NASA Technical Reports Server (NTRS)
Semler, T. T.
1973-01-01
The method of pseudo-resonance cross sections is used to analyze published temperature-dependent neutron transmission and self-indication measurements on tantalum in the unresolved region. In the energy region analyzed, 1825.0 to 2017.0 eV, a direct application of the pseudo-resonance approach using a customary average strength function will not provide effective cross sections which fit the measured cross section behavior. Rather a local value of the strength function is required, and a set of resonances which model the measured behavior of the effective cross sections is derived. This derived set of resonance parameters adequately represents the observed resonance hehavior in this local energy region. Similar analyses for the measurements in other unresolved energy regions are necessary to obtain local resonance parameters for improved reactor calculations. This study suggests that Doppler coefficients calculated by sampling from grand average statistical distributions over the entire unresolved resonance region can be in error, since significant local variations in the statistical distributions are not taken into consideration.
Jauchem, J R; Frei, M R
1997-01-01
These experiments were designed to investigate the effects of sub-resonant microwave (MW) exposure (350 MHz, E orientation, average power density 38 mW/cm2, average whole-body specific absorption rate 13.2 W/kg) on selected physiological parameters. The increase in peripheral body temperature during 350 MHz exposure was greater than that in earlier experiments performed at 700 MHz (resonance). Heart rate and mean arterial blood pressure were significantly elevated during a 1 degree C increase in colonic temperature due to 350 MHz exposure; respiratory rate showed no significant change. The results are consistent with other investigators' reports comparing sub-resonance exposures with those at resonance and above.
NASA Technical Reports Server (NTRS)
Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.
1984-01-01
A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.
NASA Astrophysics Data System (ADS)
McDermott, B. J.; Blain, E.; Daskalakis, A.; Thompson, N.; Youmans, A.; Choun, H. J.; Steinberger, W.; Danon, Y.; Barry, D. P.; Block, R. C.; Epping, B. E.; Leinweber, G.; Rapp, M. R.
2017-07-01
A new array of four Deuterated Benzene (C6D6 ) detectors has been installed at the Gaerttner Linear Accelerator Center at Rensselaer Polytechnic Institute for the purpose of measuring neutron capture cross sections in the keV region. Measurements were performed on samples of 181Ta in the unresolved resonance region (URR) using a filtered-beam technique, by which a 30 cm iron filter was placed in a white-spectrum neutron beam to remove all time-dependent γ -ray background and all neutrons except those transmitted through resonance-potential interference "windows" in the iron. The resulting filtered beam was effectively a quasimonoenergetic neutron source, which was used for performing measurements on isotopes with narrow level spacings in the URR. The capture cross-section results obtained for two thicknesses of tantalum are in agreement with those documented in the JEFF-3.2 library, as are the average resonance parameters obtained via a fit to the data using the sammy-fitacs code.
Zhao, Lei; Liu, Han; He, Zhihong; Dong, Shikui
2018-05-14
Multiband metamaterial perfect absorbers (MPAs) have promising applications in many fields like microbolometers, infrared detection, biosensing, and thermal emitters. In general, the single resonator can only excite a fundamental mode and achieve single absorption band. The multiband MPA can be achieved by combining several different sized resonators together. However, it's still challenging to design the MPA with absorption bands of more than four and average absorptivity of more than 90% due to the interaction between differently sized resonators. In this paper, three absorption bands are successfully achieved with average absorptivity up to 98.5% only utilizing single one our designed ring-strip resonator, which can simultaneously excite a fundamental electric dipole mode, a higher-order electric quadrupole mode, and a higher-order electric octopole mode. As the biosensor, the sensing performance of the higher-order modes is higher than the fundamental modes. Then we try to increase the absorption bands by combining different sized ring-strip resonators together and make the average absorptivity above 90% by optimizing the geometry parameters. A six-band MPA is achieved by combining two different sized ring-strip resonators with average absorptivity up to 98.8%, which can excite two dipole modes, two quadrupole modes, and two octopole modes. A twelve-band MPA is achieved by combining four different sized ring-strip resonators with average absorptivity up to 93.7%, which can excite four dipole modes, four quadrupole modes, and four octopole modes.
Averaging, passage through resonances, and capture into resonance in two-frequency systems
NASA Astrophysics Data System (ADS)
Neishtadt, A. I.
2014-10-01
Applying small perturbations to an integrable system leads to its slow evolution. For an approximate description of this evolution the classical averaging method prescribes averaging the rate of evolution over all the phases of the unperturbed motion. This simple recipe does not always produce correct results, because of resonances arising in the process of evolution. The phenomenon of capture into resonance consists in the system starting to evolve in such a way as to preserve the resonance property once it has arisen. This paper is concerned with application of the averaging method to a description of evolution in two-frequency systems. It is assumed that the trajectories of the averaged system intersect transversally the level surfaces of the frequency ratio and that certain other conditions of general position are satisfied. The rate of evolution is characterized by a small parameter \\varepsilon. The main content of the paper is a proof of the following result: outside a set of initial data with measure of order \\sqrt \\varepsilon the averaging method describes the evolution to within O(\\sqrt \\varepsilon \\vert\\ln\\varepsilon\\vert) for periods of time of order 1/\\varepsilon. This estimate is sharp. The exceptional set of measure \\sqrt \\varepsilon contains the initial data for phase points captured into resonance. A description of the motion of such phase points is given, along with a survey of related results on averaging. Examples of capture into resonance are presented for some problems in the dynamics of charged particles. Several open problems are stated. Bibliography: 65 titles.
NASA Astrophysics Data System (ADS)
Wang, Jing; Shen, Huoming; Zhang, Bo; Liu, Juan
2018-06-01
In this paper, we studied the parametric resonance issue of an axially moving viscoelastic nanobeam with varying velocity. Based on the nonlocal strain gradient theory, we established the transversal vibration equation of the axially moving nanobeam and the corresponding boundary condition. By applying the average method, we obtained a set of self-governing ordinary differential equations when the excitation frequency of the moving parameters is twice the intrinsic frequency or near the sum of certain second-order intrinsic frequencies. On the plane of parametric excitation frequency and excitation amplitude, we can obtain the instability region generated by the resonance, and through numerical simulation, we analyze the influence of the scale effect and system parameters on the instability region. The results indicate that the viscoelastic damping decreases the resonance instability region, and the average velocity and stiffness make the instability region move to the left- and right-hand sides. Meanwhile, the scale effect of the system is obvious. The nonlocal parameter exhibits not only the stiffness softening effect but also the damping weakening effect, while the material characteristic length parameter exhibits the stiffness hardening effect and damping reinforcement effect.
A complete dc characterization of a constant-frequency, clamped-mode, series-resonant converter
NASA Technical Reports Server (NTRS)
Tsai, Fu-Sheng; Lee, Fred C.
1988-01-01
The dc behavior of a clamped-mode series-resonant converter is characterized systematically. Given a circuit operating condition, the converter's mode of operation is determined and various circuit parameters are calculated, such as average inductor current (load current), rms inductor current, peak capacitor voltage, rms switch currents, average diode currents, switch turn-on currents, and switch turn-off currents. Regions of operation are defined, and various circuit characteristics are derived to facilitate the converter design.
Effect of slice thickness on brain magnetic resonance image texture analysis
2010-01-01
Background The accuracy of texture analysis in clinical evaluation of magnetic resonance images depends considerably on imaging arrangements and various image quality parameters. In this paper, we study the effect of slice thickness on brain tissue texture analysis using a statistical approach and classification of T1-weighted images of clinically confirmed multiple sclerosis patients. Methods We averaged the intensities of three consecutive 1-mm slices to simulate 3-mm slices. Two hundred sixty-four texture parameters were calculated for both the original and the averaged slices. Wilcoxon's signed ranks test was used to find differences between the regions of interest representing white matter and multiple sclerosis plaques. Linear and nonlinear discriminant analyses were applied with several separate training and test sets to determine the actual classification accuracy. Results Only moderate differences in distributions of the texture parameter value for 1-mm and simulated 3-mm-thick slices were found. Our study also showed that white matter areas are well separable from multiple sclerosis plaques even if the slice thickness differs between training and test sets. Conclusions Three-millimeter-thick magnetic resonance image slices acquired with a 1.5 T clinical magnetic resonance scanner seem to be sufficient for texture analysis of multiple sclerosis plaques and white matter tissue. PMID:20955567
NASA Astrophysics Data System (ADS)
Noguere, Gilles; Archier, Pascal; Bouland, Olivier; Capote, Roberto; Jean, Cyrille De Saint; Kopecky, Stefan; Schillebeeckx, Peter; Sirakov, Ivan; Tamagno, Pierre
2017-09-01
A consistent description of the neutron cross sections from thermal energy up to the MeV region is challenging. One of the first steps consists in optimizing the optical model parameters using average resonance parameters, such as the neutron strength functions. They can be derived from a statistical analysis of the resolved resonance parameters, or calculated with the generalized form of the SPRT method by using scattering matrix elements provided by optical model calculations. One of the difficulties is to establish the contributions of the direct and compound nucleus reactions. This problem was solved by using a slightly modified average R-Matrix formula with an equivalent hard sphere radius deduced from the phase shift originating from the potential. The performances of the proposed formalism are illustrated with results obtained for the 238U+n nuclear systems.
Coupling two spin qubits with a high-impedance resonator
NASA Astrophysics Data System (ADS)
Harvey, S. P.; Bøttcher, C. G. L.; Orona, L. A.; Bartlett, S. D.; Doherty, A. C.; Yacoby, A.
2018-06-01
Fast, high-fidelity single and two-qubit gates are essential to building a viable quantum information processor, but achieving both in the same system has proved challenging for spin qubits. We propose and analyze an approach to perform a long-distance two-qubit controlled phase (CPHASE) gate between two singlet-triplet qubits using an electromagnetic resonator to mediate their interaction. The qubits couple longitudinally to the resonator, and by driving the qubits near the resonator's frequency, they can be made to acquire a state-dependent geometric phase that leads to a CPHASE gate independent of the initial state of the resonator. Using high impedance resonators enables gate times of order 10 ns while maintaining long coherence times. Simulations show average gate fidelities of over 96% using currently achievable experimental parameters and over 99% using state-of-the-art resonator technology. After optimizing the gate fidelity in terms of parameters tuneable in situ, we find it takes a simple power-law form in terms of the resonator's impedance and quality and the qubits' noise bath.
Interference effect between neutron direct and resonance capture reactions for neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Minato, Futoshi; Fukui, Tokuro
2017-11-01
Interference effect of neutron capture cross section between the compound and direct processes is investigated. The compound process is calculated by resonance parameters and the direct process by the potential model. The interference effect is tested for neutron-rich 82Ge and 134Sn nuclei relevant to r-process and light nucleus 13C which is neutron poison in the s-process and produces long-lived radioactive nucleus 14C (T1/2 = 5700 y). The interference effects in those nuclei are significant around resonances, and low energy region if s-wave neutron direct capture is possible. Maxwellian averaged cross sections at kT = 30 and 300 keV are also calculated, and the interference effect changes the Maxwellian averaged capture cross section largely depending on resonance position.
NASA Astrophysics Data System (ADS)
Zhang, W.; Liu, T.; Xi, A.; Wang, Y. N.
2018-06-01
This paper is focused on the resonant responses and chaotic dynamics of a composite laminated circular cylindrical shell with radially pre-stretched membranes at both ends and clamped along a generatrix. Based on the two-degree-of-freedom non-autonomous nonlinear equations of this system, the method of multiple scales is employed to obtain the four-dimensional nonlinear averaged equation. The resonant case considered here is the primary parametric resonance-1/2 subharmonic resonance and 1:1 internal resonance. Corresponding to several selected parameters, the frequency-response curves are obtained. From the numerical results, we find that the hardening-spring-type behaviors and jump phenomena are exhibited. The jump phenomena also occur in the amplitude curves of the temperature parameter excitation. Moreover, it is found that the temperature parameter excitation, the coupling degree of two order modes and the detuning parameters can effect the nonlinear oscillations of this system. The periodic and chaotic motions of the composite laminated circular cylindrical shell clamped along a generatrix are demonstrated by the bifurcation diagrams, the maximum Lyapunov exponents, the phase portraits, the waveforms, the power spectrums and the Poincaré map. The temperature parameter excitation shows that the Pomeau-Manneville type intermittent chaos occur under the certain initial conditions. It is also found that there exist the twin phenomena between the Pomeau-Manneville type intermittent chaos and the period-doubling bifurcation.
Nonlinear equations of motion for Landau resonance interactions with a whistler mode wave
NASA Technical Reports Server (NTRS)
Inan, U. S.; Tkalcevic, S.
1982-01-01
A simple set of equations is presented for the description of the cyclotron averaged motion of Landau resonant particles in a whistler mode wave propagating at an angle to the static magnetic field. A comparison is conducted of the wave magnetic field and electric field effects for the parameters of the magnetosphere, and the parameter ranges for which the wave magnetic field effects would be negligible are determined. It is shown that the effect of the wave magnetic field can be neglected for low pitch angles, high normal wave angles, and/or high normalized wave frequencies.
Wang, Chunhao; Yin, Fang-Fang; Kirkpatrick, John P; Chang, Zheng
2017-08-01
To investigate the feasibility of using undersampled k-space data and an iterative image reconstruction method with total generalized variation penalty in the quantitative pharmacokinetic analysis for clinical brain dynamic contrast-enhanced magnetic resonance imaging. Eight brain dynamic contrast-enhanced magnetic resonance imaging scans were retrospectively studied. Two k-space sparse sampling strategies were designed to achieve a simulated image acquisition acceleration factor of 4. They are (1) a golden ratio-optimized 32-ray radial sampling profile and (2) a Cartesian-based random sampling profile with spatiotemporal-regularized sampling density constraints. The undersampled data were reconstructed to yield images using the investigated reconstruction technique. In quantitative pharmacokinetic analysis on a voxel-by-voxel basis, the rate constant K trans in the extended Tofts model and blood flow F B and blood volume V B from the 2-compartment exchange model were analyzed. Finally, the quantitative pharmacokinetic parameters calculated from the undersampled data were compared with the corresponding calculated values from the fully sampled data. To quantify each parameter's accuracy calculated using the undersampled data, error in volume mean, total relative error, and cross-correlation were calculated. The pharmacokinetic parameter maps generated from the undersampled data appeared comparable to the ones generated from the original full sampling data. Within the region of interest, most derived error in volume mean values in the region of interest was about 5% or lower, and the average error in volume mean of all parameter maps generated through either sampling strategy was about 3.54%. The average total relative error value of all parameter maps in region of interest was about 0.115, and the average cross-correlation of all parameter maps in region of interest was about 0.962. All investigated pharmacokinetic parameters had no significant differences between the result from original data and the reduced sampling data. With sparsely sampled k-space data in simulation of accelerated acquisition by a factor of 4, the investigated dynamic contrast-enhanced magnetic resonance imaging pharmacokinetic parameters can accurately estimate the total generalized variation-based iterative image reconstruction method for reliable clinical application.
NASA Astrophysics Data System (ADS)
Ovchinnikov, Oleg V.; Smirnov, Mikhail S.; Kondratenko, Tamara S.; Ambrosevich, Sergey A.; Metlin, Mikhail T.; Grevtseva, Irina G.; Perepelitsa, Aleksey S.
2017-12-01
Nonradiative resonance energy transfer in hydrophilic hybrid associates of thionine molecules (TH+) with colloidal Ag2S quantum dots (QDs) with average diameter of 3.5 nm was studied. Photoluminescence spectra and its decay shown that for these systems the supplemental photosensitization of recombination luminescence of Ag2S QDs (1200 nm) from the region of TH+ fluorescence (618 nm) is possible. It was found that the average lifetime of TH+ molecules luminescence is shortened during their association with Ag2S QDs. Approximation of luminescence decay by stretched exponent with value of parameter β = 0.5 indicates on the inductive-resonance dipole-dipole (Förster) mechanism of nonradiative energy transfer (FRET). The efficiency of FRET was 0.29-0.41.
Ultrasonic testing of plates containing edge cracks
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Karagulle, H.; Lee, S. S.
1985-01-01
The stress wave factor (SWF) signal is utilized for the nondestructive evaluation of plates containing perpendicular edge cracks. The effects of the existence lateral location and depth of the crack on the magnitude spectra of individual reflections in the SWF signal are studied. If the reflections in the SWF signal are not overlapped the short time Fourier analysis is applied. If the reflections are overlapped the short time homomorphic analysis (cepstrum analysis) is applied. Several reflections which have average resonant frequencies approximately at 0.9, 1.3, and 1.7 MHz are analyzed. It is observed that the magnitude ratios evaluated at average resonant frequencies decrease more with increasing d/h if the crack is located between the transducers, where h is plate thickness and d is crack depth. Moreover, for the plates, crack geometries, reflections, and frequencies considered, the average decibel drop depends mainly on the dimensionless parameter d/h and it is approximately -1 dB per 0.07 d/h. Changes in the average resonant frequencies of the magnitude spectra are also observed due to changes in the location of the crack.
Neutron resonance parameters of 6830Zn+n and statistical distributions of level spacings and widths
NASA Astrophysics Data System (ADS)
Garg, J. B.; Tikku, V. K.; Harvey, J. A.; Halperin, J.; Macklin, R. L.
1982-04-01
Discrete values of the parameters (E0, gΓn, Jπ, Γγ, etc.) of the resonances in the reaction 6830Zn + n have been determined from total cross section measurements from a few keV to 380 keV with a nominal resolution of 0.07 ns/m for the highest energy and from capture cross section measurements up to 130 keV using the pulsed neutron time-of-flight technique with a neutron burst width of 5 ns. The cross section data were analyzed to determine the parameters of the resonances using R-matrix multilevel codes. These results have provided values of average quantities as follows: S0=(2.01+/-0.34), S1=(0.56+/-0.05), S2=(0.2+/-0.1) in units of 10-4, D0=(5.56+/-0.43) keV and D1=(1.63+/-0.14) keV. From these measurements we have also determined the following average radiation widths: (Γ¯γ)l=0=(302+/-60) meV and (Γ¯γ)l=1=(157 +/-7) meV. The investigation of the statistical properties of neutron reduced widths and level spacings showed excellent agreement of the data with the Porter-Thomas distribution for s- and p-wave neutron widths and with the Dyson-Mehta Δ3 statistic and the Wigner distribution for the s-wave level spacing distribution. In addition, a correlation coefficient of ρ=0.50+/-0.10 between Γ0n and Γγ has been observed for s-wave resonances. The value of <σnγ> at (30+/-10) keV is 19.2 mb. NUCLEAR REACTIONS 3068Zn(n,n), 3068Zn(n,γ), E=few keV to 380, 130 keV, respectively. Measured total and capture cross sections versus neutron energy, deduced resonance parameters, E0, Jπ, gΓn, Γγ, S0, S1, S2, D0, D1.
NASA Astrophysics Data System (ADS)
Brown, David; Nobre, Gustavo; Herman, Michal
2017-09-01
For neutron induced reactions below 20 MeV incident energy, the Unresolved Resonance Region (URR) connects the fast neutron region with the Resolved Resonance Region (RRR). The URR is problematic since resonances are not resolvable experimentally yet the fluctuations in the neutron cross sections play a discernible and technologically important role - the URR in a typical nucleus is in the 100 keV - 2 MeV window where the typical fission spectrum peaks. The URR also represents the transition between R-matrix theory used to describe isolated resonances and Hauser-Feshbach theory which accurately describes the average cross sections. In practice, only average or systematic features of the resonances in the URR are known and are tabulated in evaluations in a nuclear data library such as ENDF/B-VII.1. Here we apply Moldauer's ``sum rule for resonance reactions'' to compute the effective transmission coefficients for reactions in the RRR and URR regions. We compare these to the transmission coefficients used in the fast region in the EMPIRE Hauser-Feshbach code, demonstrating the consistency (or lack thereof) between these different physical regimes. This work suggests a better approach to evaluating the URR average parameters using the results from the fast region modeling. This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-SC0012704 (BNL).
Quantitative Measures of Chaotic Charged Particle Dynamics in the Magnetotail
NASA Astrophysics Data System (ADS)
Holland, D. L.; Martin, R. F., Jr.; Burris, C.
2017-12-01
It has long been noted that the motion of charged particles in magnetotail-like magnetic fields is chaotic, however, efforts to quantify the degree of chaos have had conflicting conclusions. In this paper we re-examine the question by focusing on quantitative measures of chaos. We first examine the percentage of orbits that enter the chaotic region of phase space and the average trapping time of those particles. We then examine the average exponential divergence rate (AEDR) of the chaotic particles between their first and last crossing of the mid-plane. We show that at resonant energies where the underlying phase space has a high degree of symmetry, only a small number of particle enter the chaotic region, but they are trapped for long periods of time and the time asymptotic value of the AEDR is very close to the average value of the AEDR. At the off-resonant energies where the phase space is highly asymmetric, the majority of the particle enter the chaotic region for fairly short periods of time and the time asymptotic value of the AEDR is much smaller than the average value. The root cause is that in the resonant case, the longest-lived orbits tend interact with the current many times and sample the entire chaotic region, whereas in the non-resonant case the longest-lived orbits only interact with the current sheet a small number of times but have very long mirrorings where the motion is nearly regular. Additionally we use an ad-hoc model where we model the current sheet as a Lorentz scattering system with each interaction with the current sheet being considered as a "collision". We find that the average kick per collision is greatest at off-resonant energies. Finally, we propose a chaos parameter as the product of the AEDR times the average chaotic particle trapping time times the percentage of orbits that are chaotic. We find that this takes on peak values at the resonant energies.
Random perturbations of a periodically driven nonlinear oscillator: escape from a resonance zone
NASA Astrophysics Data System (ADS)
Lingala, Nishanth; Sri Namachchivaya, N.; Pavlyukevich, Ilya
2017-04-01
For nonlinear oscillators, frequency of oscillations depends on the oscillation amplitude. When a nonlinear oscillator is periodically driven, the phase space consists of many resonance zones where the oscillator frequency and the driving frequency are commensurable. It is well known that, a small subset of initial conditions can lead to capture in one of the resonance zones. In this paper we study the effect of weak noise on the escape from a resonance zone. Using averaging techniques we obtain the mean exit time from a resonance zone and study the dependence of the exit rate on the parameters of the oscillator. Paper dedicated to Professor Peter W Sauer of University of Illinois on the occasion of his 70th birthday.
NASA Astrophysics Data System (ADS)
Sreenivasulu, Tupakula; Bhowmick, Kaustav; Samad, Shafeek A.; Yadunath, Thamerassery Illam R.; Badrinarayana, Tarimala; Hegde, Gopalkrishna; Srinivas, Talabattula
2018-04-01
A micro/nanofabrication feasible compact photonic crystal (PC) ring-resonator-based channel drop filter has been designed and analyzed for operation in C and L bands of communication window. The four-channel demultiplexer consists of ring resonators of holes in two-dimensional PC slab. The proposed assembly design of dense wavelength division multiplexing setup is shown to achieve optimal quality factor, without altering the lattice parameters or resonator size or inclusion of scattering holes. Transmission characteristics are analyzed using the three-dimensional finite-difference time-domain simulation approach. The radiation loss of the ring resonator was minimized by forced cancelation of radiation fields by fine-tuning the air holes inside the ring resonator. An average cross talk of -34 dB has been achieved between the adjacent channels maintaining an average quality factor of 5000. Demultiplexing is achieved by engineering only the air holes inside the ring, which makes it a simple and tolerant design from the fabrication perspective. Also, the device footprint of 500 μm2 on silicon on insulator platform makes it easy to fabricate the device using e-beam lithography technique.
Hoff, Michael N; Andre, Jalal B; Xiang, Qing-San
2017-02-01
Balanced steady state free precession (bSSFP) imaging suffers from off-resonance artifacts such as signal modulation and banding. Solutions for removal of bSSFP off-resonance dependence are described and compared, and an optimal solution is proposed. An Algebraic Solution (AS) that complements a previously described Geometric Solution (GS) is derived from four phase-cycled bSSFP datasets. A composite Geometric-Algebraic Solution (GAS) is formed from a noise-variance-weighted average of the AS and GS images. Two simulations test the solutions over a range of parameters, and phantom and in vivo experiments are implemented. Image quality and performance of the GS, AS, and GAS are compared with the complex sum and a numerical parameter estimation algorithm. The parameter estimation algorithm, GS, AS, and GAS remove most banding and signal modulation in bSSFP imaging. The variable performance of the GS and AS on noisy data justifies generation of the GAS, which consistently provides the highest performance. The GAS is a robust technique for bSSFP signal demodulation that balances the regional efficacy of the GS and AS to remove banding, a feat not possible with prevalent techniques. Magn Reson Med 77:644-654, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.
2007-01-01
We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yousuke
2012-02-15
We measure the ion beam current and the plasma parameters by using the pulse mode microwave operation in the first stage of a tandem type ECRIS. The time averaged extracted ion beam current in the pulse mode operation is larger than that of the cw mode operation with the same averaged microwave power. The electron density n{sub e} in the pulse mode is higher and the electron temperature T{sub e} is lower than those of the cw mode operation. These plasma parameters are considered to cause in the increase of the ion beam current and are suitable to produce molecularmore » or cluster ions.« less
A statistical model for combustion resonance from a DI diesel engine with applications
NASA Astrophysics Data System (ADS)
Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.
2015-08-01
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.
2014-01-01
By using the results of highly accurate T-matrix computations for randomly oriented oblate and prolate spheroids and Chebyshev particles with varying degrees of asphericity, we analyze the effects of a deviation of water-droplet shapes from that of a perfect sphere on the behavior of Lorenz-Mie morphology-dependent resonances of various widths. We demonstrate that the positions and profiles of the resonances can change significantly with increasing asphericity. The absolute degree of asphericity required to suppress a Lorenz-Mie resonance is approximately proportional to the resonance width. Our results imply that numerical averaging of scattering characteristics of real cloud droplets over sizes may rely on a significantly coarser size-parameter resolution than that required for ideal, perfectly spherical particles.
Geades, Nicolas; Hunt, Benjamin A E; Shah, Simon M; Peters, Andrew; Mougin, Olivier E; Gowland, Penny A
2017-08-01
To develop a method that fits a multipool model to z-spectra acquired from non-steady state sequences, taking into account the effects of variations in T1 or B1 amplitude and the results estimating the parameters for a four-pool model to describe the z-spectrum from the healthy brain. We compared measured spectra with a look-up table (LUT) of possible spectra and investigated the potential advantages of simultaneously considering spectra acquired at different saturation powers (coupled spectra) to provide sensitivity to a range of different physicochemical phenomena. The LUT method provided reproducible results in healthy controls. The average values of the macromolecular pool sizes measured in white matter (WM) and gray matter (GM) of 10 healthy volunteers were 8.9% ± 0.3% (intersubject standard deviation) and 4.4% ± 0.4%, respectively, whereas the average nuclear Overhauser effect pool sizes in WM and GM were 5% ± 0.1% and 3% ± 0.1%, respectively, and average amide proton transfer pool sizes in WM and GM were 0.21% ± 0.03% and 0.20% ± 0.02%, respectively. The proposed method demonstrated increased robustness when compared with existing methods (such as Lorentzian fitting and asymmetry analysis) while yielding fully quantitative results. The method can be adjusted to measure other parameters relevant to the z-spectrum. Magn Reson Med 78:645-655, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Boldi, Robert; Williams, Earle; Guha, Anirban
2018-01-01
In this paper, we use (1) the 20 year record of Schumann resonance (SR) signals measured at West Greenwich Rhode Island, USA, (2) the 19 year Lightning Imaging Sensor (LIS)/Optical Transient Detector (OTD) lightning data, and (3) the normal mode equations for a uniform cavity model to quantify the relationship between the observed Schumann resonance modal intensity and the global-average vertical charge moment change M (C km) per lightning flash. This work, by integrating SR measurements with satellite-based optical measurements of global flash rate, accomplishes this quantification for the first time. To do this, we first fit the intensity spectra of the observed SR signals to an eight-mode, three parameter per mode, (symmetric) Lorentzian line shape model. Next, using the LIS/OTD lightning data and the normal mode equations for a uniform cavity model, we computed the expected climatological-daily-average intensity spectra. We then regressed the observed modal intensity values against the expected modal intensity values to find the best fit value of the global-average vertical charge moment change of a lightning flash (M) to be 41 C km per flash with a 99% confidence interval of ±3.9 C km per flash, independent of mode. Mode independence argues that the model adequately captured the modal intensity, the most important fit parameter herein considered. We also tested this relationship for the presence of residual modal intensity at zero lightning flashes per second and found no evidence that modal intensity is significantly different than zero at zero lightning flashes per second, setting an upper limit to the amount of nonlightning contributions to the observed modal intensity.
Resonator graphene microfluidic antenna (RGMA) for blood glucose detection
NASA Astrophysics Data System (ADS)
Jizat, Noorlindawaty Md.; Mohamad, Su Natasha; Ishak, Muhammad Ikman
2017-09-01
Graphene is capable of highly sensitive analyte detection due to its nanoscale nature. Here we show a resonator graphene microfluidic antenna (RGMA) is used to detect the dielectric properties of aqueous glucose solution which represent the glucose level in blood. Simulation verified the high sensitivity of proposed RGMA made with aqueous glucose solutions at different concentrations. The RGMA yielded a sensor sensitivity of 0.1882GHz/mgml-1 as plotted from the slope of the linear fit from the result averages in S11 and S21 parameter, respectively. This results indicate that the proposed resonator antenna achieves high sensitivity and linear to the changes of glucose concentration.
NASA Astrophysics Data System (ADS)
Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.
2009-12-01
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from 51V to 239Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Herman, M.; Oblozinsky, P.
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through (http://www-nds.iaea.org/RIPL-3/). This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Herman, M.; Capote,R.
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less
Pepin, Scott R; Griffith, Chad J; Wijdicks, Coen A; Goerke, Ute; McNulty, Margaret A; Parker, Josh B; Carlson, Cathy S; Ellermann, Jutta; LaPrade, Robert F
2009-11-01
There has recently been increased interest in the use of 7.0-T magnetic resonance imaging for evaluating articular cartilage degeneration and quantifying the progression of osteoarthritis. The purpose of this study was to evaluate articular cartilage cross-sectional area and maximum thickness in the medial compartment of intact and destabilized canine knees using 7.0-T magnetic resonance images and compare these results with those obtained from the corresponding histologic sections. Controlled laboratory study. Five canines had a surgically created unilateral grade III posterolateral knee injury that was followed for 6 months before euthanasia. The opposite, noninjured knee was used as a control. At necropsy, 3-dimensional gradient echo images of the medial tibial plateau of both knees were obtained using a 7.0-T magnetic resonance imaging scanner. Articular cartilage area and maximum thickness in this site were digitally measured on the magnetic resonance images. The proximal tibias were processed for routine histologic analysis with hematoxylin and eosin staining. Articular cartilage area and maximum thickness were measured in histologic sections corresponding to the sites of the magnetic resonance slices. The magnetic resonance imaging results revealed an increase in articular cartilage area and maximum thickness in surgical knees compared with control knees in all specimens; these changes were significant for both parameters (P <.05 for area; P <.01 for thickness). The average increase in area was 14.8% and the average increase in maximum thickness was 15.1%. The histologic results revealed an average increase in area of 27.4% (P = .05) and an average increase in maximum thickness of 33.0% (P = .06). Correlation analysis between the magnetic resonance imaging and histology data revealed that the area values were significantly correlated (P < .01), but the values for thickness obtained from magnetic resonance imaging were not significantly different from the histology sections (P > .1). These results demonstrate that 7.0-T magnetic resonance imaging provides an alternative method to histology to evaluate early osteoarthritic changes in articular cartilage in a canine model by detecting increases in articular cartilage area. The noninvasive nature of 7.0-T magnetic resonance imaging will allow for in vivo monitoring of osteoarthritis progression and intervention in animal models and humans for osteoarthritis.
NASA Astrophysics Data System (ADS)
Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady
2017-09-01
The neutron transmission experiments are one of the main sources of information about the neutron cross section resonance structure and effect in the self-shielding. Such kind of data for niobium and silicon nuclides in energy range 7 keV to 3 MeV can be obtained from low-resolution transmission measurements performed earlier in Russia (with samples of 0.027 to 0.871 atom/barn for niobium and 0.076 to 1.803 atom/barn for silicon). A significant calculation-to-experiment discrepancy in energy range 100 to 600 keV and 300 to 800 keV for niobium and silicon, respectively, obtained using the evaluated nuclear data library ROSFOND, were found. The EVPAR code was used for estimation the average resonance parameters in energy range 7 to 600 keV for niobium. For silicon a stochastic optimization method was used to modify the resolved resonance parameters in energy range 300 to 800 keV. The improved ROSFOND evaluated nuclear data files were tested in calculation of ICSBEP integral benchmark experiments.
Multi-echo GRE imaging of knee cartilage.
Yuen, Joanna; Hung, Jachin; Wiggermann, Vanessa; Robinson, Simon D; McCormack, Robert; d'Entremont, Agnes G; Rauscher, Alexander
2017-05-01
To visualize healthy and abnormal articular cartilage, we investigated the potential of using the 3D multi-echo gradient echo (GRE) signal's magnitude and frequency and maps of T2* relaxation. After optimizing imaging parameters in five healthy volunteers, 3D multi-echo GRE magnetic resonance (MR) images were acquired at 3T in four patients with chondral damage prior to their arthroscopic surgery. Average magnitude and frequency information was extracted from the GRE images, and T2* maps were generated. Cartilage abnormalities were confirmed after arthroscopy and were graded using the Outerbridge classification scheme. Regions of interest were identified on average magnitude GRE images and compared to arthroscopy. All four patients presented with regions of Outerbridge Grade I and II cartilage damage on arthroscopy. One patient had Grade III changes. Grade I, II, and III changes were detectable on average magnitude and T2* maps, while Grade II and higher changes were also observable on MR frequency maps. For average magnitude images of healthy volunteers, the signal-to-noise ratio of the magnitude image averaged over three echoes was 4.26 ± 0.32, 12.26 ± 1.09, 14.31 ± 1.93, and 13.36 ± 1.13 in bone, femoral, tibial, and patellar cartilage, respectively. This proof-of-principle study demonstrates the feasibility of using different imaging contrasts from the 3D multi-echo GRE scan to visualize abnormalities of the articular cartilage. © 2016 International Society for Magnetic Resonance in Medicine Level of Evidence: 1 J. MAGN. RESON. IMAGING 2017;45:1502-1513. © 2016 International Society for Magnetic Resonance in Medicine.
Dracínský, Martin; Kaminský, Jakub; Bour, Petr
2009-03-07
Relative importance of anharmonic corrections to molecular vibrational energies, nuclear magnetic resonance (NMR) chemical shifts, and J-coupling constants was assessed for a model set of methane derivatives, differently charged alanine forms, and sugar models. Molecular quartic force fields and NMR parameter derivatives were obtained quantum mechanically by a numerical differentiation. In most cases the harmonic vibrational function combined with the property second derivatives provided the largest correction of the equilibrium values, while anharmonic corrections (third and fourth energy derivatives) were found less important. The most computationally expensive off-diagonal quartic energy derivatives involving four different coordinates provided a negligible contribution. The vibrational corrections of NMR shifts were small and yielded a convincing improvement only for very accurate wave function calculations. For the indirect spin-spin coupling constants the averaging significantly improved already the equilibrium values obtained at the density functional theory level. Both first and complete second shielding derivatives were found important for the shift corrections, while for the J-coupling constants the vibrational parts were dominated by the diagonal second derivatives. The vibrational corrections were also applied to some isotopic effects, where the corrected values reasonably well reproduced the experiment, but only if a full second-order expansion of the NMR parameters was included. Contributions of individual vibrational modes for the averaging are discussed. Similar behavior was found for the methane derivatives, and for the larger and polar molecules. The vibrational averaging thus facilitates interpretation of previous experimental results and suggests that it can make future molecular structural studies more reliable. Because of the lengthy numerical differentiation required to compute the NMR parameter derivatives their analytical implementation in future quantum chemistry packages is desirable.
Cheng, Yong Zhi; Huang, Mu Lin; Chen, Hao Ran; Guo, Zhen Zhong; Mao, Xue Song; Gong, Rong Zhou
2017-01-01
A simple design of an ultrathin six-band polarization-insensitive terahertz perfect metamaterial absorber (PMMA), composed of a metal cross-cave patch resonator (CCPR) placed over a ground plane, was proposed and investigated numerically. The numerical simulation results demonstrate that the average absorption peaks are up to 95% at six resonance frequencies. Owing to the ultra-narrow band resonance absorption of the structure, the designed PMMA also exhibits a higher Q factor (>65). In addition, the absorption properties can be kept stable for both normal incident transverse magnetic (TM) and transverse electric (TE) waves. The physical mechanism behind the observed high-level absorption is illustrated by the electric and power loss density distributions. The perfect absorption originates mainly from the higher-order multipolar plasmon resonance of the structure, which differs sharply from most previous studies of PMMAs. Furthermore, the resonance absorption properties of the PMMA can be modified and adjusted easily by varying the geometric parameters of the unit cell. PMID:28772951
A New Method for Generating Probability Tables in the Unresolved Resonance Region
Holcomb, Andrew M.; Leal, Luiz C.; Rahnema, Farzad; ...
2017-04-18
One new method for constructing probability tables in the unresolved resonance region (URR) has been developed. This new methodology is an extensive modification of the single-level Breit-Wigner (SLBW) pseudo-resonance pair sequence method commonly used to generate probability tables in the URR. The new method uses a Monte Carlo process to generate many pseudo-resonance sequences by first sampling the average resonance parameter data in the URR and then converting the sampled resonance parameters to the more robust R-matrix limited (RML) format. Furthermore, for each sampled set of pseudo-resonance sequences, the temperature-dependent cross sections are reconstructed on a small grid around themore » energy of reference using the Reich-Moore formalism and the Leal-Hwang Doppler broadening methodology. We then use the effective cross sections calculated at the energies of reference to construct probability tables in the URR. The RML cross-section reconstruction algorithm has been rigorously tested for a variety of isotopes, including 16O, 19F, 35Cl, 56Fe, 63Cu, and 65Cu. The new URR method also produced normalized cross-section factor probability tables for 238U that were found to be in agreement with current standards. The modified 238U probability tables were shown to produce results in excellent agreement with several standard benchmarks, including the IEU-MET-FAST-007 (BIG TEN), IEU-MET-FAST-003, and IEU-COMP-FAST-004 benchmarks.« less
Evaluation of the 235 U resonance parameters to fit the standard recommended values
Leal, Luiz; Noguere, Gilles; Paradela, Carlos; ...
2017-09-13
A great deal of effort has been dedicated to the revision of the standard values in connection with the neutron interaction for some actinides. While standard data compilation are available for decades nuclear data evaluations included in existing nuclear data libraries (ENDF, JEFF, JENDL, etc.) do not follow the standard recommended values. Indeed, the majority of evaluations for major actinides do not conform to the standards whatsoever. In particular, for the n + 235U interaction the only value in agreement with the standard is the thermal fission cross section. We performed a resonance re-evaluation of the n + 235U interactionmore » in order to address the issues regarding standard values in the energy range from 10-5 eV to 2250 eV. Recently, 235U fission cross-section measurements have been performed at the CERN Neutron Time-o-Flight facility (TOF), known as n_TOF, in the energy range from 0.7 eV to 10 keV. The data were normalized according to the recommended standard of the fission integral in the energy range 7.8 eV to 11 eV. As a result, the n_TOF averaged fission cross sections above 100 eV are in good agreement with the standard recommended values. The n_TOF data were included in the 235U resonance analysis that was performed with the code SAMMY. In addition to the average standard values related to the fission cross section, standard thermal values for fission, capture, and elastic cross sections were also included in the evaluation. Our paper presents the procedure used for re-evaluating the 235U resonance parameters including the recommended standard values as well as new cross section measurements.« less
Evaluation of the 235 U resonance parameters to fit the standard recommended values
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, Luiz; Noguere, Gilles; Paradela, Carlos
A great deal of effort has been dedicated to the revision of the standard values in connection with the neutron interaction for some actinides. While standard data compilation are available for decades nuclear data evaluations included in existing nuclear data libraries (ENDF, JEFF, JENDL, etc.) do not follow the standard recommended values. Indeed, the majority of evaluations for major actinides do not conform to the standards whatsoever. In particular, for the n + 235U interaction the only value in agreement with the standard is the thermal fission cross section. We performed a resonance re-evaluation of the n + 235U interactionmore » in order to address the issues regarding standard values in the energy range from 10-5 eV to 2250 eV. Recently, 235U fission cross-section measurements have been performed at the CERN Neutron Time-o-Flight facility (TOF), known as n_TOF, in the energy range from 0.7 eV to 10 keV. The data were normalized according to the recommended standard of the fission integral in the energy range 7.8 eV to 11 eV. As a result, the n_TOF averaged fission cross sections above 100 eV are in good agreement with the standard recommended values. The n_TOF data were included in the 235U resonance analysis that was performed with the code SAMMY. In addition to the average standard values related to the fission cross section, standard thermal values for fission, capture, and elastic cross sections were also included in the evaluation. Our paper presents the procedure used for re-evaluating the 235U resonance parameters including the recommended standard values as well as new cross section measurements.« less
Evaluation of the 235U resonance parameters to fit the standard recommended values
NASA Astrophysics Data System (ADS)
Leal, Luiz; Noguere, Gilles; Paradela, Carlos; Durán, Ignacio; Tassan-Got, Laurent; Danon, Yaron; Jandel, Marian
2017-09-01
A great deal of effort has been dedicated to the revision of the standard values in connection with the neutron interaction for some actinides. While standard data compilation are available for decades nuclear data evaluations included in existing nuclear data libraries (ENDF, JEFF, JENDL, etc.) do not follow the standard recommended values. Indeed, the majority of evaluations for major actinides do not conform to the standards whatsoever. In particular, for the n + 235U interaction the only value in agreement with the standard is the thermal fission cross section. A resonance re-evaluation of the n + 235U interaction has been performed to address the issues regarding standard values in the energy range from 10-5 eV to 2250 eV. Recently, 235U fission cross-section measurements have been performed at the CERN Neutron Time-of-Flight facility (TOF), known as n_TOF, in the energy range from 0.7 eV to 10 keV. The data were normalized according to the recommended standard of the fission integral in the energy range 7.8 eV to 11 eV. As a result, the n_TOF averaged fission cross sections above 100 eV are in good agreement with the standard recommended values. The n_TOF data were included in the 235U resonance analysis that was performed with the code SAMMY. In addition to the average standard values related to the fission cross section, standard thermal values for fission, capture, and elastic cross sections were also included in the evaluation. This paper presents the procedure used for re-evaluating the 235U resonance parameters including the recommended standard values as well as new cross section measurements.
Modeling of Yb3+/Er3+-codoped microring resonators
NASA Astrophysics Data System (ADS)
Vallés, Juan A.; Gălătuş, Ramona
2015-03-01
The performance of a highly Yb3+/Er3+-codoped phosphate glass add-drop microring resonator is numerically analyzed. The model assumes resonant behaviour of both pump and signal powers and the dependences of pump intensity build-up inside the microring resonator and of the signal transfer functions to the device through and drop ports are evaluated. Detailed equations for the evolution of the rare-earth ions levels population densities and the propagation of the optical powers inside the microring resonator are included in the model. Moreover, due to the high dopant concentrations considered, the microscopic statistical formalism based on the statistical average of the excitation probability of the Er3+ ion in a microscopic level has been used to describe energy-transfer inter-atomic mechanisms. Realistic parameters and working conditions are used for the calculations. Requirements to achieve amplification and laser oscillation within these devices are obtainable as a function of rare earth ions concentration and coupling losses.
Density profiles of supernova matter and determination of neutrino parameters
NASA Astrophysics Data System (ADS)
Chiu, Shao-Hsuan
2007-08-01
The flavor conversion of supernova neutrinos can lead to observable signatures related to the unknown neutrino parameters. As one of the determinants in dictating the efficiency of resonant flavor conversion, the local density profile near the Mikheyev-Smirnov-Wolfenstein (MSW) resonance in a supernova environment is, however, not so well understood. In this analysis, variable power-law functions are adopted to represent the independent local density profiles near the locations of resonance. It is shown that the uncertain matter density profile in a supernova, the possible neutrino mass hierarchies, and the undetermined 1-3 mixing angle would result in six distinct scenarios in terms of the survival probabilities of νe and ν¯e. The feasibility of probing the undetermined neutrino mass hierarchy and the 1-3 mixing angle with the supernova neutrinos is then examined using several proposed experimental observables. Given the incomplete knowledge of the supernova matter profile, the analysis is further expanded to incorporate the Earth matter effect. The possible impact due to the choice of models, which differ in the average energy and in the luminosity of neutrinos, is also addressed in the analysis.
RF Microalgal lipid content characterization
Ahmad, Mahmoud Al; Al-Zuhair, Sulaiman; Taher, Hanifa; Hilal-Alnaqbi, Ali
2014-01-01
Most conventional techniques for the determination of microalgae lipid content are time consuming and in most cases are indirect and require excessive sample preparations. This work presents a new technique that utilizes radio frequency (RF) for rapid lipid quantification, without the need for sample preparation. Tests showed that a shift in the resonance frequency of a RF open-ended coaxial resonator and a gradual increase in its resonance magnitude may occur as the lipids content of microalgae cells increases. These response parameters can be then calibrated against actual cellular lipid contents and used for rapid determination of the cellular lipids. The average duration of lipid quantification using the proposed technique was of about 1 minute, which is significantly less than all other conventional techniques, and was achieved without the need for any time consuming treatment steps. PMID:24870372
NASA Astrophysics Data System (ADS)
Kawase, Kodo; Tripathi, Saroj R.
2016-03-01
Recently, some studies reported that the sweat ducts act as a low-Q-factor helical antenna due to their helical structure, and resonate in the terahertz frequency range according to their structural parameters. According to the antenna theory, when the duct works as a helical antenna, the dimension of the helix plays a key role to determine the frequency of resonance. Therefore, the accurate determination of structural parameters of sweat duct is crucially important to obtain the reliable frequency of resonance and modes of operations. Therefore, here we performed the optical coherence tomography (OCT) of human subjects on their palm and foot to investigate the density, distribution and morphological features of sweat ducts. Moreover, we measured the dielectric properties of stratum corneum using terahertz time domain spectroscopy and based upon this information, we determined the frequency of resonance. We recruited 32 subjects for the measurement and the average duct diameter was 95±11μm. Based upon this information on diameter of duct and THz dielectric properties of stratum corneum (ɛ=5.1±1.3), we have calculated the frequency of resonance of sweat duct. Finally, we determined that the center frequency of resonance was 442±76 GHz. We believe that these findings will facilitate further investigation of the THz-skin interaction and provide guidelines for safety levels with respect to human exposure. We will also report on the EEG measurement while being shined by micro watt order THz waves.
Resonant indirect optical absorption in germanium
NASA Astrophysics Data System (ADS)
Menéndez, José; Noël, Mario; Zwinkels, Joanne C.; Lockwood, David J.
2017-09-01
The optical absorption coefficient of pure Ge has been determined from high-accuracy, high-precision optical measurements at photon energies covering the spectral range between the indirect and direct gaps. The results are compared with a theoretical model that fully accounts for the resonant nature of the energy denominators that appear in perturbation-theory expansions of the absorption coefficient. The model generalizes the classic Elliott approach to indirect excitons, and leads to a predicted optical absorption that is in excellent agreement with the experimental values using just a single adjustable parameter: the average deformation potential DΓ L coupling electrons at the bottom of the direct and indirect valleys in the conduction band. Remarkably, the fitted value, DΓ L=4.3 ×108eV /cm , is in nearly perfect agreement with independent measurements and ab initio predictions of this parameter, confirming the validity of the proposed theory, which has general applicability.
On the Probability of Error and Stochastic Resonance in Discrete Memoryless Channels
2013-12-01
Information - Driven Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks ”, which is to analyze and develop... underwater wireless sensor networks . We formulated an analytic relationship that relates the average probability of error to the systems parameters, the...thesis, we studied the performance of Discrete Memoryless Channels (DMC), arising in the context of cooperative underwater wireless sensor networks
System and method for regulating resonant inverters
Stevanovic, Ljubisa Dragoljub [Clifton Park, NY; Zane, Regan Andrew [Superior, CO
2007-08-28
A technique is provided for direct digital phase control of resonant inverters based on sensing of one or more parameters of the resonant inverter. The resonant inverter control system includes a switching circuit for applying power signals to the resonant inverter and a sensor for sensing one or more parameters of the resonant inverter. The one or more parameters are representative of a phase angle. The resonant inverter control system also includes a comparator for comparing the one or more parameters to a reference value and a digital controller for determining timing of the one or more parameters and for regulating operation of the switching circuit based upon the timing of the one or more parameters.
1986-09-01
for each mode and heat treament condition are plotted versus the average peak strain, £_) ea ^. in Figures 4.10, 4.11, and 4.12. For Mode 1 resonance...specimen reversed its relative position to the other heat treament conditions (i.e., it showed the lowest damping levels in Modes 2 and 3). However, as...LATTICE PARAMETERS FOR EACH HEAT TREATMENT CONDITION OF INCRAMUTE Heat Treament Lattice Parameter (Angstrons) AQ 3.7484 1 Hour Age 3.737864 2 Hour Age
Integrated unaligned resonant modulator tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zortman, William A.; Lentine, Anthony L.
Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, frommore » the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.« less
Parameter optimization for reproducible cardiac 1 H-MR spectroscopy at 3 Tesla.
de Heer, Paul; Bizino, Maurice B; Lamb, Hildo J; Webb, Andrew G
2016-11-01
To optimize data acquisition parameters in cardiac proton MR spectroscopy, and to evaluate the intra- and intersession variability in myocardial triglyceride content. Data acquisition parameters at 3 Tesla (T) were optimized and reproducibility measured using, in total, 49 healthy subjects. The signal-to-noise-ratio (SNR) and the variance in metabolite amplitude between averages were measured for: (i) global versus local power optimization; (ii) static magnetic field (B 0 ) shimming performed during free-breathing or within breathholds; (iii) post R-wave peak measurement times between 50 and 900 ms; (iv) without respiratory compensation, with breathholds and with navigator triggering; and (v) frequency selective excitation, Chemical Shift Selective (CHESS) and Multiply Optimized Insensitive Suppression Train (MOIST) water suppression techniques. Using the optimized parameters intra- and intersession myocardial triglyceride content reproducibility was measured. Two cardiac proton spectra were acquired with the same parameters and compared (intrasession reproducibility) after which the subject was removed from the scanner and placed back in the scanner and a third spectrum was acquired which was compared with the first measurement (intersession reproducibility). Local power optimization increased SNR on average by 22% compared with global power optimization (P = 0.0002). The average linewidth was not significantly different for pencil beam B 0 shimming using free-breathing or breathholds (19.1 Hz versus 17.5 Hz; P = 0.15). The highest signal stability occurred at a cardiac trigger delay around 240 ms. The mean amplitude variation was significantly lower for breathholds versus free-breathing (P = 0.03) and for navigator triggering versus free-breathing (P = 0.03) as well as for navigator triggering versus breathhold (P = 0.02). The mean residual water signal using CHESS (1.1%, P = 0.01) or MOIST (0.7%, P = 0.01) water suppression was significantly lower than using frequency selective excitation water suppression (7.0%). Using the optimized parameters an intrasession limits of agreement of the myocardial triglyceride content of -0.11% to +0.04%, and an intersession of -0.15% to +0.9%, were achieved. The coefficient of variation was 5% for the intrasession reproducibility and 6.5% for the intersession reproducibility. Using approaches designed to optimize SNR and minimize the variation in inter-average signal intensities and frequencies/phases, a protocol was developed to perform cardiac MR spectroscopy on a clinical 3T system with high reproducibility. J. Magn. Reson. Imaging 2016;44:1151-1158. © 2016 International Society for Magnetic Resonance in Medicine.
Edelen, J. P.; Edelen, A. L.; Bowring, D.; ...
2016-12-23
In this study we develop an a priori method for simulating dynamic resonant frequency and temperature responses in a radio frequency quadrupole (RFQ) and its associated water-based cooling system respectively. Our model provides a computationally efficient means to evaluate the transient response of the RFQ over a large range of system parameters. The model was constructed prior to the delivery of the PIP-II Injector Test RFQ and was used to aid in the design of the water-based cooling system, data acquisition system, and resonance control system. Now that the model has been validated with experimental data, it can confidently bemore » used to aid in the design of future RFQ resonance controllers and their associated water-based cooling systems. Finally, without any empirical fitting, it has demonstrated the ability to predict absolute temperature and frequency changes to 11% accuracy on average, and relative changes to 7% accuracy.« less
Resonance properties of the biological objects in the RF field
NASA Astrophysics Data System (ADS)
Cocherova, E.; Kupec, P.; Stofanik, V.
2011-12-01
Irradiation of people with electromagnetic fields emitted from miscellaneous devices working in the radio-frequency (RF) range may have influence, for example may affect brain processes. The question of health impact of RF electromagnetic fields on population is still not closed. This article is devoted to an investigation of resonance phenomena of RF field absorption in the models of whole human body and body parts (a head) of different size and shape. The values of specific absorption rate (SAR) are evaluated for models of the different shapes: spherical, cylindrical, realistic shape and for different size of the model, that represents the case of new-born, child and adult person. In the RF frequency region, absorption depends nonlinearly on frequency. Under certain conditions (E-polarization), absorption reaches maximum at frequency, that is called "resonance frequency". The whole body absorption and the resonance frequency depends on many further parameters, that are not comprehensively clarified. The simulation results showed the dependence of the whole-body average SAR and resonance frequency on the body dimensions, as well as the influence of the body shape.
Bouhrara, Mustapha; Spencer, Richard G.
2015-01-01
Myelin water fraction (MWF) mapping with magnetic resonance imaging has led to the ability to directly observe myelination and demyelination in both the developing brain and in disease. Multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) has been proposed as a rapid approach for multicomponent relaxometry and has been applied to map MWF in human brain. However, even for the simplest two-pool signal model consisting of MWF and non-myelin-associated water, the dimensionality of the parameter space for obtaining MWF estimates remains high. This renders parameter estimation difficult, especially at low-to-moderate signal-to-noise ratios (SNR), due to the presence of local minima and the flatness of the fit residual energy surface used for parameter determination using conventional nonlinear least squares (NLLS)-based algorithms. In this study, we introduce three Bayesian approaches for analysis of the mcDESPOT signal model to determine MWF. Given the high dimensional nature of mcDESPOT signal model, and, thereby, the high dimensional marginalizations over nuisance parameters needed to derive the posterior probability distribution of MWF parameter, the introduced Bayesian analyses use different approaches to reduce the dimensionality of the parameter space. The first approach uses normalization by average signal amplitude, and assumes that noise can be accurately estimated from signal-free regions of the image. The second approach likewise uses average amplitude normalization, but incorporates a full treatment of noise as an unknown variable through marginalization. The third approach does not use amplitude normalization and incorporates marginalization over both noise and signal amplitude. Through extensive Monte Carlo numerical simulations and analysis of in-vivo human brain datasets exhibiting a range of SNR and spatial resolution, we demonstrated the markedly improved accuracy and precision in the estimation of MWF using these Bayesian methods as compared to the stochastic region contraction (SRC) implementation of NLLS. PMID:26499810
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawano, Toshihiko
2015-11-10
This theoretical treatment of low-energy compound nucleus reactions begins with the Bohr hypothesis, with corrections, and various statistical theories. The author investigates the statistical properties of the scattering matrix containing a Gaussian Orthogonal Ensemble (GOE) Hamiltonian in the propagator. The following conclusions are reached: For all parameter values studied, the numerical average of MC-generated cross sections coincides with the result of the Verbaarschot, Weidenmueller, Zirnbauer triple-integral formula. Energy average and ensemble average agree reasonably well when the width I is one or two orders of magnitude larger than the average resonance spacing d. In the strong-absorption limit, the channel degree-of-freedommore » ν a is 2. The direct reaction increases the inelastic cross sections while the elastic cross section is reduced.« less
Measurement and analysis of the 241Am neutron capture cross section at the n_TOF facility at CERN
NASA Astrophysics Data System (ADS)
Mendoza, E.; Cano-Ott, D.; Altstadt, S.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Balibrea, J.; Bécares, V.; Barbagallo, M.; Bečvář, F.; Belloni, F.; Berthier, B.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Calviño, F.; Calviani, M.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Dillmann, I.; Domingo-Pardo, C.; Durán, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Furman, V.; Gómez-Hornillos, M. B.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Katabuchi, T.; Ketlerov, V.; Khryachkov, V.; Koehler, P.; Kokkoris, M.; Kroll, J.; Krtička, M.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Lerendegui-Marco, J.; Licata, M.; López, D.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A. J. M.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Roman, F.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Versaci, R.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiss, C.; Wright, T.; Žugec, P.; n TOF Collaboration
2018-05-01
The 241Am(n ,γ ) cross section has been measured at the n_TOF facility at CERN with the n_TOF BaF2 Total Absorption Calorimeter in the energy range between 0.2 eV and 10 keV. Our results are analyzed as resolved resonances up to 700 eV, allowing a more detailed description of the cross section than in the current evaluations, which contain resolved resonances only up to 150-160 eV. The cross section in the unresolved resonance region is perfectly consistent with the predictions based on the average resonance parameters deduced from the resolved resonances, thus obtaining a consistent description of the cross section in the full neutron energy range under study. Below 20 eV, our results are in reasonable agreement with JEFF-3.2 as well as with the most recent direct measurements of the resonance integral, and differ up to 20-30% with other experimental data. Between 20 eV and 1 keV, the disagreement with other experimental data and evaluations gradually decreases, in general, with the neutron energy. Above 1 keV, we find compatible results with previously existing values.
