QR to 99.22 ± 20.53 seconds for QRAlt. Differences were found in range of motion during face-mask removal (F(4,20)  =  16.25, P  =  .001), with range of motion from 10.10° ± 3.07° for QR to 16.91° ± 5.36° for TradAlt. Differences also were detected in RPE during face-mask removal (F(4,20)  =  43.20, P  =  .001), with participants reporting average perceived difficulty ranging from 1.44 ± 1.19 for QR to 3.68 ± 1.70 for TradAlt. The QR and Trad trials resulted in superior results. When trials required cutting loop straps, results deteriorated.

  16. Improving the biological nitrogen removal process in pharmaceutical wastewater treatment plants: a case study.

    PubMed

    Torrijos, M; Carrera, J; Lafuente, J

    2004-04-01

    The Biological Nitrogen Removal (BNR) process of some pharmaceutical wastewater treatment plants has important operational problems. This study shows that, in order to solve these problems, the design of industrial BNR processes should start by analysing three key parameters: the characteristics of the wastewater load, the determination of the maximum TKN removal rate and the detection of toxic or inhibitory compounds in the wastewater. A case study of this analysis in pharmaceutical wastewater is presented here. In this case, the conventional TKN analytical method does not make an accurate characterisation of the wastewater load because it measures a concentration of 100 mg TKN l(-1) whereas the real concentration, determined with a modified TKN analytical method, is 150-500 mg TKN l(-1). Also, the TKN removal of the treatment system is insufficient in some periods because it falls below legal requirements. This problem might be a consequence of the wrong characterisation of wastewater during the design process. The maximum TKN removal at 27 degrees C (24 mg N g VSS(-1) d(-1) or 197 mg N l(-1) d(-1)) was evaluated in a pilot-scale plant. This value is six times greater than the average NLR applied in the full-scale plant. Finally, some of the components of the wastewater, such as p-phenylenediamine, might have inhibitory or toxic effects on the biological process. P-phenylenediamine causes a large decrease in the nitrification rate. This effect was determined by respirometry. This methodology shows that the effect is mainly inhibitory with a contact time of 30 min and if the contact time is longer, 14 hours, a toxic effect is observed.

  17. Anterior capsulotomy with an ultrashort-pulse laser.

    PubMed

    Tackman, Ramon Naranjo; Kuri, Jorge Villar; Nichamin, Louis D Skip; Edwards, Keith

    2011-05-01

    To assess the precision of laser anterior capsulotomy compared with that of manual continuous curvilinear capsulorhexis (CCC). Asociación Para Evitar La Ceguera en México IAP, Hospital Dr. Luis Sánchez Bulnes, Mexico City, Mexico. Nonrandomized single-center clinical trial. In patients presenting for cataract surgery, the LensAR Laser System was used to create a laser anterior capsulotomy of the surgeon's desired size. Capsule buttons were retrieved and measured and then compared with buttons retrieved from eyes having a manually torn CCC. Deviation from the intended diameter and the regularity of shape were assessed. When removing the capsule buttons at the start of surgery, the surgeon rated the ease of removal on a scale of 1 to 10 (1 = required manual capsulorhexis around the whole diameter; 10 = button free floating or required no manual detachment from remaining capsule during removal). The mean deviation from the intended diameter was 0.16 mm ± 0.17 (SD) for laser anterior capsulotomy and 0.42 ± 0.54 mm for CCC (P=.03). The mean absolute deviation from the intended diameter was 0.20 ± 0.12 mm and 0.49 ± 0.47 mm, respectively (P=.003). The mean of the average squared residuals was 0.01 ± 0.03 and 0.02 ± 0.04, respectively (P=.09). The median rating of the ease of removal was 9 (range 5 to 10). Laser anterior capsulotomy created a more precise capsule opening than CCC, and the buttons created by the laser procedure were easy to remove at the beginning of cataract surgery. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Increase in nitrate uptake by soybean plants during interruption of the dark period with low intensity light

    NASA Technical Reports Server (NTRS)

    Raper, C. D. Jr; Vessey, J. K.; Henry, L. T.

    1991-01-01

    Diurnal patterns of net NO3- uptake by nonnodulated soybean [Glycine max (L.) Merr. cv. Ransom] plants growing in flowing hydroponic culture at 26 and 16 degrees C root temperatures were measured at hourly intervals during alternate days of a 12-day growth period. Ion chromatography was used to determine removal of NO3- from the culture solution. Day and night periods of 9 and 15 h were used during growth. The night period included two 6-h dark periods and an intervening 3-h period of night interruption by incandescent lamps to effect a long-day photoperiod and repress floral initiation. At both root temperatures, the average specific rates of NO3- uptake were twice as great during the night interruption period as during the day period; they were greater during the day period than during the dark periods; and they were greater during the dark period immediately following the day period than during the later dark period that followed the night interruption. While these average patterns were repetitious among days, measured rates of uptake varied hourly and included intervals of net efflux scattered through the day period and more frequently through the 2 dark periods. Root temperature did not affect the average daily specific rates of uptake or the qualitative relationships among day, dark and night interruption periods of the diurnal cycle.

  19. Design, fabrication, and operation of capsules for the irradiation testing of candidate advanced space reactor fuel pins

    NASA Technical Reports Server (NTRS)

    Thoms, K. R.

    1975-01-01

    Fuel irradiation experiments were designed, built, and operated to test uranium mononitride (UN) fuel clad in tungsten-lined T-111 and uranium dioxide fuel clad in both tungsten-lined T-111 and tungsten-lined Nb-1% Zr. A total of nine fuel pins was irradiated at average cladding temperatures ranging from 931 to 1015 C. The UN experiments, capsules UN-4 and -5, operated for 10,480 and 10,037 hr, respectively, at an average linear heat generation rate of 10 kW/ft. The UO2 experiment, capsule UN-6, operated for 8333 hr at an average linear heat generation rate of approximately 5 kW/ft. Following irradiation, the nine fuel pins were removed from their capsules, externally examined, and sent to the NASA Plum Brook Facility for more detailed postirradiation examination. During visual examination, it was discovered that the cladding of the fuel pin containing dense UN in each of capsules UN-4 and -5 had failed, exposing the UN fuel to the NaK in which the pins were submerged and permitting the release of fission gas from the failed pins. A rough analysis of the fission gas seen in samples of the gas in the fuel pin region indicated fission gas release-to-birth rates from these fuel pins in the range of .00001.

  20. A novel PSB-EDI system for high ammonia wastewater treatment, biomass production and nitrogen resource recovery: PSB system.

    PubMed

    Wang, Hangyao; Zhou, Qin; Zhang, Guangming; Yan, Guokai; Lu, Haifeng; Sun, Liyan

    A novel process coupling photosynthetic bacteria (PSB) with electrodeionization (EDI) treatment was proposed to treat high ammonia wastewater and recover bio-resources and nitrogen. The first stage (PSB treatment) was used to degrade organic pollutants and accumulate biomass, while the second stage (EDI) was for nitrogen removal and recovery. The first stage was the focus in this study. The results showed that using PSB to transform organic pollutants in wastewater into biomass was practical. PSB could acclimatize to wastewater with a chemical oxygen demand (COD) of 2,300 mg/L and an ammonia nitrogen (NH4(+)-N) concentration of 288-4,600 mg/L. The suitable pH was 6.0-9.0, the average COD removal reached 80%, and the biomass increased by an average of 9.16 times. The wastewater COD removal was independent of the NH4(+)-N concentration. Moreover, the PSB functioned effectively when the inoculum size was only 10 mg/L. The PSB-treated wastewater was then further handled in an EDI system. More than 90% of the NH4(+)-N was removed from the wastewater and condensed in the concentrate, which could be used to produce nitrogen fertilizer. In the whole system, the average NH4(+)-N removal was 94%, and the average NH4(+)-N condensing ratio was 10.0.

  1. Comparison of detrending methods for fluctuation analysis in hydrology

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhou, Yu; Singh, Vijay P.; Chen, Yongqin David

    2011-03-01

    SummaryTrends within a hydrologic time series can significantly influence the scaling results of fluctuation analysis, such as rescaled range (RS) analysis and (multifractal) detrended fluctuation analysis (MF-DFA). Therefore, removal of trends is important in the study of scaling properties of the time series. In this study, three detrending methods, including adaptive detrending algorithm (ADA), Fourier-based method, and average removing technique, were evaluated by analyzing numerically generated series and observed streamflow series with obvious relative regular periodic trend. Results indicated that: (1) the Fourier-based detrending method and ADA were similar in detrending practices, and given proper parameters, these two methods can produce similarly satisfactory results; (2) detrended series by Fourier-based detrending method and ADA lose the fluctuation information at larger time scales, and the location of crossover points is heavily impacted by the chosen parameters of these two methods; and (3) the average removing method has an advantage over the other two methods, i.e., the fluctuation information at larger time scales is kept well-an indication of relatively reliable performance in detrending. In addition, the average removing method performed reasonably well in detrending a time series with regular periods or trends. In this sense, the average removing method should be preferred in the study of scaling properties of the hydrometeorolgical series with relative regular periodic trend using MF-DFA.

  2. Effects of organic loading rate on reactor performance and archaeal community structure in mesophilic anaerobic digesters treating municipal sewage sludge.

    PubMed

    Gómez, Eddie; Martin, Jay; Michel, Frederick C

    2011-11-01

    In this study, the organic loading rate (OLR) of a high-solids anaerobic digestion (HSAD) system was increased from 3.4 to 5.0 gVS L(-1) day(-1) and reactor stability, performance and microbial community structure were determined. Laboratory simulations (3.5 L) of the full-scale process (500 dry ton year(-1)) were conducted using continuously stirred-tank mesophilic reactors. OLRs of 3.4 gVS L(-1)day(-1) (equal to the full-scale HSAD), 4.0, 4.5 and 5.0 gVS L(-1)day(-1) were evaluated. Biochemical parameters and archaeal community dynamics were measured over 42 days of steady state operation. Results showed that increasing OLR increased the amount of organic matter conversion and resulted in higher organic matter removal and volumetric methane (CH₄) production (VMP) rates. The highest volatile solids (VS) removal and VMP results of 54 ± 2% and 1.4 ± 0.1 L CH₄ L(-1)day(-1) were observed for 5.0 gVS L(-1) day(-1). The efficiency of reactor conversion of organic matter to CH(4) was found to be similar in all the treatments with an average value of 0.57 ± 0.07 LCH(4) gVS(-1) (removed). 16S rRNA gene terminal restriction fragment polymorphism (T-RFLP) analyses revealed that archaeal TRFs remained stable during the experiment accounting for an average relative abundance (RA) of 81 ± 1%. Archaea consistent with multiple terminal restriction fragments (TRFs) included members of the Euryarchaeota and Crenarchaeota phyla, including acetoclastic and hydrogenotrophic groups. In conclusion, this laboratory-scale study suggests that performance and stability as well as the archaeal community structure in this HSAD system was unaffected by increasing the OLR by nearly 50% and that this increase resulted in a similar increase in the amount of CH(4) gas generated.

  3. The behavior of antibiotic resistance genes and arsenic influenced by biochar during different manure composting.

    PubMed

    Cui, Erping; Wu, Ying; Jiao, Yanan; Zuo, Yiru; Rensing, Christopher; Chen, Hong

    2017-06-01

    The effect of two different biochar types, rice straw biochar (RSB) and mushroom biochar (MB), on chicken manure composting was previously examined by monitoring the fate of antibiotic resistance genes (ARGs) and arsenic. The behavior of ARGs and arsenic in other kinds of manure composting with the same biochar types had not been examined. In this study, we added either RSB or MB to pig and duck manure composts to study the behavior of ARGs (tet genes, sul genes, and chloramphenicol resistance genes) and arsenic under the same experimental condition. The results showed that the average removal values of selected ARGs were respectively 2.56 and 2.09 log units in duck and pig manure compost without the addition of biochar. The effect of biochar addition on the average removal value of ARGs depended on the type of biochar and manure. For instance, in pig manure compost, MB addition increased the average removal value of ARGs, while RSB addition decreased. And both biochar additions had a negative influence on the average removal value of ARGs in duck manure compost. Analytical results also demonstrated that MB addition reduced total arsenic and the percentage of bioavailable arsenic more than RSB.

  4. Emissions of NO and N2O in wetland microcosms for swine wastewater treatment.

    PubMed

    Zhang, Shunan; Liu, Feng; Xiao, Runlin; Li, Yong; Zhou, Juan; Wu, Jinshui

    2015-12-01

    Nitric oxide (NO) and nitrous oxide (N2O) emitted from wetland systems contribute an important proportion to the global warming effect. In this study, four wetland microcosms vegetated with Myriophyllum elatinoides (WM), Alternanthera philoxeroides (WA), Eichhornia crassipes (WE), or without vegetation (NW) were compared to investigate the emissions of NO and N2O during nitrogen (N) removal process when treating swine wastewater. After 30-day incubation, TN removal rates of 96.4, 74.2, 97.2, and 47.3 % were observed for the WM, WA, WE, and NW microcosms, respectively. Yet, no significant difference was observed in WM and WE (p > 0.05). The average NO and N2O emissions in WE was significantly higher than those in WM, WA, and NW (p < 0.05). In addition, the emission of N2O in WE accounted for 2.10 % of initial TN load and 2.17 % of the total amount of TN removal, compared with less than 1 % in the other microcosms. These findings indicate that wetland vegetated with M. elatinoides may be an optimal system for swine wastewater treatment, based on its higher removal of N and lower emissions of NO and N2O.

  5. Stimulation effect of electric current density (ECD) on microbial community of a three dimensional particle electrode coupled with biological aerated filter reactor (TDE-BAF).

    PubMed

    Feng, Yan; Li, Xing; Song, Ting; Yu, Yanzhen; Qi, Jingyao

    2017-11-01

    Improving the stimulation effect of electric current density (ECD) on microbial community is critical in designing and operating TDE-BAF. This study investigated the effect of ECD at 0.00, 4.08, 6.12, 12.20, 14.25, 16.30 and 20.20A·m -2 on the removal performance, diversity and structure of microbial community in TDE-BAF. Results indicated that the ECD of 14.25A·m -2 exhibited the highest COD, TOC and NH 4 + -N average removal rates with 93.33%, 91.26% and 93.87%, respectively; Under high ECD, especially exceeding 14.25A·m -2 , the inhibition of growth and activity because of plasmatorrhexis was in agreement with the sharp biomass decline; there was no significant relation between community richness and diversity and removal efficiency below optimum ECD, while above optimal ECD, it was just the opposite; Microbial communities mainly including Hydrogenophaga, Saprospiraceae_uncultured, Delftia, Enterobacter, Pseudomonas, Pseudoxanthomonas, and Nitrosospira and physicochemical properties well explained the excellent removal performance at the optimum ECD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Oxidation and ozonation of waste activated sludge.

    PubMed

    Mines, Richard O; Northenor, C Brett; Murchison, Mitchell

    2008-05-01

    In this bench-scale study, the treatment of waste activated sludge (WAS) was evaluated using aerobic digestion and ozonation. Two, 2-L batch digesters, one aerated and the other one ozonated, were operated for 30 days in each phase of the study. The aerated digester simulated the aerobic digestion process and served as control to the ozonated digester. In Phase I, the aerated digester was supplied 810 mg O(2) min(- 1), whereas, the ozonated digester was supplied 0.88 mg O(3) min(- 1). In Phase II, the oxygenation rate to the aerobic digester was increased to 1,200 mg O(2) min(- 1) while the ozonation rate was reduced to 0.44 mg O(3) min(- 1). Ozone was more effective than air at oxidizing and reducing both total solids (TS) and volatile solids (VS) in the WAS. TS removals of 50% and 56% were observed for the ozonated digester versus TS removals of 23% and 35% for the aerated digester. VS removals of 40% and 42% were observed for the aerobic digester versus 57% and 74% for the ozonated digester. Aerobic digestion barely met the 38% reduction in VS required by the U.S. Environmental Protection Agency (EPA). The degradation rate constant (K(d)) based on degradable TS for the ozonated digester varied from 0.082 to 0.11 days(- 1) and from 0.067 to 0.09 days(- 1) for the aerobic digester. Total chemical oxygen demand (TCOD) removal in the aerobic digester increased from 30% to 40% from Phase I to Phase II. TCOD removal increased slightly from 57% to 58% in the ozonated digester from Phase I to Phase II. Soluble chemical oxygen demand (SCOD) concentrations in the sludge supernatant increased with digestion time, especially in the ozonated digester. Approximately 0.12 to 0.22 mg SCOD was produced per mg of TS destroyed during ozonation. The specific oxygen uptake rate (SOUR) was consistently below the EPA standard of 1.5 mg O(2) per hr per g TS, indicating that the sludge was well stabilized. The average quantity of oxygen required during aerobic digestion was 1.53 g O(2) per g of TS destroyed. Actual ozone consumption rates were 0.57 mg O(3) per mg TS destroyed and 1.09 mg O(3) per mg TS destroyed for Phase II and Phase I, respectively.

  7. Study on nitrogen removal enhanced by shunt distributing wastewater in a constructed subsurface infiltration system under intermittent operation mode.

    PubMed

    Li, Yinghua; Li, Haibo; Sun, Tieheng; Wang, Xin

    2011-05-15

    Subsurface wastewater infiltration system is an efficient and economic technology in treating small scattered sewage. The removal rates are generally satisfactory in terms of COD, BOD(5), TP and SS removal; while nitrogen removal is deficient in most of the present operating SWIS due to the different requirements for the presence of oxygen for nitrification and denitrification processes. To study the enhanced nitrogen removal technologies, two pilot subsurface wastewater infiltration systems were constructed in a village in Shenyang, China. The filled matrix was a mixture of 5% activated sludge, 65% brown soil and 30% coal slag in volume ratio for both systems. Intermittent operation mode was applied in to supply sufficient oxygen to accomplish the nitrification; meanwhile sewage was supplemented as the carbon source to the lower part in to denitrify. The constructed subsurface wastewater infiltration systems worked successfully under wetting-drying ratio of 1:1 with hydraulic loading of 0.081 m(3)/(m(2)d) for over 4 months. Carbon source was supplemented with shunt ratio of 1:1 and shunt position at the depth of 0.5m. The experimental results showed that intermittent operation mode and carbon source supplementation could significantly enhance the nitrogen removal efficiency with little influence on COD and TP removal. The average removal efficiencies for NH(3)-N and TN were 87.7 ± 1.4 and 70.1 ± 1.0%, increased by 12.5 ± 1.0 and 8.6 ± 0.7%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Four osteotomy methods with piezosurgery to remove complicated mandibular third molars: a retrospective study.

    PubMed

    Ge, Jing; Yang, Chi; Zheng, Jia-Wei; He, Dong-Mei; Zheng, Ling-Yan; Hu, Ying-Kai

    2014-11-01

    Piezosurgery has been used widely in oral and maxillofacial surgery, but there has been no report systematically describing an osteotomy method with piezosurgery for complicated mandibular third molar removal. The aim of this study was to introduce 4 osteotomy methods using piezosurgery and evaluate their effects. A retrospective study was conducted of patients with a complicated impacted mandibular third molar requiring extraction. The predictor variable was the extraction technique. Four osteotomy methods using piezosurgery were tested according to different impaction types: method 1 involved complete bone removal; method 2 involved segmental bone removal; method 3 involved bone removal combined with tooth splitting; and method 4 involved block bone removal. Outcome variables were success rate, operative time, major complications (including nerve injury, mandible fracture, severe hematoma, or severe edema), and serious pyogenic infection. Data were analyzed using descriptive statistics. The study was composed of 55 patients with 74 complicated impacted mandibular third molars. All impacted mandibular third molars were removed successfully. The average surgical time was 15 minutes (range, 8 to 26 minutes). Thirty-eight molars (51.4%) were extracted by method 1, 18 molars (24.3%) by method 2, 12 molars (16.2%) by method 3, and 6 molars (8.1%) by method 4. Two cases (2.7%) developed postoperative infections and recovered within 1 week using drainage and antibiotic administration. The 4 osteotomy methods with piezosurgery provide effective ways of removing complicated impacted mandibular third molars. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  9. The modified pancreatic stent system for prevention of post-ERCP pancreatitis: a case-control study.

    PubMed

    Zhang, Cheng; Yang, Yu-Long; Ma, Yue-Feng; Zhang, Hong-Wei; Li, Jing-Yi; Lin, Mei-Ju; Shi, Li-Jun; Qi, Chun-Chun

    2017-10-18

    Prophylactic pancreatic stents after endoscopic retrograde cholangiopancreatography (ERCP) can help prevent post-ERCP pancreatitis. However most of the pancreatic stents need to be removed by another ERCP. The aim of this observational study was to investigate the feasibility and effectiveness of the modified pancreatic stent system for prevention of post-ERCP pancreatitis. From November 2013 to November 2015, a total of 230 patients who had prophylactic pancreatic stent placed for prevention of post-ERCP pancreatitis at a single institution were identified and stratified. In this case-control design, 150 patients received an ordinary pancreatic stent, and 80 patients received the modified pancreatic stent. The main outcome measures were the difficulty level and complications of pancreatic stent placement and extraction between the two groups. In ordinary group, the average time of pancreatic stent and nasal biliary drainage placement was 3.5 ± 0.6 min. There were 13 cases of stent proximal migration (8.7%), 20 cases of stent spontaneous abscission (13.3%), 5 cases of acute pancreatitis (3.3%) (2 cases for stent abscission) and 7 cases of hyperamylasemia (4.7%) after ERCP. One hundred thirty patients received extra duodenoscope (86.7%) to remove the stent, and 4 cases had acute pancreatitis and 5 patients had hyperamylasemia after removing the proximal migratory stents. In modified group, the average time of pancreatic stent system placement was 4.9 ± 0.7 min, but there was only one case of stent abscission (1.3%), 2 cases of acute pancreatitis (2.5%) and 3 cases of hyperamylasemia (3.8%). The new pancreatic stents were removed directly under x-ray without complication. The modified pancreatic stent system has the same effect of preventing post-ERCP pancreatitis, lower rate of stents proximal migration and spontaneous abscission, and the advantage of easier removed compared with ordinary pancreatic stent.

  10. Treatment of femoral shaft fractures with monoaxial external fixation in polytrauma patients

    PubMed Central

    Testa, Gianluca; Aloj, Domenico; Ghirri, Alessandro; Petruccelli, Eraclite; Pavone, Vito; Massé, Alessandro

    2017-01-01

    Background: Femoral shaft fractures, typical in younger people, are often associated with polytrauma followed by traumatic shock. In these situations, despite intramedullary nailing being the treatment of choice, external fixation could be used as the definitive treatment. The aim of this study is to report evidence regarding definitive treatment of femoral shaft fractures with monoaxial external fixation. Methods: Between January 2006 and December 2015, 83 patients with 87 fractures were treated at the Department of Orthopaedics and Traumatology CTO of Turin, with a monoaxial external fixation device. Mean age at surgery, type of fracture, mean follow-up, time and modalities of treatment, non-weight bearing period, average healing, external fixation removal time, and complications were reported. Results: The average patient age was 31.43±15.19 years. In 37 cases (42.53%) the right femur was involved. 73 (83.91%) fractures were closed, and 14 (16.09%) were open. The average follow-up time was 61.07±21.86 weeks.  In 68 (78.16%) fractures the fixation was carried out in the first 24 hours, using a monoaxial external fixator. In the remaining 19 cases, the average delay was 6.80±4.54 days. Mean non-weight bearing time was 25.82±27.66 days (ranging from 0 to 120). The 87 fractures united at an average of 23.60±11.37 weeks (ranging from 13 to 102). The external fixator was removed after an average of 33.99±14.33 weeks (ranging from 20 to 120). Reported complications included 9.19% of delayed union, 1.15% of septic non-union, 5.75% of malunion, and 8.05% cases of loss of reduction. Conclusions: External fixation of femoral shaft fractures in polytrauma is an ideal method for definitive fracture stabilization, with minimal additional operative trauma and an acceptable complication rate. PMID:28928953

  11. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength.

    PubMed

    Kang, Zion; Kim, Byung-Hyuk; Ramanan, Rishiram; Choi, Jong-Eun; Yang, Ji-Won; Oh, Hee-Mock; Kim, Hee-Sik

    2015-01-01

    Open raceway ponds are cost-efficient for mass cultivation of microalgae compared with photobioreactors. Although low-cost options like wastewater as nutrient source is studied to overcome the commercialization threshold for biodiesel production from microalgae, a cost analysis on the use of wastewater and other incremental increases in productivity has not been elucidated. We determined the effect of using wastewater and wavelength filters on microalgal productivity. Experimental results were then fitted into a model, and cost analysis was performed in comparison with control raceways. Three different microalgal strains, Chlorella vulgaris AG10032, Chlorella sp. JK2, and Scenedesmus sp. JK10, were tested for nutrient removal under different light wavelengths (blue, green, red, and white) using filters in batch cultivation. Blue wavelength showed an average of 27% higher nutrient removal and at least 42% higher chemical oxygen demand removal compared with white light. Naturally, the specific growth rate of microalgae cultivated under blue wavelength was on average 10.8% higher than white wavelength. Similarly, lipid productivity was highest in blue wavelength, at least 46.8% higher than white wavelength, whereas FAME composition revealed a mild increase in oleic and palmitic acid levels. Cost analysis reveals that raceways treating wastewater and using monochromatic wavelength would decrease costs from 2.71 to 0.73 $/kg biomass. We prove that increasing both biomass and lipid productivity is possible through cost-effective approaches, thereby accelerating the commercialization of low-value products from microalgae, like biodiesel.

  12. Regenerative Life Support Systems Test Bed performance - Lettuce crop characterization

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Eckhardt, Bradley D.

    1992-01-01

    System performance in terms of human life support requirements was evaluated for two crops of lettuce (Lactuca sative cv. Waldmann's Green) grown in the Regenerative Life Support Systems Test Bed. Each crop, grown in separate pots under identical environmental and cultural conditions, was irrigated with half-strength Hoagland's nutrient solution, with the frequency of irrigation being increased as the crop aged over the 30-day crop tests. Averaging over both crop tests, the test bed met the requirements of 2.1 person-days of oxygen production, 2.4 person-days of CO2 removal, and 129 person-days of potential potable water production. Gains in the mass of water and O2 produced and CO2 removed could be achieved by optimizing environmental conditions to increase plant growth rate and by optimizing cultural management methods.

  13. Industrial 2-kW TEA CO2 laser for paint stripping of aircraft

    NASA Astrophysics Data System (ADS)

    Schweizer, Gerhard; Werner, L.

    1995-03-01

    Paint stripping of aircraft with pulsed laser radiation has several advantages compared to traditional methods of depainting: selective removal of individual layers possible, suitable for sensitive surfaces, workpiece ready for immediate repainting, and considerable reduction of contaminated waste. For paint stripping of large aircraft pulsed lasers with average power of at least 2 kW are required. Amongst the various types of pulsed lasers technical and economical considerations clearly favor TEA CO2 lasers for this application. The first commercially available TEA CO2 laser with an average power in excess of 2 kW, especially designed for depainting, has been developed by Urenco. The key data of this laser are: pulse energy up to 9 J, repetition rate up to 330 Hz, and beam quality: `flat top'.

  14. Effects of biofilter media depth and moisture content on removal of gases from a swine barn.

    PubMed

    Liu, Tongshuai; Dong, Hongmin; Zhu, Zhiping; Shang, Bin; Yin, Fubin; Zhang, Wanqin; Zhou, Tanlong

    2017-12-01

    Media depth (MD) and moisture content (MC) are two important factors that greatly influence biofilter performance. The purpose of this study was to investigate the combined effect of MC and MD on removing ammonia (NH 3 ), hydrogen sulfide (H 2 S), and nitrous oxide (N 2 O) from swine barns. Biofiltration performance of different MDs and MCs in combination based on a mixed medium of wood chips and compost was monitored. A 3 × 3 factorial design was adopted, which included three levels of the two factors (MC: 45%, 55%, and 67% [wet basis]; MD: 0.17, 0.33, and 0.50 m). Results indicated that high MC and MD could improve NH 3 removal efficiency, but increase outlet N 2 O concentration. When MC was 67%, the average NH 3 removal efficiency of three MDs (0.17, 0.33, and, 0.50 m) ranged from 77.4% to 78.7%; the range of average H 2 S removal efficiency dropped from 68.1-90.0% (1-34 days of the test period) to 36.8-63.7% (35-58 days of the test period); and the average outlet N 2 O concentration increased by 25.5-60.1%. When MC was 55%, the average removal efficiency of NH 3 , H 2 S, and N 2 O for treatment with 0.33 m MD was 72.8 ± 5.9%, 70.9 ± 13.3%, and -18.9 ± 8.1%, respectively; and the average removal efficiency of NH 3 , H 2 S, and N 2 O for treatment with 0.50 m MD was 77.7 ± 4.2%, 65.8 ± 13.7%, and -24.5 ±12.1%, respectively. When MC was 45%, the highest average NH 3 reduction efficiency among three MDs was 60.7% for 0.5 m MD, and the average N 2 O removal efficiency for three MDs ranged from -18.8% to -12.7%. In addition, the pressure drop of 0.33 m MD was significantly lower than that of 0.50 m MD (p < 0.05). To obtain high mitigation of NH 3 and H 2 S and avoid elevated emission of N 2 O and large pressure drop, 0.33 m MD at 55% MC is recommended. The performances of biofilters with three different media depths (0.17, 0.33, and 0.50 m) and three different media moisture contents (45%, 55%, and 67% [wet basis]) were compared to remove gases from a swine barn. Using wood chips and compost mixture as the biofilters media, the combination of 0.33 m media depth and 55% media moisture content is recommended to obtain good reduction of NH 3 and H 2 S, and to simultaneously prevent elevated emission of N 2 O and large pressure drop across the media.

  15. Effect of dissolved oxygen on heterotrophic denitrification using poly(butylene succinate) as the carbon source and biofilm carrier.

    PubMed

    Luo, Guozhi; Li, Li; Liu, Qian; Xu, Guimei; Tan, Hongxin

    2014-11-01

    The effect of dissolved oxygen (DO) on heterotrophic denitrification using poly(butylene succinate) as the carbon source and biofilm carrier was evaluated in a lab-scale experiment. Aerated, low-oxygen, and anoxic treatment groups were set up, which had average DO concentrations of 5.2±1.0, 1.4±1.2, and 0.5±0.3 mg L(-1), respectively. The NO3(-)-N and total nitrogen (TN) removal rates in the aerated group (37.44±0.24 and 36.24±0.48 g m(-3) d(-1), respectively) were higher than those in the other two groups. There was no significant difference between the low-oxygen and anoxic groups for the NO3(-)-N or TN removal rate. Accumulation of NO2(-)-N reached 5.0 mg L(-1) in the aerated group; no nitrite accumulation was found in the other two treatment groups. Bacterial communities of the low-oxygen and anoxic groups showed high similarity and were significantly different from those of the aerated group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Nitrogen removal via nitrite in a partial nitrification sequencing batch biofilm reactor treating high strength ammonia wastewater and its greenhouse gas emission.

    PubMed

    Wei, Dong; Zhang, Keyi; Ngo, Huu Hao; Guo, Wenshan; Wang, Siyu; Li, Jibin; Han, Fei; Du, Bin; Wei, Qin

    2017-04-01

    In present study, the feasibility of partial nitrification (PN) process achievement and its greenhouse gas emission were evaluated in a sequencing batch biofilm reactor (SBBR). After 90days' operation, the average effluent NH 4 + -N removal efficiency and nitrite accumulation rate of PN-SBBR were high of 98.2% and 87.6%, respectively. Both polysaccharide and protein contents were reduced in loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) during the achievement of PN-biofilm. Excitation-emission matrix spectra implied that aromatic protein-like, tryptophan protein-like and humic acid-like substances were the main compositions of both kinds of EPS in seed sludge and PN-biofilm. According to typical cycle, the emission rate of CO 2 had a much higher value than that of N 2 O, and their total amounts per cycle were 67.7 and 16.5mg, respectively. Free ammonia (FA) played a significant role on the inhibition activity of nitrite-oxidizing bacteria and the occurrence of nitrite accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Understanding the scabbling of concrete using microwave energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttress, A.J., E-mail: adam.buttress@nottingham.ac.uk; Jones, D.A.; Dodds, C.

    2015-09-15

    Concrete blocks supplied by the UK Sellafield nuclear site were treated with microwave energy using a 15 kW system operating at 2.45 GHz. The effect of aggregate type (Whinstone, Gravel and Limestone); standoff distance; and effect of surface coating were studied to determine their influence on the systems performance in terms of mass and area removal rates and evaluate the controllability of the process. All blocks were scabbled successfully, with mass and area removal rates averaging 11.3 g s{sup −} {sup 1} and 3 cm s{sup −} {sup 1} respectively on treating large areas to a depth of 25 mm.more » The use of a Kevlar barrier between the block and applicator was found to significantly reduce the generation of dust as only 1.6% of the scabbled mass was in the < 106 μm — that generally considered to be airborne. Importantly Brazilian disc testing of the scabbled block showed that the process did not adversely affect structural properties of the test blocks after treatment.« less

  18. [Gradient elevation of temperature startup experiment of thermophilic ASBR treating thermal-hydrolyzed sewage sludge].

    PubMed

    Ouyang, Er-Ming; Wang, Wei; Long, Neng; Li, Huai

    2009-04-15

    Startup experiment was conducted for thermophilic anaerobic sequencing batch reactor (ASBR) treating thermal-hydrolyzed sewage sludge using the strategy of the step-wise temperature increment: 35 degrees C-->40 degrees C-->47 degrees C-->53 degrees C. The results showed that the first step-increase (from 35 degrees C to 40 degrees C) and final step-increase (from 47 degrees C to 53 degrees C) had only a slight effect on the digestion process. The second step-increase (from 40 degrees C to 47 degrees C) resulted in a severe disturbance: the biogas production, methane content, CODeffluent and microorganism all have strong disturbance. At the steady stage of thermophilic ASBR treating thermal-hydrolyzed sewage sludge, the average daily gas production, methane content, specific methane production (CH4/CODinfluent), TCOD removal rate and SCOD removal rate were 2.038 L/d, 72.0%, 188.8 mL/g, 63.8%, 83.3% respectively. The results of SEM and DGGE indicated that the dominant species are obviously different at early stage and steady stage.

  19. Advantages offered by high average power picosecond lasers

    NASA Astrophysics Data System (ADS)

    Moorhouse, C.

    2011-03-01

    As electronic devices shrink in size to reduce material costs, device size and weight, thinner material thicknesses are also utilized. Feature sizes are also decreasing, which is pushing manufacturers towards single step laser direct write process as an attractive alternative to conventional, multiple step photolithography processes by eliminating process steps and the cost of chemicals. The fragile nature of these thin materials makes them difficult to machine either mechanically or with conventional nanosecond pulsewidth, Diode Pumped Solids State (DPSS) lasers. Picosecond laser pulses can cut materials with reduced damage regions and selectively remove thin films due to the reduced thermal effects of the shorter pulsewidth. Also, the high repetition rate allows high speed processing for industrial applications. Selective removal of thin films for OLED patterning, silicon solar cells and flat panel displays is discussed, as well as laser cutting of transparent materials with low melting point such as Polyethylene Terephthalate (PET). For many of these thin film applications, where low pulse energy and high repetition rate are required, throughput can be increased by the use of a novel technique to using multiple beams from a single laser source is outlined.

  20. Improving the performance of membrane bioreactors by powdered activated carbon dosing with cost considerations.

    PubMed

    Yang, W; Paetkau, M; Cicek, N

    2010-01-01

    Effects of powdered activated carbon (PAC) dosing on the overall performance of membrane bioreactors (MBR) were investigated in two bench-scale submerged MBRs. Positive impacts of PAC dosing on membrane fouling and the removal of 17beta-estradiol (E2) and 17alpha-ethyinylestradiol (EE2) were demonstrated over a six-month stable operational period. PAC dosing in the MBR increased the removal rates of E2 and EE2 by 3.4% and 15.8%, respectively. The average soluble extracellular polymeric substances (EPS) and colloidal total organic carbon (TOC) concentrations in the PAC-MBR sludge was 60.1% and 61.8% lower than the control MBR sludge, respectively. Lower soluble EPS and colloidal TOC concentrations in the PAC-MBR sludge resulted in a slower rate of trans-membrane pressure (TMP) increase during MBRs operation, which could prolong the lifespan of membranes. Cost assessment showed that PAC dosing could reduce the operating cost for membrane cleaning and/or membrane replacement by about 25%. The operating cost for PAC dosing could be offset by the benefit from its reducing the cost for membrane maintenance.

  1. A balanced microbiota efficiently produces methane in a novel high-rate horizontal anaerobic reactor for the treatment of swine wastewater.

    PubMed

    Duda, Rose Maria; da Silva Vantini, Juliana; Martins, Larissa Scattolin; de Mello Varani, Alessandro; Lemos, Manoel Victor Franco; Ferro, Maria Inês Tiraboschi; de Oliveira, Roberto Alves

    2015-12-01

    A novel combination of structurally simple, high-rate horizontal anaerobic reactors installed in series was used to treat swine wastewater. The reactors maintained stable pH, alkalinity, and volatile acid levels. Removed chemical oxygen demand (COD) represented 68% of the total, and the average specific methane production was 0.30L CH4 (g removed CODtot)(-1). In addition, next-generation sequencing and quantitative real-time PCR analyses were used to explore the methane-producing Archaea and microbial diversity. At least 94% of the sludge diversity belong to the Bacteria and Archaea, indicating a good balance of microorganisms. Among the Bacteria the Proteobacteria, Bacteroidetes and Firmicutes were the most prevalent phyla. Interestingly, up to 12% of the sludge diversity belongs to methane-producing orders, such as Methanosarcinales, Methanobacteriales and Methanomicrobiales. In summary, this system can efficiently produce methane and this is the first time that horizontal anaerobic reactors have been evaluated for the treatment of swine wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Solids and nutrient removal from flushed swine manure using polyacrylamides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanotti, M.B.; Hunt, P.G.

    1999-12-01

    Most of the organic nutrients and reduced carbon (C) materials in liquid swine manure are contained in fine suspended particles that are not separated by available mechanical separators. Treatment with polyacrylamide (PAM) polymers prior to mechanical removal or gravity settling has the potential for enhancing solids-liquid separation, thus concentrating nitrogen (N), phosphorus (P), and organic C. In this work, the authors determined PAM charge and density characteristics most desirable for swine wastewater applications and established the optimum chemical requirement. Treatments were applied to flushed manure from two swine operations in North Carolina. Cationic PAMs significantly increased solids separation while performancemore » of neutral and anionic types was not different from a control. Cationic PAMs with moderate-charge density (20%) were more effective than polymers with higher charge density. Flocs were large and effectively retained with a 1-mm screen. Optimum PAM rate varied with the amount of total suspended solids (TSS) in the liquid manure; 26 and 79 mg PAM/L for samples containing 1.5 and 4.1 g TSS/L, respectively. Corresponding TSS removal efficiencies were 90 to 94%. In contrast, screening without PAM treatment captured only 5 to 14% of the suspended solids. Polymer usage rate was consistent and averaged 2.0{degree} based on weight of dry solids produced. Volatile suspended solids (VSS) were highly correlated with TSS and comprised 79.5% of TSS. Chemical oxygen demand (COD) and organic nutrient concentrations in the effluent were also significantly decreased by PAM treatment. The decrease of COD concentration, an important consideration for odor control, was linearly related with removal of suspended solids, at a rate of 2.0 g COD/g TSS and 2.6 g COD/g VSS. Removal efficiency of organic N and P followed approximately a 1:1 relationship with removal efficiency of TSS. Chemical cost to capture 90% of the suspended solids was estimated to be $0.026 per hog per day ($2.79 per finished hog). Results obtained indicate that PAM treatment is very effective for removal of manure solids, COD, and organic nutrients from flushed swine effluents. The technology provides an attractive alternative to existing liquid manure handling methods for conserving nutrients and avoiding excessive nutrient application in areas where swine production is concentrated.« less

  3. Survivorship analysis of Cotrel-Dubousset instrumentation in idiopathic scoliosis.

    PubMed

    Bago, J; Ramirez, M; Pellise, F; Villanueva, C

    2003-08-01

    This study presents a survivorship analysis of Cotrel-Dubousset instrumentation in the surgical treatment of idiopathic scoliosis. Between 1987 and 1995, a total of 133 patients with idiopathic scoliosis received posterior spine fusion and instrumentation with the CD system at our center. The patients' mean age at surgery was 16.5 years (range 11-43 years). The magnitude of the thoracic scoliosis averaged 62.7 degrees (range 40 degrees -125 degrees ) and that of the lumbar curve was 58.8 degrees (range 40 degrees -100 degrees ). On average, 12.2 segments were fused (range 8-17) and, excluding the rods, 14.1 implants were set for each patient (range 10-21). Survivorship analysis was carried out using the Kaplan-Meier method. Implant removal was considered the terminal event, or "death". The effect of several variables on survival rate was determined with the Cox regression method. The patients remained in the study for 56.7 months (range 2-120 months). One-hundred and ten patients were withdrawn ("censored"): 90 "alive" (did not require repeat surgery and attended follow-up control in 1997) and 20 "lost" (did not attend control in 1997). Twenty-three patients attained the terminal event of implant removal for a variety of reasons: acute infection (three cases), late infection (ten cases), implant failure requiring revision (six cases) and local pain (four cases). The survival rate was 95.5% at 3 months, 94.7% at 6 months, 93.9% at 1 year, 91.5% at 2 years, 82.2% at 5 years and 76.5% at 10 years. The magnitude of the curves, total number of implants and number of fused segments did not correlate with survival probability. A positive correlation was found between survival rate and correction loss between surgery and last control. A survival rate of 76.5% at 10 years is unexpectedly low. Current data suggest that the incapacity to maintain correction after initial surgery plays a major roll in the long-term evolution of Cotrel-Dubousset instrumentation.

  4. Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure.

    PubMed

    Nuchdang, Sasikarn; Phalakornkule, Chantaraporn

    2012-06-30

    The potential of glycerol obtained from transesterification of waste cooking oil as a main carbon source for biogas production was investigated. The glycerol was highly contaminated with oils and fats and was pretreated with sulfuric acid. Using a carbon source of glucose as a control, we compared biogas production from the acid-treated glycerol in a synthetic medium and the acid-treated glycerol mixed with pig manure. The anaerobic digestion of acid-treated glycerol with supplement in a synthetic medium was found to be satisfactory at organic loading rates (OLR) between 1.3, 1.6 and 2.6 g chemical oxygen demand (COD) L(-1) d(-1). The maximum methane yield of 0.32 L at Standard temperature and pressure (STP) g(-1) COD removal was achieved at an OLR of 1.6 g COD L(-1) d(-1) and the methane content was 54% on an average. At a higher organic loading rate of 5.4 g COD L(-1) d(-1), the propionic acid to acetic acid ratio was higher than the critical threshold limit for metabolic imbalance. Anaerobic digestion of acid-treated glycerol with pig manure was also investigated at the COD ratio of 80:20 (glycerol:pig manure). The anaerobic digestion of acid-treated glycerol with pig manure was found to be satisfactory at organic loading rates between 1.3, 1.7, 2.9 and 5.0 g COD L(-1) d(-1) in terms of COD reduction (>80%) and methane content of (62% on an average). However, the biogas production rate was found to significantly decrease at the highest load. The maximum methane yield of 0.24 L STP g(-1) COD removal was achieved at an OLR of 1.3 g COD L(-1) d(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Removal of veterinary antibiotics from anaerobically digested swine wastewater using an intermittently aerated sequencing batch reactor.

    PubMed

    Zheng, Wei; Zhang, Zhenya; Liu, Rui; Lei, Zhongfang

    2018-03-01

    A lab-scale intermittently aerated sequencing batch reactor (IASBR) was applied to treat anaerobically digested swine wastewater (ADSW) to explore the removal characteristics of veterinary antibiotics. The removal rates of 11 veterinary antibiotics in the reactor were investigated under different chemical organic demand (COD) volumetric loadings, solid retention times (SRT) and ratios of COD to total nitrogen (TN) or COD/TN. Both sludge sorption and biodegradation were found to be the major contributors to the removal of veterinary antibiotics. Mass balance analysis revealed that greater than 60% of antibiotics in the influent were biodegraded in the IASBR, whereas averagely 24% were adsorbed by sludge under the condition that sludge sorption gradually reached its equilibrium. Results showed that the removal of antibiotics was greatly influenced by chemical oxygen demand (COD) volumetric loadings, which could achieve up to 85.1%±1.4% at 0.17±0.041kgCOD/m -3 /day, while dropped to 75.9%±1.3% and 49.3%±12.1% when COD volumetric loading increased to 0.65±0.032 and 1.07±0.073kgCOD/m -3 /day, respectively. Tetracyclines, the dominant antibiotics in ADSW, were removed by 87.9% in total at the lowest COD loading, of which 30.4% were contributed by sludge sorption and 57.5% by biodegradation, respectively. In contrast, sulfonamides were removed about 96.2%, almost by biodegradation. Long SRT seemed to have little obvious impact on antibiotics removal, while a shorter SRT of 30-40day could reduce the accumulated amount of antibiotics and the balanced antibiotics sorption capacity of sludge. Influent COD/TN ratio was found not a key impact factor for veterinary antibiotics removal in this work. Copyright © 2017. Published by Elsevier B.V.

  6. 'Six sigma approach' - an objective strategy in digital assessment of postoperative air leaks: a prospective randomised study.

    PubMed

    Bertolaccini, Luca; Rizzardi, Giovanna; Filice, Mary Jo; Terzi, Alberto

    2011-05-01

    Until now, only way to report air leaks (ALs) has been with an analogue score in an inherently subjective manner. The Six Sigma quality improvement methodology is a data-driven approach applicable to evaluate the quality of the quantification method of repetitive procedures. We applied the Six Sigma concept to improve the process of AL evaluation. A digital device for AL measurement (Drentech PALM, Redax S.r.l., Mirandola (MO), Italy) was applied to 49 consecutive patients, who underwent pulmonary intervention, compared with a similar population with classical chest drainage. Data recorded were postoperative AL, chest-tube removal days, number of chest roentgenograms, hospital length of stay; device setup time, average time rating AL and patient satisfaction. Bivariable comparisons were made using the Mann-Whitney test, the χ² test and Fisher's exact test. Analysis of quality was conducted using the Six Sigma methodology. There were no significant differences regarding AL (p=0.075), although not statistically significant; there was a reduction of postoperative chest X-rays (four vs five) and of hospital length of stay (6.5 vs 7.1 days); and a marginally significant difference was found between chest-tube removal days (p=0.056). There were significant differences regarding device setup time (p=0.001), average time rating AL (p=0.001), inter-observer variability (p=0.001) and patient satisfaction (p=0.002). Six Sigma analyses revealed accurate assessment of AL. Continuous digital measurement of AL reduces degree of variability of AL score, gives more assurance for tube removal, and reports AL without the apprehension of observer error. Efficiency and effectiveness improved with the use of a digital device. We have noted that the AL curves depict actually sealing of AL. The clinical importance of AL curves requires further study. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  7. Effect of changes in milking routine on milking related behaviour and milk removal in Tunisian dairy dromedary camels.

    PubMed

    Atigui, Moufida; Marnet, Pierre-Guy; Ayeb, Naziha; Khorchani, Touhami; Hammadi, Mohamed

    2014-11-01

    We studied the effects of changes in the milking routine (lack or presence of 30-s prestimulation, 0 or 1, 2 or 4-min delay between preparation and cluster attachment) and environmental perturbation (unusual loud sounds capable of frightening animals just after stall entry or during the course of milking) on milk removal and milking-related behaviour in dairy dromedary camels. A 30-s prestimulation decreased incidence of bimodal milk flow curves and increased occurrence of the best milk ejection patterns with higher milk flow but had limited effect on milk production in our well-trained animals within a good machine milking setting. However, unusual sounds heard from the beginning of milking or even after milk ejection caused inhibition or disruption of milk removal and modification of camels' behaviour. Milk ejection was significantly delayed (1·58±0·17 min), residual milk increased over 40% of total milk yield and average and peak milk flow rates were significantly lowered when unusual noises were heard from the beginning of milking. These environmental perturbations increased signs of vigilance and the number of attempts to escape the milking parlour. Delaying cluster attachment for over 1 min after the end of udder preparation caused serious milk losses. Up to 62% of total milk was withheld in the udder when the delay reached 4 min. Average and peak milk flow rates also decreased significantly with delayed milking. Signs of vigilance and attempts to escape from the milking parlour appeared when camels waited for over 2 min. After a 4-min delay, camels showed signs of acute stress. Defaecation prior to milk ejection (solid faeces) and rumination during milking can be used to assess camels' milk ejection during milking. Animal welfare and milking efficiency can be ensured when camels are pre-stimulated, milked in calm conditions and with cluster attachment within a maximum of a 1-min delay after stimulation.

  8. Hydrodynamic behaviour and comparison of technologies for the removal of excess biomass in gas-phase biofilters.

    PubMed

    Mendoza, J A; Prado, O J; Veiga, M C; Kennes, C

    2004-01-01

    The hydrodynamic behaviour of a biofilter fed toluene and packed with an inert carrier was evaluated on start-up and after long-term operation, using both methane and styrene as tracers in Residence Time Distribution experiments. Results indicated some deviation from ideal plug flow behaviour after 2-year operation. It was also observed that the retention time of VOCs gradually increased with time and was significantly longer than the average residence time of the bulk gas phase. Non-ideal hydrodynamic behaviour in packed beds may be due to excess biomass accumulation and affects both reactor modeling and performance. Therefore, several methods were studied for the removal of biomass after long-term biofilter operation: filling with water and draining, backwashing, and air sparging. Several flow rates and temperatures (20-60 degrees C) were applied using either water or different chemicals (NaOH, NaOCl, HTAB) in aqueous solution. Usually, higher flow rates and higher temperatures allowed the removal of more biomass, but the efficiency of biomass removal was highly dependent on the pressure drop reached before the treatment. The filling/draining method was the least efficient for biomass removal, although the treatment did basically not generate any biological inhibition. The efficiency of backwashing and air sparging was relatively similar and was more effective when adding chemicals. However, treatments with chemicals resulted in a significant decrease of the biofilter's performance immediately after applying the treatment, needing periods of several days to recover the original performance. The effect of manually mixing the packing material was also evaluated in duplicate experiments. Quite large amounts of biomass were removed but disruption of the filter bed was observed. Batch assays were performed simultaneously in order to support and quantify the observed inhibitory effects of the different chemicals and temperatures used during the treatments.

  9. A comparison of hysteroscopic mechanical tissue removal with bipolar electrical resection for the management of endometrial polyps in an ambulatory care setting: preliminary results.

    PubMed

    Pampalona, Jennifer Rovira; Bastos, Maria Degollada; Moreno, Gemma Mancebo; Pust, Andrea Buron; Montesdeoca, Gemma Escribano; Guerra Garcia, Angel; Pruñonosa, Juan Carles Mateu; Collado, Ramon Carreras; Torras, Pere Bresco

    2015-01-01

    To assess and compare efficacy, pain, and the learning curve associated with diagnostic therapeutic hysteroscopy using mechanical tissue removal versus bipolar electrical resection in the management of endometrial polyps in an ambulatory care setting. A randomized controlled clinical trial (Canadian Task Force classification I). Hospital de Igulada, Barcelona, Spain. A total of 133 patients diagnosed with endometrial polyp(s) were included and randomly assigned to 1 of the 2 hysteroscopic methods. Criteria assessed were total hysteroscopy time, full polypectomy procedure time, pain experienced by patients, and learning curve of staff in training. The average time to perform total hysteroscopy using the mechanical tissue removal system (TRUCLEAR 5.0 System; Smith & Nephew Inc., Andover, MD) was 6 minutes 49 seconds versus 11 minutes 37 seconds required for the bipolar electrosurgery system (GYNECARE VERSAPOINT; Ethicon Inc, Somerville, NJ) (p < .01). Results for complete polypectomy time favored the TRUCLEAR System at 3 minutes 7 seconds over the VERSAPOINT System at 8 minutes 25 seconds (p < .01). If a successful procedure is predicated on access to cavity, visualization, and complete resection and excision of endometrial polyp, the mechanical TRUCLEAR Tissue Removal System shows a higher success rate than the VERSAPOINT Bipolar Electrosurgery System at 92% and 77%, respectively. Analysis of pain using the visual analog scale revealed no significant differences between the 2 techniques (p > .05). A study of the residents' learning curve showed a higher level of autonomy with hysteroscopy using the TRUCLEAR Tissue Removal System with which residents showed a higher level of confidence compared with hysteroscopy with the VERSAPOINT Bipolar Electrosurgery System. In hysteroscopic polypectomy, the mechanical tissue removal system was significantly faster, achieved a greater success rate for complete polypectomy, and required a shorter learning curve from staff being trained in the management of endometrial polyps when compared with bipolar electrical resection. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.

  10. Termites and large herbivores influence seed removal rates in an African savanna.

    PubMed

    Acanakwo, Erik Francis; Sheil, Douglas; Moe, Stein R

    2017-12-01

    Seed removal can influence plant community dynamics, composition, and resulting vegetation characteristics. In the African savanna, termites and large herbivores influence vegetation in various ways, likely including indirect effects on seed predators and secondary dispersers. However, the intensity and variation of seed removal rates in African savannas has seldom been studied. We experimentally investigated whether termites and large herbivores were important factors in the mechanisms contributing to observed patterns in tree species composition on and off mounds, in Lake Mburo National Park, Uganda. Within fenced (excluding large herbivores) and unfenced termite mound and adjacent savanna plots, we placed seeds of nine native tree species within small open "cages," accessed by all animals, roofed cages that only allowed access to small vertebrates and invertebrates, and closed cages that permitted access by smaller invertebrates only (5 mm wire mesh). We found that mean seed removal rate was high (up to 87.3% per 3 d). Mound habitats experienced significantly higher removal rates than off-mound habitats. The mean removal rate of native seeds from closed cages was 11.1% per 3 d compared with 19.4% and 23.3% removed per 3 d in the roofed and open cages, respectively. Smaller seeds experienced higher removal rates than larger seeds. Large herbivore exclusion on mounds reduced native seed removal rates by a mean of 8.8% in the open cages, but increased removal rates by 1.7% in the open cages when off-mound habitats were fenced. While removal rates from open cages were higher on active mounds (30.9%) than on inactive mounds (26.7%), the removal rates from closed cages were lower on active vs. inactive mounds (6.1% vs. 11.6%, respectively). Thus, we conclude that large herbivores and Macrotermes mounds influence seed removal rates, though these effects appear indirect. © 2017 by the Ecological Society of America.

  11. Development of low-cost technology for the removal of iron and manganese from ground water in siwa oasis.

    PubMed

    El-Naggar, Hesham M

    2010-01-01

    Ground water is the only water resource for Siwa Oasis. It is obtained from natural freshwater wells and springs fed by the Nubian aquifer. Water samples collected from Siwa Oasis had relatively higher iron (Fe) and manganese (Mn) than the permissible limits specified in WHO Guidelines and Egyptian Standards for drinking water quality. Aeration followed by sand filtration is the most commonly used method for the removal of iron from ground water. The study aimed at development of low-cost technology for the removal of iron and manganese from ground water in Siwa Oasis. The study was carried out on Laboratory-scale columns experiments sand filters with variable depths of 15, 30, 45, 60, 75, 90 cm and three graded types of sand were studied. The graded sand (E.S. =0.205 mm, U.C. =3.366, depth of sand = 60 cm and filtration rate = 1.44 m3/m2/hr) was the best type of filter media. Iron and manganese concentrations measured in ground water with aeration only, decreased with an average removal percentage of 16%, 13% respectively. Iron and manganese concentrations after filtration with aeration came down to 0.1123, 0.05 mg/L respectively in all cases from an initial concentration of 1.14, 0.34 mg/L respectively. Advantages of such treatment unit included simplicity, low cost design, and no need for chemical addition. In addition, the only maintenance required was periodic washing of the sand filter or replacement of the sand in order to maintain reasonable flow rate through the system.

  12. Mangrove Crab Ucides cordatus Removal Does Not Affect Sediment Parameters and Stipule Production in a One Year Experiment in Northern Brazil

    PubMed Central

    2016-01-01

    Mangrove crabs influence ecosystem processes through bioturbation and/or litter feeding. In Brazilian mangroves, the abundant and commercially important crab Ucides cordatus is the main faunal modifier of microtopography establishing up to 2 m deep burrows. They process more than 70% of the leaf litter and propagule production, thus promoting microbial degradation of detritus and benefiting microbe-feeding fiddler crabs. The accelerated nutrient turn-over and increased sediment oxygenation mediated by U. cordatus may enhance mangrove tree growth. Such positive feed-back loop was tested in North Brazil through a one year crab removal experiment simulating increased harvesting rates in a mature Rhizophora mangle forest. Investigated response parameters were sediment salinity, organic matter content, CO2 efflux rates of the surface sediment, and reduction potential. We also determined stipule fall of the mangrove tree R. mangle as a proxy for tree growth. Three treatments were applied to twelve experimental plots (13 m × 13 m each): crab removal, disturbance control and control. Within one year, the number of U. cordatus burrows inside the four removal plots decreased on average to 52% of the initial number. Despite this distinct reduction in burrow density of this large bioturbator, none of the measured parameters differed between treatments. Instead, most parameters were clearly influenced by seasonal changes in precipitation. Hence, in the studied R. mangle forest, abiotic factors seem to be more important drivers of ecosystem processes than factors mediated by U. cordatus, at least within the studied timespan of one year. PMID:27907093

  13. Mangrove Crab Ucides cordatus Removal Does Not Affect Sediment Parameters and Stipule Production in a One Year Experiment in Northern Brazil.

    PubMed

    Pülmanns, Nathalie; Mehlig, Ulf; Nordhaus, Inga; Saint-Paul, Ulrich; Diele, Karen

    2016-01-01

    Mangrove crabs influence ecosystem processes through bioturbation and/or litter feeding. In Brazilian mangroves, the abundant and commercially important crab Ucides cordatus is the main faunal modifier of microtopography establishing up to 2 m deep burrows. They process more than 70% of the leaf litter and propagule production, thus promoting microbial degradation of detritus and benefiting microbe-feeding fiddler crabs. The accelerated nutrient turn-over and increased sediment oxygenation mediated by U. cordatus may enhance mangrove tree growth. Such positive feed-back loop was tested in North Brazil through a one year crab removal experiment simulating increased harvesting rates in a mature Rhizophora mangle forest. Investigated response parameters were sediment salinity, organic matter content, CO2 efflux rates of the surface sediment, and reduction potential. We also determined stipule fall of the mangrove tree R. mangle as a proxy for tree growth. Three treatments were applied to twelve experimental plots (13 m × 13 m each): crab removal, disturbance control and control. Within one year, the number of U. cordatus burrows inside the four removal plots decreased on average to 52% of the initial number. Despite this distinct reduction in burrow density of this large bioturbator, none of the measured parameters differed between treatments. Instead, most parameters were clearly influenced by seasonal changes in precipitation. Hence, in the studied R. mangle forest, abiotic factors seem to be more important drivers of ecosystem processes than factors mediated by U. cordatus, at least within the studied timespan of one year.

  14. A small single-nozzle rainfall simulator to measure erosion response on different burn severities in southern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Covert, Ashley; Jordan, Peter

    2010-05-01

    To study the effects of wildfire burn severity on runoff generation and soil erosion from high intensity rainfall, we constructed an effective yet simple rainfall simulator that was inexpensive, portable and easily operated by two people on steep, forested slopes in southern British Columbia, Canada. The entire apparatus, including simulator, pumps, hoses, collapsible water bladders and sample bottles, was designed to fit into a single full-sized pick-up truck. The three-legged simulator extended to approximately 3.3 metres above ground on steep slopes and used a single Spraying Systems 1/2HH-30WSQ nozzle which can easily be interchanged for other sized nozzles. Rainfall characteristics were measured using a digital camera which took images of the raindrops against a grid. Median drop size and velocity 5 cm above ground were measured and found to be 3/4 of the size of natural rain drops of that diameter class, and fell 7% faster than terminal velocity. The simulator was used for experiments on runoff and erosion on sites burned in 2007 by two wildfires in southern British Columbia. Simulations were repeated one and two years after the fires. Rainfall was simulated at an average rate of 67 mm hr-1 over a 1 m2 plot for 20 minutes. This rainfall rate is similar to the 100 year return period rainfall intensity for this duration at a nearby weather station. Simulations were conducted on five replicate 1 m2 plots in each experimental unit including high burn severity, moderate burn severity, unburned, and unburned with forest floor removed. During the simulation a sample was collected for 30 seconds every minute, with two additional samples until runoff ceased, resulting in 22 samples per simulation. Runoff, overland flow coefficient, infiltration and sediment yield were compared between treatments. Additional simulations were conducted immediately after a 2009 wildfire to test different mulch treatments. Typical results showed that runoff on plots with high burn severity and with forest floor removed was similar, reaching on average a steady rate of about 60% of rainfall rate after about 7 minutes. Runoff on unburned plots with intact forest floor was much lower, typically less than 20% of rainfall rate. Sediment yield was greatest on plots with forest floor removed, followed by severely burned plots. Sediment yield on unburned and moderately burned plots was very low to zero. These results are consistent with qualitative observations made following several extreme rainfall events on recent burns in the region.

  15. A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch.

    PubMed

    Jin, Pengkang; Wang, Xianbao; Wang, Xiaochang; Ngo, Huu Hao; Jin, Xin

    2015-12-01

    Two aeration modes, step aeration and point aeration, were used in a full-scale Carrousel oxidation ditch with microporous aeration. The nitrogen removal performance and mechanism were analyzed. With the same total aeration input, both aeration modes demonstrated good nitrification outcomes with the average efficiency in removing NH4(+)-N of more than 98%. However, the average removal efficiencies for total nitrogen were 89.3% and 77.6% under step aeration and point aeration, respectively. The results indicated that an extended aerobic zone followed the aeration zones could affect the proportion of anoxic and oxic zones. The step aeration with larger anoxic zones indicated better TN removal efficiency. More importantly, step aeration provided the suitable environment for both nitrifiers and denitrifiers. The diversity and relative abundance of denitrifying bacteria under the step aeration (1.55%) was higher than that under the point aeration (1.12%), which resulted in an overall higher TN removal efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Removal torque of nail interlocking screws is related to screw proximity to the fracture and screw breakage.

    PubMed

    White, Alexander A; Kubacki, Meghan R; Samona, Jason; Telehowski, Paul; Atkinson, Patrick J

    2016-06-01

    Studies have shown that titanium implants can be challenging to explant due to the material's excellent biocompatibility and resulting osseointegration. Clinically, titanium alloy nail interlocking screws may require removal to dynamize a construct or revise the nail due to nonunion, infection, pain, or periprosthetic fracture. This study was designed to determine what variables influence the removal torque for titanium alloy interlocking screws. An intramedullary nail with four interlocking screws was used to stabilize a 1-cm segmental femoral defect in a canine model for 16 weeks. The animals were observed to be active following a several-day recovery after surgery. In six animals, the femora and implanted nail/screws were first tested to failure in torsion to simulate periprosthetic fracture of an implant after which the screws were then removed. In four additional animals, the screws were removed without mechanical testing. Both intraoperative insertional and extraction torques were recorded for all screws. Mechanical testing to failure broke 10/24 screws. On average, the intact screws required 70% of the insertional torque during removal while broken screws only required 16% of the insertional torque (p < 0.001). In addition, intact screws closer to the fracture required 2.8 times more removal torque than the outboard distal screw (p < 0.005). On average, the angle of rotation to peak torque was ∼80°. The peak axial load did not significantly correlate with the torque required to remove the screws. On average, the removal torque was lower than at the time of insertion, and less torque was required to remove broken screws and screws remote to the fracture. However, broken screws will require additional time to retrieve the remaining screw fragment. This study suggests that broken screws and screws in prematurely active patients will require less torque to remove. © IMechE 2016.

  17. Dynamics of newly established elk populations

    USGS Publications Warehouse

    Sargeant, G.A.; Oehler, M.W.

    2007-01-01

    The dynamics of newly established elk (Cervus elaphus) populations can provide insights about maximum sustainable rates of reproduction, survival, and increase. However, data used to estimate rates of increase typically have been limited to counts and rarely have included complementary estimates of vital rates. Complexities of population dynamics cannot be understood without considering population processes as well as population states. We estimated pregnancy rates, survival rates, age ratios, and sex ratios for reintroduced elk at Theodore Roosevelt National Park, North Dakota, USA; combined vital rates in a population projection model; and compared model projections with observed elk numbers and population ratios. Pregnancy rates in January (early in the second trimester of pregnancy) averaged 54.1% (SE = 5.4%) for subadults and 91.0% (SE = 1.7%) for adults, and 91.6% of pregnancies resulted in recruitment at 8 months. Annual survival rates of adult females averaged 0.96 (95% CI = 0.94-0.98) with hunting included and 0.99 (95% CI = 0.97-0.99) with hunting excluded from calculations. Our fitted model explained 99.8% of past variation in population estimates and represents a useful new tool for short-term management planning. Although we found no evidence of temporal variation in vital rates, variation in population composition caused substantial variation in projected rates of increase (??=1.20-1.36). Restoring documented hunter harvests and removals of elk by the National Park Service led to a potential rate of ?? = 1.26. Greater rates of increase substantiated elsewhere were within the expected range of chance variation, given our model and estimates of vital rates. Rates of increase realized by small elk populations are too variable to support inferences about habitat quality or density dependence.