NASA Astrophysics Data System (ADS)
Luo, Hao; Cheng, Yong Zhi
2018-01-01
We present a simple design for an ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber (PMMA) based on a single circular sector resonator structure (CSRS). Both simulation and experimental results reveal that two resonance peaks with average absorption above 99% can be achieved. The dual-band PMMA is ultra-thin with total thickness of 0.5 mm, which is
NASA Astrophysics Data System (ADS)
Ponomarjov, Maxim; Carati, Daniele
2004-11-01
Three-dimensional electromagnetic wave configurations are proposed for accelerating charged particles in an external magnetic field. A primary wave responsible for the acceleration is coupled to a secondary wave generating the chaotic motion of the particles. The wave vectors and the magnetic field are not supposed to be co-planar and create a fully three dimensional system. This configuration produces faster acceleration with low amplitude. The idea considered here is similar to Refs. [1-2] although no constraint is imposed on the refraction indices. The theoretical analysis of the acceleration mechanism is based on the Resonance Moments Method (RMM) in which the velocity distribution and its moments are approximated by using an average over the resonant layers (RL)i only instead of a complete phase-space averages. The quantities obtained using this approach, referred to as Resonant Moments (RM), suggest the existence of optimal angles of propagation for the primary and secondary waves as long as the maximization of the parallel flux of charged particles is considered The secondary wave tends to maintain a pseudo-equilibrium velocity distribution by continuously re-filling the RL. Our suggestions are confirmed by direct numerical simulations of particle trajectories. The parameters for these simulations are relevant to magnetic plasma fusion experiments in electron cyclotron resonance heating and electron acceleration in planetary magnetospheres. Although measures of the distributions clearly show a departure from thermal equilibrium, the stochastization effect of the secondary wave yields a clear increase (up to one order of magnitude) of the average parallel velocity of the particles. It is a quite promising result since the amplitude of the secondary wave is ten times lower the one of the first wave. 1 H. Karimabadi and V. Angelopoulos, Phys. Rev. Lett., 62, 2342 (1989). 2 B. I. Cohen, R. H Cohen, W. M. Nevins, and T. D. Rognlien, Rev. Mod. Phys., 63, 949 (1991).
Dang, Hao Dan; Chen, Yu; Shi, Xiao Hua; Hou, Bo; Xing, Hai Qun; Zhang, Tao; Chen, Xing Ming; Zhang, Zhu Hua; Xue, Hua Dan; Jin, Zheng Yu
2018-04-28
Objective To evaluate the correlation of the positron emission tomography/magnetic resonance imaging (PET/MR) parameters with the pathological differentiation of head and neck squamous cell carcinoma(HNSCC) and the diagnostic efficiencies of PET/MR parameters. Methods Patients with clinical suspicion of HNSCC were included and underwent PET/MR scan. HNSCC was pathologically confirmed in all these patients. The PET/MR examination included PET and MR sequences of diffusion-weighted imaging (DWI) and T2-and T1-weighted imaging. The multiple parameters of PET/MR included the mean values of apparent diffusion coefficient(ADC mean ) and the maximum and mean values of standardized uptake value (SUV max and SUV mean ) were measured and estimated. The correlations of all the parameters and distribution between the different tumor differentiation groups were analyzed. Logistic regression was utilized to build the model as the PET/MR combined parameter for predicting the differentiation by multiple parameters of PET/MR. The receiver operating characteristic curve was calculated for each parameter and the combination. Results Totally 23 patients were included in this study:9 patients (9 males and 0 female) had well-differentiated tumor,with an average age of (61.0±6.8)years;14 cases had moderately-differentiated (n=10) or poorly-differentiated tumors (n=4),with an average age of (62.0±9.1) years. All the patients were males. There was statistical correlation between SUV mean and SUV max (P<0.001);however,ADC mean showed no statistical correlation with SUV max and with SUV mean (P=0.42,P=0.13). ADC mean and SUV mean showed significant difference between well-differentiated group and moderately-poorly-differentiated group (P=0.005,P=0.007). Compared with the individual parameters,the combination of PET/MR parameters with SUV mean and ADC mean had higher efficacy in predicting tumor differentiation,with an area under curve of 0.84. Conclusions The distributions of ADC mean ,SUV max and SUV mean differ among HNSCC with different pathological differentiation. Compared with the individual parameters,the combination of the PET/MR parameters has higher efficiency in predicting tumor differentiation.
Resonant acoustic measurement of vapor phase transport phenomenon in porous media
NASA Astrophysics Data System (ADS)
Schuhmann, Richard; Garrett, Steven
2002-05-01
Diffusion of gases through porous media is commonly described using Fick's law and is characterized by a gas diffusion coefficient modified by a media-specific tortuosity parameter. A phase-locked-loop resonance frequency tracker [J. Acoust. Soc. Am. 108, 2520 (2000)] has been upgraded with an insulated copper resonator and a bellows-sealed piston instrumented with an accelerometer. Average system stability (temperature divided by frequency squared) is about 180 ppm. Glass-bead-filled cores of different lengths are fitted into an o-ring sealed opening at the top of the resonator. The rate at which the tracer gas is replaced by air within the resonator is controlled by the core's diffusion constant. Mean molecular weight of the gas mixture in the resonator is determined in real time from the ratio of the absolute temperature to the square of the fundamental acoustic resonance frequency. Molecular weight of the gas mixture is determined approximately six times per minute. Changes in the gas mixture concentration are exponential in time (within 0.1%) over nearly two decades in concentration. We will report diffusion constants for two different sizes of glass beads, in samples of five different lengths, using two different tracer gases, to establish the validity of this approach. [Work supported by ONR.
Non-resonant multipactor--A statistical model
NASA Astrophysics Data System (ADS)
Rasch, J.; Johansson, J. F.
2012-12-01
High power microwave systems operating in vacuum or near vacuum run the risk of multipactor breakdown. In order to avoid multipactor, it is necessary to make theoretical predictions of critical parameter combinations. These treatments are generally based on the assumption of electrons moving in resonance with the electric field while traversing the gap between critical surfaces. Through comparison with experiments, it has been found that only for small system dimensions will the resonant approach give correct predictions. Apparently, the resonance is destroyed due to the statistical spread in electron emission velocity, and for a more valid description it is necessary to resort to rather complicated statistical treatments of the electron population, and extensive simulations. However, in the limit where resonance is completely destroyed it is possible to use a much simpler treatment, here called non-resonant theory. In this paper, we develop the formalism for this theory, use it to calculate universal curves for the existence of multipactor, and compare with previous results. Two important effects that leads to an increase in the multipactor threshold in comparison with the resonant prediction are identified. These are the statistical spread of impact speed, which leads to a lower average electron impact speed, and the impact of electrons in phase regions where the secondary electrons are immediately reabsorbed, leading to an effective removal of electrons from the discharge.
NASA Technical Reports Server (NTRS)
Schaffer, L.; Burns, J. A.
1995-01-01
Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.
On the use of Bayesian Monte-Carlo in evaluation of nuclear data
NASA Astrophysics Data System (ADS)
De Saint Jean, Cyrille; Archier, Pascal; Privas, Edwin; Noguere, Gilles
2017-09-01
As model parameters, necessary ingredients of theoretical models, are not always predicted by theory, a formal mathematical framework associated to the evaluation work is needed to obtain the best set of parameters (resonance parameters, optical models, fission barrier, average width, multigroup cross sections) with Bayesian statistical inference by comparing theory to experiment. The formal rule related to this methodology is to estimate the posterior density probability function of a set of parameters by solving an equation of the following type: pdf(posterior) ˜ pdf(prior) × a likelihood function. A fitting procedure can be seen as an estimation of the posterior density probability of a set of parameters (referred as x→?) knowing a prior information on these parameters and a likelihood which gives the probability density function of observing a data set knowing x→?. To solve this problem, two major paths could be taken: add approximations and hypothesis and obtain an equation to be solved numerically (minimum of a cost function or Generalized least Square method, referred as GLS) or use Monte-Carlo sampling of all prior distributions and estimate the final posterior distribution. Monte Carlo methods are natural solution for Bayesian inference problems. They avoid approximations (existing in traditional adjustment procedure based on chi-square minimization) and propose alternative in the choice of probability density distribution for priors and likelihoods. This paper will propose the use of what we are calling Bayesian Monte Carlo (referred as BMC in the rest of the manuscript) in the whole energy range from thermal, resonance and continuum range for all nuclear reaction models at these energies. Algorithms will be presented based on Monte-Carlo sampling and Markov chain. The objectives of BMC are to propose a reference calculation for validating the GLS calculations and approximations, to test probability density distributions effects and to provide the framework of finding global minimum if several local minimums exist. Application to resolved resonance, unresolved resonance and continuum evaluation as well as multigroup cross section data assimilation will be presented.
NASA Astrophysics Data System (ADS)
Veselkov, Alexei N.; Evstigneev, Maxim P.; Veselkov, Dennis A.; Davies, David B.
2001-08-01
A general nuclear magnetic resonance analysis of a statistical-thermodynamical model of hetero-association of aromatic molecules in solution has been developed to take "edge effects" into consideration, i.e., the dependence of proton chemical shifts on the position of the molecule situated inside or at the edge of the aggregate. This generalized approach is compared with a previously published model, where an average contribution to proton shielding is considered irrespective of the position of the molecule in the stack. Association parameters have been determined from experimental concentration and temperature dependences of 500 MHz proton chemical shifts of the hetero-association of the acridine dye, proflavine, and the phenanthridinium dye, ethidium bromide, in aqueous solution. Differences in the parameters in the range 10%-30% calculated using the basic and generalized approaches have been found to depend substantially on the magnitude of the equilibrium hetero-association constant Khet—the larger the value of Khet, the higher the discrepancy between the two methods.
Lommen, Jonathan M; Flassbeck, Sebastian; Behl, Nicolas G R; Niesporek, Sebastian; Bachert, Peter; Ladd, Mark E; Nagel, Armin M
2018-08-01
To investigate and to reduce influences on the determination of the short and long apparent transverse relaxation times ( T2,s*, T2,l*) of 23 Na in vivo with respect to signal sampling. The accuracy of T2* determination was analyzed in simulations for five different sampling schemes. The influence of noise in the parameter fit was investigated for three different models. A dedicated sampling scheme was developed for brain parenchyma by numerically optimizing the parameter estimation. This scheme was compared in vivo to linear sampling at 7T. For the considered sampling schemes, T2,s* / T2,l* exhibit an average bias of 3% / 4% with a variation of 25% / 15% based on simulations with previously published T2* values. The accuracy could be improved with the optimized sampling scheme by strongly averaging the earliest sample. A fitting model with constant noise floor can increase accuracy while additional fitting of a noise term is only beneficial in case of sampling until late echo time > 80 ms. T2* values in white matter were determined to be T2,s* = 5.1 ± 0.8 / 4.2 ± 0.4 ms and T2,l* = 35.7 ± 2.4 / 34.4 ± 1.5 ms using linear/optimized sampling. Voxel-wise T2* determination of 23 Na is feasible in vivo. However, sampling and fitting methods have to be chosen carefully to retrieve accurate results. Magn Reson Med 80:571-584, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn
2016-08-15
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
NASA Astrophysics Data System (ADS)
Gafurov, M. R.; Biktagirov, T. B.; Mamin, G. V.; Shurtakova, D. V.; Klimashina, E. S.; Putlyaev, V. I.; Orlinskii, S. B.
2016-03-01
The effect of codoping of hydroxyapatite (HAP) nanocrystals with average sizes of 35 ± 15 nm during "wet" synthesis by CO 3 2- carbonate anions and Mn2+ cations on relaxation characteristics (for the times of electron spin-spin relaxation) of the NO 3 2- nitrate radical anion has been studied. By the example of HAP, it has been demonstrated that the electron paramagnetic resonance (EPR) is an efficient method for studying anion-cation (co)doping of nanoscale particles. It has been shown experimentally and by quantummechanical calculations that simultaneous introduction of several ions can be energetically more favorable than their separate inclusion. Possible codoping models have been proposed, and their energy parameters have been calculated.
NASA Technical Reports Server (NTRS)
Cageao, R. P.; Ha, Y. L.; Jiang, Y.; Morgan, M. F.; Yung, Y. L.; Sander, S. P.
1997-01-01
A calculation of the A2 sigma --> X2 pi (0, 0) band emission rate factors and line center absorption cross sections of OH applicable to its measurement using solar resonant fluorescence in the terrestrial atmosphere is presented in this paper. The most accurate available line parameters have been used. Special consideration has been given to the solar input flux because of its highly structured Fraunhofer spectrum. The calculation for the OH atmospheric emission rate factor in the solar resonant fluorescent case is described in detail with examples and intermediate results. Results of this calculation of OH emission rate factors for individual rotational lines are on average 30% lower than the values obtained in an earlier work.
Design of a five-band terahertz perfect metamaterial absorber using two resonators
NASA Astrophysics Data System (ADS)
Meng, Tianhua; Hu, Dan; Zhu, Qiaofen
2018-05-01
We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.
NASA Astrophysics Data System (ADS)
Uy, C. F.; Hogg, C. S.; Cowin, J. P.; Whaley, K. B.; Light, J. C.; Sibener, S. J.
1982-08-01
Rotationally mediated selective adsorption scattering resonances are used to make an experimental and theoretical study of the laterally averaged interaction potential between HD and a weakly corrugated system, Ag(111). The experimentally observed resonances determine the vibrational levels of the HD/Ag(111) physisorption potential as a function of bound rotational state. These vibrational levels show J-dependent shifts due to the orientational anisotropy of the potential. Exact quantum scattering calculations using a full laterally averaged potential of the form V sub o(z,0) = v sub o (z) (1 + beta P sub 2 (cos theta)) have been carried out to obtain rotationally inelastic transition probabilities. Experimental and theoretical resonance energies are compared for two forms of v sub o(z), a Morse and a variable exponent potential, as a function of Beta, and are found to be very close to the first order perturbed energies of a free rotor in bound states of v sub o(z). Both potential forms give equally good fits to the data, yielding an optimum value of the asymmetry parameter, Beta approx. -0.05. The determination of Beta is relatively insensitive to small changes in the v sub o(z) well depth.
Self-Organisation and Intermittent Coherent Oscillations in the EXTRAP T2 Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Cecconello, M.; Malmberg, J.-A.; Sallander, E.; Drake, J. R.
Many reversed-field pinch (RFP) experiments exhibit a coherent oscillatory behaviour that is characteristic of discrete dynamo events and is associated with intermittent current profile self-organisation phenomena. However, in the vast majority of the discharges in the resistive shell RFP experiment EXTRAP T2, the dynamo activity does not show global, coherent oscillatory behaviour. The internally resonant tearing modes are phase-aligned and wall-locked resulting in a large localised magnetic perturbation. Equilibrium and plasma parameters have a level of high frequency fluctuations but the average values are quasi-steady. For some discharges, however, the equilibrium parameters exhibit the oscillatory behaviour characteristic of the discrete dynamo events. For these discharges, the trend observed in the tearing mode spectra, associated with the onset of the discrete relaxation event behaviour, is a relative higher amplitude of m = 0 mode activity and relative lower amplitude of the m = 1 mode activity compared with their average values. Global plasma parameters and model profile calculations for sample discharges representing the two types of relaxation dynamics are presented.
On the Nature of People's Reaction to Space Weather and Meteorological Weather Changes
NASA Astrophysics Data System (ADS)
Khabarova, O. V.; Dimitrova, S.
2009-12-01
Our environment includes many natural and artificial agents affecting any person on the Earth in one way or other. This work is focused on two of them - weather and space weather, which are permanently effective. Their cumulative effect is proved by means of the modeling. It is shown that combination of geomagnetic and solar indices and weather strength parameter (which includes six main meteorological parameters) correlates with health state significantly better (up to R=0.7), than separate environmental parameters do. The typical shape of any health characteristics' time-series during human body reaction to any negative impact represents a curve, well-known in medicine as a General Adaptation Syndrome curve by Hans Selye. We demonstrate this on the base of blood pressure time-series and acupunctural experiment data, averaged by group. The first stage of adaptive stress-reaction (resistance to stress) is sometimes observed 1-2 days before geomagnetic storm onset. The effect of "outstripping reaction to magnetic storm", named Tchizhevsky- Velkhover effect, had been known for many years, but its explanation was obtained recently due to the consideration of the near-Earth space plasma processes. It was shown that lowfrequency variations of the solar wind density on a background of the density growth can stimulate the development of the geomagnetic filed (GMF) variations of the wide frequency range. These variations seem to have "bioeffective frequencies", resonant with own frequencies of body organs and systems. The mechanism of human body reaction is supposed to be a parametrical resonance in low-frequency range (which is determined by the resonance in large-scale organs and systems) and a simple forced resonance in GHz-range of variations (the resonance of micro-objects in the organism such as DNA, cell membranes, blood ions etc.) Given examples of mass-reaction of the objects to ULF-range GMF variations during quiet space weather time prove this hypothesis.
Hautvast, Gilion L T F; Salton, Carol J; Chuang, Michael L; Breeuwer, Marcel; O'Donnell, Christopher J; Manning, Warren J
2012-05-01
Quantitative analysis of short-axis functional cardiac magnetic resonance images can be performed using automatic contour detection methods. The resulting myocardial contours must be reviewed and possibly corrected, which can be time-consuming, particularly when performed across all cardiac phases. We quantified the impact of manual contour corrections on both analysis time and quantitative measurements obtained from left ventricular short-axis cine images acquired from 1555 participants of the Framingham Heart Study Offspring cohort using computer-aided contour detection methods. The total analysis time for a single case was 7.6 ± 1.7 min for an average of 221 ± 36 myocardial contours per participant. This included 4.8 ± 1.6 min for manual contour correction of 2% of all automatically detected endocardial contours and 8% of all automatically detected epicardial contours. However, the impact of these corrections on global left ventricular parameters was limited, introducing differences of 0.4 ± 4.1 mL for end-diastolic volume, -0.3 ± 2.9 mL for end-systolic volume, 0.7 ± 3.1 mL for stroke volume, and 0.3 ± 1.8% for ejection fraction. We conclude that left ventricular functional parameters can be obtained under 5 min from short-axis functional cardiac magnetic resonance images using automatic contour detection methods. Manual correction more than doubles analysis time, with minimal impact on left ventricular volumes and ejection fraction. Copyright © 2011 Wiley Periodicals, Inc.
Spin-orbit coupling for tidally evolving super-Earths
NASA Astrophysics Data System (ADS)
Rodríguez, A.; Callegari, N.; Michtchenko, T. A.; Hussmann, H.
2012-12-01
We investigate the spin behaviour of close-in rocky planets and the implications for their orbital evolution. Considering that the planet rotation evolves under simultaneous actions of the torque due to the equatorial deformation and the tidal torque, both raised by the central star, we analyse the possibility of temporary captures in spin-orbit resonances. The results of the numerical simulations of the exact equations of motions indicate that, whenever the planet rotation is trapped in a resonant motion, the orbital decay and the eccentricity damping are faster than the ones in which the rotation follows the so-called pseudo-synchronization. Analytical results obtained through the averaged equations of the spin-orbit problem show a good agreement with the numerical simulations. We apply the analysis to the cases of the recently discovered hot super-Earths Kepler-10 b, GJ 3634 b and 55 Cnc e. The simulated dynamical history of these systems indicates the possibility of capture in several spin-orbit resonances; particularly, GJ 3634 b and 55 Cnc e can currently evolve under a non-synchronous resonant motion for suitable values of the parameters. Moreover, 55 Cnc e may avoid a chaotic rotation behaviour by evolving towards synchronization through successive temporary resonant trappings.
Benchmark Testing of a New 56Fe Evaluation for Criticality Safety Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, Luiz C; Ivanov, E.
2015-01-01
The SAMMY code was used to evaluate resonance parameters of the 56Fe cross section in the resolved resonance energy range of 0–2 MeV using transmission data, capture, elastic, inelastic, and double differential elastic cross sections. The resonance analysis was performed with the code SAMMY that fits R-matrix resonance parameters using the generalized least-squares technique (Bayes’ theory). The evaluation yielded a set of resonance parameters that reproduced the experimental data very well, along with a resonance parameter covariance matrix for data uncertainty calculations. Benchmark tests were conducted to assess the evaluation performance in benchmark calculations.
Low-profile wireless passive resonators for sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Xun; An, Linan
A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmittingmore » a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.« less
On the stability of dust orbits in mean-motion resonances perturbed by from an interstellar wind
NASA Astrophysics Data System (ADS)
Pástor, Pavol
2014-09-01
Circumstellar dust particles can be captured in a mean-motion resonance (MMR) with a planet and simultaneously be affected by non-gravitational effects. It is possible to describe the secular variations of a particle orbit in the MMR analytically using averaged resonant equations. We derive the averaged resonant equations from the equations of motion in near-canonical form. The secular variations of the particle orbit depending on the orientation of the orbit in space are taken into account. The averaged resonant equations can be derived/confirmed also from Lagrange's planetary equations. We apply the derived theory to the case when the non-gravitational effects are the Poynting-Robertson effect, the radial stellar wind, and an interstellar wind. The analytical and numerical results obtained are in excellent agreement. We found that the types of orbits correspond to libration centers of the conservative problem. The averaged resonant equations can lead to a system of equations which holds for stationary points in a subset of resonant variables. Using this system we show analytically that for the considered non-gravitational effects, all stationary points should correspond to orbits which are stationary in interplanetary space after an averaging over a synodic period. In an exact resonance, the stationary orbits are stable. The stability is achieved by a periodic repetition of the evolution during the synodic period. Numerical solutions of this system show that there are no stationary orbits for either the exact or non-exact resonances.
A Comparison of Monte Carlo and Deterministic Solvers for keff and Sensitivity Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haeck, Wim; Parsons, Donald Kent; White, Morgan Curtis
Verification and validation of our solutions for calculating the neutron reactivity for nuclear materials is a key issue to address for many applications, including criticality safety, research reactors, power reactors, and nuclear security. Neutronics codes solve variations of the Boltzmann transport equation. The two main variants are Monte Carlo versus deterministic solutions, e.g. the MCNP [1] versus PARTISN [2] codes, respectively. There have been many studies over the decades that examined the accuracy of such solvers and the general conclusion is that when the problems are well-posed, either solver can produce accurate results. However, the devil is always in themore » details. The current study examines the issue of self-shielding and the stress it puts on deterministic solvers. Most Monte Carlo neutronics codes use continuous-energy descriptions of the neutron interaction data that are not subject to this effect. The issue of self-shielding occurs because of the discretisation of data used by the deterministic solutions. Multigroup data used in these solvers are the average cross section and scattering parameters over an energy range. Resonances in cross sections can occur that change the likelihood of interaction by one to three orders of magnitude over a small energy range. Self-shielding is the numerical effect that the average cross section in groups with strong resonances can be strongly affected as neutrons within that material are preferentially absorbed or scattered out of the resonance energies. This affects both the average cross section and the scattering matrix.« less
Non-resonant multipactor-A statistical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasch, J.; Johansson, J. F.
2012-12-15
High power microwave systems operating in vacuum or near vacuum run the risk of multipactor breakdown. In order to avoid multipactor, it is necessary to make theoretical predictions of critical parameter combinations. These treatments are generally based on the assumption of electrons moving in resonance with the electric field while traversing the gap between critical surfaces. Through comparison with experiments, it has been found that only for small system dimensions will the resonant approach give correct predictions. Apparently, the resonance is destroyed due to the statistical spread in electron emission velocity, and for a more valid description it is necessarymore » to resort to rather complicated statistical treatments of the electron population, and extensive simulations. However, in the limit where resonance is completely destroyed it is possible to use a much simpler treatment, here called non-resonant theory. In this paper, we develop the formalism for this theory, use it to calculate universal curves for the existence of multipactor, and compare with previous results. Two important effects that leads to an increase in the multipactor threshold in comparison with the resonant prediction are identified. These are the statistical spread of impact speed, which leads to a lower average electron impact speed, and the impact of electrons in phase regions where the secondary electrons are immediately reabsorbed, leading to an effective removal of electrons from the discharge.« less
Cyclotron resonance in ferromagnetic InMnAs and InMnSb
NASA Astrophysics Data System (ADS)
Khodaparast, G. A.; Matsuda, Y. H.; Saha, D.; Sanders, G. D.; Stanton, C. J.; Saito, H.; Takeyama, S.; Merritt, T. R.; Feeser, C.; Wessels, B. W.; Liu, X.; Furdyna, J.
2013-12-01
We present experimental and theoretical studies of the magneto-optical properties of p-type In1-xMnxAs and In1-xMnxSb ferromagnetic semiconductor films in ultrahigh magnetic fields oriented along [001]. Samples were fabricated by molecular beam epitaxy (MBE) and metal-organic vapor phase epitaxy (MOVPE). To model the results, we used an 8-band Pidgeon-Brown model generalized to include the wave vector dependence of the elec-tronic states along kz as well as the s-d and p-d exchange interactions with the localized Mn d electrons. The Curie temperature is taken as an input parameter and the average Mn spin is treated in mean-field theory. We compared Landau level and band structure calculations with observed cyclotron resonance (CR) measurements. While differences between the CR measurements are seen for MBE and MOVPE samples, our calculations indicate that they arise from differences in the carrier densities. In addition, the difference in the carrier densities suggests significantly larger average spin for the MOVPE structures; this fact could be responsible for higher Curie temperatures in this material system.
Jerome, Neil P; Orton, Matthew R; d'Arcy, James A; Collins, David J; Koh, Dow-Mu; Leach, Martin O
2014-01-01
To evaluate the effect on diffusion-weighted image-derived parameters in the apparent diffusion coefficient (ADC) and intra-voxel incoherent motion (IVIM) models from choice of either free-breathing or navigator-controlled acquisition. Imaging was performed with consent from healthy volunteers (n = 10) on a 1.5T Siemens Avanto scanner. Parameter-matched free-breathing and navigator-controlled diffusion-weighted images were acquired, without averaging in the console, for a total scan time of ∼10 minutes. Regions of interest were drawn for renal cortex, renal pyramid, whole kidney, liver, spleen, and paraspinal muscle. An ADC diffusion model for these regions was fitted for b-values ≥ 250 s/mm(2) , using a Levenberg-Marquardt algorithm, and an IVIM model was fitted for all images using a Bayesian method. ADC and IVIM parameters from the two acquisition regimes show no significant differences for the cohort; individual cases show occasional discrepancies, with outliers in parameter estimates arising more commonly from navigator-controlled scans. The navigator-controlled acquisitions showed, on average, a smaller range of movement for the kidneys (6.0 ± 1.4 vs. 10.0 ± 1.7 mm, P = 0.03), but also a smaller number of averages collected (3.9 ± 0.1 vs. 5.5 ± 0.2, P < 0.01) in the allocated time. Navigator triggering offers no advantage in fitted diffusion parameters, whereas free-breathing appears to offer greater confidence in fitted diffusion parameters, with fewer outliers, for matched acquisition periods. Copyright © 2013 Wiley Periodicals, Inc.
Alvarez, Tara L; Vicci, Vincent R; Alkan, Yelda; Kim, Eun H; Gohel, Suril; Barrett, Anna M; Chiaravalloti, Nancy; Biswal, Bharat B
2010-12-01
This research quantified clinical measurements and functional neural changes associated with vision therapy in subjects with convergence insufficiency (CI). Convergence and divergence 4° step responses were compared between 13 control adult subjects with normal binocular vision and four CI adult subjects. All CI subjects participated in 18 h of vision therapy. Clinical parameters quantified throughout the therapy included: nearpoint of convergence, recovery point of convergence, positive fusional vergence at near, near dissociated phoria, and eye movements that were quantified using peak velocity. Neural correlates of the CI subjects were quantified with functional magnetic resonance imaging scans comparing random vs. predictable vergence movements using a block design before and after vision therapy. Images were quantified by measuring the spatial extent of activation and the average correlation within five regions of interests (ROI). The ROIs were the dorsolateral prefrontal cortex, a portion of the frontal lobe, part of the parietal lobe, the cerebellum, and the brain stem. All measurements were repeated 4 months to 1 year post-therapy in three of the CI subjects. Convergence average peak velocities to step stimuli were significantly slower (p = 0.016) in CI subjects compared with controls; however, significant differences in average peak velocities were not observed for divergence step responses (p = 0.30). The investigation of CI subjects participating in vision therapy showed that the nearpoint of convergence, recovery point of convergence, and near dissociated phoria significantly decreased. Furthermore, the positive fusional vergence, average peak velocity from 4° convergence steps, and the amount of functional activity within the frontal areas, cerebellum, and brain stem significantly increased. Several clinical and cortical parameters were significantly correlated. Convergence peak velocity was significantly slower in CI subjects compared with controls, which may result in asthenopic complaints reported by the CI subjects. Vision therapy was associated with and may have evoked clinical and cortical activity changes.
Alvarez, Tara L.; Vicci, Vincent R.; Alkan, Yelda; Kim, Eun H.; Gohel, Suril; Barrett, Anna M.; Chiaravalloti, Nancy; Biswal, Bharat B.
2011-01-01
Purpose This research quantified clinical measurements and functional neural changes associated with vision therapy in subjects with convergence insufficiency (CI). Methods Convergence and divergence 4° step responses were compared between 13 control adult subjects with normal binocular vision and four CI adult subjects. All CI subjects participated in 18 h of vision therapy. Clinical parameters quantified throughout the therapy included: nearpoint of convergence, recovery point of convergence, positive fusional vergence at near, near dissociated phoria, and eye movements that were quantified using peak velocity. Neural correlates of the CI subjects were quantified with functional magnetic resonance imaging scans comparing random vs. predictable vergence movements using a block design before and after vision therapy. Images were quantified by measuring the spatial extent of activation and the average correlation within five regions of interests (ROI). The ROIs were the dorsolateral prefrontal cortex, a portion of the frontal lobe, part of the parietal lobe, the cerebellum, and the brain stem. All measurements were repeated 4 months to 1 year post-therapy in three of the CI subjects. Results Convergence average peak velocities to step stimuli were significantly slower (p = 0.016) in CI subjects compared with controls; however, significant differences in average peak velocities were not observed for divergence step responses (p = 0.30). The investigation of CI subjects participating in vision therapy showed that the nearpoint of convergence, recovery point of convergence, and near dissociated phoria significantly decreased. Furthermore, the positive fusional vergence, average peak velocity from 4° convergence steps, and the amount of functional activity within the frontal areas, cerebellum, and brain stem significantly increased. Several clinical and cortical parameters were significantly correlated. Conclusions Convergence peak velocity was significantly slower in CI subjects compared with controls, which may result in asthenopic complaints reported by the CI subjects. Vision therapy was associated with and may have evoked clinical and cortical activity changes. PMID:21057347
Latent resonance in tidal rivers, with applications to River Elbe
NASA Astrophysics Data System (ADS)
Backhaus, Jan O.
2015-11-01
We describe a systematic investigation of resonance in tidal rivers, and of river oscillations influenced by resonance. That is, we explore the grey-zone between absent and fully developed resonance. Data from this study are the results of a one-dimensional numerical channel model applied to a four-dimensional parameter space comprising geometry, i.e. length and depths of rivers, and varying dissipation and forcing. Similarity of real rivers and channels from parameter space is obtained with the help of a 'run-time depth'. We present a model-channel, which reproduces tidal oscillations of River Elbe in Hamburg, Germany with accuracy of a few centimetres. The parameter space contains resonant regions and regions with 'latent resonance'. The latter defines tidal oscillations that are elevated yet not in full but juvenile resonance. Dissipation reduces amplitudes of resonance while creating latent resonance. That is, energy of resonance radiates into areas in parameter space where periods of Eigen-oscillations are well separated from the period of the forcing tide. Increased forcing enhances the re-distribution of resonance in parameter space. The River Elbe is diagnosed as being in a state of anthropogenic latent resonance as a consequence of ongoing deepening by dredging. Deepening the river, in conjunction with the expected sea level rise, will inevitably cause increasing tidal ranges. As a rule of thumb, we found that 1 m deepening would cause 0.5 m increase in tidal range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xing, E-mail: xing.wei@sjtu.edu.cn; Princeton University Observatory, Princeton, NJ 08544
2016-09-01
To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flowmore » has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.« less
Investigation of epi-thermal shape-parameter needed for precision analysis of activation
NASA Astrophysics Data System (ADS)
Elmaghraby, Elsayed K.
2017-06-01
The present work aims to expose factors that alter the isotope's effective resonance energy and its resonance integral in order to have consistency between the experimental observation of integral experiments and the prediction of the reaction rate. The investigation is based on disclosing the interference among resonances in Breit-Wigner and Reich-Moore representations to make the investigation of the statistical nature of resonances possible. The shape-parameter influence on the isotope's behavior in epi-thermal neutron field was investigated in the range from -0.1 to 0.1. Evaluated resonance data given in Evaluated Nuclear Data Files (ENDF/B VII.1) and temperature-dependent cross-sections of Point2015 are used. Only resolved resonances are considered in the present assessment. Tabulated values of resonance integrals and effective resonance energies with their moments are given for the majority of ENDF's isotopes. The reported data can be used, directly, to compute the integral parameters for any value of shape-parameter without the need to use numerical software tools. Correlations among effective resonance energy, experimental level spacing and resonance integral are discussed.
χ_{c1} and χ_{c2} Resonance Parameters with the Decays χ_{c1,c2}→J/ψμ^{+}μ^{-}.
Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Atzeni, M; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bizzeti, A; Bjørn, M; Blake, T; Blanc, F; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bordyuzhin, I; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Chapman, M G; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T H; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Hu, W; Huard, Z C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Keizer, F; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kravchuk, L; Kreps, M; Kress, F; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Luchinsky, A; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malecki, B; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombächer, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pisani, F; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepulveda, E S; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, J; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Weisser, C; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, M; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S
2017-12-01
The decays χ_{c1}→J/ψμ^{+}μ^{-} and χ_{c2}→J/ψμ^{+}μ^{-} are observed and used to study the resonance parameters of the χ_{c1} and χ_{c2} mesons. The masses of these states are measured to be m(χ_{c1})=3510.71±0.04(stat)±0.09(syst) MeV and m(χ_{c2})=3556.10±0.06(stat)±0.11(syst) MeV, where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference m(χ_{c2})-m(χ_{c1})=45.39±0.07(stat)±0.03(syst) MeV. The natural width of the χ_{c2} meson is measured to be Γ(χ_{c2})=2.10±0.20(stat)±0.02(syst) MeV. These results are in good agreement with and have comparable precision to the current world averages.
χc 1 and χc 2 Resonance Parameters with the Decays χc 1 ,c 2→J /ψ μ+μ-
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Atzeni, M.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Hu, W.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Keizer, F.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Luchinsky, A.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration
2017-12-01
The decays χc 1→J /ψ μ+μ- and χc 2→J /ψ μ+μ- are observed and used to study the resonance parameters of the χc 1 and χc 2 mesons. The masses of these states are measured to be m (χc 1)=3510.71 ±0.04 (stat ) ±0.09 (syst ) MeV and m (χc 2)=3556.10 ±0.06 (stat ) ±0.11 (syst ) MeV , where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference m (χc 2)-m (χc 1)=45.39 ±0.07 (stat ) ±0.03 (syst ) MeV . The natural width of the χc 2 meson is measured to be Γ (χc 2)=2.10 ±0.20 (stat ) ±0.02 (syst ) MeV . These results are in good agreement with and have comparable precision to the current world averages.
Music acupuncture stimulation method.
Brătilă, F; Moldovan, C
2007-01-01
Harmonic Medicine is the model using the theory that the body rhythms synchronize to an outer rhythm applied for therapeutic purpose, can restores the energy balance in acupuncture channels and organs and the condition of well-being. The purpose of this scientific work was to demonstrate the role played by harmonic sounds in the stimulation of the Lung (LU) Meridian (Shoutaiyin Feijing) and of the Kidney (KI) Meridian (Zushaoyin Shenjing). It was used an original method that included: measurement and electronic sound stimulation of the Meridian Entry Point, measurement of Meridian Exit Point, computer data processing, bio feed-back adjustment of the music stimulation parameters. After data processing, it was found that the sound stimulation of the Lung Meridian Frequency is optimal between 122 Hz and 128 Hz, with an average of 124 Hz (87% of the subjects) and for Kidney Meridian from 118 Hz to 121 Hz, with an average of 120 Hz (67% of the subjects). The acupuncture stimulation was more intense for female subjects (> 7%) than for the male ones. We preliminarily consider that an informational resonance phenomenon can be developed between the acupuncture music stimulation frequency and the cellular dipole frequency, being a really "resonant frequency signature" of an acupoint. The harmonic generation and the electronic excitation or low-excitation status of an acupuncture point may be considered as a resonance mechanism. By this kind of acupunctural stimulation, a symphony may act and play a healer role.
Elnaggar, Sameh Y; Tervo, Richard; Mattar, Saba M
2014-05-01
A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe's coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer's performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1,ω2) and the individual quality factors (Q1,Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, Iwithinsert/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be applied to a loop-gap resonator in a cavity. For the design effective EPR probes, one needs to consider the κ, Q and η parameters. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.
2014-05-01
A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe’s coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer’s performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1, ω2) and the individual quality factors (Q1, Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, I/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be applied to a loop-gap resonator in a cavity. For the design effective EPR probes, one needs to consider the κ, Q and η parameters.
NASA Astrophysics Data System (ADS)
Lider, M. C.; Yurtseven, H.
2018-05-01
The resonant frequency shifts are related to the thermodynamic quantities (compressibility, order parameter and susceptibility) for the α-β transition in quartz. The experimental data for the resonant frequencies and the bulk modulus from the literature are used for those correlations. By calculating the order parameter from the mean field theory, correlation between the resonant frequencies of various modes and the order parameter is examined according to the quasi-harmonic phonon theory for the α-β transition in quartz. Also, correlation between the bulk modulus in relation to the resonant frequency shifts and the order parameter susceptibility is constructed for the α-β transition in this crystalline system.
NASA Astrophysics Data System (ADS)
Duch, M.; Grzadkowski, B.
2017-09-01
Motivated by the possibility of enhancing dark matter (DM) self-scattering cross-section σ self , we have revisited the issue of DM annihilation through a Breit-Wigner resonance. In this case thermally averaged annihilation cross-section has strong temper-ature dependence, whereas elastic scattering of DM on the thermal bath particles is sup-pressed. This leads to the early kinetic decoupling of DM and an interesting interplay in the evolution of DM density and temperature that can be described by a set of coupled Boltzmann equations. The standard Breit-Wigner parametrization of a resonance prop-agator is also corrected by including momentum dependence of the resonance width. It has been shown that this effects may change predictions of DM relic density by more than order of magnitude in some regions of the parameter space. Model independent discussion is illustrated within a theory of Abelian vector dark matter. The model assumes extra U(1) symmetry group factor and an additional complex Higgs field needed to generate a mass for the dark vector boson, which provides an extra neutral Higgs boson h 2. We discuss the resonant amplification of σ self . It turns out that if DM abundance is properly reproduced, the Fermi-LAT data favor heavy DM and constraint the enhancement of σ self to the range, which cannot provide a solution to the small-scale structure problems.
Parameters Design of Series Resonant Inverter Circuit
NASA Astrophysics Data System (ADS)
Qi, Xingkun; Peng, Yonglong; Li, Yabin
This paper analyzes the main circuit structure of series resonant inverter, and designs the components parameters of the main circuit.That provides a theoretical method for the design of series resonant inverter.
Blauch, A J; Schiano, J L; Ginsberg, M D
2000-06-01
The performance of a nuclear resonance detection system can be quantified using binary detection theory. Within this framework, signal averaging increases the probability of a correct detection and decreases the probability of a false alarm by reducing the variance of the noise in the average signal. In conjunction with signal averaging, we propose another method based on feedback control concepts that further improves detection performance. By maximizing the nuclear resonance signal amplitude, feedback raises the probability of correct detection. Furthermore, information generated by the feedback algorithm can be used to reduce the probability of false alarm. We discuss the advantages afforded by feedback that cannot be obtained using signal averaging. As an example, we show how this method is applicable to the detection of explosives using nuclear quadrupole resonance. Copyright 2000 Academic Press.
Xu, Nanfang; Wang, Shaobo; Yuan, Huishu; Liu, Xiaoguang; Liu, Zhongjun
2017-04-01
We aimed to critically analyze the current evidence regarding the role of dynamic supine magnetic resonance imaging (dsMRI) in the evaluation of cervical spondylotic myelopathy. Thirteen studies were identified through a comprehensive literature search performed in the PubMed, EMBASE, and ISI databases as fulfilling the inclusion criteria and were reviewed for subject characteristics, radiographic parameters, and salient findings. Studies herein reviewed suggested that dsMRI was able to detect new appearance or increased grade of medullary compression in ≥20% of patients and to demonstrate an average narrowing of the cervical canal by 20% (in comparison with the neutral position). Several additional parameters were investigated, but their clinical significance remained unconfirmed. Two studies examined how surgical decision-making could be affected by the additional findings of dsMRI. dsMRI represents an available modification of conventional static magnetic resonance imaging and is potentially able to demonstrate pathologies that might be previously missed. Evidence suggests that dsMRI can elucidate spinal cord compression with higher sensitivity, resulting in improved diagnostic accuracy of cervical spondylotic myelopathy, which may impact surgical planning for these patients. However, more high-quality studies are required to further establish its indications to avoid overdiagnosis with this powerful imaging technique and to justify its cost-effectiveness. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Xuemei; Li, Rui; Chen, Yu; Sia, Sheau Fung; Li, Donghai; Zhang, Yu; Liu, Aihua
2017-04-01
Additional hemodynamic parameters are highly desirable in the clinical management of intracranial aneurysm rupture as static medical images cannot demonstrate the blood flow within aneurysms. There are two ways of obtaining the hemodynamic information—by phase-contrast magnetic resonance imaging (PCMRI) and computational fluid dynamics (CFD). In this paper, we compared PCMRI and CFD in the analysis of a stable patient's specific aneurysm. The results showed that PCMRI and CFD are in good agreement with each other. An additional CFD study of two stable and two ruptured aneurysms revealed that ruptured aneurysms have a higher statistical average blood velocity, wall shear stress, and oscillatory shear index (OSI) within the aneurysm sac compared to those of stable aneurysms. Furthermore, for ruptured aneurysms, the OSI divides the positive and negative wall shear stress divergence at the aneurysm sac.
NASA Astrophysics Data System (ADS)
Conturo, Thomas Edward
Tissue blood flow, blood content, and water state have been characterized in-situ with new nuclear magnetic resonance imaging techniques. The sensitivities of standard techniques to the physiologic tissue parameters spin density (N_{rm r}) and relaxation times (T_1 and T_2 ) are mathematically defined. A new driven inversion method is developed so that tissue T_1 and T_2 changes produce cooperative intensity changes, yielding high contrast, high signal to noise, and sensitivity to a wider range of tissue parameters. The actual tissue parameters were imaged by automated collection of multiple-echo data having multiple T _1 dependence. Data are simultaneously fit by three-parameters to a closed-form expression, producing lower inter-parameter correlation and parameter noise than in separate T_1 or T_2 methods or pre-averaged methods. Accurate parameters are obtained at different field strengths. Parametric images of pathology demonstrate high sensitivity to tissue heterogeneity, and water content is determined in many tissues. Erythrocytes were paramagnetically labeled to study blood content and relaxation mechanisms. Liver and spleen relaxation were enhanced following 10% exchange of animal blood volumes. Rapid water exchange between intracellular and extracellular compartments was validated. Erythrocytes occupied 12.5% of renal cortex volume, and blood content was uniform in the liver, spleen and kidney. The magnitude and direction of flow velocity was then imaged. To eliminate directional artifacts, a bipolar gradient technique sensitized to flow in different directions was developed. Phase angle was reconstructed instead of intensity since the former has a 2pi -fold higher dynamic range. Images of flow through curves demonstrated secondary flow with a centrifugally-biased laminar profile and stationary velocity peaks along the curvature. Portal vein flow velocities were diminished or reversed in cirrhosis. Image artifacts have been characterized and removed. The foldover in magnified images was eliminated by exciting limited regions with orthogonal pi/2 and pi pulses. Off-midline regions were imaged by tandemly offsetting the phase-encoding and excitation. Artifacts due to non-steady-state conditions were demonstrated. The approach to steady state was defined by operators and vectors, and any repeated series of RF pulses was proven to produce a steady-state. The vector difference between the magnetization and its steady state value is relatively constant during the approach. The repetition time relative to T_1 is the main determinant of approach rate, and off-resonant RF pulses incoherent with the magnetization produce a more rapid approach than on-resonant pulses.
NASA Technical Reports Server (NTRS)
Pradhan, A. K.
1985-01-01
Reently calculated collision strengths, including relativistic and resonance effects, are employed to compute Maxwellian averaged collision strengths for 78 transitions involving states of principal quantum numbers 2-1 and 3-1 in Ca XIX and Fe XXV. These rate parameters are tabulated at temperatures of interest in astrophysical and labortory plasmas with radiation in the hard X-ray wavelength range. For some transitions, significant differences are found with the earlier calculations of Pradhan, Norcross, and Hummer (1981).
Comparison of T2, T1rho, and diffusion metrics in assessment of liver fibrosis in rats.
Zhang, Hui; Yang, Qihua; Yu, Taihui; Chen, Xiaodong; Huang, Jingwen; Tan, Cui; Liang, Biling; Guo, Hua
2017-03-01
To evaluate the value of T 2 , T 1 rho, and diffusion metrics in assessment of liver fibrosis in rats. Liver fibrosis in a rat model (n = 72) was induced by injection of carbon tetrachloride (CCl 4 ) at 3T. T 2 , T 1 rho, and diffusion parameters (apparent diffusion coefficient (ADC), D true ) via spin echo (SE) diffusion-weighted imaging (DWI) and stimulated echo acquisition mode (STEAM) DWI with three diffusion times (DT: 80, 106, 186 msec) were obtained in surviving rats with hepatic fibrosis (n = 52) and controls (n = 8). Liver fibrosis stage (F0-F6) was identified based on pathological results using the traditional liver fibrosis staging method for rodents. Nonparametric statistical methods and receiver operating characteristic (ROC) curve analysis were employed to determine the diagnostic accuracy. Mean T 2 , T 1 rho, ADC, and D true with DT = 186 msec correlated with the severity of fibrosis with r = 0.73, 0.83, -0.83, and -0.85 (all P < 0.001), respectively. The average areas under the ROC curve at different stages for T 1 rho and diffusion parameters (DT = 186 msec) were larger than those of T 2 and SE DWI (0.92, 0.92, and 0.92 vs. 0.86, 0.82, and 0.83). The corresponding average sensitivity and specificity for T 1 rho and diffusion parameters with a long DT were larger (89.35 and 88.90, 88.36 and 89.97, 90.16 and 87.13) than T 2 and SE DWI (90.28 and 79.93, 85.30 and 77.64, 78.21 and 82.41). The performances of T 1 rho and D true (DT = 186 msec) were comparable (average AUC: 0.92 and 0.92). Among the evaluated sequences, T 1 rho and STEAM DWI with a long DT may serve as superior imaging biomarkers for assessing liver fibrosis and monitoring disease severity. 1 J. Magn. Reson. Imaging 2017;45:741-750. © 2016 International Society for Magnetic Resonance in Medicine.
Hudson, Bruce S; Chafetz, Suzanne K
2013-04-25
Zero-point vibrational level averaging for electron spin resonance (ESR) and muon spin resonance (µSR) hyperfine coupling constants (HFCCs) are computed for H and Mu isotopomers of the cyclohexadienyl radical. A local mode approximation previously developed for computation of the effect of replacement of H by D on ¹³C-NMR chemical shifts is used. DFT methods are used to compute the change in energy and HFCCs when the geometry is changed from the equilibrium values for the stretch and both bend degrees of freedom. This variation is then averaged over the probability distribution for each degree of freedom. The method is tested using data for the methylene group of C₆H₇, cyclohexadienyl radical and its Mu analog. Good agreement is found for the difference between the HFCCs for Mu and H of CHMu and that for H of CHMu and CH₂ of the parent radical methylene group. All three of these HFCCs are the same in the absence of the zero point average, a one-parameter fit of the static HFCC, a(0), can be computed. That value, 45.2 Gauss, is compared to the results of several fixed geometry electronic structure computations. The HFCC values for the ortho, meta and para H atoms are then discussed.
Fully integrated Q-switch for commercial high-power resonator with solitary XLMA-fiber
NASA Astrophysics Data System (ADS)
Lange, R.; Bachert, C.; Rehmann, G.; Weber, H.; Luxen, R.; Enns, H.; Schenk, M.; Hosdorf, S.; Marfels, S.; Bay, M.; Kösters, A.; Krause, V.; Giesberts, M.; Fitzau, O.; Hoffmann, H.-D.
2018-02-01
In surface processing applications the correlation of laser power to processing speed demands a further enhancement of the performance of short-pulsed laser sources with respect to the investment costs. The frequently applied concept of master oscillator power amplifier relies on a complex structure, parts of which are highly sensitive to back reflected amplified radiation. Aiming for a simpler, robust source using only a single ytterbium doped XLMA fiber in a q-switched resonator appears as promising design approach eliminating the need for subsequent amplification. This concept requires a high power-tolerant resonator which is provided by the multikilowatt laser platform of Laserline including directly water-cooled active fiber thermal management. Laserline GmbH and Fraunhofer Institute for Laser Technology joined their forces1 to upgrade standard high power laser sources for short-pulsed operation exceeding 1 kW of average power. Therefor a compact, modular qswitch has been developed. In this paper the implementation of a polarization independent q-switch into an off-the-shelf multi-kilowatt diodepumped continuous wave fiber source is shown. In this early step of implementation we demonstrated more than 1000 W of average power at pulse lengths below 50 ns FWHM and 7.5 mJ pulse energy. The M2 corresponds to 9.5. Reliability of the system is demonstrated based on measurements including temperature and stability records. We investigated the variation possibilities concerning pulse parameters and shape as well as upcoming challenges in power up-scaling.
Spatially resolved D-T(2) correlation NMR of porous media.
Zhang, Yan; Blümich, Bernhard
2014-05-01
Within the past decade, 2D Laplace nuclear magnetic resonance (NMR) has been developed to analyze pore geometry and diffusion of fluids in porous media on the micrometer scale. Many objects like rocks and concrete are heterogeneous on the macroscopic scale, and an integral analysis of microscopic properties provides volume-averaged information. Magnetic resonance imaging (MRI) resolves this spatial average on the contrast scale set by the particular MRI technique. Desirable contrast parameters for studies of fluid transport in porous media derive from the pore-size distribution and the pore connectivity. These microscopic parameters are accessed by 1D and 2D Laplace NMR techniques. It is therefore desirable to combine MRI and 2D Laplace NMR to image functional information on fluid transport in porous media. Because 2D Laplace resolved MRI demands excessive measuring time, this study investigates the possibility to restrict the 2D Laplace analysis to the sum signals from low-resolution pixels, which correspond to pixels of similar amplitude in high-resolution images. In this exploratory study spatially resolved D-T2 correlation maps from glass beads and mortar are analyzed. Regions of similar contrast are first identified in high-resolution images to locate corresponding pixels in low-resolution images generated with D-T2 resolved MRI for subsequent pixel summation to improve the signal-to-noise ratio of contrast-specific D-T2 maps. This method is expected to contribute valuable information on correlated sample heterogeneity from the macroscopic and the microscopic scales in various types of porous materials including building materials and rock. Copyright © 2014 Elsevier Inc. All rights reserved.
Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.
2012-01-01
Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize the aquifer, and the surface nuclear magnetic resonance was able to provide missing data. In favorable locations, surface nuclear magnetic resonance is able to provide valuable noninvasive information about aquifer parameters and should be a useful tool for groundwater managers in Nebraska.
NASA Astrophysics Data System (ADS)
Sah, Si Mohamed; Forchheimer, Daniel; Borgani, Riccardo; Haviland, David
2018-02-01
We present a polynomial force reconstruction of the tip-sample interaction force in Atomic Force Microscopy. The method uses analytical expressions for the slow-time amplitude and phase evolution, obtained from time-averaging over the rapidly oscillating part of the cantilever dynamics. The slow-time behavior can be easily obtained in either the numerical simulations or the experiment in which a high-Q resonator is perturbed by a weak nonlinearity and a periodic driving force. A direct fit of the theoretical expressions to the simulated and experimental data gives the best-fit parameters for the force model. The method combines and complements previous works (Platz et al., 2013; Forchheimer et al., 2012 [2]) and it allows for computationally more efficient parameter mapping with AFM. Results for the simulated asymmetric piecewise linear force and VdW-DMT force models are compared with the reconstructed polynomial force and show a good agreement. It is also shown that the analytical amplitude and phase modulation equations fit well with the experimental data.
Parameter-induced stochastic resonance with a periodic signal
NASA Astrophysics Data System (ADS)
Li, Jian-Long; Xu, Bo-Hou
2006-12-01
In this paper conventional stochastic resonance (CSR) is realized by adding the noise intensity. This demonstrates that tuning the system parameters with fixed noise can make the noise play a constructive role and realize parameter-induced stochastic resonance (PSR). PSR can be interpreted as changing the intrinsic characteristic of the dynamical system to yield the cooperative effect between the stochastic-subjected nonlinear system and the external periodic force. This can be realized at any noise intensity, which greatly differs from CSR that is realized under the condition of the initial noise intensity not greater than the resonance level. Moreover, it is proved that PSR is different from the optimization of system parameters.
NASA Astrophysics Data System (ADS)
De Paëpe, Gaël; Eléna, Bénédicte; Emsley, Lyndon
2004-08-01
The work presented here aims at understanding the performance of phase modulated heteronuclear decoupling sequences such as Cosine Modulation or Two Pulse Phase Modulation. To that end we provide an analytical description of the intrinsic behavior of Cosine Modulation decoupling with respect to radio-frequency-inhomogeneity and the proton-proton dipolar coupling network. We discover through a Modulation Frame average Hamiltonian analysis that best decoupling is obtained under conditions where the heteronuclear interactions are removed but notably where homonuclear couplings are recoupled at a homonuclear Rotary Resonance (HORROR) condition in the Modulation Frame. These conclusions are supported by extensive experimental investigations, and notably through the introduction of proton nutation experiments to characterize spin dynamics in solids under decoupling conditions. The theoretical framework presented in this paper allows the prediction of the optimum parameters for a given set of experimental conditions.
Song, Wan-lu; Yang, Wan-li; Yin, Zhang-qi; Chen, Chang-yong; Feng, Mang
2016-01-01
We explore controllable quantum dynamics of a hybrid system, which consists of an array of mutually coupled superconducting resonators (SRs) with each containing a nitrogen-vacancy center spin ensemble (NVE) in the presence of inhomogeneous broadening. We focus on a three-site model, which compared with the two-site case, shows more complicated and richer dynamical behavior, and displays a series of damped oscillations under various experimental situations, reflecting the intricate balance and competition between the NVE-SR collective coupling and the adjacent-site photon hopping. Particularly, we find that the inhomogeneous broadening of the spin ensemble can suppress the population transfer between the SR and the local NVE. In this context, although the inhomogeneous broadening of the spin ensemble diminishes entanglement among the NVEs, optimal entanglement, characterized by averaging the lower bound of concurrence, could be achieved through accurately adjusting the tunable parameters. PMID:27627994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konno, Kohkichi, E-mail: kohkichi@tomakomai-ct.ac.jp; Nagasawa, Tomoaki, E-mail: nagasawa@tomakomai-ct.ac.jp; Takahashi, Rohta, E-mail: takahashi@tomakomai-ct.ac.jp
We consider the scattering of a quantum particle by two independent, successive parity-invariant point interactions in one dimension. The parameter space for the two point interactions is given by the direct product of two tori, which is described by four parameters. By investigating the effects of the two point interactions on the transmission probability of plane wave, we obtain the conditions for the parameter space under which perfect resonant transmission occur. The resonance conditions are found to be described by symmetric and anti-symmetric relations between the parameters.
Carballido-Gamio, Julio; Krug, Roland; Huber, Markus B; Hyun, Ben; Eckstein, Felix; Majumdar, Sharmila; Link, Thomas M
2009-02-01
In vivo assessment of trabecular bone microarchitecture could improve the prediction of fracture risk and the efficacy of osteoporosis treatment and prevention. Geodesic topological analysis (GTA) is introduced as a novel technique to quantify the trabecular bone microarchitecture from high-spatial resolution magnetic resonance (MR) images. Trabecular bone parameters that quantify the scale, topology, and anisotropy of the trabecular bone network in terms of its junctions are the result of GTA. The reproducibility of GTA was tested with in vivo images of human distal tibiae and radii (n = 6) at 1.5 Tesla; and its ability to discriminate between subjects with and without vertebral fracture was assessed with ex vivo images of human calcanei at 1.5 and 3.0 Tesla (n = 30). GTA parameters yielded an average reproducibility of 4.8%, and their individual areas under the curve (AUC) of the receiver operating characteristic curve analysis for fracture discrimination performed better at 3.0 than at 1.5 Tesla reaching values of up to 0.78 (p < 0.001). Logistic regression analysis demonstrated that fracture discrimination was improved by combining GTA parameters, and that GTA combined with bone mineral density (BMD) allow for better discrimination than BMD alone (AUC = 0.95; p < 0.001). Results indicate that GTA can substantially contribute in studies of osteoporosis involving imaging of the trabecular bone microarchitecture. Copyright 2009 Wiley-Liss, Inc.
On-the-fly Doppler broadening of unresolved resonance region cross sections
Walsh, Jonathan A.; Forget, Benoit; Smith, Kord S.; ...