  18. Depositional fluxes and residence time of atmospheric radioiodine (131I) from the Fukushima accident.

    PubMed

    Yang, Weifeng; Guo, Laodong

    2012-11-01

    Activities of radioiodine ((131)I) along with (210)Pb and (210)Po in time series precipitation samples were measured to determine the depositional fluxes of (131)I in the Southern United States and its removal rate and residence time in the atmosphere during the Fukushima nuclear accident. Radioiodine released from the Fukushima accident reached the Southern United States within 11 days, giving rise to a concurrent (131)I peak and anomalous (210)Po/(210)Pb ratios in the precipitation samples. The cumulative (131)I depositional flux was 4.6 ± 0.2 Bq m(-2) during the maximum fallout. The removal rate of (131)I out of the atmosphere, derived from a definite (131)I integral model, ranged from 0.03 to 0.14 d(-1) with an average of 0.08 ± 0.02 d(-1), which corresponds to a residence time of (131)I in the atmosphere of 12 ± 3 days, consistent with the resident timescale constrained by the (210)Po/(210)Pb disequilibrium technique. These results support our hypothesis that radioiodine was removed from the atmosphere by precipitation within two weeks. It seemed that regions reachable by (131)I transport within two weeks from Fukushima Japan would receive much more fallout, whereas places outside that distance would be relatively less polluted with radionuclides. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Nitrate removal properties of solid-phase denitrification processes using acid-blended poly(L-lactic acid) as the sole substrate

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Matsuoka, H.; Sun, J.; Yoshikawa, S.; Tsuji, H.; Hiraishi, A.

    2013-04-01

    The large amount of waste that is discharged along with the diffusion of poly(L-lactic acid) (PLLA) articles in use is persistent concern. Previously, we studied solid-phase denitrification (SPD) processes using PLLA to establish an effective re-use of PLLA waste. We found that PLLA with a weight-average molecular weight (Mw) of approximately 10,000 was suitable for SPD processes; however, the recycling of PLLA waste consumes a high energy. A new PLLA plastic including 5% poly(ethylene oxalate) (PEOxPLLA) as a blend material has attracted attention because recycling of PEOxPLLA consumes less electricity than that of PLLA. In this study, our main objectives were to evaluate whether PEOxPLLA can be used for SPD processes by changing its Mw and to investigate the bioavailability for denitrification of hydrolysates released from PEOxPLLA. The predicted hydrolysates, including oxalic acid, ethylene glycol, and lactate, are abiotically released, leading to different biological nitrate removal rates. Consequently, the nitrate removal rate of PEOxPLLA ranged from 0.9-4.1 mg-NO3--N·g-MLSS·h-1 by changing the Mw in the range of 8,500-238,000. In culture-dependent approaches, denitrifying bacteria using each substrate as an electron donor are found in activated sludge, suggesting that all hydrolysates functioned in the SPD processes using PEOxPLLA.

  20. Allantoin as a solid phase adsorbent for removing endotoxins.

    PubMed

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Gagnon, Pete

    2013-10-04

    In this study we present a simple and robust method for removing endotoxins from protein solutions by using crystals of the small-molecule compound 2,5-dioxo-4-imidazolidinyl urea (allantoin) as a solid phase adsorbent. Allantoin crystalline powder is added to a protein solution at supersaturated concentrations, endotoxins bind and undissolved allantoin crystals with bound endotoxins are removed by filtration or centrifugation. This method removes an average of 99.98% endotoxin for 20 test proteins. The average protein recovery is ∼80%. Endotoxin binding is largely independent of pH, conductivity, reducing agent and various organic solvents. This is consistent with a hydrogen-bond based binding mechanism. Allantoin does not affect protein activity and stability, and the use of allantoin as a solid phase adsorbent provides better endotoxin removal than anion exchange, polymixin affinity and biological affinity methods for endotoxin clearance. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Wettability Patterning for Enhanced Dropwise Condensation

    NASA Astrophysics Data System (ADS)

    Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine

    2014-11-01

    Dropwise condensation (DwC), in order to be sustainable, requires removal of the condensate droplets. This removal is frequently facilitated by gravity. The rate of DwC heat transfer depends strongly on the maximum departing droplet diameter. Based on wettability patterning, we present a facile technique designed to control the maximum droplet size in DwC within vapor/air atmospheres, and demonstrate how this approach can be used to enhance the corresponding heat transfer rate. We examine various hydrophilic-superhydrophilic patterns, which, respectively sustain DwC and filmwise (FwC) condensation on the substrate. The fabrication method does notemploy any hydrophobizing agent. By juxtaposing parallel lines of hydrophilic (CA ~ 78°) and superhydrophilic (CA ~ 0°) regions on the condensing surface, we create alternating domains of DwC and FwC. The average droplet size on the DwC domain is reduced by ~ 60% compared to the theoretical maximum, which corresponds to the line width. We compare heat transfer rate between unpatternend DwC surfaces and patterned DwC surfaces. Even after sacrificing 40% of condensing area, we achieve up to 20% improvement in condensate collection rate using an interdigitated superhydrophilic pattern, inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern, particularly under higher vapor loadings in an air/vapor ambient atmosphere. NSF STTR Grant 1331817 via NBD Nano.

  2. Reactive-transport modeling of iron diagenesis and associated organic carbon remineralization in a Florida (USA) subterranean estuary

    USGS Publications Warehouse

    Roy, Moutusi; Martin, Jonathan B.; Smith, Christopher G.; Cable, Jaye E.

    2011-01-01

    Iron oxides are important terminal electron acceptors for organic carbon (OC) remineralization in subterranean estuaries, particularly where oxygen and nitrate concentrations are low. In Indian River Lagoon, Florida, USA, terrestrial Fe-oxides dissolve at the seaward edge of the seepage face and flow upward into overlying marine sediments where they precipitate as Fe-sulfides. The dissolved Fe concentrations vary by over three orders of magnitude, but Fe-oxide dissolution rates are similar across the 25-m wide seepage face, averaging around 0.21 mg/cm2/yr. The constant dissolution rate, but differing concentrations, indicate Fe dissolution is controlled by a combination of increasing lability of dissolved organic carbon (DOC) and slower porewater flow velocities with distance offshore. In contrast, the average rate constants of Fe-sulfide precipitation decrease from 21.9 × 10-8 s-1 to 0.64 × 10-8 s-1 from the shoreline to the seaward edge of the seepage face as more oxygenated surface water circulates through the sediment. The amount of OC remineralized by Fe-oxides varies little across the seepage face, averaging 5.34 × 10-2 mg/cm2/yr. These rates suggest about 3.4 kg of marine DOC was remineralized in a 1-m wide, shore-perpendicular strip of the seepage face as the terrestrial sediments were transgressed over the past 280 years. During this time, about 10 times more marine solid organic carbon (SOC) accumulated in marine sediments than were removed from the underlying terrestrial sediments. Indian River Lagoon thus appears to be a net sink for marine OC.

  3. Performance of a completely autotrophic nitrogen removal over nitrite process for treating wastewater with different substrates at ambient temperature.

    PubMed

    Chang, Xiaoyan; Li, Dong; Liang, Yuhai; Yang, Zhuo; Cui, Shaoming; Liu, Tao; Zeng, Huiping; Zhang, Jie

    2013-04-01

    The stability and parameters of a bio-ceramic filter for completely autotrophic nitrogen removal were investigated. The completely autotrophic nitrogen removal over nitrite (CANON) reactor was fed with different concentrations of ammonia (400, 300, and 200 mg N/L) but constant influent ammonia load. The results showed that the CANON system can achieve good treatment performance at ambient temperature (15-23 degrees C). The average removal rate and removal loading of NH4(+)-N and TN was 83.90%, 1.26 kg N/(m3 x day), and 70.14%, 1.09 kg N/(m3 x day), respectively. Among the influencing factors like pH, dissolved oxygen and alkalinity, it was indicated that the pH was the key parameter of the performance of the CANON system. Observing the variation of pH would contribute to better control of the CANON system in an intuitive and fast way. Denaturing gradient gel electrophoresis analysis of microorganisms further revealed that there were some significant changes in the community structure of ammonium oxidizing bacteria, which had low diversity in different stages, while the species of anaerobic ammonium oxidizing (anammox) bacteria were fewer and the community composition was relatively stable. These observations showed that anaerobic ammonia oxidation was more stable than the aerobic ammonia oxidation, which could explain that why the CANON system maintained a good removal efficiency under the changing substrate conditions.

  4. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    PubMed

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  5. Electrochemical treatment of domestic wastewater using boron-doped diamond and nanostructured amorphous carbon electrodes.

    PubMed

    Daghrir, Rimeh; Drogui, Patrick; Tshibangu, Joel; Delegan, Nazar; El Khakani, My Ali

    2014-05-01

    The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8%, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9%, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9 ± 2 and 85.5 ± 2 %, whereas 70% of total organic carbon removal was achieved.

  6. Long term remediation of highly polluted acid mine drainage: a sustainable approach to restore the environmental quality of the Odiel river basin.

    PubMed

    Caraballo, Manuel A; Macías, Francisco; Rötting, Tobias S; Nieto, José Miguel; Ayora, Carlos

    2011-12-01

    During 20 months of proper operation the full scale passive treatment in Mina Esperanza (SW Spain) produced around 100 mg/L of ferric iron in the aeration cascades, removing an average net acidity up to 1500 mg/L as CaCO(3) and not having any significant clogging problem. Complete Al, As, Cd, Cr, Cu, Ti and V removal from the water was accomplished through almost the entire operation time while Fe removal ranged between 170 and 620 mg/L. The system operated at a mean inflow rate of 43 m(3)/day achieving an acid load reduction of 597 g·(m(2) day)(-1), more than 10 times higher than the generally accepted 40 g·(m(2) day)(-1) value commonly used as a passive treatment system designing criteria. The high performance achieved by the passive treatment system at Mina Esperanza demonstrates that this innovative treatment design is a simple, efficient and long lasting remediation option to treat highly polluted acid mine drainage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effect of time on dyeing wastewater treatment

    NASA Astrophysics Data System (ADS)

    Ye, Tingjin; Chen, Xin; Xu, Zizhen; Chen, Xiaogang; Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    The preparation of carboxymethylchitosan wrapping fly-ash adsorbent using high temperature activated fly ash and sodium carboxymethyl chitosan (CWF), as with the iron-carbon micro-electrolysis process simulation and actual printing and dyeing wastewater. The effects of mixing time and static time on decolorization ratio, COD removing rate and turbidness removing rate were investigated. The experimental results show that the wastewater stirring times on the decolorization rate and COD removal rate and turbidity removal rate influence, with increasing of the stirring time, three showed a downward trend, and reached the peak at 10 min time; wastewater time on the decolorization ratio and COD removing efficiency and turbidness removing rate influence, along with standing time increase, three who declined and reached the maximum in 30min time.

  8. Particle Concentrations and Effectiveness of Free-Standing Air Filters in Bedrooms of Children with Asthma in Detroit, Michigan

    PubMed Central

    Du, Liuliu; Batterman, Stuart; Parker, Edith; Godwin, Christopher; Chin, Jo-Yu; O'Toole, Ashley; Robins, Thomas; Brakefield-Caldwell, Wilma; Lewis, Toby

    2011-01-01

    Asthma can be exacerbated by environmental factors including airborne particulate matter (PM) and environmental tobacco smoke (ETS). We report on a study designed to characterize PM levels and the effectiveness of filters on pollutant exposures of children with asthma. 126 households with an asthmatic child in Detroit, Michigan, were recruited and randomized into control or treatment groups. Both groups received asthma education; the latter also received a free-standing high efficiency air filter placed in the child’s bedroom. Information regarding the home, emission sources, and occupant activities was obtained using surveys administered to the child's caregiver and a household inspection. Over a one-week period, we measured PM, carbon dioxide (CO2), environmental tobacco smoke (ETS) tracers, and air exchange rates (AERs). Filters were installed at midweek. Before filter installation, PM concentrations averaged 28 µg m−3, number concentrations averaged 70,777 and 1,471 L−1 in 0.3–1.0 and 1–5 µm size ranges, respectively, and the median CO2 concentration was 1,018 ppm. ETS tracers were detected in 23 of 38 homes where smoking was unrestricted and occupants included smokers and, when detected, PM concentrations were elevated by an average of 15 µg m−3. Filter use reduced PM concentrations by an average of 69 to 80%. Simulation models representing location conditions show that filter air flow, room volume and AERs are the key parameters affecting PM removal, however, filters can achieve substantial removal in even "worst" case applications. While PM levels in homes with asthmatic children can be high, levels can be dramatically reduced using filters. PMID:21874085

  9. Particle Concentrations and Effectiveness of Free-Standing Air Filters in Bedrooms of Children with Asthma in Detroit, Michigan.

    PubMed

    Du, Liuliu; Batterman, Stuart; Parker, Edith; Godwin, Christopher; Chin, Jo-Yu; O'Toole, Ashley; Robins, Thomas; Brakefield-Caldwell, Wilma; Lewis, Toby

    2011-10-01

    Asthma can be exacerbated by environmental factors including airborne particulate matter (PM) and environmental tobacco smoke (ETS). We report on a study designed to characterize PM levels and the effectiveness of filters on pollutant exposures of children with asthma. 126 households with an asthmatic child in Detroit, Michigan, were recruited and randomized into control or treatment groups. Both groups received asthma education; the latter also received a free-standing high efficiency air filter placed in the child's bedroom. Information regarding the home, emission sources, and occupant activities was obtained using surveys administered to the child's caregiver and a household inspection. Over a one-week period, we measured PM, carbon dioxide (CO(2)), environmental tobacco smoke (ETS) tracers, and air exchange rates (AERs). Filters were installed at midweek. Before filter installation, PM concentrations averaged 28 µg m(-3), number concentrations averaged 70,777 and 1,471 L(-1) in 0.3-1.0 and 1-5 µm size ranges, respectively, and the median CO(2) concentration was 1,018 ppm. ETS tracers were detected in 23 of 38 homes where smoking was unrestricted and occupants included smokers and, when detected, PM concentrations were elevated by an average of 15 µg m(-3). Filter use reduced PM concentrations by an average of 69 to 80%. Simulation models representing location conditions show that filter air flow, room volume and AERs are the key parameters affecting PM removal, however, filters can achieve substantial removal in even "worst" case applications. While PM levels in homes with asthmatic children can be high, levels can be dramatically reduced using filters.

  10. Colony Failure Linked to Low Sperm Viability in Honey Bee (Apis mellifera) Queens and an Exploration of Potential Causative Factors

    PubMed Central

    Pettis, Jeffery S.; Rice, Nathan; Joselow, Katie; vanEngelsdorp, Dennis; Chaimanee, Veeranan

    2016-01-01

    Queen health is closely linked to colony performance in honey bees as a single queen is normally responsible for all egg laying and brood production within the colony. In the U. S. in recent years, queens have been failing at a high rate; with 50% or greater of queens replaced in colonies within 6 months when historically a queen might live one to two years. This high rate of queen failure coincides with the high mortality rates of colonies in the US, some years with >50% of colonies dying. In the current study, surveys of sperm viability in US queens were made to determine if sperm viability plays a role in queen or colony failure. Wide variation was observed in sperm viability from four sets of queens removed from colonies that beekeepers rated as in good health (n = 12; average viability = 92%), were replacing as part of normal management (n = 28; 57%), or where rated as failing (n = 18 and 19; 54% and 55%). Two additional paired set of queens showed a statistically significant difference in viability between colonies rated by the beekeeper as failing or in good health from the same apiaries. Queens removed from colonies rated in good health averaged high viability (ca. 85%) while those rated as failing or in poor health had significantly lower viability (ca. 50%). Thus low sperm viability was indicative of, or linked to, colony performance. To explore the source of low sperm viability, six commercial queen breeders were surveyed and wide variation in viability (range 60–90%) was documented between breeders. This variability could originate from the drones the queens mate with or temperature extremes that queens are exposed to during shipment. The role of shipping temperature as a possible explanation for low sperm viability was explored. We documented that during shipment queens are exposed to temperature spikes (<8 and > 40°C) and these spikes can kill 50% or more of the sperm stored in queen spermathecae in live queens. Clearly low sperm viability is linked to colony performance and laboratory and field data provide evidence that temperature extremes are a potential causative factor. PMID:26863438

  11. Radiofrequency ablation for postsurgical thyroid removal of differentiated thyroid carcinoma

    PubMed Central

    Xu, Dong; Wang, Lipin; Long, Bin; Ye, Xuemei; Ge, Minghua; Wang, Kejing; Guo, Liang; Li, Linfa

    2016-01-01

    Differentiated thyroid carcinoma (DTC) is the most common endocrine malignancy. Surgical removal with radioactive iodine therapy is recommended for recurrent thyroid carcinoma, and the postsurgical thyroid removal is critical. This study evaluated the clinical values of radiofrequency ablation (RFA) in the postsurgical thyroid removal for DTC. 35 DTC patients who had been treated by subtotal thyroidectomy received RFA for postsurgical thyroid removal. Before and two weeks after RFA, the thyroid was examined by ultrasonography and 99mTcO4 - thyroid imaging, and the serum levels of free triiodothyronine (FT3), free thyroxin (FT4), thyroid stimulating hormone (TSH) and thyroglobulin (Tg) were detected. The efficacy and complications of RFA were evaluated. Results showed that, the postsurgical thyroid removal by RFA was successfully performed in 35 patients, with no significant complication. After RFA, the average largest diameter and volume were significantly decreased in 35 patients (P > 0.05), and no obvious contrast media was observed in ablation area in the majority of patients. After RFA, the serum FT3, FT4 and Tg levels were markedly decreased (P < 0.05), and TSH level was significantly increased (P < 0.05). After RFA, radioiodine concentration in the ablation area was significantly reduced in the majority of patients. The reduction rate of thyroid update was 0.69±0.20%. DTC staging and interval between surgery and RFA had negative correlation (Pearson coefficient = -0.543; P = 0.001), with no obvious correlation among others influential factors. RFA is an effective and safe method for postsurgical thyroid removal of DTC. PMID:27186311

  12. Effect of Silk Protein Processing on Drug Delivery from Silk Films

    PubMed Central

    Pritchard, Eleanor M.; Hu, Xiao; Finley, Violet; Kuo, Catherine K.; Kaplan, David L.

    2013-01-01

    Sericin removal from the core fibroin protein of silkworm silk is a critical first step in the use of silk for biomaterial-related applications, but degumming can affect silk biomaterial properties, including molecular weight, viscosity, diffusivity and degradation behavior. Increasing the degumming time (10, 30, 60 and 90 min) decreases the average molecular weight of silk protein in solution, silk solution viscosity, and silk film glass transition temperature, and increases the rate of degradation of silk film by protease. Model compounds spanning a range of physical-chemical properties generally showed an inverse relationship between degumming time and release rate through a varied degumming time silk coating. Degumming provides a useful control point to manipulate silk’s material properties. PMID:23349062

  13. Low cost solar array project 1: Silicon material

    NASA Technical Reports Server (NTRS)

    Jewett, D. N.; Bates, H. E.; Hill, D. M.

    1980-01-01

    The low cost production of silicon by deposition of silicon from a hydrogen/chlorosilane mixture is described. Reactor design, reaction vessel support systems (physical support, power control and heaters, and temperature monitoring systems) and operation of the system are reviewed. Testing of four silicon deposition reactors is described, and test data and consequently derived data are given. An 18% conversion of trichlorosilane to silicon was achieved, but average conversion rates were lower than predicted due to incomplete removal of byproduct gases for recycling and silicon oxide/silicon polymer plugging of the gas outlet. Increasing the number of baffles inside the reaction vessel improved the conversion rate. Plans for further design and process improvements to correct the problems encountered are outlined.

  14. Degradation of trichloroethylene by photocatalysis in an internally circulating slurry bubble column reactor.

    PubMed

    Jeon, Jin Hee; Kim, Sang Done; Lim, Tak Hyoung; Lee, Dong Hyun

    2005-08-01

    The effects of initial trichloroethylene (TCE) concentration, recirculating liquid flow rate and gas velocity on photodegradation of TCE have been determined in an internally circulating slurry bubble column reactor (0.15m-ID x 0.85 m-high). Titanium dioxide (TiO2) powder was employed as a photocatalyst and the optimum loading of TiO2 in the present system is found to be approximately 0.2 wt%. The stripping fraction of TCE by air flow increases but photodegradation fraction of TCE decreases with increasing the initial TCE concentration, recirculating liquid flow rate and gas velocity. The average removal efficiency of TCE is found to be approximately 97% in an internally circulating slurry bubble column reactor.

  15. Mainstream upflow nitritation-anammox system with hybrid anaerobic pretreatment: Long-term performance and microbial community dynamics.

    PubMed

    Li, Xiaojin; Sun, Shan; Yuan, Heyang; Badgley, Brian D; He, Zhen

    2017-11-15

    Mainstream nitritation-anammox is of strong interest to energy- and resource-efficient domestic wastewater treatment. However, there lack in-depth studies of pretreatment, tests of actual wastewater, and examination of long-term performance. Herein, an upflow nitritation-anammox granular reactor has been investigated to treat primary effluent with a hybrid anaerobic reactor (HAR) as pretreatment for more than 300 days. This system achieved 92% of COD removal, 75% of which was accomplished by the HAR, and had an average final effluent COD concentration of 22 mg L -1 . More than 90% of ammonium was removed in the nitritation-anammox reactor, achieving a nitrogen removal rate of 81.0 g N m -3  d -1 in the last stage. The accumulation of sulfate-reducing bacteria in the HAR evidenced the effect of sulfate on COD removal and subsequent nitrogen removal. Anammox bacteria (predominantly Ca. Jettenia asiatica) accounted for up to 40.2% of total granular communities, but their abundance decreased over time in the suspended communities. The dynamics of major metabolisms and functional genes involved in nitrogen conversion were predicted by PICRUSt based on the taxonomic data, providing more insights into the functions of the microbial communities. These results have demonstrated the effectiveness and importance of anaerobic pretreatment to successful mainstream nitritation-anammox. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Clinical Evaluation of Hair Removal Using an 810 nm Diode Laser With a Novel Scanning Device.

    PubMed

    Courtney, Erin; Goldberg, David J

    2016-11-01

    Diode lasers are often considered as the gold standard preference for hair removal due to the deep penetration and ef- fective targeting of the hair follicle. A wide variety of diode lasers are available, which can differ in terms of their parameters (such as fluence, pulse duration, repetition rate, scanner, and cooling). The objective of the study was to evaluate the safety and ef cacy of hair removal with an 810 nm novel scanning diode laser, up to six months after last treatment. A scanning 810 nm diode laser was used for axillary hair removal of 14 female patients who received 3 treatments, 4-6 weeks apart. Follow-up on hair count was conducted 3 and 6 months after last treatment and compared to baseline hair count. No unexpected or signi cant adverse events were recorded. An average hair count reduction of 72.8% after 3 months and 67.6% 6 months after the last treatment is demonstrated. The examined 810 nm diode laser was proven to be safe and effective for hair removal. Results were sustained for 6 months after last treatment. Longer follow-up data are followed for further substantiation of the clinical effect. Scanning technology can provide for potentially faster and safer treatments. J Drugs Dermatol. 2016;15(11):1330-1333..

  17. Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis- in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN).

    PubMed

    Titah, Harmin Sulistiyaning; Halmi, Mohd Izuan Effendi Bin; Abdullah, Siti Rozaimah Sheikh; Hasan, Hassimi Abu; Idris, Mushrifah; Anuar, Nurina

    2018-06-07

    In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg -1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R 2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.

  18. Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes.

    PubMed

    Zhang, Tao; Zou, Hua; Ji, Minhui; Li, Xiaolin; Li, Liqiao; Tang, Tang

    2014-02-01

    Optimizing process parameters that affect the remediation time and power consumption can improve the treatment efficiency of the electrokinetic remediation as well as determine the cost of a remediation action. Lab-scale electrokinetic remediation of Pb-contaminated soils was investigated for the effect of complexant ethylenediaminetetraacetic acid (EDTA) and acetic acid and approaching anode on the removal efficiency of Pb. When EDTA was added to the catholyte, EDTA dissolved insoluble Pb in soils to form soluble Pb-EDTA complexes, increasing Pb mobility and accordingly removal efficiency. The removal efficiency was enhanced from 47.8 to 61.5 % when the EDTA concentration was increased from 0.1 to 0.2 M, showing that EDTA played an important role in remediation. And the migration rate of Pb was increased to 72.3 % when both EDTA and acetic acid were used in the catholyte. The "approaching anode electrokinetic remediation" process in the presence of both EDTA and acetic acid had a higher Pb-removal efficiency with an average efficiency of 83.8 %. The efficiency of electrokinetic remediation was closely related to Pb speciation. Exchangeable and carbonate-bounded Pb were likely the forms which could be removed. All results indicate that the approaching anode method in the presence of EDTA and acetic acid is an advisable choice for electrokinetic remediation of Pb-contaminated soil.

  19. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.

    PubMed

    Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria

    2016-06-01

    The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Towards Ideal NOx and CO2 Emission Control Technology for Bio-Oils Combustion Energy System Using a Plasma-Chemical Hybrid Process

    NASA Astrophysics Data System (ADS)

    Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.

    2013-03-01

    A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.

  1. Comparison of sand-based water filters for point-of-use arsenic removal in China.

    PubMed

    Smith, Kate; Li, Zhenyu; Chen, Bohan; Liang, Honggang; Zhang, Xinyi; Xu, Ruifei; Li, Zhilin; Dai, Huanfang; Wei, Caijie; Liu, Shuming

    2017-02-01

    Contamination of groundwater wells by arsenic is a major problem in China. This study compared arsenic removal efficiency of five sand-based point-of-use filters with the aim of selecting the most effective filter for use in a village in Shanxi province, where the main groundwater source had arsenic concentration >200 μg/L. A biosand filter, two arsenic biosand filters, a SONO-style filter and a version of the biosand filter with nails embedded in the sand were tested. The biosand filter with embedded nails was the most consistent and effective under the study conditions, likely due to increased contact time between water and nails and sustained corrosion. Effluent arsenic was below China's standard of 50 μg/L for more than six months after construction. The removal rate averaged 92% and was never below 86%. In comparison, arsenic removal for the nail-free biosand filter was never higher than 53% and declined with time. The arsenic biosand filter, in which nails sit in a diffuser basin above the sand, performed better but effluent arsenic almost always exceeded the standard. This highlights the positive impact on arsenic removal of embedding nails within the top layer of biosand filter sand and the promise of this low-cost filtration method for rural areas affected by arsenic contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Retrofascial mesh repair of ventral incisional hernias.

    PubMed

    Le, Hamilton; Bender, Jeffrey S

    2005-03-01

    Recurrence rates after ventral incisional hernia repair are reported to be as high as 33% and are associated with considerable morbidity and lost time. The purpose of this study was to determine if retrofascial mesh placement reduces the incidence of recurrence as well as the severity of wound infections. A prospective database covering the period from January 1995 to June 2003 was maintained. All patients underwent a standardized technique by a single surgeon. Polypropylene mesh was placed between the fascia and the peritoneum with the fascia closed over the mesh. There were 150 patients (126 women, 24 men) with a mean age of 55 years. Their average weight was 88 kg, with an average body mass index of 32. Sixty-three (42%) of the hernias were recurrences of a previous repair. The average size of the hernia was 8 x 14 cm. There was 1 postoperative mortality. There was a 9% postoperative infection rate with 2 patients (1%) requiring mesh removal. Long-term follow-up evaluation has revealed 3 recurrences (2%) and 3 readmissions for bowel obstruction with 1 patient requiring surgical release. There were no fistulas noted. Incisional hernia repair with mesh placed in the retrofascial position decreases both the risk for recurrence and the severity of wound infection without significant problems from bowel obstruction or enteric fistula.

  3. COD removal characteristics in air-cathode microbial fuel cells.

    PubMed

    Zhang, Xiaoyuan; He, Weihua; Ren, Lijiao; Stager, Jennifer; Evans, Patrick J; Logan, Bruce E

    2015-01-01

    Exoelectrogenic microorganisms in microbial fuel cells (MFCs) compete with other microorganisms for substrate. In order to understand how this affects removal rates, current generation, and coulombic efficiencies (CEs), substrate removal rates were compared in MFCs fed a single, readily biodegradable compound (acetate) or domestic wastewater (WW). Removal rates based on initial test conditions fit first-order kinetics, but rate constants varied with circuit resistance. With filtered WW (100Ω), the rate constant was 0.18h(-)(1), which was higher than acetate or filtered WW with an open circuit (0.10h(-)(1)), but CEs were much lower (15-24%) than acetate. With raw WW (100Ω), COD removal proceeded in two stages: a fast removal stage with high current production, followed by a slower removal with little current. While using MFCs increased COD removal rate due to current generation, secondary processes will be needed to reduce COD to levels suitable for discharge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China.

    PubMed

    Cheung, Pui Kwan; Fok, Lincoln

    2017-10-01

    Plastic microbeads are often added to personal care and cosmetic products (PCCPs) as an abrasive agent in exfoliants. These beads have been reported to contaminate the aquatic environment and are sufficiently small to be readily ingested by aquatic organisms. Plastic microbeads can be directly released into the aquatic environment with domestic sewage if no sewage treatment is provided, and they can also escape from wastewater treatment plants (WWTPs) because of incomplete removal. However, the emissions of microbeads from these two sources have never been estimated for China, and no regulation has been imposed on the use of plastic microbeads in PCCPs. Therefore, in this study, we aimed to estimate the annual microbead emissions in Mainland China from both direct emissions and WWTP emissions. Nine facial scrubs were purchased, and the microbeads in the scrubs were extracted and enumerated. The microbead density in those products ranged from 5219 to 50,391 particles/g, with an average of 20,860 particles/g. Direct emissions arising from the use of facial scrubs were estimated using this average density number, population data, facial scrub usage rate, sewage treatment rate, and a few conservative assumptions. WWTP emissions were calculated by multiplying the annual treated sewage volume and estimated microbead density in treated sewage. We estimated that, on average, 209.7 trillion microbeads (306.9 tonnes) are emitted into the aquatic environment in Mainland China every year. More than 80% of the emissions originate from incomplete removal in WWTPs, and the remaining 20% are derived from direct emissions. Although the weight of the emitted microbeads only accounts for approximately 0.03% of the plastic waste input into the ocean from China, the number of microbeads emitted far exceeds the previous estimate of plastic debris (>330 μm) on the world's sea surface. Immediate actions are required to prevent plastic microbeads from entering the aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Clinical utility of the additional use of blue dye for indocyanine green for sentinel node biopsy in breast cancer.

    PubMed

    Ji, Yinan; Luo, Ningbin; Jiang, Yi; Li, Qiuyun; Wei, Wei; Yang, Huawei; Liu, Jianlun

    2017-07-01

    Indocyanine green (ICG) is widely used as a tracer in sentinel lymph node biopsy (SLNB) of patients with breast cancer. Whether SLNB performance can be improved by supplementing ICG with methylene blue dye remains controversial. This study compared the performance of SLNB when ICG was used alone or with blue dye. Consecutive patients with T1-3 primary breast cancer at our hospital were recruited into our study and randomized to undergo SLNB with ICG alone (n = 62) or with the combination of ICG and blue dye (n = 65). We compared the two methods in terms of identification rate, number and detection time of sentinel lymph nodes (SLNs) removed. SLN identification rate were similar in the absence (95.2%) or presence of blue dye (98.5%, P = 0.578) but significantly, more average nodes were removed when blue dye was used (3.8 ± 1.5 versus 2.7 ± 1.2, P = 0.000), and the average time for detecting each SLN was significantly shorter (3.91 ± 1.87 versus 5.65 ± 2.95 min; P = 0.000). No patient in the study experienced severe adverse reactions or complications. Recurrence of axillary node was detected in one patient (1.6%) using ICG alone but not in any patients using ICG and blue dye. The efficiency and sensitivity of SLNB can be improved by combining ICG with blue dye. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Full-scale treatment of wastewater from a biodiesel fuel production plant with alkali-catalyzed transesterification.

    PubMed

    De Gisi, Sabino; Galasso, Maurizio; De Feo, Giovanni

    2013-01-01

    The treatment of wastewater derived from a biodiesel fuel (BDF) production plant with alkali-catalyzed transesterification was studied at full scale. The investigated wastewater treatment plant consisted of the following phases: primary adsorption/coagulation/flocculation/sedimentation processes, biological treatment with the combination of trickling filter and activated sludge systems, secondary flocculation/sedimentation processes, and reverse osmosis (RO) system with spiral membranes. All the processes were developed in a continuous mode, while the RO experiment was performed with batch tests. Two types of BDF wastewater were considered: the first wastewater (WW1) had an average total chemical oxygen demand (COD), pH and feed flow rate of 10,850.8 mg/L, 5.9 and 2946.7 L/h, respectively, while the second wastewater (WW2) had an average total COD, pH and feed flow rate of 43,898.9 mg/L, 3.3 and 2884.6 L/h, respectively. The obtained results from the continuous tests showed a COD removal percentage of more than 90% for the two types of wastewater considered. The removal of biorefractory COD and salts was obtained with a membrane technology in order to reuse the RO permeate in the factory production cycle. The rejections percentage of soluble COD, chlorides and sulphates were 92.8%, 95.0% and 99.5%, respectively. Because the spiral membranes required a high number of washing cycles, the use of plane membranes was preferable. Finally, the RO reject material should be evaporated using the large amount of inexpensive heat present in this type of industry.

  7. Test Performance and Test-Retest Reliability of the Vestibular/Ocular Motor Screening and King-Devick Test in Adolescent Athletes During a Competitive Sport Season.