2017-07-29
In this paper, two methods for computing temperature-dependent unresolved resonance region cross sections on-the-fly within continuous-energy Monte Carlo neutron transport simulations are presented. The first method calculates Doppler broadened cross sections directly from zero-temperature average resonance parameters. In a simulation, at each event that requires cross section values, a realization of unresolved resonance parameters is generated about the desired energy and temperature-dependent single-level Breit-Wigner resonance cross sections are computed directly via the analytical Ψ-x Doppler integrals. The second method relies on the generation of equiprobable cross section magnitude bands on an energy-temperature mesh. Within a simulation, the bands are sampledmore » and interpolated in energy and temperature to obtain cross section values on-the-fly. Both of the methods, as well as their underlying calculation procedures, are verified numerically in extensive code-to-code comparisons. Energy-dependent pointwise cross sections calculated with the newly-implemented procedures are shown to be in excellent agreement with those calculated by a widely-used nuclear data processing code. Relative differences at or below 0.1% are observed. Integral criticality benchmark results computed with the proposed methods are shown to reproduce those computed with a state-of-the-art processed nuclear data library very well. In simulations of fast spectrum systems which are highly-sensitive to the representation of cross section data in the unresolved region, k-eigenvalue and neutron flux spectra differences of <10 pcm and <1.0% are observed, respectively. The direct method is demonstrated to be well-suited to the calculation of reference solutions — against which results obtained with a discretized representation may be assessed — as a result of its treatment of the energy, temperature, and cross section magnitude variables as continuous. Also, because there is no pre-processed data to store (only temperature-independent average resonance parameters) the direct method is very memory-efficient. Typically, only a few kB of memory are needed to store all required unresolved region data for a single nuclide. However, depending on the details of a particular simulation, performing URR cross section calculations on-the-fly can significantly increase simulation times. Alternatively, the method of interpolating equiprobable probability bands is demonstrated to produce results that are as accurate as the direct reference solutions, to within arbitrary precision, with high computational efficiency in terms of memory requirements and simulation time. Analyses of a fast spectrum system show that interpolation on a coarse energy-temperature mesh can be used to reproduce reference k-eigenvalue results obtained with cross sections calculated continuously in energy and directly at an exact temperature to within <10 pcm. Probability band data on a mesh encompassing the range of temperatures relevant to reactor analysis usually require around 100 kB of memory per nuclide. Finally, relative to the case in which probability table data generated at a single, desired temperature are used, minor increases in simulation times are observed when probability band interpolation is employed.« less
Random sampling and validation of covariance matrices of resonance parameters
NASA Astrophysics Data System (ADS)
Plevnik, Lucijan; Zerovnik, Gašper
2017-09-01
Analytically exact methods for random sampling of arbitrary correlated parameters are presented. Emphasis is given on one hand on the possible inconsistencies in the covariance data, concentrating on the positive semi-definiteness and consistent sampling of correlated inherently positive parameters, and on the other hand on optimization of the implementation of the methods itself. The methods have been applied in the program ENDSAM, written in the Fortran language, which from a file from a nuclear data library of a chosen isotope in ENDF-6 format produces an arbitrary number of new files in ENDF-6 format which contain values of random samples of resonance parameters (in accordance with corresponding covariance matrices) in places of original values. The source code for the program ENDSAM is available from the OECD/NEA Data Bank. The program works in the following steps: reads resonance parameters and their covariance data from nuclear data library, checks whether the covariance data is consistent, and produces random samples of resonance parameters. The code has been validated with both realistic and artificial data to show that the produced samples are statistically consistent. Additionally, the code was used to validate covariance data in existing nuclear data libraries. A list of inconsistencies, observed in covariance data of resonance parameters in ENDF-VII.1, JEFF-3.2 and JENDL-4.0 is presented. For now, the work has been limited to resonance parameters, however the methods presented are general and can in principle be extended to sampling and validation of any nuclear data.
Detecting severity of delamination in a lap joint using S-parameters
NASA Astrophysics Data System (ADS)
Islam, M. M.; Huang, H.
2018-03-01
The scattering parameters (S-parameters) represent the frequency response of a two-port linear time-invariant network. Treating a lap joint structure instrumented with two piezoelectric wafer active transducers (PWaTs) as such a network, this paper investigates the application of the S-parameters for detecting the severity of delamination in the lap joint. The pulse-echo signal calculated from the reflection coefficients, namely the S 11 and S 22-parameters, can be divided into three signals, i.e. the excitation, resonant, and echo signals, based on their respective time spans. Analyzing the effects of the delamination on the resonant signal enables us to identify the resonance at which the resonant characteristics of the PWaTs are least sensitive to the delamination. Only at this resonance, we found that the reflection coefficients and the amplitude of the first arrival echo signal changed monotonously with the increase of the delamination length. This discovery is further validated by the time-domain pitch-catch signal calculated from the transmission coefficient (i.e. the S 21-parameter). In addition, comparing the pulse-echo signals obtained from both PWaTs enables us to determine the side of the lap joint that the delamination is located at. This work establishes the S-parameters as an effective tool to evaluate the effects of damage on the PWaT resonant characteristics, based on which the PWaT resonance can be selected judiciously for damage severity detection. Correlating the reflection and transmission coefficients also provide addition validations that increase the detection confidence.
Zhang, Mengliang; Zhao, Yang; Harrington, Peter de B; Chen, Pei
2016-03-01
Two simple fingerprinting methods, flow-injection coupled to ultraviolet spectroscopy and proton nuclear magnetic resonance, were used for discriminating between Aurantii fructus immaturus and Fructus poniciri trifoliatae immaturus . Both methods were combined with partial least-squares discriminant analysis. In the flow-injection method, four data representations were evaluated: total ultraviolet absorbance chromatograms, averaged ultraviolet spectra, absorbance at 193, 205, 225, and 283 nm, and absorbance at 225 and 283 nm. Prediction rates of 100% were achieved for all data representations by partial least-squares discriminant analysis using leave-one-sample-out cross-validation. The prediction rate for the proton nuclear magnetic resonance data by partial least-squares discriminant analysis with leave-one-sample-out cross-validation was also 100%. A new validation set of data was collected by flow-injection with ultraviolet spectroscopic detection two weeks later and predicted by partial least-squares discriminant analysis models constructed by the initial data representations with no parameter changes. The classification rates were 95% with the total ultraviolet absorbance chromatograms datasets and 100% with the other three datasets. Flow-injection with ultraviolet detection and proton nuclear magnetic resonance are simple, high throughput, and low-cost methods for discrimination studies.
Simultaneous Bistability of a Qubit and Resonator in Circuit Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Mavrogordatos, Th. K.; Tancredi, G.; Elliott, M.; Peterer, M. J.; Patterson, A.; Rahamim, J.; Leek, P. J.; Ginossar, E.; Szymańska, M. H.
2017-01-01
We explore the joint activated dynamics exhibited by two quantum degrees of freedom: a cavity mode oscillator which is strongly coupled to a superconducting qubit in the strongly coherently driven dispersive regime. Dynamical simulations and complementary measurements show a range of parameters where both the cavity and the qubit exhibit sudden simultaneous switching between two metastable states. This manifests in ensemble averaged amplitudes of both the cavity and qubit exhibiting a partial coherent cancellation. Transmission measurements of driven microwave cavities coupled to transmon qubits show detailed features which agree with the theory in the regime of simultaneous switching.
Rotation sets and phase-locking in an electronic three oscillator system
NASA Astrophysics Data System (ADS)
Ashwin, Peter; Guaschi, John; Phelps, J. M.
1993-07-01
The parameter space of an electronic three oscillator system is investigated and various codimension one and two bifurcations predicted by Baesens, Guckenheimer, Kim and MacKay are identified. Sampled time-series from the experimental systems are recorded and analysed for partial mode-locking or resonance (one or two independent rational relations between the average rates of change of the angles describing the system) using knowledge of where the invariant torus lies and the torus unfolding scheme of Ashwin and Swift. Examples of toroidal and annular chaos are investigated by finding bounds on the size and shape of the rotation set.
Chirp resonance spectroscopy of single lipid-coated microbubbles using an "acoustical camera".
Renaud, G; Bosch, J G; van der Steen, A F W; de Jong, N
2012-12-01
An acoustical method was developed to study the resonance of single lipid-coated microbubbles. The response of 127 SonoVue microbubbles to a swept sine excitation between 0.5 and 5.5 MHz with a peak acoustic pressure amplitude of 70 kPa was measured by means of a 25 MHz probing wave. The relative amplitude modulation in the signal scattered in response to the probing wave is approximately equal to the radial strain induced by the swept sine excitation. An average damping coefficient of 0.33 and an average resonance frequency of 2.5 MHz were measured. Microbubbles experienced an average peak radial strain of 20%.
Cassini's motions and resonant librations of synchronous satellites of big planets
NASA Astrophysics Data System (ADS)
Barkin, Yu. V.
2008-09-01
Introduction. In the paper the rotations of synchronous satellites of the Jupiter, Saturn, Uran and Neptune are studied. On the base theory of resonant rotation of the rigid satellite on precessing elliptical orbit [1], [2] parameters of Cassini's motions and periods of free resonant librations have been determined for big grope of satellites of planets considered as rigid non-spherical bodies. Here I use observed values of coefficients of second harmonics of gravitational potensials ( 2 J and 22 C ) and of dimension less moment of inertia I = C / ?mr 2 ? of Io, Europa, Ganimede, Callisto and also Rhea and Titan, obtained on the base of data of space missions to these bodies [3]. Here C is the polar moment of inertia, m and r is the mass and the mean radius of satellite. Mentioned parameters 2 J , 22 C and I also have been evaluated for a wide set of another's satellites of big planets for their models as homogeneous ellipsoids of known forms and sizes (www.nasa.gov). These models also have been obtained here effective applications. For corresponding models the notation (e) is used here. For another from considered satellites (without indexes) we use also ellipsoidal models of hydrostatic equilibrium state of synchronous satellite [4]. The full list of discussed parameters for satellites of planets is presented in the paper [5]. Perturbed orbital motions of considered satellites we discribe by mean orbital elements reffered to local Laplacian planes of corresponding satellites ( http://ssd.jpl.nasa. gov/sat_elem. html). From them: the eccentricity ( e ), the inclination of orbit plane ( i ), the mean orbital motion and its period ( n and n T ), the angular velocity and period of preseccion of orbit plane of satellite on local Laplacian plane ( n? and T? ). In our approach all mentioned parameters are considered as constants and more fine effects in orbital motions of satellites do not take into account in this paper. The purpose of paper is to study syncronous motions of satellites in Solar system and for each of them to determine the values of the basic Cassini's parameter 0 ? (it is the average angle of inclination of the axis of rotation relatively to normal of the precessing orbit plane) and the periods of resonant librations in the longitude ( g T ), in the pole wobble ( l T ) and period of space precession ( h T ) (and their errors). Here we use the analytical formulas for mentioned parameters which were developed by study of the Moon Cassini's motion in my early papers [1], [2]. Specially for the case of small eccentricities and inclinations of orbits of synchronous satellites we have obtained the simple reduced formulas for all four considered parameters.
A Bayesian Approach to Period Searching in Solar Coronal Loops
NASA Astrophysics Data System (ADS)
Scherrer, Bryan; McKenzie, David
2017-03-01
We have applied a Bayesian generalized Lomb-Scargle period searching algorithm to movies of coronal loop images obtained with the Hinode X-ray Telescope (XRT) to search for evidence of periodicities that would indicate resonant heating of the loops. The algorithm makes as its only assumption that there is a single sinusoidal signal within each light curve of the data. Both the amplitudes and noise are taken as free parameters. It is argued that this procedure should be used alongside Fourier and wavelet analyses to more accurately extract periodic intensity modulations in coronal loops. The data analyzed are from XRT Observation Program #129C: “MHD Wave Heating (Thin Filters),” which occurred during 2006 November 13 and focused on active region 10293, which included coronal loops. The first data set spans approximately 10 min with an average cadence of 2 s, 2″ per pixel resolution, and used the Al-mesh analysis filter. The second data set spans approximately 4 min with a 3 s average cadence, 1″ per pixel resolution, and used the Al-poly analysis filter. The final data set spans approximately 22 min at a 6 s average cadence, and used the Al-poly analysis filter. In total, 55 periods of sinusoidal coronal loop oscillations between 5.5 and 59.6 s are discussed, supporting proposals in the literature that resonant absorption of magnetic waves is a viable mechanism for depositing energy in the corona.
A Bayesian Approach to Period Searching in Solar Coronal Loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherrer, Bryan; McKenzie, David
2017-03-01
We have applied a Bayesian generalized Lomb–Scargle period searching algorithm to movies of coronal loop images obtained with the Hinode X-ray Telescope (XRT) to search for evidence of periodicities that would indicate resonant heating of the loops. The algorithm makes as its only assumption that there is a single sinusoidal signal within each light curve of the data. Both the amplitudes and noise are taken as free parameters. It is argued that this procedure should be used alongside Fourier and wavelet analyses to more accurately extract periodic intensity modulations in coronal loops. The data analyzed are from XRT Observation Programmore » 129C: “MHD Wave Heating (Thin Filters),” which occurred during 2006 November 13 and focused on active region 10293, which included coronal loops. The first data set spans approximately 10 min with an average cadence of 2 s, 2″ per pixel resolution, and used the Al-mesh analysis filter. The second data set spans approximately 4 min with a 3 s average cadence, 1″ per pixel resolution, and used the Al-poly analysis filter. The final data set spans approximately 22 min at a 6 s average cadence, and used the Al-poly analysis filter. In total, 55 periods of sinusoidal coronal loop oscillations between 5.5 and 59.6 s are discussed, supporting proposals in the literature that resonant absorption of magnetic waves is a viable mechanism for depositing energy in the corona.« less
Chaos-Assisted Quantum Tunneling and Delocalization Caused by Resonance or Near-Resonance
NASA Astrophysics Data System (ADS)
Liang, Danfu; Zhang, Jiawei; Zhang, Xili
2018-05-01
We investigate the quantum transport of a single particle trapped in a tilted optical lattice modulated with periodical delta kicks, and attempt to figure out the relationship between chaos and delocalization or quantum tunneling. We illustrate some resonant parameter lines existing in both chaotic and regular parameter regions, and discover the velocity of delocalization of particle tends to faster in the resonant line as well as the lines in which the lattice tilt is an integral multiple n of tilt driving frequency in chaotic region. While the degree of localization is linked to the distance between parameter points and resonant lines. Those useful results can be experimentally applied to control chaos-assisted transport of single particle held in optical lattices.
Unal, Ozkan; Kartum, Alp; Avcu, Serhat; Etlik, Omer; Arslan, Halil; Bora, Aydin
2009-12-01
The aim of this study was cerebrospinal flow quantification in the cerebral aqueduct using cine phase-contrast magnetic resonance imaging (MRI) technique in both sexes and five different age groups to provide normative data. Sixty subjects with no cerebral pathology were included in this study. Subjects were divided into five age groups: < or =14 years, 15-24 years, 25-34 years, 35-44 years, and > or =45 years. Phase, rephase, and magnitude images were acquired by 1.5 T MR unit at the level of cerebral aqueduct with spoiled gradient echo through-plane, which is a cine phase-contrast sequence. At this level, peak flow velocity (cm/s), average flow rate (cm/ s), average flow (L/min), volumes in cranial and caudal directions (mL), and net volumes (mL) were studied. There was a statistically significant difference in peak flow between the age group of < or =14 years and the older age groups. There were no statistically significant differences in average velocity, cranial and caudal volume, net volume, and average flow parameters among different age groups. Statistically significant differences were not detected in flow parameters between sexes. When using cine-phase contrast MRI in the cerebral aqueduct, only the peak velocity showed a statistically significant difference between age groups; it was higher in subjects aged < or =14 years than those in older age groups. When performing age-dependent clinical studies including adolescents, this should be taken into consideration.
Sheriff, Mohammed J; Mouline, Omar; Hsu, Chijen; Grieve, Stuart M; Wilson, Michael K; Bannon, Paul G; Vallely, Michael P; Puranik, Rajesh
2016-06-01
The euroSCORE II is a widely used pre-coronary artery bypass graft surgery (CAGS) risk score, but its predictive power lacks the specificity to predict outcomes in high-risk patients (
Hartwein, J
1992-09-01
The acoustic resonance of a severely altered outer ear channel (radical mastoid cavity) is investigated in a series of 18 patients who underwent revision surgery by means of in-situ measurements of the sound-pressure-level near the tympanic membrane. While the average volume of the open cavity differs from the normal ear channel for the factor 2.5, the size of the external meatus is--in average--only 20% larger. This leads to an average frequency in patients with open cavity of 1939 Hz, more than 1000 Hz less than in a series (n = 20) of normal ears (average resonance frequency: 2942 Hz). The altered acoustic behaviour of the open cavity leads to partial extensive discrepancies of the resonance-caused sound-pressure augmentation in the frequencies of 3 and 4 kHz, which are important for speech perception. The average difference is more than 10 dB (SPL). Proved surgical techniques of cavity obliteration and meatoplasty can lead to a nearly normalized acoustic behaviour of the outer ear in a statistic significant way. Due to these surgical procedures, an average postoperative resonance frequency of 2421 Hz could be reached in our patients. Especially, the resonance-caused sound-pressure augmentation in 3-4 kHz could nearly be equalized to such of a normal outer ear. Differences in the acoustic behaviour of the outer ear as can be found between patients with an open mastoid cavity and normal ears can almost be eliminated surgically.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Frigenti, G.; Arjmand, M.; Barucci, A.; Baldini, F.; Berneschi, S.; Farnesi, D.; Gianfreda, M.; Pelli, S.; Soria, S.; Aray, A.; Dumeige, Y.; Féron, P.; Nunzi Conti, G.
2018-06-01
An original method able to fully characterize high-Q resonators in an add-drop configuration has been implemented. The method is based on the study of two cavity ringdown (CRD) signals, which are produced at the transmission and drop ports by wavelength sweeping a resonance in a time interval comparable with the photon cavity lifetime. All the resonator parameters can be assessed with a single set of simultaneous measurements. We first developed a model describing the two CRD output signals and a fitting program able to deduce the key parameters from the measured profiles. We successfully validated the model with an experiment based on a fiber ring resonator of known characteristics. Finally, we characterized a high-Q, home-made, MgF2 whispering gallery mode disk resonator in the add-drop configuration, assessing its intrinsic and coupling parameters.
NASA Astrophysics Data System (ADS)
Rauf, N.; Alam, D. Y.; Jamaluddin, M.; Samad, B. A.
2018-03-01
The Magnetic Resonance Imaging (MRI) is a medical imaging technique that uses the interaction between the magnetic field and the nuclear spins. MRI can be used to show disparity of pathology by transversal relaxation time (T2) weighted images. Some techniques for producing T2-weighted images are Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) and Fluid Attenuated Inversion Recovery (FLAIR). A comparison of T2 PROPELLER and T2 FLAIR parameters in MRI image has been conducted. And improve Image Quality the image by using RadiAnt DICOM Viewer and ENVI software with method of image segmentation and Region of Interest (ROI). Brain images were randomly selected. The result of research showed that Time Repetition (TR) and Time Echo (TE) values in all types of images were not influenced by age. T2 FLAIR images had longer TR value (9000 ms), meanwhile T2 PROPELLER images had longer TE value (100.75 - 102.1 ms). Furthermore, areas with low and medium signal intensity appeared clearer by using T2 PROPELLER images (average coefficients of variation for low and medium signal intensity were 0.0431 and 0.0705, respectively). As for areas with high signal intensity appeared clearer by using T2 FLAIR images (average coefficient of variation was 0.0637).
A COMBINATION OF PRELIMINARY ELECTROWEAK MEASUREMENTS AND CONSTRAINTS ONTHE STANDARD MODEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowson, Peter C.
2002-09-12
This note presents a combination of published and preliminary electroweak results from the four LEP collaborations and the SLD collaboration which were prepared for the 2001 summer conferences. Averages from Z resonance results are derived for hadronic and leptonic cross sections, the leptonic forward-backward asymmetries, the {tau} polarization asymmetries, the b{bar b} and c{bar c} partial widths and forward-backward asymmetries and the qq charge asymmetry. Above the Z resonance, averages are derived for di-fermion cross sections and forward-backward asymmetries, W-pair, Z-pair and single-W production cross section, electroweak gauge boson couplings, W mass and width and W decay branching ratios. Formore » the first time, total and differential cross sections for di-photon production are combined. The main changes with respect to the experimental results presented in summer 2000 are updates to the Z-pole heavy flavour results from SLD and LEP and to the W mass from LEP. The results are compared with precise electroweak measurements from other experiments. Using a new evaluation of the hadronic vacuum polarization, the parameters of the Standard Model are evaluated, first using the combined LEP electroweak measurements, and then using the full set of electroweak results.« less
NASA Technical Reports Server (NTRS)
Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.
2012-01-01
We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.
NASA Astrophysics Data System (ADS)
Mokem Fokou, I. S.; Nono Dueyou Buckjohn, C.; Siewe Siewe, M.; Tchawoua, C.
2018-03-01
In this manuscript, a hybrid energy harvesting system combining piezoelectric and electromagnetic transduction and subjected to colored noise is investigated. By using the stochastic averaging method, the stationary probability density functions of amplitudes are obtained and reveal interesting dynamics related to the long term behavior of the device. From stationary probability densities, we discuss the stochastic bifurcation through the qualitative change which shows that noise intensity, correlation time and other system parameters can be treated as bifurcation parameters. Numerical simulations are made for a comparison with analytical findings. The Mean first passage time (MFPT) is numerical provided in the purpose to investigate the system stability. By computing the Mean residence time (TMR), we explore the stochastic resonance phenomenon; we show how it is related to the correlation time of colored noise and high output power.
NASA Astrophysics Data System (ADS)
Li, Xia; Welch, E. Brian; Arlinghaus, Lori R.; Bapsi Chakravarthy, A.; Xu, Lei; Farley, Jaime; Loveless, Mary E.; Mayer, Ingrid A.; Kelley, Mark C.; Meszoely, Ingrid M.; Means-Powell, Julie A.; Abramson, Vandana G.; Grau, Ana M.; Gore, John C.; Yankeelov, Thomas E.
2011-09-01
Quantitative analysis of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data requires the accurate determination of the arterial input function (AIF). A novel method for obtaining the AIF is presented here and pharmacokinetic parameters derived from individual and population-based AIFs are then compared. A Philips 3.0 T Achieva MR scanner was used to obtain 20 DCE-MRI data sets from ten breast cancer patients prior to and after one cycle of chemotherapy. Using a semi-automated method to estimate the AIF from the axillary artery, we obtain the AIF for each patient, AIFind, and compute a population-averaged AIF, AIFpop. The extended standard model is used to estimate the physiological parameters using the two types of AIFs. The mean concordance correlation coefficient (CCC) for the AIFs segmented manually and by the proposed AIF tracking approach is 0.96, indicating accurate and automatic tracking of an AIF in DCE-MRI data of the breast is possible. Regarding the kinetic parameters, the CCC values for Ktrans, vp and ve as estimated by AIFind and AIFpop are 0.65, 0.74 and 0.31, respectively, based on the region of interest analysis. The average CCC values for the voxel-by-voxel analysis are 0.76, 0.84 and 0.68 for Ktrans, vp and ve, respectively. This work indicates that Ktrans and vp show good agreement between AIFpop and AIFind while there is a weak agreement on ve.
NASA Astrophysics Data System (ADS)
Alexander, LYSENKO; Iurii, VOLK
2018-03-01
We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.
NASA Astrophysics Data System (ADS)
Wu, R. Q.; Zhang, W.; Yao, M. H.
2018-02-01
In this paper, we analyze the complicated nonlinear dynamics of rotor-active magnetic bearings (rotor-AMB) with 16-pole legs and the time varying stiffness. The magnetic force with 16-pole legs is obtained by applying the electromagnetic theory. The governing equation of motion for rotor-active magnetic bearings is derived by using the Newton's second law. The resulting dimensionless equation of motion for the rotor-AMB system is expressed as a two-degree-of-freedom nonlinear system including the parametric excitation, quadratic and cubic nonlinearities. The averaged equation of the rotor-AMB system is obtained by using the method of multiple scales when the primary parametric resonance and 1/2 subharmonic resonance are taken into account. From the frequency-response curves, it is found that there exist the phenomena of the soft-spring type nonlinearity and the hardening-spring type nonlinearity in the rotor-AMB system. The effects of different parameters on the nonlinear dynamic behaviors of the rotor-AMB system are investigated. The numerical results indicate that the periodic, quasi-periodic and chaotic motions occur alternately in the rotor-AMB system.
Effects of fish with swim bladders on absorption and scintillation
NASA Astrophysics Data System (ADS)
Diachok, Orest
2004-10-01
Bioacoustic absorption spectroscopy (BAS) experiments, which were conducted in the Santa Barbara Channel in 2001 and 2002, were designed to investigate the effects of fish with swim bladders on absorption and scintillation. These experiments included a broadband source, which transmitted a sequence of 65-s-long tones between 0.25 and 10 kHz, and a vertical array which spanned most of the water column. The range was fixed. A fisheries echo sounder and trawls provided bio-acoustic parameters. Strongest absorption lines and highest values of the scintillation index were observed at night at about 1.1 kHz, the resonance frequency of 15 cm long sardines, when they were dispersed at an average depth of 13 m. Smaller absorption lines were correlated with other species. During the day sardines occupied a depth of about 50 m, where their extinction cross sections were diminished; some were dispersed and resonated at the frequency of individuals; others formed schools and resonated at collective frequencies. As a result of these phenomena, absorption lines due to sardines were much weaker, and the effect of this species on the scintillation index was not evident. [Work was supported by ONR.
Sphericity determination using resonant ultrasound spectroscopy
Dixon, Raymond D.; Migliori, Albert; Visscher, William M.
1994-01-01
A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a "best" spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere.
Sphericity determination using resonant ultrasound spectroscopy
Dixon, R.D.; Migliori, A.; Visscher, W.M.
1994-10-18
A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a 'best' spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere. 14 figs.
Fundamental properties of resonances
Ceci, S.; Hadžimehmedović, M.; Osmanović, H.; Percan, A.; Zauner, B.
2017-01-01
All resonances, from hydrogen nuclei excited by the high-energy gamma rays in deep space to newly discovered particles produced in Large Hadron Collider, should be described by the same fundamental physical quantities. However, two distinct sets of properties are used to describe resonances: the pole parameters (complex pole position and residue) and the Breit-Wigner parameters (mass, width, and branching fractions). There is an ongoing decades-old debate on which one of them should be abandoned. In this study of nucleon resonances appearing in the elastic pion-nucleon scattering we discover an intricate interplay of the parameters from both sets, and realize that neither set is completely independent or fundamental on its own. PMID:28345595
Spinors fields in co-dimension one braneworlds
NASA Astrophysics Data System (ADS)
Mendes, W. M.; Alencar, G.; Landim, R. R.
2018-02-01
In this work we analyze the zero mode localization and resonances of 1/2-spin fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-like, domain walls and deformed domain walls membranes. Beyond the influence of the spacetime dimension D we also consider three types of couplings: (i) the standard Yukawa coupling with the scalar field and parameter η 1, (ii) a Yukawa-dilaton coupling with two parameters η 2 and λ and (iii) a dilaton derivative coupling with parameter h. Together with the deformation parameter s, we end up with five free parameter to be considered. For the zero mode we find that the localization is dependent of D, because the spinorial representation changes when the bulk dimensionality is odd or even and must be treated separately. For case (i) we find that in odd dimensions only one chirality can be localized and for even dimension a massless Dirac spinor is trapped over the brane. In the cases (ii) and (iii) we find that for some values of the parameters, both chiralities can be localized in odd dimensions and for even dimensions we obtain that the massless Dirac spinor is trapped over the brane. We also calculated numerically resonances for cases (ii) and (iii) by using the transfer matrix method. We find that, for deformed defects, the increasing of D induces a shift in the peaks of resonances. For a given λ with domain walls, we find that the resonances can show up by changing the spacetime dimensionality. For example, the same case in D = 5 do not induces resonances but when we consider D = 10 one peak of resonance is found. Therefore the introduction of more dimensions, diversely from the bosonic case, can change drastically the zero mode and resonances in fermion fields.
Neutron cross sections. Volume I. Resonance parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mughabghab, S.F.; Garber, D.I.
1973-06-01
In contrast to earlier editions, which presented in compact form a summary of the complete store of the neutron data files, this edition aims to provide those portions of neutron data considered to be of prime importance and best suited for inclusion in ready reference form. This volume contains thermal cross sections, resonance properties, resonance parameters, and bibliography for nuclides from H to /sup 257/Fm. Notation and nomenclature, considerations involved in the recommendations, and a table of energyordered resonances are also included. (RWR)
Diffusion by one wave and by many waves
NASA Astrophysics Data System (ADS)
Albert, J. M.
2010-03-01
Radiation belt electrons and chorus waves are an outstanding instance of the important role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus waves are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic waves can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and wave normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus waves.
Gökşen, Nurgül; Çaliş, Mustafa; Doğan, Serap; Çaliş, Havva T; Özgöçmen, Salih
2016-08-01
Therapeutic nuclear magnetic resonance therapy (MRT) works based on the electromagnetic fields. To investigate efficacy of MRT in knee osteoarthritis (OA). Prospective, randomized, double-blind, placebo controlled trial. Outpatient clinic, university hospital. Patients who had mild to moderate knee OA at a single knee joint and between 30-75-years-old were randomized by blinded chip cards (1:1). The treatment group received ten sessions of one hour daily MRT, controls received placebo MRT. All patients underwent clinical examination at baseline, after 2 weeks, and 12 weeks. Imaging included blindly assessed ultrasonography and magnetic resonance (MR) of the knee. Ninety-seven patients completed the study. Both groups improved significantly but the average change from baseline in outcome parameters was similar in MRT group (on VAS-pain,-2.6; WOMAC-pain, -2.09; WOMAC-stiffness, -1.81; WOMAC-physical, -1.96) compared to placebo after two weeks (VAS-pain,-1.6; WOMAC-pain, -1.91; WOMAC-stiffness, -1.27; WOMAC-physical, -1.54). Also changes were quite similar at the 12th week after the treatment. SF-36 components at 12th week improved but changes were not significant. Imaging arm also failed to show significant differences between groups in terms of cartilage thickness on US and MR scores. No adverse events were recorded. MRT is safe, but not superior to placebo in terms of improvement in clinical or imaging parameters after a 10-day course of treatment in mild to moderate knee OA. The present study does not promote use of a 10-day course of MRT in mild to moderate knee OA.
''Reading'' the photoelectron {beta}-parameter spectrum in a resonance region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolmatov, V. K.; Guler, E.; Manson, S. T.
2007-09-15
The behavior of the dipole photoelectron angular distribution parameter {beta}{sub nl}({omega}) in the vicinity of autoionizing resonances is discussed. It is shown that from this behavior, surprisingly, many photoionization parameters that cannot be measured experimentally can be extracted. These are the energy positions and ordering of autoionizing resonance minima in the partial photoionization cross sections {sigma}{sub l+1} and {sigma}{sub l-1}, the energies at which these two cross sections intersect, and signs and magnitudes of the cos({delta}{sub l+1}-{delta}{sub l-1}) ({delta}{sub l{+-}}{sub 1} being the phase shifts of the dipole photoionization amplitudes D{sub l{+-}}{sub 1}, respectively) through the autoionizing resonance energy region.more » Based on this, a deeper interpretation of such effects as the width-narrowing, width-fluctuating, and q-reversal in the {beta}{sub nl} parameter spectrum in the autoionizing resonance energy region is given. As an example, calculated data for partial photoionization cross sections {sigma}{sub 3d{r_reversible}}{sub f} and {sigma}{sub 3d{r_reversible}}{sub p}, and {beta}{sub 3d} parameters for 3d photoelectrons from Cr{sup +} are presented.« less
Single-level resonance parameters fit nuclear cross-sections
NASA Technical Reports Server (NTRS)
Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.
1970-01-01
Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.
NASA Astrophysics Data System (ADS)
Styk, Adam
2014-07-01
Classical time-averaging and stroboscopic interferometry are widely used for MEMS/MOEMS dynamic behavior investigations. Unfortunately both methods require an amplitude magnitude of at least 0.19λ to be able to detect resonant frequency of the object. Moreover the precision of measurement is limited. That puts strong constrains on the type of element to be tested. In this paper the comparison of two methods of microobject vibration measurements that overcome aforementioned problems are presented. Both methods maintain high speed measurement time and extend the range of amplitudes to be measured (below 0.19λ), moreover can be easily applied to MEMS/MOEMS dynamic parameters measurements.
n+235U resonance parameters and neutron multiplicities in the energy region below 100 eV
NASA Astrophysics Data System (ADS)
Pigni, Marco T.; Capote, Roberto; Trkov, Andrej; Pronyaev, Vladimir G.
2017-09-01
In August 2016, following the recent effort within the Collaborative International Evaluated Library Organization (CIELO) pilot project to improve the neutron cross sections of 235U, Oak Ridge National Laboratory (ORNL) collaborated with the International Atomic Energy Agency (IAEA) to release a resonance parameter evaluation. This evaluation restores the performance of the evaluated cross sections for the thermal- and above-thermal-solution benchmarks on the basis of newly evaluated thermal neutron constants (TNCs) and thermal prompt fission neutron spectra (PFNS). Performed with support from the US Nuclear Criticality Safety Program (NCSP) in an effort to provide the highest fidelity general purpose nuclear database for nuclear criticality applications, the resonance parameter evaluation was submitted as an ENDF-compatible file to be part of the next release of the ENDF/B-VIII.0 nuclear data library. The resonance parameter evaluation methodology used the Reich-Moore approximation of the R-matrix formalism implemented in the code SAMMY to fit the available time-of-flight (TOF) measured data for the thermal induced cross section of n+235U up to 100 eV. While maintaining reasonably good agreement with the experimental data, the validation analysis focused on restoring the benchmark performance for 235U solutions by combining changes to the resonance parameters and to the prompt resonance v̅ below 100 eV.
TALYS/TENDL verification and validation processes: Outcomes and recommendations
NASA Astrophysics Data System (ADS)
Fleming, Michael; Sublet, Jean-Christophe; Gilbert, Mark R.; Koning, Arjan; Rochman, Dimitri
2017-09-01
The TALYS-generated Evaluated Nuclear Data Libraries (TENDL) provide truly general-purpose nuclear data files assembled from the outputs of the T6 nuclear model codes system for direct use in both basic physics and engineering applications. The most recent TENDL-2015 version is based on both default and adjusted parameters of the most recent TALYS, TAFIS, TANES, TARES, TEFAL, TASMAN codes wrapped into a Total Monte Carlo loop for uncertainty quantification. TENDL-2015 contains complete neutron-incident evaluations for all target nuclides with Z ≤116 with half-life longer than 1 second (2809 isotopes with 544 isomeric states), up to 200 MeV, with covariances and all reaction daughter products including isomers of half-life greater than 100 milliseconds. With the added High Fidelity Resonance (HFR) approach, all resonances are unique, following statistical rules. The validation of the TENDL-2014/2015 libraries against standard, evaluated, microscopic and integral cross sections has been performed against a newly compiled UKAEA database of thermal, resonance integral, Maxwellian averages, 14 MeV and various accelerator-driven neutron source spectra. This has been assembled using the most up-to-date, internationally-recognised data sources including the Atlas of Resonances, CRC, evaluated EXFOR, activation databases, fusion, fission and MACS. Excellent agreement was found with a small set of errors within the reference databases and TENDL-2014 predictions.
NASA Astrophysics Data System (ADS)
Yang, Tao; Cao, Qingjie
2018-03-01
This work presents analytical studies of the stiffness nonlinearities SD (smooth and discontinuous) oscillator under displacement and velocity feedback control with a time delay. The SD oscillator can capture the qualitative characteristics of quasi-zero-stiffness and negative-stiffness. We focus mainly on the primary resonance of the quasi-zero-stiffness SD oscillator and the stochastic resonance (SR) of the negative-stiffness SD oscillator. Using the averaging method, we have been analyzed the amplitude response of the quasi-zero-stiffness SD oscillator. In this regard, the optimum time delay for changing the control intensity according to the optimization standard proposed can be obtained. For the optimum time delay, increasing the displacement feedback intensity is advantageous to suppress the vibrations in resonant regime where vibration isolation is needed, however, increasing the velocity feedback intensity is advantageous to strengthen the vibrations. Moreover, the effects of time-delayed feedback on the SR of the negative-stiffness SD oscillator are investigated under harmonic forcing and Gaussian white noise, based on the Langevin and Fokker-Planck approaches. The time-delayed feedback can enhance the SR phenomenon where vibrational energy harvesting is needed. This paper established the relationship between the parameters and vibration properties of a stiffness nonlinearities SD which provides the guidance for optimizing time-delayed control for vibration isolation and vibrational energy harvesting of the nonlinear systems.
Turek, Jan; Braïda, Benoît; De Proft, Frank
2017-10-17
The bonding in heavier Group 14 zero-valent complexes of a general formula L 2 E (E=Si-Pb; L=phosphine, N-heterocyclic and acyclic carbene, cyclic tetrylene and carbon monoxide) is probed by combining valence bond (VB) theory and maximum probability domain (MPD) approaches. All studied complexes are initially evaluated on the basis of the structural parameters and the shape of frontier orbitals revealing a bent structural motif and the presence of two lone pairs at the central E atom. For the VB calculations three resonance structures are suggested, representing the "ylidone", "ylidene" and "bent allene" structures, respectively. The influence of both ligands and central atoms on the bonding situation is clearly expressed in different weights of the resonance structures for the particular complexes. In general, the bonding in the studied E 0 compounds, the tetrylones, is best described as a resonating combination of "ylidone" and "ylidene" structures with a minor contribution of the "bent allene" structure. Moreover, the VB calculations allow for a straightforward assessment of the π-backbonding (E→L) stabilization energy. The validity of the suggested resonance model is further confirmed by the complementary MPD calculations focusing on the E lone pair region as well as the E-L bonding region. Likewise, the MPD method reveals a strong influence of the σ-donating and π-accepting properties of the ligand. In particular, either one single domain or two symmetrical domains are found in the lone pair region of the central atom, supporting the predominance of either the "ylidene" or "ylidone" structures having one or two lone pairs at the central atom, respectively. Furthermore, the calculated average populations in the lone pair MPDs correlate very well with the natural bond orbital (NBO) populations, and can be related to the average number of electrons that is backdonated to the ligands. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mean motion resonances. [of asteroid belt structure
NASA Technical Reports Server (NTRS)
Froeschle, CL.; Greenberg, R.
1989-01-01
Recent research on the resonant structure of the asteroid belt is reviewed. The resonant mechanism is discussed, and analytical models for the study of mean motion resonances are examined. Numerical averaging methods and mapping methods are considered. It is shown how fresh insight can be obtained by means of a new semianalytical approach.
Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian
2016-01-01
Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields. PMID:27156575
Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations.
Bottaro, Sandro; Bussi, Giovanni; Kennedy, Scott D; Turner, Douglas H; Lindorff-Larsen, Kresten
2018-05-01
RNA molecules are key players in numerous cellular processes and are characterized by a complex relationship between structure, dynamics, and function. Despite their apparent simplicity, RNA oligonucleotides are very flexible molecules, and understanding their internal dynamics is particularly challenging using experimental data alone. We show how to reconstruct the conformational ensemble of four RNA tetranucleotides by combining atomistic molecular dynamics simulations with nuclear magnetic resonance spectroscopy data. The goal is achieved by reweighting simulations using a maximum entropy/Bayesian approach. In this way, we overcome problems of current simulation methods, as well as in interpreting ensemble- and time-averaged experimental data. We determine the populations of different conformational states by considering several nuclear magnetic resonance parameters and point toward properties that are not captured by state-of-the-art molecular force fields. Although our approach is applied on a set of model systems, it is fully general and may be used to study the conformational dynamics of flexible biomolecules and to detect inaccuracies in molecular dynamics force fields.
Wu, Hongpeng; Dong, Lei; Zheng, Huadan; Yu, Yajun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang; Tittel, Frank K.
2017-01-01
Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a sensitive gas detection technique which requires frequent calibration and has a long response time. Here we report beat frequency (BF) QEPAS that can be used for ultra-sensitive calibration-free trace-gas detection and fast spectral scan applications. The resonance frequency and Q-factor of the quartz tuning fork (QTF) as well as the trace-gas concentration can be obtained simultaneously by detecting the beat frequency signal generated when the transient response signal of the QTF is demodulated at its non-resonance frequency. Hence, BF-QEPAS avoids a calibration process and permits continuous monitoring of a targeted trace gas. Three semiconductor lasers were selected as the excitation source to verify the performance of the BF-QEPAS technique. The BF-QEPAS method is capable of measuring lower trace-gas concentration levels with shorter averaging times as compared to conventional PAS and QEPAS techniques and determines the electrical QTF parameters precisely. PMID:28561065
Selective Screening of High Temperature Superconductors by Resonant Eddy Current Analysis
1990-11-01
observable electronic parameters are both stable and well defined. Further, if the circuit possesses a resonance , then it has well characterized parameters and...Engineers Construction Engineering Research Laboratory - AD-A230 194 Selective Screening of High Temperature Superconductors by Resonant Eddy Current...electrical systems or electronic components from the effects of unwanted electromagnetic energy. With the discovery of High Transition Critical Temperature
Sub-poissonian photon statistics in the coherent state Jaynes-Cummings model in non-resonance
NASA Astrophysics Data System (ADS)
Zhang, Jia-tai; Fan, An-fu
1992-03-01
We study a model with a two-level atom (TLA) non-resonance interacting with a single-mode quantized cavity field (QCF). The photon number probability function, the mean photon number and Mandel's fluctuation parameter are calculated. The sub-Poissonian distributions of the photon statistics are obtained in non-resonance interaction. This statistical properties are strongly dependent on the detuning parameters.
Umanodan, Tomokazu; Fukukura, Yoshihiko; Kumagae, Yuichi; Shindo, Toshikazu; Nakajo, Masatoyo; Takumi, Koji; Nakajo, Masanori; Hakamada, Hiroto; Umanodan, Aya; Yoshiura, Takashi
2017-04-01
To determine the diagnostic performance of apparent diffusion coefficient (ADC) histogram analysis in diffusion-weighted (DW) magnetic resonance imaging (MRI) for differentiating adrenal adenoma from pheochromocytoma. We retrospectively evaluated 52 adrenal tumors (39 adenomas and 13 pheochromocytomas) in 47 patients (21 men, 26 women; mean age, 59.3 years; range, 16-86 years) who underwent DW 3.0T MRI. Histogram parameters of ADC (b-values of 0 and 200 [ADC 200 ], 0 and 400 [ADC 400 ], and 0 and 800 s/mm 2 [ADC 800 ])-mean, variance, coefficient of variation (CV), kurtosis, skewness, and entropy-were compared between adrenal adenomas and pheochromocytomas, using the Mann-Whitney U-test. Receiver operating characteristic (ROC) curves for the histogram parameters were generated to differentiate adrenal adenomas from pheochromocytomas. Sensitivity and specificity were calculated by using a threshold criterion that would maximize the average of sensitivity and specificity. Variance and CV of ADC 800 were significantly higher in pheochromocytomas than in adrenal adenomas (P < 0.001 and P = 0.001, respectively). With all b-value combinations, the entropy of ADC was significantly higher in pheochromocytomas than in adrenal adenomas (all P ≤ 0.001), and showed the highest area under the ROC curve among the ADC histogram parameters for diagnosing adrenal adenomas (ADC 200 , 0.82; ADC 400 , 0.87; and ADC 800 , 0.92), with sensitivity of 84.6% and specificity of 84.6% (cutoff, ≤2.82) with ADC 200 ; sensitivity of 89.7% and specificity of 84.6% (cutoff, ≤2.77) with ADC 400 ; and sensitivity of 94.9% and specificity of 92.3% (cutoff, ≤2.67) with ADC 800 . ADC histogram analysis of DW MRI can help differentiate adrenal adenoma from pheochromocytoma. 3 J. Magn. Reson. Imaging 2017;45:1195-1203. © 2016 International Society for Magnetic Resonance in Medicine.
Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences.
Gupta, Vikas; Hendriks, Emile A; Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F
2010-11-01
Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.
van Baalen, Sophie; Leemans, Alexander; Dik, Pieter; Lilien, Marc R; Ten Haken, Bennie; Froeling, Martijn
2017-07-01
To evaluate if a three-component model correctly describes the diffusion signal in the kidney and whether it can provide complementary anatomical or physiological information about the underlying tissue. Ten healthy volunteers were examined at 3T, with T 2 -weighted imaging, diffusion tensor imaging (DTI), and intravoxel incoherent motion (IVIM). Diffusion tensor parameters (mean diffusivity [MD] and fractional anisotropy [FA]) were obtained by iterative weighted linear least squares fitting of the DTI data and mono-, bi-, and triexponential fit parameters (D 1 , D 2 , D 3 , f fast2 , f fast3 , and f interm ) using a nonlinear fit of the IVIM data. Average parameters were calculated for three regions of interest (ROIs) (cortex, medulla, and rest) and from fiber tractography. Goodness of fit was assessed with adjusted R 2 ( Radj2) and the Shapiro-Wilk test was used to test residuals for normality. Maps of diffusion parameters were also visually compared. Fitting the diffusion signal was feasible for all models. The three-component model was best able to describe fast signal decay at low b values (b < 50), which was most apparent in Radj2 of the ROI containing high diffusion signals (ROI rest ), which was 0.42 ± 0.14, 0.61 ± 0.11, 0.77 ± 0.09, and 0.81 ± 0.08 for DTI, one-, two-, and three-component models, respectively, and in visual comparison of the fitted and measured S 0 . None of the models showed significant differences (P > 0.05) between the diffusion constant of the medulla and cortex, whereas the f fast component of the two and three-component models were significantly different (P < 0.001). Triexponential fitting is feasible for the diffusion signal in the kidney, and provides additional information. 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:228-239. © 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Tyler, R.
2017-12-01
Resonant tidal excitation of an atmosphere will arrive in predictable situations where there is a match in form and frequency between tidal forces and the atmosphere's eigenmodes of oscillation. The resonant response is typically several orders of magnitude more energetic than in non-resonant configurations involving only slight differences in parameters, and the behavior can be quite different because different oscillation modes are favored in each. The work presented provides first a generic description of these resonant states by demonstrating the behavior of solutions within the very large parameter space of potential scenarios. This generic description of the range of atmospheric tidal response scenarios is further used to create a taxonomy for organizing and understanding various tidally driven dynamic regimes. The resonances are easily identified by associated peaks in the power. But because these peaks may be relatively narrow, millions of solutions can be required to complete the description of the solution's dependence over the range of parameter values. (Construction of these large solution spaces is performed using a fast, semi-analytical method that solves the forced, dissipative, Laplace Tidal Equations subject to the constraint of dynamical consistency (through a separation constant) with solutions describing the vertical structure.) Filling in the solution space in this way is used not only to locate the parameter coordinates of resonant scenarios but also to study allowed migration paths through this space. It is suggested that resonant scenarios do not arrive through happenstance but rather because secular variations in parameters make the configuration move into the resonant scenario, with associated feedbacks either accelerating or halting the configuration migration. These results are then used to show strong support for the hypothesis by R. Lindzen that the regular banding (belts/zones/jets) on Jupiter and Saturn are driven by tides. The results also provide important, though less specific, support for a second hypothesis that inflated atmospheres inferred for a number of giant extra-solar planets are due to thermal or gravitational tides.
Measurement of time-dependent CP violation in B 0 → η'K 0 decays
Šantelj, L.; Yusa, Y.; Abdesselam, A.; ...
2014-10-29
We present a measurement of the time-dependent CP violation parameters in B 0 → η'K 0 decays. The measurement is based on the full data sample containing 772×10 6 BB-bar pairs collected at the Υ(4S) resonance using the Belle detector at the KEKB asymmetric-energy e +e - collider. The measured values of the mixing-induced and direct CP violation parameters are: sin 2φ 1 eff = +0.68 ± 0.07 ± 0.03, A η'K0 = +0.03 ± 0.05 ± 0.04, where the first uncertainty is statistical and the second is systematic. The values obtained are the most accurate to date. Furthermore, thesemore » results are consistent with our previous measurements and with the world-average value of sin 2φ 1 measured in B 0 → J/ψK 0 decays.« less
Measurement of time-dependent CP violation in B 0 → η'K 0 decays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Šantelj, L.; Yusa, Y.; Abdesselam, A.
We present a measurement of the time-dependent CP violation parameters in B 0 → η'K 0 decays. The measurement is based on the full data sample containing 772×10 6 BB-bar pairs collected at the Υ(4S) resonance using the Belle detector at the KEKB asymmetric-energy e +e - collider. The measured values of the mixing-induced and direct CP violation parameters are: sin 2φ 1 eff = +0.68 ± 0.07 ± 0.03, A η'K0 = +0.03 ± 0.05 ± 0.04, where the first uncertainty is statistical and the second is systematic. The values obtained are the most accurate to date. Furthermore, thesemore » results are consistent with our previous measurements and with the world-average value of sin 2φ 1 measured in B 0 → J/ψK 0 decays.« less
Dynamic Portrait of the Retrograde 1:1 Mean Motion Resonance
NASA Astrophysics Data System (ADS)
Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping
2018-06-01
Asteroids in mean motion resonances with giant planets are common in the solar system, but it was not until recently that several asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. A retrograde co-orbital asteroid of Jupiter, 2015 BZ509 is confirmed to be in a long-term stable retrograde 1:1 mean motion resonance with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this paper, we investigate the phase-space structure of the retrograde 1:1 resonance in detail within the framework of the circular restricted three-body problem. We construct a simple integrable approximation for the planar retrograde resonance using canonical contact transformation and numerically employ the averaging procedure in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We thoroughly analyze all possible librations in the co-orbital region and uncover a new apocentric libration for the retrograde 1:1 resonance inside the planet’s orbit. We also observe the significant jumps in orbital elements for outer and inner apocentric librations, which are caused by close encounters with the perturber.
The low-power low-pressure flow resonance in a natural circulation cooled boiling water reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen, T.H.J.J. van der; Stekelenburg, A.J.C.
1995-09-01
The last few years the possibility of flow resonances during the start-up phase of natural circulation cooled BWRs has been put forward by several authors. The present paper reports on actual oscillations observed at the Dodewaard reactor, the world`s only operating BWR cooled by natural circulation. In addition, results of a parameter study performed by means of a simple theoretical model are presented. The influence of relevant parameters on the resonance characteristics, being the decay ratio and the resonance frequency, is investigated and explained.
Universal feature in optical control of a p -wave Feshbach resonance
NASA Astrophysics Data System (ADS)
Peng, Peng; Zhang, Ren; Huang, Lianghui; Li, Donghao; Meng, Zengming; Wang, Pengjun; Zhai, Hui; Zhang, Peng; Zhang, Jing
2018-01-01
We report the experimental results on the optical control of a p -wave Feshbach resonance by utilizing a laser-driven bound-to-bound transition to shift the energy of a closed-channel molecule state. The magnetic field location for the p -wave resonance as a function of laser detuning can be captured by a simple formula with essentially one parameter, which describes how sensitively the resonance depends on the laser detuning. The key result of this work is to demonstrate, both experimentally and theoretically, that the ratio between this parameter for the m =0 component of the resonance and that for the m =±1 component, to a large extent, is universal. We also show that this optical control can create intriguing situations where interesting few- and many-body physics can occur, such as a p -wave resonance overlapping with an s -wave resonance or the three components of a p -wave resonance being degenerate.
Fe XXV temperatures in flares from the Yohkoh Bragg crystal spectrometer
NASA Technical Reports Server (NTRS)
Sterling, Alphonse C.; Doschek, George A.; Pike, C. David
1994-01-01
Studies by Doschek et al. using P78-1 and Solar Maximum Misson (SMM) data have shown that the ratio of intensities of the Fe XXV and Ca XIX resonance lines can be expressed as a function of Fe XXV temperature. Using a more recent data set consisting of 13 flares observed by the Bragg crystal spectrometer (BCS) experiment on board Yohkoh, we find a nearly identical functional relationship between the same resonance line ratios and Fe XXV temperatures. We use this functional relationship to obtain resonance line ratio temperatures (T(sub RLR)) for each flare in our data set, and compare them with temperatures resulting from application of a simple spectral fitting method. (T(sub SSF)) to individal Fe XXV spectra. We also use a more involved free-parameter spectral fitting method to deduce temperatures (T(sub FSF)) from some of these spectra. On average, agreement between T(sub RLR) and T(sub SSF) improves as a flare progresses in time, with average agreements of 10.0% +/- 5.2%, 6.4% +/- 5.4%, and 5.0% +/- 3.9% over the rise, peak, and decay phases, respectively. Deviations between T(sub RLR) and T(sub FSF) are about the same or smaller. Thus, for most analysis purposes, all three methods yield virtually identical temperatures in flares. The somewhat poorer agreement between T(sub SSF) and T(sub RLR) during the earlier phases may be partially a result of difficulties in obtaining precise values for temperatures from spectral fits when blueshifts and large nonthermal broadenings are present in the spectra. Because of the high sensitivity of the Yohkoh BCS compared to that of BCS experiments on earlier spacecraft, we can for the first time consistently observe the heating phase of flares in Fe XXV.
Study of the Use of Time-Mean Vortices to Generate Lift for MAV Applications
2011-05-31
microplate to in-plane resonance. Computational effort centers around optimization of a range of parameters (geometry, frequency, amplitude of oscillation, etc...issue involved. Towards this end, a suspended microplate was fabricated via MEMS technology and driven to in-plane resonance via Lorentz force...force to drive the suspended MEMS-based microplate to in-plane resonance. Computational effort centers around optimization of a range of parameters
Alfven wave cyclotron resonance heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R.B.; Yosikawa, S.; Oberman, C.
1981-02-01
The resonance absorption of fast Alfven waves at the proton ctclotron resonance of a predominately deuterium plasma is investigated. An approximate dispersion relation is derived, valid in the vicinity of the resonance, which permits an exact calculation of transmission and reflection coefficients. For reasonable plasma parameters significant linear resonance absorption is found.
Photonic ring resonance is a versatile platform for performing multiplex immunoassays in real time.
Mudumba, Sasi; de Alba, Sophia; Romero, Randy; Cherwien, Carli; Wu, Alice; Wang, Jue; Gleeson, Martin A; Iqbal, Muzammil; Burlingame, Rufus W
2017-09-01
Photonic ring resonance is a property of light where in certain circumstances specific wavelengths are trapped in a ring resonator. Sensors based on silicon photonic ring resonators function by detecting the interaction between light circulating inside the sensor and matter deposited on the sensor surface. Binding of biological material results in a localized change in refractive index on the sensor surface, which affects the circulating optical field extending beyond the sensor boundary. That is, the resonant wavelength will change when the refractive index of the medium around the ring resonator changes. Ring resonators can be fabricated onto small silicon chips, allowing development of a miniature multiplex array of ring based biosensors. This paper describes the properties of such a system when responding to the refractive index changed in a simple and precise way by changing the ionic strength of the surrounding media, and in a more useful way by the binding of macromolecules to the surface above the resonators. Specifically, a capture immunoassay is described that measures the change of resonant wavelength as a patient serum sample with anti-SS-A autoantibodies is flowed over a chip spotted with SS-A antigen and amplified with anti-IgG. The technology has been miniaturized and etched into a 4×6mm silicon chip that can measure 32 different reactions in quadruplicate simultaneously. The variability between 128 rings on a chip as measured by 2M salt assays averaged 0.6% CV. The output of the assays is the average shift per cluster of 4 rings, and the assays averaged 0.5% CV between clusters. The variability between chips averaged 1.8%. Running the same array on multiple instruments showed that after some improvements to the wavelength referencing system, the upper boundary of variation was 3% between 13 different instruments. The immunoassay displayed about 2% higher variability than the salt assays. There are several outstanding features of this system. The amount of antigen used on the chip for each test is around 200 picograms, only a few microliters of sample is necessary, and the assays take <10min. Copyright © 2017 Genalyte Inc. Published by Elsevier B.V. All rights reserved.
Interference effect on a heavy Higgs resonance signal in the γ γ and Z Z channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jeonghyeon; Yoon, Yeo Woong; Jung, Sunghoon
2016-03-24
The resonance-continuum interference is usually neglected when the width of a resonance is small compared to the resonance mass. We reexamine this standard by studying the interference effects in high-resolution decay channels, γγ and ZZ, of the heavy Higgs boson H in nearly aligned two-Higgs-doublet models. For the H with a sub-percent width-to-mass ratio, we find that, in the parameter space where the LHC 14 TeV ZZ resonance search can be sensitive, the interference effects can modify the ZZ signal rate by O(10)% and the exclusion reach by O(10) GeV. In other parameter space where the ZZ or γγ signalmore » rate is smaller, the LHC 14 TeV reach is absent, but a resonance shape can be much more dramatically changed. In particular, the γγ signal rate can change by O(100)%. Relevant to such parameter space, we suggest variables that can characterize a general resonance shape. Furthermore, we also illustrate the relevance of the width on the interference by adding nonstandard decay modes of the heavy Higgs boson.« less
Resonance region measurements of dysprosium and rhenium
NASA Astrophysics Data System (ADS)
Leinweber, Gregory; Block, Robert C.; Epping, Brian E.; Barry, Devin P.; Rapp, Michael J.; Danon, Yaron; Donovan, Timothy J.; Landsberger, Sheldon; Burke, John A.; Bishop, Mary C.; Youmans, Amanda; Kim, Guinyun N.; Kang, yeong-rok; Lee, Man Woo; Drindak, Noel J.
2017-09-01
Neutron capture and transmission measurements have been performed, and resonance parameter analysis has been completed for dysprosium, Dy, and rhenium, Re. The 60 MeV electron accelerator at RPI Gaerttner LINAC Center produced neutrons in the thermal and epithermal energy regions for these measurements. Transmission measurements were made using 6Li glass scintillation detectors. The neutron capture measurements were made with a 16-segment NaI multiplicity detector. The detectors for all experiments were located at ≈25 m except for thermal transmission, which was done at ≈15 m. The dysprosium samples included one highly enriched 164Dy metal, 6 liquid solutions of enriched 164Dy, two natural Dy metals. The Re samples were natural metals. Their capture yield normalizations were corrected for their high gamma attenuation. The multi-level R-matrix Bayesian computer code SAMMY was used to extract the resonance parameters from the data. 164Dy resonance data were analyzed up to 550 eV, other Dy isotopes up to 17 eV, and Re resonance data up to 1 keV. Uncertainties due to resolution function, flight path, burst width, sample thickness, normalization, background, and zero time were estimated and propagated using SAMMY. An additional check of sample-to-sample consistency is presented as an estimate of uncertainty. The thermal total cross sections and neutron capture resonance integrals of 164Dy and Re were determined from the resonance parameters. The NJOY and INTER codes were used to process and integrate the cross sections. Plots of the data, fits, and calculations using ENDF/B-VII.1 resonance parameters are presented.
NASA Astrophysics Data System (ADS)
Aboulfotoh, Noha; Twiefel, Jens
2018-06-01
A typical vibration harvester is tuned to operate at resonance in order to maximize the power output. There are many design parameter sets for tuning the harvester to a specific frequency, even for simple geometries. This work studies the impact of the geometrical parameters on the harvested power while keeping the resonance frequency constant in order to find the combination of the parameters that optimizes the power under a predefined volume. A bimorph piezoelectric cantilever is considered for the study. It consists of two piezoelectric layers and a middle non-piezoelectric layer and holds a tip mass. A theoretical model was derived to obtain the system parameters and the power as functions of the design parameters. Formulas for the optimal load resistance that provide maximum power capability at resonance and anti-resonance frequency were derived. The influence of the width on the power is studied, considering a constant mass ratio (between the tip mass and the mass of the beam). This keeps the resonance frequency constant while changing the width. The influence of the ratio between the thickness of the middle layer and that of the piezoelectric layer is also studied. It is assumed that the total thickness of the cantilever is constant and the middle layer has the same mechanical properties (elasticity and density) as the piezoelectric layer. This keeps the resonance frequency constant while changing the ratio between the thicknesses. Finally, the influence of increasing the free length as well as of increasing the mass ratio on the power is investigated. This is done by first, increasing each of them individually and secondly, by increasing each of them simultaneously while increasing the total thickness under the condition of maintaining a constant resonance frequency. Based on the analysis of these influences, recommendations as to how to maximize the geometrical parameters within the available volume and mass are presented.
Olivieri, Laura J; Cross, Russell R; O'Brien, Kendall E; Ratnayaka, Kanishka; Hansen, Michael S
2015-09-01
Cardiac magnetic resonance (MR) imaging is a valuable tool in congenital heart disease; however patients frequently have metal devices in the chest from the treatment of their disease that complicate imaging. Methods are needed to improve imaging around metal implants near the heart. Basic sequence parameter manipulations have the potential to minimize artifact while limiting effects on image resolution and quality. Our objective was to design cine and static cardiac imaging sequences to minimize metal artifact while maintaining image quality. Using systematic variation of standard imaging parameters on a fluid-filled phantom containing commonly used metal cardiac devices, we developed optimized sequences for steady-state free precession (SSFP), gradient recalled echo (GRE) cine imaging, and turbo spin-echo (TSE) black-blood imaging. We imaged 17 consecutive patients undergoing routine cardiac MR with 25 metal implants of various origins using both standard and optimized imaging protocols for a given slice position. We rated images for quality and metal artifact size by measuring metal artifact in two orthogonal planes within the image. All metal artifacts were reduced with optimized imaging. The average metal artifact reduction for the optimized SSFP cine was 1.5+/-1.8 mm, and for the optimized GRE cine the reduction was 4.6+/-4.5 mm (P < 0.05). Quality ratings favored the optimized GRE cine. Similarly, the average metal artifact reduction for the optimized TSE images was 1.6+/-1.7 mm (P < 0.05), and quality ratings favored the optimized TSE imaging. Imaging sequences tailored to minimize metal artifact are easily created by modifying basic sequence parameters, and images are superior to standard imaging sequences in both quality and artifact size. Specifically, for optimized cine imaging a GRE sequence should be used with settings that favor short echo time, i.e. flow compensation off, weak asymmetrical echo and a relatively high receiver bandwidth. For static black-blood imaging, a TSE sequence should be used with fat saturation turned off and high receiver bandwidth.
NASA Astrophysics Data System (ADS)
Kim, Bong-Sik
Three dimensional (3D) Navier-Stokes-alpha equations are considered for uniformly rotating geophysical fluid flows (large Coriolis parameter f = 2O). The Navier-Stokes-alpha equations are a nonlinear dispersive regularization of usual Navier-Stokes equations obtained by Lagrangian averaging. The focus is on the existence and global regularity of solutions of the 3D rotating Navier-Stokes-alpha equations and the uniform convergence of these solutions to those of the original 3D rotating Navier-Stokes equations for large Coriolis parameters f as alpha → 0. Methods are based on fast singular oscillating limits and results are obtained for periodic boundary conditions for all domain aspect ratios, including the case of three wave resonances which yields nonlinear "2½-dimensional" limit resonant equations for f → 0. The existence and global regularity of solutions of limit resonant equations is established, uniformly in alpha. Bootstrapping from global regularity of the limit equations, the existence of a regular solution of the full 3D rotating Navier-Stokes-alpha equations for large f for an infinite time is established. Then, the uniform convergence of a regular solution of the 3D rotating Navier-Stokes-alpha equations (alpha ≠ 0) to the one of the original 3D rotating NavierStokes equations (alpha = 0) for f large but fixed as alpha → 0 follows; this implies "shadowing" of trajectories of the limit dynamical systems by those of the perturbed alpha-dynamical systems. All the estimates are uniform in alpha, in contrast with previous estimates in the literature which blow up as alpha → 0. Finally, the existence of global attractors as well as exponential attractors is established for large f and the estimates are uniform in alpha.
Electron spin resonance for the detection of long-range spin nematic order
NASA Astrophysics Data System (ADS)
Furuya, Shunsuke C.; Momoi, Tsutomu
2018-03-01
Spin nematic phase is a quantum magnetic phase characterized by a quadrupolar order parameter. Since the quadrupole operators are directly coupled to neither the magnetic field nor the neutron, currently, it is an important issue to develop a method for detecting the long-range spin nematic order. In this paper, we propose that electron spin resonance (ESR) measurements enable us to detect the long-range spin nematic order. We show that the frequency of the paramagnetic resonance peak in the ESR spectrum is shifted by the ferroquadrupolar order parameter together with other quantities. The ferroquadrupolar order parameter is extractable from the angular dependence of the frequency shift. In contrast, the antiferroquadrupolar order parameter is usually invisible in the frequency shift. Instead, the long-range antiferroquadrupolar order yields a characteristic resonance peak in the ESR spectrum, which we call a magnon-pair resonance peak. This resonance corresponds to the excitation of the bound magnon pair at the wave vector k =0 . Reflecting the condensation of bound magnon pairs, the field dependence of the magnon-pair resonance frequency shows a singular upturn at the saturation field. Moreover, the intensity of the magnon-pair resonance peak shows a characteristic angular dependence and it vanishes when the magnetic field is parallel to one of the axes that diagonalize the weak anisotropic interactions. We confirm these general properties of the magnon-pair resonance peak in the spin nematic phase by studying an S =1 bilinear-biquadratic model on the square lattice in the linear flavor-wave approximation. In addition, we argue applications to the S =1/2 frustrated ferromagnets and also the S =1/2 orthogonal dimer spin system SrCu2(BO3)2, both of which are candidate materials of spin nematics. Our theory for the antiferroquadrupolar ordered phase is consistent with many features of the magnon-pair resonance peak experimentally observed in the low-magnetization regime of SrCu2(BO3)2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matulewicz, Lukasz; Sokol, Maria; Michnik, Anna
2006-11-01
Purpose: The aim of this study was to detect the non-neoplastic white-matter changes vs. time after irradiation using {sup 1}H nuclear magnetic resonance (NMR) spectroscopy in vivo. Methods and Materials: A total of 394 {sup 1}H MR spectra were acquired from 100 patients (age 19-74 years; mean and median age, 43 years) before and during 2 years after radiation therapy (the mean absorbed doses calculated for the averaged spectroscopy voxels are similar and close to 20 Gy). Results: Ocilations were observed in choline-containing compounds (Cho)/creatine and phosphocreatine (Cr), Cho/N-acetylaspartate (NAA), and center of gravity (CG) of the lipid band inmore » the range of 0.7-1.5 ppm changes over time reveal oscillations. The parameters have the same 8-month cycle period; however the CG changes precede the other by 2 months. Conclusions: The results indicate the oscillative nature of the brain response to irradiation, which may be caused by the blood-brain barrier disruption and repair processes. These oscillations may influence the NMR results, depending on the cycle phase in which the NMR measurements are performed in. The earliest manifestation of radiation injury detected by magnetic resonance spectroscopy is the CG shift.« less
On modal cross-coupling in the asymptotic modal limit
NASA Astrophysics Data System (ADS)
Culver, Dean; Dowell, Earl
2018-03-01
The conditions under which significant modal cross-coupling occurs in dynamical systems responding to high-frequency, broadband forcing that excites many modes is studied. The modal overlap factor plays a key role in the analysis of these systems as the modal density (the ratio of number of modes to the frequency bandwidth) becomes large. The modal overlap factor is effectively the ratio of the width of a resonant peak (the damping ratio times the resonant frequency) to the average frequency interval between resonant peaks (or rather, the inverse of the modal density). It is shown that this parameter largely determines whether substantial modal cross-coupling occurs in a given system's response. Here, two prototypical systems are considered. The first is a simple rectangular plate whose significant modal cross-coupling is the exception rather than the norm. The second is a pair of rectangular plates attached at a point where significant modal cross-coupling is more likely to occur. We show that, for certain cases of modal density and damping, non-negligible cross coupling occurs in both systems. Under similar circumstances, the constraint force between the two plates in the latter system becomes broadband. The implications of this for using Asymptotic Modal Analysis (AMA) in multi-component systems are discussed.
Meng, Jie; Zhu, Lijing; Zhu, Li; Wang, Huanhuan; Liu, Song; Yan, Jing; Liu, Baorui; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng
2016-10-22
To explore the role of apparent diffusion coefficient (ADC) histogram shape related parameters in early assessment of treatment response during the concurrent chemo-radiotherapy (CCRT) course of advanced cervical cancers. This prospective study was approved by the local ethics committee and informed consent was obtained from all patients. Thirty-two patients with advanced cervical squamous cell carcinomas underwent diffusion weighted magnetic resonance imaging (b values, 0 and 800 s/mm 2 ) before CCRT, at the end of 2nd and 4th week during CCRT and immediately after CCRT completion. Whole lesion ADC histogram analysis generated several histogram shape related parameters including skewness, kurtosis, s-sD av , width, standard deviation, as well as first-order entropy and second-order entropies. The averaged ADC histograms of 32 patients were generated to visually observe dynamic changes of the histogram shape following CCRT. All parameters except width and standard deviation showed significant changes during CCRT (all P < 0.05), and their variation trends fell into four different patterns. Skewness and kurtosis both showed high early decline rate (43.10 %, 48.29 %) at the end of 2nd week of CCRT. All entropies kept decreasing significantly since 2 weeks after CCRT initiated. The shape of averaged ADC histogram also changed obviously following CCRT. ADC histogram shape analysis held the potential in monitoring early tumor response in patients with advanced cervical cancers undergoing CCRT.
Approximate analytic method for high-apogee twelve-hour orbits of artificial Earth's satellites
NASA Astrophysics Data System (ADS)
Vashkovyaka, M. A.; Zaslavskii, G. S.
2016-09-01
We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth's satellites. We describe parameters of the motion model used for the artificial Earth's satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.
What lies beneath? Diffusion EAP-based study of brain tissue microstructure.
Zucchelli, Mauro; Brusini, Lorenza; Andrés Méndez, C; Daducci, Alessandro; Granziera, Cristina; Menegaz, Gloria
2016-08-01
Diffusion weighted magnetic resonance signals convey information about tissue microstructure and cytoarchitecture. In the last years, many models have been proposed for recovering the diffusion signal and extracting information to constitute new families of numerical indices. Two main categories of reconstruction models can be identified in diffusion magnetic resonance imaging (DMRI): ensemble average propagator (EAP) models and compartmental models. From both, descriptors can be derived for elucidating the underlying microstructural architecture. While compartmental models indices directly quantify the fraction of different cell compartments in each voxel, EAP-derived indices are only a derivative measure and the effect of the different microstructural configurations on the indices is still unclear. In this paper, we analyze three EAP indices calculated using the 3D Simple Harmonic Oscillator based Reconstruction and Estimation (3D-SHORE) model and estimate their changes with respect to the principal microstructural configurations. We take advantage of the state of the art simulations to quantify the variations of the indices with the simulation parameters. Analysis of in-vivo data correlates the EAP indices with the microstructural parameters obtained from the Neurite Orientation Dispersion and Density Imaging (NODDI) model as a pseudo ground truth for brain data. Results show that the EAP derived indices convey information on the tissue microstructure and that their combined values directly reflect the configuration of the different compartments in each voxel. Copyright © 2016 Elsevier B.V. All rights reserved.
van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Fridlind, Ann M.; Cairns, Brian
2017-01-01
The use of ensemble-average values of aspect ratio and distortion parameter of hexagonal ice prisms for the estimation of ensemble-average scattering asymmetry parameters is evaluated. Using crystal aspect ratios greater than unity generally leads to ensemble-average values of aspect ratio that are inconsistent with the ensemble-average asymmetry parameters. When a definition of aspect ratio is used that limits the aspect ratio to below unity (α≤1) for both hexagonal plates and columns, the effective asymmetry parameters calculated using ensemble-average aspect ratios are generally consistent with ensemble-average asymmetry parameters, especially if aspect ratios are geometrically averaged. Ensemble-average distortion parameters generally also yield effective asymmetry parameters that are largely consistent with ensemble-average asymmetry parameters. In the case of mixtures of plates and columns, it is recommended to geometrically average the α≤1 aspect ratios and to subsequently calculate the effective asymmetry parameter using a column or plate geometry when the contribution by columns to a given mixture’s total projected area is greater or lower than 50%, respectively. In addition, we show that ensemble-average aspect ratios, distortion parameters and asymmetry parameters can generally be retrieved accurately from simulated multi-directional polarization measurements based on mixtures of varying columns and plates. However, such retrievals tend to be somewhat biased toward yielding column-like aspect ratios. Furthermore, generally large retrieval errors can occur for mixtures with approximately equal contributions of columns and plates and for ensembles with strong contributions of thin plates. PMID:28983127
NASA Astrophysics Data System (ADS)
Libby, J.; Malde, S.; Powell, A.; Wilkinson, G.; Asner, D. M.; Bonvicini, G.; Briere, R. A.; Gershon, T.; Naik, P.; Pedlar, T. K.; Rademacker, J.; Ricciardi, S.; Thomas, C.
2014-04-01
Measurements of the coherence factors (R and R) and the average strong-phase differences (δDKππ0 and δDK3π) for the decays D0→K-π+π0 and D0→K-π+π+π- are presented. These parameters are important inputs to the determination of the unitarity triangle angle γ in B∓→DK∓ decays, where D designates a D0 or D meson decaying to a common final state. The measurements are made using quantum correlated DDbar decays collected by the CLEO-c experiment at the ψ(3770) resonance, and augment a previously published analysis by the inclusion of new events in which the signal decay is tagged by the mode D→KS0π+π-. The measurements also benefit from improved knowledge of external inputs, namely the D0D mixing parameters, rDKπ and several D-meson branching fractions. The measured values are R=0.82±0.07, δDKππ0=(164-14+20)°, R=0.32-0.28+0.20 and δDK3π=(225-78+21)°. Consideration is given to how these measurements can be improved further by using the larger quantum-correlated data set collected by BESIII.
Yu, Jing; Huang, Dong-Ya; Xu, Hui-Xin; Li, Yang; Xu, Qing
2016-01-01
The aim of this study was to analyze the correlation between magnetic resonance imaging-based extramural vascular invasion (EMVI) and the prognostic clinical and histological parameters of stage T3 rectal cancers. Eighty-six patients with T3 stage rectal cancer who received surgical resection without neoadjuvant therapy were included. Magnetic resonance imaging-based EMVI scores were determined. Correlations between the scores and pretreatment carcinoembryonic antigen levels, tumor differentiation grade, nodal stage, and vascular endothelial growth factor expression were analyzed using Spearman rank coefficient analysis. Magnetic resonance imaging-based EMVI scores were statistically different (P = 0.001) between histological nodal stages (N0 vs N1 vs N2). Correlations were found between magnetic resonance imaging-based EMVI scores and tumor histological grade (rs = 0.227, P = 0.035), histological nodal stage (rs = 0.524, P < 0.001), and vascular endothelial growth factor expression (rs = 0.422; P = 0.016). Magnetic resonance imaging-based EMVI score is correlated with prognostic parameters of T3 stage rectal cancers and has the potential to become an imaging biomarker of tumor aggressiveness. Magnetic resonance imaging-based EMVI may be useful in helping the multidisciplinary team to stratify T3 rectal cancer patients for neoadjuvant therapies.
Table Resonance Integrals & Thermal Cross Sections Book Review by J. Rowlands Nuclear Reaction Atlas of Neutron Resonances Preface: This book is the fifth edition of what was previously known as BNL extensive list of detailed individual resonance parameters for each nucleus, this book contains thermal
Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters
NASA Technical Reports Server (NTRS)
Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.
1997-01-01
Surface plasmon resonance imaging has in the past been applied to the characterization of thin films. In this study we apply the surface plasmon technique not to determine macroscopic spatial variations but rather to determine average microscopic information. Specifically, we deduce the dielectric properties of the surrounding gel matrix and information concerning the dynamics of the gelation process from the visible absorption characteristics of colloidal metal nanoparticles contained in aerogel pores. We have fabricated aerogels containing gold and silver nanoparticles. Because the dielectric constant of the metal particles is linked to that of the host matrix at the surface plasmon resonance, any change 'in the dielectric constant of the material surrounding the metal nanoparticles results in a shift in the surface plasmon wavelength. During gelation the surface plasmon resonance shifts to the red as the average or effective dielectric constant of the matrix increases. Conversely, formation of an aerogel or xerogel through supercritical extraction or evaporation of the solvent produces a blue shift in the resonance indicating a decrease in the dielectric constant of the matrix. From the magnitude of this shift we deduce the average fraction of air and of silica in contact with the metal particles. The surface area of metal available for catalytic gas reaction may thus be determined.
Parameterization of spectral baseline directly from short echo time full spectra in 1 H-MRS.
Lee, Hyeong Hun; Kim, Hyeonjin
2017-09-01
To investigate the feasibility of parameterizing macromolecule (MM) resonances directly from short echo time (TE) spectra rather than pre-acquired, T 1 -weighted, metabolite-nulled spectra in 1 H-MRS. Initial line parameters for metabolites and MMs were set for rat brain spectra acquired at 9.4 Tesla upon a priori knowledge. Then, MM line parameters were optimized over several steps with fixed metabolite line parameters. The proposed method was tested by estimating metabolite T 1 . The results were compared with those obtained with two existing methods. Furthermore, subject-specific, spin density-weighted, MM model spectra were generated according to the MM line parameters from the proposed method for metabolite quantification. The results were compared with those obtained with subject-specific, T 1 -weighted, metabolite-nulled spectra. The metabolite T 1 were largely in close agreement among the three methods. The spin density-weighted MM resonances from the proposed method were in good agreement with the T 1 -weighted, metabolite-nulled spectra except for the MM resonance at ∼3.2 ppm. The metabolite concentrations estimated by incorporating these two different spectral baselines were also in good agreement except for several metabolites with resonances at ∼3.2 ppm. The MM parameterization directly from short-TE spectra is feasible. Further development of the method may allow for better representation of spectral baseline with negligible T 1 -weighting. Magn Reson Med 78:836-847, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Tyler, Robert
2012-04-01
The tidal flow response and associated dissipative heat generated in a satellite ocean depends strongly on the ocean configuration parameters as these parameters control the form and frequencies of the ocean's natural modes of oscillation; if there is a near match between the form and frequency of one of these natural modes and that of one of the available tidal forcing constituents, the ocean can be resonantly excited, producing strong tidal flow and appreciable dissipative heat. Of primary interest in this study are the ocean parameters that can be expected to evolve (notably, the ocean depth in an ocean attempting to freeze, and the stratification in an ocean attempting to cool) because this evolution can cause an ocean to be pushed into a resonant configuration where the increased dissipative heat of the resonant response halts further evolution and a liquid ocean can be maintained by ocean tidal heat. In this case the resonant ocean tidal response is not only allowed but may be inevitable. Previous work on this topic is extended to describe the resonant configurations in both unstratified and stratified cases for an assumed global ocean on Titan subject to both obliquity and eccentricity tidal forces. Results indicate first that the assumption of an equilibrium tidal response is not justified and the correct dynamical response must be considered. Second, the ocean tidal dissipation will be appreciable if the ocean configuration is near that producing a resonant state. The parameters values required for this resonance are provided in this study, and examples/movies of calculated ocean tidal flow are also presented.
Feminization laryngoplasty: assessment of surgical pitch elevation.
Thomas, James P; Macmillan, Cody
2013-09-01
The aim of this study is to analyze change in pitch following feminization laryngoplasty, a technique to alter the vocal tract of male to female transgender patients. This is a retrospective review of 94 patients undergoing feminization laryngoplasty between June 2002 and April 2012 of which 76 individuals completed follow-up audio recordings. Feminization laryngoplasty is a procedure removing the anterior thyroid cartilage, collapsing the diameter of the larynx as well as shortening and tensioning the vocal folds to raise the pitch. Changes in comfortable speaking pitch, lowest vocal pitch and highest vocal pitch are assessed before and after surgery. Acoustic parameters of speaking pitch and vocal range were compared between pre- and postoperative results. The average comfortable speaking pitch preoperatively, C3# (139 Hz), was raised an average of six semitones to G3 (196 Hz), after surgical intervention. The lowest attainable pitch was raised an average of seven semitones and the highest attainable pitch decreased by an average of two semitones. One aspect of the procedure, thyrohyoid approximation (introduced in 2006 to alter resonance), did not affect pitch. Feminization laryngoplasty successfully increased the comfortable fundamental frequency of speech and removed the lowest notes from the patient's vocal range. It does not typically raise the upper limits of the vocal range.
NASA Astrophysics Data System (ADS)
Engelhardt, Larry
2015-12-01
We discuss how computers can be used to solve the ordinary differential equations that provide a quantum mechanical description of magnetic resonance. By varying the parameters in these equations and visually exploring how these parameters affect the results, students can quickly gain insights into the nature of magnetic resonance that go beyond the standard presentation found in quantum mechanics textbooks. The results were generated using an IPython notebook, which we provide as an online supplement with interactive plots and animations.
NASA Astrophysics Data System (ADS)
Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.
2017-10-01
The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.
Characteristics of tuneable optical filters using optical ring resonator with PCF resonance loop
NASA Astrophysics Data System (ADS)
Shalmashi, K.; Seraji, F. E.; Mersagh, M. R.
2012-05-01
A theoretical analysis of a tuneable optical filter is presented by proposing an optical ring resonator (ORR) using photonic crystal fiber (PCF) as the resonance loop. The influences of the characteristic parameters of the PCF on the filter response have been analyzed under steady-state condition of the ORR. It is shown that the tuneability of the filter is mainly achieved by changing the modulation frequency of the light signal applied to the resonator. The analyses have shown that the sharpness and the depth of the filter response are controlled by parameters such as amplitude modulation index of applied field, the coupling coefficient of the ORR, and hole-spacing and air-filling ratio of the PCF, respectively. When transmission coefficient of the loop approaches the coupling coefficient, the filter response enhances sharply with PCF parameters. The depth and the full-width at half-maximum (FWHM) of the response strongly depend on the number of field circulations in the resonator loop. With the proposed tuneability scheme for optical filter, we achieved an FWHM of ~1.55 nm. The obtained results may be utilized in designing optical add/drop filters used in WDM communication systems.
NASA Astrophysics Data System (ADS)
Guo, Haotian; Duan, Fajie; Zhang, Jilong
2016-01-01
Blade tip-timing is the most effective method for blade vibration online measurement of turbomachinery. In this article a synchronous resonance vibration measurement method of blade based on tip-timing is presented. This method requires no once-per revolution sensor which makes it more generally applicable in the condition where this sensor is difficult to install, especially for the high-pressure rotors of dual-rotor engines. Only three casing mounted probes are required to identify the engine order, amplitude, natural frequency and the damping coefficient of the blade. A method is developed to identify the blade which a tip-timing data belongs to without once-per revolution sensor. Theoretical analyses of resonance parameter measurement are presented. Theoretic error of the method is investigated and corrected. Experiments are conducted and the results indicate that blade resonance parameter identification is achieved without once-per revolution sensor.
Design and analysis of planar spiral resonator bandstop filter for microwave frequency
NASA Astrophysics Data System (ADS)
Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad
2017-11-01
In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.
Metalorganic Chemical Vapor Deposition of Ruthenium-Doped Diamond like Carbon Films
NASA Technical Reports Server (NTRS)
Sunkara, M. K.; Ueno, M.; Lian, G.; Dickey, E. C.
2001-01-01
We investigated metalorganic precursor deposition using a Microwave Electron Cyclotron Resonance (ECR) plasma for depositing metal-doped diamondlike carbon films. Specifically, the deposition of ruthenium doped diamondlike carbon films was investigated using the decomposition of a novel ruthenium precursor, Bis(ethylcyclopentadienyl)-ruthenium (Ru(C5H4C2H5)2). The ruthenium precursor was introduced close to the substrate stage. The substrate was independently biased using an applied RF power. Films were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Four Point Probe. The conductivity of the films deposited using ruthenium precursor showed strong dependency on the deposition parameters such as pressure. Ruthenium doped sample showed the presence of diamond crystallites with an average size of approx. 3 nm while un-doped diamondlike carbon sample showed the presence of diamond crystallites with an average size of 11 nm. TEM results showed that ruthenium was atomically dispersed within the amorphous carbon network in the films.
Cho, Woojin; Lenke, Lawrence G; Bridwell, Keith H; Hu, Guangxun; Buchowski, Jacob M; Dorward, Ian G; Pahys, Joshua M; Cho, Samuel K; Kang, Matthew M; Zebala, Lukas P; Koester, Linda A
2014-10-01
Retrospective. The purpose of this study was to report the prevalence of abnormal neurological findings detected by physical examination in Scheuermann kyphosis and to correlate it to radiographs, magnetic resonance imaging (MRI) findings, and results of operative treatment. There have been sporadic reports about abnormal neurological findings in patients with Scheuermann kyphosis. Among 82 patients with Scheuermann kyphosis who underwent corrective surgery, 69 primary cases were selected. Patients' charts were reviewed retrospectively in terms of pre and postoperative neurological examinations. Sensory or motor change was defined as an abnormal neurological examination. Their duration, associated problems, and various parameters on preoperative radiographs and MRI examinations were also measured to search for any atypical findings associated with an abnormal neurological examination. There were 6 cases (9%) (group AbN), with an abnormal neurological examination ranging from severe myelopathy to a subtle change (e.g., sensory paresthesias on trunk). Five patients recovered to a normal neurological examination after corrective surgery. The remaining 1 patient with severe myelopathy also showed marked improvement and was ambulatory unassisted by 2-year follow-up. In patients with a normal neurological examination (group N, n = 63), only 1 patient had neurological sequelae because of anterior spinal artery syndrome after combined anterior-posterior correction. No preoperative radiographical parameters were significantly different between groups. Average age was 21.3 (AbN) and 18.6 (N) years (P = 0.55). Average preoperative T5-12 kyphosis was 69.0° (AbN) and 72.5° (N) (P = 0.61). Forty-two magnetic resonance images were obtained and all showed typical findings of Scheuermann kyphosis. Five patients in the AbN group (1 patient underwent computed tomography/myelography) and 37 patients in the N group underwent an MRI. The prevalence of abnormal neurological findings in Scheuermann kyphosis was 9%, emphasizing the importance of performing a detailed preoperative neurological examination. If congenital stenosis or a herniated thoracic disc is present, myelopathy can occur. No radiographical findings correlated with the abnormal preoperative neurological examinations. A normal MRI can exist in the face of an abnormal neurological examination, and conversely, a normal neurological examination can be seen with an abnormal MRI. Surgery was successful in alleviating abnormal neurological issues. 4.
The Dynamical Classification of Centaurs which Evolve into Comets
NASA Astrophysics Data System (ADS)
Wood, Jeremy R.; Horner, Jonathan; Hinse, Tobias; Marsden, Stephen; Swinburne University of Technology
2016-10-01
Centaurs are small Solar system bodies with semi-major axes between Jupiter and Neptune and perihelia beyond Jupiter. Centaurs can be further subclassified into two dynamical categories - random walk and resonance hopping. Random walk Centaurs have mean square semi-major axes (< a2 >) which vary in time according to a generalized diffusion equation where < a2 > ~t2H. H is the Hurst exponent with 0 < H < 1, and t is time. The behavior of < a2 > for resonance hopping Centaurs is not well described by generalized diffusion.The aim of this study is to determine which dynamical type of Centaur is most likely to evolve into each class of comet. 31,722 fictional massless test particles were integrated for 3 Myr in the 6-body problem (Sun, Jovian planets, test particle). Initially each test particle was a member of one of four groups. The semi-major axes of all test particles in a group were clustered within 0.27 au from a first order, interior Mean Motion resonance of Neptune. The resonances were centered at 18.94 au, 22.95 au, 24.82 au and 28.37 au.If the perihelion of a test particle reached < 4 au then the test particle was considered to be a comet and classified as either a random walk or resonance hopping Centaur. The results showed that over 4,000 test particles evolved into comets within 3 Myr. 59% of these test particles were random walk and 41% were resonance hopping. The behavior of the semi-major axis in time was usually well described by generalized diffusion for random walk Centaurs (ravg = 0.98) and poorly described for resonance hopping Centaurs (ravg = 0.52). The average Hurst exponent was 0.48 for random walk Centaurs and 0.20 for resonance hopping Centaurs. Random walk Centaurs were more likely to evolve into short period comets while resonance hopping Centaurs were more likely to evolve into long period comets. For each initial cluster, resonance hopping Centaurs took longer to evolve into comets than random walk Centaurs. Overall the population of random walk Centaurs averaged 143 kyr to evolve into comets, and the population of resonance hopping Centaurs averaged 164 kyr.
Sensitivity optimization in whispering gallery mode optical cylindrical biosensors
NASA Astrophysics Data System (ADS)
Khozeymeh, F.; Razaghi, M.
2018-01-01
Whispering-gallery-mode resonances propagated in cylindrical resonators have two angular and radial orders of l and i. In this work, the higher radial order whispering-gallery-mode resonances, (i = 1 - 4), at a fixed l are examined. The sensitivity of theses resonances is analysed as a function of the structural parameters of the cylindrical resonator like different radii and refractive index of composed material of the resonator. A practical application where cylindrical resonators are used for the measurement of glucose concentration in water is presented as a biosensor demonstrator. We calculate the wavelength shifts of the WG1-4, in several glucose/water solutions, with concentrations spanning from 0.0% to 9.0.% (weight/weight). Improved sensitivity can be achieved using multi-WGM cylindrical resonators with radius of R = 100 μm and resonator composed material of MgF 2 with refractive index of nc = 1.38. Also the effect of polarization on sensitivity is considered for all four WGMs. The best sensitivity of 83.07 nm/RIU for the fourth WGM with transverse magnetic polarization, is reported. These results propose optimized parameters aimed to fast designing of cylindrical resonators as optical biosensors, where both the sensitivity and the geometries can be optimized.
On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timofeev, A. V., E-mail: Timofeev-AV@nrcki.ru
2015-11-15
During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma densitymore » profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.« less
2011-01-01
Cardiac magnetic resonance (CMR) offers a variety of parameters potentially suited as surrogate endpoints in clinical trials of acute myocardial infarction such as infarct size, myocardial salvage, microvascular obstruction or left ventricular volumes and ejection fraction. The present article reviews each of these parameters with regard to the pathophysiological basis, practical aspects, validity, reliability and its relative value (strengths and limitations) as compared to competitive modalities. Randomized controlled trials of acute myocardial infarction which have used CMR parameters as a primary endpoint are presented. PMID:21917147
Photo- and electroproduction of K+Λ with a unitarity-restored isobar model
NASA Astrophysics Data System (ADS)
Skoupil, D.; Bydžovský, P.
2018-02-01
Exploiting the isobar model, kaon photo- and electroproduction on the proton in the resonance region comes under scrutiny. An upgrade of our previous model, comprising higher-spin nucleon and hyperon exchanges in the consistent formalism, was accomplished by implementing energy-dependent widths of nucleon resonances, which leads to a different choice of hadron form factor with much softer values of cutoff parameter for the resonant part. For a reliable description of electroproduction, the necessity of including longitudinal couplings of nucleon resonances to virtual photons was revealed. We present a new model whose free parameters were adjusted to photo- and electroproduction data and which provides a reliable overall description of experimental data in all kinematic regions. The majority of nucleon resonances chosen in this analysis coincide with those selected in our previous analysis and also in the Bayesian analysis with the Regge-plus-resonance model as the states contributing to this process with the highest probability.
NASA Astrophysics Data System (ADS)
Zhu, Huihui; Jing, Xufeng; Zhou, Pengwei
2018-01-01
Strong electric and magnetic dipole in infrared region and higher order multi-pole resonance at visible wavelengths are observed in all-dielectric nanoring metasurfaces. We discuss some of the parameters that influence the optical response of the dielectric nanoring. Adjustment of nanoring radius (inner radius and outer radius) and height can change the absorption intensity and the resonance peaks. Dipole, quadrupole, six-pole and ten-pole resonance modes can be found in the silicon nanoring at resonance wavelength. The transmission spectrum of nanoring with high Q-factor and contrast is achieved with appropriate parameters. Further the nanoring is used to application of sensing in which the sensitivity reaches 228 nm/RIU. This research is an important step to understand resonance in silicon nanoring and paves way for designing some optic devices such as sensor, nanoantennas, and photovoltaics.
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, I M
2015-10-31
Formation of a coherent population trapping (CPT) resonance is studied in the interaction of a beam of {sup 87}Rb atoms with two spatially separated domains of the dichromatic field. Various resonance excitation schemes are compared depending on the choice of operation transitions and type of the polarisation scheme. In the case of a single-velocity atomic beam, the dependence of the CPT resonance profile is studied as a function of principal parameters of the system: beam velocity, distance between optical fields, laser beam dimensions and intensities, and applied permanent magnetic field. Influence of the atomic beam angular divergence and residual beammore » velocity spread on the resonance quality parameter is estimated. (atomic beams)« less
NASA Astrophysics Data System (ADS)
Masian, Y.; Sivak, A.; Sevostianov, D.; Vassiliev, V.; Velichansky, V.
The paper shows the presents results of studies of small-size rubidium cells with argon and neon buffer gases, produced by a patent pended technique of laser welding [Fishman et al. (2014)]. Cells were designed for miniature frequency standard. Temperature dependence of the frequency of the coherent population trapping (CPT) resonance was measured and used to optimize the ratio of partial pressures of buffer gases. The influence of duration and regime of annealing on the CPT-resonance frequency drift was investigated. The parameters of the FM modulation of laser current for two cases which correspond to the highest amplitude of CPT resonance and to the smallest light shifts of the resonance frequency were determined. The temperature dependences of the CPT resonance frequency were found to be surprisingly different in the two cases. A non-linear dependence of CPT resonance frequency on the temperature of the cell with the two extremes was revealed for one of these cases.
NASA Astrophysics Data System (ADS)
Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana
2016-12-01
We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged Substance P with minimal spectral averaging, and 8158 molecular formulas assigned to Suwannee River Fulvic Acid standard with root-mean-square (RMS) error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apo-transferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g., 6 s time-domains with absorption mode processing yielded resolution of approximately 1 M at m/z = 2700).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.
We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged substance P with minimal spectral averaging, and 8,158more » molecular formulas assigned to Suwannee River Fulvic Acid standard with RMS error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apotransferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g. 6 s time-domains with absorption mode processing yielded resolution of approximately 1M at m/z =2,700).« less
Chiral NNLOsat descriptions of nuclear multipole resonances within the random-phase approximation
NASA Astrophysics Data System (ADS)
Wu, Q.; Hu, B. S.; Xu, F. R.; Ma, Y. Z.; Dai, S. J.; Sun, Z. H.; Jansen, G. R.
2018-05-01
We study nuclear multipole resonances in the framework of the random-phase approximation by using the chiral potential NNLOsat. This potential includes two- and three-body terms that have been simultaneously optimized to low-energy nucleon-nucleon scattering data and selected nuclear structure data. Our main focuses have been the isoscalar monopole, isovector dipole, and isoscalar quadrupole resonances of the closed-shell nuclei, 4He,
Resonant scattering due to adatoms in graphene: Top, bridge, and hollow positions
NASA Astrophysics Data System (ADS)
Irmer, Susanne; Kochan, Denis; Lee, Jeongsu; Fabian, Jaroslav
2018-02-01
We present a theoretical study of resonance characteristics in graphene from adatoms with s or pz character binding in top, bridge, and hollow positions. The adatoms are described by two tight-binding parameters: on-site energy and hybridization strength. We explore a wide range of different magnitudes of these parameters by employing T -matrix calculations in the single adatom limit and by tight-binding supercell calculations for dilute adatom coverage. We calculate the density of states and the momentum relaxation rate and extract the resonance level and resonance width. The top position with a large hybridization strength or, equivalently, small on-site energy, induces resonances close to zero energy. The bridge position, compared to top, is more sensitive to variation in the orbital tight-binding parameters. Resonances within the experimentally relevant energy window are found mainly for bridge adatoms with negative on-site energies. The effect of resonances from the top and bridge positions on the density of states and momentum relaxation rate is comparable and both positions give rise to a power-law decay of the resonant state in graphene. The hollow position with s orbital character is affected from destructive interference, which is seen from the very narrow resonance peaks in the density of states and momentum relaxation rate. The resonant state shows no clear tendency to a power-law decay around the impurity and its magnitude decreases strongly with lowering the adatom content in the supercell calculations. This is in contrast to the top and bridge positions. We conclude our study with a comparison to models of pointlike vacancies and strong midgap scatterers. The latter model gives rise to significantly higher momentum relaxation rates than caused by single adatoms.
NASA Astrophysics Data System (ADS)
Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian; Rauhut, Guntram
2015-12-01
Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian
Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.
Surov, Alexey; Meyer, Hans Jonas; Leifels, Leonard; Höhn, Anne-Kathrin; Richter, Cindy; Winter, Karsten
2018-04-20
Our purpose was to analyze possible associations between histogram analysis parameters of dynamic contrast-enhanced magnetic resonance imaging DCE MRI and histopathological findings like proliferation index, cell count and nucleic areas in head and neck squamous cell carcinoma (HNSCC). 30 patients (mean age 57.0 years) with primary HNSCC were included in the study. In every case, histogram analysis parameters of K trans , V e , and K ep were estimated using a mathlab based software. Tumor proliferation index, cell count, and nucleic areas were estimated on Ki 67 antigen stained specimens. Spearman's non-parametric rank sum correlation coefficients were calculated between DCE and different histopathological parameters. KI 67 correlated with K trans min ( p = -0.386, P = 0.043) and s K trans skewness ( p = 0.382, P = 0.045), V e min ( p = -0.473, P = 0.011), Ve entropy ( p = 0.424, P = 0.025), and K ep entropy ( p = 0.464, P = 0.013). Cell count correlated with K trans kurtosis ( p = 0.40, P = 0.034), V e entropy ( p = 0.475, P = 0.011). Total nucleic area correlated with V e max ( p = 0.386, P = 0.042) and V e entropy ( p = 0.411, P = 0.030). In G1/2 tumors, only K trans entropy correlated well with total ( P =0.78, P =0.013) and average nucleic areas ( p = 0.655, P = 0.006). In G3 tumors, KI 67 correlated with Ve min ( p = -0.552, P = 0.022) and V e entropy ( p = 0.524, P = 0.031). Ve max correlated with total nucleic area ( p = 0.483, P = 0.049). Kep max correlated with total area ( p = -0.51, P = 0.037), and K ep entropy with KI 67 ( p = 0.567, P = 0.018). We concluded that histogram-based parameters skewness, kurtosis and entropy of K trans , V e , and K ep can be used as markers for proliferation activity, cellularity and nucleic content in HNSCC. Tumor grading influences significantly associations between perfusion and histopathological parameters.
Resonance behavior of atomic and molecular photoionization amplitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepkov, N. A.; Kuznetsov, V. V.; Semenov, S. K.
The behavior of the partial photoionization amplitudes with a given orbital angular momentum l in the complex plane in resonances is studied. In the autoionization resonances the trajectory of the amplitude in the complex plane corresponds to a circle. With increasing photoelectron energy the amplitude moves about a circle in the counterclockwise direction. The new expressions for the partial amplitudes in the resonance are proposed which are similar to the Fano form but contain the 'partial' profile parameters which are connected with the Fano parameter q by a simple relation. In the giant dipole resonances the amplitudes in the complexmore » plane also move about a circle in the counterclockwise direction provided the Coulomb phase is excluded from the amplitude. In the correlational resonances created by channel interactions with the giant dipole resonance the trajectories of the amplitudes acquire a loop about which the amplitudes move in the counterclockwise direction. Very similar behavior of partial photoionization amplitudes in the complex plane is demonstrated also for the dipole transitions from the K shells of the N{sub 2} molecule in the {sigma}* shape resonance.« less
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas
2014-05-01
Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.
NASA Astrophysics Data System (ADS)
Tajaddodianfar, Farid; Hairi Yazdi, Mohammad Reza; Pishkenari, Hossein Nejat
Motivated by specific applications, electrostatically actuated bistable arch shaped micro-nano resonators have attracted growing attention in the research community in recent years. Nevertheless, some issues relating to their nonlinear dynamics, including the possibility of chaos, are still not well known. In this paper, we investigate the chaotic vibrations of a bistable resonator comprised of a double clamped initially curved microbeam under combined harmonic AC and static DC distributed electrostatic actuation. A reduced order equation obtained by the application of the Galerkin method to the nonlinear partial differential equation of motion, given in the framework of Euler-Bernoulli beam theory, is used for the investigation in this paper. We numerically integrate the obtained equation to study the chaotic vibrations of the proposed system. Moreover, we investigate the effects of various parameters including the arch curvature, the actuation parameters and the quality factor of the resonator, which are effective in the formation of both static and dynamic behaviors of the system. Using appropriate numerical tools, including Poincaré maps, bifurcation diagrams, Fourier spectrum and Lyapunov exponents we scrutinize the effects of various parameters on the formation of chaotic regions in the parametric space of the resonator. Results of this work provide better insight into the problem of nonlinear dynamics of the investigated family of bistable micro/nano resonators, and facilitate the design of arch resonators for applications such as filters.
Gaussian-Beam Laser-Resonator Program
NASA Technical Reports Server (NTRS)
Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman
1989-01-01
Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).
Photoinduced diffusion molecular transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozenbaum, Viktor M., E-mail: vik-roz@mail.ru, E-mail: litrakh@gmail.com; Dekhtyar, Marina L.; Lin, Sheng Hsien
2016-08-14
We consider a Brownian photomotor, namely, the directed motion of a nanoparticle in an asymmetric periodic potential under the action of periodic rectangular resonant laser pulses which cause charge redistribution in the particle. Based on the kinetics for the photoinduced electron redistribution between two or three energy levels of the particle, the time dependence of its potential energy is derived and the average directed velocity is calculated in the high-temperature approximation (when the spatial amplitude of potential energy fluctuations is small relative to the thermal energy). The thus developed theory of photoinduced molecular transport appears applicable not only to conventionalmore » dichotomous Brownian motors (with only two possible potential profiles) but also to a much wider variety of molecular nanomachines. The distinction between the realistic time dependence of the potential energy and that for a dichotomous process (a step function) is represented in terms of relaxation times (they can differ on the time intervals of the dichotomous process). As shown, a Brownian photomotor has the maximum average directed velocity at (i) large laser pulse intensities (resulting in short relaxation times on laser-on intervals) and (ii) excited state lifetimes long enough to permit efficient photoexcitation but still much shorter than laser-off intervals. A Brownian photomotor with optimized parameters is exemplified by a cylindrically shaped semiconductor nanocluster which moves directly along a polar substrate due to periodically photoinduced dipole moment (caused by the repetitive excited electron transitions to a non-resonant level of the nanocylinder surface impurity).« less
Dynamics of the retrograde 1/1 mean motion resonance
NASA Astrophysics Data System (ADS)
Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping
2018-04-01
Mean motion resonances are very common in the solar system. Asteroids in mean motion resonances with giant planets have been studied for centuries. But it was not until recently that asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. The newly discovered asteroid, 2015 BZ509 is confirmed to be the first asteroid in retrograde 1:1 mean motion resonance (or retrograde co-orbital resonance) with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this study, we thoroughly investigate the phase-space structure of the retrograde 1:1 resonance within the framework of the circular restricted three-body problem. We begin by constructing a simple integrable approximation for the planar retrograde resonance with the Hamiltonian approach and show that the variables definition of the retrograde resonance is very different to the prograde one. When it comes to the disturbing function, we abandon the classical series expansion approach, whereas numerically carry out the averaging process on the disturbing function in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We find that the topological structure of phase space for the retrograde 1:1 resonance is very different to other resonances, due to the consistent existence of the collision separatrix. And the surprising bifurcation of equilibrium point around 180° (i.e., the apocentric libration center) has never been found in any other mean motion resonances before. We thoroughly analyze the novel apocentric librations and find that close encounter with the planet does not always lead to the disruption of a stable apocentric libration. Afterwards, we examine the Kozai dynamics inside the mean motion resonance with the similar Hamiltonian approach and explain why the exact resonant point does not exist in the 3D retrograde 1:1 resonance model.
On the orthogonalised reverse path method for nonlinear system identification
NASA Astrophysics Data System (ADS)
Muhamad, P.; Sims, N. D.; Worden, K.
2012-09-01
The problem of obtaining the underlying linear dynamic compliance matrix in the presence of nonlinearities in a general multi-degree-of-freedom (MDOF) system can be solved using the conditioned reverse path (CRP) method introduced by Richards and Singh (1998 Journal of Sound and Vibration, 213(4): pp. 673-708). The CRP method also provides a means of identifying the coefficients of any nonlinear terms which can be specified a priori in the candidate equations of motion. Although the CRP has proved extremely useful in the context of nonlinear system identification, it has a number of small issues associated with it. One of these issues is the fact that the nonlinear coefficients are actually returned in the form of spectra which need to be averaged over frequency in order to generate parameter estimates. The parameter spectra are typically polluted by artefacts from the identification of the underlying linear system which manifest themselves at the resonance and anti-resonance frequencies. A further problem is associated with the fact that the parameter estimates are extracted in a recursive fashion which leads to an accumulation of errors. The first minor objective of this paper is to suggest ways to alleviate these problems without major modification to the algorithm. The results are demonstrated on numerically-simulated responses from MDOF systems. In the second part of the paper, a more radical suggestion is made, to replace the conditioned spectral analysis (which is the basis of the CRP method) with an alternative time domain decorrelation method. The suggested approach - the orthogonalised reverse path (ORP) method - is illustrated here using data from simulated single-degree-of-freedom (SDOF) and MDOF systems.
Caranica, C; Al-Omari, A; Deng, Z; Griffith, J; Nilsen, R; Mao, L; Arnold, J; Schüttler, H-B
2018-01-01
A major challenge in systems biology is to infer the parameters of regulatory networks that operate in a noisy environment, such as in a single cell. In a stochastic regime it is hard to distinguish noise from the real signal and to infer the noise contribution to the dynamical behavior. When the genetic network displays oscillatory dynamics, it is even harder to infer the parameters that produce the oscillations. To address this issue we introduce a new estimation method built on a combination of stochastic simulations, mass action kinetics and ensemble network simulations in which we match the average periodogram and phase of the model to that of the data. The method is relatively fast (compared to Metropolis-Hastings Monte Carlo Methods), easy to parallelize, applicable to large oscillatory networks and large (~2000 cells) single cell expression data sets, and it quantifies the noise impact on the observed dynamics. Standard errors of estimated rate coefficients are typically two orders of magnitude smaller than the mean from single cell experiments with on the order of ~1000 cells. We also provide a method to assess the goodness of fit of the stochastic network using the Hilbert phase of single cells. An analysis of phase departures from the null model with no communication between cells is consistent with a hypothesis of Stochastic Resonance describing single cell oscillators. Stochastic Resonance provides a physical mechanism whereby intracellular noise plays a positive role in establishing oscillatory behavior, but may require model parameters, such as rate coefficients, that differ substantially from those extracted at the macroscopic level from measurements on populations of millions of communicating, synchronized cells.
Minimum principles in electromagnetic scattering by small aspherical particles
NASA Astrophysics Data System (ADS)
Kostinski, Alex B.; Mongkolsittisilp, Ajaree
2013-12-01
We consider the question of optimal shapes, e.g., those causing minimal extinction among all shapes of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple discussion of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also shown. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose connecting low and high frequency regimes in a single minimum principle valid for all size parameters, provided that reasonable size distributions of randomly oriented aspherical particles wash out the resonances for intermediate size parameters. This proposal is further supported by the sum rule for integrated extinction.
NASA Astrophysics Data System (ADS)
Marante, Carlos; Klinker, Markus; Kjellsson, Tor; Lindroth, Eva; González-Vázquez, Jesús; Argenti, Luca; Martín, Fernando
2017-08-01
The XCHEM approach interfaces well established quantum chemistry packages with scattering numerical methods in order to describe single-ionization processes in atoms and molecules. This should allow one to describe electron correlation in the continuum at the same level of accuracy as quantum chemistry methods do for bound states. Here we have applied this method to study multichannel photoionization of Ne in the vicinity of the autoionizing states lying between the 2 s22 p5 and 2 s 2 p6 ionization thresholds. The calculated total photoionization cross sections are in very good agreement with the absolute measurement of Samson et al. [J. Electron Spectrosc. Relat. Phenom. 123, 265 (2002), 10.1016/S0368-2048(02)00026-9], and with independent benchmark calculations performed at the same level of theory. From these cross sections, we have extracted resonance positions, total autoionization widths, Fano profile parameters, and correlation parameters for the lowest three autoionizing states. The values of these parameters are in good agreement with those reported in earlier theoretical and experimental work. We have also evaluated β asymmetry parameter and partial photoionization cross sections and, from the latter, partial autoionization widths and Starace parameters for the same resonances, not yet available in the literature. Resonant features in the calculated β parameter are in good agreement with the experimental observations. We have found that the three lowest resonances preferentially decay into the 2 p-1ɛ d continuum rather than into the 2 p-1ɛ s one [Phys. Rev. A 89, 043415 (2014), 10.1103/PhysRevA.89.043415], in agreement with previous expectations, and that in the vicinity of the resonances the partial 2 p-1ɛ s cross section can be larger than the 2 p-1ɛ d one, in contrast with the accepted idea that the latter should amply dominate in the whole energy range. These results show the potential of the XCHEM approach to describe highly correlated process in the ionization continuum of many-electron systems, in particular molecules, for which the XCHEM code has been specifically designed.
Parameters optimization for magnetic resonance coupling wireless power transmission.
Li, Changsheng; Zhang, He; Jiang, Xiaohua
2014-01-01
Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.
NASA Technical Reports Server (NTRS)
Tkalcevic, S.
1982-01-01
The longitudinal resonance of waves and energetic electrons in the Earth's magnetosphere, and the possible role this resonance may play in generating various magnetospheric phenomena are studied. The derivation of time-averaged nonlinear equations of motion for energetic particles longitudinally resonant with a whistler mode wave propagating with nonzero wave normal is considered. It is shown that the wave magnetic forces can be neglected at lower particle pitch angles, while they become equal to or larger than the wave electric forces for alpha 20 deg. The time-averaged equations of motion were used in test particle simulation which were done for a wide range of wave amplitudes, wave normals, particle pitch angles, particle parallel velocities, and in an inhomogeneous medium such as the magnetosphere. It was found that there are two classes of particles, trapped and untrapped, and that the scattering and energy exchange for those two groups exhibit significantly different behavior.
The Role of Mean-motion Resonances in Semimajor Axis Mobility of Asteroids
NASA Astrophysics Data System (ADS)
Milić Žitnik, Ivana; Novaković, Bojan
2016-01-01
Here, we report our findings about the effect of 11 two-body mean-motion resonances (MMRs) with Jupiter, on the mobility of an asteroid’s semimajor axis caused by the Yarkovsky effect. This study is accomplished using numerical integrations of test particles. The obtained results reveal that MMRs could either speed up or slow down the drift in the semimajor axis. Moreover, this allows us to determine the distribution that represents the best data obtained for time delays dtr caused by the resonances on the mobility of an asteroid. We also found a certain functional relationship that describes dependence of the average time lead/lag < {dtr}> on the strength of the resonance SR and the semimajor axis drift speed da/dt. As the Yarkovsky effect scales as 1/D, an important consequence of this relationship is that average time lead/lag < {dtr}> is directly proportional to the diameter D of an asteroid.
NASA Astrophysics Data System (ADS)
Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng
2018-05-01
Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.
Triple coupling and parameter resonance in quantum optomechanics with a single atom
NASA Astrophysics Data System (ADS)
Chang, Yue; Ian, H.; Sun, C. P.
2009-11-01
We study the energy level structure and quantum dynamics for a cavity optomechanical system assisted by a single atom. It is found that a triple coupling involving a photon, a phonon and an atom cannot be described only by the quasi-orbital angular momentum at frequency resonance, there also exists the phenomenon of parameter resonance, namely, when the system parameters are matched in some way, the evolution of the end mirror of the cavity is conditioned by the dressed states of the photon-atom subsystem. The quantum decoherence due to this conditional dynamics is studied in detail. In the quasi-classical limit of very large angular momentum, this system will behave like a standard cavity-QED system described by the Jaynes-Cummings (J-C) model when the angular momentum operators are transformed to bosonic operators of a single mode. We test this observation with an experimentally accessible parameter.
Tremblay, Nicolas; Larose, Eric; Rossetto, Vincent
2010-03-01
The stiffness of a consolidated granular medium experiences a drop immediately after a moderate mechanical solicitation. Then the stiffness rises back toward its initial value, following a logarithmic time evolution called slow dynamics. In the literature, slow dynamics has been probed by macroscopic quantities averaged over the sample volume, for instance, by the resonant frequency of vibrational eigenmodes. This article presents a different approach based on diffuse acoustic wave spectroscopy, a technique that is directly sensitive to the details of the sample structure. The parameters of the dynamics are found to depend on the damage of the medium. Results confirm that slow dynamics is, at least in part, due to tiny structural rearrangements at the microscopic scale, such as inter-grain contacts.
Determination of Dimensionless Attenuation Coefficient in Shaped Resonators
NASA Technical Reports Server (NTRS)
Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.
2003-01-01
The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.
Koven, Robert; Mills, Matthew; Gale, Richard; Aksak, Burak
2017-11-01
Piezoelectric vibration energy harvesters often consist of a cantilevered beam composed of a support layer and one or two piezoelectric layers with a tip mass. While this configuration is advantageous for maximizing electromechanical coupling, the mechanical properties of the piezoelectric material can place limitations on harvester size and resonant frequency. Here, we present numerical and experimental results from a new type of piezoelectric energy harvester in which the mechanical properties and the resonant frequency of the cantilever beam resonator are effectively decoupled from the piezoelectric component. Referred to as a base-mounted piezoelectric (BMP) harvester in this paper, this new design features a piezoelectric transducer mounted beneath the base of the cantilevered beam resonator. The flexibility in the material choice for the cantilever beam resonator means that the resonant frequency and the beam dimensions are essentially free parameters. A prototype made with a 1.6 mm mm mm polyurethane beam, a PZT-5H piezoelectric transducer, and an 8.36-g tip mass is shown to produce an average power of 8.75 and at 45 Hz across a 13.0- load under harmonic base excitations of constant peak acceleration at 0.25 and 1.0-g, respectively. We also show an increase in full-width half-maximum bandwidth approximately from 1.5 to 5.6 Hz using an array of four individual BMP harvesters of similar dimensions with peak power generation of at 37.6 Hz across a 1.934- load at 0.25-g peak base excitation. Finite elements-based numerical simulations are shown to be in reasonable agreement with experimental results, indicating that the harvester behaves like a damped mass-spring system as proposed in this paper. Fabricated using casting and laser machining techniques, this harvester shows potential as a low-cost option for powering small, low-power wireless sensor nodes and other low-power devices.
Yong, Yook-Kong; Patel, Mihir S; Tanaka, Masako
2010-08-01
A novel analytical/numerical method for calculating the resonator Q and its equivalent electrical parameters due to viscoelastic, conductivity, and mounting supports losses is presented. The method presented will be quite useful for designing new resonators and reducing the time and costs of prototyping. There was also a necessity for better and more realistic modeling of the resonators because of miniaturization and the rapid advances in the frequency ranges of telecommunication. We present new 3-D finite elements models of quartz resonators with viscoelasticity, conductivity, and mounting support losses. The losses at the mounting supports were modeled by perfectly matched layers (PMLs). A previously published theory for dissipative anisotropic piezoelectric solids was formulated in a weak form for finite element (FE) applications. PMLs were placed at the base of the mounting supports to simulate the energy losses to a semi-infinite base substrate. FE simulations were carried out for free vibrations and forced vibrations of quartz tuning fork and AT-cut resonators. Results for quartz tuning fork and thickness shear AT-cut resonators were presented and compared with experimental data. Results for the resonator Q and the equivalent electrical parameters were compared with their measured values. Good equivalences were found. Results for both low- and high-Q AT-cut quartz resonators compared well with their experimental values. A method for estimating the Q directly from the frequency spectrum obtained for free vibrations was also presented. An important determinant of the quality factor Q of a quartz resonator is the loss of energy from the electrode area to the base via the mountings. The acoustical characteristics of the plate resonator are changed when the plate is mounted onto a base substrate. The base affects the frequency spectra of the plate resonator. A resonator with a high Q may not have a similarly high Q when mounted on a base. Hence, the base is an energy sink and the Q will be affected by the shape and size of this base. A lower-bound Q will be obtained if the base is a semi-infinite base because it will absorb all acoustical energies radiated from the resonator.