    PubMed

    Worts, Phillip R; Schatz, Philip; Burkhart, Scott O

    2018-05-01

    The Vestibular/Ocular Motor Screening (VOMS) and King-Devick (K-D) test are tools designed to assess ocular or vestibular function after a sport-related concussion. To determine the test-retest reliability and rate of false-positive results of the VOMS and K-D test in a healthy athlete sample. Cohort study (diagnosis); Level of evidence, 2. Forty-five healthy high school student-athletes (mean age, 16.11 ± 1.43 years) completed self-reported demographics and medical history and were administered the VOMS and K-D test during rest on day 1 (baseline). The VOMS and K-D test were administered again once during rest (prepractice) and once within 5 minutes of removal from sport practice on day 2 (removal). The Borg rating of perceived exertion scale was administered at removal. Intraclass correlation coefficients were used to determine test-retest reliability on the K-D test and the average near point of convergence (NPC) distance on the VOMS. Level of agreement was used to examine VOMS symptom provocation over the 3 administration times. Multivariate base rates were used to determine the rate of false-positive results when simultaneously considering multiple clinical cutoffs. Test-retest reliability of total time on the K-D test (0.91 [95% CI, 0.86-0.95]) and NPC distance (0.91 [95% CI, 0.85-0.95]) was high across the 3 administration times. Level of agreement ranged from 48.9% to 88.9% across all 3 times for the VOMS items. Using established clinical cutoffs, false-positive results occurred in 2% of the sample using the VOMS at removal and 36% using the K-D test. The VOMS displayed a false-positive rate of 2% in this high school student-athlete cohort. The K-D test's false-positive rate was 36% while maintaining a high level of test-retest reliability (0.91). Results from this study support future investigation of VOMS administration in an acutely injured high school athletic sample. Going forward, the VOMS may be more stable than other neurological and symptom report screening measures and less vulnerable to false-positive results than the K-D test.

  8. Anaerobic membrane bioreactor for the treatment of leachates from Jebel Chakir discharge in Tunisia.

    PubMed

    Zayen, Amal; Mnif, Sami; Aloui, Fathi; Fki, Firas; Loukil, Slim; Bouaziz, Mohamed; Sayadi, Sami

    2010-05-15

    Landfill leachate (LFL) collected from the controlled discharge of Jebel Chakir in Tunisia was treated without any physical or chemical pretreatment in an anaerobic membrane bioreactor (AnMBR). The organic loading rate (OLR) in the AnMBR was gradually increased from 1 g COD l(-1)d(-1) to an average of 6.27 g COD l(-1)d(-1). At the highest OLR, the biogas production was more than 3 volumes of biogas per volume of the bioreactor. The volatile suspended solids (VSSs) reached a value of approximately 3 g l(-1) in the bioreactor. At stable conditions, the treatment efficiency was high with an average COD reduction of 90% and biogas yield of 0.46 l biogas per g COD removed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Outcome of modified Kidner procedure with subtalar arthroereisis for painful accessory navicular associated with planovalgus deformity.

    PubMed

    Garras, David N; Hansen, Patricia L; Miller, Adam G; Raikin, Steven Mark

    2012-11-01

    Type II accessory naviculars are frequently associated with planovalgus deformity. Operative treatment for patients recalcitrant to nonoperative treatment involves resection, with or without takedown, and reattachment of the tibialis posterior tendon as described by Kidner. This does not address the planovalgus deformity. The authors hypothesized that adding a subtalar arthroereisis to the Kidner procedure would lead to improvement of pain and function and correction of the deformity. Institutional Review Board-approved, prospectively collected data were reviewed for 20 patients (23 feet), who underwent a combined modified Kidner and subtalar arthroereisis for painful type II accessory navicular with planovalgus deformity recalcitrant to nonoperative treatment. The average age at the time of surgery was 18 years. Patients were evaluated preoperatively and at final follow-up clinically, radiographically, and via the visual analog pain scale (VAPS), the American Orthopaedic Foot and Ankle Society (AOFAS) ankle hindfoot score, and a satisfaction rating. Mean follow-up was 53.9 months. The mean AOFAS scores improved from 53 preoperatively to 95 at final follow-up and the mean VAPS score decreased from 7.4 preoperatively to 1.7 at final follow-up. Radiographically, the average Meary's angle improved from 18.5° apex plantar preoperatively to 3° apex plantar on weight-bearing lateral radiographs, and the average talar head uncoverage percentage on weight-bearing anteroposterior radiographs improved from 24% preoperatively to 3%. Nineteen of 20 patients reported good or excellent results. Three patients required implant removal because of pain; no recurrence of planovalgus deformity occurred after implant removal. No patients developed subtalar arthritis. The modified Kidner procedure combined with a subtalar arthroereisis resulted in significant pain and functional improvement. The deformity correction obtained at surgery was maintained even if the arthroereisis plug was removed. The extra-articular plug did not lead to subtalar arthritis.

  10. Anther Cap Retention Prevents Self-pollination by Elaterid Beetles in the South African Orchid Eulophia foliosa

    PubMed Central

    PETER, CRAIG I.; JOHNSON, STEVEN D.

    2006-01-01

    • Background and Aims Pollination by insects that spend long periods visiting many flowers on a plant may impose a higher risk of facilitated self-pollination. Orchids and asclepiads are particularly at risk as their pollen is packaged as pollinia and so can be deposited on self-stigmas en masse. Many orchids and asclepiads have adaptations to limit self-deposition of pollinia, including gradual reconfiguration of pollinaria following removal. Here an unusual mechanism—anther cap retention—that appears to prevent self-pollination in the South African orchid Eulophia foliosa is examined. • Methods Visits to inflorescences in the field were observed and pollinators collected. Visitation rates to transplanted inflorescences were compared between a site where putative pollinators were abundant and a site where they were rare. Anther cap retention times were determined for removed pollinaria and atmospheric vapour pressure deficit was recorded concurrently. Anther cap anatomy was examined using light microscopy. • Key Results Eulophia foliosa is pollinated almost exclusively by Cardiophorus obliquemaculatus (Elateridae) beetles, which remain on the deceptive inflorescences for on average 301 s (n = 18). The anther cap that covers the pollinarium is retained for an average of 512 s (n = 24) after pollinarium removal by beetles. In all populations measured, anther cap dimensions are greater than those of the stigmatic cavity, thus precluding the deposition of self-pollinia until after the anther cap has dropped. An anatomical investigation of this mechanism suggests that differential water loss from regions of the anther cap results in opening of the anther cap flaps. This is supported by observations that as atmospheric vapour pressure deficits increased, the duration of anther cap retention was reduced. • Conclusions Flowers of E. foliosa are specialized for pollination by elaterid beetles. Retention of anther caps for a period exceeding average visit times by beetles to inflorescences appears to prevent facilitated self-pollination in E. foliosa effectively. PMID:16373371

  11. Degradation of anionic surfactants during drying of UASBR sludges on sand drying beds.

    PubMed

    Mungray, Arvind Kumar; Kumar, Pradeep

    2008-09-01

    Anionic surfactant (AS) concentrations in wet up-flow anaerobic sludge blanket reactor (UASBR) sludges from five sewage treatment plants (STPs) were found to range from 4480 to 9,233 mg kg(-1)dry wt. (average 7,347 mg kg(-1)dry wt.) over a period of 18 months. After drying on sand drying beds (SDBs), AS in dried-stabilized sludges averaged 1,452 mg kg(-1)dry wt., a reduction of around 80%. The kinetics of drying followed simple first-order reduction of moisture with value of drying constant (k(d))=0.051 d(-1). Reduction of AS also followed first-order kinetics. AS degradation rate constant (k(AS)) was found to be 0.034 d(-1) and half-life of AS as 20 days. The order of rates of removal observed was k(d)>k(AS)>k(COD)>k(OM) (drying >AS degradation>COD reduction>organic matter reduction). For the three applications of dried-stabilized sludges (soil, agricultural soil, grassland), values of risk quotient (RQ) were found to be <1, indicating no risk.

  12. Simultaneous treatment of raw palm oil mill effluent and biodegradation of palm fiber in a high-rate CSTR.

    PubMed

    Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2015-02-01

    A high-rate continuous stirred tank reactor (CSTR) was used to produce biogas from raw palm oil mill effluent (POME) at 55°C at a highest organic loading rate (OLR) of 19 g COD/ld. Physical and chemical pretreatments were not performed on the raw POME. In order to promote retention of suspended solids, the CSTR was installed with a deflector at its upper section. The average methane yield was 0.27 l/g COD, and the biogas production rate per reactor volume was 6.23 l/l d, and the tCOD removal efficiency was 82%. The hydrolysis rate of cellulose, hemicelluloses and lignin was 6.7, 3.0 and 1.9 g/d, respectively. The results of denaturing gradient gel electrophoresis (DGGE) suggested that the dominant hydrolytic bacteria responsible for the biodegradation of the palm fiber and residual oil were Clostridium sp., while the dominant methanogens were Methanothermobacter sp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Application of a constructed wetland system for polluted stream remediation

    NASA Astrophysics Data System (ADS)

    Tu, Y. T.; Chiang, P. C.; Yang, J.; Chen, S. H.; Kao, C. M.

    2014-03-01

    In 2010, the multi-function Kaoping River Rail Bridge Constructed Wetland (KRRBW) was constructed to improve the stream water quality and rehabilitate the ecosystem of the surrounding environment of Dashu Region, Kaohsiung, Taiwan. The KRRBW consists of five wetland basins with a total water surface area of 15 ha, a total hydraulic retention time (HRT) of 10.1 days at a averaged flow rate of 14 740 m3/day, and an averaged water depth of 1.1 m. The influent of KRRBW coming from the local drainage systems containing untreated domestic, agricultural, and industrial wastewaters. Based on the quarterly investigation results of water samples taken in 2011-2012, the overall removal efficiencies were 91% for biochemical oxygen demand (BOD), 75% for total nitrogen (TN), 96% for total phosphorus (TP), and 99% for total coliforms (TC). The calculated first-order decay rates for BOD, TN, TP, NH3-N, and TC ranged from 0.14 (TN) to 0.42 (TC) 1/day. This indicates that the KRRBW was able to remove organics, TC, and nutrients effectively. The high ammonia/nitrate removal efficiency indicates that nitrification and denitrification processes occurred simultaneously in the wetland system, and the detected nitrite concentration confirmed the occurrence of denitrification/nitrification. Results from sediment analyses reveal that the sediment contained high concentrations of organics (sediment oxygen demand = 1.9-5.2 g O2/m2 day), nutrients (up to 15.8 g total nitrogen/kg of sediment and 1.48 g total phosphorus/kg of sediment), and metals (up to 547 mg/kg of Zn and 97 mg/kg of Cu). Appropriate wetland management strategies need to be developed to prevent the release of contaminants into the wetland system. The wetland system caused the variations in the microbial diversities and dominant microbial bacteria. Results show the dominant nitrogen utilization bacteria including Denitratisoma oestradiolicum, Nitrosospira sp., Nitrosovibrio sp., D. oestradiolicum, Alcaligenes sp., Steroidobacter denitrificans, Hydrocarboniphaga effuse were responsible for nitrogen removal, and the dominant carbon degrading bacteria (Stenotrophomonas maltophilia, H. effuse, Alcaligenes sp., Pseudomonas sp., Fusibacter sp., Chlofoflexi, Guggenheimella bovis, Bacillus pumilus) were responsible for carbon reduction. The denaturing gradient gel electrophoresis (DGGE) and nucleotide sequence techniques provide a guide for microbial ecology evaluation, which can be used as an indication of contaminants removal. Results from this study show that constructed wetlands have the potential to be developed into an environmentally acceptable river water quality improvement and wastewater polishment alternative for practical application.

  14. Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration.

    PubMed

    Avila, Cristina; Nivala, Jaime; Olsson, Linda; Kassa, Kinfe; Headley, Tom; Mueller, Roland A; Bayona, Josep Maria; García, Joan

    2014-10-01

    Four side-by-side pilot-scale vertical flow (VF) constructed wetlands of different designs were evaluated for the removal of eight widely used emerging organic contaminants from municipal wastewater (i.e. ibuprofen, acetaminophen, diclofenac, tonalide, oxybenzone, triclosan, ethinylestradiol, bisphenol A). Three of the systems were free-draining, with one containing a gravel substrate (VGp), while the other two contained sand substrate (VS1p and VS2p). The fourth system had a saturated gravel substrate and active aeration supplied across the bottom of the bed (VAp). All beds were pulse-loaded on an hourly basis, except VS2p, which was pulse-loaded every 2h. Each system had a surface area of 6.2m(2), received a hydraulic loading rate of 95 mm/day and was planted with Phragmites australis. The beds received an organic loading rate of 7-16 gTOC/m(2)d. The sand-based VF (VS1p) performed significantly better (p<0.05) than the gravel-based wetland (VGp) both in the removal of conventional water quality parameters (TSS, TOC, NH4-N) and studied emerging organic contaminants except for diclofenac (85 ± 17% vs. 74 ± 15% average emerging organic contaminant removal for VS1p and VGp, respectively). Although loading frequency (hourly vs. bi-hourly) was not observed to affect the removal efficiency of the cited conventional water quality parameters, significantly lower removal efficiencies were found for tonalide and bisphenol A for the VF wetland that received bi-hourly dosing (VS2p) (higher volume per pulse), probably due to the more reducing conditions observed in that system. However, diclofenac was the only contaminant showing an opposite trend to the rest of the compounds, achieving higher elimination rates in the wetlands that exhibited less-oxidizing conditions (VS2p and VGp). The use of active aeration in the saturated gravel bed (VAp) generally improved the treatment performance compared to the free-draining gravel bed (VGp) and achieved a similar performance to the free-draining sand-based VF wetlands (VS1p). Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Using aerated gravel-packed contact bed and constructed wetland system for polluted river water purification: A case study in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, J. L.; Tu, Y. T.; Chiang, P. C.; Chen, S. H.; Kao, C. M.

    2015-06-01

    The Ju-Liao Stream is one of the most contaminated streams in Kaohsiung City, Taiwan. A constructed wetland (CW) system was built in 2010 for polluted stream water purification and ecosystem improvement. An aerated gravel-packed contact bed (CB) system was built in 2011 and part of the stream water was treated by the CB before discharging to the CW. The influent rates of the CW and CB were approximately 5570 and 900 m3/d, respectively. The CW contained one free-water surface basin planted with emergent wetland plants, followed by the plug-flow channel-shaped free-water surface basin planted with emergent and floating wetland plants. The mean measured hydraulic loading rate (HLR), hydraulic retention time (HRT), water depth, and total volume of wetland system were 1.7 m/d, 0.68 d, 0.7 m, and 4400 m3, respectively. The aeration zone of the CB system had a dimension of 24 m (L) × 8 m (W) × 3 m (H), which was filled with gravels (average diameter = 5 cm) with a porosity of 0.4, and the aeration rate was 7.8 m3/min. Results show that the CB system was able to remove 69% of suspended solid (SS), 86% of biochemical oxygen demand (BOD), and 58% of total nitrogen (TN). Up to 82% of BOD and 27% of TN could be removed in the CW system. Removal efficiency of SS was affected by the growth of chlorophyll a in the CW system due to the growth of algae. The observed first-order decay rates (k) for BOD and TN in CB were 9.3 and 4.2 1/d, and the k values for BOD and TN removal in CW were 2.5 and 0.45 1/d. The high pollutant removal efficiencies in the CB system indicate that the system could enhance the organic and nutrient removal through the biological processes effectively. Sediments contained high total organic matter (1.9-4.5%), sediment total nitrogen (6.4-10.1 g/kg), sediment total phosphorus (0.59-0.94 g/kg), and sediment oxygen demand (0.9-4.1 g O2/m2 d). The organic and nutrient-abundant sediments resulted in reduced conditions (oxidation-reduction potential measurements <158 mV). Increased evenness, richness, and biodiversity for birds and amphibious animals reveal that the CW had a positive impact on the ecosystem conservation and wildlife habitat rehabilitation.

  16. Emergency Face-Mask Removal Effectiveness: A Comparison of Traditional and Nontraditional Football Helmet Face-Mask Attachment Systems

    PubMed Central

    Swartz, Erik E.; Belmore, Keith; Decoster, Laura C.; Armstrong, Charles W.

    2010-01-01

    Abstract Context: Football helmet face-mask attachment design changes might affect the effectiveness of face-mask removal. Objective: To compare the efficiency of face-mask removal between newly designed and traditional football helmets. Design: Controlled laboratory study. Setting: Applied biomechanics laboratory. Participants: Twenty-five certified athletic trainers. Intervention(s): The independent variable was face-mask attachment system on 5 levels: (1) Revolution IQ with Quick Release (QR), (2) Revolution IQ with Quick Release hardware altered (QRAlt), (3) traditional (Trad), (4) traditional with hardware altered (TradAlt), and (5) ION 4D (ION). Participants removed face masks using a cordless screwdriver with a back-up cutting tool or only the cutting tool for the ION. Investigators altered face-mask hardware to unexpectedly challenge participants during removal for traditional and Revolution IQ helmets. Participants completed each condition twice in random order and were blinded to hardware alteration. Main Outcome Measure(s): Removal success, removal time, helmet motion, and rating of perceived exertion (RPE). Time and 3-dimensional helmet motion were recorded. If the face mask remained attached at 3 minutes, the trial was categorized as unsuccessful. Participants rated each trial for level of difficulty (RPE). We used repeated-measures analyses of variance (α  =  .05) with follow-up comparisons to test for differences. Results: Removal success was 100% (48 of 48) for QR, Trad, and ION; 97.9% (47 of 48) for TradAlt; and 72.9% (35 of 48) for QRAlt. Differences in time for face-mask removal were detected (F4,20  =  48.87, P  =  .001), with times ranging from 33.96 ± 14.14 seconds for QR to 99.22 ± 20.53 seconds for QRAlt. Differences were found in range of motion during face-mask removal (F4,20  =  16.25, P  =  .001), with range of motion from 10.10° ± 3.07° for QR to 16.91° ± 5.36° for TradAlt. Differences also were detected in RPE during face-mask removal (F4,20  =  43.20, P  =  .001), with participants reporting average perceived difficulty ranging from 1.44 ± 1.19 for QR to 3.68 ± 1.70 for TradAlt. Conclusions: The QR and Trad trials resulted in superior results. When trials required cutting loop straps, results deteriorated. PMID:21062179

  17. Accumulation rates of Th-230, Pa-231, and some transition metals on the Bermuda Rise

    USGS Publications Warehouse

    Bacon, M.P.; Rosholt, J.N.

    1982-01-01

    Measurements of 238U, 234U, 230Th, 232Th, 231Pa, Mn, Fe, Co, Ni, Cu, and Zn were made on 23 samples from core GPC-5, a 29-m giant piston core from a water depth of 4583 m on the northeastern Bermuda Rise (33??41.2???N, 57??36.9???W). This area is characterized by rapid deposition of sediment transported by abyssal currents. Unsupported 230Th and 231Pa are present throughout the core but, because of large variations in the sedimentation rate, show marked departures from exponential decay with depth. The trend with depth of the 231Paex 230Thex ratio is consistent with the average accumulation rate of 36 cm/1000 y reported earlier on the basis of radiocarbon dating and CaCO3 stratigraphy. When expressed on a carbonate-free basis, concentrations of Mn, Co, Ni, Cu, Zn, 230Thex, and 231Paex all show cyclic variations positively correlated with those of CaCO3. The correlations can be explained by a model in which all of these constituents, including CaCO3, are supplied to the sediments from the water column at a constant rate. Concentration variations are controlled mainly by varying inputs of terrigenous detritus, with low inputs occurring during interglacials and high inputs during glacials. Relationships between the metal and 230Thex concentrations permit estimates of the rates at which the metals are removed to the sediment by scavenging from the water column. The results, in ??g/cm2-1000 y, are: 4300 ?? 1100 for Mn, 46 ?? 16 for Ni and 76 ?? 26 for Cu. These rates are somewhat larger than ocean-wide averages estimated by other methods, and the absolute rate of 230Th accumulation in GPC-5 averages about nine times higher than production in the overlying water column. This part of the Bermuda Rise and similar bottom-current deposits may act as important accumulators of elements scavenged from seawater. ?? 1982.

  18. Estimating the terrestrial N processes in subtropical mountainous forestry catchment through INCA-N: A case study in FuShan catchment, Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, Meng-Chang; Huang, -Chuan, Jr.; Chang, Chung-Te; Shih, Yu-Ting; Lin, Teng-Chiu

    2016-04-01

    The riverine DIN is a crucial indicator for eutrophication in river network. The riverine DIN export in Taiwan is featured by the extremely high yield, ~3800 kg-N km-2yr-1, nearly 20-fold than the global average, showing the interesting terrestrial N process yet rarely documented. In this study we collected the DIN samples in rainwater, soil water, and stream water in a mountainous forest watershed, FuShan experimental forest watershed 1 (WS1) which is a natural broadleaf forest without human activities. Based on the intensive observations, we applied the INCA-N to simulate the riverine DIN response and thus estimate the terrestrial N processes in a global synthesis. The result showed that both discharge and DIN yield were simulated well with the average Nash-Sutcliffe efficiency coefficient of 0.83 and 0.76 , respectively. Among all N processes, N uptake, mineralization, nitrification, denitrfication, and immobilization are significantly positive correlated with soil moisture (R2>0.99), which indicates that soil moisture greatly influences N cycle processes. The average rate of mineralization and nitrification in wet years are consistent with documented values, whereas the rates in dry years are lower than the observations. Despite the high nitrification rate, the secondary forest may uptake abundant N indicating the plant uptake, which responds for removing considerable nitrate, is a controlling factor in forest ecosystem. Our simulated denitrification rate falls between the documented rates of temperate forest and agricultural area, and that may be affected by the high N-deposition in Taiwan. Simulated in-stream denitrification rate is less than 10% of the rate in soil, and is a little lower than that in temperate forest. This preliminary simulation provides an insightful guide to establish the monitoring programme and improve the understanding of N cycle in subtropical.

  19. Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor (SBAR) at low temperature.

    PubMed

    Bao, Ruiling; Yu, Shuili; Shi, Wenxin; Zhang, Xuedong; Wang, Yulan

    2009-09-15

    To understand the effect of low temperature on the formation of aerobic granules and their nutrient removal characteristics, an aerobic granular sequencing batch airlift reactor (SBAR) has been operated at 10 degrees C using a mixed carbon source of glucose and sodium acetate. The results showed that aerobic granules were obtained and that the reactor performed in stable manner under the applied conditions. The granules had a compact structure and a clear out-surface. The average parameters of the granules were: diameter 3.4mm, wet density 1.036 g mL(-1), sludge volume index 37 mL g(-1), and settling velocity 18.6-65.1 cm min(-1). Nitrite accumulation was observed, with a nitrite accumulation rate (NO(2)(-)-N/NO(x)(-)-N) between 35% and 43% at the beginning of the start-up stage. During the stable stage, NO(x) was present at a level below the detection limit. However, when the influent COD concentration was halved (resulting in COD/N a reduction of the COD/N from 20:1 to 10:1) nitrite accumulation was observed once more with an effluent nitrite accumulation rate of 94.8%. Phosphorus release was observed in the static feeding phase and also during the initial 20-30 min of the aerobic phase. Neither the low temperature nor adjustment of the COD/P ratio from 100:1 to 25:1 had any influence on the phosphorus removal efficiency under the operating conditions. In the granular reactor with the influent load rates for COD, NH(4)(+)-N, and PO(4)(3-)-P of 1.2-2.4, 0.112 and 0.012-0.024 kg m(-3)d(-1), the respective removal efficiencies at low temperature were 90.6-95.4%, 72.8-82.1% and 95.8-97.9%.

  20. Vertical gradients in water chemistry and age in the Northern High Plains Aquifer, Nebraska, 2003

    USGS Publications Warehouse

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    The northern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Despite the aquifer’s importance to the regional economy, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey’s National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the northern High Plains aquifer were analyzed for major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, dissolved gases, and other parameters to evaluate vertical gradients in water chemistry and age in the aquifer. Chemical data and tritium and radiocarbon ages show that water in the aquifer was chemically and temporally stratified in the study area, with a relatively thin zone of recently recharged water (less than 50 years) near the water table overlying a thicker zone of older water (1,800 to 15,600 radiocarbon years). In areas where irrigated agriculture was an important land use, the recently recharged ground water was characterized by elevated concentrations of major ions and nitrate and the detection of pesticide compounds. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions. The concentration increases were accounted for primarily by dissolved calcium, sodium, bicarbonate, sulfate, and silica. In general, the chemistry of ground water throughout the aquifer was of high quality. None of the approximately 90 chemical constituents analyzed in each sample exceeded primary drinking-water standards.Mass-balance models indicate that changes in groundwater chemistry along flow paths in the aquifer can be accounted for by small amounts of feldspar and calcite dissolution; goethite and clay-mineral precipitation; organic-carbon and pyrite oxidation; oxygen reduction and denitrification; and cation exchange. Mixing with surface water affected the chemistry of ground water in alluvial sediments of the Platte River Valley. Radiocarbon ages in the aquifer, adjusted for carbon mass transfers, ranged from 1,800 to 15,600 14C years before present. These results have important implications with respect to development of ground-water resources in the Sand Hills. Most of the water in the aquifer predates modern anthropogenic activity so excessive removal of water by pumping is not likely to be replenished by natural recharge in a meaningful timeframe. Vertical gradients in ground-water age were used to estimate long-term average recharge rates in the aquifer. In most areas, the recharge rates ranged from 0.02 to 0.05 foot per year. The recharge rate was 0.2 foot per year in one part of the aquifer characterized by large downward hydraulic gradients.Nitrite plus nitrate concentrations at the water table were 0.13 to 3.13 milligrams per liter as nitrogen, and concentrations substantially decreased with depth in the aquifer. Dissolved-gas and nitrogen-isotope data indicate that denitrification in the aquifer removed 0 to 97 percent (average = 50 percent) of the nitrate originally present in recharge. The average amount of nitrate removed by denitrification in the aquifer north of the Platte River (Sand Hills) was substantially greater than the amount removed south of the river (66 as opposed to 0 percent), and the extent of nitrate removal appears to be related to the presence of thick deposits of sediment on top of the Ogallala Group in the Sand Hills that contained electron donors, such as organic carbon and pyrite, to support denitrification.Apparent rates of dissolved-oxygen reduction and denitrification were estimated on the basis of decreases in dissolved-oxygen concentrations and increases in concentrations of excess nitrogen gas and ground-water ages along flow paths from the water table to deeper wells. Median rates of dissolved-oxygen reduction and denitrification south of the Platte River were at least 10 times smaller than the median rates north of the river in the Sand Hills. The relatively large denitrification rates in the Sand Hills indicate that the aquifer in that area may have a greater capacity to attenuate nitrate contamination than the aquifer south of the river, depending on rates of ground-water movement in the two areas. Small denitrification rates south of the river indicate that nitrate contamination in that part of the aquifer would likely persist for a longer period of time.

  1. A 25-Year Retrospective Analysis of River Nitrogen Fluxes in the Atchafalaya

    NASA Astrophysics Data System (ADS)

    Xu, Y.

    2005-05-01

    Nitrogen enrichment from the upper Mississippi River Basin has been attributed to be the major cause for the hypoxia in the Northern Gulf of Mexico. The hypoxia threatens not only the aquatic ecosystem health but Louisiana's fishery industry directly among other problems. Although fresh water diversion from the lower Mississippi River into the region's wetlands has been considered an alternative means for reducing nitrogen loading, it is largely uncertain how much nitrogen can actually be retained from the overflowing waters in these natural wetlands. Generally, there is a knowledge gap in what tools are available for accurate assessment of nitrogen inflow, outflow and removal potential for the complex and diverse coastal floodplain systems. This study is to seek answers to three critical questions: (1) Does the Atchafalaya River Swamp remove a significant amount of nitrogen from the overflowing water or release more nitrogen into the Gulf than removing it? (2) How seasonally and annually do the nitrogen removal or release rates fluctuate? (3) What are the relationships between the nitrogen removal capacity and the basin's hydrologic conditions such as river stage and discharge? By utilizing river's long-term discharge and water quality data (1978-2002), monthly and annual nitrogen fluxes were quantified, and their relationships with the basin's hydrologic conditions were investigated. A total Kjeldahl nitrogen (TKN) mass input-output balance between the upstream (Simmesport) and downstream (Morgan City and Wax Lake Outlet) locations was established to examine the organic nitrogen removal potential for this largest freshwater swamp basin in North America. The results showed that on average, TKN input into the Atchafalaya was 200,323 Mg yr-1 and TKN output leaving the basin was 145,917 Mg yr-1, resulting in a 27% removal rate of nitrogen. Monthly nitrogen input and output in the basin were highest from March to June (input vs. output: 25,000 vs. 18,000 Mg mon-1) and lowest from August to November (8,000 vs. 6,000 Mg mon-1). There was a large variation in both annual and inter-annual nitrogen removals, and the variability was positively correlated with the amount of inflow water at Simmesport. However, no close relationship between the river inflow and percentage nitrogen removal rate was found. The results gained from this study suggest that regulating the river's inflow will help reduce nitrogen loading of the Mississippi River to the Gulf of Mexico. The in-stream loss of nitrogen indicates that previous studies may have overestimated nitrogen discharge from the Mississippi-Atchafalaya River system. Furthermore, the study found that knowledge on spatial hydrological conditions in the basin is needed to understand nitrogen dynamics in the Atchafalaya River Swamp.

  2. Nonaqueous System of Iron-Based Ionic Liquid and DMF for the Oxidation of Hydrogen Sulfide and Regeneration by Electrolysis.

    PubMed

    Guo, Zhihui; Zhang, Tingting; Liu, Tiantian; Du, Jun; Jia, Bing; Gao, Shujing; Yu, Jiang

    2015-05-05

    To improve the hydrogen sulfide removal efficiency with the application of an iron-based imidazolium chloride ionic liquid (Fe(III)-IL) as desulfurizer, Fe(II) and N,N-dimethylformamide (DMF) are introduced to Fe(III)-IL to construct a new nonaqueous desulfurization system (Fe(III/II)-IL/DMF). Following desulfurization, the system can be regenerated using the controlled-potential electrolysis method. The addition of Fe(II) in Fe(III)-IL is beneficial for the hydrogen sulfide removal and the electrochemical regeneration of the desulfurizer. The addition of DMF in Fe(III/II)-IL does not change the structure of Fe(III/II)-IL but clearly decreases the acidity, increases the electrolytic current, and decreases the stability of the Fe-Cl bond in Fe(III/II)-IL. Fe(III/II)-IL/DMF can remove hydrogen sulfide and can be regenerated through an electrochemical method more efficiently than can Fe(III/II)-IL. After six cycles, the desulfurization efficiency remains higher than 98%, and the average conversion rate of Fe(II) is essentially unchanged. No sulfur peroxidation occurs, and the system remains stable. Therefore, this new nonaqueous system has considerable potential for removing H2S in pollution control applications.

  3. Removal of polycyclic aromatic hydrocarbons (PAHs) from industrial sludges in the ambient air conditions: automotive industry.

    PubMed

    Karaca, Gizem; Tasdemir, Yucel

    2013-01-01

    Removal of polycyclic aromatic hydrocarbons (PAHs) existed in automotive industry treatment sludge was examined by considering the effects of temperature, UV, titanium dioxide (TiO2) and diethyl amine (DEA) in different dosages (i.e., 5% and 20%) in this study. Application of TiO2 and DEA to the sludge samples in ambient environment was studied. Ten PAH (Σ10 PAH) compounds were targeted and their average value in the sludge was found to be 4480 ± 1450 ng/g dry matter (DM). Total PAH content of the sludge was reduced by 25% in the ambient air environment. Meteorological conditions, atmospheric deposition, evaporation and sunlight irradiation played an effective role in the variations in PAH levels during the tests carried out in ambient air environment. Moreover, it was observed that when the ring numbers of PAHs increased, their removal rates also increased. Total PAH level did not change with the addition of 5% DEA and only 10% decreased with 5% TiO2 addition. PAH removal ratios were 8% and 32% when DEA (20%) and TiO2 (20%) were added, respectively. It was concluded that DEA was a weak photo-sensitizer yet TiO2 was effective only at 20% dosage.

  4. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands.