Piezoelectric Lead Zirconate Titanate (PZT) Ring Shaped Contour-Mode MEMS Resonators
NASA Astrophysics Data System (ADS)
Kasambe, P. V.; Asgaonkar, V. V.; Bangera, A. D.; Lokre, A. S.; Rathod, S. S.; Bhoir, D. V.
2018-02-01
Flexibility in setting fundamental frequency of resonator independent of its motional resistance is one of the desired criteria in micro-electromechanical (MEMS) resonator design. It is observed that ring-shaped piezoelectric contour-mode MEMS resonators satisfy this design criterion than in case of rectangular plate MEMS resonators. Also ring-shaped contour-mode piezoelectric MEMS resonator has an advantage that its fundamental frequency is defined by in-plane dimensions, but they show variation of fundamental frequency with different Platinum (Pt) thickness referred as change in ratio of fNEW /fO . This paper presents the effects of variation in geometrical parameters and change in piezoelectric material on the resonant frequencies of Platinum piezoelectric-Aluminium ring-shaped contour-mode MEMS resonators and its electrical parameters. The proposed structure with Lead Zirconate Titanate (PZT) as the piezoelectric material was observed to be a piezoelectric material with minimal change in fundamental resonant frequency due to Platinum thickness variation. This structure was also found to exhibit extremely low motional resistance of 0.03 Ω as compared to the 31-35 Ω range obtained when using AlN as the piezoelectric material. CoventorWare 10 is used for the design, simulation and corresponding analysis of resonators which is Finite Element Method (FEM) analysis and design tool for MEMS devices.
Synthesis of coupled resonator optical waveguides by cavity aggregation.
Muñoz, Pascual; Doménech, José David; Capmany, José
2010-01-18
In this paper, the layer aggregation method is applied to coupled resonator optical waveguides. Starting from the frequency transfer function, the method yields the coupling constants between the resonators. The convergence of the algorithm developed is examined and the related parameters discussed.
Nagaraja, Tavarekere N; Elmghirbi, Rasha; Brown, Stephen L; Schultz, Lonni R; Lee, Ian Y; Keenan, Kelly A; Panda, Swayamprava; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R
2017-12-01
The objective was to study temporal changes in tumor vascular physiological indices in a period of 24h in a 9L gliosarcoma rat model. Fischer-344 rats (N=14) were orthotopically implanted with 9L cells. At 2weeks post-implantation, they were imaged twice in a 24h interval using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Data-driven model-selection-based analysis was used to segment tumor regions with varying vascular permeability characteristics. The region with the maximum number of estimable parameters of vascular kinetics was chosen for comparison across the two time points. It provided estimates of three parameters for an MR contrast agent (MRCA): i) plasma volume (v p ), ii) forward volumetric transfer constant (K trans ) and interstitial volume fraction (v e , ratio of K trans to reverse transfer constant, k ep ). In addition, MRCA extracellular distribution volume (V D ) was estimated in the tumor and its borders, along with tumor blood flow (TBF) and peritumoral MRCA flux. Descriptors of parametric distributions were compared between the two times. Tumor extent was examined by hematoxylin and eosin (H&E) staining. Picrosirus red staining of secreted collagen was performed as an additional index for 9L cells. Test-retest differences between population summaries for any parameter were not significant (paired t and Wilcoxon signed rank tests). Bland-Altman plots showed no apparent trends between the differences and averages of the test-retest measures for all indices. The intraclass correlation coefficients showed moderate to almost perfect reproducibility for all of the parameters, except v p . H&E staining showed tumor infiltration in parenchyma, perivascular space and white matter tracts. Collagen staining was observed along the outer edges of main tumor mass. The data suggest the relative stability of these MR indices of tumor microenvironment over a 24h duration in this gliosarcoma model. Copyright © 2017. Published by Elsevier Inc.
Pavilla, Aude; Arrigo, Alessandro; Mejdoubi, Mehdi; Duvauferrier, Régis; Gambarota, Giulio; Saint-Jalmes, Hervé
The aim of this study was to demonstrate the feasibility to assess cerebral hypoperfusion with a hyperventilation (HV) challenge protocol using intravoxel incoherent motion (IVIM) magnetic resonance imaging. Magnetic resonance imaging experiments were performed on 10 healthy volunteers at 1.5 T, with a diffusion IVIM magnetic resonance imaging protocol using a set of b-values optimized by Cramer-Rao Lower Bound analysis. Hypoperfusion was induced by an HV maneuver. Measurements were performed in normoventilation and HV conditions. Biexponential curve fitting was used to obtain the perfusion fraction (f), pseudodiffusion coefficient (D*), and the product fD* in gray matter (GM) regions of interest (ROIs). Regional cerebral blood flow in the same ROIs was also assessed with arterial spin labeling. The HV challenge led to a diminution of IVIM perfusion-related parameters, with a decrease of f and fD* in the cerebellum (P = 0.03 for f; P = 0.01 for fD*), thalamus GM (P = 0.09 for f; P = 0.01 for fD*), and lenticular nuclei (P = 0.03 for f; P = 0.02 for fD*). Mean GM cerebral blood flow (in mL/100 g tissue/min) measured with arterial spin labeling averaged over all ROIs also decreased (normoventilation: 42.7 ± 4.1 vs HV: 33.2 ± 2.2, P = 0.004) during the HV challenge. The optimized IVIM protocol proposed in the current study allows for measurements of cerebral hypoperfusion that might be of great interest for pathologies diagnosis such as ischemic stroke.
Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling
NASA Astrophysics Data System (ADS)
Gupta, Sunit K.; Wahi, Pankaj
2018-01-01
We present an exact stability analysis of a dynamical system idealizing rotary drilling. This system comprises lumped parameter axial-torsional modes of the drill-string coupled via the cutting forces and torques. The kinematics of cutting is modeled through a functional description of the cut surface which evolves as per a partial differential equation (PDE). Linearization of this model is straightforward as opposed to the traditional state-dependent delay (SDDE) model and both the approaches result in the same characteristic equation. A systematic study on the key system parameters influencing the stability characteristics reveals that torsional damping is very critical and stable drilling is, in general, not possible in its absence. The stable regime increases as the natural frequency of the axial mode approaches that of the torsional mode and a 1:1 internal resonance leads to a significant improvement in the system stability. Hence, from a practical point of view, a drill-string with 1:1 internal resonance is desirable to avoid vibrations during rotary drilling. For the non-resonant case, axial damping reduces the stable range of operating parameters while for the resonant case, an optimum value of axial damping (equal to the torsional damping) results in the largest stable regime. Interestingly, the resonant (tuned) system has a significant parameter regime corresponding to stable operation even in the absence of damping.
NASA Astrophysics Data System (ADS)
Sobol, S.; Grossman, G.
2015-12-01
A novel type of a PZT- based compressor operating at mechanical resonance, suitable for pneumatically-driven Stirling-type cryocoolers was developed theoretically and built practically during this research. A resonance operation at relatively low frequency was achieved by incorporating the piezo ceramics into the moving part, and by reducing the effective piezo stiffness using hydraulic amplification. The detailed concept, analytical model and the test results of the preliminary prototype were reported earlier and presented at ICC17 [2]. A fine agreement between the simulations and experiments spurred development of the current actual compressor designed to drive a miniature Pulse Tube cryocooler, particularly our MTSa model, which operates at 103 Hz and requires an average PV power of 11 W, filling pressure of 40 Bar and a pressure ratio of 1.3. The paper concentrates on design aspects and optimization of the governing parameters. The small stroke to diameter ratio (about 1:10) allows for the use of a composite diaphragm instead of a clearance-seal piston. The motivation is to create an adequate separation between the working fluid and the buffer gas of the compressor, thus preventing possible contamination in the cryocooler. Providing efficiency and power density similar to those of conventional linear compressors, the piezo compressor may serve as a good alternative for cryogenic applications requiring extreme reliability and absence of magnetic field interference.
A model describing diffusion in prostate cancer.
Gilani, Nima; Malcolm, Paul; Johnson, Glyn
2017-07-01
Quantitative diffusion MRI has frequently been studied as a means of grading prostate cancer. Interpretation of results is complicated by the nature of prostate tissue, which consists of four distinct compartments: vascular, ductal lumen, epithelium, and stroma. Current diffusion measurements are an ill-defined weighted average of these compartments. In this study, prostate diffusion is analyzed in terms of a model that takes explicit account of tissue compartmentalization, exchange effects, and the non-Gaussian behavior of tissue diffusion. The model assumes that exchange between the cellular (ie, stromal plus epithelial) and the vascular and ductal compartments is slow. Ductal and cellular diffusion characteristics are estimated by Monte Carlo simulation and a two-compartment exchange model, respectively. Vascular pseudodiffusion is represented by an additional signal at b = 0. Most model parameters are obtained either from published data or by comparing model predictions with the published results from 41 studies. Model prediction error is estimated using 10-fold cross-validation. Agreement between model predictions and published results is good. The model satisfactorily explains the variability of ADC estimates found in the literature. A reliable model that predicts the diffusion behavior of benign and cancerous prostate tissue of different Gleason scores has been developed. Magn Reson Med 78:316-326, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
A quantum dynamical study of the He++2He-->He2++He reaction
NASA Astrophysics Data System (ADS)
Xie, Junkai; Poirier, Bill; Gellene, Gregory I.
2003-11-01
The temperature dependent rate of the He++2He→He2++He three-body association reaction is studied using two complementary quantum dynamical models. Model I presumes a two-step, reverse Lindemann mechanism, where the intermediate energized complex, He2+*, is interpreted as the rotational resonance states of He2+. The energy and width of these resonances are determined via "exact" quantum calculation using highly accurate potential-energy curves. Model II uses an alternate quantum rate expression as the thermal average of the cumulative recombination probability, N(E). This microcanonical quantity is computed approximately, over the He2+ space only, with the third-body interaction modeled using a special type of absorbing potential. Because Model II implicitly incorporates both the two-step reverse Lindemann mechanism, and a one-step, reverse collision induced dissociation mechanism, the relative importance of the two formation mechanisms can be estimated by a comparison of the Model I and Model II results. For T<300 K, the reaction is found to be dominated by the two-step mechanism, and a formation rate in good agreement with the available experimental results is obtained with essentially no adjustable parameters in the theory. Interestingly, a nonmonotonic He2+ formation rate is observed, with a maximum identified near 25 K. This maximum is associated with just two reaction intermediate resonance states, the lowest energy states that can contribute significantly to the formation kinetics.
Research on Bell-Shaped Vibratory Angular Rate Gyro's Character of Resonator
Su, Zhong; Fu, Mengyin; Li, Qing; Liu, Ning; Liu, Hong
2013-01-01
Bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. The BVG structure not only has capabilities of bearing high overload, high impact and, compared with the tuning fork, vibrating beam, shell and a comb structure, but also a higher frequency to overcome the influence of the disturbance of the exterior environment than the same sized hemispherical resonator gyroscope (HRG) and the traditional cylinder vibratory gyroscope. It can be widely applied in high dynamic low precision angular rate measurement occasions. The main work is as follows: the issue mainly analyzes the structure and basic principle, and investigates the bell-shaped resonator's mathematical model. The reasonable structural parameters are obtained from finite element analysis and an intelligent platform. Using the current solid vibration gyro theory analyzes the structural characteristics and principles of BVG. The bell-shaped resonator is simplified as a paraboloid of the revolution mechanical model, which has a fixed closed end and a free opened end. It obtains the natural frequency and vibration modes based on the theory of elasticity. The structural parameters are obtained from the orthogonal method by the research on the structural parameters of the resonator analysis. It obtains the modal analysis, stress analysis and impact analysis with the chosen parameters. Finally, using the turntable experiment verifies the gyro effect of the BVG. PMID:23575033
Magnetic Resonance Imaging of Human Tissue-Engineered Adipose Substitutes
Proulx, Maryse; Aubin, Kim; Lagueux, Jean; Audet, Pierre; Auger, Michèle
2015-01-01
Adipose tissue (AT) substitutes are being developed to answer the strong demand in reconstructive surgery. To facilitate the validation of their functional performance in vivo, and to avoid resorting to excessive number of animals, it is crucial at this stage to develop biomedical imaging methodologies, enabling the follow-up of reconstructed AT substitutes. Until now, biomedical imaging of AT substitutes has scarcely been reported in the literature. Therefore, the optimal parameters enabling good resolution, appropriate contrast, and graft delineation, as well as blood perfusion validation, must be studied and reported. In this study, human adipose substitutes produced from adipose-derived stem/stromal cells using the self-assembly approach of tissue engineering were implanted into athymic mice. The fate of the reconstructed AT substitutes implanted in vivo was successfully followed by magnetic resonance imaging (MRI), which is the imaging modality of choice for visualizing soft ATs. T1-weighted images allowed clear delineation of the grafts, followed by volume integration. The magnetic resonance (MR) signal of reconstructed AT was studied in vitro by proton nuclear magnetic resonance (1H-NMR). This confirmed the presence of a strong triglyceride peak of short longitudinal proton relaxation time (T1) values (200±53 ms) in reconstructed AT substitutes (total T1=813±76 ms), which establishes a clear signal difference between adjacent muscle, connective tissue, and native fat (total T1 ∼300 ms). Graft volume retention was followed up to 6 weeks after implantation, revealing a gradual resorption rate averaging at 44% of initial substitute's volume. In addition, vascular perfusion measured by dynamic contrast-enhanced-MRI confirmed the graft's vascularization postimplantation (14 and 21 days after grafting). Histological analysis of the grafted tissues revealed the persistence of numerous adipocytes without evidence of cysts or tissue necrosis. This study describes the in vivo grafting of human adipose substitutes devoid of exogenous matrix components, and for the first time, the optimal parameters necessary to achieve efficient MRI visualization of grafted tissue-engineered adipose substitutes. PMID:25549069
Miyazaki, Hideki T; Miyazaki, Hiroshi; Miyano, Kenjiro
2003-09-01
We have recently identified the resonant scattering from dielectric bispheres in the specular direction, which has long been known as the specular resonance, to be a type of rainbow (a caustic) and a general phenomenon for bispheres. We discuss the details of the specular resonance on the basis of systematic calculations. In addition to the rigorous theory, which precisely describes the scattering even in the resonance regime, the ray-tracing method, which gives the scattering in the geometrical-optics limit, is used. Specular resonance is explicitly defined as strong scattering in the direction of the specular reflection from the symmetrical axis of the bisphere whose intensity exceeds that of the scattering from noninteracting bispheres. Then the range of parameters for computing a particular specular resonance is specified. This resonance becomes prominent in a wide range of refractive indices (from 1.2 to 2.2) in a wide range of size parameters (from five to infinity) and for an arbitrarily polarized light incident within an angle of 40 degrees to the symmetrical axis. This particular scattering can stay evident even when the spheres are not in contact or the sizes of the spheres are different. Thus specular resonance is a common and robust phenomenon in dielectric bispheres. Furthermore, we demonstrate that various characteristic features in the scattering from bispheres can be explained successfully by using intuitive and simple representations. Most of the significant scatterings other than the specular resonance are also understandable as caustics in geometrical-optics theory. The specular resonance becomes striking at the smallest size parameter among these caustics because its optical trajectory is composed of only the refractions at the surfaces and has an exceptionally large intensity. However, some characteristics are not accounted for by geometrical optics. In particular, the oscillatory behaviors of their scattering intensity are well described by simple two-wave interference models.
Modal resonant dynamics of cables with a flexible support: A modulated diffraction problem
NASA Astrophysics Data System (ADS)
Guo, Tieding; Kang, Houjun; Wang, Lianhua; Liu, Qijian; Zhao, Yueyu
2018-06-01
Modal resonant dynamics of cables with a flexible support is defined as a modulated (wave) diffraction problem, and investigated by asymptotic expansions of the cable-support coupled system. The support-cable mass ratio, which is usually very large, turns out to be the key parameter for characterizing cable-support dynamic interactions. By treating the mass ratio's inverse as a small perturbation parameter and scaling the cable tension properly, both cable's modal resonant dynamics and the flexible support dynamics are asymptotically reduced by using multiple scale expansions, leading finally to a reduced cable-support coupled model (i.e., on a slow time scale). After numerical validations of the reduced coupled model, cable-support coupled responses and the flexible support induced coupling effects on the cable, are both fully investigated, based upon the reduced model. More explicitly, the dynamic effects on the cable's nonlinear frequency and force responses, caused by the support-cable mass ratio, the resonant detuning parameter and the support damping, are carefully evaluated.
Fu, J C; Chen, C C; Chai, J W; Wong, S T C; Li, I C
2010-06-01
We propose an automatic hybrid image segmentation model that integrates the statistical expectation maximization (EM) model and the spatial pulse coupled neural network (PCNN) for brain magnetic resonance imaging (MRI) segmentation. In addition, an adaptive mechanism is developed to fine tune the PCNN parameters. The EM model serves two functions: evaluation of the PCNN image segmentation and adaptive adjustment of the PCNN parameters for optimal segmentation. To evaluate the performance of the adaptive EM-PCNN, we use it to segment MR brain image into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The performance of the adaptive EM-PCNN is compared with that of the non-adaptive EM-PCNN, EM, and Bias Corrected Fuzzy C-Means (BCFCM) algorithms. The result is four sets of boundaries for the GM and the brain parenchyma (GM+WM), the two regions of most interest in medical research and clinical applications. Each set of boundaries is compared with the golden standard to evaluate the segmentation performance. The adaptive EM-PCNN significantly outperforms the non-adaptive EM-PCNN, EM, and BCFCM algorithms in gray mater segmentation. In brain parenchyma segmentation, the adaptive EM-PCNN significantly outperforms the BCFCM only. However, the adaptive EM-PCNN is better than the non-adaptive EM-PCNN and EM on average. We conclude that of the three approaches, the adaptive EM-PCNN yields the best results for gray matter and brain parenchyma segmentation. Copyright 2009 Elsevier Ltd. All rights reserved.
Axelsen, M B; Stoltenberg, M; Poggenborg, R P; Kubassova, O; Boesen, M; Bliddal, H; Hørslev-Petersen, K; Hanson, L G; Østergaard, M
2012-03-01
To determine whether dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) evaluated using semi-automatic image processing software can accurately assess synovial inflammation in rheumatoid arthritis (RA) knee joints. In 17 RA patients undergoing knee surgery, the average grade of histological synovial inflammation was determined from four biopsies obtained during surgery. A preoperative series of T(1)-weighted dynamic fast low-angle shot (FLASH) MR images was obtained. Parameters characterizing contrast uptake dynamics, including the initial rate of enhancement (IRE), were generated by the software in three different areas: (I) the entire slice (Whole slice); (II) a manually outlined region of interest (ROI) drawn quickly around the joint, omitting large artefacts such as blood vessels (Quick ROI); and (III) a manually outlined ROI following the synovial capsule of the knee joint (Precise ROI). Intra- and inter-reader agreement was assessed using the intra-class correlation coefficient (ICC). The IRE from the Quick ROI and the Precise ROI revealed high correlations to the grade of histological inflammation (Spearman's correlation coefficient (rho) = 0.70, p = 0.001 and rho = 0.74, p = 0.001, respectively). Intra- and inter-reader ICCs were very high (0.93-1.00). No Whole slice parameters were correlated to histology. DCE-MRI provides fast and accurate assessment of synovial inflammation in RA patients. Manual outlining of the joint to omit large artefacts is necessary.
Sound absorption by a Helmholtz resonator
NASA Astrophysics Data System (ADS)
Komkin, A. I.; Mironov, M. A.; Bykov, A. I.
2017-07-01
Absorption characteristics of a Helmholtz resonator positioned at the end wall of a circular duct are considered. The absorption coefficient of the resonator is experimentally investigated as a function of the diameter and length of the resonator neck and the depth of the resonator cavity. Based on experimental data, the linear analytic model of a Helmholtz resonator is verified, and the results of verification are used to determine the dissipative attached length of the resonator neck so as to provide the agreement between experimental and calculated data. Dependences of sound absorption by a Helmholtz resonator on its geometric parameters are obtained.
On the correlation between phase-locking modes and Vibrational Resonance in a neuronal model
NASA Astrophysics Data System (ADS)
Morfu, S.; Bordet, M.
2018-02-01
We numerically and experimentally investigate the underlying mechanism leading to multiple resonances in the FitzHugh-Nagumo model driven by a bichromatic excitation. Using a FitzHugh-Nagumo circuit, we first analyze the number of spikes triggered by the system in response to a single sinusoidal wave forcing. We build an encoding diagram where different phase-locking modes are identified according to the amplitude and frequency of the sinusoidal excitation. Next, we consider the bichromatic driving which consists in a low frequency sinusoidal wave perturbed by an additive high frequency signal. Beside the classical Vibrational Resonance phenomenon, we show in real experiments that multiple resonances can be reached by an appropriate setting of the perturbation parameters. We clearly establish a correlation between these resonances and the encoding diagram of the low frequency signal free FitzHugh-Nagumo model. We show with realistic parameters that sharp transitions of the encoding diagram allow to predict the main resonances. Our experiments are confirmed by numerical simulations of the system response.
Modelling of resonant MEMS magnetic field sensor with electromagnetic induction sensing
NASA Astrophysics Data System (ADS)
Liu, Song; Xu, Huaying; Xu, Dehui; Xiong, Bin
2017-06-01
This paper presents an analytical model of resonant MEMS magnetic field sensor with electromagnetic induction sensing. The resonant structure vibrates in square extensional (SE) mode. By analyzing the vibration amplitude and quality factor of the resonant structure, the magnetic field sensitivity as a function of device structure parameters and encapsulation pressure is established. The developed analytical model has been verified by comparing calculated results with experiment results and the deviation between them is only 10.25%, which shows the feasibility of the proposed device model. The model can provide theoretical guidance for further design optimization of the sensor. Moreover, a quantitative study of the magnetic field sensitivity is conducted with respect to the structure parameters and encapsulation pressure based on the proposed model.
Rovella, Marcello S; Martins, Guilherme L P; Cavalcanti, Conrado F A; Bor-Seng-Shu, Edson; Camargo, Olavo P; Cerri, Giovanni G; Menezes, Marcos R
2016-04-01
Osteoid osteoma is painful benign tumor. The aim of this study was to report our initial experience using magnetic resonance-guided focused ultrasound to treat osteoid osteomas. This retrospective single-center study included four patients treated with magnetic resonance-guided focused ultrasound. They presented with severe pain with reduced quality of life and a poor response to clinical treatment. The pre- and post-treatment evaluation comprised computed tomography and magnetic resonance imaging and focused on quality of life and the impact of pain on daily activities. After treatment, three patients had complete pain resolution with no recurrence. One patient had a recurrence of symptoms after 2 wk and underwent a new successful treatment with increased energy levels. On average, 13 sonications were administered (8-18 sonications/treatment) with an average energy of 2,003 J (range: 1,063-3,522 J). Magnetic resonance-guided focused ultrasound appears to be a feasible, tolerable and effective treatment in selected patients with osteoid osteomas. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Distribution functions for resonantly trapped orbits in the Galactic disc
NASA Astrophysics Data System (ADS)
Monari, Giacomo; Famaey, Benoit; Fouvry, Jean-Baptiste; Binney, James
2017-11-01
The present-day response of a Galactic disc stellar population to a non-axisymmetric perturbation of the potential has previously been computed through perturbation theory within the phase-space coordinates of the unperturbed axisymmetric system. Such an Eulerian linearized treatment, however, leads to singularities at resonances, which prevent quantitative comparisons with data. Here, we manage to capture the behaviour of the distribution function (DF) at a resonance in a Lagrangian approach, by averaging the Hamiltonian over fast angle variables and re-expressing the DF in terms of a new set of canonical actions and angles variables valid in the resonant region. We then follow the prescription of Binney, assigning to the resonant DF the time average along the orbits of the axisymmetric DF expressed in the new set of actions and angles. This boils down to phase-mixing the DF in terms of the new angles, such that the DF for trapped orbits depends only on the new set of actions. This opens the way to quantitatively fitting the effects of the bar and spirals to Gaia data in terms of DFs in action space.
ORNL Resolved Resonance Covariance Generation for ENDF/B-VII.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, Luiz C.; Guber, Klaus H.; Wiarda, Dorothea
2012-12-01
Resonance-parameter covariance matrix (RPCM) evaluations in the resolved resonance regionwere done at the Oak Ridge National Laboratory (ORNL) for the chromium isotopes, titanium isotopes, 19F, 58Ni, 60Ni, 35Cl, 37Cl, 39K, 41K, 55Mn, 233U, 235U, 238U, and 239Pu using the computer code SAMMY. The retroactive approach of the code SAMMY was used to generate the RPCMs for 233U. For 235U, the approach used for covariance generation was similar to the retroactive approach with the distinction that real experimental data were used as opposed to data generated from the resonance parameters. RPCMs for 238U and 239Pu were generated together with the resonancemore » parameter evaluations. The RPCMs were then converted in the ENDF format using the FILE32 representation. Alternatively, for computer storage reasons, the FILE32 was converted in the FILE33 cross section covariance matrix (CSCM). Both representations were processed using the computer code PUFF-IV. This paper describes the procedures used to generate the RPCM and CSCM in the resonance region for ENDF/B-VII.1. The impact of data uncertainty in nuclear reactor benchmark calculations is also presented.« less
Unstable optical resonator loss calculations using the prony method.
Siegman, A E; Miller, H Y
1970-12-01
The eigenvalues for all the significant low-order resonant modes of an unstable optical resonator with circular mirrors are computed using an eigenvalue method called the Prony method. A general equivalence relation is also given, by means of which one can obtain the design parameters for a single-ended unstable resonator of the type usually employed in practical lasers, from the calculated or tabulated values for an equivalent symmetric or double-ended unstable resonator.
NASA Astrophysics Data System (ADS)
Klonov, V. V.; Larionov, I. A.; Bessonov, V. B.
2018-02-01
Despite obvious drawbacks of the resonant converter, such as complicated calculation, increased size and weight of the device, deviations of the circuit parameters from product to product, the resonant converter shows significant advantages in comparison with other. The task was to design the generator, which is built on a resonant topology.
NASA Technical Reports Server (NTRS)
Bhatia, Anand K.
2008-01-01
Applications of the hybrid theory to the scattering of electrons from Ile+ and Li++ and resonances in these systems, A. K. Bhatia, NASA/Goddard Space Flight Center- The Hybrid theory of electron-hydrogen elastic scattering [I] is applied to the S-wave scattering of electrons from He+ and Li++. In this method, both short-range and long-range correlations are included in the Schrodinger equation at the same time. Phase shifts obtained in this calculation have rigorous lower bounds to the exact phase shifts and they are compared with those obtained using the Feshbach projection operator formalism [2], the close-coupling approach [3], and Harris-Nesbet method [4]. The agreement among all the calculations is very good. These systems have doubly-excited or Feshbach resonances embedded in the continuum. The resonance parameters for the lowest ' S resonances in He and Li+ are calculated and they are compared with the results obtained using the Feshbach projection operator formalism [5,6]. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances and the continuum in which these resonances are embedded.
Extension of the operational regime of the LHD towards a deuterium experiment
NASA Astrophysics Data System (ADS)
Takeiri, Y.; Morisaki, T.; Osakabe, M.; Yokoyama, M.; Sakakibara, S.; Takahashi, H.; Nakamura, Y.; Oishi, T.; Motojima, G.; Murakami, S.; Ito, K.; Ejiri, A.; Imagawa, S.; Inagaki, S.; Isobe, M.; Kubo, S.; Masamune, S.; Mito, T.; Murakami, I.; Nagaoka, K.; Nagasaki, K.; Nishimura, K.; Sakamoto, M.; Sakamoto, R.; Shimozuma, T.; Shinohara, K.; Sugama, H.; Watanabe, K. Y.; Ahn, J. W.; Akata, N.; Akiyama, T.; Ashikawa, N.; Baldzuhn, J.; Bando, T.; Bernard, E.; Castejón, F.; Chikaraishi, H.; Emoto, M.; Evans, T.; Ezumi, N.; Fujii, K.; Funaba, H.; Goto, M.; Goto, T.; Gradic, D.; Gunsu, Y.; Hamaguchi, S.; Hasegawa, H.; Hayashi, Y.; Hidalgo, C.; Higashiguchi, T.; Hirooka, Y.; Hishinuma, Y.; Horiuchi, R.; Ichiguchi, K.; Ida, K.; Ido, T.; Igami, H.; Ikeda, K.; Ishiguro, S.; Ishizaki, R.; Ishizawa, A.; Ito, A.; Ito, Y.; Iwamoto, A.; Kamio, S.; Kamiya, K.; Kaneko, O.; Kanno, R.; Kasahara, H.; Kato, D.; Kato, T.; Kawahata, K.; Kawamura, G.; Kisaki, M.; Kitajima, S.; Ko, W. H.; Kobayashi, M.; Kobayashi, S.; Kobayashi, T.; Koga, K.; Kohyama, A.; Kumazawa, R.; Lee, J. H.; López-Bruna, D.; Makino, R.; Masuzaki, S.; Matsumoto, Y.; Matsuura, H.; Mitarai, O.; Miura, H.; Miyazawa, J.; Mizuguchi, N.; Moon, C.; Morita, S.; Moritaka, T.; Mukai, K.; Muroga, T.; Muto, S.; Mutoh, T.; Nagasaka, T.; Nagayama, Y.; Nakajima, N.; Nakamura, Y.; Nakanishi, H.; Nakano, H.; Nakata, M.; Narushima, Y.; Nishijima, D.; Nishimura, A.; Nishimura, S.; Nishitani, T.; Nishiura, M.; Nobuta, Y.; Noto, H.; Nunami, M.; Obana, T.; Ogawa, K.; Ohdachi, S.; Ohno, M.; Ohno, N.; Ohtani, H.; Okamoto, M.; Oya, Y.; Ozaki, T.; Peterson, B. J.; Preynas, M.; Sagara, S.; Saito, K.; Sakaue, H.; Sanpei, A.; Satake, S.; Sato, M.; Saze, T.; Schmitz, O.; Seki, R.; Seki, T.; Sharov, I.; Shimizu, A.; Shiratani, M.; Shoji, M.; Skinner, C.; Soga, R.; Stange, T.; Suzuki, C.; Suzuki, Y.; Takada, S.; Takahata, K.; Takayama, A.; Takayama, S.; Takemura, Y.; Takeuchi, Y.; Tamura, H.; Tamura, N.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Tanaka, T.; Tanaka, Y.; Toda, S.; Todo, Y.; Toi, K.; Toida, M.; Tokitani, M.; Tokuzawa, T.; Tsuchiya, H.; Tsujimura, T.; Tsumori, K.; Usami, S.; Velasco, J. L.; Wang, H.; Watanabe, T.-H.; Watanabe, T.; Yagi, J.; Yajima, M.; Yamada, H.; Yamada, I.; Yamagishi, O.; Yamaguchi, N.; Yamamoto, Y.; Yanagi, N.; Yasuhara, R.; Yatsuka, E.; Yoshida, N.; Yoshinuma, M.; Yoshimura, S.; Yoshimura, Y.
2017-10-01
As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, T i and T e, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value ≤ft< β \\right> . The high ≤ft< β \\right> regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Yushi; Kiriyama, Ryutaro; Takenaka, Tomoya
2012-11-06
In order to enhance the efficiency of an electron cyclotron resonance (ECR) plasma for a broad and dense ion beam source at low pressure, the magnetic field configuration is constructed by all permanent magnets. By using the pulse mode, we aim at the generation of plasma with parameters that cannot be achieved in the CW mode at microwave frequencies of 11-13GHz, under the constraint of the same average incident microwave powers. It is found that the total beam currents are increased by the pulse mode operation compared with the case of the CW mode. According to probe measurements of themore » ECR plasma, it is found that the electron density in the pulse mode is larger than that in the CW mode, while the electron temperatures in the pulse mode are lower than that in the CW mode. These results are discussed from the viewpoint of relaxation times obtained on plasma parameters and ECR efficiency. The cause of the beam current increment and operational windows spread due to the pulse mode are also discussed on these parameters suitable to production of molecular/cluster ions.« less
NASA Astrophysics Data System (ADS)
Jehl, Zacharie; Suchet, Daniel; Julian, Anatole; Bernard, Cyril; Miyashita, Naoya; Gibelli, Francois; Okada, Yoshitaka; Guillemolles, Jean-Francois
2017-02-01
Double resonant tunneling barriers are considered for an application as energy selective contacts in hot carrier solar cells. Experimental symmetric and asymmetric double resonant tunneling barriers are realized by molecular beam epitaxy and characterized by temperature dependent current-voltage measurements. The negative differential resistance signal is enhanced for asymmetric heterostructures, and remains unchanged between low- and room-temperatures. Within Tsu-Esaki description of the tunnel current, this observation can be explained by the voltage dependence of the tunnel transmission amplitude, which presents a resonance under finite bias for asymmetric structures. This effect is notably discussed with respect to series resistance. Different parameters related to the electronic transmission of the structure and the influence of these parameters on the current voltage characteristic are investigated, bringing insights on critical processes to optimize in double resonant tunneling barriers applied to hot carrier solar cells.
NASA Astrophysics Data System (ADS)
Li, Yu-Ye; Ding, Xue-Li
2014-12-01
Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.
NASA Astrophysics Data System (ADS)
Kar, R. C.; Sujata, T.
1992-04-01
Simple and combination resonances of a rotating cantilever beam with an end mass subjected to a transverse follower parametric excitation have been studied. The method of multiple scales is used to obtain the resonance zones of the first and second order for various values of the system parameters. It is concluded that first order combination resonances of sum- and difference-type are predominant. Higher tip mass and inertia parameters may either stabilize or destabilize the system. The increase of rotational speed, hub radius, and warping rigidity makes the beam less sensitive to periodic forces.
Performance of field-emitting resonating carbon nanotubes as radio-frequency demodulators
NASA Astrophysics Data System (ADS)
Vincent, P.; Poncharal, P.; Barois, T.; Perisanu, S.; Gouttenoire, V.; Frachon, H.; Lazarus, A.; de Langre, E.; Minoux, E.; Charles, M.; Ziaei, A.; Guillot, D.; Choueib, M.; Ayari, A.; Purcell, S. T.
2011-04-01
We report on a systematic study of the use of resonating nanotubes in a field emission (FE) configuration to demodulate radio frequency signals. We particularly concentrate on how the demodulation depends on the variation of the field amplification factor during resonance. Analytical formulas describing the demodulation are derived as functions of the system parameters. Experiments using AM and FM demodulations in a transmission electron microscope are also presented with a determination of all the pertinent experimental parameters. Finally we discuss the use of CNTs undergoing FE as nanoantennae and the different geometries that could be used for optimization and implementation.
Parameter design considerations for an oscillator IR-FEL
NASA Astrophysics Data System (ADS)
Jia, Qi-Ka
2017-01-01
An infrared oscillator FEL user facility will be built at the National Synchrotron Radiation Laboratory at in Hefei, China. In this paper, the parameter design of the oscillator FEL is discussed, and some original relevant approaches and expressions are presented. Analytic formulae are used to estimate the optical field gain and saturation power for the preliminary design. By considering both physical and technical constraints, the relation of the deflection parameter K to the undulator period is analyzed. This helps us to determine the ranges of the magnetic pole gap, the electron energy and the radiation wavelength. The relations and design of the optical resonator parameters are analyzed. Using dimensionless quantities, the interdependences between the radii of curvature of the resonator mirror and the various parameters of the optical resonator are clearly demonstrated. The effect of the parallel-plate waveguide is analyzed for the far-infrared oscillator FEL. The condition of the necessity of using a waveguide and the modified filling factor in the case of the waveguide are given, respectively. Supported by National Nature Science Foundation of China (21327901, 11375199)
Averages of $b$-hadron, $c$-hadron, and $$\\tau$$-lepton properties as of summer 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amhis, Y.; et al.
2014-12-23
This article reports world averages of measurements ofmore » $b$-hadron, $c$-hadron, and $$\\tau$$-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2014. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, $CP$ violation parameters, parameters of semileptonic decays and CKM matrix elements.« less
NASA Astrophysics Data System (ADS)
Amjad, M.; Salam, Z.; Ishaque, K.
2014-04-01
In order to design an efficient resonant power supply for ozone gas generator, it is necessary to accurately determine the parameters of the ozone chamber. In the conventional method, the information from Lissajous plot is used to estimate the values of these parameters. However, the experimental setup for this purpose can only predict the parameters at one operating frequency and there is no guarantee that it results in the highest ozone gas yield. This paper proposes a new approach to determine the parameters using a search and optimization technique known as Differential Evolution (DE). The desired objective function of DE is set at the resonance condition and the chamber parameter values can be searched regardless of experimental constraints. The chamber parameters obtained from the DE technique are validated by experiment.
Thomas, Freddy; Jamin, Eric
2009-09-01
An international collaborative study of isotopic methods applied to control the authenticity of vinegar was organized in order to support the recognition of these procedures as official methods. The determination of the 2H/1H ratio of the methyl site of acetic acid by SNIF-NMR (site-specific natural isotopic fractionation-nuclear magnetic resonance) and the determination of the 13C/12C ratio, by IRMS (isotope ratio mass spectrometry) provide complementary information to characterize the botanical origin of acetic acid and to detect adulterations of vinegar using synthetic acetic acid. Both methods use the same initial steps to recover pure acetic acid from vinegar. In the case of wine vinegar, the determination of the 18O/16O ratio of water by IRMS allows to differentiate wine vinegar from vinegars made from dried grapes. The same set of vinegar samples was used to validate these three determinations. The precision parameters of the method for measuring delta13C (carbon isotopic deviation) were found to be similar to the values previously obtained for similar methods applied to wine ethanol or sugars extracted from fruit juices: the average repeatability (r) was 0.45 per thousand, and the average reproducibility (R) was 0.91 per thousand. As expected from previous in-house study of the uncertainties, the precision parameters of the method for measuring the 2H/1H ratio of the methyl site were found to be slightly higher than the values previously obtained for similar methods applied to wine ethanol or fermentation ethanol in fruit juices: the average repeatability was 1.34 ppm, and the average reproducibility was 1.62 ppm. This precision is still significantly smaller than the differences between various acetic acid sources (delta13C and delta18O) and allows a satisfactory discrimination of vinegar types. The precision parameters of the method for measuring delta18O were found to be similar to the values previously obtained for other methods applied to wine and fruit juices: the average repeatability was 0.15 per thousand, and the average reproducibility was 0.59 per thousand. The above values are proposed as repeatability and reproducibility limits in the current state of the art. On the basis of this satisfactory inter-laboratory precision and on the accuracy demonstrated by a spiking experiment, the authors recommend the adoption of the three isotopic determinations included in this study as official methods for controlling the authenticity of vinegar.
NASA Astrophysics Data System (ADS)
Deng, Wei; Wang, Ya
2017-09-01
This paper reports a dual resonant rectilinear-to-rotary oscillation converter (RROC) for low frequency broadband electromagnetic energy harvesting from ambient vibrations. An approximate theoretical model has been established to integrate the electromechanical coupling into a comprehensive electromagnetic-dynamic model of the dual resonant RROC. Numerical simulation has proved the nature of dual resonances by revealing that both the rectilinear resonance and the rotary resonance could be achieved when the stand-alone rectilinear oscillator (RLO) and the stand-alone rotary oscillator (RTO) were excited independently. Simulation on the magnetically coupled RROC has also shown that the rectilinear resonance and the rotary resonance could be obtained simultaneously in the low-frequency region (2-14 Hz) with well-defined restoring torque (M r ) and the initial rotation angle of the RLO (ψ). The magnetic interaction patterns between the rectilinear and the RTOs have been categorized based on aforementioned simulation results. Both simulation and experimental results have demonstrated broadband output attributing from the dual resonances. Experimental results have also indicated that the RROC could have wide bandwidth in a much lower frequency region (2-8 Hz) even without the rotary resonance as long as the system parameters are carefully tuned. Parameter analysis on different values of M r and ψ are experimentally carried out to provide a quantitative guidance of designing the RROC to achieve an optimal power density.
Swider, P.; Guérin, G.; Baas, Joergen; Søballe, Kjeld; Bechtold, Joan E.
2013-01-01
Orthopaedic implant fixation is strongly dependant upon the effective mechanical properties of newly formed tissue. In this study, we evaluated the potential of modal analysis to derive viscoelastic properties of periprosthetic tissue. We hypothesized that Young's modulus and loss factor could be obtained by a combined theoretical, computational and experimental modal analysis approach. This procedure was applied to ex vivo specimens from a cylindrical experimental implant placed in cancellous bone in an unloaded press-fit configuration, obtained after a four week observation period. Four sections each from seven textured titanium implants were investigated. The first resonant frequency and loss factor were measured. Average experimentally determined loss factor was 2% (SD 0.4%) and average first resonant frequency was 2.1 KHz (SD: 50). A 2D axisymmetric finite element (FE) model identified effective Young's modulus of tissue using experimental resonant frequencies as input. Average value was 42 MPa (SD: 2.4) and no significant difference between specimens was observed. In this pilot study, the non-destructive method allowed accurate measure of dynamic loss factor and resonant frequency and derivation of effective Young's modulus. Prior to implementing this dynamic protocol for broader mechanical evaluation of experimental implant fixation, further work is needed to determine if this affects results from subsequent destructive shear push-out tests. PMID:19464687
NASA Astrophysics Data System (ADS)
Lu, Dong-dong; Gu, Jin-liang; Luo, Hong-e.; Xia, Yan
2017-10-01
According to specific requirements of the X-ray machine system for measuring velocity of outfield projectile, a DC high voltage power supply system is designed for the high voltage or the smaller current. The system comprises: a series resonant circuit is selected as a full-bridge inverter circuit; a high-frequency zero-current soft switching of a high-voltage power supply is realized by PWM output by STM32; a nanocrystalline alloy transformer is chosen as a high-frequency booster transformer; and the related parameters of an LCC series-parallel resonant are determined according to the preset parameters of the transformer. The concrete method includes: a LCC series parallel resonant circuit and a voltage doubling circuit are stimulated by using MULTISM and MATLAB; selecting an optimal solution and an optimal parameter of all parts after stimulation analysis; and finally verifying the correctness of the parameter by stimulation of the whole system. Through stimulation analysis, the output voltage of the series-parallel resonant circuit gets to 10KV in 28s: then passing through the voltage doubling circuit, the output voltage gets to 120KV in one hour. According to the system, the wave range of the output voltage is so small as to provide the stable X-ray supply for the X-ray machine for measuring velocity of outfield projectile. It is fast in charging and high in efficiency.
Sader, John E; Yousefi, Morteza; Friend, James R
2014-02-01
Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noise spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sader, John E., E-mail: jsader@unimelb.edu.au; Yousefi, Morteza; Friend, James R.
2014-02-15
Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noisemore » spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.« less
NASA Astrophysics Data System (ADS)
Ahmadinejad, Neda; Tari, Mostafa Talebi
2017-04-01
A density functional theory (DFT) calculations using B3LYP/6-311++G( d,p) method were carried out to investigate the relative stability of the molecules of β-carboline derivatives such as harmaline, harmine, harmalol, harmane and norharmane. Calculated nuclear quadrupole resonance (NQR) parameters were used to determine the 14N nuclear quadrupole coupling constant χ, asymmetry parameter η and EFG tensor ( q zz ). For better understanding of the electronic structure of β-carboline derivatives, natural bond orbital (NBO) analysis, isotropic and anisotropic NMR chemical shieldings were calculated for 14N nuclei using GIAO method for the optimized structures. The NBO analysis shows that pyrrole ring nitrogen (N9) atom has greater tendency than pyridine ring nitrogen (N2) atom to participate in resonance interactions and aromaticity development in the all of these structures. The NMR and NQR parameters were studied in order to find the correlations between electronic structure and the structural stability of the studied molecules.
Coupling to Tamm-plasmon-polaritons: dependence on structural parameters
NASA Astrophysics Data System (ADS)
Kumari, Anupa; Kumar, Samir; Shukla, Mukesh Kumar; Kumar, Govind; Sona Maji, Partha; Vijaya, R.; Das, Ritwick
2018-06-01
Tamm plasmon-polaritons (TPPs), formed at the interface of a plasmon-active metal and a distributed Bragg reflector (DBR), are characterized by sharp resonances in the reflection spectrum. The features of these sharp TPP resonances are primarily dictated by the structural parameters as well as by the nature of materials of the constituent DBR and metal. In the present investigation, we experimentally and theoretically analyze the role played by the DBR parameters and the metal layer thickness in determining the efficiency of TPP-mode excitation using plane waves. The findings reveal that the minimum in the reflection spectrum depicting the TPP resonance is strongly influenced by the thickness of plasmon-active metal film as well as the number of DBR unit cells. In fact, there exists an optimum combination of the geometrical parameters for achieving a maximum coupling to TPP modes. A brief theoretical analysis elucidating the underlying mechanism behind such observations is also presented so as to optimally design TPP-based architectures for different applications.
Zerbetto, Mirco; Polimeno, Antonino; Cimino, Paola; Barone, Vincenzo
2008-01-14
Electron spin resonance (ESR) measurements are highly informative on the dynamic behavior of molecules, which is of fundamental importance to understand their stability, biological functions and activities, and catalytic action. The wealth of dynamic information which can be extracted from a continuous wave electron spin resonance (cw-ESR) spectrum can be inferred by a basic theoretical approach defined within the stochastic Liouville equation formalism, i.e., the direct inclusion of motional dynamics in the form of stochastic (Fokker-Planck/diffusive) operators in the super Hamiltonian H governing the time evolution of the system. Modeling requires the characterization of magnetic parameters (e.g., hyperfine and Zeeman tensors) and the calculation of ESR observables in terms of spectral densities. The magnetic observables can be pursued by the employment of density functional theory which is apt, provided that hybrid functionals are employed, for the accurate computation of structural properties of molecular systems. Recently, an ab initio integrated computational approach to the in silico interpretation of cw-ESR spectra of multilabeled systems in isotropic fluids has been discussed. In this work we present the extension to the case of nematic liquid crystalline environments by performing simulations of the ESR spectra of the prototypical nitroxide probe 4-(hexadecanoyloxy)-2,2,6,6-tetramethylpiperidine-1-oxy in isotropic and nematic phases of 5-cyanobiphenyl. We first discuss the basic ingredients of the integrated approach, i.e., (1) determination of geometric and local magnetic parameters by quantum-mechanical calculations, taking into account the solvent and, when needed, the vibrational averaging contributions; (2) numerical solution of a stochastic Liouville equation in the presence of diffusive rotational dynamics, based on (3) parameterization of diffusion rotational tensor provided by a hydrodynamic model. Next we present simulated spectra with minimal resorting to fitting procedures, proving that the combination of sensitive ESR spectroscopy and sophisticated modeling can be highly helpful in providing three-dimensional structural and dynamic information on molecular systems in anisotropic environments.
McCarney, Evan R; Armstrong, Brandon D; Kausik, Ravinath; Han, Songi
2008-09-16
We present a unique analysis tool for the selective detection of local water inside soft molecular assemblies (hydrophobic cores, vesicular bilayers, and micellar structures) suspended in bulk water. Through the use of dynamic nuclear polarization (DNP), the (1)H NMR signal of water is amplified, as it interacts with stable radicals that possess approximately 658 times higher spin polarization. We utilized stable nitroxide radicals covalently attached along the hydrophobic tail of stearic acid molecules that incorporate themselves into surfactant-based micelle or vesicle structures. Here, we present a study of local water content and fluid viscosity inside oleate micelles and vesicles and Triton X-100 micelles to serve as model systems for soft molecular assemblies. This approach is unique because the amplification of the NMR signal is performed in bulk solution and under ambient conditions with site-specific spin labels that only detect the water that is directly interacting with the localized spin labels. Continuous wave (cw) electron spin resonance (ESR) analysis provides rotational dynamics of the spin-labeled molecular chain segments and local polarity parameters that can be related to hydration properties, whereas we show that DNP-enhanced (1)H NMR analysis of fluid samples directly provides translational water dynamics and permeability of the local environment probed by the spin label. Our technique therefore has the potential to become a powerful analysis tool, complementary to cw ESR, to study hydration characteristics of surfactant assemblies, lipid bilayers, or protein aggregates, where water dynamics is a key parameter of their structure and function. In this study, we find that there is significant penetration of water inside the oleate micelles with a higher average local water viscosity (approximately 1.8 cP) than in bulk water, and Triton X-100 micelles and oleate vesicle bilayers mostly exclude water while allowing for considerable surfactant chain motion and measurable water permeation through the soft structure.
NASA Astrophysics Data System (ADS)
Lee, Jungpyo; Smithe, David; Wright, John; Bonoli, Paul
2018-02-01
In this paper, the analytical form of the quasilinear diffusion coefficients is modified from the Kennel-Engelmann diffusion coefficients to guarantee the positive definiteness of its bounce average in a toroidal geometry. By evaluating the parallel inhomogeneity of plasmas and magnetic fields in the trajectory integral, we can ensure the positive definiteness and help illuminate some non-resonant toroidal effects in the quasilinear diffusion. When the correlation length of the plasma-wave interaction is comparable to the magnetic field variation length, the variation becomes important and the parabolic variation at the outer-midplane, the inner-midplane, and trapping tips can be evaluated by Airy functions. The new form allows the coefficients to include both resonant and non-resonant contributions, and the correlations between the consecutive resonances and in many poloidal periods. The positive-definite form is implemented in a wave code TORIC and we present an example for ITER using this form.
NASA Technical Reports Server (NTRS)
Maisel, J. E.; Webeler, R. W. H.; Grimes, H. H.
1973-01-01
Three torsional crystal parameters were examined for suitability in sensing pressure in gases up to 131 million newtons per square meter. The best parameters were found to be the change in crystal decrement at resonance and the change in crystal electrical resistance at resonance. The change in crystal resonant frequency did not appear to be a reliable pressure measuring parameter. Pure argon and pure helium gases were studied for use as working fluids. Helium functioned better over a wider pressure range. Calibration of the gage also provided a measure of the viscosity-density product of the gas as a function of pressure. These data, together with known extrapolated density data, permitted the determination of the viscosity of helium to 131 million N/square meter.
NASA Technical Reports Server (NTRS)
Nelis, Thomas; Brown, John M.; Evenson, Kenneth M.
1990-01-01
The CH radical has been detected in its a 4Sigma(-) state by the technique of laser magnetic resonance at far-infrared wavelengths. Spectra relating to different spin components of the first three rotational transitions have been recorded. The molecule was generated either by the reaction of F atoms with CH4, with a trace of added oxygen or by the reaction of O atoms with C2H2. The observed resonances have been analyzed and fitted to determine the parameters of an effective Hamiltonian for a molecule in a 4Sigma state. The principal quantities determined are the rotational constant B0 = 451 138.434(94) MHz and the spin-spin parameter lambda(0) = 2785.83(18) MHz. Proton hyperfine parameters have also been determined.
Thermoelectric performance of co-doped SnTe with resonant levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Min; Han, Yemao; Li, Laifeng, E-mail: laifengli@mail.ipc.ac.cn, E-mail: wangheng83@gmail.com
2016-07-25
Some group III elements such as Indium are known to produce the resonant impurity states in IV-VI compounds. The discovery of these impurity states has opened up new ways for engineering the thermoelectric properties of IV-VI compounds. In this work, resonant states in SnTe were studied by co-doping with both resonant (In) and extrinsic (Ag, I) dopants. A characteristic nonlinear relationship was observed between the Hall carrier concentration (n{sub H}) and extrinsic dopant concentration (N{sub I}, N{sub Ag}) in the stabilization region, where a linear increase of dopant concentration does not lead to linear response in the measured n{sub H}.more » Upon substituting extrinsic dopants beyond a certain amount, the n{sub H} changed proportionally with additional dopants (Ag, I) (the doping region). The Seebeck coefficients are enhanced as the resonant impurity is introduced, whereas the use of extrinsic doping only induces minor changes. Modest zT enhancements are observed at lower temperatures, which lead to an increase in the average zT values over a broad range of temperatures (300–773 K). The improved average zT obtained through co-doping indicates the promise of fine carrier density control in maximizing the favorable effect of resonant levels for thermoelectric materials.« less
Stochastic stability of parametrically excited random systems
NASA Astrophysics Data System (ADS)
Labou, M.
2004-01-01
Multidegree-of-freedom dynamic systems subjected to parametric excitation are analyzed for stochastic stability. The variation of excitation intensity with time is described by the sum of a harmonic function and a stationary random process. The stability boundaries are determined by the stochastic averaging method. The effect of random parametric excitation on the stability of trivial solutions of systems of differential equations for the moments of phase variables is studied. It is assumed that the frequency of harmonic component falls within the region of combination resonances. Stability conditions for the first and second moments are obtained. It turns out that additional parametric excitation may have a stabilizing or destabilizing effect, depending on the values of certain parameters of random excitation. As an example, the stability of a beam in plane bending is analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorogush, E S; Afonenko, A A
The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)
Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser
NASA Astrophysics Data System (ADS)
Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.
2013-10-01
We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.
Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016
Amhis, Y.; Banerjee, Sw.; Ben-Haim, E.; ...
2017-12-21
Here, this article reports world averages of measurements of b-hadron, c-hadron, and τ-lepton properties obtained by the Heavy Flavor Averaging Group using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters,more » $$C\\!P$$ violation parameters, parameters of semileptonic decays, and Cabbibo–Kobayashi–Maskawa matrix elements.« less
Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amhis, Y.; Banerjee, Sw.; Ben-Haim, E.
Here, this article reports world averages of measurements of b-hadron, c-hadron, and τ-lepton properties obtained by the Heavy Flavor Averaging Group using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters,more » $$C\\!P$$ violation parameters, parameters of semileptonic decays, and Cabbibo–Kobayashi–Maskawa matrix elements.« less
Wang, Z X; Chen, S L; Wang, Q Q; Liu, B; Zhu, J; Shen, J
2015-06-01
The aim of this study was to evaluate the accuracy of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury through a meta-analysis. A comprehensive literature search was conducted before 1 April 2014. All studies comparing magnetic resonance imaging results with arthroscopy or open surgery findings were reviewed, and 25 studies that satisfied the eligibility criteria were included. Data were pooled to yield pooled sensitivity and specificity, which were respectively 0.83 and 0.82. In detection of central and peripheral tears, magnetic resonance imaging had respectively a pooled sensitivity of 0.90 and 0.88 and a pooled specificity of 0.97 and 0.97. Six high-quality studies using Ringler's recommended magnetic resonance imaging parameters were selected for analysis to determine whether optimal imaging protocols yielded better results. The pooled sensitivity and specificity of these six studies were 0.92 and 0.82, respectively. The overall accuracy of magnetic resonance imaging was acceptable. For peripheral tears, the pooled data showed a relatively high accuracy. Magnetic resonance imaging with appropriate parameters are an ideal method for diagnosing different types of triangular fibrocartilage complex tears. © The Author(s) 2015.
Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang
2014-01-01
Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hróðmarsson, Helgi Rafn; Wang, Huasheng; Kvaran, Ágúst, E-mail: agust@hi.is
2014-06-28
Mass resolved resonance enhanced multiphoton ionization data for hydrogen iodide (HI), for two-photon resonance excitation to Rydberg and ion-pair states in the 69 600–72 400 cm{sup −1} region were recorded and analyzed. Spectral perturbations due to homogeneous and heterogeneous interactions between Rydberg and ion-pair states, showing as deformations in line-positions, line-intensities, and line-widths, were focused on. Parameters relevant to photodissociation processes, state interaction strengths and spectroscopic parameters for deperturbed states were derived. Overall interaction and dynamical schemes to describe the observations are proposed.
Does chaos assist localization or delocalization?
Tan, Jintao; Lu, Gengbiao; Luo, Yunrong; Hai, Wenhua
2014-12-01
We aim at a long-standing contradiction between chaos-assisted tunneling and chaos-related localization study quantum transport of a single particle held in an amplitude-modulated and tilted optical lattice. We find some near-resonant regions crossing chaotic and regular regions in the parameter space, and demonstrate that chaos can heighten velocity of delocalization in the chaos-resonance overlapping regions, while chaos may aid localization in the other chaotic regions. The degree of localization enhances with increasing the distance between parameter points and near-resonant regions. The results could be useful for experimentally manipulating chaos-assisted transport of single particles in optical or solid-state lattices.
Standara, Stanislav; Kulhánek, Petr; Marek, Radek; Straka, Michal
2013-08-15
The isotropic (129)Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the (129)Xe NMR CS. The (129)Xe shielding constant was obtained by averaging the (129)Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit-Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated (129)Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental (129)Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of (129)Xe NMR parameters in different Xe atom guest-host systems. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akkelin, S.V.; Sinyukov, Yu.M.
A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate thatmore » multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions.« less
Gramazio, Federico; Lorenzoni, Matteo; Pérez-Murano, Francesc; Rull Trinidad, Enrique; Staufer, Urs; Fraxedas, Jordi
2017-01-01
We present a combined theoretical and experimental study of the dependence of resonant higher harmonics of rectangular cantilevers of an atomic force microscope (AFM) as a function of relevant parameters such as the cantilever force constant, tip radius and free oscillation amplitude as well as the stiffness of the sample's surface. The simulations reveal a universal functional dependence of the amplitude of the 6th harmonic (in resonance with the 2nd flexural mode) on these parameters, which can be expressed in terms of a gun-shaped function. This analytical expression can be regarded as a practical tool for extracting qualitative information from AFM measurements and it can be extended to any resonant harmonics. The experiments confirm the predicted dependence in the explored 3-45 N/m force constant range and 2-345 GPa sample's stiffness range. For force constants around 25 N/m, the amplitude of the 6th harmonic exhibits the largest sensitivity for ultrasharp tips (tip radius below 10 nm) and polymers (Young's modulus below 20 GPa).
Acceleration of charged particles by crossed cyclotron waves, Resonant Moments Method
NASA Astrophysics Data System (ADS)
Ponomarjov, M.; Carati, D.
A mechanism for enhanced acceleration of charged particles in crossing radio frequency or micro waves propagating at different angles with respect to an external magnetic field is investigated. This mechanism consists in introducing low amplitude secondary waves in order to improve the parallel momentum transfer from the high amplitude primary wave to charged particles. The use of two parallel counter-propagating waves has recently been considered (Gell and Nakach, 1999) and numerical tests (Louies et al, 2001) have shown that the two-wave scheme may lead to higher averaged parallel velocity. On the other hand, it has been concluded that it may be more effective to accelerate electrons when the waves propagate obliquely to the external magnetic field (Karimabadi and Angelopoulos 1989, Cohen et al 1991). The idea considered here is similar although no constraint is imposed on the refraction indices of the primary and the secondary waves. The theoretical analysis of the acceleration mechanism is based on the Resonance Moments Method (RMM) in which moments of the velocity distribution are computed by using an averages over the resonant layers (RL)i only instead of a complete phase-space average. The quantities obtained using this approach, referred to as Resonant Moments (RM), suggest the existence of optimal angles of propagation for the primary and secondary waves as long as the maximization of the parallel flux of charged particles is considered. The fraction of charged particles that are close to the resonance conditions, that correspond to the RL, becomes then as important as the time these particles remain resonant. The secondary wave tends to maintain a pseudo-equilibrium velocity distribution by continuously re-filling the RL. Our suggestions are confirmed by direct numerical simulations for a populations of 105 relativistic electrons. The secondary wave yields a clear increase (up to one order of magnitude) of the average parallel velocity of the particles. It is a quite promising result since the amplitude of the secondary wave is ten times lower the one of the first wave. Qualitative results give one of the enhanced acceleration mechanisms of the charged particles (including relativistic electrons in planetary magnetospheres) by the crossed cyclotron waves in ambient magnetic field.
NASA Astrophysics Data System (ADS)
Watson, Brett; Yeo, Leslie; Friend, James
2010-06-01
Making use of mechanical resonance has many benefits for the design of microscale devices. A key to successfully incorporating this phenomenon in the design of a device is to understand how the resonant frequencies of interest are affected by changes to the geometric parameters of the design. For simple geometric shapes, this is quite easy, but for complex nonlinear designs, it becomes significantly more complex. In this paper, two novel modeling techniques are demonstrated to extract the axial and torsional resonant frequencies of a complex nonlinear geometry. The first decomposes the complex geometry into easy to model components, while the second uses scaling techniques combined with the finite element method. Both models overcome problems associated with using current analytical methods as design tools, and enable a full investigation of how changes in the geometric parameters affect the resonant frequencies of interest. The benefit of such models is then demonstrated through their use in the design of a prototype piezoelectric ultrasonic resonant micromotor which has improved performance characteristics over previous prototypes.
Noise in ecosystems: a short review.
Spagnolo, B; Valenti, D; Fiasconaro, A
2004-06-01
Noise, through its interaction with the nonlinearity of the living systems, can give rise to counter-intuitive phenomena such as stochastic resonance, noise-delayed extinction, temporal oscillations, and spatial patterns. In this paper we briefly review the noise-induced effects in three different ecosystems: (i) two competing species; (ii) three interacting species, one predator and two preys, and (iii) N-interacting species. The transient dynamics of these ecosystems are analyzed through generalized Lotka-Volterra equations in the presence of multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is random in cases (i) and (iii), and a periodical function, which accounts for the environmental temperature, in case (ii). We find noise-induced phenomena such as quasi-deterministic oscillations, stochastic resonance, noise-delayed extinction, and noise-induced pattern formation with nonmonotonic behaviors of patterns areas and of the density correlation as a function of the multiplicative noise intensity. The asymptotic behavior of the time average of the i(th) population when the ecosystem is composed of a great number of interacting species is obtained and the effect of the noise on the asymptotic probability distributions of the populations is discussed.
Secular variation of activity in comets 2P/Encke and 9P/Tempel 1
NASA Technical Reports Server (NTRS)
Haken, Michael; AHearn, Michael F.; Feldman, Paul D.; Budzien, Scott A.
1995-01-01
We compare production rates of H20 derived from International Ultraviolet Explorer (IUE) spectra from multiple apparitions of 2 comets, 2P/Encke and 9P/Tempel 1, whose orbits are in near-resonance with that of the Earth. Since model-induced errors are primarily a function of observing geometry, the close geometrical matches afforded by the resonance condition results in the cancellation of such errors when taking ratios of production rates. Giving careful attention to the variation of model parameters with solar activity, we find marginal evidence of change in 2P/Encke: a 1-sigma pre-perihelion decrease averaging 4%/revolution over 4 apparitions from 1980-1994, and a 1-sigma post-perihelion increase of 16%/revolution for 2 successive apparitions in 1984 and 1987. We find for 9P/Tempel 1, however, a 7-sigma decrease of 29%/revolution over 3 apparitions from 1983-1994, even after correcting for a tracking problem which made the fluxes systematically low. We speculate on a possible association of the character of long-term brightness variations with physical properties of the nucleus, and discuss implications for future research.
Ring design of the Prague synchrotron for cancer therapy
NASA Astrophysics Data System (ADS)
Molodozhentsev, A.; Makoveev, V.; Minashkin, V.; Shevtsov, V.; Sidorov, G.; Prokesh, K.; Sedlak, J.; Kuzmiak, M.
1998-04-01
The paper presents main elements of a dedicated proton synchrotron for hadron therapy. The beam parameters for active scanning of tumours are discussed. The output energy of the beam should be variable in the range 60-220 MeV. The average current of the proton beam is equal to 10 nA. The repetition rate of the accelerator is chosen of 1 Hz to get a spill time for slow extraction of about 500 ms. The timing cycle of the accelerator including the quasi-adiabatic capture process and acceleration is described. The RF gymnastics is utilized to prepare the unbunched beam for slow extraction. The magnetic elements of the ring, compact RF and VCO systems are presented in the paper. The maximum magnet field of the dipole magnet should be 1.2 T and the maximum magnetic field on the pole of the quadrupole lenses should be less than 1 T. The resonator should work on the first harmonic with a frequency from 1.298 MHz till 4.804 MHz. The length of the resonator should be less than 1 m. The maximum voltage on the accelerator gap should be about 2 kV.
Systematics of hot giant electric dipole resonance widths
NASA Astrophysics Data System (ADS)
Schiller, A.; Thoennessen, M.; McAlpine, K. M.
2007-05-01
Giant Electric Dipole Resonance (GDR) parameters for γ decay to excited states with finite spin and temperature have been compiled by two of the authors ( nucl-ex/0605004). Over 100 original works have been reviewed and from some 70 of them, more than 300 sets of hot GDR parameters for different isotopes, excitation energies, and spin regions have been extracted. All parameter sets have been brought onto a common footing by calculating the equivalent Lorentzian parameters. Together with a complementary compilation by Samuel S. Dietrich and Barry L. Berman [At. Data Nucl. Data Tables 38, 199-338, (1988)] on ground-state photo-neutron and photo-absorption cross sections and their Lorentzian parameters, it is now possible by means of a comparison of the two data sets to shed light on the evolution of GDR parameters with temperature and spin.
Compilation of giant electric dipole resonances built on excited states
NASA Astrophysics Data System (ADS)
Schiller, A.; Thoennessen, M.
2007-07-01
Giant Electric Dipole Resonance (GDR) parameters for γ decay to excited states with finite spin and temperature are compiled. Over 100 original works have been reviewed and from some 70 of them, about 350 sets of hot GDR parameters for different isotopes, excitation energies, and spin regions have been extracted. All parameter sets have been brought onto a common footing by calculating the equivalent Lorentzian parameters. The current compilation is complementary to an earlier compilation by Samuel S. Dietrich and Barry L. Berman (At. Data Nucl. Data Tables 38 (1988) 199-338) on ground-state photo-neutron and photo-absorption cross sections and their Lorentzian parameters. A comparison of the two may help shed light on the evolution of GDR parameters with temperature and spin. The present compilation is current as of July 2006.
NASA Technical Reports Server (NTRS)
Torbett, M.; Smoluchowski, R.
1982-01-01
The motion of the Jovian commensurability resonances during the early evolution of the solar system induced by the dissipation of the accretion disk results in fundamental differences in the celestial mechanics of objects over which a resonance passes from that observed for a stationary resonance. Objects experiencing resonance passage acquire irreversible increases of average eccentricity to large values accounting for the present-day random velocities of the asteroids. Semi-major axes are similarly irreversibly decreased by amounts capable of clearing the Kirkwood gaps. The gap widths are in agreement with observation.
Lai, Zhi-Hui; Leng, Yong-Gang
2015-08-28
A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application.
Influence of Averaging Preprocessing on Image Analysis with a Markov Random Field Model
NASA Astrophysics Data System (ADS)
Sakamoto, Hirotaka; Nakanishi-Ohno, Yoshinori; Okada, Masato
2018-02-01
This paper describes our investigations into the influence of averaging preprocessing on the performance of image analysis. Averaging preprocessing involves a trade-off: image averaging is often undertaken to reduce noise while the number of image data available for image analysis is decreased. We formulated a process of generating image data by using a Markov random field (MRF) model to achieve image analysis tasks such as image restoration and hyper-parameter estimation by a Bayesian approach. According to the notions of Bayesian inference, posterior distributions were analyzed to evaluate the influence of averaging. There are three main results. First, we found that the performance of image restoration with a predetermined value for hyper-parameters is invariant regardless of whether averaging is conducted. We then found that the performance of hyper-parameter estimation deteriorates due to averaging. Our analysis of the negative logarithm of the posterior probability, which is called the free energy based on an analogy with statistical mechanics, indicated that the confidence of hyper-parameter estimation remains higher without averaging. Finally, we found that when the hyper-parameters are estimated from the data, the performance of image restoration worsens as averaging is undertaken. We conclude that averaging adversely influences the performance of image analysis through hyper-parameter estimation.
Technique to measure wavenumber mismatch between quadratically interacting modes
NASA Astrophysics Data System (ADS)
Hajj, M. R.; Davila, J. B.; Miksad, R. W.; Powers, E. J.
1995-02-01
Nonlinear energy cascade by means of three-wave resonant interactions is a characteristic feature of transitioning and turbulent flows. Resonant wavenumber mismatch between these interacting modes can arise from the dispersive characteristics of the interacting waves and from spectral broadening due to random effects. In this paper, a general technique is presented to estimate the average level of instantaneous wavenumber mismatch, (Delta k) = (k(sub m) - k(sub i) - k(sub j)), between components whose frequencies obey the resonant selection condition, f(sub m) - f(sub i) - f(sub j) = 0. Cross-correlation of the auto-bispectrum is used to quantify the level of mismatch. The concept of bispectrum coupling coherency is introduced to determine the confidence level in the wavenumber mismatch estimates. These techniques are then applied to measure wavenumber mismatch in the transitioning field of a plane wake. The results show that the average of the instantaneous mismatch between the actual interacting modes (k(sub m) - k(sub i) - k(sub j)) is in general not equal to the mismatch between the average wavenumbers of each interacting mode (k(sub m) - (k(sub i)) - (k(sub j)).
Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun
2018-02-10
Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.
Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun
2018-01-01
Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor’s working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from −40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz/°C℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications. PMID:29439393
Kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.
Ye, Zhibin; Liu, Chong; Tu, Bo; Wang, Ke; Gao, Qingsong; Tang, Chun; Cai, Zhen
2016-01-25
A direct-liquid-cooled Nd:YLF thin disk laser resonator is presented, which features the use of refractive index matching liquid (RIML) as coolant. Highly uniform pump intensity distribution with rectangular shape is realized by using metallic planar waveguides. Much attention has been paid on the design of the gain module, including how to achieve excellent cooling ability with multi-channel coolers and how to choose the doping levels of the crystals for realizing well-distributed pump absorption. The flow velocity of the coolant is found to be a key parameter for laser performance and optimized to keep it in laminar flow status for dissipating unwanted heat load. A single channel device is used to measure the convective heat transfer coefficient (CHTC) at different flow velocities. Accordingly, the thermal stress in the disk is analyzed numerically and the maximum permissible thermal load is estimated. Experimentally, with ten pieces of a-cut Nd:YLF thin disks of different doping levels, a linear polarized laser with an average output power of 1120 W is achieved at the pump power of 5202 W, corresponding to an optical-optical efficiency of 21.5%, and a slope efficiency of 30.8%. Furthermore, the wavefront aberration of the gain module is measured to be quite weak, with a peak to valley (PV) value of 4.0 μm when it is pumped at 5202 W, which enables the feasibility of its application in an unstable resonator. To the best of our knowledge, this is the first demonstration of kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.
Radiative neutron capture on 242Pu in the resonance region at the CERN n_TOF-EAR1 facility
NASA Astrophysics Data System (ADS)
Lerendegui-Marco, J.; Guerrero, C.; Mendoza, E.; Quesada, J. M.; Eberhardt, K.; Junghans, A. R.; Krtička, M.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Dietz, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Göbel, K.; García, A. R.; Gawlik, A.; Glodariu, T.; Gonçalves, I. F.; González-Romero, E.; Goverdovski, A.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heftrich, T.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, J. I.; Praena, J.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.; n TOF Collaboration
2018-02-01
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of 242Pu there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluated with JEFF-3.1 indicate an overestimation of 14% in the capture cross section in the fast neutron energy region. In this context, the Nuclear Energy Agency (NEA) requested an accuracy of 8% in this cross section in the energy region between 500 meV and 500 keV. This paper presents a new time-of-flight capture measurement on 242Pu carried out at n_TOF-EAR1 (CERN), focusing on the analysis and statistical properties of the resonance region, below 4 keV. The 242Pu(n ,γ ) reaction on a sample containing 95(4) mg enriched to 99.959% was measured with an array of four C6D6 detectors and applying the total energy detection technique. The high neutron energy resolution of n_TOF-EAR1 and the good statistics accumulated have allowed us to extend the resonance analysis up to 4 keV, obtaining new individual and average resonance parameters from a capture cross section featuring a systematic uncertainty of 5%, fulfilling the request of the NEA.
Pulskamp, Jeffrey S; Bedair, Sarah S; Polcawich, Ronald G; Smith, Gabriel L; Martin, Joel; Power, Brian; Bhave, Sunil A
2012-05-01
This paper reports theoretical analysis and experimental results on a numerical electrode shaping design technique that permits the excitation of arbitrary modes in arbitrary geometries for piezoelectric resonators, for those modes permitted to exist by the nonzero piezoelectric coefficients and electrode configuration. The technique directly determines optimal electrode shapes by assessing the local suitability of excitation and detection electrode placement on two-port resonators without the need for iterative numerical techniques. The technique is demonstrated in 61 different electrode designs in lead zirconate titanate (PZT) thin film on silicon RF micro electro-mechanical system (MEMS) plate, beam, ring, and disc resonators for out-of-plane flexural and various contour modes up to 200 MHz. The average squared effective electromechanical coupling factor for the designs was 0.54%, approximately equivalent to the theoretical maximum value of 0.53% for a fully electroded length-extensional mode beam resonator comprised of the same composite. The average improvement in S(21) for the electrode-shaped designs was 14.6 dB with a maximum improvement of 44.3 dB. Through this piezoelectric electrodeshaping technique, 95% of the designs showed a reduction in insertion loss.
Distribution functions for orbits trapped at the resonances in the Galactic disc
NASA Astrophysics Data System (ADS)
Monari, G.
2017-12-01
The present-day response of a Galactic disc stellar population to a non-axisymmetric perturbation of the potential has previously been computed through perturbation theory within the phase-space coordinates of the unperturbed axisymmetric system. Such an Eulerian linearized treatment however leads to singularities at resonances, which prevent quantitative comparisons with data. Monari et al. manage to capture the behaviour of the distribution function (DF) at a resonance in a Lagrangian approach, by averaging the Hamiltonian over fast angle variables and re-expressing the DF in terms of a new set of canonical actions and angles variables valid in the resonant region. They then follow the prescription of Binney (2016), assigning to the resonant DF the time average along the orbits of the axisymmetric DF expressed in the new set of actions and angles. This boils down to phase-mixing the DF in terms of the new angles, such that the DF for trapped orbits only depends on the new set of actions. This opens the way to quantitatively fitting the effects of the bar and spirals to Gaia data in terms of distribution functions in action space.
NASA Astrophysics Data System (ADS)
Rosat, S.; Lambert, S. B.; Gattano, C.; Calvo, M.
2017-01-01
Geophysical parameters of the deep Earth's interior can be evaluated through the resonance effects associated with the core and inner-core wobbles on the forced nutations of the Earth's figure axis, as observed by very long baseline interferometry (VLBI), or on the diurnal tidal waves, retrieved from the time-varying surface gravity recorded by superconducting gravimeters (SGs). In this paper, we inverse for the rotational mode parameters from both techniques to retrieve geophysical parameters of the deep Earth. We analyse surface gravity data from 15 SG stations and VLBI delays accumulated over the last 35 yr. We show existing correlations between several basic Earth parameters and then decide to inverse for the rotational modes parameters. We employ a Bayesian inversion based on the Metropolis-Hastings algorithm with a Markov-chain Monte Carlo method. We obtain estimates of the free core nutation resonant period and quality factor that are consistent for both techniques. We also attempt an inversion for the free inner-core nutation (FICN) resonant period from gravity data. The most probable solution gives a period close to the annual prograde term (or S1 tide). However the 95 per cent confidence interval extends the possible values between roughly 28 and 725 d for gravity, and from 362 to 414 d from nutation data, depending on the prior bounds. The precisions of the estimated long-period nutation and respective small diurnal tidal constituents are hence not accurate enough for a correct determination of the FICN complex frequency.
Pandit, Priti R; Fulekar, M H
2017-08-01
Worldwide consumption of hen eggs results in availability of large amount of discarded egg waste particularly egg shells. In the present study, the waste shells were utilized for the synthesis of highly active heterogeneous calcium oxide (CaO) nanocatalyst to transesterify dry biomass into methyl esters (biodiesel). The CaO nanocatalyst was synthesied by calcination-hydration-dehydration technique and fully characterized by infrared spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), brunauer-emmett-teller (BET) elemental and thermogravimetric analysis. TEM image showed that the nano catalyst had spherical shape with average particle size of 75 nm. BET analysis indicated that the catalyst specific surface area was 16.4 m 2 g -1 with average pore diameter of 5.07 nm. The effect of nano CaO catalyst was investigated by direct transesterification of dry biomass into biodiesel along with other reaction parameters such as catalyst ratio, reaction time and stirring rate. The impact of the transesterification reaction parameters and microalgal biodiesel yield were analyzed by response surface methodology based on a full factorial, central composite design. The significance of the predicted mode was verified and 86.41% microalgal biodiesel yield was reported at optimal parameter conditions 1.7% (w/w), catalyst ratio, 3.6 h reaction time and stirring rate of 140.6 rpm. The biodiesel conversion was determined by 1 H nuclear magnetic resonance spectroscopy (NMR). The fuel properties of prepared biodiesel were found to be highly comply with the biodiesel standard ASTMD6751 and EN14214. Copyright © 2017 Elsevier Ltd. All rights reserved.
Theoretical and experimental evidence of Fano-like resonances in simple monomode photonic circuits
NASA Astrophysics Data System (ADS)
Mouadili, A.; El Boudouti, E. H.; Soltani, A.; Talbi, A.; Akjouj, A.; Djafari-Rouhani, B.
2013-04-01
A simple photonic device consisting of two dangling side resonators grafted at two sites on a waveguide is designed in order to obtain sharp resonant states inside the transmission gaps without introducing any defects in the structure. This results from an internal resonance of the structure when such a resonance is situated in the vicinity of a zero of transmission or placed between two zeros of transmission, the so-called Fano resonances. A general analytical expression for the transmission coefficient is given for various systems of this kind. The amplitude of the transmission is obtained following the Fano form. The full width at half maximum of the resonances as well as the asymmetric Fano parameter are discussed explicitly as function of the geometrical parameters of the system. In addition to the usual asymmetric Fano resonance, we show that this system may exhibit an electromagnetic induced transparency resonance as well as well as a particular case where such resonances collapse in the transmission coefficient. Also, we give a comparison between the phase of the determinant of the scattering matrix, the so-called Friedel phase, and the phase of the transmission amplitude. The analytical results are obtained by means of the Green's function method, whereas the experiments are carried out using coaxial cables in the radio-frequency regime. These results should have important consequences for designing integrated devices such as narrow-frequency optical or microwave filters and high-speed switches. This system is proposed as a simpler alternative to coupled-micoresonators.
Optical Analysis of Grazing Incidence Ring Resonators for Free-Electron Lasers
NASA Astrophysics Data System (ADS)
Gabardi, David Richard
1990-08-01
The design of resonators for free-electron lasers (FELs) which are to operate in the soft x-ray/vacuum ultraviolet (XUV) region of the spectrum is complicated by the fact that, in this wavelength regime, normal incidence mirrors, which would otherwise be used for the construction of the resonators, generally have insufficient reflectivities for this purpose. However, the use of grazing incidence mirrors in XUV resonators offers the possibility of (1) providing sufficient reflectivity, (2) a lessening of the mirrors' thermal loads due to the projection of the laser beam onto an oblique surface, and (3) the preservation of the FEL's tunability. In this work, the behavior of resonators employing grazing incidence mirrors in ring type configurations is explored. In particular, two designs, each utilizing four off-axis conic mirrors and a number of flats, are examined. In order to specify the location, orientation, and surface parameters for the mirrors in these resonators, a design algorithm has been developed based upon the properties of Gaussian beam propagation. Two computer simulation methods are used to perform a vacuum stability analysis of the two resonator designs. The first method uses paraxial ray trace techniques with the resonators' thin lens analogues while the second uses the diffraction-based computer simulation code GLAD (General Laser Analysis and Design). The effects of mirror tilts and deviations in the mirror surface parameters are investigated for a number of resonators designed to propagate laser beams of various Rayleigh ranges. It will be shown that resonator stability decreases as the laser wavelength for which the resonator was designed is made smaller. In addition, resonator stability will also be seen to decrease as the amount of magnification the laser beam receives as it travels around the resonator is increased.
Zhang, Degang
2009-10-30
The energy band structure of FeAs-based superconductors is fitted by a tight-binding model with two Fe ions per unit cell and two degenerate orbitals per Fe ion. Based on this, superconductivity with extended s-wave pairing symmetry of the form cosk(x)+cosk(y) is examined. The local density of states near an impurity is also investigated by using the T-matrix approach. For the nonmagnetic scattering potential, we found that there exist two major resonances inside the gap. The height of the resonance peaks depends on the strength of the impurity potential. These in-gap resonances are originated in the Andreev's bound states due to the quasiparticle scattering between the hole Fermi surfaces around Gamma point with positive order parameter and the electron Fermi surfaces around M point with negative order parameter.
Nazarov, V E; Kolpakov, A B; Radostin, A V
2012-07-01
The results of experimental and theoretical studies of low-frequency nonlinear acoustics phenomena (amplitude-dependent loss, resonance frequency shifts, and a generation of second and third harmonics) in a magnesite rod resonator are presented. Acceleration and velocity oscillograms of vibrations of the free boundary of the resonator caused by harmonic excitations were measured and analyzed. A theoretical description of the observed amplitude dependences was carried out within the framework of the phenomenological state equations that contain either of the two types of hysteretic nonlinearity (elastic and inelastic). The type of hysteresis and parameters of acoustic nonlinearity of magnesite were established from comparing the experimental measurements with the theoretical dependences. The values of the parameters were anomalously high even when compared to those of other strongly nonlinear polycrystalline materials such as granite, marble, limestone, sandstone, etc.
Electromagnetic Tunneling and Resonances in Pseudochiral Omega Slabs
Razzaz, Faroq; Alkanhal, Majeed A. S.
2017-01-01
This paper presents theoretical investigation of the electromagnetic wave tunneling and anomalous transmission around the trapped modes in a pseudochiral omega slab. The dispersion relation, the conditions of the trapped modes, and the evanescent wave coupling and tunneling in two different reciprocal pseudochiral omega slab structures are derived. The Berreman’s matrix method is applied to obtain the transmission coefficients across the pseudochiral omega slab. When the structure is perturbed, a resonance phenomenon is detected around the trapped modes. This resonance results in transmission anomalies (total transmission and total reflection) and dramatic field amplifications around the trapped modes. The number of the discrete trapped modes and then the resonance frequencies are prescribed by the parameters of the pseudochiral omega slab such as the value of the omega parameter and its orientation and the slab thickness. PMID:28165058
Part-to-itself model inversion in process compensated resonance testing
NASA Astrophysics Data System (ADS)
Mayes, Alexander; Jauriqui, Leanne; Biedermann, Eric; Heffernan, Julieanne; Livings, Richard; Aldrin, John C.; Goodlet, Brent; Mazdiyasni, Siamack
2018-04-01
Process Compensated Resonance Testing (PCRT) is a non-destructive evaluation (NDE) method involving the collection and analysis of a part's resonance spectrum to characterize its material or damage state. Prior work used the finite element method (FEM) to develop forward modeling and model inversion techniques. In many cases, the inversion problem can become confounded by multiple parameters having similar effects on a part's resonance frequencies. To reduce the influence of confounding parameters and isolate the change in a part (e.g., creep), a part-to-itself (PTI) approach can be taken. A PTI approach involves inverting only the change in resonance frequencies from the before and after states of a part. This approach reduces the possible inversion parameters to only those that change in response to in-service loads and damage mechanisms. To evaluate the effectiveness of using a PTI inversion approach, creep strain and material properties were estimated in virtual and real samples using FEM inversion. Virtual and real dog bone samples composed of nickel-based superalloy Mar-M-247 were examined. Virtual samples were modeled with typically observed variations in material properties and dimensions. Creep modeling was verified with the collected resonance spectra from an incrementally crept physical sample. All samples were inverted against a model space that allowed for change in the creep damage state and the material properties but was blind to initial part dimensions. Results quantified the capabilities of PTI inversion in evaluating creep strain and material properties, as well as its sensitivity to confounding initial dimensions.
Laser magnetic resonance in supersonic plasmas - The rotational spectrum of SH(+)
NASA Technical Reports Server (NTRS)
Hovde, David C.; Saykally, Richard J.
1987-01-01
The rotational spectrum of v = 0 and v = 1X3Sigma(-)SH(+) was measured by laser magnetic resonance. Rotationally cold (Tr = 30 K), vibrationally excited (Tv = 3000 K) ions were generated in a corona excited supersonic expansion. The use of this source to identify ion signals is described. Improved molecular parameters were obtained; term values are presented from which astrophysically important transitions may be calculated. Accurate hyperfine parameters for both vibrational levels were determined and the vibrational dependence of the Fermi contact interaction was resolved. The hyperfine parameters agree well with recent many-body perturbation theory calculations.
Large scale integration of CVD-graphene based NEMS with narrow distribution of resonance parameters
NASA Astrophysics Data System (ADS)
Arjmandi-Tash, Hadi; Allain, Adrien; (Vitto Han, Zheng; Bouchiat, Vincent
2017-06-01
We present a novel method for the fabrication of the arrays of suspended micron-sized membranes, based on monolayer pulsed-CVD graphene. Such devices are the source of an efficient integration of graphene nano-electro-mechanical resonators, compatible with production at the wafer scale using standard photolithography and processing tools. As the graphene surface is continuously protected by the same polymer layer during the whole process, suspended graphene membranes are clean and free of imperfections such as deposits, wrinkles and tears. Batch fabrication of 100 μm-long multi-connected suspended ribbons is presented. At room temperature, mechanical resonance of electrostatically-actuated devices show narrow distribution of their characteristic parameters with high quality factor and low effective mass and resonance frequencies, as expected for low stress and adsorbate-free membranes. Upon cooling, a sharp increase of both resonant frequency and quality factor is observed, enabling to extract the thermal expansion coefficient of CVD graphene. Comparison with state-of-the-art graphene NEMS is presented.
NASA Astrophysics Data System (ADS)
Bolshakov, A. S.; Chaldyshev, V. V.; Zavarin, E. E.; Sakharov, A. V.; Lundin, W. V.; Tsatsulnikov, A. F.; Yagovkina, M. A.
2017-04-01
We studied the optical properties of periodic InGaN/GaN multiple quantum well systems with different numbers of periods. A resonant increase in the optical reflection and simultaneous suppression of the optical absorption have been revealed experimentally at room temperature when the Bragg and exciton resonances were tuned to each other. Numerical modeling with a single set of parameters gave a quantitatively accurate fit of the experimental reflection and transmission spectra in a wide wavelength range and various angles of the light incidence. The model included both exciton resonance and non-resonant band-to-band transitions in the InGaN quantum wells, as well as Rayleigh light scattering in the GaN buffer layer. The analysis also involved x-ray diffraction and photoluminescence data. It allowed us to determine the key parameters of the structure. In particular, the radiative broadening of the InGaN QW excitons was evaluated as 0.20 ± 0.02 meV.
Dynamic fluid sloshing in a one-dimensional array of coupled vessels
NASA Astrophysics Data System (ADS)
Huang, Y. H.; Turner, M. R.
2017-12-01
This paper investigates the coupled motion between the dynamics of N vessels coupled together in a one-dimensional array by springs and the motion of the inviscid fluid sloshing within each vessel. We develop a fully nonlinear model for the system relative to a moving frame such that the fluid in each vessel is governed by the Euler equations and the motion of each vessel is modeled by a forced spring equation. By considering a linearization of the model, the characteristic equation for the natural frequencies of the system is derived and analyzed for a variety of nondimensional parameter regimes. It is found that the problem can exhibit a variety of resonance situations from the 1 :1 resonance to (N +1 ) -fold 1 :⋯:1 resonance, as well as more general r :s :⋯:t resonances for natural numbers r ,s ,t . This paper focuses in particular on determining the existence of regions of parameter space where the (N +1 ) -fold 1 :⋯:1 resonance can be found.
Control of average spacing of OMCVD grown gold nanoparticles
NASA Astrophysics Data System (ADS)
Rezaee, Asad
Metallic nanostructures and their applications is a rapidly expanding field. Nobel metals such as silver and gold have historically been used to demonstrate plasmon effects due to their strong resonances, which occur in the visible part of the electromagnetic spectrum. Localized surface plasmon resonance (LSPR) produces an enhanced electromagnetic field at the interface between a gold nanoparticle (Au NP) and the surrounding dielectric. This enhanced field can be used for metal-dielectric interfacesensitive optical interactions that form a powerful basis for optical sensing. In addition to the surrounding material, the LSPR spectral position and width depend on the size, shape, and average spacing between these particles. Au NP LSPR based sensors depict their highest sensitivity with optimized parameters and usually operate by investigating absorption peak: shifts. The absorption peak: of randomly deposited Au NPs on surfaces is mostly broad. As a result, the absorption peak: shifts, upon binding of a material onto Au NPs might not be very clear for further analysis. Therefore, novel methods based on three well-known techniques, self-assembly, ion irradiation, and organo-meta1lic chemical vapour deposition (OMCVD) are introduced to control the average-spacing between Au NPs. In addition to covalently binding and other advantages of OMCVD grown Au NPs, interesting optical features due to their non-spherical shapes are presented. The first step towards the average-spacing control is to uniformly form self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) as resists for OMCVD Au NPs. The formation and optimization of the OTS SAMs are extensively studied. The optimized resist SAMs are ion-irradiated by a focused ion beam (Fill) and ions generated by a Tandem accelerator. The irradiated areas are refilled with 3-mercaptopropyl-trimethoxysilane (MPTS) to provide nucleation sites for the OMCVD Au NP growth. Each step during sample preparation is monitored by using surface characterization methods such as contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), Rutherford backscattering spectroscopy (RBS), UV-Visible spectroscopy, and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). Keywords: Absorption, Array, Average Spacing, Binary Mixture, Density, Deposition, Dose, Fm, Gold Nanoparticle, Growth, Ion Irradiation, LSPR, Nanolithography, Nearest Neighbour Distance, OMCVD, Optical Response, OTS, Polarization, Refilling, Resist, SAM, Self-assembly, SEM Image Analysis, Sensing, Surface, Thin Film, Transparent Substrate.
Amplitude tests of direct channel resonances: The dibaryon
NASA Astrophysics Data System (ADS)
Goldstein, G. R.; Moravosik, M. J.; Arash, F.
1985-02-01
A recently formulated polarization amplitude test for the existence of one-particle-exchange mechanisms is modified to deal with direct-channel resonances. The results are applied to proton-proton elastic scattering at and around 800 MeV to test the suggested existence of a dibaryon resonance. This test is sensitive to somewhat different circumstances and parameters than the methods used in the past to find dibaryon resonances. The evidence, on the basis of the SAID data set, is negative for a resonance in any singlet partial wave, but is tantalizingly subliminal for a 3F3 resonance.
Amplitude tests of direct channel resonances: the dibaryon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, G.R.; Moravcsik, M.J.; Arash, F.
A recently formulated polarization amplitude test for the existence of one-particle-exchange mechanisms is modified to deal with direct-channel resonances. The results are applied to proton-proton elastic scattering at and around 800 MeV to test the suggested existence of a dibaryon resonance. This test is sensitive to somewhat different circumstances and parameters than the methods used in the past to find dibaryon resonances. The evidence, on the basis of the SAID data set, is negative for a resonance in any singlet partial wave, but is tantalizingly subliminal for a /sup 3/F/sub 3/ resonance. 7 refs., 4 figs.
Averages of B-Hadron, C-Hadron, and tau-lepton properties as of early 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amhis, Y.; et al.
2012-07-01
This article reports world averages of measurements of b-hadron, c-hadron, and tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through the end of 2011. In some cases results available in the early part of 2012 are included. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays and CKM matrix elements.
Luo, Yanting; Yang, Yongmin; Chen, Zhongsheng
2014-04-10
Sub-resonances often happen in wireless power transmission (WPT) systems using coupled magnetic resonances (CMR) due to environmental changes, coil movements or component degradations, which is a serious challenge for high efficiency power transmission. Thus self-tuning is very significant to keep WPT systems following strongly magnetic resonant conditions in practice. Traditional coupled-mode ways is difficult to solve this problem. In this paper a two-port power wave model is presented, where power matching and the overall systemic power transmission efficiency are firstly defined by scattering (S) parameters. Then we propose a novel self-tuning scheme based on on-line S parameters measurements and two-side power matching. Experimental results testify the feasibility of the proposed method. These findings suggest that the proposed method is much potential to develop strongly self-adaptive WPT systems with CMR.
The Infrared Spectrum of Isotopomers of the TeH Radical, Observed by CO Laser Magnetic Resonance
NASA Astrophysics Data System (ADS)
Gillett, D. A.; Towle, J. P.; Islam, M.; Brown, J. M.
1994-02-01
The infrared spectrum of the TeH radical in its X2Π state has been recorded using an intracavity CO laser magnetic resonance (LMR) spectrometer. Seven of the eight naturally occurring Te isotopomers were observed, with resonances originating from the first three vibrational levels; many were recorded as Lamb-dips. These observations have been combined with existing data for TeH and TeD in the X2Π state and used to determine the parameters of an N 2 Hamiltonian, including isotopic scaling and nonadiabatic corrections. The data are well described by the parameters. The different isotopic dependences of the effects of the parameters A D and γ has allowed their separation and the extent to which TeH shows Hund's case (c) coupling is discussed. Trends displayed by the chalcogen monohydrides are considered.
Analysis of Alternative Ring Resonator Designs
2014-08-01
the ring strip of the antenna as in the case of the original design. Both the alternative dielectric laminate and the increased thickness laminate...adjustments to the geometry parameters. 2. Ring Resonator Antenna Design The ring resonator is a two port antenna consisting of a ring strip and two...for various soil sample depths indicates that most of the measureable response is from within 2 mm of the resonator antenna strip surface. For the
Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng
2013-12-21
Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.
NASA Astrophysics Data System (ADS)
Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter
2015-09-01
Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.
Dietrich, Yvan; Eliat, Pierre-Antoine; Dieuset, Gabriel; Saint-Jalmes, Herve; Pineau, Charles; Wendling, Fabrice; Martin, Benoit
2016-08-01
An important issue in epilepsy research is to understand the structural and functional modifications leading to chronic epilepsy, characterized by spontaneous recurrent seizures, after initial brain insult. To address this issue, we recorded and analyzed electroencephalography (EEG) and quantitative magnetic resonance imaging (MRI) data during epileptogenesis in the in vivo mouse model of Medial Temporal Lobe Epilepsy (MTLE, kainate). Besides, this model of epilepsy is a particular form of drug-resistant epilepsy. The results indicate that high-field (4.7T) MRI parameters (T2-weighted; T2-quantitative) allow to detect the gradual neuro-anatomical changes that occur during epileptogenesis while electrophysiological parameters (number and duration of Hippocampal Paroxysmal Discharges) allow to assess the dysfunctional changes through the quantification of epileptiform activity. We found a strong correlation between EEG-based markers (invasive recording) and MRI-based parameters (non-invasive) periodically computed over the `latent period' that spans over two weeks, on average. These results indicated that both structural and functional changes occur in the considered epilepsy model and are considered as biomarkers of the installation of epilepsy. Additionally, such structural and functional changes can also be observed in human temporal lobe epilepsy. Interestingly, MRI imaging parameters could be used to track early (day-7) structural changes (gliosis, cell loss) in the lesioned brain and to quantify the evolution of epileptogenesis after traumatic brain injury.
Song, Lei; Li, Liang; Liu, Bin; Yu, Dexin; Sun, Fengguo; Guo, Mingming; Ruan, Zhengmin; Zhang, Feixue
2018-01-01
The objective of the present study was to evaluate the diagnostic efficiency of ultrasound (US) and magnetic resonance imaging (MRI) in the diagnosis and differential diagnosis of mammary duct ectasia (MDE) and breast cancer. This retrospective study was performed on 35 patients with MDE and 105 patients with breast cancer using US and MRI. Imaging features, semi-quantitative and quantitative parameters were analyzed to determine their diagnostic value for MDE and breast cancer. The average age of patients with breast cancer was increased compared with that of patients with MDE. There were no significant differences in local packages with or without tenderness ratio (P=0.259) and grade of color Doppler flow imaging (P=0.273) between the two groups. However, the morphological changes were significantly increased in breast cancer compared with MDE. In addition, there were significant diagnostic differences in US and MRI between breast cancer and MDE, including resistance index, US elastography, time-signal intensity curve, apparent diffusion coefficient, early-stage enhancement ratio, peak-of-enhancement ratio and Tpeak (P<0.05). However, there were no observable significant diagnostic differences between US, MRI and US with MRI for MDE and breast cancer (P=0.103, P=0.263 and P=0.403 respectively). Diagnosis of MDE and breast cancer requires full evaluation of multiple parameters and morphological changes of US and MRI to increase the diagnostic efficiency. US, MRI and US with MRI were all of diagnostic value for MDE and breast cancer, while US with MRI had the highest efficacy. PMID:29434865
Secular Resonances In Planetary Satellites
NASA Astrophysics Data System (ADS)
Yokoyama, T.; Marinho, E. P.
1999-09-01
Due to the tides the orbits of Phobos and Triton are spiralling in towards their host planets. On the contrary, our Moon is being driven away from the Earth. Most probably, in the past many other particles experienced similar variations. During this evolution, the semimajor axis assumes several values which can cause significant resonances, involving the node, pericenter and the longitude of the Sun. Recently Touma and Wisdom showed the decisive effect played by evection and iviction resonances in the Earth-Moon system. In this work we derive the averaged equations of a satellite disturbed by the Sun and the oblateness of the planet. Neglecting higher order (third) in the ratio of the distances, all possible resonances are studied. In general we are used to small values of the ecliptic. However in the past, the obliquity of the inner planets could have attained very high values (Laskar et all). Then taking into account large values of the obliquity we find some significant variations in the inclinations, besides others in the eccentricities. If some empirical law of the variation of the semimajor axis is assumed, then with the averaged equations we can easily see the jumps in these elements when the satellite crosses some resonance. Finally we show the possible variations in the Phobos' eccentricity since it will cross the evection resonance in the future. We also show some possible and significant resonances faced by Triton in the past. For partial financial support we thank FAPESP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugmire, R.J.; Solum, M.S.
This study was designed to apply {sup 13}C-nuclear magnetic resonance (NMR) spectrometry to the analysis of direct coal liquefaction process-stream materials. {sup 13}C-NMR was shown to have a high potential for application to direct coal liquefaction-derived samples in Phase II of this program. In this Phase III project, {sup 13}C-NMR was applied to a set of samples derived from the HRI Inc. bench-scale liquefaction Run CC-15. The samples include the feed coal, net products and intermediate streams from three operating periods of the run. High-resolution {sup 13}C-NMR data were obtained for the liquid samples and solid-state CP/MAS {sup 13}C-NMR datamore » were obtained for the coal and filter-cake samples. The {sup 1}C-NMR technique is used to derive a set of twelve carbon structural parameters for each sample (CONSOL Table A). Average molecular structural descriptors can then be derived from these parameters (CONSOL Table B).« less
Optimal Shape in Electromagnetic Scattering by Small Aspherical Particles
NASA Astrophysics Data System (ADS)
Kostinski, A. B.; Mongkolsittisilp, A.
2013-12-01
We consider the question of optimal shape for scattering by randomly oriented particles, e.g., shape causing minimal extinction among those of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency (electrostatics) approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple proof of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also established. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose linking low and high frequency regime in a single minimum principle valid for all size parameters, provided that reasonable size distributions wash out the resonances for inter-mediate size parameters. This proposal is further supported by the sum rule for integrated extinction. Implications for spectro-polarimetric scattering are explicitly considered.
Ratcheting rotation or speedy spinning: EPR and dynamics of Sc3C2@C80.
Roukala, Juho; Straka, Michal; Taubert, Stefan; Vaara, Juha; Lantto, Perttu
2017-08-08
Besides their technological applications, endohedral fullerenes provide ideal conditions for investigating molecular dynamics in restricted geometries. A representative of this class of systems, Sc 3 C 2 @C 80 displays complex intramolecular dynamics. The motion of the 45 Sc trimer has a remarkable effect on its electron paramagnetic resonance (EPR) spectrum, which changes from a symmetric 22-peak pattern at high temperature to a single broad lineshape at low temperature. The scandium trimer consists of two equivalent and one inequivalent metal atom, due to the carbon dimer rocking through the Sc 3 triangle. We demonstrate through first-principles molecular dynamics (MD), EPR parameter tensor averaging, and spectral modelling that, at high temperatures, three-dimensional movement of the enclosed Sc 3 C 2 moiety takes place, which renders the metal centers equivalent and their magnetic parameters effectively isotropic. In contrast, at low temperatures the dynamics becomes restricted to two dimensions within the equatorial belt of the I h symmetric C 80 host fullerene. This restores the inequivalence of the scandium centers and causes their anisotropic hyperfine couplings to broaden the experimental spectrum.
1987-01-07
Excimer-Laser Projection Lithography 38 4.5 Observation of Millimeter-Wave Oscillations from Resonant- Tunneling Diodes and Some Theroretical...and SIMOX Circuits 32 4-1 Resonant Tunneling Diode Parameters 41 XI INTRODUCTION 1. SOLID STATE DEVICE RESEARCH Optoelectronic switches have...radiation and reflective optics. Oscillation frequencies as high as 56 GHz have been observed from resonant- tunneling double- barrier diodes. Recent
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The 135 clock-hour course for the 11th year consists of outlines for blocks of instruction on series resonant circuits, parallel resonant circuits, transformer theory and application, vacuum tube fundamentals, diode vacuum tubes, triode tube construction and parameters, vacuum tube tetrodes and pentodes, beam-power and multisection tubes, and…
Correlating MALDI and MRI Biomarkers of Breast Cancer
2010-07-01
resonance imaging ( MRI ) with matrix-assisted laser desorption ionization (MALDI) analysis of healthy and tumorous ex vivo specimens in order to examine the...assess the correlation between physiological parameters reported by magnetic resonance (MR) imaging and tumor protein distribution determined from... imaging research (e.g., Cancer Imaging , Quantitative Magnetic Resonance Imaging , and Medical Image Registration classes) • completion of
RMP ELM Suppression in DIII-D Plasmas with ITER Similar Shapes and Collisionalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, T.E.; Fenstermacher, M. E.; Moyer, R.A.
2008-01-01
Large Type-I edge localized modes (ELMs) are completely eliminated with small n = 3 resonant magnetic perturbations (RMP) in low average triangularity, = 0.26, plasmas and in ITER similar shaped (ISS) plasmas, = 0.53, with ITER relevant collisionalities ve 0.2. Significant differences in the RMP requirements and in the properties of the ELM suppressed plasmas are found when comparing the two triangularities. In ISS plasmas, the current required to suppress ELMs is approximately 25% higher than in low average triangularity plasmas. It is also found that the width of the resonant q95 window required for ELM suppression is smaller inmore » ISS plasmas than in low average triangularity plasmas. An analysis of the positions and widths of resonant magnetic islands across the pedestal region, in the absence of resonant field screening or a self-consistent plasma response, indicates that differences in the shape of the q profile may explain the need for higher RMP coil currents during ELM suppression in ISS plasmas. Changes in the pedestal profiles are compared for each plasma shape as well as with changes in the injected neutral beam power and the RMP amplitude. Implications of these results are discussed in terms of requirements for optimal ELM control coil designs and for establishing the physics basis needed in order to scale this approach to future burning plasma devices such as ITER.« less
Huang, Wei; Wang, Ya; Panicek, David M; Schwartz, Lawrence H; Koutcher, Jason A
2009-07-01
Retrospective analyses of clinical dynamic contrast-enhanced (DCE) MRI studies may be limited by failure to measure the longitudinal relaxation rate constant (R(1)) initially, which is necessary for quantitative analysis. In addition, errors in R(1) estimation in each individual experiment can cause inconsistent results in derivations of pharmacokinetic parameters, K(trans) and v(e), by kinetic modeling of the DCE-MRI time course data. A total of 18 patients with lower extremity osteosarcomas underwent multislice DCE-MRI prior to surgery. For the individual R(1) measurement approach, the R(1) time course was obtained using the two-point R(1) determination method. For the average R(10) (precontrast R(1)) approach, the R(1) time course was derived using the DCE-MRI pulse sequence signal intensity equation and the average R(10) value of this population. The whole tumor and histogram median K(trans) (0.57+/-0.37 and 0.45+/-0.32 min(-1)) and v(e) (0.59+/-0.20 and 0.56+/-0.17) obtained with the individual R(1) measurement approach are not significantly different (paired t test) from those (K(trans): 0.61+/-0.46 and 0.44+/-0.33 min(-1); v(e): 0.61+/-0.19 and 0.55+/-0.14) obtained with the average R(10) approach. The results suggest that it is feasible, as well as practical, to use a limited-population-based average R(10) for pharmacokinetic modeling of osteosarcoma DCE-MRI data.
NASA Astrophysics Data System (ADS)
Filatov, Yuri V.; Shalymov, Egor V.; Venediktov, Vladimir Yu.; Dmitrieva, Anna D.
2016-10-01
The parameters of whispering gallery modes resonators can be significantly modified under the action of external factors, for instance, in the case of resonator movement. The effects, which take place in the moving resonators of whispering gallery modes, can be employed for measuring of the angular velocity. In this work we was compared the influence of centrifugal forces and the Sagnac effect on the eigenfrequencies (wavelengths) of whispering gallery modes resonators. Also work is devoted mutual relationships of the effects.
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.
The Stability of Resonant Chains of Moons
NASA Astrophysics Data System (ADS)
Rimlinger, Thomas; Hamilton, Douglas
2018-04-01
Unlike other giant planets, Saturn has a satellite system that is dominated by a single massive body, Titan, which features an unusually large inclination and eccentricity. Its origin has yet to be satisfactorily explained; neither in situ formation nor capture from heliocentric orbit can easily produce all of its measured properties. We argue that dynamical instability and subsequent mergers within a resonant chain of satellites analogous to the Galilean moons could be responsible for Titan’s unusual features.To explore this idea, we perform simulations in which we vary a wide range of parameters, including the number of satellites, their masses, their spacings, and their tidal migration and eccentricity damping rates. In our preliminary modeling, we initialize our simulations with three moons in the 1:2:4 mean-motion resonance (currently occupied by Io, Europa, and Ganymede at Jupiter) and study how varying each parameter affects the resonant stability. We find that in some cases, the satellites do indeed escape from this three-body resonance, while in others, the bodies’ period ratios remain locked. We study the evolution of these systems and seek a deeper understanding of the competing mechanisms responsible for resonant capture and escape.Accordingly, we investigate the role that specific two-body eccentricity and inclination resonances play in determining stability conditions. For three satellites in a 1:2:4 resonance, there exist four nearby first-order eccentricity resonances along with many other weaker eccentricity and inclination resonances. In our simulations, we track entrance into and exit from these resonances to provide a more cohesive picture of how the system evolves and find that this evolution depends sensitively on the masses and damping rates. We will report further details of our findings and will discuss their implications for the stability of resonant chains of moons.
Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons
NASA Astrophysics Data System (ADS)
Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard M.; Li, Jinxing; Dai, Lei; Zhan, Xiaoya
2015-08-01
Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the flux of these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from an equatorial pitch angle of 90° down to lower values. However, this mechanism has not been uniquely identified yet. Here we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1, 2, and 3) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear, and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude à and normalized wave number k~z. The threshold for higher harmonic resonance is more strict, favoring higher à and k~z, and the change in equatorial pitch angle is strongly controlled by k~z. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasma density, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90°.
A narrowband filter based on 2D 8-fold photonic quasicrystal
NASA Astrophysics Data System (ADS)
Ren, Jie; Sun, XiaoHong; Wang, Shuai
2018-04-01
In this paper, a novel structure of narrowband filter based on 2D 8-fold photonic quasicrystal (PQC) is proposed and investigated. The structure size is 8 μm × 8 μm, which promises its applications in optical integrated circuits and communication devices. Finite Element Method (FEM) has been employed to investigate the band gap of the filter. The resonance wavelength, transmission coefficient and 3 dB bandwidth are analyzed by varying the parameters of the structure. By optimizing the parameters of the filter, two design formulas of resonance wavelength are obtained. Also, for its better linearity of the resonance, the structure with line-defect has also seen a large uptake in sensor design.
A Novel Coupled Resonator Photonic Crystal Design in Lithium Niobate for Electrooptic Applications
Ozturk, Birol; Yavuzcetin, Ozgur; Sridhar, Srinivas
2015-01-01
High-aspect-ratio photonic crystal air-hole fabrication on bulk Lithium Niobate (LN) substrates is extremely difficult due to its inherent resistance to etching, resulting in conical structures and high insertion losses. Here, we propose a novel coupled resonator photonic crystal (CRPC) design, combining a coupled resonator approach with that of Bragg gratings. CRPC design parameters were optimized by analytical calculations and FDTD simulations. CRPC structures with optimized parameters were fabricated and electrooptically tested on bulk LN annealed proton exchange waveguides. Low insertion loss and large electrooptic effect were observed with the fabricated devices, making the CRPC design a promising structure for electroopticmore » device applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Tze Yee
Purpose: For postimplant dosimetric assessment, computed tomography (CT) is commonly used to identify prostate brachytherapy seeds, at the expense of accurate anatomical contouring. Magnetic resonance imaging (MRI) is superior to CT for anatomical delineation, but identification of the negative-contrast seeds is challenging. Positive-contrast MRI markers were proposed to replace spacers to assist seed localization on MRI images. Visualization of these markers under varying scan parameters was investigated. Methods: To simulate a clinical scenario, a prostate phantom was implanted with 66 markers and 86 seeds, and imaged on a 3.0T MRI scanner using a 3D fast radiofrequency-spoiled gradient recalled echo acquisitionmore » with various combinations of scan parameters. Scan parameters, including flip angle, number of excitations, bandwidth, field-of-view, slice thickness, and encoding steps were systematically varied to study their effects on signal, noise, scan time, image resolution, and artifacts. Results: The effects of pulse sequence parameter selection on the marker signal strength and image noise were characterized. The authors also examined the tradeoff between signal-to-noise ratio, scan time, and image artifacts, such as the wraparound artifact, susceptibility artifact, chemical shift artifact, and partial volume averaging artifact. Given reasonable scan time and managable artifacts, the authors recommended scan parameter combinations that can provide robust visualization of the MRI markers. Conclusions: The recommended MRI pulse sequence protocol allows for consistent visualization of the markers to assist seed localization, potentially enabling MRI-only prostate postimplant dosimetry.« less
A validation of dynamic causal modelling for 7T fMRI.
Tak, S; Noh, J; Cheong, C; Zeidman, P; Razi, A; Penny, W D; Friston, K J
2018-07-15
There is growing interest in ultra-high field magnetic resonance imaging (MRI) in cognitive and clinical neuroscience studies. However, the benefits offered by higher field strength have not been evaluated in terms of effective connectivity and dynamic causal modelling (DCM). In this study, we address the validity of DCM for 7T functional MRI data at two levels. First, we evaluate the predictive validity of DCM estimates based upon 3T and 7T in terms of reproducibility. Second, we assess improvements in the efficiency of DCM estimates at 7T, in terms of the entropy of the posterior distribution over model parameters (i.e., information gain). Using empirical data recorded during fist-closing movements with 3T and 7T fMRI, we found a high reproducibility of average connectivity and condition-specific changes in connectivity - as quantified by the intra-class correlation coefficient (ICC = 0.862 and 0.936, respectively). Furthermore, we found that the posterior entropy of 7T parameter estimates was substantially less than that of 3T parameter estimates; suggesting the 7T data are more informative - and furnish more efficient estimates. In the framework of DCM, we treated field-dependent parameters for the BOLD signal model as free parameters, to accommodate fMRI data at 3T and 7T. In addition, we made the resting blood volume fraction a free parameter, because different brain regions can differ in their vascularization. In this paper, we showed DCM enables one to infer changes in effective connectivity from 7T data reliably and efficiently. Copyright © 2018 Elsevier B.V. All rights reserved.
Electron Source based on Superconducting RF
NASA Astrophysics Data System (ADS)
Xin, Tianmu
High-bunch-charge photoemission electron-sources operating in a Continuous Wave (CW) mode can provide high peak current as well as the high average current which are required for many advanced applications of accelerators facilities, for example, electron coolers for hadron beams, electron-ion colliders, and Free-Electron Lasers (FELs). Superconducting Radio Frequency (SRF) has many advantages over other electron-injector technologies, especially when it is working in CW mode as it offers higher repetition rate. An 112 MHz SRF electron photo-injector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for electron cooling experiments. The gun utilizes a Quarter-Wave Resonator (QWR) geometry for a compact structure and improved electron beam dynamics. The detailed RF design of the cavity, fundamental coupler and cathode stalk are presented in this work. A GPU accelerated code was written to improve the speed of simulation of multipacting, an important hurdle the SRF structure has to overcome in various locations. The injector utilizes high Quantum Efficiency (QE) multi-alkali photocathodes (K2CsSb) for generating electrons. The cathode fabrication system and procedure are also included in the thesis. Beam dynamic simulation of the injector was done with the code ASTRA. To find the optimized parameters of the cavities and beam optics, the author wrote a genetic algorithm Python script to search for the best solution in this high-dimensional parameter space. The gun was successfully commissioned and produced world record bunch charge and average current in an SRF photo-injector.
Nagy-Balo, Edina; Kiss, Alexandra; Condie, Catherine; Stewart, Mark; Edes, Istvan; Csanadi, Zoltan
2014-06-01
Pulmonary vein isolation with phased radiofrequency current and use of a pulmonary vein ablation catheter (PVAC) has recently been associated with a high incidence of clinically silent brain infarcts on diffusion-weighted magnetic resonance imaging and a high microembolic signal (MES) count detected by transcranial Doppler. The purpose of this study was to investigate the potential correlation between different biophysical parameters of energy delivery (ED) and MES generation during PVAC ablation. MES counts during consecutive PVAC ablations were recorded for each ED and time stamped for correlation with temperature, power, and impedance data from the GENius 14.4 generator. Additionally, catheter-tissue contact was characterized by the template deviation score, calculated by comparing the temperature curve with an ideal template representing good contact, and by the respiratory contact failure score, to quantify temperature variations indicative of intermittent contact due to respiration. A total of 834 EDs during 48 PVAC ablations were analyzed. A significant increase in MES count was associated with a lower average temperature, a temperature integral over 62°C, a higher average power, the total energy delivered, higher respiration and template deviation scores (P <.0001), and simultaneous ED to the most proximal and distal poles of the PVAC (P <.0001). MES generation during ablation is related to different indicators of poor electrode-tissue contact, the total power delivered, and the interaction between the most distal and the most proximal electrodes. Copyright © 2014. Published by Elsevier Inc.
Optimization of Scan Parameters to Reduce Acquisition Time for Diffusion Kurtosis Imaging at 1.5T.
Yokosawa, Suguru; Sasaki, Makoto; Bito, Yoshitaka; Ito, Kenji; Yamashita, Fumio; Goodwin, Jonathan; Higuchi, Satomi; Kudo, Kohsuke
2016-01-01
To shorten acquisition of diffusion kurtosis imaging (DKI) in 1.5-tesla magnetic resonance (MR) imaging, we investigated the effects of the number of b-values, diffusion direction, and number of signal averages (NSA) on the accuracy of DKI metrics. We obtained 2 image datasets with 30 gradient directions, 6 b-values up to 2500 s/mm(2), and 2 signal averages from 5 healthy volunteers and generated DKI metrics, i.e., mean, axial, and radial kurtosis (MK, K∥, and K⊥) maps, from various combinations of the datasets. These maps were estimated by using the intraclass correlation coefficient (ICC) with those from the full datasets. The MK and K⊥ maps generated from the datasets including only the b-value of 2500 s/mm(2) showed excellent agreement (ICC, 0.96 to 0.99). Under the same acquisition time and diffusion directions, agreement was better of MK, K∥, and K⊥ maps obtained with 3 b-values (0, 1000, and 2500 s/mm(2)) and 4 signal averages than maps obtained with any other combination of numbers of b-value and varied NSA. Good agreement (ICC > 0.6) required at least 20 diffusion directions in all the metrics. MK and K⊥ maps with ICC greater than 0.95 can be obtained at 1.5T within 10 min (b-value = 0, 1000, and 2500 s/mm(2); 20 diffusion directions; 4 signal averages; slice thickness, 6 mm with no interslice gap; number of slices, 12).