    PubMed

    Liu, Lin; Liu, Chaoxiang; Zheng, Jiayu; Huang, Xu; Wang, Zhen; Liu, Yuhong; Zhu, Gefu

    2013-05-01

    This paper investigated the efficiency of two vertical flow constructed wetlands characterized by volcanic (CW1) and zeolite (CW2) respectively, at removing three common antibiotics (ciprofloxacin HCl, oxytetracycline HCl, and sulfamethazine) and tetracycline resistance (tet) genes (tetM, tetO, and tetW) from swine wastewater. The result indicated that the two systems could significantly reduce the wastewater antibiotics content, and elimination rates were in the following sequence: oxytetracycline HCl>ciprofloxacin HCl>sulfamethazine. The zeolite-medium system was superior to that of the volcanic-medium system vis-à-vis removal, perhaps because of the differing pH values and average pore sizes of the respective media. A higher concentration of antibiotics accumulated in the soil than in the media and vegetation, indicating that soil plays the main role in antibiotics removal from wastewater in vertical flow constructed wetlands. The characteristics of the wetland medium may also affect the antibiotic resistance gene removal capability of the system; the total absolute abundances of three tet genes and of 16S rRNA were reduced by 50% in CW1, and by almost one order of magnitude in CW2. However, the relative abundances of target tet genes tended to increase following CW1 treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott M. White Dept. Geological Sciences University of South Carolina Columbia, SC 29208; Joy A. Crisp Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91109; Frank J. Spera Dept. Earth Science University of California, Santa Barbara Santa Barbara, CA 93106

    A global compilation of 170 time-averaged volumetric volcanic output rates (Qe) is evaluated in terms of composition and petrotectonic setting to advance the understanding of long-term rates of magma generation and eruption on Earth. Repose periods between successive eruptions at a given site and intrusive:extrusive ratios were compiled for selected volcanic centers where long-term (>104 years) data were available. More silicic compositions, rhyolites and andesites, have a more limited range of eruption rates than basalts. Even when high Qe values contributed by flood basalts (9 ± 2 Å~ 10-1 km3/yr) are removed, there is a trend in decreasing average Qemore » with lava composition from basaltic eruptions (2.6 ± 1.0 Å~ 10-2 km3/yr) to andesites (2.3 ± 0.8 Å~ 10-3 km3/yr) and rhyolites (4.0 ± 1.4 Å~ 10-3 km3/yr). This trend is also seen in the difference between oceanic and continental settings, as eruptions on oceanic crust tend to be predominately basaltic. All of the volcanoes occurring in oceanic settings fail to have statistically different mean Qe and have an overall average of 2.8 ± 0.4 Å~ 10-2 km3/yr, excluding flood basalts. Likewise, all of the volcanoes on continental crust also fail to have statistically different mean Qe and have an overall average of 4.4 ± 0.8 Å~ 10-3 km3/yr. Flood basalts also form a distinctive class with an average Qe nearly two orders of magnitude higher than any other class. However, we have found no systematic evidence linking increased intrusive:extrusive ratios with lower volcanic rates. A simple heat balance analysis suggests that the preponderance of volcanic systems must be open magmatic systems with respect to heat and matter transport in order to maintain eruptible magma at shallow depth throughout the observed lifetime of the volcano. The empirical upper limit of Å`10-2 km3/yr for magma eruption rate in systems with relatively high intrusive:extrusive ratios may be a consequence of the fundamental parameters governing rates of melt generation (e.g., subsolidus isentropic decompression, hydration due to slab dehydration and heat transfer between underplated magma and the overlying crust) in the Earth« less

  6. A method for removing arm backscatter from EPID images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Brian W.; Greer, Peter B.; School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales 2308

    2013-07-15

    Purpose: To develop a method for removing the support arm backscatter from images acquired using current Varian electronic portal imaging devices (EPIDs).Methods: The effect of arm backscatter on EPID images was modeled using a kernel convolution method. The parameters of the model were optimized by comparing on-arm images to off-arm images. The model was used to develop a method to remove the effect of backscatter from measured EPID images. The performance of the backscatter removal method was tested by comparing backscatter corrected on-arm images to measured off-arm images for 17 rectangular fields of different sizes and locations on the imager.more » The method was also tested using on- and off-arm images from 42 intensity modulated radiotherapy (IMRT) fields.Results: Images generated by the backscatter removal method gave consistently better agreement with off-arm images than images without backscatter correction. For the 17 rectangular fields studied, the root mean square difference of in-plane profiles compared to off-arm profiles was reduced from 1.19% (standard deviation 0.59%) on average without backscatter removal to 0.38% (standard deviation 0.18%) when using the backscatter removal method. When comparing to the off-arm images from the 42 IMRT fields, the mean {gamma} and percentage of pixels with {gamma} < 1 were improved by the backscatter removal method in all but one of the images studied. The mean {gamma} value (1%, 1 mm) for the IMRT fields studied was reduced from 0.80 to 0.57 by using the backscatter removal method, while the mean {gamma} pass rate was increased from 72.2% to 84.6%.Conclusions: A backscatter removal method has been developed to estimate the image acquired by the EPID without any arm backscatter from an image acquired in the presence of arm backscatter. The method has been shown to produce consistently reliable results for a wide range of field sizes and jaw configurations.« less

  7. Reducing false positives of microcalcification detection systems by removal of breast arterial calcifications.

    PubMed

    Mordang, Jan-Jurre; Gubern-Mérida, Albert; den Heeten, Gerard; Karssemeijer, Nico

    2016-04-01

    In the past decades, computer-aided detection (CADe) systems have been developed to aid screening radiologists in the detection of malignant microcalcifications. These systems are useful to avoid perceptual oversights and can increase the radiologists' detection rate. However, due to the high number of false positives marked by these CADe systems, they are not yet suitable as an independent reader. Breast arterial calcifications (BACs) are one of the most frequent false positives marked by CADe systems. In this study, a method is proposed for the elimination of BACs as positive findings. Removal of these false positives will increase the performance of the CADe system in finding malignant microcalcifications. A multistage method is proposed for the removal of BAC findings. The first stage consists of a microcalcification candidate selection, segmentation and grouping of the microcalcifications, and classification to remove obvious false positives. In the second stage, a case-based selection is applied where cases are selected which contain BACs. In the final stage, BACs are removed from the selected cases. The BACs removal stage consists of a GentleBoost classifier trained on microcalcification features describing their shape, topology, and texture. Additionally, novel features are introduced to discriminate BACs from other positive findings. The CADe system was evaluated with and without BACs removal. Here, both systems were applied on a validation set containing 1088 cases of which 95 cases contained malignant microcalcifications. After bootstrapping, free-response receiver operating characteristics and receiver operating characteristics analyses were carried out. Performance between the two systems was compared at 0.98 and 0.95 specificity. At a specificity of 0.98, the sensitivity increased from 37% to 52% and the sensitivity increased from 62% up to 76% at a specificity of 0.95. Partial areas under the curve in the specificity range of 0.8-1.0 were significantly different between the system without BACs removal and the system with BACs removal, 0.129 ± 0.009 versus 0.144 ± 0.008 (p<0.05), respectively. Additionally, the sensitivity at one false positive per 50 cases and one false positive per 25 cases increased as well, 37% versus 51% (p<0.05) and 58% versus 67% (p<0.05) sensitivity, respectively. Additionally, the CADe system with BACs removal reduces the number of false positives per case by 29% on average. The same sensitivity at one false positive per 50 cases in the CADe system without BACs removal can be achieved at one false positive per 80 cases in the CADe system with BACs removal. By using dedicated algorithms to detect and remove breast arterial calcifications, the performance of CADe systems can be improved, in particular, at false positive rates representative for operating points used in screening.

  8. Impact of hydraulic and carbon loading rates of constructed wetlands on contaminants of emerging concern (CECs) removal.

    PubMed

    Sharif, Fariya; Westerhoff, Paul; Herckes, Pierre

    2014-02-01

    Constructed wetlands remove trace organic contaminants via synergistic processes involving plant biomass that include hydrolysis, volatilization, sorption, biodegradation, and photolysis. Wetland design conditions, such as hydraulic loading rates (HLRs) and carbon loading rates (CLRs), influence these processes. Contaminant of emerging concern (CEC) removal by wetland plants was investigated at varying HLRs and CLRs. Rate constants and parameters obtained from batch-scale studies were used in a mechanistic model to evaluate the effect of these two loading rates on CEC removal. CLR significantly influenced CEC removal when wetlands were operated at HLR >5 cm/d. High values of CLR increased removal of estradiol and carbamazepine but lowered that of testosterone and atrazine. Without increasing the cumulative HLR, operating two wetlands in series with varying CLRs could be a way to improve CEC removal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. An MHD variational principle that admits reconnection

    NASA Technical Reports Server (NTRS)

    Rilee, M. L.; Sudan, R. N.; Pfirsch, D.

    1997-01-01

    The variational approach of Pfirsch and Sudan's averaged magnetohydrodynamics (MHD) to the stability of a line-tied current layer is summarized. The effect of line-tying on current sheets that might arise in line-tied magnetic flux tubes by estimating the growth rates of a resistive instability using a variational method. The results show that this method provides a potentially new technique to gauge the stability of nearly ideal magnetohydrodynamic systems. The primary implication for the stability of solar coronal structures is that tearing modes are probably constant at work removing magnetic shear from the solar corona.

  10. Modified Miniplates for Temporary Skeletal Anchorage in Orthodontics: Placement and Removal Surgeries

    PubMed Central

    Cornelis, Marie A.; Scheffler, Nicole R.; Mahy, Pierre; Siciliano, Sergio; De Clerck, Hugo J.; Tulloch, J.F. Camilla

    2009-01-01

    Purpose Skeletal anchorage systems are increasingly used in orthodontics. This article describes the techniques of placement and removal of modified surgical miniplates used for temporary orthodontic anchorage and reports surgeons’ perceptions of their use. Patients and Methods We enrolled 97 consecutive orthodontic patients having miniplates placed as an adjunct to treatment. A total of 200 miniplates were placed by 9 oral surgeons. Patients and surgeons completed questionnaires after placement and removal surgeries. Results Fifteen miniplates needed to be removed prematurely. Antibiotics and anti-inflammatories were generally prescribed after placement but not after removal surgery. Most surgeries were performed with the patient under local anesthesia. Placement surgery lasted on average between 15 and 30 minutes per plate and was considered by the surgeons to be very easy to moderately easy. The surgery to remove the miniplates was considered easier and took less time. The patients’ chief complaint was swelling, lasting on average 5.3 ± 2.8 days after placement and 4.5 ± 2.6 days after removal. Conclusions Although miniplate placement/removal surgery requires the elevation of a flap, this was considered an easy and relatively short surgical procedure that can typically be performed with the patient under local anesthesia without complications, and it may be considered a safe and effective adjunct for orthodontic treatment. PMID:18571028

  11. Anammox enrichment from reject water on blank biofilm carriers and carriers containing nitrifying biomass: operation of two moving bed biofilm reactors (MBBR).

    PubMed

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Lemmiksoo, Vallo; Menert, Anne; Loorits, Liis; Vabamäe, Priit; Tomingas, Martin; Tenno, Taavo

    2012-07-01

    The anammox bacteria were enriched from reject water of anaerobic digestion of municipal wastewater sludge onto moving bed biofilm reactor (MBBR) system carriers-the ones initially containing no biomass (MBBR1) as well as the ones containing nitrifying biomass (MBBR2). Duration of start-up periods of the both reactors was similar (about 100 days), but stable total nitrogen (TN) removal efficiency occurred earlier in the system containing nitrifying biomass. Anammox TN removal efficiency of 70% was achieved by 180 days in both 20 l volume reactors at moderate temperature of 26.0°C. During the steady state phase of operation of MBBRs the average TN removal efficiencies and maximum TN removal rates in MBBR1 were 80% (1,000 g-N/m(3)/day, achieved by 308 days) and in MBBR2 85% (1,100 g-N/m(3)/day, achieved by 266 days). In both reactors mixed bacterial cultures were detected. Uncultured Planctomycetales bacterium clone P4, Candidatus Nitrospira defluvii and uncultured Nitrospira sp. clone 53 were identified by PCR-DGGE from the system initially containing blank biofilm carriers as well as from the nitrifying biofilm system; from the latter in addition to these also uncultured ammonium oxidizing bacterium clone W1 and Nitrospira sp. clone S1-62 were detected. FISH analysis revealed that anammox microorganisms were located in clusters in the biofilm. Using previously grown nitrifying biofilm matrix for anammox enrichment has some benefits over starting up the process from zero, such as less time for enrichment and protection against severe inhibitions in case of high substrate loading rates.

  12. Efficiency and mechanism of the phytoremediation of decabromodiphenyl ether-contaminated sediments by aquatic macrophyte Scirpus validus.

    PubMed

    Zhao, Liangyuan; Jiang, Jinhui; Chen, Chuanhong; Zhan, Shuie; Yang, Jiaoyan; Yang, Shao

    2017-05-01

    Phytoremediation is an economic and promising technique for removing toxic pollutants from the environment. Freshwater sediments are regarded as the ultimate sink of the widely used PBDE congener decabromodiphenyl ether (BDE-209) in the environment. In the study, the aquatic macrophyte Scirpus validus was selected to remove BDE-209 from three types of sediments (silt, clay, and sand) at an environmentally relevant concentration. After 18 months of phytoremediation experiment, S. validus significantly enhanced the dissipation rates of BDE-209 in all the sediments compared to the controls. Average removal rates of BDE-209 in the three treatments of silt, clay, and sandy sediments with S. validus were respectively 92.84, 84.04, and 72.22%, which were 148, 197, and 233% higher than that in the control sediments without S. validus. In the phytoremediation process, the macrophyte-rhizosphere microbe combined degradation was the main pathway of BDE-209 removal. Sixteen lower brominated PBDE congeners (di- to nona-) were detected in the sediments and plant tissues, confirming metabolic debromination of BDE-209 in S. validus. A relatively higher proportion of penta- and di-BDE congeners among the metabolites in plant tissues than that in the sediments indicated further debromination of PBDEs within plants. The populations and activities of microorganisms in the sediments were greatly promoted by S. validus. Bacterial community structure in BDE-209-contaminated rhizosphere sediments was different from that in the control rhizosphere sediment, as indicated by the dominant proportions of β-proteobacteria, δ-proteobacteria, α-proteobacteria, Acidobacteria, and Chloroflexi in the microbial flora. All these results suggested that S. validus was effective in phytoremediation of BDE-209 by the macrophyte-rhizosphere microbe combined degradation in aquatic sediments.

  13. Quantitative evaluation of the oral biofilm-removing capacity of a dental water jet using an electron-probe microanalyzer.

    PubMed

    Kato, Kazuo; Tamura, Kiyomi; Nakagaki, Haruo

    2012-01-01

    This study was conducted to evaluate the oral biofilm-removing capacity of a dental water jet (DWJ) by measuring biofilm thickness using an electron-probe microanalyzer (EPMA). Thirty consenting subjects wore in situ plaque-generating devices, which consisted of a pair of 4mm(2) enamel slabs attached to the upper molars for 2 days. Each device removed from the mouth was clamped, and one of the slab surfaces was treated with the DWJ, irrigating it for 5s. The devices were randomly assigned to three different pressure settings of 707, 350 or 102kPa. Another slab with no treatment served as a control. Each slab was freeze-dried, sputter-coated with platinum, and examined using secondary-electron imaging. The slabs were then embedded in methacrylate and cross-sectioned in the centre. Their surfaces were polished, coated with carbon, and examined using backscattered electron compositional (COMPO) imaging. The area between the enamel and the outer biofilm surface, indicated by a thin platinum layer, was measured by COMPO imaging to calculate the average thickness of the biofilm on the specimen. The removal capacity of biofilm by irrigation was estimated using a reduced rate of biofilm thickness, which was calculated from the differences between a pair of treated and control slabs. The reduced rates were 85.5% at 707kPa, 85.1% at 350kPa and 63.4% at 102kPa, indicating that biofilm thickness was significantly reduced at every pressure setting. The results suggest that irrigation using a DWJ would be an effective means of plaque control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Biological treatment of produced water in a sequencing batch reactor by a consortium of isolated halophilic microorganisms.

    PubMed

    Pendashteh, A R; Fakhru'l-Razi, A; Chuah, T G; Radiah, A B Dayang; Madaeni, S S; Zurina, Z A

    2010-10-01

    Produced water or oilfield wastewater is the largest volume ofa waste stream associated with oil and gas production. The aim of this study was to investigate the biological pretreatment of synthetic and real produced water in a sequencing batch reactor (SBR) to remove hydrocarbon compounds. The SBR was inoculated with isolated tropical halophilic microorganisms capable of degrading crude oil. A total sequence of 24 h (60 min filling phase; 21 h aeration; 60 min settling and 60 min decant phase) was employed and studied. Synthetic produced water was treated with various organic loading rates (OLR) (0.9 kg COD m(-3) d(-1), 1.8 kg COD m(-3) d(-1) and 3.6 kg COD m(-3) d(-1)) and different total dissolved solids (TDS) concentration (35,000 mg L(-1), 100,000 mg L(-1), 150,000 mg L(-1), 200,000 mg L(-1) and 250,000 mg L(-1)). It was found that with an OLR of 0.9 kg COD m(-3) d(-1) and 1.8 kg COD m(-3) d(-1), average oil and grease (O&G) concentrations in the effluent were 7 mg L(-1) and 12 mg L(-1), respectively. At TDS concentration of 35,000 mg L(-1) and at an OLR of 1.8 kg COD m(-3)d(-1), COD and O&G removal efficiencies were more than 90%. However, with increase in salt content to 250,000 mg L(-1), COD and O&G removal efficiencies decreased to 74% and 63%, respectively. The results of biological treatment of real produced water showed that the removal rates of the main pollutants of wastewater, such as COD, TOC and O&G, were above 81%, 83%, and 85%, respectively.

  15. Leaf removal by sesarmid crabs in Bangrong mangrove forest, Phuket, Thailand; with emphasis on the feeding ecology of Neoepisesarma versicolor

    NASA Astrophysics Data System (ADS)

    Thongtham, Nalinee; Kristensen, Erik; Puangprasan, Som-Ying

    2008-12-01

    Field measurements on leaf removal by populations of sesarmid crabs at different locations in the Bangrong mangrove forest, Phuket, Thailand, indicated that crabs on average can remove 87% of the daily leaf litter fall by ingestion or burial. The removal rate is correlated positively with the number of crab burrows and negatively with tidal inundation time. The results from the field were supplemented with observations on the behavior of Neoepisesarma versicolor in laboratory microcosms and a mangrove mesocosm. N. versicolor feeds primarily at night and total time spent feeding was up to an order of magnitude higher in the artificial microcosms than under simulated in situ conditions in the mesocosm. Most of the time during both day and night was spent resting near the entrance or inside burrows. N. versicolor mainly feeds on mangrove leaves and scraps of food material from the sediment surface. This is supported by examinations of stomach content, which showed that 62% is composed of higher plant material and 38% of detritus and mineral particles from the sediment. The nutritive value of leaves and detritus is insufficient to maintain crab growth. Sesarmid crabs may instead obtain the needed nutrients by occasional consumption of nitrogen-rich animal tissues, such as carcasses of fish and crustaceans, as indicated by the presence of animal remains in the stomach and the willingness of crabs to consume fish meat. Laboratory experiments on leaf consumption and leaf preferences of N. versicolor indicate that they preferentially feed on brown leaves, if available, followed by green and yellow leaves. If all species of sesarmid crabs in the Bangrong mangrove forest consume leaves at the same rate as N. versicolor, they could potentially ingest 52% of the total litter fall.

  16. Short Stature and Access to Lung Transplantation in the United States. A Cohort Study

    PubMed Central

    Sell, Jessica L.; Bacchetta, Matthew; Goldfarb, Samuel B.; Park, Hanyoung; Heffernan, Priscilla V.; Robbins, Hilary A.; Shah, Lori; Raza, Kashif; D’Ovidio, Frank; Sonett, Joshua R.; Arcasoy, Selim M.

    2016-01-01

    Rationale: Anecdotally, short lung transplant candidates suffer from long waiting times and higher rates of death on the waiting list compared with taller candidates. Objectives: To examine the relationship between lung transplant candidate height and waiting list outcomes. Methods: We conducted a retrospective cohort study of 13,346 adults placed on the lung transplant waiting list in the United States between 2005 and 2011. Multivariable-adjusted competing risk survival models were used to examine associations between candidate height and outcomes of interest. The primary outcome was the time until lung transplantation censored at 1 year. Measurements and Main Results: The unadjusted rate of lung transplantation was 94.5 per 100 person-years among candidates of short stature (<162 cm) and 202.0 per 100 person-years among candidates of average stature (170–176.5 cm). After controlling for potential confounders, short stature was associated with a 34% (95% confidence interval [CI], 29–39%) lower rate of transplantation compared with average stature. Short stature was also associated with a 62% (95% CI, 24–96%) higher rate of death or removal because of clinical deterioration and a 42% (95% CI, 10–85%) higher rate of respiratory failure while awaiting lung transplantation. Conclusions: Short stature is associated with a lower rate of lung transplantation and higher rates of death and respiratory failure while awaiting transplantation. Efforts to ameliorate this disparity could include earlier referral and listing of shorter candidates, surgical downsizing of substantially oversized allografts for shorter candidates, and/or changes to allocation policy that account for candidate height. PMID:26554631

  17. Breakeven costs for embryo transfer in a commercial dairy herd.

    PubMed

    Ferris, T A; Troyer, B W

    1987-11-01

    Differences in Estimated Breeding Values expressed in dollars were compared by simulation of two, 100-cow, closed herds. One herd practiced normal intensity of female selection. The other herd generated various herd replacements by embryo transfer by varying 1) selection rate of embryo transfer dams and 2) numbers of daughters per dam from which embryos were transferred, while varying the merit of mates of embryo transfer dams. Estimated Breeding Value dollars were compounded each generation and regressed to remove age adjustments and added feed and health costs. Beginning values in both herds included a standard deviation of 55 Cow Index dollars, herd average of -23 Cow Index dollars, and a 120 Predicted Difference dollars for mates of dams not embryo transferred. Average merit of all sires used increased $12 per year. Herd calving rate (.70), proportion females (.5), calf loss (.15), and heifer survival rate (.83) were used. Breakeven cost per embryo transfer cow entering the milking herd was computed by Net Present Value analysis using a 10% discount rate over 10 and 20 yr. Breakeven cost or the maximum expense that would allow a 10% return on the expenditure ranged from $135 to $510 per surviving cow, $24 to $125 per transfer, $47 to $178 per pregnancy, and $81 to $357 per female calf born. As the number of replacements resulting from embryo transfer increased, breakeven cost per embryo transfer cow decreased due to diminishing return.

  18. Robotic inferior vena cava surgery.

    PubMed

    Davila, Victor J; Velazco, Cristine S; Stone, William M; Fowl, Richard J; Abdul-Muhsin, Haidar M; Castle, Erik P; Money, Samuel R

    2017-03-01

    Inferior vena cava (IVC) surgery is uncommon and has traditionally been performed through open surgical approaches. Renal cell carcinoma with IVC extension generally requires vena cavotomy and reconstruction. Open removal of malpositioned IVC filters (IVCF) is occasionally required after endovascular retrieval attempts have failed. As our experience with robotic surgery has advanced, we have applied this technology to surgery of the IVC. We reviewed our institution's experience with robotic surgical procedures involving the IVC to determine its safety and efficacy. All patients undergoing robotic surgery that included cavotomy and repair from 2011 to 2014 were retrospectively reviewed. Data were obtained detailing preoperative demographics, operative details, and postoperative morbidity and mortality. Ten patients (6 men) underwent robotic vena caval procedures at our institution. Seven patients underwent robotic nephrectomy with removal of IVC tumor thrombus and retroperitoneal lymph node dissection. Three patients underwent robotic explantation of an IVCF after multiple endovascular attempts at removal had failed. The patients with renal cell carcinoma were a mean age of was 65.4 years (range, 55-74 years). Six patients had right-sided malignancy. All patients had T3b lesions at time of diagnosis. Mean tumor length extension into the IVC was 5 cm (range, 1-8 cm). All patients underwent robotic radical nephrectomy, with caval tumor thrombus removal and retroperitoneal lymph node dissection. The average operative time for patients undergoing surgery for renal cell carcinoma was 273 minutes (range, 137-382 minutes). Average intraoperative blood loss was 428 mL (range, 150-1200 mL). The patients with IVCF removal were a mean age of 33 years (range, 24-41 years). Average time from IVCF placement until robotic removal was 35.5 months (range, 4.3-57.3 months). Before robotic IVCF removal, a minimum of two endovascular retrievals were attempted. Average operative time for patients undergoing IVCF removal was 163 minutes (range, 131-202 minutes). Intraoperative blood loss averaged 250 mL (range, 150-350 mL). All procedures were completed robotically. The mean length of stay for all patients was 3.5 days (range, 1-8 days). All patients resumed ambulation on postoperative day 1. Nine patients resumed a regular diet on postoperative day 2. One patient with a renal tumor sustained a colon injury during initial adhesiolysis, before robotic radical nephrectomy, which was recognized at the initial operation and repaired robotically. Robotic radical nephrectomy and caval tumor removal were then completed. No blood transfusions were required intraoperatively, but three patients required blood transfusions postoperatively. Although robotic IVC surgery is uncommon, our initial limited experience demonstrates it is safe and efficacious. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  19. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Enid J; Kwon, Soondong; Katz, Lynn

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to removemore » volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ/MBR/RO system may be a feasible alternative to current methods for produced water treatment and disposal.« less

  20. Hook plate fixation for acute acromioclavicular dislocations without coracoclavicular ligament reconstruction: a functional outcome study in military personnel.

    PubMed

    Kumar, Narinder; Sharma, Vyom

    2015-08-01

    The aim of our study was to evaluate the shoulder function after clavicular hook plate fixation of acute acromioclavicular dislocations (Rockwood type III) in a population group consisting exclusively of high-demand military personnel. This prospective study was carried out at a tertiary care military orthopaedic centre during 2012-2013 using clavicular hook plate for management of acromioclavicular injuries without coracoclavicular ligament reconstruction in 33 patients. All patients underwent routine implant removal after 16 weeks. The functional outcome was assessed at 3, 6 and 12 months after hook plate removal and 2 years from the initial surgery using the Constant Murley and UCLA Scores. All the patients were male serving soldiers and had sustained acromioclavicular joint dislocation (Rockwood type III). Mean age of the patient group was 34.24 years (21-55 years). The mean follow-up period in this study was 23.5 months (20-26 months) after hook plate fixation and an average of 19.9 months (17-22 months) after hook plate removal. The average Constant Score at 3 months after hook plate removal was 60.3 as compared to 83.7 and 90.3 at 6 months and 1 year, respectively, and an average of 91.8 at the last follow-up that was approximately 2 years after initial surgery which was statistically significant (p value <0.05). The UCLA Score was an average of 15.27, 25.9 and 30.1 at 3, 6 months and 1 year, respectively, after removal of hook plate which improved further an average of 32.3 at the last follow-up, which was also statistically significant (p value <0.05). Clavicular hook plate fixation without coracoclavicular ligament reconstruction is a good option for acute acromioclavicular dislocations producing excellent medium-term functional results in high-demand soldiers.

  1. Effects of Manipulated Above- and Belowground Organic Matter Input on Soil Respiration in a Chinese Pine Plantation

    PubMed Central

    Zhao, Bo; Wu, Lianhai; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus v.

    2015-01-01

    Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q 10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest. PMID:25970791

  2. Effects of manipulated above- and belowground organic matter input on soil respiration in a Chinese pine plantation.

    PubMed

    Fan, Juan; Wang, Jinsong; Zhao, Bo; Wu, Lianhai; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus V

    2015-01-01

    Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest.

  3. A Correlation Between the Intrinsic Brightness and Average Decay Rate of Gamma-Ray Burst X-Ray Afterglow Light Curves

    NASA Technical Reports Server (NTRS)

    Racusin, J. L.; Oates, S. R.; De Pasquale, M.; Kocevski, D.

    2016-01-01

    We present a correlation between the average temporal decay (alpha X,avg, greater than 200 s) and early-time luminosity (LX,200 s) of X-ray afterglows of gamma-ray bursts as observed by the Swift X-ray Telescope. Both quantities are measured relative to a rest-frame time of 200 s after the gamma-ray trigger. The luminosity â€" average decay correlation does not depend on specific temporal behavior and contains one scale-independent quantity minimizing the role of selection effects. This is a complementary correlation to that discovered by Oates et al. in the optical light curves observed by the Swift Ultraviolet Optical Telescope. The correlation indicates that, on average, more luminous X-ray afterglows decay faster than less luminous ones, indicating some relative mechanism for energy dissipation. The X-ray and optical correlations are entirely consistent once corrections are applied and contamination is removed. We explore the possible biases introduced by different light-curve morphologies and observational selection effects, and how either geometrical effects or intrinsic properties of the central engine and jet could explain the observed correlation.

  4. Assessment of a full-scale duckweed pond system for septage treatment.

    PubMed

    Papadopoulos, F H; Tsihrintzis, V A

    2011-01-01

    Environmental conditions and wastewater treatment performance in a full-scale duckweed pond system are presented. The treatment system consisted of three stabilization ponds in series and was fed with septage. Vacuum trucks pumped the septage from residential holding tanks and discharged it to the system daily. The inflow rates averaged 36 m3 d(-1) in the cold season and 60 m3 d(-1) in the warm season. Duckweed (Lemna minor) colonized the ponds in the warm months and survived during the cold season. Because of the difficult process for harvesting the duckweed biomass, the investigation of the treatment efficiency was carried out without plant harvesting. Samples were collected from the vacuum trucks and from the exit of each pond and were analysed for physicochemical and microbiological parameters over a period of 12 months. The results showed that the duckweed mat suppressed algal biomass, which in turn led to anoxic and neutral pond conditions. On an annual basis, the duckweed system sufficiently removed BOD5 (94%), NH4+ (72%) and E. coli (99.65%), with lower removal of TSS (63%) and Enterococci (91.76%). A slight increase (1.1%) was recorded for o-PO4(3-). Between the two sampling seasons, BOD5 and TSS removal efficiencies were higher in the cold season with the longer retention time. Similar removal values in the warm and the cold season were found for nutrients and bacteria. These findings indicate that BOD5 and TSS removals are less temperature-dependent at higher retention times, while ammonia nitrogen and bacterial removals are substantially influenced by temperature as well as retention time.

  5. Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors.

    PubMed

    Mohammad, Balsam T; Veiga, María C; Kennes, Christian

    2007-08-15

    This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop. (c) 2007 Wiley Periodicals, Inc.

  6. Full-scale radium-removal system for a small community. Research report, 1 October 1985-30 September 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauch, R.P.; Mangelson, K.A.

    1988-08-01

    A radium-removal treatment plant was constructed for the small community of Redhill Forest in the central mountains of Colorado. The plant consists of iron removal using oxidation, filtration, and settling; radium and hardness removal using ion exchange; and radium removal from the waste brine using Dow Chemical Company's Radium Selective Complexer (RSC). The raw water comes from deep wells and has naturally occuring radium and iron concentrations of about 30-40 pC/L and 7-10 mg/L, respectively, and is aerated before entering the main treatment plant to remove radon gas and carbon dioxide. A unique feature of the plant is the processmore » that removes radium from the waste brine. The process removes only radium from the spent ion-exchange regeneration water by permanently complexing the radium on the RSC. The RSC is replaced when exhausted and sent to a final disposal site that is acceptable to state regulatory agencies. The overall plant reduces radium from about 35 pCi/L to less than 4 pCi/L. The RSC system has consistently removed over 99% of the radium from the spent ion exchange regenerant. The average inflow radium concentration to the RSC was about 1180 pCi/L, and the average effluent was about 9 pCi/L.« less

  7. High rate psychrophilic anaerobic digestion of high solids (35%) dairy manure in sequence batch reactor.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-06-01

    Zero liquid discharge is increasingly adopted as an objective for waste treatment process. The objective of this study was to increase the feed total solids (TS) and the organic loading rate (OLR) fed to a novel psychrophilic (20°C) dry anaerobic digestion (PDAD). Duplicate laboratory-scale bioreactors were fed cow feces and wheat straw (35% TS in feed) at OLR of 6.0 g TCOD kg(-1) inoculum d(-1) during long-term operation (147 days consisting of 7 successive cycles). An overall average specific methane yield (SMY) of 151.8±7.9 N L CH4 kg(-1) VS fed with an averaged volatile solids removal of 42.4±4.3% were obtained at a volatile solids-based inoculum-to-substrate ratio (ISR) of 2.13±0.2. The operation was stable as indicated by biogas and VFAs profiles and the results were reproducible in successive cycles; a maximum SMY of 163.3±5.7 N L CH4 kg(-1) VS fed was obtained. Hydrolysis was the reaction limiting step. High rate PDAD of 35% TS dairy manure is possible in sequential batch reactor within 21 days treatment cycle length. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  8. Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal

    NASA Astrophysics Data System (ADS)

    Zhao, Laijun; Wang, Qin; Cheng, Jingjing; Chen, Yucheng; Wang, Jiajia; Huang, Wei

    2011-07-01

    Rumor is an important form of social interaction, and its spreading has a significant impact on people’s lives. In the age of Web, people are using electronic media more frequently than ever before, and blog has become one of the main online social interactions. Therefore, it is essential to learn the evolution mechanism of rumor spreading on homogeneous network in consideration of the forgetting mechanism of spreaders. Here we study a rumor spreading model on an online social blogging platform called LiveJournal. In comparison with the Susceptible-Infected-Removed (SIR) model, we provide a more detailed and realistic description of rumor spreading process with combination of forgetting mechanism and the SIR model of epidemics. A mathematical model has been presented and numerical solutions of the model were used to analyze the impact factors of rumor spreading, such as the average degree, forgetting rate and stifling rate. Our results show that there exist a threshold of the average degree of LiveJournal and above which the influence of rumor reaches saturation. Forgetting mechanism and stifling rate exert great influence on rumor spreading on online social network. The analysis results can guide people’s behaviors in view of the theoretical and practical aspects.