MRI-based intelligence quotient (IQ) estimation with sparse learning.
Wang, Liye; Wee, Chong-Yaw; Suk, Heung-Il; Tang, Xiaoying; Shen, Dinggang
2015-01-01
In this paper, we propose a novel framework for IQ estimation using Magnetic Resonance Imaging (MRI) data. In particular, we devise a new feature selection method based on an extended dirty model for jointly considering both element-wise sparsity and group-wise sparsity. Meanwhile, due to the absence of large dataset with consistent scanning protocols for the IQ estimation, we integrate multiple datasets scanned from different sites with different scanning parameters and protocols. In this way, there is large variability in these different datasets. To address this issue, we design a two-step procedure for 1) first identifying the possible scanning site for each testing subject and 2) then estimating the testing subject's IQ by using a specific estimator designed for that scanning site. We perform two experiments to test the performance of our method by using the MRI data collected from 164 typically developing children between 6 and 15 years old. In the first experiment, we use a multi-kernel Support Vector Regression (SVR) for estimating IQ values, and obtain an average correlation coefficient of 0.718 and also an average root mean square error of 8.695 between the true IQs and the estimated ones. In the second experiment, we use a single-kernel SVR for IQ estimation, and achieve an average correlation coefficient of 0.684 and an average root mean square error of 9.166. All these results show the effectiveness of using imaging data for IQ prediction, which is rarely done in the field according to our knowledge.
Lai, Zhi-Hui; Leng, Yong-Gang
2015-01-01
A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application. PMID:26343671
NASA Technical Reports Server (NTRS)
Hartmann, Mitra J.; Johnson, Nicholas J.; Towal, R. Blythe; Assad, Christopher
2003-01-01
We investigated the natural resonance properties and damping characteristics of rat macrovibrissae (whiskers). Isolated whiskers rigidly fixed at the base showed first-mode resonance peaks between 27 and 260 Hz, principally depending on whisker length. These experimentally measured resonant frequencies were matched using a theoretical model of the whisker as a conical cantilever beam, with Young's modulus as the only free parameter. The best estimate for Young's modulus was approximately 3-4 GPa. Results of both vibration and impulse experiments showed that the whiskers are strongly damped, with damping ratios between 0.11 and 0.17. In the behaving animal, whiskers that deflected past an object were observed to resonate but were damped significantly more than isolated whiskers. The time course of damping varied depending on the individual whisker and the phase of the whisking cycle, which suggests that the rat may modulate biomechanical parameters that affect damping. No resonances were observed for whiskers that did not contact the object or during free whisking in air. Finally, whiskers on the same side of the face were sometimes observed to move in opposite directions over the full duration of a whisk. We discuss the potential roles of resonance during natural exploratory behavior and specifically suggest that resonant oscillations may be important in the rat's tactile detection of object boundaries.
Application of Electron Paramagnetic Resonance to Study of Gallstones
NASA Astrophysics Data System (ADS)
Kiselev, S. A.; Tsyro, L. V.; Afanasiev, D. A.; Unger, F. G.; Soloviev, M. M.
2014-03-01
We present the results of an electron paramagnetic resonance (EPR) study of mixed cholesterol gallstones. We have established that free radicals are distributed nonuniformly within the interior of the stone. The type and number of paramagnetic centers depend on the pigment content in the selected layer. We show that the parameters of the sextet lines in the EPR spectrum of the pigment are close to the parameters of lines in the spectrum of a brown pigment stone.
Magnetic Fano resonances by design in symmetry broken THz meta-foils
Wu, Jianfeng; Moser, Herbert O.; Li, Rujiang; Yang, Yihao; Jing, Liqiao; Chen, Hongsheng; Breese, Mark B. H.
2017-01-01
Magnetic Fano resonances in there-dimensional symmetry broken meta-foils at THz frequencies are theoretically and experimentally studied. Sharp Fano resonances occur due to the interference between different resonances and can be designed by choosing geometric parameters of the meta-foil. At the Fano resonances, the meta-foil supports antisymmetric modes, whereas, at the main resonance, only a symmetric mode exists. The meta-foil is left-handed at the Fano resonances and shows sharp peaks of the real part of the refractive index in transmission with small effective losses opening a way to very sensitive high-speed sensing of dielectric changes in the surrounding media and of mechanical configuration. PMID:28150797
NASA Technical Reports Server (NTRS)
Creason, A. S.; Miranda, F. A.
1996-01-01
Knowledge of the microwave properties at cryogenic temperatures of components fabricated using High-Temperature-Superconductors (HTS) is useful in the design of HTS-based microwave circuits. Therefore, fast and reliable characterization techniques have been developed to study the aforementioned properties. In this paper, we discuss computer analysis techniques employed in the cryogenic characterization of HTS-based resonators. The revised data analysis process requires minimal user input. and organizes the data in a form that is easily accessible by the user for further examination. These programs retrieve data generated during the cryogenic characterization at microwave frequencies of HTS based resonators and use it to calculate parameters such as the loaded and unloaded quality factors (Q and Q(sub o), respectively), the resonant frequency (f(sub o)), and the coupling coefficient (k), which are important quantities in the evaluation of HTS resonators. While the data are also stored for further use, the programs allow the user to obtain a graphical representation of any of the measured parameters as a function of temperature soon after the completion of the cryogenic measurement cycle. Although these programs were developed to study planar HTS-based resonators operating in the reflection mode, they could also be used in the cryogenic characterization of two ports (i.e., reflection/transmission) resonators.
Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuev, Dmitry; Jagau, Thomas-C.; Krylov, Anna I.
2014-07-14
A production-level implementation of equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) for electron attachment and excitation energies augmented by a complex absorbing potential (CAP) is presented. The new method enables the treatment of metastable states within the EOM-CC formalism in a similar manner as bound states. The numeric performance of the method and the sensitivity of resonance positions and lifetimes to the CAP parameters and the choice of one-electron basis set are investigated. A protocol for studying molecular shape resonances based on the use of standard basis sets and a universal criterion for choosing the CAP parameters are presented. Our resultsmore » for a variety of π{sup *} shape resonances of small to medium-size molecules demonstrate that CAP-augmented EOM-CCSD is competitive relative to other theoretical approaches for the treatment of resonances and is often able to reproduce experimental results.« less
NASA Astrophysics Data System (ADS)
Zheng, Yuanliao; Chen, Pingping; Ding, Jiayi; Yang, Heming; Nie, Xiaofei; Zhou, Xiaohao; Chen, Xiaoshuang; Lu, Wei
2018-06-01
A hybrid structure consisting of periodic gold stripes and an overlaying gold film has been proposed as the optical coupler of a long-wave quantum well infrared photodetector. Absorption spectra and field distributions of the structure at back-side normal incidence are calculated by the finite difference time-domain method. The results indicate that the intersubband absorption can be greatly enhanced based on the waveguide resonance as well as the surface plasmon polariton (SPP) mode. With the optimized structural parameters of the periodic gold stripes, the maximal intersubband absorption can exceed 80%, which is much higher than the SPP-enhanced intersubband absorption (<50%) and about 6 times the one of the standard device. The relationship between the structural parameters and the waveguide resonant wavelength is derived. Other advantages of the efficient optical coupling based on waveguide resonance are also discussed.
NASA Astrophysics Data System (ADS)
Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza
2018-06-01
Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the comparison with both the finite element solution of the main partial differential equations and the experimental observations. The effect of excitation angle of the resonator on horizontal oscillation of the probe tip and the effect of different parameters on the frequency-response of the system are investigated.
LEP precision electroweak measurements from the Z{sup 0} resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strom, D.
1997-01-01
Preliminary electroweak measurements from the LEP Collaboration from data taken at the Z{sup 0} resonance are presented. Most of the results presented are based on a total data sample of 12 x 10{sup 6} recorded Z{sup 0} events which included data from the 1993 and 1994 LEP runs. The Z{sup 0} resonance parameters, including hadronic and leptonic cross sections and asymmetries, {tau} polarization and its asymmetry, and heavy-quark asymmetries and partial widths, are evaluated and confronted with the predictions of the Standard Model. This comparison incorporates the constraints provided by the recent determination of the top-quark mass at the Tevatron.more » The Z{sup 0} resonance parameters are found to be in good agreement with the Standard Model prediction using the Tevatron top-quark mass, with the exception of the partial widths for Z{sup 0} decays to pairs of b and c quarks.« less
NASA Astrophysics Data System (ADS)
Rössler, Erik; Mattea, Carlos; Stapf, Siegfried
2015-02-01
Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.
A Computational Model Quantifies the Effect of Anatomical Variability on Velopharyngeal Function
Inouye, Joshua M.; Perry, Jamie L.; Lin, Kant Y.
2015-01-01
Purpose This study predicted the effects of velopharyngeal (VP) anatomical parameters on VP function to provide a greater understanding of speech mechanics and aid in the treatment of speech disorders. Method We created a computational model of the VP mechanism using dimensions obtained from magnetic resonance imaging measurements of 10 healthy adults. The model components included the levator veli palatini (LVP), the velum, and the posterior pharyngeal wall, and the simulations were based on material parameters from the literature. The outcome metrics were the VP closure force and LVP muscle activation required to achieve VP closure. Results Our average model compared favorably with experimental data from the literature. Simulations of 1,000 random anatomies reflected the large variability in closure forces observed experimentally. VP distance had the greatest effect on both outcome metrics when considering the observed anatomic variability. Other anatomical parameters were ranked by their predicted influences on the outcome metrics. Conclusions Our results support the implication that interventions for VP dysfunction that decrease anterior to posterior VP portal distance, increase velar length, and/or increase LVP cross-sectional area may be very effective. Future modeling studies will help to further our understanding of speech mechanics and optimize treatment of speech disorders. PMID:26049120
NASA Technical Reports Server (NTRS)
Litchford, R. J.
2005-01-01
A computational method for the analysis of longitudinal-mode liquid rocket combustion instability has been developed based on the unsteady, quasi-one-dimensional Euler equations where the combustion process source terms were introduced through the incorporation of a two-zone, linearized representation: (1) A two-parameter collapsed combustion zone at the injector face, and (2) a two-parameter distributed combustion zone based on a Lagrangian treatment of the propellant spray. The unsteady Euler equations in inhomogeneous form retain full hyperbolicity and are integrated implicitly in time using second-order, high-resolution, characteristic-based, flux-differencing spatial discretization with Roe-averaging of the Jacobian matrix. This method was initially validated against an analytical solution for nonreacting, isentropic duct acoustics with specified admittances at the inflow and outflow boundaries. For small amplitude perturbations, numerical predictions for the amplification coefficient and oscillation period were found to compare favorably with predictions from linearized small-disturbance theory as long as the grid exceeded a critical density (100 nodes/wavelength). The numerical methodology was then exercised on a generic combustor configuration using both collapsed and distributed combustion zone models with a short nozzle admittance approximation for the outflow boundary. In these cases, the response parameters were varied to determine stability limits defining resonant coupling onset.
Detection of Supernova Neutrinos on the Earth for Large θ13
NASA Astrophysics Data System (ADS)
Xu, Jing; Huang, Ming-Yang; Hu, Li-Jun; Guo, Xin-Heng; Young, Bing-Lin
2014-02-01
Supernova (SN) neutrinos detected on the Earth are subject to the shock wave effects, the Mikheyev—Smirnov—Wolfenstein (MSW) effects, the neutrino collective effects and the Earth matter effects. Considering the recent experimental result about the large mixing angle θ13 (≃ 8.8°) provided by the Daya Bay Collaboration and applying the available knowledge for the neutrino conversion probability in the high resonance region of SN, PH, which is in the form of hypergeometric function in the case of large θ13, we deduce the expression of PH taking into account the shock wave effects. It is found that PH is not zero in a certain range of time due to the shock wave effects. After considering all the four physical effects and scanning relevant parameters, we calculate the event numbers of SN neutrinos for the “Garching” distribution of neutrino energy spectrum. From the numerical results, it is found that the behaviors of neutrino event numbers detected on the Earth depend on the neutrino mass hierarchy and neutrino spectrum parameters including the dimensionless pinching parameter βα (where α refers to neutrino flavor), the average energy
Cerebral perfusion imaging with bolus harmonic imaging (Honorable Mention Poster Award)
NASA Astrophysics Data System (ADS)
Kier, Christian; Toth, Daniel; Meyer-Wiethe, Karsten; Schindler, Angela; Cangur, Hakan; Seidel, Gunter; Aach, Til
2005-04-01
Fast visualisation of cerebral microcirculation supports diagnosis of acute stroke. However, the commonly used CT/MRI-based methods are time consuming, costly and not applicable to every patient. The bolus perfusion harmonic imaging (BHI) method is an ultrasound imaging technique which makes use of the fact, that ultrasound contrast agents unlike biological tissues resonate at harmonic frequencies. Exploiting this effect, the contrast between perfused and non-perfused areas can be improved. Thus, BHI overcomes the low signal-to-noise ratio of transcranial ultrasound and the high impedance of the skull. By analysing image sequences, visualising the qualitative characteristics of an US contrast agent bolus injection becomes possible. The analysis consists of calculating four perfusion-related parameters, Local Peak Intensity, Time To Peak, Area Under Curve, and Average Rising, from the time/intensity curve and providing them as colour-coded images. For calculating these parameters the fundamental assumption is that image intensity corresponds to contrast agent concentration which in turn shows the perfusion of the corresponding brain region. In a clinical study on patients suffering from acute ischemic stroke it is shown that some of the parameters correlate significantly to the infarction area. Thus, BHI becomes a less time-consuming and inexpensive bedside method for diagnosis of cerebral perfusion deficits.
NASA Astrophysics Data System (ADS)
Mett, Richard R.; Anderson, James R.; Sidabras, Jason W.; Hyde, James S.
2005-09-01
Magnetic field modulation is often introduced into a cylindrical TE011 electron paramagnetic resonance (EPR) cavity through silver plating over a nonconductive substrate. The plating thickness must be many times the skin depth of the rf and smaller than the skin depth of the modulation. We derive a parameter that quantifies the modulation field penetration and find that it also depends on resonator dimensions. Design criteria based on this parameter are presented graphically. This parameter is then used to predict the behavior of eddy currents in substrates of moderate conductivity, such as graphite. The conductivity of the graphite permits improved plating uniformity and permits use of electric discharge machining (EDM) techniques to make the resonator. EDM offers precision tolerances of 0.005 mm and is suitable for small, complicated shapes that are difficult to machine by other methods. Analytic predictions of the modulation penetration are compared with the results of finite-element simulations. Simulated magnetic field modulation uniformity and penetration are shown for several elemental coils and structures including the plated graphite TE011 cavity. Fabrication and experimental testing of the structure are discussed. Spatial inhomogeneity of the modulation phase is also investigated by computer simulation. We find that the modulation phase is uniform to within 1% over the TE011 cavity. Structures of lower symmetry have increased phase nonuniformity.
The Complexation of the Na(super +) by 18-Crown-6 Studied via Nuclear Magnetic Resonance
ERIC Educational Resources Information Center
Peters, Steven J.; Stevenson, Cheryl D.
2004-01-01
A student friendly experiment that teaches several important concepts of modern nuclear magnetic resonance (NMR), like multinuclear capabilities, the NMR time scale, and time-averaged signals, is described along with some important concepts of thermo chemical equilibria. The mentioned experiment involves safe and inexpensive compounds, such as…
Injecting asteroid fragments into resonances
NASA Technical Reports Server (NTRS)
Farinella, Paolo; Gonczi, R.; Froeschle, Christiane; Froeschle, Claude
1992-01-01
We have quantitatively modeled the chance insertion of asteroid collisional fragments into the 3:1 and g = g(sub 6) resonances, through which they can achieve Earth-approaching orbits. Although the results depend on some poorly known parameters, they indicate that most meteorites and near-earth asteroids probably come from a small and non-representative sample of asteroids, located in the neighborhood of the two resonances.
Parametric nonfeedback resonance in period doubling systems
NASA Astrophysics Data System (ADS)
Pisarchik, A. N.; Corbalán, R.
1999-02-01
Slow periodic modulation of a control parameter in a period doubling system leads to an interaction between stable and unstable periodic orbits. This causes a resonance in the system response at the modulation frequency. The conditions for this resonance are studied through numerical simulations of quadratic map and laser equations. The results are confirmed by experiments in a CO2 laser with modulated losses.
Ring Laser Gyro Resonator Design
1994-06-20
vibration environment could cause errors in measured RLG rotation rates due to vibration (tilt) of the resonator mirrors . Vibration-induced mirror tilt...the RLG resonator design theoretically and calculated pertinent parameters such as the beam diameter at the aperture, cavity mirror alignment...sensitivities, and power loss due to aperture occlusion. The mirror vibration levels required to significantly affect the laser power were then calculated for
Dual-frequency sound-absorbing metasurface based on visco-thermal effects with frequency dependence
NASA Astrophysics Data System (ADS)
Ryoo, H.; Jeon, W.
2018-03-01
We investigate theoretically an acoustic metasurface with a high absorption coefficient at two frequencies and design it from subwavelength structures. We propose the use of a two-dimensional periodic array of four Helmholtz resonators in two types to obtain a metasurface with nearly perfect sound absorption at given target frequencies via interactions between waves emanating from different resonators. By considering how fluid viscosity affects acoustic energy dissipation in the narrow necks of the Helmholtz resonators, we obtain effective complex-valued material properties that depend on frequency and on the geometrical parameters of the resonators. We furthermore derive the effective acoustic impedance of the metasurface from the effective material properties and calculate the absorption spectra from the theoretical model, which we compare with the spectra obtained from a finite-element simulation. As a practical application of the theoretical model, we derive empirical formulas for the geometrical parameters of a metasurface which would yield perfect absorption at a given frequency. While previous works on metasurfaces based on Helmholtz resonators aimed to absorb sound at single frequencies, we use optimization to design a metasurface composed of four different Helmholtz resonators to absorb sound at two distinct frequencies.
Effects of specimen resonances on acoustic-ultrasonic testing
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Kahn, E. B.; Lee, S. S.
1983-01-01
The effects of specimen resonances on acoustic ultrasonic (AU) nondestructive testing were investigated. Selected resonant frequencies and the corresponding normal mode nodal patterns of the aluminum block are measured up to 75.64 kHz. Prominent peaks in the pencil lead fracture and sphere impact spectra from the two transducer locations corresponded exactly to resonant frequencies of the block. It is established that the resonant frequencies of the block dominated the spectral content of the output signal. The spectral content of the output signals is further influenced by the transducer location relative to the resonant frequency nodal lines. Implications of the results are discussed in relation to AU parameters and measurements.
Mardis, Kristy L.; Webb, J.; Holloway, Tarita; ...
2015-12-03
Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advancedmore » electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.« less
Ion radial diffusion in an electrostatic impulse model for stormtime ring current formation
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.; Gorney, David J.
1992-01-01
Two refinements to the quasi-linear theory of ion radial diffusion are proposed and examined analytically with simulations of particle trajectories. The resonance-broadening correction by Dungey (1965) is applied to the quasi-linear diffusion theory by Faelthammar (1965) for an individual model storm. Quasi-linear theory is then applied to the mean diffusion coefficients resulting from simulations of particle trajectories in 20 model storms. The correction for drift-resonance broadening results in quasi-linear diffusion coefficients with discrepancies from the corresponding simulated values that are reduced by a factor of about 3. Further reductions in the discrepancies are noted following the averaging of the quasi-linear diffusion coefficients, the simulated coefficients, and the resonance-broadened coefficients for the 20 storms. Quasi-linear theory provides good descriptions of particle transport for a single storm but performs even better in conjunction with the present ensemble-averaging.
Kumar, Madhava Anil; Kumar, Vaidyanathan Vinoth; Premkumar, Manickam Periyaraman; Baskaralingam, Palanichamy; Thiruvengadaravi, Kadathur Varathachary; Dhanasekaran, Anuradha; Sivanesan, Subramanian
2012-11-01
A bacterial consortium-AVS, consisting of Pseudomonas desmolyticum NCIM 2112, Kocuria rosea MTCC 1532 and Micrococcus glutamicus NCIM 2168 was formulated chemometrically, using the mixture design matrix based on the design of experiments methodology. The formulated consortium-AVS decolorized acid blue 15 and methylene blue with a higher average decolorization rate, which is more rapid than that of the pure cultures. The UV-vis spectrophotometric, Fourier transform infra red spectrophotometric and high performance liquid chromatographic analysis confirm that the decolorization was due to biodegradation by oxido-reductive enzymes, produced by the consortium-AVS. The toxicological assessment of plant growth parameters and the chlorophyll pigment concentrations of Phaseolus mungo and Triticum aestivum seedlings revealed the reduced toxic nature of the biodegraded products. Copyright © 2012 Elsevier Ltd. All rights reserved.
Barkauskas, Kestutis J; Rajiah, Prabhakar; Ashwath, Ravi; Hamilton, Jesse I; Chen, Yong; Ma, Dan; Wright, Katherine L; Gulani, Vikas; Griswold, Mark A; Seiberlich, Nicole
2014-09-11
The standard clinical acquisition for left ventricular functional parameter analysis with cardiovascular magnetic resonance (CMR) uses a multi-breathhold multi-slice segmented balanced SSFP sequence. Performing multiple long breathholds in quick succession for ventricular coverage in the short-axis orientation can lead to fatigue and is challenging in patients with severe cardiac or respiratory disorders. This study combines the encoding efficiency of a six-fold undersampled 3D stack of spirals balanced SSFP sequence with 3D through-time spiral GRAPPA parallel imaging reconstruction. This 3D spiral method requires only one breathhold to collect the dynamic data. Ten healthy volunteers were recruited for imaging at 3 T. The 3D spiral technique was compared against 2D imaging in terms of systolic left ventricular functional parameter values (Bland-Altman plots), total scan time (Welch's t-test) and qualitative image rating scores (Wilcoxon signed-rank test). Systolic left ventricular functional values were not significantly different (i.e. 3D-2D) between the methods. The 95% confidence interval for ejection fraction was -0.1 ± 1.6% (mean ± 1.96*SD). The total scan time for the 3D spiral technique was 48 s, which included one breathhold with an average duration of 14 s for the dynamic scan, plus 34 s to collect the calibration data under free-breathing conditions. The 2D method required an average of 5 min 40s for the same coverage of the left ventricle. The difference between 3D and 2D image rating scores was significantly different from zero (Wilcoxon signed-rank test, p < 0.05); however, the scores were at least 3 (i.e. average) or higher for 3D spiral imaging. The 3D through-time spiral GRAPPA method demonstrated equivalent systolic left ventricular functional parameter values, required significantly less total scan time and yielded acceptable image quality with respect to the 2D segmented multi-breathhold standard in this study. Moreover, the 3D spiral technique used just one breathhold for dynamic imaging, which is anticipated to reduce patient fatigue as part of the complete cardiac examination in future studies that include patients.
Plasmon resonant cavities in vertical nanowire arrays
Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.
2014-07-15
Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.
NASA Astrophysics Data System (ADS)
Vouillamoz, J. M.; Lawson, F. M. A.; Yalo, N.; Descloitres, M.
2014-08-01
Hundreds of thousands of boreholes have been drilled in hard rocks of Africa and Asia for supplying human communities with drinking water. Despite the common use of geophysics for improving the siting of boreholes, a significant number of drilled holes does not deliver enough water to be equipped (e.g. 40% on average in Benin). As compared to other non-invasive geophysical methods, magnetic resonance sounding (MRS) is selective to groundwater. However, this distinctive feature has not been fully used in previous published studies for quantifying the drainable groundwater in hard rocks (i.e. the specific yield) and the short-term productivity of aquifer (i.e. the transmissivity). We present in this paper a comparison of MRS results (i.e. the water content and pore-size parameter) with both specific yield and transmissivity calculated from long duration pumping tests. We conducted our experiments in six sites located in different hard rock groups in Benin, thus providing a unique data set to assess the usefulness of MRS in hard rock aquifers. We found that the MRS water content is about twice the specific yield. We also found that the MRS pore-size parameter is well correlated with the specific yield. Thus we proposed two linear equations for calculating the specific yield from the MRS water content (with an uncertainty of about 10%) and from the pore-size parameter (with an uncertainty of about 20%). The later has the advantage of defining a so-named MRS cutoff time value for indentifying non-drainable MRS water content and thus low groundwater reserve. We eventually propose a nonlinear equation for calculating the specific yield using jointly the MRS water content and the pore-size parameters, but this approach has to be confirmed with further investigations. This study also confirmed that aquifer transmissivity can be estimated from MRS results with an uncertainty of about 70%. We conclude that MRS can be usefully applied for estimating aquifer specific yield and transmissivity in weathered hard rock aquifers. Our result will contribute to the improvement of well siting and groundwater management in hard rocks.
Lemarié, Jérémie; Huttin, Olivier; Girerd, Nicolas; Mandry, Damien; Juillière, Yves; Moulin, Frédéric; Lemoine, Simon; Beaumont, Marine; Marie, Pierre-Yves; Selton-Suty, Christine
2015-07-01
Right ventricular (RV) dysfunction after acute myocardial infarction (AMI) is frequent and associated with poor prognosis. The complex anatomy of the right ventricle makes its echocardiographic assessment challenging. Quantification of RV deformation by speckle-tracking echocardiography is a widely available and reproducible technique that readily provides an integrated analysis of all segments of the right ventricle. The aim of this study was to investigate the accuracy of conventional echocardiographic parameters and speckle-tracking echocardiographic strain parameters in assessing RV function after AMI, in comparison with cardiac magnetic resonance imaging (CMR). A total of 135 patients admitted for AMI (73 anterior, 62 inferior) were prospectively studied. Right ventricular function was assessed by echocardiography and CMR within 2 to 4 days of hospital admission. Right ventricular dysfunction was defined as CMR RV ejection fraction < 50%. Right ventricular global peak longitudinal systolic strain (GLPSS) was calculated by averaging the strain values of the septal, lateral, and inferior walls. Right ventricular dysfunction was documented in 20 patients. Right ventricular GLPSS was the best echographic correlate of CMR RV ejection fraction (r = -0.459, P < .0001) and possessed good diagnostic value for RV dysfunction (area under the receiver operating characteristic curve [AUROC], 0.724; 95% CI, 0.590-0.857), which was comparable with that of RV fractional area change (AUROC, 0.756; 95% CI, 0.647-0.866). In patients with inferior myocardial infarctions, the AUROCs for RV GLPSS (0.822) and inferolateral strain (0.877) were greater than that observed for RV fractional area change (0.760) Other conventional echocardiographic parameters performed poorly (all AUROCs < 0.700). After AMI, RV GLPSS is the best correlate of CMR RV ejection fraction. In patients with inferior AMIs, RV GLPSS displays even higher diagnostic value than conventional echocardiographic parameters. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pritychenko, B.; Mughabghab, S. F.
2012-12-01
We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.
Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling
2017-01-25
This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas.
Ensemble-Based Parameter Estimation in a Coupled GCM Using the Adaptive Spatial Average Method
Liu, Y.; Liu, Z.; Zhang, S.; ...
2014-05-29
Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate research. And for a complex system such as a coupled ocean–atmosphere general circulation model, the sensitivity and response of a model variable to a model parameter could vary spatially and temporally. An adaptive spatial average (ASA) algorithm is proposed to increase the efficiency of parameter estimation. Refined from a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially varying posterior estimated parameter values; these good values are then averaged to give the final globalmore » uniform posterior parameter. In comparison with existing methods, the ASA parameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.« less
Oghli, Mostafa Ghelich; Dehlaghi, Vahab; Zadeh, Ali Mohammad; Fallahi, Alireza; Pooyan, Mohammad
2014-07-01
Assessment of cardiac right-ventricle functions plays an essential role in diagnosis of arrhythmogenic right ventricular dysplasia (ARVD). Among clinical tests, cardiac magnetic resonance imaging (MRI) is now becoming the most valid imaging technique to diagnose ARVD. Fatty infiltration of the right ventricular free wall can be visible on cardiac MRI. Finding right-ventricle functional parameters from cardiac MRI images contains segmentation of right-ventricle in each slice of end diastole and end systole phases of cardiac cycle and calculation of end diastolic and end systolic volume and furthermore other functional parameters. The main problem of this task is the segmentation part. We used a robust method based on deformable model that uses shape information for segmentation of right-ventricle in short axis MRI images. After segmentation of right-ventricle from base to apex in end diastole and end systole phases of cardiac cycle, volume of right-ventricle in these phases calculated and then, ejection fraction calculated. We performed a quantitative evaluation of clinical cardiac parameters derived from the automatic segmentation by comparison against a manual delineation of the ventricles. The manually and automatically determined quantitative clinical parameters were statistically compared by means of linear regression. This fits a line to the data such that the root-mean-square error (RMSE) of the residuals is minimized. The results show low RMSE for Right Ventricle Ejection Fraction and Volume (≤ 0.06 for RV EF, and ≤ 10 mL for RV volume). Evaluation of segmentation results is also done by means of four statistical measures including sensitivity, specificity, similarity index and Jaccard index. The average value of similarity index is 86.87%. The Jaccard index mean value is 83.85% which shows a good accuracy of segmentation. The average of sensitivity is 93.9% and mean value of the specificity is 89.45%. These results show the reliability of proposed method in these cases that manual segmentation is inapplicable. Huge shape variety of right-ventricle led us to use a shape prior based method and this work can develop by four-dimensional processing for determining the first ventricular slices.
Analysis and design of nonlinear resonances via singularity theory
NASA Astrophysics Data System (ADS)
Cirillo, G. I.; Habib, G.; Kerschen, G.; Sepulchre, R.
2017-03-01
Bifurcation theory and continuation methods are well-established tools for the analysis of nonlinear mechanical systems subject to periodic forcing. We illustrate the added value and the complementary information provided by singularity theory with one distinguished parameter. While tracking bifurcations reveals the qualitative changes in the behaviour, tracking singularities reveals how structural changes are themselves organised in parameter space. The complementarity of that information is demonstrated in the analysis of detached resonance curves in a two-degree-of-freedom system.
Symmetric Resonance Charge Exchange Cross Section Based on Impact Parameter Treatment
NASA Technical Reports Server (NTRS)
Omidvar, Kazem; Murphy, Kendrah; Atlas, Robert (Technical Monitor)
2002-01-01
Using a two-state impact parameter approximation, a calculation has been carried out to obtain symmetric resonance charge transfer cross sections between nine ions and their parent atoms or molecules. Calculation is based on a two-dimensional numerical integration. The method is mostly suited for hydrogenic and some closed shell atoms. Good agreement has been obtained with the results of laboratory measurements for the ion-atom pairs H+-H, He+-He, and Ar+-Ar. Several approximations in a similar published calculation have been eliminated.
Inclusive production of the Δ(1232) resonance in muon-proton scattering at 280 GEV/c
NASA Astrophysics Data System (ADS)
Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Graftström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; De La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; European Muon Collaboration
1986-01-01
Inclusive production of the Δ (1232) resonance has been measured in 280 GeV/ c muon-proton interactions. The production of the Δ++ as a function of the variables χBJ, W, Q2, χF and pT2 is investigated. The average Δ++ multiplicity is found to be smaller, by a factor of 6.2 ± 1.2, than the average multiplicity of protons. An upper limit for Δ0 production is obtained. The net hadronic charge distribution for events with a Δ++ is presented. The results are compared to the predictions of the Lund and Fire string models.
NASA Astrophysics Data System (ADS)
Whaley, K. B.; Yu, C. F.; Hogg, C. S.; Light, J. C.; Sibener, S. J.
1985-08-01
A detailed investigation of the spatially anisotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential is presented. Experimentally derived rotationally inelastic transition probabilities for H2, D2, and HD, taken as a function of collision energy, are compared with those resulting from close-coupled quantum scattering calculations. These calculations utilize exponential-3 and variable exponent parameterizations of the laterally averaged isotropic potential which reproduce the experimental bound state resonance spectra for p-H2 and o-D2 on Ag(111). Complementary information is obtained by analyzing the magnetic sub-level splittings for physisorbed J = 1 n-H2, using diffractive selective adsorption resonance energies calculated with first order perturbation theory. Theoretical predictions for HD/Ag(111) rotationally mediated selective adsorption resonances are also compared with previously reported experimental results, which show well resolved J-dependent energy shifts resulting in part from the orientational anisotropy of the potential. The results obtained in this study indicate that both the attractive and repulsive parts of the anisotropic potential exhibit only a weak orientation dependence, in agreement with recent theoretical predictions for this system.
NASA Astrophysics Data System (ADS)
Whaley, K. Birgitta; Yu, Chien-fan; Hogg, C. S.; Light, John C.; Sibener, S. J.
1985-10-01
A detailed investigation of the spatially anisotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential is presented. Experimentally derived rotationally inelastic transition probabilities for H2, D2, and HD, taken as a function of collision energy, are compared with those resulting from close-coupled quantum scattering calculations. These calculations utilize exponential-3 and variable exponent parametrizations of the laterally averaged isotropic potential which reproduce the experimental bound state resonance spectra for p-H2 and o-D2 on Ag(111). Complementary information is obtained by analyzing the magnetic sublevel splittings for physisorbed J=1 n-H2, using diffractive selective adsorption resonance energies calculated with first order perturbation theory. Theoretical predictions for HD/Ag(111) rotationally mediated selective adsorption resonances are also compared with previously reported experimental results, which show well resolved J-dependent energy shifts resulting in part from the orientational anisotropy of the potential. The results obtained in this study indicate that both the attractive and repulsive parts of the anisotropic potential exhibit only a weak orientation dependence, in agreement with recent theoretical predictions for this system.
The uses and limitations of the square‐root‐impedance method for computing site amplification
Boore, David
2013-01-01
The square‐root‐impedance (SRI) method is a fast way of computing approximate site amplification that does not depend on the details from velocity models. The SRI method underestimates the peak response of models with large impedance contrasts near their base, but the amplifications for those models is often close to or equal to the root mean square of the theoretical full resonant (FR) response of the higher modes. On the other hand, for velocity models made up of gradients, with no significant impedance changes across small ranges of depth, the SRI method systematically underestimates the theoretical FR response over a wide frequency range. For commonly used gradient models for generic rock sites, the SRI method underestimates the FR response by about 20%–30%. Notwithstanding the persistent underestimation of amplifications from theoretical FR calculations, however, amplifications from the SRI method may often provide more useful estimates of amplifications than the FR method, because the SRI amplifications are not sensitive to details of the models and will not exhibit the many peaks and valleys characteristic of theoretical full resonant amplifications (jaggedness sometimes not seen in amplifications based on averages of site response from multiple recordings at a given site). The lack of sensitivity to details of the velocity models also makes the SRI method useful in comparing the response of various velocity models, in spite of any systematic underestimation of the response. The quarter‐wavelength average velocity, which is fundamental to the SRI method, is useful by itself in site characterization, and as such, is the fundamental parameter used to characterize the site response in a number of recent ground‐motion prediction equations.
Pichardo, Samuel; Köhler, Max; Lee, Justin; Hynnyen, Kullervo
2014-12-01
In this in vivo study, the feasibility to perform hyperthermia treatments in the head and neck using magnetic resonance image-guided high intensity focused ultrasound (MRgHIFU) was established using a porcine acute model. Porcine specimens with a weight between 17 and 18 kg were treated in the omohyoid muscle in the neck. Hyperthermia was applied with a target temperature of 41 °C for 30 min using a Sonalleve MRgHIFU system. MR-based thermometry was calculated using water-proton resonance frequency shift and multi-baseline look-up tables indexed by peak-to-peak displacement (Dpp) measurements using a pencil-beam navigator. Three hyperthermia experiments were conducted at different Dpp values of 0.2, 1.0 and 3.0 mm. An optimisation study was carried out to establish the optimal parameters controlling the multi-baseline method that ensured a minimisation of spatial-average peak-to-peak temperature (TSA-pp) and temperature direct current bias (TSA-DC). The multi-baseline technique reduced considerably the noise on both TSA-pp and TSA-DC. The reduction of noise was more important when Dpp was higher. For Dpp = 3 mm the average (±standard deviation (SD)) of TSA-pp and TSA-DC was reduced from 4.5 (± 2.5) and 2.5 (±0.6) °C, respectively, to 0.8 (± 0.7) and 0.09 (± 0.2) °C. This in vivo study showed the level of noise in PRFS-based thermometry introduced by respiratory motion in the context of MRgHIFU hyperthermia treatment for head and neck and the feasibility of reducing this noise using a multi-baseline technique.
Hals, Petter Arnt; Sontum, Per Christian; Holtz, Eckart; Klaveness, Jo; Rongved, Pål
2013-02-01
Earlier described dextran-based contrast agents for magnetic resonance imaging (MRI) comprising the gadolinium chelate diethylenetriamine pentaacetic acid (GdDTPA, 1) have shown significantly shorter in vivo contrast duration in rat than what would be expected from the initial average molecular weight (Mw) of the dextran fraction (71.4 kD). To investigate this further, four dextran fractions with given initial average molecular weight (Mw) of 10.4, 41.0, 71.4 and 580 kD were used as starting material to prepare products 2-5 where one of the carboxylic acid functionalities in GdDTPA was used as a direct covalent ester linker to hydroxyl groups in dextrans. A fifth derivative (6) was an amide-ester bound β-alanine-DTPAGd conjugate with dextran having Mw 71.4 kD. The reference compound GdDTPA (1) and gadoliniumlabelled dextran derivatives 2-6 were injected intravenously in rabbits. Pharmacokinetic parameters showed that when GdDTPA is ester-bound directly to dextran hydroxyls, the cleavage rates of 2-5 were only moderately dependent on the molecular weights of the dextrans, having blood pool half-lives comparable to the low-molecular reference compound (t 1/2,β 0.3 - 0.5 hrs.). Presence of a β-alanine spacer in 6 prolonged the plasma half-life t 1/2,β to 6.9 hours, rendering a blood residence time suitable for blood pool slow release of GdDTPA. Biological cleavage regenerates the clinically acceptable carrier dextran and the β-alanine derivative of GdDTPA, pointing at a clinically acceptable product class for blood-pool contrast in MRI.
Magnetic anisotropies in ultrathin fcc Fe(001) films grown on Cu(001) substrates
NASA Astrophysics Data System (ADS)
Cochran, J. F.; Rudd, J. M.; From, M.; Heinrich, B.; Bennett, W.; Schwarzacher, W.; Egelhoff, W. F., Jr.
1992-03-01
Ferromagnetic resonance absorption measurements at 36.3 GHz and at room temperature have been used to determine the g factor and anisotropy parameters for a series of bilayers composed of two 3-ML-thick fcc Fe (001) films separated by a variable thickness of fcc Cu(001). The resonance field and linewidth were measured versus the out-of-plane magnetic-field angle, θH. The magnetic properties of these ten coupled bilayer films were found to be remarkably similar from specimen to specimen, despite the fact that each member of the bilayer was only 3 ML thick. The average g factor was found to be
Thin disk laser with unstable resonator and reduced output coupler
NASA Astrophysics Data System (ADS)
Gavili, Anwar; Shayganmanesh, Mahdi
2018-05-01
In this paper, feasibility of using unstable resonator with reduced output coupling in a thin disk laser is studied theoretically. Unstable resonator is modeled by wave-optics using Collins integral and iterative method. An Yb:YAG crystal with 250 micron thickness is considered as a quasi-three level active medium and modeled by solving rate equations of energy levels populations. The amplification of laser beam in the active medium is calculated based on the Beer-Lambert law and Rigrod method. Using generalized beam parameters method, laser beam parameters like, width, divergence, M2 factor, output power as well as near and far-field beam profiles are calculated for unstable resonator. It is demonstrated that for thin disk laser (with single disk) in spite of the low thickness of the disk which leads to low gain factor, it is possible to use unstable resonator (with reduced output coupling) and achieve good output power with appropriate beam quality. Also, the behavior of output power and beam quality versus equivalent Fresnel number is investigated and optimized value of output coupling for maximum output power is achieved.
A few words about resonances in the electroweak effective Lagrangian
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosell, Ignasi; Pich, Antonio; Santos, Joaquín
Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models including both a light Higgs-like boson and massive spin-1 resonances are not in conflict with experimental constraints on the oblique S and T parameters. We use an effective Lagrangian implementing the chiral symmetry breaking SU (2){sub L} ⊗ SU (2){sub R} → SU (2){sub L+R} that contains the Standard Model gauge bosons coupled to the electroweak Goldstones, one Higgs-like scalar state h with mass m{sub h} = 126 GeV and the lightest vector and axial-vector resonance multiplets V and A. We have considered the one-loop calculationmore » of S and T in order to study the viability of these strongly-coupled scenarios, being short-distance constraints and dispersive relations the main ingredients of the calculation. Once we have constrained the resonance parameters, we do a first approach to the determination of the low energy constants of the electroweak effective theory at low energies (without resonances). We show this determination in the case of the purely Higgsless bosonic Lagrangian.« less
Secondary resonances and the boundary of effective stability of Trojan motions
NASA Astrophysics Data System (ADS)
Páez, Rocío Isabel; Efthymiopoulos, Christos
2018-02-01
One of the most interesting features in the libration domain of co-orbital motions is the existence of secondary resonances. For some combinations of physical parameters, these resonances occupy a large fraction of the domain of stability and rule the dynamics within the stable tadpole region. In this work, we present an application of a recently introduced `basic Hamiltonian model' H_b for Trojan dynamics (Páez and Efthymiopoulos in Celest Mech Dyn Astron 121(2):139, 2015; Páez et al. in Celest Mech Dyn Astron 126:519, 2016): we show that the inner border of the secondary resonance of lowermost order, as defined by H_b, provides a good estimation of the region in phase space for which the orbits remain regular regardless of the orbital parameters of the system. The computation of this boundary is straightforward by combining a resonant normal form calculation in conjunction with an `asymmetric expansion' of the Hamiltonian around the libration points, which speeds up convergence. Applications to the determination of the effective stability domain for exoplanetary Trojans (planet-sized objects or asteroids) which may accompany giant exoplanets are discussed.
Resonance Parameter Adjustment Based on Integral Experiments
Sobes, Vladimir; Leal, Luiz; Arbanas, Goran; ...
2016-06-02
Our project seeks to allow coupling of differential and integral data evaluation in a continuous-energy framework and to use the generalized linear least-squares (GLLS) methodology in the TSURFER module of the SCALE code package to update the parameters of a resolved resonance region evaluation. We recognize that the GLLS methodology in TSURFER is identical to the mathematical description of a Bayesian update in SAMMY, the SAMINT code was created to use the mathematical machinery of SAMMY to update resolved resonance parameters based on integral data. Traditionally, SAMMY used differential experimental data to adjust nuclear data parameters. Integral experimental data, suchmore » as in the International Criticality Safety Benchmark Experiments Project, remain a tool for validation of completed nuclear data evaluations. SAMINT extracts information from integral benchmarks to aid the nuclear data evaluation process. Later, integral data can be used to resolve any remaining ambiguity between differential data sets, highlight troublesome energy regions, determine key nuclear data parameters for integral benchmark calculations, and improve the nuclear data covariance matrix evaluation. Moreover, SAMINT is not intended to bias nuclear data toward specific integral experiments but should be used to supplement the evaluation of differential experimental data. Using GLLS ensures proper weight is given to the differential data.« less
Precession of a rapidly rotating cylinder flow: traverse through resonance
NASA Astrophysics Data System (ADS)
Lopez, Juan; Marques, Francisco
2014-11-01
The flow in a rapidly rotating cylinder that is titled and also rotating around another axis can undergo sudden transitions to turbulence. Experimental observations of this have been associated with triadic resonances. The experimental and theoretical results are well-established in the literature, but there remains a lack of understanding of the physical mechanisms at play in the sudden transition from laminar to turbulent flow with very small variations in the governing parameters. Here, we present direct numerical simulations of a traverse in parameter space through an isolated resonance, and describe in detail the bifurcations involved in the sudden transition. U.S. National Science Foundation Grant CBET-1336410 and Spanish Ministry of Education and Science Grant (with FEDER funds) FIS2013-40880.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro
2012-02-15
In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them inmore » detail.« less
NASA Astrophysics Data System (ADS)
Lazarev, L. A.
2015-07-01
An infinite panel with two types of resonators regularly installed on it is theoretically considered. Each resonator is an air-filled cavity hermetically closed by a plate, which executes piston vibrations. The plate and air inside the cavity play the roles of mass and elasticity, respectively. Every other resonator is reversed. At a certain ratio between the parameters of the resonators at the tuning frequency of the entire system, the acoustic-pressure force that directly affects the panel can be fully compensated by the action forces of the resonators. In this case, the sound-proofing ability (transmission loss) tends to infinity. The presented calculations show that a complete transmission-loss effect can be achieved even with low- Q resonators.
Plasmon resonances, anomalous transparency, and reflectionless absorption in overdense plasmas
NASA Astrophysics Data System (ADS)
Smolyakov, A.; Sternberg, N.
2018-03-01
The structure of the surface and standing wave resonances and their coupling in the configuration of the overdense plasma slab with a single diffraction grating are studied, using impedance matching techniques. Analytical criteria and exact expressions are obtained for plasma and diffraction grating parameters which define resonance conditions for absolute transparency in the ideal plasma and reflectionless absorption in a plasma with dissipation.
Multiple wavelengths filtering of light through inner resonances.
Felbacq, Didier; Larciprete, Maria Cristina; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael
2005-12-01
We show that by using the internal resonances of a grating, it is possible to design a filter working for multiple wavelengths. We study the characteristics of the device with respect to the constituting parameters and we propose a realization process.
The stretch to stray on time: Resonant length of random walks in a transient
NASA Astrophysics Data System (ADS)
Falcke, Martin; Friedhoff, Victor Nicolai
2018-05-01
First-passage times in random walks have a vast number of diverse applications in physics, chemistry, biology, and finance. In general, environmental conditions for a stochastic process are not constant on the time scale of the average first-passage time or control might be applied to reduce noise. We investigate moments of the first-passage time distribution under an exponential transient describing relaxation of environmental conditions. We solve the Laplace-transformed (generalized) master equation analytically using a novel method that is applicable to general state schemes. The first-passage time from one end to the other of a linear chain of states is our application for the solutions. The dependence of its average on the relaxation rate obeys a power law for slow transients. The exponent ν depends on the chain length N like ν = - N / ( N + 1 ) to leading order. Slow transients substantially reduce the noise of first-passage times expressed as the coefficient of variation (CV), even if the average first-passage time is much longer than the transient. The CV has a pronounced minimum for some lengths, which we call resonant lengths. These results also suggest a simple and efficient noise control strategy and are closely related to the timing of repetitive excitations, coherence resonance, and information transmission by noisy excitable systems. A resonant number of steps from the inhibited state to the excitation threshold and slow recovery from negative feedback provide optimal timing noise reduction and information transmission.
NASA Astrophysics Data System (ADS)
Hsieh, Feng-Ju; Wang, Wei-Chih
2012-09-01
This paper discusses two improved methods in retrieving effective refractive indices, impedances, and material properties, such as permittivity (ɛ) and permeability (μ), of metamaterials. The first method modified from Kong's retrieval method allows effective constitutive parameters over all frequencies including the anti-resonant band, where imaginary parts of ɛ or μ are negative, to be solved. The second method is based on genetic algorithms and optimization of properly defined goal functions to retrieve parameters of the Drude and Lorentz dispersion models. Equations of effective refractive index and impedance at any reference planes are derived. Split ring resonator-rod based metamaterials operating in terahertz frequencies are designed and investigated with proposed methods. Retrieved material properties and parameters are used to regenerate S-parameters and compared with simulation results generated by cst microwave studio software.
Fast dictionary generation and searching for magnetic resonance fingerprinting.
Jun Xie; Mengye Lyu; Jian Zhang; Hui, Edward S; Wu, Ed X; Ze Wang
2017-07-01
A super-fast dictionary generation and searching (DGS) algorithm was developed for MR parameter quantification using magnetic resonance fingerprinting (MRF). MRF is a new technique for simultaneously quantifying multiple MR parameters using one temporally resolved MR scan. But it has a multiplicative computation complexity, resulting in a big burden of dictionary generating, saving, and retrieving, which can easily be intractable for any state-of-art computers. Based on retrospective analysis of the dictionary matching object function, a multi-scale ZOOM like DGS algorithm, dubbed as MRF-ZOOM, was proposed. MRF ZOOM is quasi-parameter-separable so the multiplicative computation complexity is broken into additive one. Evaluations showed that MRF ZOOM was hundreds or thousands of times faster than the original MRF parameter quantification method even without counting the dictionary generation time in. Using real data, it yielded nearly the same results as produced by the original method. MRF ZOOM provides a super-fast solution for MR parameter quantification.
NASA Astrophysics Data System (ADS)
Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo
In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.
Coupled resonator optical waveguides based on silicon-on-insulator photonic wires
NASA Astrophysics Data System (ADS)
Xia, Fengnian; Sekaric, Lidija; O'Boyle, Martin; Vlasov, Yurii
2006-07-01
Coupled resonator optical waveguides (CROWs) comprised of up to 16 racetrack resonators based on silicon-on-insulator (SOI) photonic wires were fabricated and characterized. The optical properties of the CROWs were simulated using measured single resonator parameters based on a matrix approach. The group delay property of CROWs was also analyzed. The SOI based CROWs consisting of multiple resonators have extremely small footprints and can find applications in optical filtering, dispersion compensation, and optical buffering. Moreover, such CROW structure is a promising candidate for exploration of low light level nonlinear optics due to its resonant nature and compact mode size (˜0.1μm2) in photonic wire.
NASA Technical Reports Server (NTRS)
Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.
1991-01-01
The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.
A one-kilogram quartz resonator as a mass standard.
Vig, John; Howe, David
2013-02-01
The SI unit of mass, the kilogram, is defined by a single artifact, the International Prototype Kilogram. This artifact, the primary mass standard, suffers from long-term instabilities that are neither well understood nor easily monitored. A secondary mass standard consisting of a 1-kg quartz resonator in ultrahigh vacuum is proposed. The frequency stability of such a resonator is likely to be far higher than the mass stability of the primary mass standard. Moreover, the resonator would provide a link to the SI time-interval unit. When compared with a laboratory-grade atomic frequency standard or GPS time, the frequency of the resonator could be monitored, on a continuous basis, with 10(-15) precision in only a few days of averaging. It could also be coordinated, worldwide, with other resonator mass standards without the need to transport the standards.
Yu, Qiang; Reutens, David; O'Brien, Kieran; Vegh, Viktor
2017-02-01
Tissue microstructure features, namely axon radius and volume fraction, provide important information on the function of white matter pathways. These parameters vary on the scale much smaller than imaging voxels (microscale) yet influence the magnetic resonance imaging diffusion signal at the image voxel scale (macroscale) in an anomalous manner. Researchers have already mapped anomalous diffusion parameters from magnetic resonance imaging data, but macroscopic variations have not been related to microscale influences. With the aid of a tissue model, we aimed to connect anomalous diffusion parameters to axon radius and volume fraction using diffusion-weighted magnetic resonance imaging measurements. An ex vivo human brain experiment was performed to directly validate axon radius and volume fraction measurements in the human brain. These findings were validated using electron microscopy. Additionally, we performed an in vivo study on nine healthy participants to map axon radius and volume fraction along different regions of the corpus callosum projecting into various cortical areas identified using tractography. We found a clear relationship between anomalous diffusion parameters and axon radius and volume fraction. We were also able to map accurately the trend in axon radius along the corpus callosum, and in vivo findings resembled the low-high-low-high behaviour in axon radius demonstrated previously. Axon radius and volume fraction measurements can potentially be used in brain connectivity studies and to understand the implications of white matter structure in brain diseases and disorders. Hum Brain Mapp 38:1068-1081, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plachenov, A B; Kudashov, V N; Radin, A M
Explicit formulas are obtained for a resonator with the fundamental mode in the form of a Gaussian beam with complex astigmatism. The formulas describe the parameters of the beam directly in terms of the ray matrix without using the procedure of finding its eigenvectors. An example is considered. (resonators. modes)
The Spin-Orbit Resonances of the Solar System: A Mathematical Treatment Matching Physical Data
NASA Astrophysics Data System (ADS)
Antognini, Francesco; Biasco, Luca; Chierchia, Luigi
2014-06-01
In the mathematical framework of a restricted, slightly dissipative spin-orbit model, we prove the existence of periodic orbits for astronomical parameter values corresponding to all satellites of the Solar System observed in exact spin-orbit resonance.
Xiang, Suyun; Wang, Wei; Xia, Jia; Xiang, Bingren; Ouyang, Pingkai
2009-09-01
The stochastic resonance algorithm is applied to the trace analysis of alkyl halides and alkyl benzenes in water samples. Compared to encountering a single signal when applying the algorithm, the optimization of system parameters for a multicomponent is more complex. In this article, the resolution of adjacent chromatographic peaks is first involved in the optimization of parameters. With the optimized parameters, the algorithm gave an ideal output with good resolution as well as enhanced signal-to-noise ratio. Applying the enhanced signals, the method extended the limit of detection and exhibited good linearity, which ensures accurate determination of the multicomponent.
Instrument to average 100 data sets
NASA Technical Reports Server (NTRS)
Tuma, G. B.; Birchenough, A. G.; Rice, W. J.
1977-01-01
An instrumentation system is currently under development which will measure many of the important parameters associated with the operation of an internal combustion engine. Some of these parameters include mass-fraction burn rate, ignition energy, and the indicated mean effective pressure. One of the characteristics of an internal combustion engine is the cycle-to-cycle variation of these parameters. A curve-averaging instrument has been produced which will generate the average curve, over 100 cycles, of any engine parameter. the average curve is described by 2048 discrete points which are displayed on an oscilloscope screen to facilitate recording and is available in real time. Input can be any parameter which is expressed as a + or - 10-volt signal. Operation of the curve-averaging instrument is defined between 100 and 6000 rpm. Provisions have also been made for averaging as many as four parameters simultaneously, with a subsequent decrease in resolution. This provides the means to correlate and perhaps interrelate the phenomena occurring in an internal combustion engine. This instrument has been used successfully on a 1975 Chevrolet V8 engine, and on a Continental 6-cylinder aircraft engine. While this instrument was designed for use on an internal combustion engine, with some modification it can be used to average any cyclically varying waveform.
Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL.
Su, Pan; Mao, Deng; Liu, Peiying; Li, Yang; Pinho, Marco C; Welch, Babu G; Lu, Hanzhang
2017-11-01
Assessment of brain hemodynamics without exogenous contrast agents is of increasing importance in clinical applications. This study aims to develop an MR perfusion technique that can provide noncontrast and multiparametric estimation of hemodynamic markers. We devised an arterial spin labeling (ASL) method based on the principle of MR fingerprinting (MRF), referred to as MRF-ASL. By taking advantage of the rich information contained in MRF sequence, up to seven hemodynamic parameters can be estimated concomitantly. Feasibility demonstration, flip angle optimization, comparison with Look-Locker ASL, reproducibility test, sensitivity to hypercapnia challenge, and initial clinical application in an intracranial steno-occlusive process, Moyamoya disease, were performed to evaluate this technique. Magnetic resonance fingerprinting ASL provided estimation of up to seven parameters, including B1+, tissue T 1 , cerebral blood flow (CBF), tissue bolus arrival time (BAT), pass-through arterial BAT, pass-through blood volume, and pass-through blood travel time. Coefficients of variation of the estimated parameters ranged from 0.2 to 9.6%. Hypercapnia resulted in an increase in CBF by 57.7%, and a decrease in BAT by 13.7 and 24.8% in tissue and vessels, respectively. Patients with Moyamoya disease showed diminished CBF and lengthened BAT that could not be detected with regular ASL. Magnetic resonance fingerprinting ASL is a promising technique for noncontrast, multiparametric perfusion assessment. Magn Reson Med 78:1812-1823, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
EPR, optical and superposition model study of Mn2+ doped L+ glutamic acid
NASA Astrophysics Data System (ADS)
Kripal, Ram; Singh, Manju
2015-12-01
Electron paramagnetic resonance (EPR) study of Mn2+ doped L+ glutamic acid single crystal is done at room temperature. Four interstitial sites are observed and the spin Hamiltonian parameters are calculated with the help of large number of resonant lines for various angular positions of external magnetic field. The optical absorption study is also done at room temperature. The energy values for different orbital levels are calculated, and observed bands are assigned as transitions from 6A1g(s) ground state to various excited states. With the help of these assigned bands, Racah inter-electronic repulsion parameters B = 869 cm-1, C = 2080 cm-1 and cubic crystal field splitting parameter Dq = 730 cm-1 are calculated. Zero field splitting (ZFS) parameters D and E are calculated by the perturbation formulae and crystal field parameters obtained using superposition model. The calculated values of ZFS parameters are in good agreement with the experimental values obtained by EPR.
NASA Astrophysics Data System (ADS)
Liotard, Arnaud; Zamkotsian, Frédéric
2017-11-01
The micro-opto-electro-mechanical systems (MOEMS), based on mature technologies of micro-electronics, are essential in the design of future astronomical instruments. One of these key-components is the microdeformable mirror for wave-front correction. Very challenging topics like search of exo-planets could greatly benefit from this technology. Design, realization and characterization of micro-Deformable Mirrors are under way at Laboratoire d'Astrophysique de Marseille (LAM) in collaboration with Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS). In order to measure the surface shape and the deformation parameters during operation of these devices, a high-resolution Twyman-Green interferometer has been developed. Measurements have been done on a tiltable micro-mirror (170*100μm2) designed by LAM-LAAS and realized by an American foundry, and also on an OKO deformable mirror (15mm diameter). Static characterization is made by phase shifting interferometry and dynamic measurements have been made by quantitative time-averaged interferometry. The OKO mirror has an actuator stroke of 370+/-10nm for 150V applied and its resonant frequency is 1170+/-50 Hz, and the tiltable mirror has a rotation cut-off frequency of 31+/-3 kHz.