  9. Automated Detection of Atrial Fibrillation Based on Time-Frequency Analysis of Seismocardiograms.

    PubMed

    Hurnanen, Tero; Lehtonen, Eero; Tadi, Mojtaba Jafari; Kuusela, Tom; Kiviniemi, Tuomas; Saraste, Antti; Vasankari, Tuija; Airaksinen, Juhani; Koivisto, Tero; Pankaala, Mikko

    2017-09-01

    In this paper, a novel method to detect atrial fibrillation (AFib) from a seismocardiogram (SCG) is presented. The proposed method is based on linear classification of the spectral entropy and a heart rate variability index computed from the SCG. The performance of the developed algorithm is demonstrated on data gathered from 13 patients in clinical setting. After motion artifact removal, in total 119 min of AFib data and 126 min of sinus rhythm data were considered for automated AFib detection. No other arrhythmias were considered in this study. The proposed algorithm requires no direct heartbeat peak detection from the SCG data, which makes it tolerant against interpersonal variations in the SCG morphology, and noise. Furthermore, the proposed method relies solely on the SCG and needs no complementary electrocardiography to be functional. For the considered data, the detection method performs well even on relatively low quality SCG signals. Using a majority voting scheme that takes five randomly selected segments from a signal and classifies these segments using the proposed algorithm, we obtained an average true positive rate of [Formula: see text] and an average true negative rate of [Formula: see text] for detecting AFib in leave-one-out cross-validation. This paper facilitates adoption of microelectromechanical sensor based heart monitoring devices for arrhythmia detection.

  10. Long-term cliff retreat and erosion hotspots along the central shores of the Monterey Bay National Marine Sanctuary

    USGS Publications Warehouse

    Moore, Laura J.; Griggs, Gary B.

    2002-01-01

    Quantification of cliff retreat rates for the southern half of Santa Cruz County, CA, USA, located within the Monterey Bay National Marine Sanctuary, using the softcopy/geographic information system (GIS) methodology results in average cliff retreat rates of 7–15 cm/yr between 1953 and 1994. The coastal dunes at the southern end of Santa Cruz County migrate seaward and landward through time and display net accretion between 1953 and 1994, which is partially due to development. In addition, three critically eroding segments of coastline with high average erosion rates ranging from 20 to 63 cm/yr are identified as erosion ‘hotspots’. These locations include: Opal Cliffs, Depot Hill and Manresa. Although cliff retreat is episodic, spatially variable at the scale of meters, and the factors affecting cliff retreat vary along the Santa Cruz County coastline, there is a compensation between factors affecting retreat such that over the long-term the coastline maintains a relatively smooth configuration. The softcopy/GIS methodology significantly reduces errors inherent in the calculation of retreat rates in high-relief areas (e.g. erosion rates generated in this study are generally correct to within 10 cm) by removing errors due to relief displacement. Although the resulting root mean squared error for erosion rates is relatively small, simple projections of past erosion rates are inadequate to provide predictions of future cliff position. Improved predictions can be made for individual coastal segments by using a mean erosion rate and the standard deviation as guides to future cliff behavior in combination with an understanding of processes acting along the coastal segments in question. This methodology can be applied on any high-relief coast where retreat rates can be measured.

  11. Performance of an under-loaded denitrifying bioreactor with biochar amendment.

    PubMed

    Bock, Emily M; Coleman, Brady S L; Easton, Zachary M

    2018-07-01

    Denitrifying bioreactors are recently-established agricultural best management practices with growing acceptance in the US Midwest but less studied in other agriculturally significant regions, such as the US Mid-Atlantic. A bioreactor was installed in the Virginia Coastal Plain to evaluate performance in this geographically novel region facing challenges managing nutrient pollution. The 25.3 m 3 woodchip bed amended with 10% biochar (v/v) intercepted subsurface drainage from 6.5 ha cultivated in soy. Influent and effluent nitrate-nitrogen (NO 3 -N) and total phosphorus (TP) concentrations and flowrate were monitored intensively during the second year of operation. Bed surface fluxes of greenhouse gases (GHGs) nitrous oxide (N 2 O), methane (CH 4 ), and carbon dioxide (CO 2 ) were measured periodically with the closed dynamic chamber technique. The bioreactor did not have a statistically or environmentally significant effect on TP export. Cumulative NO 3 -N removal efficiency (9.5%) and average removal rate (0.56 ± 0.25 g m -3  d -1 ) were low relative to Midwest tile bioreactors, but comparable to installations in the Maryland Coastal Plain. Underperformance was attributed mainly to low NO 3 -N loading (mean 9.4 ± 4.4 kg ha -1 yr -1 ), although intermittent flow, periods of low HRT, and low pH (mean 5.3) also likely contributed. N removal rates were correlated with influent NO 3 -N concentration and temperature, but decreased with hydraulic residence time, indicating that removal was often N-limited. GHG emissions were similar to other bioreactors and constructed wetlands and not considered environmentally concerning. This study suggests that expectations of NO 3 -N removal efficiency developed from bioreactors receiving moderate to high NO 3 -N loading with influent concentrations exceeding 10-20 mg L -1 are unlikely to be met by systems where N-limitation becomes significant. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Rereduction for Redisplacement of Both-Bone Forearm Shaft Fractures in Children.

    PubMed

    Eismann, Emily A; Parikh, Shital N; Jain, Viral V

    2016-06-01

    There is a high rate of redisplacement after closed reduction and cast treatment of displaced both-bone forearm shaft fractures in children. Little evidence is available on the efficacy of rereduction of these redisplaced fractures. This study evaluates the impact of rereduction on radiographic outcomes and compares the cost to surgical stabilization. This retrospective study included 31 children (mean age, 6.3 y; 18 boys) treated with rereduction for redisplacement of a displaced both-bone forearm shaft fracture between 2008 and 2013. Angulation was measured on anteroposterior and lateral radiographs of the radius and ulna at injury, after reduction, at redisplacement, after rereduction, and at fracture union. Average procedure costs for rereduction and surgical stabilization were calculated. Initial reduction decreased apex volar angulation (initially >20 degrees) of both bones to a median of ≤2 degrees. After an average of 15 days (range, 4 to 35 d), apex volar angulation of the radius worsened to 9 degrees, and apex ulnar angulation worsened to >10 degrees for both bones. For every 5 days after initial reduction, apex ulnar angulation of the radius worsened by 4 degrees. Rereduction reduced apex ulnar and volar angulation of both bones to <5 degrees, which was maintained after cast removal. There were no complications. The average procedure cost for rereduction was $2056 compared with $4589 for surgical stabilization with or without implant removal. Rereduction of both-bone forearm shaft fractures after redisplacement following initial closed reduction had satisfactory radiographic outcomes and is a safe, effective, and less expensive option than surgical stabilization. Level IV-therapeutic.

  13. Partial laryngectomy as salvage surgery after radiotherapy: oncological and functional outcomes and impact on quality of life. A retrospective study of 20 cases.

    PubMed

    Philippe, Y; Espitalier, F; Durand, N; Ferron, C; Bardet, E; Malard, O

    2014-02-01

    The gold standard for the management of laryngeal squamous cell carcinoma in a previously irradiated patient is "salvage" total laryngectomy, but surgical management by partial laryngectomy can sometimes be proposed in selected patients. This study was designed to review the functional and oncological outcomes of patients treated by open partial laryngectomy for recurrent squamous cell carcinoma after failure of radiotherapy or involving previously irradiated tissues and to define prognostic criteria for the selection of patients eligible for this treatment strategy. In this retrospective study, 20 patients underwent partial laryngectomy between 2000 and 2011 for recurrence or second primary stage I or II laryngeal squamous cell carcinoma in an irradiated territory (11 vertical partial laryngectomies; 9 horizontal partial laryngectomies). The 3-year overall survival rate in patients with negative resection margins was 66%, with higher survival rates for tumours confined to the glottis, and the 2-year local control rate was 67%. Positive resection margins requiring total laryngectomy were observed in 20% of cases. The 3-year overall survival rate was 56% in these patients. Exclusive oral feeding was restored in 75% of patients after an average of 32 days. The tracheotomy tube was removed after an average of 18 days in 90% of patients. The disease-free functional larynx preservation rate was 45%. Salvage partial laryngectomy in irradiated tissues is an alternative treatment option to total laryngectomy in selected patients. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Sediment concentration and turbidity changes during culvert removals.

    PubMed

    Foltz, Randy B; Yanosek, Kristina A; Brown, Timothy M

    2008-05-01

    The concentrations of sediment and turbidity in stream water were monitored during culvert removals to determine the short term effects of road obliteration. Sediment concentration was measured at 11 stream crossings among two locations in Idaho and one in Washington. Sediment concentration immediately below the culvert outlet exceeded levels above the culvert outlet by at least three orders of magnitude at all stream crossings. Sediment yields ranged from 170 to less than 1kg in the 24-h period following culvert removal. Turbidity exceeded the regulatory limits during culvert removal at all locations monitored in this study and remained above the limits beyond the monitoring periods of 24h at four of the locations. Sediment concentrations 100m downstream of the culvert outlet were reduced by an order of magnitude, but did not change the turbidity values sufficiently to meet regulatory limits. Sediment concentrations an average of 810m downstream of the culvert outlet were similar to sediment concentrations above the culvert for the entire excavation period and turbidity regulations were met. Mitigation consisting of two straw bales placed in the stream caused a significant reduction in sediment yield from an average of 67kg to an average of 1.6kg.

  15. A Formula for Planning and Predicting Postoperative Mammoplasty Results.

    PubMed

    Smithson, Mary G; Collawn, Sherry S; Mousa, Mina S; Bramel, Carly M

    2017-06-01

    For women with macromastia, reduction mammoplasty is a safe and effective solution to increasing quality of life through alleviating pain and improving aesthetics. This study developed a way to combine a surgeon's view of breast measurement (volume) with a patient's view of breast measurement (distance between nipple and notch, inframammary fold, or midline) to provide patients with a better understanding of expected surgical outcomes after breast reduction with a medial superior pedicle. An institutional review board approved retrospective chart review was performed on all medial superior pedicle reduction mammoplasties performed by a single surgeon at a university medical center from 2008 to 2016, and a total of 133 patients were identified. Measurements of interest for this study were nipple to sternal notch (N-S), nipple to inframammary fold (N-I), nipple to midline (N-M), and breast diameter (BD). The average bilateral change per measurement was calculated for each patient in centimeters. Change was averaged for left and right breasts for N-S, N-I, N-M, and BD per patient. Grams removed for left and right breasts were also averaged. Each measurement of average change was divided by the gram average and multiplied by 100 to obtain centimeter change per 100 grams. Individual patient measurements per type of measurement were averaged to achieve a final improvement reported in centimeters per 100 g tissue removed per breast. The average change in the N-S distance was calculated to be a decrease of 1.5 ± 0.8 cm/100 g of breast tissue removed. The average change in N-I was calculated to be an overall decrease of 0.7 ± 0.5 cm/100 g. The average change in N-M was calculated to be a decrease of 0.1 ± 0.3 cm/100 g. Finally, the average change in BD was calculated to be 0.0 ± 0.4 cm/100 g. A surgeon's expression of breast measurements in terms of volume can be difficult for a patient to understand and visualize. This study determined the impact volume has on length of typical breast measurements to increase patients' understanding of expected outcomes. In summary, patients can be told to expect to see a nipple elevation of 1.5 cm per 100 grams of breast tissue removed using this medial superior pedicle technique.

  16. The use of food waste as a carbon source for on-site treatment of nutrient-rich blackwater from an office block.

    PubMed

    Tannock, Simon J C; Clarke, William P

    2016-09-01

    Wastewater from office blocks is typically dominated by blackwater and is therefore concentrated and nutrient-rich. A pilot plant was operated for 260 days, receiving 300 L d(-1) of wastewater directly from an office building to determine whether nutrient removal could be achieved using food waste (FW) as a supplemental carbon source. The pilot plant consisted of a 600 L prefermenter and a 600 L membrane bioreactor that was operated as a sequential batch reactor in order to cycle through anoxic, anaerobic and aerobic phases. The influent wastewater Chemical Oxygen Demand (COD)/N/P was, on average, 1438/275/40 mg L(-1), considerably higher than typical municipal wastewater. Treatment trials on the wastewater alone showed that the COD was only marginally sufficient to exhaust nitrate, and initiate anaerobic conditions required for phosphate removal. The addition of 15 kg d(-1) of macerated FW increased the average influent COD/N/P concentrations to 20,072/459/66 mg L(-1). The suitability of FW as a carbon source was demonstrated by denitrification to NOx-N concentration of <1 mg L(-1) during the biological nutrient removal (BNR) cycles. N removal was limited by nitrification. FW also induced the anaerobic phase within the BNR cycles necessary for P removal. The final average COD (non-recalcitrant)/N/P effluent concentrations under FW supplementation were 7/50/13 mg L(-1) which equates to 99%, 89% and 80% COD/N/P removal, respectively, meeting the highest nutrient removal efficiency standards stipulated by state jurisdictions for on-site systems in the USA.

  17. Photochemical ozone budget during the BIBLE A and B campaigns

    NASA Astrophysics Data System (ADS)

    Ko, Malcolm; Hu, Wenjie; Rodríguez, José M.; Kondo, Yutaka; Koike, Makoto; Kita, Kazuyuki; Kawakami, Shuji; Blake, Donald; Liu, Shaw; Ogawa, Toshihiro

    2003-02-01

    Using the measured concentrations of NO, O3, H2O, CO, CH4, and NMHCs along the flight tracks, a photochemical box model is used to calculate the concentrations of the Ox radicals, the HOx radicals, and the nitrogen species at the sampling points. The calculations make use of the measurements from radiometers to scale clear sky photolysis rates to account for cloud cover and ground albedo at the sampling time/point. The concentrations of the nitrogen species in each of the sampled air parcels are computed assuming they are in instantaneous equilibrium with the measured NO and O3. The diurnally varying species concentrations are next calculated using the box model and used to estimate the diurnally averaged production and removal rates of ozone for the sampled air parcels. Clear sky photolysis rates are used in the diurnal calculations. The campaign also provided measured concentration of NOy. The observed NO/NOy ratio is usually larger than the model calculated equilibrium value. There are several possible explanations. It could be a result of recent injection of NO into the air parcel, recent removal of HNO3 from the parcel, recent rapid transport of an air parcel from another location, or a combination of all processes. Our analyses suggest that the local production rate of O3 can be used as another indicator of recent NO injection. However, more direct studies using air trajectory analyses and other collaborative evidences are needed to ascertain the roles played by individual process.

  18. Photochemical ozone budget during the BIBLE A and B campaigns

    NASA Astrophysics Data System (ADS)

    Ko, Malcolm; Hu, Wenjie; RodríGuez, José M.; Kondo, Yutaka; Koike, Makoto; Kita, Kazuyuki; Kawakami, Shuji; Blake, Donald; Liu, Shaw; Ogawa, Toshihiro

    2002-02-01

    Using the measured concentrations of NO, O3, H2O, CO, CH4, and NMHCs along the flight tracks, a photochemical box model is used to calculate the concentrations of the Ox radicals, the HOx radicals, and the nitrogen species at the sampling points. The calculations make use of the measurements from radiometers to scale clear sky photolysis rates to account for cloud cover and ground albedo at the sampling time/point. The concentrations of the nitrogen species in each of the sampled air parcels are computed assuming they are in instantaneous equilibrium with the measured NO and O3. The diurnally varying species concentrations are next calculated using the box model and used to estimate the diurnally averaged production and removal rates of ozone for the sampled air parcels. Clear sky photolysis rates are used in the diurnal calculations. The campaign also provided measured concentration of NOy. The observed NO/NOy ratio is usually larger than the model calculated equilibrium value. There are several possible explanations. It could be a result of recent injection of NO into the air parcel, recent removal of HNO3 from the parcel, recent rapid transport of an air parcel from another location, or a combination of all processes. Our analyses suggest that the local production rate of O3 can be used as another indicator of recent NO injection. However, more direct studies using air trajectory analyses and other collaborative evidences are needed to ascertain the roles played by individual process.

  19. Contamination levels of human pharmaceutical compounds in French surface and drinking water.

    PubMed

    Mompelat, S; Thomas, O; Le Bot, B

    2011-10-01

    The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.

  20. Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater.

    PubMed

    Rikmann, Ergo; Zekker, Ivar; Tomingas, Martin; Tenno, Taavo; Menert, Anne; Loorits, Liis; Tenno, Toomas

    2012-07-01

    After sulfate-reducing ammonium oxidation (SRAO) was first assumed in 2001, several works have been published describing this process in laboratory-scale bioreactors or occurring in the nature. In this paper, the SRAO process was performed using reject water as a substrate for microorganisms and a source of NH(4) (+), with SO(4) (2-) being added as an electron acceptor. At a moderate temperature of 20°C in a moving bed biofilm reactor (MBBR) sulfate reduction along with ammonium oxidation were established. In an upflow anaerobic sludge blanket reactor (UASBR) the SRAO process took place at 36°C. Average volumetric TN removal rates of 0.03 kg-N/m³/day in the MBBR and 0.04 kg-N/m³/day in the UASBR were achieved, with long-term moderate average removal efficiencies, respectively. Uncultured bacteria clone P4 and uncultured planctomycete clone Amx-PAn30 were detected from the biofilm of the MBBR, from sludge of the UASBR uncultured Verrucomicrobiales bacterium clone De2102 and Uncultured bacterium clone ATB-KS-1929 were found also. The stoichiometrical ratio of NH(4) (+) removal was significantly higher than could be expected from the extent of SO(4) (2-) reduction. This phenomenon can primarily be attributed to complex interactions between nitrogen and sulfur compounds and organic matter present in the wastewater. The high NH(4) (+) removal ratio can be attributed to sulfur-utilizing denitrification/denitritation providing the evidence that SRAO is occurring independently and is not a result of sulfate reduction and anammox. HCO(3) (-) concentrations exceeding 1,000 mg/l were found to have an inhibiting effect on the SRAO process. Small amounts of hydrazine were naturally present in the reaction medium, indicating occurrence of the anammox process. Injections of anammox intermediates, hydrazine and hydroxylamine, had a positive effect on SRAO process performance, particularly in the case of the UASBR.

  1. Mechanical Properties of Lightweight Porous Magnesium Processed Through Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Zou, Ning; Li, Qizhen

    2018-02-01

    Porous magnesium (Mg) samples with various overall porosities (28.4 ± 1.8%, 35.5 ± 2.5%, 45.4 ± 1.9%, and 62.4 ± 2.2%) were processed through powder metallurgy and characterized to study their mechanical properties. Different porosities were obtained by utilizing different mass fractions of space holder camphene. Camphene was removed by sublimation before sintering and contributed to processing porous Mg with high purity and small average pore size. The average pore size increased from 5.2 µm to 15.1 µm with increase of the porosity from 28.4 ± 1.8% to 62.4 ± 2.2%. Compressive strain-stress data showed that the strain hardening rate, yield strength, and ultimate compressive strength decreased with increase of the porosity. The theoretical yield strength of porous Mg obtained using the Gibson-Ashby model agreed with experimental data.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiple, Timothy E.; Coleman, André M.; Skaggs, Richard L.

    Within the United States and Puerto Rico, publicly owned treatment works (POTWs) process 130.5 Gl/d (34.5 Bgal/d) of wastewater, producing sludge as a waste product. Emerging technologies offer novel waste-to-energy pathways through whole sludge conversion into biofuels. Assessing the feasibility, scalability and tradeoffs of various energy conversion pathways is difficult in the absence of highly spatially resolved estimates of sludge production. In this study, average wastewater solids concentrations and removal rates, and site specific daily average influent flow are used to estimate site specific annual sludge production on a dry weight basis for >15,000 POTWs. Current beneficial uses, regional productionmore » hotspots and feedstock aggregation potential are also assessed. Analyses indicate 1) POTWs capture 12.56 Tg/y (13.84 MT/y) of dry solids; 2) 50% are not beneficially utilized, and 3) POTWs can support seven regions that aggregate >910 Mg/d (1000 T/d) of sludge within a travel distance of 100 km.« less

  3. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    PubMed

    Regnery, J; Wing, A D; Alidina, M; Drewes, J E

    2015-08-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Sediment retention in a bottomland hardwood wetland in Eastern Arkansas

    USGS Publications Warehouse

    Kleiss, B.A.

    1996-01-01

    One of the often-stated functions of wetlands is their ability to remove sediments and other particulates from water, thus improving water quality in the adjacent aquatic system. However, actual rates of suspended sediment removal have rarely been measured in freshwater wetland systems. To address this issue, suspended sediment dynamics were measured in a 85-km2 bottomland hardwood (BLH) wetland adjacent to the highly turbid Cache River in eastern Arkansas during the 1988-1990 water years. A suspended sediment mass balance was calculated using depth-integrated, flow-weighted daily measurements at wetland inflow and outflow points. Over the three-year period, suspended sediment load decreased an average of 14% between upstream and downstream sampling points. To test the idea that the suspended sediments were retained by the adjacent wetland and to determine what portion of the BLH forest was most responsible for retaining the suspended sediments, concurrent measurements of sediment accretion were made at 30 sites in the wetland using feldspar clay marker horizons, sedimentation disks, the 137cesium method, and dendrogeomorphic techniques. Sedimentation rates exceeding 1 cm/yr were measured in frequently flooded areas dominated by Nyssa aquatica and Taxodium distichum. Maximum sedimentation rates did not occur on the natural levee, as would be predicted by classical fluvial geomorphology, but in the "first bottom," where retention time of the water reached a maximum. Multiple regression was used to relate sedimentation rates with several physical and biological factors. A combination of distance from the river, flood duration, and tree basal area accounted for nearly 90% of the variation in sedimentation rates.

  5. Attrition-enhanced sulfur capture by limestone particles in fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saastamoinen, J.J.; Shimizu, T.

    2007-02-14

    Sulfur capture by limestone particles in fluidized beds is a well-established technology. The underlying chemical and physical phenomena of the process have been extensively studied and modeled. However, most of the studies have been focused on the relatively brief initial stage of the process, which extends from a few minutes to hours, yet the residence time of the particles in the boiler is much longer. Following the initial stage, a dense product layer will be formed on the particle surface, which decreases the rate of sulfur capture and the degree of utilization of the sorbent. Attrition can enhance sulfur capturemore » by removing this layer. A particle model for sulfur capture has been incorporated with an attrition model. After the initial stage, the rate of sulfur capture stabilizes, so that attrition removes the surface at the same rate as diffusion and chemical reaction produces new product in a thin surface layer of a particle. An analytical solution for the conversion of particles for this regime is presented. The solution includes the effects of the attrition rate, diffusion, chemical kinetics, pressure, and SO{sub 2} concentration, relative to conversion-dependent diffusivity and the rate of chemical reaction. The particle model results in models that describe the conversion of limestone in both fly ash and bottom ash. These are incorporated with the residence time (or reactor) models to calculate the average conversion of the limestone in fly ash and bottom ash, as well as the efficiency of sulfur capture. Data from a large-scale pressurized fluidized bed are compared with the model results.« less

  6. The Impact of Biochar on Bioretention Nitrogen Removal and Hydrologic Performance

    NASA Astrophysics Data System (ADS)

    Tian, J.; Jin, J.; Chiu, P.; Guo, M.; Imhoff, P. T.

    2016-12-01

    Poor nitrate removal and substantial land occupation are two factors that limit the application of bioretention facilities. Biochar was evaluated in this study as an amendment of bioretention media to enhance nitrogen removal from runoff as well as improve hydrologic performance. Two pilot-scale bioretention cells (91 cm dia., 1.2 m deep) were constructed in parallel, and both contained 20 cm saturation zone with coarse sand, 76 cm vadose zone with treatment medium, and 5 cm of triple-shredded wood mulch from bottom to top. Treatment medium in the control cell was a mixture of 88% sand, 8% clay, and 4% sawdust by mass, while the biochar cell amended 4% commercial biochar pyrolyzed from Southern Yellow Pine at 550°. Both cells were instrumented with soil moisture sensors, soil potential sensors and temperature sensors. A field infiltration test was conducted in each cell using a tension disc infiltrometer directly on the treatment media to obtain soil hydraulic parameters, then three 24-36-hour tracer tests containing bromide and nitrate pollutant were conducted over a five-month period. Influent, effluent and pore water were continuously sampled for bromide and nitrogen analysis during these tests. In addition, hydrologic performance of the two cells under various conditions of rainfall recurrence interval and duration were simulated using HYDRUS-1D after verification with tracer test data. Results showed that the biochar cell reduced NO3-N concentrations by 30.6-84.7%, while the control cell only reduced NO3-N by -6-43.5%, depending on the storm. Biochar amendment slightly increased the average pH of the vadose zone from 6.3 to 7.3, decreased the average dissolve oxygen content by 43%, and decreased the average oxidation-reduction potential from 22 mV to -115 mV, which contributed to the enhanced nitrate removal. Biochar-amended medium increased saturated hydraulic conductivity by 1.5 times, and increased cell residence time and water retention by 12.6% and 15% respectively during the tracer tests. For a 1-yr interval and 24-hr duration storm simulation, the biochar-amended cell could reduce overflow by 78%, extend the delay of the peak flow by two times and decrease the peak outflow rate by 35%, compared to the control cell.

  7. Impact of HVAC filter on indoor air quality in terms of ozone removal and carbonyls generation

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Chi; Chen, Hsuan-Yu

    2014-06-01

    This study aims at detecting ozone removal rates and corresponding carbonyls generated by ozone reaction with HVAC filters from various building, i.e., shopping mall, school, and office building. Studies were conducted in a small-scale environmental chamber. By examining dust properties including organic carbon proportion and specific surface area of dusts adsorbed on filters along with ozone removal rates and carbonyls generation rate, the relationship among dust properties, ozone removal rates, and carbonyls generation was identified. The results indicate a well-defined positive correlation between ozone removal efficiency and carbonyls generation on filters, as well as a positive correlation among the mass of organic carbon on filters, ozone removal efficiency and carbonyls generations.

  8. Experience with the artificial urinary sphincter model AS800 in 148 patients.

    PubMed

    Fishman, I J; Shabsigh, R; Scott, F B

    1989-02-01

    The latest version of the artificial urinary sphincter, AS800, was used in 148 patients with urinary incontinence of different etiologies. Followup ranged from 3 to 37 months, with an average of 20.8 months. There were 112 (76 per cent) male and 36 (24 per cent) female patients. The cuff was implanted around the bladder neck in 78 patients (53 per cent) and around the bulbar urethra in 70 (47 per cent). Socially acceptable urinary control was achieved in 90 per cent of the 139 patients with active devices in place. It was necessary to remove the sphincter in 11 patients (7.4 per cent). The reasons for removal were infection and erosion in 8 patients (5.4 per cent), infection without erosion in 2 (1.3 per cent), and erosion due to excess pressure and poor tissues in 1 (0.7 per cent). Comparison of success and failure rates associated with incontinence of different etiologies revealed that patients with incontinence after failure of a conventional antistress incontinence operation and those with incontinence after transurethral resection or radical prostactectomy had the highest success rate, and that patients with incontinence secondary to pelvic fracture or exstrophy and epispadias had the highest failure rates. The deactivation feature (the lock) of the new artificial sphincter model was beneficial for primary deactivation, urethral catheterization or cystoscopy, or for elective nocturnal decompression of the bladder neck or urethral tissues.

  9. Aqueous geochemistry and diagenesis in the eastern Snake River Plain aquifer system, Idaho

    USGS Publications Warehouse

    Wood, Warren W.; Low, Walton H.

    1986-01-01

    Water budget and isotopic analyses of water in the eastern Snake River Plain aquifer system confirm that most, if not all, of the water is local meteoric in origin. Solute mass-balance arguments suggest that ∼5 × 109 moles of calcite and 2.6 × 109 moles of silica are precipitated annually in the aquifer. Isotopic evaluations of calcite and petrographic observation of silica support the low-temperature origin of these deposits. Approximately 2.8 × 109 moles of chloride, 4.5 × 109 moles of sodium, 1.4 × 109 moles of sulfate, and 2 × 109 moles of magnesium are removed annually from the aquifer framework by solution. Proposed weathering reactions are shown to be consistent with mass balance, carbon isotopes, observed mineralogy, and chemical thermodynamics. Large quantities of sodium, chloride, and sulfate are being removed from the system relative to their abundances in the rock. Sedimentary interbeds, which are estimated to compose <10% of the aquifer volume, may yield as much as 20% of the solutes generated within the aquifer. Weathering rate of the aquifer framework of the eastern Snake River Plain is 14 (Mg/km2)/yr or less than half the average of the North American continent. This contrasts with the rate for the eastern Snake River basin, 34 (Mg/km2)/yr, which is almost identical to the average for the North American continent. Identification and quantification of reactions controlling solute concentrations in ground water in the eastern plain indicate that the aquifer is not an “inert bathtub” that simply stores and transmits water and solutes but is undergoing active diagenesis and is both a source and sink for solutes.

  10. Sediment accumulation in San Leandro Bay, Alameda County, California, during the 20th century : a preliminary report

    USGS Publications Warehouse

    Nolan, K.M.; Fuller, C.C.

    1986-01-01

    Major changes made in the configuration of San Leandro Bay, Alameda County, California, during the 20th century have caused rapid sedimentation within parts of the Bay. Opening of the Oakland tidal channel and removal of 97% of the marshlands formerly surrounding the Bay have decreased tidal velocities and volumes. Marshland removal has decreased the tidal prism by about 25%. Comparison of bathymetric surveys indicates that sedimentation in the vicinity of the San Leandro Bay channel averaged 0.7 cm/annum between 1856 and 1984. Lead-210 data collected at four shallow water sites east of the San Leandro Bay channel indicated that sedimentation rates have averaged between 0.06 and 0.28 cm/annum. Because bioturbation of bottom sediments cannot be discounted, better definition of this range in sedimentation rates would required measuring the activity of lead-210 on incoming sediments. In addition to sediment deposited in the vicinity of the San Leandro Bay channel and open, shallow areas to the east, 850,740 cu m of sediment was deposited between 1948 and 1983 in an area dredged at the mouth of San Leandro Creek. All available data indicate that between 1 ,213,000 and 1,364,000 cu m of sediment was deposited in San Leandro Bay between 1948 and 1983. Sediment yield data from an adjacent drainage basin, when combined with inventories of lead-210 and cesium-137, indicate that most of the sediment deposited in San Leandro Bay is coming from resuspension of bottom sediments or from erosion of marshes or shorelines of San Leandro or San Francisco Bay. (Author 's abstract)

  11. Influence of iron precipitated condition and light intensity on microalgae activated sludge based wastewater remediation.

    PubMed

    Anbalagan, Anbarasan; Schwede, Sebastian; Lindberg, Carl-Fredrik; Nehrenheim, Emma

    2017-02-01

    The indigenous microalgae-activated sludge (MAAS) process during remediation of municipal wastewater was investigated by studying the influence of iron flocculation step and light intensity. In addition, availability of total phosphorous (P) and photosynthetic activity was examined in fed-batch and batch mode under northern climatic conditions and limited lighting. This was followed by a semi-continuous operation with 4 d of hydraulic retention time and mean cell residence time of 6.75 d in a photo-bioreactor (PBR) with varying P availability. The fed-batch condition showed that P concentrations of 3-4 mg L -1 were effective for photosynthetic chl. a development in iron flocculated conditions. In the PBR, the oxygen evolution rate increased with increase in the concentration of MAAS (from 258 to 573 mg TSS L -1 ) at higher surface photosynthetic active radiation (250 and 500 μmol m -2 s -1 ). Additionally, the rate approached a saturation phase at low MAAS (110 mg L -1 ) with higher light intensities. Semi-continuous operation with luxury P uptake and effective P condition showed stable average total nitrogen removal of 88 and 92% respectively, with residual concentrations of 3.77 and 2.21 mg L -1 . The corresponding average P removal was 68 and 59% with residual concentrations of 2.32 and 1.75 mg L -1 . The semi-continuous operation produced a rapidly settleable MAAS under iron flocculated condition with a settling velocity of 92-106 m h -1 and sludge volume index of 31-43 ml g -1 in the studied cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Granular biochar compared with activated carbon for wastewater treatment and resource recovery.

    PubMed

    Huggins, Tyler M; Haeger, Alexander; Biffinger, Justin C; Ren, Zhiyong Jason

    2016-05-01

    Granular wood-derived biochar (BC) was compared to granular activated carbon (GAC) for the treatment and nutrient recovery of real wastewater in both batch and column studies. Batch adsorption studies showed that BC material had a greater adsorption capacity at the high initial concentrations of total chemical oxygen demand (COD-T) (1200 mg L(-1)), PO4 (18 mg L(-1)), and NH4 (50 mg L(-1)) compared to GAC. Conversely the BC material showed a lower adsorption capacity for all concentrations of dissolved chemical oxygen demand (COD-D) and the lower concentrations of PO4 (5 mg L(-1)) and NH4 (10 mg L(-1)). Packed bed column studies showed similar average COD-T removal rate for BC with 0.27 ± 0.01 kg m(-3) d(-1) and GAC with 0.24 ± 0.01 kg m(-3) d(-1), but BC had nearly twice the average removal rate (0.41 ± 0.08 kg m(-3) d(-3)) compared to GAC during high COD-T concentrations (>500 mg L(-1)). Elemental analysis showed that both materials accumulated phosphorous during wastewater treatment (2.6 ± 0.4 g kg(-1) and 1.9 ± 0.1 g kg(-1) for BC and GAC respectively). They also contained high concentrations of other macronutrients (K, Ca, and Mg) and low concentrations of metals (As, Cd, Cr, Pb, Zn, and Cu). The good performance of BC is attributed to its macroporous structure compared with the microporous GAC. These favorable treatment data for high strength wastewater, coupled with additional life-cycle benefits, helps support the use of BC in packed bed column filters for enhanced wastewater treatment and nutrient recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Cultivation of Scenedesmus dimorphus using anaerobic digestate as a nutrient medium.

    PubMed

    Abu Hajar, Husam A; Riefler, R Guy; Stuart, Ben J

    2017-08-01

    In this study, the microalga Scenedesmus dimorphus was cultivated phototrophically using unsterilized anaerobic digestate as a nutrient medium. A bench-scale experiment was conducted by inoculating the microalga S. dimorphus with 0.05-10% dilutions of the anaerobic digestate supernatant. It was found that 1.25-2.5% dilutions, which is equivalent to 50-100 mg N/L total nitrogen concentrations and 6-12 mg P/L total phosphorus concentrations, provided sufficient nutrients to maximize the growth rate along with achieving high concentrations of algal biomass. The microalgae cultivation was scaled up to 100 L open raceway ponds, where the effect of paddlewheel mixing on the growth was investigated. It was concluded that 0.3 m/s water surface velocity yielded the highest specific growth rate and biomass concentration compared to 0.1 and 0.2 m/s. The microalga S. dimorphus was then cultivated in the raceway ponds using 2.5% diluted anaerobic digestate at 317 and 454 μmol/(m 2  × s) average incident light intensities and 1.25% diluted anaerobic digestate at 234 and 384 μmol/(m 2  × s) average incident light intensities. The maximum biomass concentration was 446 mg/L which was achieved in the 2.5% dilution and 454 μmol/(m 2  × s) light intensity culture. Moreover, nitrogen, phosphorus, and COD removal efficiencies from the nutrient media were 65-72, 63-100, and 78-82%, respectively, whereas ammonia was completely removed from all cultures. For a successful and effective cultivation in open raceway ponds, light intensity has to be increased considerably to overcome the attenuation caused by the algal biomass as well as the suspended solids from the digestate supernatant.

  14. Accurate measurement of imaging photoplethysmographic signals based camera using weighted average

    NASA Astrophysics Data System (ADS)

    Pang, Zongguang; Kong, Lingqin; Zhao, Yuejin; Sun, Huijuan; Dong, Liquan; Hui, Mei; Liu, Ming; Liu, Xiaohua; Liu, Lingling; Li, Xiaohui; Li, Rongji

    2018-01-01

    Imaging Photoplethysmography (IPPG) is an emerging technique for the extraction of vital signs of human being using video recordings. IPPG technology with its advantages like non-contact measurement, low cost and easy operation has become one research hot spot in the field of biomedicine. However, the noise disturbance caused by non-microarterial area cannot be removed because of the uneven distribution of micro-arterial, different signal strength of each region, which results in a low signal noise ratio of IPPG signals and low accuracy of heart rate. In this paper, we propose a method of improving the signal noise ratio of camera-based IPPG signals of each sub-region of the face using a weighted average. Firstly, we obtain the region of interest (ROI) of a subject's face based camera. Secondly, each region of interest is tracked and feature-based matched in each frame of the video. Each tracked region of face is divided into 60x60 pixel block. Thirdly, the weights of PPG signal of each sub-region are calculated, based on the signal-to-noise ratio of each sub-region. Finally, we combine the IPPG signal from all the tracked ROI using weighted average. Compared with the existing approaches, the result shows that the proposed method takes modest but significant effects on improvement of signal noise ratio of camera-based PPG estimated and accuracy of heart rate measurement.

  15. Laparoscopic sleeve gastrectomy as revisional surgery for adjustable gastric band erosion.

    PubMed

    Park, Yeon Ho; Kim, Seong Min

    2014-09-01

    Laparoscopic sleeve gastrectomy (LSG) has been increasingly adopted as a revisional surgery for failed gastric banding. However, little information is available regarding the outcome of revisional LSG for band erosion. A retrospective database analysis was performed to study LSG as revisional surgery for band erosion. For staged revision, we waited a minimum of 3 months after band removal, and for single-stage revision, the band was removed by gastrotomy, and sleeve gastrectomy was performed at the same time. Main outcome measures were success rates of therapeutic strategies, morbidity, and mortality rates, length of stay, and body mass index (BMI) (percentage excess weight loss [%EWL]) before and after revision. From March 2011 to February 2013, 9 female patients underwent revisional LSG. Average age was 34.7 years. Six patients underwent a staged procedure, and the other 3 underwent a single-stage revision. Among the 6 staged patients, eroded bands had been removed by laparoscopy in 4 and by endoscopy in 2 without complications. Their LSGs were performed at a median of 4.4 months after band removal. Another 2 patients underwent single-stage revision. In the last patient, band erosion was incidentally found during a revisional LSG for insufficient weight loss. No mortality occurred. There were one stenosis and two proximal leaks. Two patients with leak underwent total gastrectomy and fistulojejunostomy. After a mean follow-up of 19.1 months, all 9 patients exhibited weight loss. The mean (±standard deviation [SD]) pre- and post-LSG BMIs were 34.0±4.4 and 25.6±2.1 kg/m(2), respectively, and their mean (±SD) %EWL from prebanding was 86.8±10.1%. Revisional LSG resulted in a further median %EWL of 28.0% (range, 7.9%-68.9%) versus weight at time of band removal. Revisional LSG after band erosion was found to be feasible and effective. However, it is prone to severe complication. In selected cases of band erosion, LSG can be performed at the time of band removal in a single stage.

  16. Insertion of Balloon Retained Gastrostomy Buttons: A 5-Year Retrospective Review of 260 Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power, Sarah, E-mail: sarahpower28@yahoo.co.uk; Kavanagh, Liam N.; Shields, Mary C.

    Radiologically inserted gastrostomy (RIG) is an established way of maintaining enteral nutrition in patients who cannot maintain nutrition orally. The purpose of this study was to evaluate the safety and efficacy of primary placement of a wide bore button gastrostomy in a large, varied patient population through retrospective review. All patients who underwent gastrostomy placement from January 1, 2004 to January 1, 2009 were identified. 18-Fr gastrostomy buttons (MIC-Key G) were inserted in the majority. Follow-up ranged from 6 months to 4.5 years. A total of 260 patients (M:F 140:120, average age 59.2 years) underwent gastrostomy during the study period.more » Overall success rate for RIG placement was 99.6 %, with success rate of 95.3 % for primary button insertion. Indications included neurological disorders (70 %), esophageal/head and neck malignancy (21 %), and other indications (9 %). Major and minor complication rates were 1.2 and 12.8 %, respectively. Thirty-day mortality rate was 6.8 %. One third of patients underwent gastrostomy reinsertion during the study period, the main indication for which was inadvertent catheter removal. Patency rate was high at 99.5 %. The maximum number of procedures in any patient was 8 (n = 2), and the average tube dwell time was 125 days. Primary radiological insertion of a wide bore button gastrostomy is a safe technique, with high success rate, high patency rate, and low major complication rate. We believe that it is feasible to attempt button gastrostomy placement in all patients, once tract length is within limits of tube length. If difficulty is encountered, then a standard tube may simply be placed instead.« less

  17. Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars

    USGS Publications Warehouse

    Golombek, M.P.; Warner, N.H.; Ganti, V.; Lamb, M.P.; Parker, T.J.; Fergason, Robin L.; Sullivan, R.

    2014-01-01

    A morphometric and morphologic catalog of ~100 small craters imaged by the Opportunity rover over the 33.5 km traverse between Eagle and Endeavour craters on Meridiani Planum shows craters in six stages of degradation that range from fresh and blocky to eroded and shallow depressions ringed by planed off rim blocks. The age of each morphologic class from <50–200 ka to ~20 Ma has been determined from the size-frequency distribution of craters in the catalog, the retention age of small craters on Meridiani Planum, and the age of the latest phase of ripple migration. The rate of degradation of the craters has been determined from crater depth, rim height, and ejecta removal over the class age. These rates show a rapid decrease from ~1 m/Myr for craters <1 Ma to ~ <0.1 m/Myr for craters 10–20 Ma, which can be explained by topographic diffusion with modeled diffusivities of ~10−6 m2/yr. In contrast to these relatively fast, short-term erosion rates, previously estimated average erosion rates on Mars over ~100 Myr and 3 Gyr timescales from the Amazonian and Hesperian are of order <0.01 m/Myr, which is 3–4 orders of magnitude slower than typical terrestrial rates. Erosion rates during the Middle-Late Noachian averaged over ~250 Myr, and ~700 Myr intervals are around 1 m/Myr, comparable to slow terrestrial erosion rates calculated over similar timescales. This argues for a wet climate before ~3 Ga in which liquid water was the erosional agent, followed by a dry environment dominated by slow eolian erosion.

  18. Effect of pH and Fe/U ratio on the U(VI) removal rate by the synergistic effect of Fe(II) and O2

    NASA Astrophysics Data System (ADS)

    Fu, Yukui; Luo, Yingfeng; Fang, Qi; Xie, Yanpei; Wang, Zhihong; Zhu, Xiangyu

    2018-02-01

    As for the decommissioned uranium deposits of acid in-situ leaching, both of the concentrations of U(VI) and Fe(II) are relatively high in groundwater. In the presence of O2, the oxidation of Fe(II) into Fe(III) that forms Fe-hydroxides could effectively remove U(VI) in the forms of sorption or co-precipitation. In this process, pH condition and Fe content will have a significant effect on the U(VI) removal rate by the synergistic effect of Fe(II) and O2. In the present work, a series of batch experiments were carried out to investigate the effect of pH values and Fe/U mass ratio on the U(VI) removal rate by the synergistic effect of Fe(II) and O2. Experiment results show that the removal rate of U(VI) is mainly controlled by pH and secondly by Fe/U mass ratio. In the neutral conditions with pH at 7 and 8, the removal rate of U(VI) reaches up to 90% for all solutions with different initial Fe(II) concentrations. The optimal pH for the removal rate of U(VI) is above 7. In the acidic conditions with pH below 6, the effect of Fe/U mass ratio on the removal rate of U(VI) becomes more obvious and the optimal Fe/U mass ratio for U(VI) removal is 1:2.

  19. Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Leonte, Mihai; Kessler, John D.; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Sylva, Sean P.

    2017-05-01

    Aerobic oxidation is an important methane sink in seawater overlying gas seeps. Recent surveys have identified active methane seeps in the waters of Hudson Canyon, US Atlantic Margin near the updip limit of methane clathrate hydrate stability. The close proximity of these seeps to the upper stability limit of methane hydrates suggests that changing bottom water temperatures may influence the release rate of methane into the overlying water column. In order to assess the significance of aerobic methane oxidation in limiting the atmospheric expression of methane released from Hudson Canyon, the total extent of methane oxidized along with integrated oxidation rates were quantified. These calculations were performed by combining the measurements of the natural levels of methane concentrations, stable carbon isotopes, and water current velocities into kinetic isotope models yielding rates ranging from 22.8 ± 17 to 116 ± 76 nM/day with an average of 62.7 ± 37 nM/day. Furthermore, an average of 63% of methane released into the water column from an average depth of 515 m was oxidized before leaving this relatively small study area (6.5 km2). Results from the kinetic isotope model were compared to previously-published but concurrently-sampled ex situ measurements of oxidation potential performed using 13C-labeled methane. Ex situ rates were substantially lower, ranging from 0.1 to 22.5 nM/day with an average of 5.6 ± 2.3 nM/day, the discrepancy likely due to the inherent differences between these two techniques. Collectively, the results reveal exceptionally-rapid methane oxidation, with turnover times for methane as low as 0.3-3.7 days, indicating that methane released to the water column is removed quantitatively within the greater extent of Hudson Canyon. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text.

  20. Remediation of Organic and Inorganic Arsenic Contaminated Groundwater using a Nonocrystalline TiO2 Based Adsorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, C.; Meng, X; Calvache, E

    2009-01-01

    A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 ?g L-1 As(III), 246 ?g L-1 As(V), 151 ?g L-1 MMA, and 202 ?g L-1 DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11 000, 14 000, and 9900 bed volumesmore » of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 ?g L-1. However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III). A nanocrystalline TiO2-based adsorbent could be used for the simultaneous removal of As(V), As(III), MMA, and DMA in contaminated groundwater.« less

  1. Integral field spectroscopy of nearby quasi-stellar objects - II. Molecular gas content and conditions for star formation

    NASA Astrophysics Data System (ADS)

    Husemann, B.; Davis, T. A.; Jahnke, K.; Dannerbauer, H.; Urrutia, T.; Hodge, J.

    2017-09-01

    We present single-dish 12CO(1-0) and 12CO(2-1) observations for 14 low-redshift quasi-stellar objects (QSOs). In combination with optical integral field spectroscopy, we study how the cold gas content relates to the star formation rate (SFR) and black hole accretion rate. 12CO(1-0) is detected in 8 of 14 targets and 12CO(2-1) is detected in 7 out of 11 cases. The majority of disc-dominated QSOs reveal gas fractions and depletion times matching normal star-forming systems. Two gas-rich major mergers show clear starburst signatures with higher than average gas fractions and shorter depletion times. Bulge-dominated QSO hosts are mainly undetected in 12CO(1-0), which corresponds, on average, to lower gas fractions than in disc-dominated counterparts. Their SFRs, however, imply shorter than average depletion times and higher star formation efficiencies. Negative QSO feedback through removal of cold gas seems to play a negligible role in our sample. We find a trend between black hole accretion rate and total molecular gas content for disc-dominated QSOs when combined with literature samples. We interpret this as an upper envelope for the nuclear activity and it is well represented by a scaling relation between the total and circumnuclear gas reservoir accessible for accretion. Bulge-dominated QSOs significantly differ from that scaling relation and appear uncorrelated with the total molecular gas content. This could be explained either by a more compact gas reservoir, blown out of the gas envelope through outflows, or a different interstellar medium phase composition.

  2. Screening for colorectal cancer in adults at average risk: a summary of the evidence for the U.S. Preventive Services Task Force.

    PubMed

    Pignone, Michael; Rich, Melissa; Teutsch, Steven M; Berg, Alfred O; Lohr, Kathleen N

    2002-07-16

    To assess the effectiveness of different colorectal cancer screening tests for adults at average risk. Recent systematic reviews; Guide to Clinical Preventive Services, 2nd edition; and focused searches of MEDLINE from 1966 through September 2001. The authors also conducted hand searches, reviewed bibliographies, and consulted context experts to ensure completeness. When available, the most recent high-quality systematic review was used to identify relevant articles. This review was then supplemented with a MEDLINE search for more recent articles. One reviewer abstracted information from the final set of studies into evidence tables, and a second reviewer checked the tables for accuracy. Discrepancies were resolved by consensus. For average-risk adults older than 50 years of age, evidence from multiple well-conducted randomized trials supported the effectiveness of fecal occult blood testing in reducing colorectal cancer incidence and mortality rates compared with no screening. Data from well-conducted case-control studies supported the effectiveness of sigmoidoscopy and possibly colonoscopy in reducing colon cancer incidence and mortality rates. A nonrandomized, controlled trial examining colorectal cancer mortality rates and randomized trials examining diagnostic yield supported the use of fecal occult blood testing plus sigmoidoscopy. The effectiveness of barium enema is unclear. Data are insufficient to support a definitive determination of the most effective screening strategy. Colorectal cancer screening reduces death from colorectal cancer and can decrease the incidence of disease through removal of adenomatous polyps. Several available screening options seem to be effective, but the single best screening approach cannot be determined because data are insufficient.

  3. Nutrient recovery from swine waste and protein biomass production using duckweed ponds (Landoltia punctata): southern Brazil.

    PubMed

    Mohedano, R A; Velho, V F; Costa, R H R; Hofmann, S M; Belli Filho, P

    2012-01-01

    Brazil is one of the most important countries in pork production worldwide, ranking third. This activity has an important role in the national economic scenario. However, the fast growth of this activity has caused major environmental impacts, especially in developing countries. The large amount of nitrogen and phosphorus compounds found in pig manure has caused ecological imbalances, with eutrophication of major river basins in the producing regions. Moreover, much of the pig production in developing countries occurs on small farms, and therefore causes diffuse pollution. Therefore, duckweed pond have been successfully used in the swine waste polishing, generating further a biomass with high protein content. The present study evaluated the efficiency of two full scale duckweed ponds for the polishing of a small pig farm effluent, biomass yield and crude protein (CP) content. Duckweed pond series received the effluent from a biodigester-storage pond, with a flow rate of 1 m(3)/day (chemical oxygen demand rate = 186 kg/ha day) produced by 300 animals. After 1 year a great improvement of effluent quality was observed, with removal of 96% of total Kjeldahl nitrogen (TKN) and 89% of total phosphorus (TP), on average. Nitrogen removal rate is one of the highest ever found (4.4 g TKN/m(2) day). Also, the dissolved oxygen rose from 0.0 to 3.0 mg/L. The two ponds produced together over 13 tons of fresh biomass (90.5% moisture), with 35% of CP content, which represents a productivity of 24 tonsCP/ha year. Due to the high rate of nutrient removal, and also the high protein biomass production, duckweed ponds revealed, under the presented conditions, a great potential for the polishing and valorization of swine waste. Nevertheless, this technology should be better exploited to improve the sustainability of small pig farms in order to minimize the impacts of this activity on the environment.

  4. A hybrid constructed wetland for organic-material and nutrient removal from sewage: Process performance and multi-kinetic models.

    PubMed

    Nguyen, X Cuong; Chang, S Woong; Nguyen, Thi Loan; Ngo, H Hao; Kumar, Gopalakrishnan; Banu, J Rajesh; Vu, M Cuong; Le, H Sinh; Nguyen, D Duc

    2018-09-15

    A pilot-scale hybrid constructed wetland with vertical flow and horizontal flow in series was constructed and used to investigate organic material and nutrient removal rate constants for wastewater treatment and establish a practical predictive model for use. For this purpose, the performance of multiple parameters was statistically evaluated during the process and predictive models were suggested. The measurement of the kinetic rate constant was based on the use of the first-order derivation and Monod kinetic derivation (Monod) paired with a plug flow reactor (PFR) and a continuously stirred tank reactor (CSTR). Both the Lindeman, Merenda, and Gold (LMG) analysis and Bayesian model averaging (BMA) method were employed for identifying the relative importance of variables and their optimal multiple regression (MR). The results showed that the first-order-PFR (M 2 ) model did not fit the data (P > 0.05, and R 2  < 0.5), whereas the first-order-CSTR (M 1 ) model for the chemical oxygen demand (COD Cr ) and Monod-CSTR (M 3 ) model for the COD Cr and ammonium nitrogen (NH 4 -N) showed a high correlation with the experimental data (R 2  > 0.5). The pollutant removal rates in the case of M 1 were 0.19 m/d (COD Cr ) and those for M 3 were 25.2 g/m 2 ∙d for COD Cr and 2.63 g/m 2 ∙d for NH 4 -N. By applying a multi-variable linear regression method, the optimal empirical models were established for predicting the final effluent concentration of five days' biochemical oxygen demand (BOD 5 ) and NH 4 -N. In general, the hydraulic loading rate was considered an important variable having a high value of relative importance, which appeared in all the optimal predictive models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Denitrification in a South Louisiana wetland forest receiving treated sewage effluent

    USGS Publications Warehouse

    Boustany, R.G.; Crozier, C.R.; Rybczyk, J.M.; Twilley, R.R.

    1996-01-01

    Although denitrification has the potential to reduce nitrate (NO3a??) pollution of surface waters, the quantification of denitrification rates is complex because it requires differentiation from other mechanisms and is highly variable in both space and time. This study first measured potential denitrification rates at a wetland forest site in south Louisiana before receipt of secondary wastewater effluent, and then, following 30 months of effluent application, landscape gradients of dissolved nitrate (NO3a??) and nitrous oxide (N2O) were measured. A computer model was developed to quantify N transformations. Floodwater NO3a?? and N2O concentrations were higher in the forest receiving effluent than in the adjacent control forest. Denitrification rates of NO3a?? -amended soil cores ranged from 0.03a??0.45 g N ma??2 da??1 with an overall mean of 0.10 g N ma??2 da??1. Effluent N is being applied at a rate of approximately 0.034 g N ma??2 da??1, with approximately 95% disappearing along a 1 km transect. In the treatment forest, floodwater NO3a?? concentrations decreased from 1000 M at the inflow point to 50 M along the 1 km transect. Nitrous oxide concentrations increased from 0.25 M to 1.2 M within the first 100 m, but decreased to 0.1 M over the next 900 m. The initial increase in N2O was presumably a result ofin situ denitrification. Model analyses indicated that denitrification was directly associated with nitrification and was limited by the availability of NO3a?? produced by nitrification. Due to different redox potential optima, coupling of nitrification and denitrification was a function of a balance of environmental conditions that was moderately favorable to both processes. N removal efficiency was largely dependent on the proportion of effluent NH4+ to NO3a?? . When NH4+ /NO3a?? was 1, average N removal efficiency ranged from 95a??100%, but ratios that were >1 reduced average efficiencies to as low as 57%. Actual effluent NH4+ /NO3a?? loading ratios at this site are approximately 0.2 and are consistently <1.

  6. Rapid startup and high rate nitrogen removal from anaerobic sludge digester liquor using a SNAP process.

    PubMed

    Qiao, Sen; Nishiyama, Takashi; Fujii, Tatsuo; Bhatti, Zafar; Furukawa, Kenji

    2012-02-01

    In this study, a single-stage autotrophic nitrogen removal reactor, packed with a novel acrylic fiber biomass carrier material (Biofix), was applied for nitrogen removal from sludge digester liquor. For rapid start-up, conventional activated sludge was added to the reactor soon after the attachment of anammox biomass on the Biofix carriers, which allowed conventional activated sludge to form a protective layer of biofilm around the anammox biomass. The Nitrogen removal efficiency reached 75% within 1 week at a nitrogen loading rate of 0.46 kg-N/m(3)/day for synthetic wastewater treatment. By the end of the synthetic wastewater treatment period, the maximum nitrogen removal rate had increased to 0.92 kg-N/m(3)/day at a nitrogen loading rate of 1.0 kg-N/m(3)/day. High nitrogen removal rate was also achieved during the actual raw digester liquor treatment with the highest nitrogen removal rate being 0.83 kg-N/m(3)/day at a nitrogen loading rate of 0.93 kg-N/m(3)/day. The thick biofilm on Biofix carriers allowed anammox bacteria to survive under high DO concentration of 5-6 mg/l resulting in stable and high nitrogen removal performance. FISH and CLSM analysis demonstrated that anammox bacteria coexisted and surrounded by ammonium oxidizing bacteria.

  7. Remediation of Chlorinated Solvent Plumes Using In-Situ Air Sparging—A 2-D Laboratory Study

    PubMed Central

    Adams, Jeffrey A.; Reddy, Krishna R.; Tekola, Lue

    2011-01-01

    In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs. PMID:21776228

  8. Remediation of chlorinated solvent plumes using in-situ air sparging--a 2-D laboratory study.

    PubMed

    Adams, Jeffrey A; Reddy, Krishna R; Tekola, Lue

    2011-06-01

    In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs.

  9. Aerosol removal due to precipitation and wind forcings in Milan urban area

    NASA Astrophysics Data System (ADS)

    Cugerone, Katia; De Michele, Carlo; Ghezzi, Antonio; Gianelle, Vorne

    2018-01-01

    Air pollution represents a critical issue in Milan urban area (Northern Italy). Here, the levels of fine particles increase, overcoming the legal limits, mostly in wintertime, due to favourable calm weather conditions and large heating and vehicular traffic emissions. The main goal of this work is to quantify the aerosol removal effect due to precipitation at the ground. At first, the scavenging coefficients have been calculated for aerosol particles with diameter between 0.25 and 3 μm. The average values of this coefficient vary between 2 ×10-5 and 5 ×10-5 s-1. Then, the aerosol removal induced separately by precipitation and wind have been compared through the introduction of a removal index. As a matter of fact, while precipitation leads to a proper wet scavenging of the particles from the atmosphere, high wind speeds cause enhanced particle dispersion and dilution, that locally bring to a tangible decrease of aerosol particles' number. The removal triggered by these two forcings showed comparable average values, but different trends. The removal efficiency of precipitation lightly increases with the increase of particle diameters and vice versa happens with strong winds.

  10. Endonasal Skull Base Tumor Removal Using Concentric Tube Continuum Robots: A Phantom Study.

    PubMed

    Swaney, Philip J; Gilbert, Hunter B; Webster, Robert J; Russell, Paul T; Weaver, Kyle D

    2015-03-01

    Objectives The purpose of this study is to experimentally evaluate the use of concentric tube continuum robots in endonasal skull base tumor removal. This new type of surgical robot offers many advantages over existing straight and rigid surgical tools including added dexterity, the ability to scale movements, and the ability to rotate the end effector while leaving the robot fixed in space. In this study, a concentric tube continuum robot was used to remove simulated pituitary tumors from a skull phantom. Design The robot was teleoperated by experienced skull base surgeons to remove a phantom pituitary tumor within a skull. Percentage resection was measured by weight. Resection duration was timed. Setting Academic research laboratory. Main Outcome Measures Percentage removal of tumor material and procedure duration. Results Average removal percentage of 79.8 ± 5.9% and average time to complete procedure of 12.5 ± 4.1 minutes (n = 20). Conclusions The robotic system presented here for use in endonasal skull base surgery shows promise in improving the dexterity, tool motion, and end effector capabilities currently available with straight and rigid tools while remaining an effective tool for resecting the tumor.

  11. Methane production from a field-scale biofilter designed for desulfurization of biogas stream.

    PubMed

    Pirolli, Mateus; da Silva, Márcio Luís Busi; Mezzari, Melissa Paola; Michelon, William; Prandini, Jean Michel; Moreira Soares, Hugo

    2016-07-15

    The development of a simple and low maintenance field-scale biotrickling filter (BTF) for desulfurization of swine wastewater-derived biogas stream that was also capable of increasing biomethane concentrations was investigated. BTF was continuously fed with wastewater effluent from an air sparged nitrification-denitrification bioreactor installed downgradient from an UASB-type digester. BTF maximum removal efficiency (RE) of 99.8% was achieved with a maximum elimination capacity (EC) of 1,509 g H2S m(-3) h(-1). Average EC obtained with inlet biogas flow rates of 0.024, 0.036 and 0.048 m(3) h(-1) was 718, 1,013 and 438 g H2S m(-3) h(-1), respectively. SO4(-2) and S(0) were the major metabolites produced from biological conversion of H2S. Additionally to the satisfactory biodesulfurization capacity, an average increase in methane concentration of ≅ 3.8 ± 1.68 g m(-3) was measured in the filtered gas stream throughout 200 days of BTF operation. RT-PCR analyses of archaea communities in the biofilm confirmed dominance of hydrogenotrophic methanogens thus corroborating with the observed strong correlation between CO2 removal and CH4 production. Among the three major archaea orders investigated (i.e., Methanosarcinales, Methanobacteriales, and Methanomicrobiales), Methanobacteriales were encountered at highest concentrations (1.9 × 10(11) gene copies mL(-1)). The proposed BTF was robust efficiently removing H2S from biogas stream while concomitantly enhancing the concentration of valuable methane as source of renewable fuel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Submerged anaerobic membrane bioreactor (SAnMBR) performance on sewage treatment: removal efficiencies, biogas production and membrane fouling.

    PubMed

    Chen, Rong; Nie, Yulun; Ji, Jiayuan; Utashiro, Tetsuya; Li, Qian; Komori, Daisuke; Li, Yu-You

    2017-09-01

    A submerged anaerobic membrane reactor (SAnMBR) was employed for comprehensive evaluation of sewage treatment at 25 °C and its performance in removal efficiency, biogas production and membrane fouling. Average 89% methanogenic degradation efficiency as well as 90%, 94% and 96% removal of total chemical oxygen demand (TCOD), biochemical oxygen demand (BOD) and nonionic surfactant were obtained, while nitrogen and phosphorus were only subjected to small removals. Results suggest that SAnMBRs can effectively decouple organic degradation and nutrients disposal, and reserve all the nitrogen and phosphorus in the effluent for further possible recovery. Small biomass yields of 0.11 g mixed liquor volatile suspended solids (MLVSS)/gCOD were achieved, coupled to excellent methane production efficiencies of 0.338 NLCH 4 /gCOD, making SAnMBR an attractive technology characterized by low excess sludge production and high bioenergy recovery. Batch tests revealed the SAnMBR appeared to have the potential to bear a high food-to-microorganism ratio (F/M) of 1.54 gCOD/gMLVSS without any inhibition effect, and maximum methane production rate occurred at F/M 0.7 gCOD/gMLVSS. Pore blocking dominated the membrane fouling behaviour at a relative long hydraulic retention time (HRT), i.e. >12 hours, while cake layer dominated significantly at shorter HRTs, i.e. <8 hours.

  13. [Phosphorus removal characteristics by aerobic granules in normal molasses wastewater after anaerobic treatment].

    PubMed

    Wang, Shuo; Yu, Shui-Li; Shi, Wen-Xin; Bao, Rui-Ling; Yi, Xue-Song; Li, Jian-Zheng

    2012-04-01

    COD decreased obviously in normal molasses wastewater after anaerobic treatment, however, concentrations of nitrogen and phosphorus were still higher in the effluent which seriously damaged the ecological balance. In this study, aerobic granules cultivated in sequencing batch airlift reactor (SBAR) were carried out for treating the effluent; phosphorus removal processes and characteristics were discussed as well. The mean diameter of aerobic granules cultivated by multiple carbon sources (acetate, propionate and butyrate) was 1.7 mm. The average phosphorus removal efficiency was 90.9% and the level of phosphorus in effluent was only 1.3 mg x L(-1); TP released per COD consumed was 0.571 and the specific rate of TP released was 5.73 mg x (g x h)(-1). NO3(-) -N usage of phosphorus accumulating organisms (PAOs) improved during denitrifying process because the concentration of propionate and butyrate increased in multiple carbon sources which means the phosphorus uptake efficiency increased when per NO3(-) -N consumed. Phosphorus content represented a stronger correlation with magnesium, calcium and ferrum contents in aerobic granules and their extracellular polymeric substances (EPS), the phosphorus adsorption by EPS could enhance phosphorus removal. 61.9% of phosphorus accumulating organisms were denitrifying phosphorus accumulating organisms in aerobic granules and TP uptake per NO3(-) -N consumed was 1.14 which was higher than that of aerobic granules only cultivated by acetate.

  14. Combining UASB and the "fourth generation" down-flow hanging sponge reactor for municipal wastewater treatment.

    PubMed

    Tandukar, M; Uemura, S; Ohashi, A; Harada, H

    2006-01-01

    A "fourth generation" down-flow hanging sponge (DHS) Reactor has been developed and proposed as an improved variant of post-treatment system for UASB treating domestic wastewater. This paper evaluates the potential of the proposed combination of UASB and DHS as a sewage treatment system, especially for developing countries. A pilot-scale UASB (1.15 m3) and DHS (0.38 m3; volume of sponge) was installed in a municipal sewage treatment site and constantly monitored for 2 years. UASB was operated at an HRT of 6 h corresponding to an organic load of 2.15 kg-COD/m3 per day. Subsequently, the organic load in DHS was 2.35 kg-COD/m3 per day, operated at an HRT of 2 h. Organic removal by the whole system was satisfactory, accomplishing 96% of unfiltered BOD removal and 91% of unfiltered COD removal. However, nitrification decreased from 56% during the startup period to 28% afterwards. Investigation on DHS sludge was made by quantifying it and evaluating oxygen uptake rates with various substrates. Average concentration of trapped biomass was 26 g-VSS/L of sponge volume, increasing the SRT of the system to 100-125 d. Removal of coliforms obtained was 3-4 log10 with the final count of 10(3) to 10(4) MPN/100 ml in DHS effluent.

  15. Biofiltration of hydrogen sulfide by Sulfolobus metallicus at high temperatures.

    PubMed

    Morales, M; Silva, J; Morales, P; Gentina, J C; Aroca, G

    2012-01-01

    Biofiltration of reduced sulfur compounds such as hydrogen sulfide has been mainly applied to emissions at mild temperatures (25 to 35 °C). However, an important number of industrial gaseous emission containing sulfur compounds, from diverse industrial sectors (petroleum refinery, cellulose production, smelting, rendering plants and food industries) are emitted at temperatures over 50 °C. Most of the studies on thermophilic systems report that a higher elimination capacity can be obtained at elevated temperature, allowing the design of smaller equipment for the same loading rate than that required for removing the same load under mesophilic conditions. A biotrickling filter inoculated with Sulfolobus metallicus, which operates at three different residence times, 60, 80 and 120 s, and two different temperatures (45 and 55 °C) for treating H(2)S is reported. The input loads of H(2)S were progressively increased from 0 to 100 gS/m(3). The aim of this study was to determine the capacity and ability of S. metallicus to oxidize H(2)S at high temperatures. The better removal capacity of H(2)S obtained was 37.1 ± 1.7 gS/m(3) h at 55 °C for a residence time of 120 s. The difference of the removal capacity of H(2)S between the two temperatures was 4 g/m(3) h on average of sulfur removal for the different residence times.

  16. Organic semiconductor wastewater treatment using a four-stage Bardenpho with membrane system.

    PubMed

    Chung, Jinwook; Fleege, Daniel; Ong, Say Kee; Lee, Yong-Woo

    2014-01-01

    Electronic wastewater from a semiconductor plant was treated with a pilot-scale four-stage Bardenpho process with membrane system. The system was operated over a 14-month period with an overall hydraulic retention time (HRT) ranging from 9.5 to 30 h. With a few exceptions, the pilot plant consistently treated the electronic wastewater with an average removal efficiency of chemical oxygen demand (COD) and total nitrogen of 97% and 93%, respectively, and achieving effluent quality of COD<15 mg/L, turbidity<1, and silt density index<1. Based on removal efficiencies of the pilot plant, it is possible to lower the HRT to less than 9.5 h to achieve comparable removal efficiencies. An energy-saving configuration where an internal recycle line was omitted and the biomass recycle was rerouted to the pre-anoxic tank, can reduce energy consumption by 8.6% and gave removal efficiencies that were similar to the Bardenpho process. The system achieved pre-anoxic and post-anoxic specific denitrification rate values with a 95% confidence interval of 0.091 ± 0.011 g NO₃-N/g MLVSS d and 0.087 ± 0.016 g NO₃-N/g MLVSS d, respectively. The effluent from the four-stage Bardenpho with membrane system can be paired with a reverse osmosis system to provide further treatment for reuse purposes.

  17. Comparison of constructed wetland and stabilization pond for the treatment of digested effluent of swine wastewater.

    PubMed

    Liu, Gang-Jin; Zheng, Dan; Deng, Liang-Wei; Wen, Quan; Liu, Yi

    2014-01-01

    A laboratory-scale horizontal subsurface flow constructed wetland (HSFCW) and a stabilization pond (SP) were constructed to compare their performances on the treatment of digested effluent of swine wastewater. After 457 days of operation, the removal efficiencies of the HSFCW were as follows: chemical oxygen demand (COD), 17-54%; total phosphorus (TP), 32-45% and ammonia nitrogen [Formula: see text], 27-88%, while they were 25-55%, 31-56% and 56-98%, respectively, for the SP, with a hydraulic retention time of 54 days and hydraulic loading of 0.01 m³ m⁻² d⁻¹. The average removed loads for the HSFCW were as follows: COD, 0.25-4.33; TP, 0.01-0.11 and [Formula: see text], 0.34-2.54 g m⁻² d⁻¹, while they were 0.25-4.45, 0.02-0.13 and 0.72-2.87 g m⁻² d⁻¹, respectively, for the SP. The SP performed better than the HSFCW because the SP showed a 20% of higher removal efficiency for [Formula: see text] than the HSFCW. Especially, the COD removal rate of SP was 10% higher than the HSFCW when the influent concentration was at the lowest and highest stages. Meanwhile, given the lower costs, the SP is more suitable for the treatment of digested effluent of swine wastewater than the HSFCW.

  18. Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process.

    PubMed

    Falås, P; Longrée, P; la Cour Jansen, J; Siegrist, H; Hollender, J; Joss, A

    2013-09-01

    Removal of organic micropollutants in a hybrid biofilm-activated sludge process was investigated through batch experiments, modeling, and full-scale measurements. Batch experiments with carriers and activated sludge from the same full-scale reactor were performed to assess the micropollutant removal rates of the carrier biofilm under oxic conditions and the sludge under oxic and anoxic conditions. Clear differences in the micropollutant removal kinetics of the attached and suspended growth were demonstrated, often with considerably higher removal rates for the biofilm compared to the sludge. For several micropollutants, the removal rates were also affected by the redox conditions, i.e. oxic and anoxic. Removal rates obtained from the batch experiments were used to model the micropollutant removal in the full-scale process. The results from the model and plant measurements showed that the removal efficiency of the process can be predicted with acceptable accuracy (± 25%) for most of the modeled micropollutants. Furthermore, the model estimations indicate that the attached growth in hybrid biofilm-activated sludge processes can contribute significantly to the removal of individual compounds, such as diclofenac. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Impact of removing mucosal barrier injury laboratory-confirmed bloodstream infections from central line-associated bloodstream infection rates in the National Healthcare Safety Network, 2014.

    PubMed

    See, Isaac; Soe, Minn M; Epstein, Lauren; Edwards, Jonathan R; Magill, Shelley S; Thompson, Nicola D

    2017-03-01

    Central line-associated bloodstream infection (CLABSI) event data reported to the National Healthcare Safety Network from 2014, the first year of required use of the mucosal barrier injury laboratory-confirmed bloodstream infection (MBI-LCBI) definition, were analyzed to assess the impact of removing MBI-LCBI events from CLABSI rates. CLABSI rates decreased significantly in some location types after removing MBI-LCBI events, and MBI-LCBI events will be removed from publicly reported CLABSI rates. Published by Elsevier Inc.

  20. Advanced treatment technique for swine wastewater using two agents: Thermally polymerized amorphous silica and hydrated lime for color and phosphorus removal and sulfur for nitrogen removal.

    PubMed

    Hasegawa, Teruaki; Kurose, Yohei; Tanaka, Yasuo

    2017-10-01

    The efficacy of advanced treatment of swine wastewater using thermally polymerized, modified amorphous silica and hydrated lime (M-CSH-lime) for color and phosphorus removal and sulfur for nitrogen removal was examined with a demonstration-scale treatment plant. The color removal rate was approximately 78% at M-CSH-lime addition rates of > 0.055 wt/v%. The PO43--P removal rate exceeded 99.9% with > 0.023 wt/v%. pH of the effluent from the M-CSH-lime reactor increased with the addition rate till a maximum value of 12.7, which was effective in disinfection. The recovered M-CSH-lime would be suitable as a phosphorus fertilizer because the total P 2 O 5 content was approximately 10%. The nitrogen oxide (NOx-N) removal rate by sulfur denitrification increased to approximately 80% when the NOx-N loading rate was around 0.1 kg-N/ton-S/day. It was suggested that the combination of the two processes would be effective in the advanced treatment of swine wastewater. © 2017 Japanese Society of Animal Science.

  1. Mesophilic biomethanation and treatment of poultry waste-water using pilot scale UASB reactor.

    PubMed

    Atuanya, Ernest I; Aigbirior, Moses

    2002-07-01

    The feasibility of applying the up-flow anaerobic sludge blanket (UASB) treatment for poultry waste (faeces) water was examined. A continuous-flow UASB pilot scale reactor of 3.50 L capacity using mixed culture was operated for 95 days to assess the treatability of poultry waste-water and its methane production. The maximum chemical oxygen demand (COD) removed was found to be 78% when organic loading rate (OLR) was 2.9 kg COD m(-3) day(-1) at hydraulic retention times (HRT) of 13.2 hr. The average biogas recovery was 0.26 m3 CH4 kg COD with an average methane content of 57% at mean temperature of 30 degrees C. Data indicate more rapid methanogenesis with higher loading rates and shorter hydraulic retention times. At feed concentration of 4.8 kg COD m(-3) day(-1), anaerobic digestion was severely retarded at all hydraulic retention time tested. This complication in the reactor operations may be linked to build-up of colloidal solids often associated with poultry waste water and ammonia toxicity. Isolates from granular sludge and effluent were found to be facultative anaerobes most of which were Pseudomonas genera.

  2. Determinants of College Grade Point Averages

    ERIC Educational Resources Information Center

    Bailey, Paul Dean

    2012-01-01

    Chapter 2: The Role of Class Difficulty in College Grade Point Averages. Grade Point Averages (GPAs) are widely used as a measure of college students' ability. Low GPAs can remove a students from eligibility for scholarships, and even continued enrollment at a university. However, GPAs are determined not only by student ability but also by the…

  3. Reducing false positives of microcalcification detection systems by removal of breast arterial calcifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mordang, Jan-Jurre, E-mail: Jan-Jurre.Mordang@radboudumc.nl; Gubern-Mérida, Albert; Karssemeijer, Nico

    Purpose: In the past decades, computer-aided detection (CADe) systems have been developed to aid screening radiologists in the detection of malignant microcalcifications. These systems are useful to avoid perceptual oversights and can increase the radiologists’ detection rate. However, due to the high number of false positives marked by these CADe systems, they are not yet suitable as an independent reader. Breast arterial calcifications (BACs) are one of the most frequent false positives marked by CADe systems. In this study, a method is proposed for the elimination of BACs as positive findings. Removal of these false positives will increase the performancemore » of the CADe system in finding malignant microcalcifications. Methods: A multistage method is proposed for the removal of BAC findings. The first stage consists of a microcalcification candidate selection, segmentation and grouping of the microcalcifications, and classification to remove obvious false positives. In the second stage, a case-based selection is applied where cases are selected which contain BACs. In the final stage, BACs are removed from the selected cases. The BACs removal stage consists of a GentleBoost classifier trained on microcalcification features describing their shape, topology, and texture. Additionally, novel features are introduced to discriminate BACs from other positive findings. Results: The CADe system was evaluated with and without BACs removal. Here, both systems were applied on a validation set containing 1088 cases of which 95 cases contained malignant microcalcifications. After bootstrapping, free-response receiver operating characteristics and receiver operating characteristics analyses were carried out. Performance between the two systems was compared at 0.98 and 0.95 specificity. At a specificity of 0.98, the sensitivity increased from 37% to 52% and the sensitivity increased from 62% up to 76% at a specificity of 0.95. Partial areas under the curve in the specificity range of 0.8–1.0 were significantly different between the system without BACs removal and the system with BACs removal, 0.129 ± 0.009 versus 0.144 ± 0.008 (p<0.05), respectively. Additionally, the sensitivity at one false positive per 50 cases and one false positive per 25 cases increased as well, 37% versus 51% (p<0.05) and 58% versus 67% (p<0.05) sensitivity, respectively. Additionally, the CADe system with BACs removal reduces the number of false positives per case by 29% on average. The same sensitivity at one false positive per 50 cases in the CADe system without BACs removal can be achieved at one false positive per 80 cases in the CADe system with BACs removal. Conclusions: By using dedicated algorithms to detect and remove breast arterial calcifications, the performance of CADe systems can be improved, in particular, at false positive rates representative for operating points used in screening.« less

  4. Comparison of small diameter stone baskets in an in vitro caliceal and ureteral model.

    PubMed

    Korman, Emily; Hendlin, Kari; Chotikawanich, Ekkarin; Monga, Manoj

    2011-01-01

    Three small diameter (<1.5F) stone baskets have recently been introduced. Our objective was to evaluate the stone capture rate of these baskets in an in vitro ureteral model and an in vitro caliceal model using novice, resident, and expert operators. Sacred Heart Medical Halo™ (1.5F), Cook N-Circle(®) Nitinol Tipless Stone Extractor (1.5F), and Boston Scientific OptiFlex(®) (1.3F) stone baskets were tested in an in vitro ureteral and a caliceal model by three novices, three residents, and three experts. The caliceal model consisted of a 7-cm length of 10-mm O.D. plastic tubing with a convex base. Each operator was timed during removal of a 3-mm calculus from each model with three repetitions for each basket. Data were analyzed by analysis of variance single factor tests and t tests assuming unequal variances. In the ureteral model, the Halo had the fastest average rate of stone extraction for experts and novices (0:02 ± 0:01 and 0:08 ± 0:04 min, respectively), as well as the overall fastest average stone extraction rate (0:08 ± 0:06 min). No statistical significant differences in extraction times between baskets were identified in the resident group. In the novice group, the Halo stone extraction rate was significantly faster than the OptiFlex (P=0.029). In the expert group, the OptiFlex had statistically significant slower average extraction rates compared with the Halo (P=0.005) and the N-Circle (P=0.017). In the caliceal model, no statistically significant differences were noted. While no significant differences were noted in extraction times for the caliceal model, the extraction times for the ureteral model were slowest with the OptiFlex basket. Other variables important in selection of the appropriate basket include operator preference, clinical setting, and cost.

  5. Washing machine usage in remote aboriginal communities.

    PubMed

    Lloyd, C R

    1998-10-01

    The use of washing machines was investigated in two remote Aboriginal communities in the Anangu Pitjantjatjara homelands. The aim was to look both at machine reliability and to investigate the health aspect of washing clothes. A total of 39 machines were inspected for wear and component reliability every three months over a one-year period. Of these, 10 machines were monitored in detail for water consumption, hours of use and cycles of operation. The machines monitored were Speed Queen model EA2011 (7 kg washing load) commercial units. The field survey results suggested a high rate of operation of the machines with an average of around 1,100 washing cycles per year (range 150 and 2,300 cycles per year). The results were compared with available figures for the average Australian household. A literature survey, to ascertain the health outcomes relating to washing clothes and bedding, confirmed that washing machines are efficient at removal of bacteria from clothes and bedding but suggested that recontamination of clothing after washing often negated the prior removal. High temperature washing (> 60 degrees C) appeared to be advantageous from a health perspective. With regards to larger organisms, while dust mites and body lice transmission between people would probably be decreased by washing clothes, scabies appeared to be mainly transmitted by body contact and thus transmission would be only marginally decreased by the use of washing machines.

  6. The impact of social and psychological consequences of disease on judgments of disease severity: An experimental study.

    PubMed

    King, Nicholas B; Harper, Sam; Young, Meredith; Berry, Sarah C; Voigt, Kristin

    2018-01-01

    The Global Burden of Disease (GBD) project systematically assesses mortality, healthy life expectancy, and disability across 195 countries and territories, using the disability-adjusted life year (DALY). Disability weights in the DALY are based upon surveys that ask users to rate health states based on lay descriptions. We conducted an experimental study to examine whether the inclusion or removal of psychological, social, or familial implications from a health state description might affect individual judgments about disease severity, and thus relative disability weights. We designed a survey consisting of 36 paired descriptions in which information about plausible psychological, social, or familial implications of a health condition was either present or absent. Using a Web-based platform, we recruited 1,592 participants, who were assigned to one of two experimental groups, each of which were asked to assign a value to the health state description from 0 to 100 using a slider, with 0 as the "worst possible health" and 100 as the "best possible health." We tested five hypotheses: (1) the inclusion of psychological, social, or familial consequences in health state descriptions will reduce the average rating of a health state; (2) the effect will be stronger for diseases with lower disability weights (i.e., less severe diseases); (3) the effect will vary across the type of additional information added to the health state description; (4) the impact of adding information on familial consequences will be stronger for female than male; (5) the effect of additional consequences on ratings of health state descriptions will not differ by levels of completed education and age. On average, adding social, psychological, or familial consequences to the health state description lowered individual ratings of that description by 0.78 points. The impact of adding information had a stronger impact on ratings of the least severe conditions, reducing average ratings in this category by 1.67 points. Addition of information about child-rearing had the strongest impact, reducing average ratings by 2.09 points. We found little evidence that the effect of adding information on ratings of health descriptions varied by gender, education, or age. Including information about health states not directly related to major functional consequences or symptoms, particularly with respect to child-rearing and specifically for descriptions of less severe conditions, can lead to lower ratings of health. However, this impact was not consistent across all conditions or types of information, and was most pronounced for inclusion of information about child-rearing, and among the least severe conditions.

  7. Effects of weak electromagnetic fields on Escherichia coli and Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Smith, Derek A.

    Previous studies of electromagnetic field effects on bacteria are examined, and new experimental procedures and their results are discussed. Experimental samples of Escherichia coli and Staphylococcus aureus were prepared in different conditions, and measurements of optical density were used to track growth rates after removing the samples from their associated experimental environments. Experimental environments varied in magnetic field intensities and frequencies, including a control environment of minimal field intensity. Plots of experimental data sets and their associated averages are used to visualize the experimental outcomes, and differences in growth patterns are evaluated. Results are then used to hypothesize the mechanisms and consequences of the potentially observed field effects.

  8. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.

    PubMed

    Villagra, Mariana; Campanello, Paula I; Montti, Lia; Goldstein, Guillermo

    2013-03-01

    A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) was carried out in natural gaps of a subtropical forest in northeastern Argentina. Saplings of six dominant canopy species differing in shade tolerance were grown in five control and five N + P fertilized gaps. Hydraulic architectural traits such as wood density, the leaf area to sapwood area ratio (LA : SA), vulnerability to cavitation (P50) and specific and leaf-specific hydraulic conductivity were measured, as well as the relative growth rate, specific leaf area (SLA) and percentage of leaf damage by insect herbivores. Plant growth rates and resistance to drought-induced embolisms increased when nutrient limitations were removed. On average, the P50 of control plants was -1.1 MPa, while the P50 of fertilized plants was -1.6 MPa. Wood density and LA : SA decreased with N + P additions. A trade-off between vulnerability to cavitation and efficiency of water transport was not observed. The relative growth rate was positively related to the total leaf surface area per plant and negatively related to LA : SA, while P50 was positively related to SLA across species and treatments. Plants with higher growth rates and higher total leaf area in fertilized plots were able to avoid hydraulic dysfunction by becoming less vulnerable to cavitation (more negative P50). Two high-light-requiring species exhibited relatively low growth rates due to heavy herbivore damage. Contrary to expectations, shade-tolerant plants with relatively high resistance to hydraulic dysfunction and reduced herbivory damage were able to grow faster. These results suggest that during the initial phase of sapling establishment in gaps, species that were less vulnerable to cavitation and exhibited reduced herbivory damage had faster realized growth rates than less shade-tolerant species with higher potential growth rates. Finally, functional relationships between hydraulic traits and growth rate across species and treatments were maintained regardless of soil nutrient status.

  9. Nitrogen removal performance and loading capacity of a novel single-stage nitritation-anammox system with syntrophic micro-granules.

    PubMed

    Wang, Shaopo; Liu, Yuan; Niu, Qigui; Ji, Jiayuan; Hojo, Toshimasa; Li, Yu-You

    2017-07-01

    The operation performance of a novel micro-granule based syntrophic system of nitritation and anammox was studied by controlling the oxygen concentration and maintaining a constant temperature of 25°C. With the oxygen concentration of around 0.11 (<0.15)mg/L, the single-stage nitritation-anammox system was startup successfully at a nitrogen loading rate (NLR) of 1.5kgN/m 3 /d. The reactor was successfully operated at volumetric N loadings ranging from 0.5 to 2.5kgN/m 3 /d with a high nitrogen removal of 82%. The microbial community was composed by ammonia oxidizing bacteria (AOB) and anammox bacteria forming micro-granules with an average diameter of 0.8mm and good settleability. Results from pyrosequencing analysis revealed that Ca. Kuenenia and Nitrosomonas were selected and enriched in the community over the startup period, and these were identified as the dominant anammox bacteria and AOB species, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ten-gram-scale preparation of PTMS-based monodisperse ORMOSIL nano- and microparticles and conversion to silica particles

    NASA Astrophysics Data System (ADS)

    Kim, Jung Soo; Jung, Gyu Il; Kim, Soo Jung; Koo, Sang Man

    2018-03-01

    Monodisperse organically modified silica (ORMOSIL) particles, with an average diameter ranging from 550 nm to 4.2 μm, were prepared at low temperature at a scale of about 10 g/batch by a simple one-step self-emulsion process. The reaction mixture was composed only of water, phenyltrimethoxysilane (PTMS), and a base catalyst, without any surfactants. The size control of the particles and the monodispersity of resultant particles were achieved through the controlled supply of hydrolyzed PTMS monomer molecules, which was enabled by manipulating the reaction parameters, such as monomer concentration, type and amount of base catalyst, stirring rate, and reaction temperature. PTMS-based ORMOSIL particles were converted into silica particles by employing either a wet chemical reaction with an oleum-sulfuric acid mixture or thermal treatment above 650 °C. Complete removal of organic groups from the ORMOSIL particles was achieved by the thermal treatment while 74% removal was done by the chemical process used. [Figure not available: see fulltext.

  11. Thrombolysis based on magnetically-controlled surface-functionalized Fe3O4 nanoparticle

    PubMed Central

    Chang, Ming; Lin, Yu-Hao; Gabayno, Jacque Lynn; Li, Qian; Liu, Xiaojun

    2017-01-01

    ABSTRACT In this study, the control of magnetic fields to manipulate surface-functionalized Fe3O4 nanoparticles by urokinase coating is investigated for thrombolysis in a microfluidic channel. The urokinase-coated Fe3O4 nanoparticles are characterized using particle size distribution, zeta potential measurement and spectroscopic data. Thrombolytic ratio tests reveal that the efficiency for thrombus cleaning is significantly improved when using magnetically-controlled urokinase-coated Fe3O4 nanoparticles than pure urokinase solution. The average increase in the rate of thrombolysis with the use of urokinase-coated Fe3O4 nanoparticles is about 50%. In vitro thrombolysis test in a microfluidic channel using the coated nanoparticles shows nearly complete removal of thrombus, a result that can be attributed to the clot busting effect of the urokinase as it inhibits the possible formation of blood bolus during the magnetically-activated microablation process. The experiment further demonstrates that a thrombus mass of 10.32 mg in the microchannel is fully removed in about 180 s. PMID:27689864

  12. Rates of inactivation of waterborne coliphages by monochloramine.

    PubMed Central

    Dee, S W; Fogleman, J C

    1992-01-01

    A sophisticated water quality monitoring program was established to evaluate virus removal through Denver's 1-million-gal (ca. 4-million-liter)/day Direct Potable Reuse Demonstration Plant. As a comparison point for the reuse demonstration plant, Denver's main water treatment facility was also monitored for coliphage organisms. Through the routine monitoring of the main plant, it was discovered that coliphage organisms were escaping the water treatment processes. Monochloramine residuals and contact times (CT values) required to achieve 99% inactivation were determined for coliphage organisms entering and leaving this conventional water treatment plant. The coliphage tested in the effluent waters had higher CT values on the average than those of the influent waters. CT values established for some of these coliphages suggest that monochloramine alone is not capable of removing 2 orders of magnitude of these specific organisms in a typical water treatment facility. Electron micrographs revealed one distinct type of phage capable of escaping the water treatment processes and three distinct types of phages in all. Images PMID:1444427

  13. Stable aerobic granules in continuous-flow bioreactor with self-forming dynamic membrane.

    PubMed

    Liu, Hongbo; Li, Yajie; Yang, Changzhu; Pu, Wenhong; He, Liu; Bo, Fu

    2012-10-01

    A novel continuous-flow bioreactor with aerobic granular sludge and self-forming dynamic membrane (CGSFDMBR) was developed for efficient wastewater treatment. Under continuous-flow operation, aerobic granular sludge was successfully cultivated and characterized with small particle size of about 0.1-1.0mm, low settling velocity of about 15-25 m/h, loose structure and high water content of about 96-98%. To maintain the stability of aerobic granular sludge, strategies based on the differences of settling velocity and particle-size between granular and flocculent sludge were implemented. Moreover, in CGSFDMBR, membrane fouling was greatly relieved. Dynamic membrane was just cleaned once in more than 45 days' operation. CGSFDMBR presented good performance in treating septic tank wastewater, obtaining average COD, NH(4)(+)-N, TN and TP removal rates of 83.3%, 73.3%, 67.3% and 60%, respectively, which was more efficient than conventional bioreactors since that carbon, nitrogen and phosphorus were simultaneously removed in a single aerobic reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Creation of nanosized holes in graphene planes for improvement of rate capability of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Bulusheva, L. G.; Stolyarova, S. G.; Chuvilin, A. L.; Shubin, Yu V.; Asanov, I. P.; Sorokin, A. M.; Mel'gunov, M. S.; Zhang, Su; Dong, Yue; Chen, Xiaohong; Song, Huaihe; Okotrub, A. V.

    2018-04-01

    Holes with an average size of 2-5 nm have been created in graphene layers by heating of graphite oxide (GO) in concentrated sulfuric acid followed by annealing in an argon flow. The hot mineral acid acts simultaneously as a defunctionalizing and etching agent, removing a part of oxygen-containing groups and lattice carbon atoms from the layers. Annealing of the holey reduced GO at 800 °C-1000 °C causes a decrease of the content of residual oxygen and the interlayer spacing thus producing thin compact stacks from holey graphene layers. Electrochemical tests of the obtained materials in half-cells showed that the removal of oxygen and creation of basal holes lowers the capacity loss in the first cycle and facilitates intercalation-deintercalation of lithium ions. This was attributed to minimization of electrolyte decomposition reactions, easier desolvation of lithium ions near the hole boundaries and appearance of multiple entrances for the naked ions into graphene stacks.

  15. Characterizing membrane foulants in MBR with addition of polyferric chloride to enhance phosphorus removal.

    PubMed

    Yang, Xiao-Li; Song, Hai-Liang; Chen, Ming; Cheng, Bing

    2011-10-01

    The effect of polymeric ferric chloride (PFC) addition on phosphorus removal and membrane fouling were investigated in an anoxic/oxic submerged membrane bioreactor. The total phosphorus concentration in effluent averaged at 0.26 mg/L with PFC addition of 10-15 mg/L, while the rate of membrane fouling increased 1.6 times over the control MBR (without PFC addition). Three-dimensional excitation-emission matrix fluorescence spectroscopy and Gel Filtration Chromatography analysis indicated that soluble microbial byproduct-like materials and large molecules (M(W)>100 kDa) were one of the main contributors of biofouling. Fourier transform infrared spectrum confirmed that the major components of the cake layer were proteins and polysaccharides materials. Scanning electron microscopy demonstrated that membrane surfaces were covered with compact gel layer formed by organic substances and Energy Dispersive X-ray analysis indicated that ferric metals were the most important inorganic pollutants. Consequently, soluble organic substances and dose of PFC should be controlled to minimize membrane fouling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Evaluation of water quality functions of conventional and advanced soil-based onsite wastewater treatment systems.

    PubMed

    Cooper, Jennifer A; Loomis, George W; Kalen, David V; Amador, Jose A

    2015-05-01

    Shallow narrow drainfields are assumed to provide better wastewater renovation than conventional drainfields and are used for protection of surface and ground water. To test this assumption, we evaluated the water quality functions of two advanced onsite wastewater treatment system (OWTS) drainfields-shallow narrow (SND) and Geomat (GEO)-and a conventional pipe and stone (P&S) drainfield over 12 mo using replicated ( = 3) intact soil mesocosms. The SND and GEO mesocosms received effluent from a single-pass sand filter, whereas the P&S received septic tank effluent. Between 97.1 and 100% of 5-d biochemical oxygen demand (BOD), fecal coliform bacteria, and total phosphorus (P) were removed in all drainfield types. Total nitrogen (N) removal averaged 12.0% for P&S, 4.8% for SND, and 5.4% for GEO. A mass balance analysis accounted for 95.1% (SND), 94.1% (GEO), and 87.6% (P&S) of N inputs. When the whole treatment train (excluding the septic tank) is considered, advanced systems, including sand filter pretreatment and SND or GEO soil-based treatment, removed 99.8 to 99.9% of BOD, 100% of fecal coliform bacteria and P, and 26.0 to 27.0% of N. In contrast, the conventional system removed 99.4% of BOD and 100% of fecal coliform bacteria and P but only 12.0% of N. All drainfield types performed similarly for most water quality functions despite differences in placement within the soil profile. However, inclusion of the pretreatment step in advanced system treatment trains results in better N removal than in conventional treatment systems despite higher drainfield N removal rates in the latter. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment.

    PubMed

    Xu, Jie; Zhao, Yongjun; Zhao, Guohua; Zhang, Hui

    2015-08-01

    An integrated approach that combined freshwater microalgae Scenedesmus obliquus (FACHB-31) cultivation with piggery anaerobic digestate liquid treatment was investigated in this study. The characteristics of algal growth, biogas production, and nutrient removal were examined using photobioreactor bags (PBRbs) to cultivate S. obliquus (FACHB-31) in digestate with various digestate dilutions (the concentration levels of 3200, 2200, 1600, 1200, 800, and 400 mg L(-1) chemical oxygen demand (COD)) during 7-day period. The effects of the level of pollutants on nutrient removal efficiency and CO2 removal process were investigated to select the optimum system for effectively upgrade biogas and simultaneously reduce the nutrient content in digestate. The treatment performance displayed that average removal rates of COD, total nitrogen (TN), total phosphorous (TP), and CO2 were 61.58-75.29, 58.39-74.63, 70.09-88.79, and 54.26-73.81 %, respectively. All the strains grew well under any the dilution treatments. With increased initial nutrient concentration to a certain range, the CO4 content (v/v) of raw biogas increased. Differences in the biogas enrichment of S. obliquus (FACHB-31) in all treatments mainly resulted from variations in biomass productivity and CO2 uptake. Notably, the diluted digestate sample of 1600 mg L(-1) COD provided an optimal nutrient concentration for S. obliquus (FACHB-31) cultivation, where the advantageous nutrient and CO2 removals, as well as the highest productivities of biomass and biogas upgrading, were revealed. Results showed that microalgal biomass production offered real opportunities to address issues such as CO2 sequestration, wastewater treatment, and biogas production.

  18. Habit formation in children: Evidence from incentives for healthy eating.

    PubMed

    Loewenstein, George; Price, Joseph; Volpp, Kevin

    2016-01-01

    We present findings from a field experiment conducted at 40 elementary schools involving 8000 children and 400,000 child-day observations, which tested whether providing short-run incentives can create habit formation in children. Over a 3- or 5-week period, students received an incentive for eating a serving of fruits or vegetables during lunch. Relative to an average baseline rate of 39%, providing small incentives doubled the fraction of children eating at least one serving of fruits or vegetables. Two months after the end of the intervention, the consumption rate at schools remained 21% above baseline for the 3-week treatment and 44% above baseline for the 5-week treatment. These findings indicate that short-run incentives can produce changes in behavior that persist after incentives are removed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Impact of exogenous organic carbon on the removal of chemicals of concern in the high rate nitrifying trickling filters.

    PubMed

    Mai, Lei; van den Akker, Ben; Du, Jun; Kookana, Rai S; Fallowfield, Howard

    2016-06-01

    The application of fixed bed high rate nitrifying trickling filters (NTFs) for the removal of track organic chemicals of concern (CoC) is less well known than their application to nutrient removal in water treatment. Particularly, the effect of exogenous organic carbon substrate (sucrose) loading on the performance of NTFs is not well understood. A laboratory-scale NTF system was operated in recirculation mode, with the objective of removing ammonia and CoC simultaneously. The efficiency of a high rate NTF for removal both of low concentration of ammonia (5 mg NH4-N L(-1)) and different concentrations of CoC in the presence of an exogenous organic carbon substrate (30 mg total organic carbon (TOC) L(-1)) was investigated. In the presence of exogenous organic carbon, the results demonstrated that the high rate NTF was able to successfully remove most of the CoCs investigated, with the removal ranging from 20.2% to 87.54%. High removal efficiencies were observed for acetaminophen (87.54%), bisphenol A (86.60%), trimethoprim (86.24%) and 17α-ethynylestradiol (80.60%). It was followed by the medium removal efficiency for N, N-diethyl-m-toluamide (61.31%) and atrazine (56.90%). In contrast, the removal of caffeine (28.43%) and benzotriazole (20.20%) was poorer in the presence of exogenous organic carbon. The removal efficiency for CoC was also compared with the results obtained in our previous study in the absence of exogenous organic carbon. The results showed that the addition of exogenous organic carbon was able to improve the removal of some of the CoC. Significant TOC percentage removals (45.68%-84.43%) and ammonia removal rate (mean value of 0.44 mg NH4-N L(-1) h(-1)) were also achieved in this study. The findings from this study provide valuable information for optimising the efficiency of high rate NTF for the removal of ammonia, CoC and TOC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Nitrogen fluxes across hydrogeomorphic zones in coastal deltaic floodplain using flow-through technique

    NASA Astrophysics Data System (ADS)

    Li, S.; Twilley, R.; Christensen, A.

    2017-12-01

    Coastal floodplain deltas are the region of continental margins of major river basins that can remove excess nitrogen before entering the coastal ocean. We propose that the processing of nitrogen in active deltaic wetlands varies with soil organic content in response to different hydrogeomorphic zones. Continuous flow-through core system was used to incubate sediment cores from supratidal, intertidal, and subtidal hydrogeomorphic zones along a chronosequence in Wax Lake Delta during summer of 2017. Ambient water from Wax Lake Outlet was continuously pumped through sealed cores to estimate fluxes of inorganic nitrogen and phosphorus across the sediment-water interface by calculating the difference between inflow and outflow concentrations. The average respiration rate of sediment cores from intertidal zone was about 1.5 g m-2 d-1 while the rate in supratidal zone was more than doubled to 3.7 g m-2 d-1. Under the constant inflow concentration of nitrate (about 107.1 umol/L), sediment cores in supratidal zone exhibited greater NO3- uptake (1329.7 umol m-2 h-1) and N2 release (499.0 umol N m-2 h-1) than that in intertidal zone (421.5 umol m-2 h-1 of NO3- uptake and 67.6 umol N m-2 h-1 of N2 flux respectively). These results indicate greater rate of net denitrification in supratidal zone than intertidal zone in the older chronosequence of the active delta (which formed approximately in 1980). Also, lower NH4 flux (mean 70.0 umol m-2 h-1) from sediment to water column in supratidal zone together with higher NO2- flux (mean 94.2 umol m-2 h-1) illustrated strong signal of nitrification. In conclusion, sediment cores at the intertidal zone helped to remove 12% of NO3- from the water column while cores at supratidal zone removed 35% of NO3-. Based on the correlation between NO3- and N2 fluxes, about 60% of NO3- removed could be converted to N2 under sediment organic concentrations of about 12%. Comparisons of NO3 removal and conversion to N2 by denitrification will be compared along the chronosequence to test the effects of shifts from mineral to organic soils as active deltas develop at the mouths of major river basins.

Top