Characterization and optimization of a new high-average power laser glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A.
A new High-Average Power laser glass with favorable thermal-mechanical properties was recently developed by Schott Glass Technologies. We refer to this glass as APG-2, although it does not have an official designation. Fracture studies were conducted which verified the thermomechanical utility of the glass. Consequently, the glass was a promising candidate for a variety of applications such as a Kerr-lens mode-locked short-pulse laser. As a result, cavity designs and optical parameters were calculated to test this hypothesis, and characterization of the lasing properties began. The glass was lased for the first time, and laser slope efficiencies were measured at variousmore » output couplings. Laser efficiencies were observed to drop radically when the pump light duty cycle was increased from 10% to unity. When the new laser glass was compared to commercially available laser glasses LG-750 and APG-1, something appeared to be inhibiting smooth laser action. Further investigations indicated that the thermal lens in the new glass was much larger than in the other glasses making the laser resonator unstable. This thermal lens was then modeled and quantified in a separate experiment.« less
Dayrit, Fabian M; Buenafe, Olivia Erin M; Chainani, Edward T; de Vera, Ian Mitchelle S
2008-07-23
Phosphorus-31 nuclear magnetic resonance spectroscopy ( (31)P NMR) was used to differentiate virgin coconut oil (VCO) from refined, bleached, deodorized coconut oil (RCO). Monoglycerides (MGs), diglycerides (DGs), sterols, and free fatty acids (FFAs) in VCO and RCO were converted into dioxaphospholane derivatives and analyzed by (31)P NMR. On the average, 1-MG was found to be higher in VCO (0.027%) than RCO (0.019%). 2-MG was not detected in any of the samples down to a detection limit of 0.014%. On the average, total DGs were lower in VCO (1.55%) than RCO (4.10%). When plotted in terms of the ratio [1,2-DG/total DGs] versus total DGs, VCO and RCO samples grouped separately. Total sterols were higher in VCO (0.096%) compared with RCO (0.032%), and the FFA content was 8 times higher in VCO than RCO (0.127% vs 0.015%). FFA determination by (31)P NMR and titration gave comparable results. Principal components analysis shows that the 1,2-DG, 1,3-DG, and FFAs are the most important parameters for differentiating VCO from RCO.
Fisher information and Cramér-Rao lower bound for experimental design in parallel imaging.
Bouhrara, Mustapha; Spencer, Richard G
2018-06-01
The Cramér-Rao lower bound (CRLB) is widely used in the design of magnetic resonance (MR) experiments for parameter estimation. Previous work has considered only Gaussian or Rician noise distributions in this calculation. However, the noise distribution for multi-coil acquisitions, such as in parallel imaging, obeys the noncentral χ-distribution under many circumstances. The purpose of this paper is to present the CRLB calculation for parameter estimation from multi-coil acquisitions. We perform explicit calculations of Fisher matrix elements and the associated CRLB for noise distributions following the noncentral χ-distribution. The special case of diffusion kurtosis is examined as an important example. For comparison with analytic results, Monte Carlo (MC) simulations were conducted to evaluate experimental minimum standard deviations (SDs) in the estimation of diffusion kurtosis model parameters. Results were obtained for a range of signal-to-noise ratios (SNRs), and for both the conventional case of Gaussian noise distribution and noncentral χ-distribution with different numbers of coils, m. At low-to-moderate SNR, the noncentral χ-distribution deviates substantially from the Gaussian distribution. Our results indicate that this departure is more pronounced for larger values of m. As expected, the minimum SDs (i.e., CRLB) in derived diffusion kurtosis model parameters assuming a noncentral χ-distribution provided a closer match to the MC simulations as compared to the Gaussian results. Estimates of minimum variance for parameter estimation and experimental design provided by the CRLB must account for the noncentral χ-distribution of noise in multi-coil acquisitions, especially in the low-to-moderate SNR regime. Magn Reson Med 79:3249-3255, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Existence of collisional trajectories of Mercury, Mars and Venus with the Earth.
Laskar, J; Gastineau, M
2009-06-11
It has been established that, owing to the proximity of a resonance with Jupiter, Mercury's eccentricity can be pumped to values large enough to allow collision with Venus within 5 Gyr (refs 1-3). This conclusion, however, was established either with averaged equations that are not appropriate near the collisions or with non-relativistic models in which the resonance effect is greatly enhanced by a decrease of the perihelion velocity of Mercury. In these previous studies, the Earth's orbit was essentially unaffected. Here we report numerical simulations of the evolution of the Solar System over 5 Gyr, including contributions from the Moon and general relativity. In a set of 2,501 orbits with initial conditions that are in agreement with our present knowledge of the parameters of the Solar System, we found, as in previous studies, that one per cent of the solutions lead to a large increase in Mercury's eccentricity-an increase large enough to allow collisions with Venus or the Sun. More surprisingly, in one of these high-eccentricity solutions, a subsequent decrease in Mercury's eccentricity induces a transfer of angular momentum from the giant planets that destabilizes all the terrestrial planets approximately 3.34 Gyr from now, with possible collisions of Mercury, Mars or Venus with the Earth.
NASA Astrophysics Data System (ADS)
Singh, Geetanjali; Bhat, S. V.
2012-06-01
We report the results of magnetization and electron paramagnetic resonance (EPR) studies on nanoparticles (average diameter ˜ 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and compare them with the results on bulk BCMO. The nanoparticles were prepared using the nonaqueous sol-gel technique and characterized by XRD and TEM analysis. Magnetization measurements were carried out with a commercial physical property measurement system (PPMS). While the bulk BCMO exhibits a charge ordering transition at ˜230 K and an antiferromagnetic (AFM) transition at ˜130 K, in the nanoparticles, the CO phase is seen to have disappeared and a transition to a ferromagnetic (FM) state is observed at Tc ˜ 120 K. However, interestingly, the exchange bias effect observed in other nanomanganite ferromagnets is absent in BCMO nanoparticles. EPR measurements were carried out in the X-band between 8 and 300 K. Lineshape fitting to a Lorentzian with two terms (accounting for both the clockwise and anticlockwise rotations of the microwave field) was employed to obtain the relevant EPR parameters as functions of temperature. The results confirm the occurrence of ferromagnetism in the nanoparticles of BCMO.
The Dynamical History of 2060 Chiron and Its Proposed Ring System
NASA Astrophysics Data System (ADS)
Wood, Jeremy; Horner, Jonti; Hinse, Tobias C.; Marsden, Stephen C.
2018-01-01
The surprising discovery of a ring system around the Centaur 10199 Chariklo in 2013 led to a reanalysis of archival stellar occultation data for the Centaur 2060 Chiron by Ortiz et al. One possible interpretation of that data is that a system of rings exists around Chiron. In this work, we study the dynamical history of the proposed Chiron ring system by integrating nearly 36,000 clones of the Centaur backward in time for 100 Myr under the influence of the Sun and the four giant planets. The severity of all close encounters between the clones and planets while the clones are in the Centaur region is recorded, along with the mean time between close encounters. We find that severe and extreme close encounters are very rare, making it possible that the Chiron ring system has remained intact since its injection into the Centaur region, which we find likely occurred within the past 8.5 Myr. Our simulations yield a backward dynamical half-life for Chiron of 0.7 Myr. The dynamical classes of a sample of clones are found. It is found that, on average, the Centaur lifetimes of resonance hopping clones are twice those of random-walk clones because of resonance sticking in mean motion resonances. In addition, we present MEGNO and chaotic lifetime maps of the region bound by 13 au ≤slant a≤slant 14 au and e≤slant 0.5. We confirm that the current mean orbital parameters of Chiron are located in a highly chaotic region of a - e phase space.
NASA Astrophysics Data System (ADS)
Kalfarisi, Rony G.
Solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy has proven to be a powerful method to probe the local structure and dynamics of a system. In powdered solids, the nuclear spins experience various anisotropic interactions which depend on the molecular orientation. These anisotropic interactions make ssNMR very useful as they give a specific appearance to the resonance lines of the spectra. The position and shape of these resonance lines can be related to local structure and dynamics of the system under study. My research interest has focused around studying local structures and dynamics of quadrupolar nuclei in materials using ssNMR spectroscopy. 7Li and 93Nb ssNMR magic angle spinning (MAS) spectra, acquired at 17.6 and 7.06 T, have been used to evaluate the structural and dynamical properties of cation-ordered microwave dielectric materials. Microwave dielectric materials are essential in the application of wireless telecommunication, biomedical engineering, and other scientific and industrial implementations that use radio and microwave signals. The study of the local environment with respect to average structure, such as X-ray diffraction study, is essential for the better understanding of the correlations between structures and properties of these materials. The investigation for short and medium range can be performed with the use of ssNMR techniques. Even though XRD results show cationic ordering at the B-site (third coordination sphere), NMR spectra show a presence of disorder materials. This was indicated by the observation of a distribution in NMR parameters derived from experimental . {93}Nb NMR spectraand supported by theoretical calculations.
Characteristics of unstable resonators in flashlamp-pumped organic-compound lasers
NASA Astrophysics Data System (ADS)
Alekseyev, V. A.; Trinchuk, B. F.; Shulenin, A. V.
1985-01-01
A symmetrical confocal resonator formed by two blind convex mirrors was investigated. The space energy characteristics of radiation from a laser with an unstable resonator were investigated as a function of the specific pumping energy per cubic centimeter of active medium and the magnification of the resonator. Oscillograms of laser pulses were recorded in different cross sections of the laser beam, as were the lasing field patterns at various distances from the exit mirror of the resonator. The maximum spectral wavelengths of flat and unstable resonators were tabulated. It was found that the proper choice of parameters of an unstable resonator reduces laser beam divergence significantly and provides greater axial brightness of radiation than that provided by a flat resonator, even with a highly nonhomogeneous active medium, making it possible to extend the capabilities of flashlamp pumped organic compound lasers.
Constraints on Resonant Dark Matter Annihilation
NASA Astrophysics Data System (ADS)
Backovic, Mihailo
Resonant dark matter annihilation drew much attention in the light of recent measurements of charged cosmic ray fluxes. Interpreting the anomalous signal in the positron fraction as a sign of dark matter annihilation in the galactic halo requires cross sections orders of magnitudes higher than the estimates coming from thermal relic abundance. Resonant dark matter annihilation provides a mechanism to bridge the apparent contradiction between thermal relic abundance and the positron data measured by PAMELA and FERMI satellites. In this thesis, we analyze a class of models which allow for dark matter to annihilate through an s-channel resonance. Our analysis takes into account constraints from thermal relic abundance and the recent measurements of charged lepton cosmic ray fluxes, first separately and then simultaneously. Consistency of resonant dark matter annihilation models with thermal relic abundance as measured by WMAP serves to construct a relationship between the full set of masses, couplings and widths involved. Extensive numerical analysis of the full four dimensional parameter space is summarized by simple analytic approximations. The expressions are robust enough to be generalized to models including additional annihilation channels. We provide a separate treatment of resonant annihilation of dark matter in the galac- tic halo. We find model-independent upper limits on halo dark matter annihilation rates and show that the most efficient annihilation mechanism involves s-channel resonances. Widths that are large compared to the energy spread in the galactic halo are capable of saturating unitarity bounds without much difficulty. Partial wave unitarity prevents the so called Sommerfeld factors from producing large changes in cross sections. In addition, the approximations made in Sommerfeld factors break down in the kinematic regions where large cross section enhancements are often cited. Simultaneous constraints from thermal relic abundance and halo annihilation serve to produce new limits on dark matter masses and couplings. Past considerations of only a part of the resonant annihilation parameter set to motivate large annihilation cross section enhancements in the halo while maintaining correct relic abundance are generally incomplete. Taking into account only the resonance mass and width to show that large cross section enhancements are possible does not in principle guarantee that the enhancement will be achieved. We extend the calculation to include the full resonant parameter set. As a result, we obtain new limits on dark matter masses and couplings.
Damping effect on resonance bounds relationship of nanostructured ferromagnets and composites
NASA Astrophysics Data System (ADS)
Zhou, Peiheng; Liu, Tao; Xie, Jianliang; Deng, Longjiang
2012-06-01
In this paper, we introduce Gilbert damping parameter into the expression of resonance bounds relationship in nanomagnets to accomplish the depiction of damping effect, associated with an experimental study of ferromagnetic nanocrystalline flakes and their composites. Based on the intrinsic permeability retrieving and microwave spectrum fitting, a robust approach to the damping problem in the resonance study of high-frequency ferromagnets and composites is discussed.
Tartarus: A relativistic Green's function quantum average atom code
Gill, Nathanael Matthew; Starrett, Charles Edward
2017-06-28
A relativistic Green’s Function quantum average atom model is implemented in the Tartarus code for the calculation of equation of state data in dense plasmas. We first present the relativistic extension of the quantum Green’s Function average atom model described by Starrett [1]. The Green’s Function approach addresses the numerical challenges arising from resonances in the continuum density of states without the need for resonance tracking algorithms or adaptive meshes, though there are still numerical challenges inherent to this algorithm. We discuss how these challenges are addressed in the Tartarus algorithm. The outputs of the calculation are shown in comparisonmore » to PIMC/DFT-MD simulations of the Principal Shock Hugoniot in Silicon. Finally, we also present the calculation of the Hugoniot for Silver coming from both the relativistic and nonrelativistic modes of the Tartarus code.« less
Tartarus: A relativistic Green's function quantum average atom code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Nathanael Matthew; Starrett, Charles Edward
A relativistic Green’s Function quantum average atom model is implemented in the Tartarus code for the calculation of equation of state data in dense plasmas. We first present the relativistic extension of the quantum Green’s Function average atom model described by Starrett [1]. The Green’s Function approach addresses the numerical challenges arising from resonances in the continuum density of states without the need for resonance tracking algorithms or adaptive meshes, though there are still numerical challenges inherent to this algorithm. We discuss how these challenges are addressed in the Tartarus algorithm. The outputs of the calculation are shown in comparisonmore » to PIMC/DFT-MD simulations of the Principal Shock Hugoniot in Silicon. Finally, we also present the calculation of the Hugoniot for Silver coming from both the relativistic and nonrelativistic modes of the Tartarus code.« less
NASA Astrophysics Data System (ADS)
Irgaziev, B. F.; Orlov, Yu. V.
2015-02-01
Asymptotic normalization coefficients (ANCs) are fundamental nuclear constants playing an important role in nuclear physics and astrophysics. We derive a new useful relationship between ANCs of the Gamow radial wave function and the renormalized (due to the Coulomb interaction) Coulomb-nuclear partial scattering amplitude. We use an analytical approximation in the form of a series for the nonresonant part of the phase shift which can be analytically continued to the point of an isolated resonance pole in the complex plane of the momentum. Earlier, this method which we call the S -matrix pole method was used by us to find the resonance pole energy. We find the corresponding fitting parameters for the 5He,5Li , and 16O concrete resonance states. Additionally, based on the theory of the effective range, we calculate the parameters of the p3 /2 and p1 /2 resonance states of the nuclei 5He and 5Li and compare them with the results obtained by the S -matrix pole method. ANC values are found which can be used to calculate the reaction rate through the 16O resonances which lie slightly above the threshold for the α 12C channel.
Fano resonances of a ring-shaped "hexamer" cluster at near-infrared wavelength
NASA Astrophysics Data System (ADS)
Liu, Tong-Tong; Xia, Feng; Sun, Peng; Liu, Li-Li; Du, Wei; Li, Meng-Xue; Kong, Wei-Jin; Wan, Yong; Dong, Li-Feng; Yun, Mao-Jin
2018-03-01
Fano resonances have been studied intensely in the last decade, since it is an important way to decrease the resonance line width and enhance local electric field. However, achieving a Fano line-shape with both narrow line width and high spectral contrast ratio is still a challenge. In this paper, we theoretically predict the Fano resonance induced by the extinction of normal plane wave in a ring-shaped hexamer cluster at near-infrared wavelength. In order to obtain the narrow Fano line width and high spectral contrast ratio, the relationships between the Fano line-shape and the parameters of the nanostructure are analyzed in detail. The nanostructure is simulated by using commercial software based on finite element method. The simulation results show that when the structural parameters are optimized, the Fano line width can be narrowed down 0.028 eV with a contrast ratio of 86%, and the local electric field enhancement factor at the Fano resonance wavelength can reach to 36. Furthermore, the effective mode volume of the structure is 3.9 ×10-23m3 which is lower than the available literature. These results indicate many potential applications of the Fano resonance in multiwavelength surface-enhanced Raman scattering and biosensing.
NASA Astrophysics Data System (ADS)
Yu, Yingying; Sun, Bo
2018-07-01
We investigate the multi-resonance coupling of inverted quadrangular frustum pyramid (IQFP) groove metal arrays at terahertz frequencies. The surface plasmon resonance (SPR) and groove resonance are induced, resulting in resonance coupling. The dipole of the groove resonance drives the quadrupole of the SPR and creates a sharp Fano-like resonance. The effects of geometry parameters including the width (at the bottom) and height are analyzed in detail. The results show that with the decrease in the sidewall slope of the groove, the confinement of the groove region on the electromagnetic field decreases, thereby increasing the resonance coupling. The Fano-like resonance is enhanced. The sensitivity and quality factor are discussed. The results show that the Fano-like resonance has high sensitivity and quality factor. With the increase in the sidewall slope of the groove, the sensitivity increases, and the quality factor decreases. The results show that the Fano-like resonance of IQFP groove metal arrays has a significant potential for biological monitoring and sensing.
NASA Astrophysics Data System (ADS)
Knight, Lon B., Jr.; Gregory, Brian W.; Hill, Devon W.; Arrington, C. A.; Momose, Takamasa; Shida, Tadamasa
1991-01-01
Various isotopic forms of the methyl fluoride cation 12CH3F+, 13CH3F+, and 12CH2DF+ have been generated by photoionization at 16.8 eV and separately by electron bombardment at 50 eV. The first electron-spin-resonance (ESR) results are reported for this radical cation which was isolated in neon matrices at 4 K. The measured A tensors or nuclear hyperfine parameters were compared with the results obtained from various computational approaches. Surprising observations were the large amounts of spin density on the methyl group, especially the hydrogen atoms, and the extreme differences in the deuterated spectra compared to the nondeuterated case. The presence of a single D atom apparently acts to prevent dynamic Jahn-Teller averaging which makes the methyl hydrogens equivalent on the ESR time scale. Such a dramatic Jahn-Teller effect has been previously observed for the similar methane cations CH+4 and CH2D+2. The magnetic parameters for CH2DF+ in neon at 4 K are gX=2.0032(5), gY=2.0106(8), and gZ=2.0120(5); for H: AX = 483(1), AY=476(1), and AZ=483(1) MHz; for D: ‖AX‖=5.0(3), ‖AY‖<3, and ‖AZ‖=7.1(3) MHz; for 19F : AX=965(1), AY=-130(2), and AZ=-166(1) MHz. For CH3F+, the g tensor and 19F A tensor were similar to those above but the H atoms were equivalent with values of AX=317(1), AY=323(2), and AZ=312 MHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, A.; Norcross, D.W.
1992-02-01
We report low-energy (0.001--10-eV) electron-CO scattering cross sections obtained using an exact-exchange (via a separable-exchange formulation) plus a parameter-free correlation-polarization model in the fixed-nuclei approximation (FNA). The differential, total, and momentum-transfer cross sections are reported for rotationally elastic, inelastic, and summed processes. To remove the limitations of the FNA with respect to the convergence of total and differential cross sections, the multipole-extracted-adiabatic-nuclei approximation is used. The position and width of the well-known {sup 2}{Pi} shape-resonance structure in the cross section around 2 eV are reproduced quite well; however, some discrepancy between theory and experiment in the magnitude of the totalmore » cross section in the resonance region exists. We also present results for {sup 2}{Pi} shape-resonance parameters as a function of internuclear separation. Differential-cross-section results agree well with the measurements of Tanaka, Srivastava, and Chutjian (J. Chem. Phys. 69, 5329 (1978)) but are about a factor of 2 larger than the results obtained by Jung {ital et} {ital al}. (J. Phys. B 15, 3535 (1982)) in the vicinity of the {sup 2}{Pi} resonance.« less
Qin, Shanlin; Liu, Fawang; Turner, Ian W; Yu, Qiang; Yang, Qianqian; Vegh, Viktor
2017-04-01
To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain. Magn Reson Med 77:1485-1494, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Localized spoof surface plasmon resonances at terahertz range
NASA Astrophysics Data System (ADS)
Chen, Lin; Xu, Mengjian; Zang, Xiaofei; Peng, Yan; Zhu, Yiming
2016-11-01
The influence of the inner disk radius r, the filling ratio α, numbers of sectors N, and the gap g on transmission response for corrugated metallic disk (CMD) with single C-shaped resonator(CSR) has been fully studied. The results indicate that varying parameters r can efficiently excite the higher order spoof localized surface plasmon modes in corrugated metallic disk. The relationship between the bright dipole and dark multipolar resonances presents the possibility of high Q dark resonances excitation. All results may be of great interest for diverse applications.
A Study of a Mulilayer BPF with Attenuation Poles by Using Folded Resonators with Open-Circuited End
NASA Astrophysics Data System (ADS)
Kasamai, Masashi; Usie, Masahiko; Wada, Kouji
We propose a multilayer bandpass filter(BPF) with attenuation poles using folded resonators with open-circuited end. Firstly, the basic characteristics of a folded resonator with open-circuited end under the change of the parameters is examined by an electromagnetic simulator. Secondly, 3-pole multilayer BPFs using the resonators above are proposed, simulated and experimented. As a result, the bandpass characteristics with attenuation poles near the lower and higher side of the center frequency is realized by the proposed structure.
Manufacture of Sparse-Spectrum Optical Microresonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Kossakovski, Dimitri
2006-01-01
An alternative design for dielectric optical microresonators and a relatively simple process to fabricate them have been proposed. The proposed microresonators would exploit the same basic physical phenomena as those of microtorus optical resonators and of the microsphere optical resonators described elsewhere. The resonances in such devices are associated with the propagation of electromagnetic waves along circumferential paths in "whispering-gallery" modes. The main advantage afforded by the proposal is that the design and the fabrication process are expected to be amenable to production of multiple microresonators having reproducible spectral parameters -- including, most notably, high values of the resonance quality factor (Q) and reproducible resonance frequencies.
Multiplexing Superconducting Qubit Circuit for Single Microwave Photon Generation
NASA Astrophysics Data System (ADS)
George, R. E.; Senior, J.; Saira, O.-P.; Pekola, J. P.; de Graaf, S. E.; Lindström, T.; Pashkin, Yu A.
2017-10-01
We report on a device that integrates eight superconducting transmon qubits in λ /4 superconducting coplanar waveguide resonators fed from a common feedline. Using this multiplexing architecture, each resonator and qubit can be addressed individually, thus reducing the required hardware resources and allowing their individual characterisation by spectroscopic methods. The measured device parameters agree with the designed values, and the resonators and qubits exhibit excellent coherence properties and strong coupling, with the qubit relaxation rate dominated by the Purcell effect when brought in resonance with the resonator. Our analysis shows that the circuit is suitable for generation of single microwave photons on demand with an efficiency exceeding 80%.
NASA Astrophysics Data System (ADS)
Kolesniková, Lucie; Koucký, Jan; Kania, Patrik; Uhlíková, Tereza; Beckers, Helmut; Urban, Štěpán
2018-01-01
The resonance crossing of rotational levels with different fine-structure components and different k rotational quantum numbers was observed in the rotational spectra of the symmetric top fluorosulfate radical FSO3rad. Detailed measurements were performed to analyze these weak resonances as well as the A1-A2 splittings of the K = 3 and K = 6 transitions. The resonance level crossing enabled the experimental determination of "forbidden" parameters, the rotational A and the centrifugal distortion DK constants as well as the corresponding resonance off-diagonal matrix element.
Nuclear Magnetic Resonance Technology for Medical Studies.
ERIC Educational Resources Information Center
Budinger, Thomas F.; Lauterbur, Paul C.
1984-01-01
Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yi-Geng; Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088; Wu, Yong, E-mail: wu-yong@iapcm.ac.cn
2016-02-07
K-vacancy Auger states of N{sup q+} (q = 2-5) ions are studied by using the complex multireference single- and double-excitation configuration interaction (CMRD-CI) method. The calculated resonance parameters are in good agreement with the available experimental and theoretical data. It shows that the resonance positions and widths converge quickly with the increase of the atomic basis sets in the CMRD-CI calculations; the standard atomic basis set can be employed to describe the atomic K-vacancy Auger states well. The strong correlations between the valence and core electrons play important roles in accurately determining those resonance parameters, Rydberg electrons contribute negligibly inmore » the calculations. Note that it is the first time that the complex scaling method has been successfully applied for the B-like nitrogen. CMRD-CI is readily extended to treat the resonance states of molecules in the near future.« less
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-05-01
The quasinormal resonant modes of massless neutral fields in near-extremal Kerr-Newman-de Sitter black-hole spacetimes are calculated in the eikonal regime. It is explicitly proved that, in the angular momentum regime a bar >√{1 - 2 Λ bar/4 + Λ bar / 3 }, the black-hole spacetimes are characterized by slowly decaying resonant modes which are described by the compact formula ℑ ω (n) =κ+ ṡ (n + 1/2 ) [here the physical parameters { a bar ,κ+ , Λ bar , n } are respectively the dimensionless angular momentum of the black hole, its characteristic surface gravity, the dimensionless cosmological constant of the spacetime, and the integer resonance parameter]. Our results support the validity of the Penrose strong cosmic censorship conjecture in these black-hole spacetimes.
Derkacz, Arkadiusz; Gawrys, Jakub; Gawrys, Karolina; Podgorski, Maciej; Magott-Derkacz, Agnieszka; Poreba, Rafał; Doroszko, Adrian
2018-06-01
The effect of electromagnetic field on cardiovascular system in the literature is defined in ambiguous way. The aim of this study was to evaluate the effect of electromagnetic field on the heart rate variability (HRV) during the examination with magnetic resonance. Forty-two patients underwent Holter ECG heart monitoring for 30 minutes twice: immediately before and after the examination with magnetic resonance imaging (MRI). HRV was analysed by assessing a few selected time and spectral parameters. Is has been shown that standard deviation of NN intervals (SDNN) and very low frequency rates increased, whereas the low frequency:high frequency parameter significantly decreased following the MRI examination. These results show that MRI may affect the HRV most likely by changing the sympathetic-parasympathetic balance.
Averaged head phantoms from magnetic resonance images of Korean children and young adults
NASA Astrophysics Data System (ADS)
Han, Miran; Lee, Ae-Kyoung; Choi, Hyung-Do; Jung, Yong Wook; Park, Jin Seo
2018-02-01
Increased use of mobile phones raises concerns about the health risks of electromagnetic radiation. Phantom heads are routinely used for radiofrequency dosimetry simulations, and the purpose of this study was to construct averaged phantom heads for children and young adults. Using magnetic resonance images (MRI), sectioned cadaver images, and a hybrid approach, we initially built template phantoms representing 6-, 9-, 12-, 15-year-old children and young adults. Our subsequent approach revised the template phantoms using 29 averaged items that were identified by averaging the MRI data from 500 children and young adults. In females, the brain size and cranium thickness peaked in the early teens and then decreased. This is contrary to what was observed in males, where brain size and cranium thicknesses either plateaued or grew continuously. The overall shape of brains was spherical in children and became ellipsoidal by adulthood. In this study, we devised a method to build averaged phantom heads by constructing surface and voxel models. The surface model could be used for phantom manipulation, whereas the voxel model could be used for compliance test of specific absorption rate (SAR) for users of mobile phones or other electronic devices.
Vibrational resonance in an inhomogeneous medium with periodic dissipation
NASA Astrophysics Data System (ADS)
Roy-Layinde, T. O.; Laoye, J. A.; Popoola, O. O.; Vincent, U. E.; McClintock, P. V. E.
2017-09-01
The role of nonlinear dissipation in vibrational resonance (VR) is investigated in an inhomogeneous system characterized by a symmetric and spatially periodic potential and subjected to nonuniform state-dependent damping and a biharmonic driving force. The contributions of the parameters of the high-frequency signal to the system's effective dissipation are examined theoretically in comparison to linearly damped systems, for which the parameter of interest is the effective stiffness in the equation of slow vibration. We show that the VR effect can be enhanced by varying the nonlinear dissipation parameters and that it can be induced by a parameter that is shared by the damping inhomogeneity and the system potential. Furthermore, we have apparently identified the origin of the nonlinear-dissipation-enhanced response: We provide evidence of its connection to a Hopf bifurcation, accompanied by monotonic attractor enlargement in the VR regime.
OPTIMAL EXPERIMENT DESIGN FOR MAGNETIC RESONANCE FINGERPRINTING
Zhao, Bo; Haldar, Justin P.; Setsompop, Kawin; Wald, Lawrence L.
2017-01-01
Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance. PMID:28268369
Optimal experiment design for magnetic resonance fingerprinting.
Bo Zhao; Haldar, Justin P; Setsompop, Kawin; Wald, Lawrence L
2016-08-01
Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance.
Modeling noisy resonant system response
NASA Astrophysics Data System (ADS)
Weber, Patrick Thomas; Walrath, David Edwin
2017-02-01
In this paper, a theory-based model replicating empirical acoustic resonant signals is presented and studied to understand sources of noise present in acoustic signals. Statistical properties of empirical signals are quantified and a noise amplitude parameter, which models frequency and amplitude-based noise, is created, defined, and presented. This theory-driven model isolates each phenomenon and allows for parameters to be independently studied. Using seven independent degrees of freedom, this model will accurately reproduce qualitative and quantitative properties measured from laboratory data. Results are presented and demonstrate success in replicating qualitative and quantitative properties of experimental data.
Cho, Herman
2016-02-28
Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2,5/2,7/2, and 9/2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Furthermore, applications of NQR methods to studies of electronic structure in heavy element systems are proposed.
A potential nuclear magnetic resonance imaging approach for noncontact temperature measurement
NASA Technical Reports Server (NTRS)
Manatt, Stanley L.
1989-01-01
It is proposed that in a nuclear magnetic resonance (NMR) imaging experiment that it should be possible to measure temperature through an extended volume. The basis for such a measurement would depend upon sensing a temperature dependent on NMR parameter in an inert, volatile molecule (or fluid) filling the volume of interest. Exploratory work suggest that one suitable candidate for such a purpose might be CH3Cl. Possible parameters, other inert gases and feasible measurement schemes that might provide such temperature measurement are discussed.
MRI-Based Intelligence Quotient (IQ) Estimation with Sparse Learning
Wang, Liye; Wee, Chong-Yaw; Suk, Heung-Il; Tang, Xiaoying; Shen, Dinggang
2015-01-01
In this paper, we propose a novel framework for IQ estimation using Magnetic Resonance Imaging (MRI) data. In particular, we devise a new feature selection method based on an extended dirty model for jointly considering both element-wise sparsity and group-wise sparsity. Meanwhile, due to the absence of large dataset with consistent scanning protocols for the IQ estimation, we integrate multiple datasets scanned from different sites with different scanning parameters and protocols. In this way, there is large variability in these different datasets. To address this issue, we design a two-step procedure for 1) first identifying the possible scanning site for each testing subject and 2) then estimating the testing subject’s IQ by using a specific estimator designed for that scanning site. We perform two experiments to test the performance of our method by using the MRI data collected from 164 typically developing children between 6 and 15 years old. In the first experiment, we use a multi-kernel Support Vector Regression (SVR) for estimating IQ values, and obtain an average correlation coefficient of 0.718 and also an average root mean square error of 8.695 between the true IQs and the estimated ones. In the second experiment, we use a single-kernel SVR for IQ estimation, and achieve an average correlation coefficient of 0.684 and an average root mean square error of 9.166. All these results show the effectiveness of using imaging data for IQ prediction, which is rarely done in the field according to our knowledge. PMID:25822851
Metal-in-metal localized surface plasmon resonance
NASA Astrophysics Data System (ADS)
Smith, G. B.; Earp, A. A.
2010-01-01
Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Huai; Jiang, Huijun; Hou, Zhonghuai, E-mail: hzhlj@ustc.edu.cn
The dynamics of point-like Brownian particles in a periodic confined channel with oscillating boundaries has been studied. Directional transport (DT) behavior, characterized by net displacement along the horizontal direction, is observed even without external force which is necessary for the conventional DT where the boundaries are static. For typical parameter values, the average velocity V{sub t} of DT reaches a maximum with the variation of the noise intensity D, being alike to the phenomenon of stochastic resonance. Interestingly, we find that V{sub t} shows nontrivial dependences on the particle gravity G depending on the noise level. When the noise ismore » large, V{sub t} increases monotonically with G indicating that heavier particle moves faster, while for small noise, V{sub t} shows a bell-shape dependence on G, suggesting that a particle with an intermediate weight may move the fastest. Such results were not observed for DT in a channel with static boundaries. To understand these findings, we have adopted an effective one-dimensional coarsening description, which facilitates us to introduce an effective entropic force along the horizontal direction. The average force is apparently nonzero due to the oscillatory boundary, hence leading to the net transport, and it shows similar dependences as V{sub t} on the noise intensity D and particle gravity G. The dependences of the DT behavior on other parameters describing the oscillatory channel have also been investigated, showing that DT is more pronounced for larger oscillation amplitude and frequency, and asymmetric geometry within a channel period and phase difference between neighboring periods are both necessary for the occurrence of DT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yuling; Liu, Yue, E-mail: Yueqiang.Liu@ccfe.ac.uk, E-mail: liuyue@dlut.edu.cn; Liu, Chao
2016-01-15
A dispersion relation is derived for the stability of the resistive wall mode (RWM), which includes both the resistive layer damping physics and the toroidal precession drift resonance damping from energetic ions in tokamak plasmas. The dispersion relation is numerically solved for a model plasma, for the purpose of systematic investigation of the RWM stability in multi-dimensional plasma parameter space including the plasma resistivity, the radial location of the resistive wall, as well as the toroidal flow velocity. It is found that the toroidal favorable average curvature in the resistive layer contributes a significant stabilization of the RWM. This stabilizationmore » is further enhanced by adding the drift kinetic contribution from energetic ions. Furthermore, two traditionally assumed inner layer models are considered and compared in the dispersion relation, resulting in different predictions for the stability of the RWM.« less
Kasper, Joseph M; Williams-Young, David B; Vecharynski, Eugene; Yang, Chao; Li, Xiaosong
2018-04-10
The time-dependent Hartree-Fock (TDHF) and time-dependent density functional theory (TDDFT) equations allow one to probe electronic resonances of a system quickly and inexpensively. However, the iterative solution of the eigenvalue problem can be challenging or impossible to converge, using standard methods such as the Davidson algorithm for spectrally dense regions in the interior of the spectrum, as are common in X-ray absorption spectroscopy (XAS). More robust solvers, such as the generalized preconditioned locally harmonic residual (GPLHR) method, can alleviate this problem, but at the expense of higher average computational cost. A hybrid method is proposed which adapts to the problem in order to maximize computational performance while providing the superior convergence of GPLHR. In addition, a modification to the GPLHR algorithm is proposed to adaptively choose the shift parameter to enforce a convergence of states above a predefined energy threshold.
High power infrared super-Gaussian beams: generation, propagation, and application
NASA Astrophysics Data System (ADS)
du Preez, Neil C.; Forbes, Andrew; Botha, Lourens R.
2008-10-01
In this paper we present the design of a CO2 laser resonator that produces as the stable transverse mode a super-Gaussian laser beam. The resonator makes use of an intra-cavity diffractive mirror and a flat output coupler, generating the desired intensity profile at the output coupler with a flat wavefront. We consider the modal build-up in such a resonator and show that such a resonator mode has the ability to extract more energy from the cavity that a standard cavity single mode beam (e.g., Gaussian mode cavity). We demonstrate the design experimentally on a high average power TEA CO2 laser for paint stripping applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalseno, J.; Moloney, G. R.; Sevior, M. E.
2007-10-01
We present a measurement of the branching fraction and time-dependent CP violation parameters for B{sup 0}{yields}D*{sup +}D*{sup -}K{sub S}{sup 0} decays. These results are obtained from a 414 fb{sup -1} data sample that contains 449x10{sup 6} BB pairs collected at the {upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric-energy e{sup +}e{sup -} collider. We obtain the branching fraction, B(B{sup 0}{yields}D*{sup +}D*{sup -}K{sub S}{sup 0})=[3.4{+-}0.4(stat){+-}0.7(syst)]x10{sup -3}, which is in agreement with the current world average. We also obtain an upper limit on the product branching fraction for a possible two-body decay, B(B{sup 0}{yields}D{sub s1}{sup +}(2536)D*{sup -})B(D{sub s1}{sup +}(2536){yields}D*{sup +}K{submore » S}{sup 0})<7.1x10{sup -4} (90% CL). In the traditional 2-parameter time-dependent CP analysis, we measure the CP violation parameters, A{sub CP}=-0.01{sub -0.28}{sup +0.28}(stat){+-}0.09(syst), Dsin2{phi}{sub 1}=0.06{sub -0.44}{sup +0.45}(stat){+-}0.06(syst). No evidence for either mixing-induced or direct CP violation is found. In a 3-parameter fit sensitive to cos2{phi}{sub 1} performed in the half-Dalitz spaces, s{sup -}{<=}s{sup +} and s{sup -}>s{sup +}, where s{sup {+-}}{identical_to}m{sup 2}(D*{sup {+-}}K{sub S}{sup 0}), we extract the CP violation parameters, J{sub c}/J{sub 0}=0.60{sub -0.28}{sup +0.25}(stat){+-}0.08(syst), 2J{sub s1}/J{sub 0}sin2{phi}{sub 1}=-0.17{sub -0.42}{sup +0.42}(stat){+-}0.09(syst), 2J{sub s2}/J{sub 0}cos2{phi}{sub 1}=-0.23{sub -0.41}{sup +0.43}(stat){+-}0.13(syst). A large value of J{sub c}/J{sub 0} would indicate a significant resonant contribution from a broad unknown D{sub s}**{sup +} state. Although the sign of the factor, 2J{sub s2}/J{sub 0}, can be deduced from theory, no conclusion can be drawn regarding the sign of cos2{phi}{sub 1} given the errors.« less
Coupling between corotation and Lindblad resonances in the presence of secular precession rates
NASA Astrophysics Data System (ADS)
El Moutamid, Maryame; Sicardy, Bruno; Renner, Stéfan
2014-03-01
We investigate the dynamics of two satellites with masses and orbiting a massive central planet in a common plane, near a first order mean motion resonance ( m integer). We consider only the resonant terms of first order in eccentricity in the disturbing potential of the satellites, plus the secular terms causing the orbital apsidal precessions. We obtain a two-degrees-of-freedom system, associated with the two critical resonant angles and , where and are the mean longitude and longitude of periapsis of , respectively, and where the primed quantities apply to . We consider the special case where (restricted problem). The symmetry between the two angles and is then broken, leading to two different kinds of resonances, classically referred to as corotation eccentric resonance (CER) and Lindblad eccentric Resonance (LER), respectively. We write the four reduced equations of motion near the CER and LER, that form what we call the CoraLin model. This model depends upon only two dimensionless parameters that control the dynamics of the system: the distance between the CER and LER, and a forcing parameter that includes both the mass and the orbital eccentricity of the disturbing satellite. Three regimes are found: for the system is integrable, for of order unity, it exhibits prominent chaotic regions, while for large compared to 2, the behavior of the system is regular and can be qualitatively described using simple adiabatic invariant arguments. We apply this model to three recently discovered small Saturnian satellites dynamically linked to Mimas through first order mean motion resonances: Aegaeon, Methone and Anthe. Poincaré surfaces of section reveal the dynamical structure of each orbit, and their proximity to chaotic regions. This work may be useful to explore various scenarii of resonant capture for those satellites.
Study of field shifts of Ramsey resonances on ultracold atoms and ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabatchikova, K. S., E-mail: k.tabatchikova@gmail.com; Taichenachev, A. V.; Dmitriev, A. K.
2015-02-15
The effect of the finite laser radiation line width and spontaneous relaxation of levels on the efficiency of the suppression of the field shift of the central resonance for the generalized Ramsey scheme with pulses of different lengths and with a phase jump in the second pulse has been considered. The optimal parameters of the scheme corresponding to the minimum frequency shift and maximum amplitude of the resonance have been determined.
NASA Astrophysics Data System (ADS)
Khaneja, Navin
2018-07-01
In this paper, we develop the theory of chirp mixing in NMR spectroscopy. The working principle is simple, given coupled homonuclear spins with offsets in range [ - B, B ] , we adiabatically sweep through the resonances. This achieves cross polarization between the z magnetization of the coupled spins. We repeat this basic operation many times with a supercycle to achieve appropriate mixing time. When we sweep through the resonances, midway between the resonances of the coupled spin I and S, the effective field seen by two spins is the same and hence they precess at same frequency around their effective fields. This means the coupling, which normally gets averaged out due to the chemical shift difference is no more averaged out for a short time and we get mixing. In this paper, we develop these basic ideas. By virtue of its design, the chirp mixing is much more broadband compared to state of the art methods. The proposed methodology is demonstrated on 13 C mixing in a sample of Alanine.
Kim, Moonkeun; Lee, Sang-Kyun; Yang, Yil Suk; Jeong, Jaehwa; Min, Nam Ki; Kwon, Kwang-Ho
2013-12-01
We fabricated dual-beam cantilevers on the microelectromechanical system (MEMS) scale with an integrated Si proof mass. A Pb(Zr,Ti)O3 (PZT) cantilever was designed as a mechanical vibration energy-harvesting system for low power applications. The resonant frequency of the multilayer composition cantilevers were simulated using the finite element method (FEM) with parametric analysis carried out in the design process. According to simulations, the resonant frequency, voltage, and average power of a dual-beam cantilever was 69.1 Hz, 113.9 mV, and 0.303 microW, respectively, at optimal resistance and 0.5 g (gravitational acceleration, m/s2). Based on these data, we subsequently fabricated cantilever devices using dual-beam cantilevers. The harvested power density of the dual-beam cantilever compared favorably with the simulation. Experiments revealed the resonant frequency, voltage, and average power density to be 78.7 Hz, 118.5 mV, and 0.34 microW, respectively. The error between the measured and simulated results was about 10%. The maximum average power and power density of the fabricated dual-beam cantilever at 1 g were 0.803 microW and 1322.80 microW cm(-3), respectively. Furthermore, the possibility of a MEMS-scale power source for energy conversion experiments was also tested.
Aydogan, Tuğba; Akçay, BetÜl İlkay Sezgin; Kardeş, Esra; Ergin, Ahmet
2017-11-01
The objective of this study is to evaluate the diagnostic ability of retinal nerve fiber layer (RNFL), macular, optic nerve head (ONH) parameters in healthy subjects, ocular hypertension (OHT), preperimetric glaucoma (PPG), and early glaucoma (EG) patients, to reveal factors affecting the diagnostic ability of spectral domain-optical coherence tomography (SD-OCT) parameters and risk factors for glaucoma. Three hundred and twenty-six eyes (89 healthy, 77 OHT, 94 PPG, and 66 EG eyes) were analyzed. RNFL, macular, and ONH parameters were measured with SD-OCT. The area under the receiver operating characteristic curve (AUC) and sensitivity at 95% specificity was calculated. Logistic regression analysis was used to determine the glaucoma risk factors. Receiver operating characteristic regression analysis was used to evaluate the influence of covariates on the diagnostic ability of parameters. In PPG patients, parameters that had the largest AUC value were average RNFL thickness (0.83) and rim volume (0.83). In EG patients, parameter that had the largest AUC value was average RNFL thickness (0.98). The logistic regression analysis showed average RNFL thickness was a risk factor for both PPG and EG. Diagnostic ability of average RNFL and average ganglion cell complex thickness increased as disease severity increased. Signal strength index did not affect diagnostic abilities. Diagnostic ability of average RNFL and rim area increased as disc area increased. When evaluating patients with glaucoma, patients at risk for glaucoma, and healthy controls RNFL parameters deserve more attention in clinical practice. Further studies are needed to fully understand the influence of covariates on the diagnostic ability of OCT parameters.
SIMP dark matter and its cosmic abundances
NASA Astrophysics Data System (ADS)
Choi, Soo-Min; Lee, Hyun Min; Seo, Min-Seok
2018-01-01
We give a review on the thermal average of the annihilation cross-sections for 3 → 2 and general higher-order processes. Thermal average of higher order annihilations highly depend on the velocity of dark matter, especially, for the case with resonance poles. We show such examples for scalar dark matter in gauged Z3 models.
Smoothness of In vivo Spectral Baseline Determined by Mean Squared Error
Zhang, Yan; Shen, Jun
2013-01-01
Purpose A nonparametric smooth line is usually added to spectral model to account for background signals in vivo magnetic resonance spectroscopy (MRS). The assumed smoothness of the baseline significantly influences quantitative spectral fitting. In this paper, a method is proposed to minimize baseline influences on estimated spectral parameters. Methods In this paper, the non-parametric baseline function with a given smoothness was treated as a function of spectral parameters. Its uncertainty was measured by root-mean-squared error (RMSE). The proposed method was demonstrated with a simulated spectrum and in vivo spectra of both short echo time (TE) and averaged echo times. The estimated in vivo baselines were compared with the metabolite-nulled spectra, and the LCModel-estimated baselines. The accuracies of estimated baseline and metabolite concentrations were further verified by cross-validation. Results An optimal smoothness condition was found that led to the minimal baseline RMSE. In this condition, the best fit was balanced against minimal baseline influences on metabolite concentration estimates. Conclusion Baseline RMSE can be used to indicate estimated baseline uncertainties and serve as the criterion for determining the baseline smoothness of in vivo MRS. PMID:24259436
NASA Technical Reports Server (NTRS)
Weeks, R. A.
1973-01-01
Electron magnetic resonance measurements have been made at 9 GHz and at temperatures from 1.2 to 400 K and 35 GHz (300 K) on samples of fines and breccias from Apollo 11-16. Unsorted Apollo 16 fines (less than 1 mm) have Delta H (average) = 580 G and specific intensities that have the same range as fines from the other Apollo collections. The magnetic properties of the 'characteristic' resonance are not in accord with those of iron particles. On the bases of the properties of the 'characteristic' resonance as a function of temperature and Apollo site, laboratory heat treatments on synthetic materials and lunar crystalline rocks and a comparison with the 'characteristic' resonance of the resonance spectra of breccia specimens for which iron particle sizes have been determined from other measurements, it is suggested that some fraction (about 20%) of the 'characteristic' resonance is due to sub-micron particles of ferric oxide phases.
Hoppe, Elisabeth; Körzdörfer, Gregor; Würfl, Tobias; Wetzl, Jens; Lugauer, Felix; Pfeuffer, Josef; Maier, Andreas
2017-01-01
The purpose of this work is to evaluate methods from deep learning for application to Magnetic Resonance Fingerprinting (MRF). MRF is a recently proposed measurement technique for generating quantitative parameter maps. In MRF a non-steady state signal is generated by a pseudo-random excitation pattern. A comparison of the measured signal in each voxel with the physical model yields quantitative parameter maps. Currently, the comparison is done by matching a dictionary of simulated signals to the acquired signals. To accelerate the computation of quantitative maps we train a Convolutional Neural Network (CNN) on simulated dictionary data. As a proof of principle we show that the neural network implicitly encodes the dictionary and can replace the matching process.
NASA Astrophysics Data System (ADS)
Sarikaya, Ebru Karakaş; Dereli, Ömer
2017-02-01
To obtain liquid phase molecular structure, conformational analysis of Orotic acid was performed and six conformers were determined. For these conformations, eight possible radicals were modelled by using Density Functional Theory computations with respect to molecular structure. Electron Paramagnetic Resonance parameters of these model radicals were calculated and then they were compared with the experimental ones. Geometry optimizations of the molecule and modeled radicals were performed using Becke's three-parameter hybrid-exchange functional combined with the Lee-Yang-Parr correlation functional of Density Functional Theory and 6-311++G(d,p) basis sets in p-dioxane solution. Because Orotic acid can be mutagenic in mammalian somatic cells and it is also mutagenic for bacteria and yeast, it has been studied.
Lavonen, E E; Kothawala, D N; Tranvik, L J; Gonsior, M; Schmitt-Kopplin, P; Köhler, S J
2015-11-15
Absorbance, 3D fluorescence and ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) were used to explain patterns in the removal of chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) at the molecular level during drinking water production at four large drinking water treatment plants in Sweden. When dissolved organic carbon (DOC) removal was low, shifts in the dissolved organic matter (DOM) composition could not be detected with commonly used DOC-normalized parameters (e.g. specific UV254 absorbance - SUVA), but was clearly observed by using differential absorbance and fluorescence or ESI-FT-ICR-MS. In addition, we took a novel approach by identifying how optical parameters were correlated to the elemental composition of DOM by using rank correlation to connect optical properties to chemical formulas assigned to mass peaks from FT-ICR-MS analyses. Coagulation treatment selectively removed FDOM at longer emission wavelengths (450-600 nm), which significantly correlated with chemical formulas containing oxidized carbon (average carbon oxidation state ≥ 0), low hydrogen to carbon ratios (H/C: average ± SD = 0.83 ± 0.13), and abundant oxygen-containing functional groups (O/C = 0.62 ± 0.10). Slow sand filtration was less efficient in removing DOM, yet selectively targeted FDOM at shorter emission wavelengths (between 300 and 450 nm), which commonly represents algal rather than terrestrial sources. This shorter wavelength FDOM correlated with chemical formulas containing reduced carbon (average carbon oxidation state ≤ 0), with relatively few carbon-carbon double bonds (H/C = 1.32 ± 0.16) and less oxygen per carbon (O/C = 0.43 ± 0.10) than those removed during coagulation. By coupling optical approaches with FT-ICR-MS to characterize DOM, we were for the first time able to confirm the molecular composition of absorbing and fluorescing DOM selectively targeted during drinking water treatment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Resonant Capture and Tidal Evolution in Circumbinary Systems: Testing the Case of Kepler-38
NASA Astrophysics Data System (ADS)
Zoppetti, F. A.; Beaugé, C.; Leiva, A. M.
2018-04-01
Circumbinary planets are thought to form far from the central binary and migrate inwards by interactions with the circumbinary disk, ultimately stopping near their present location either by a planetary trap near the disk inner edge or by resonance capture. Here, we analyze the second possibility, presenting a detailed numerical study on the capture process, resonant dynamics and tidal evolution of circumbinary planets in high-order mean-motion resonances (MMRs). Planetary migration was modeled as an external acceleration in an N-body code, while tidal effects were incorporated with a weak-friction equilibrium tide model. As a working example we chose Kepler-38, a highly evolved system with a planet in the vicinity of the 5/1 MMR. Our simulations show that resonance capture is a high-probability event under a large range of system parameters, although several different resonant configuration are possible. We identified three possible outcomes: aligned librations, anti-aligned librations and chaotic solutions. All were found to be dynamically stable, even after the dissipation of the disk, for time-spans of the order of the system's age. We found that while tidal evolution decreases the binary's separation, the semimajor axis of the planet is driven outwards. Although the net effect is a secular increase in the mean-motion ratio, the system requires a planetary tidal parameter of the order of unity to reproduce the observed orbital configuration. The results presented here open an interesting outlook into the complex dynamics of high-order resonances in circumbinary systems.
Resonant capture and tidal evolution in circumbinary systems: testing the case of Kepler-38
NASA Astrophysics Data System (ADS)
Zoppetti, F. A.; Beaugé, C.; Leiva, A. M.
2018-07-01
Circumbinary planets are thought to form far from the central binary and migrate inwards by interactions with the circumbinary disc, ultimately stopping near their present location either by a planetary trap near the disc inner edge or by resonance capture. Here, we analyse the second possibility, presenting a detailed numerical study on the capture process, resonant dynamics, and tidal evolution of circumbinary planets in high-order mean-motion resonances (MMRs). Planetary migration was modelled as an external acceleration in an N-body code, while tidal effects were incorporated with a weak-friction equilibrium tide model. As a working example, we chose Kepler-38, a highly evolved system with a planet in the vicinity of the 5/1 MMR. Our simulations show that resonance capture is a high-probability event under a large range of system parameters, although several different resonant configuration are possible. We identified three possible outcomes: aligned librations, anti-aligned librations, and chaotic solutions. All were found to be dynamically stable, even after the dissipation of the disc, for time spans of the order of the system's age. We found that while tidal evolution decreases the binary's separation, the semimajor axis of the planet is driven outwards. Although the net effect is a secular increase in the mean-motion ratio, the system requires a planetary tidal parameter of the order of unity to reproduce the observed orbital configuration. The results presented here open an interesting outlook into the complex dynamics of high-order resonances in circumbinary systems.
New Constraints on Gliese 876—Exemplar of Mean-motion Resonance
NASA Astrophysics Data System (ADS)
Millholland, Sarah; Laughlin, Gregory; Teske, Johanna; Butler, R. Paul; Burt, Jennifer; Holden, Bradford; Vogt, Steven; Crane, Jeffrey; Shectman, Stephen; Thompson, Ian
2018-03-01
Gliese 876 harbors one of the most dynamically rich and well-studied exoplanetary systems. The nearby M4V dwarf hosts four known planets, the outer three of which are trapped in a Laplace mean-motion resonance. A thorough characterization of the complex resonant perturbations exhibited by the orbiting planets, and the chaotic dynamics therein, is key to a complete picture of the system’s formation and evolutionary history. Here we present a reanalysis of the system using 6 yr of new radial velocity (RV) data from four instruments. These new data augment and more than double the size of the decades-long collection of existing velocity measurements. We provide updated estimates of the system parameters by employing a computationally efficient Wisdom–Holman N-body symplectic integrator, coupled with a Gaussian process (GP) regression model to account for correlated stellar noise. Experiments with synthetic RV data show that the dynamical characterization of the system can differ depending on whether a white-noise or correlated-noise model is adopted. Despite there being a region of stability for an additional planet in the resonant chain, we find no evidence for one. Our new parameter estimates place the system even deeper into resonance than previously thought and suggest that the system might be in a low-energy, quasi-regular double apsidal corotation resonance. This result and others will be used in a subsequent study on the primordial migration processes responsible for the formation of the resonant chain.
Schroeter, Aileen; Grandjean, Joanes; Schlegel, Felix; Saab, Bechara J; Rudin, Markus
2017-07-01
Previously, we reported widespread bilateral increases in stimulus-evoked functional magnetic resonance imaging signals in mouse brain to unilateral sensory paw stimulation. We attributed the pattern to arousal-related cardiovascular changes overruling cerebral autoregulation thereby masking specific signal changes elicited by local neuronal activity. To rule out the possibility that interhemispheric neuronal communication might contribute to bilateral functional magnetic resonance imaging responses, we compared stimulus-evoked functional magnetic resonance imaging responses to unilateral hindpaw stimulation in acallosal I/LnJ, C57BL/6, and BALB/c mice. We found bilateral blood-oxygenation-level dependent signal changes in all three strains, ruling out a dominant contribution of transcallosal communication as reason for bilaterality. Analysis of functional connectivity derived from resting-state functional magnetic resonance imaging, revealed that bilateral cortical functional connectivity is largely abolished in I/LnJ animals. Cortical functional connectivity in all strains correlated with structural connectivity in corpus callosum as revealed by diffusion tensor imaging. Given the profound influence of systemic hemodynamics on stimulus-evoked functional magnetic resonance imaging outcomes, we evaluated whether functional connectivity data might be affected by cerebrovascular parameters, i.e. baseline cerebral blood volume, vascular reactivity, and reserve. We found that effects of cerebral hemodynamics on functional connectivity are largely outweighed by dominating contributions of structural connectivity. In contrast, contributions of transcallosal interhemispheric communication to the occurrence of ipsilateral functional magnetic resonance imaging response of equal amplitude to unilateral stimuli seem negligible.
Rössler, Erik; Mattea, Carlos; Stapf, Siegfried
2015-02-01
Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T(2) maps from the diffusion-weighted CPMG decays of apparent relaxation rates. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmadi, F.; Hussin, R.; Ghoshal, S. K.
2017-11-01
We report the modified optical properties of Sm3+ doped magnesium zinc sulfophosphate glass system with silver nanoparticles (Ag NPs) inclusion. Three glass samples were prepared using melt quenching method and characterized. TEM images revealed the nucleation of Ag NPs with average diameter ≈12.50 nm. The UV-Vis-NIR spectra showed thirteen absorption bands. The surface plasmon resonance (SPR) band of Ag NPs was manifested at 446 nm. FTIR spectra disclosed the bonding vibrations for P-O bonds, P-O-P linkages, and PO2 units. Ag NPs concentration dependent bonding parameters and Judd-Ofelt (JO) intensity parameters were calculated. The JO parameter Ω2 was reduced with the increase of Ag NPs contents, indicating the ionicity and symmetry enhancement between Sm3+ ions with their surrounding ligands. The emission spectra of all samples under the excitation wavelength of 402 nm exhibited four significant peaks centered at 562, 599, 644 and 702 nm which are allocated to 4G5/2 →6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions, respectively. Inclusion of Ag NPs was discerned to augment the luminescence intensity by a factor of two, which was majorly ascribed to the local field effect of Ag NPs and subsequent energy transfer from the NPs to Sm3+ ions.
Quality assessment of MEG-to-MRI coregistrations
NASA Astrophysics Data System (ADS)
Sonntag, Hermann; Haueisen, Jens; Maess, Burkhard
2018-04-01
For high precision in source reconstruction of magnetoencephalography (MEG) or electroencephalography data, high accuracy of the coregistration of sources and sensors is mandatory. Usually, the source space is derived from magnetic resonance imaging (MRI). In most cases, however, no quality assessment is reported for sensor-to-MRI coregistrations. If any, typically root mean squares (RMS) of point residuals are provided. It has been shown, however, that RMS of residuals do not correlate with coregistration errors. We suggest using target registration error (TRE) as criterion for the quality of sensor-to-MRI coregistrations. TRE measures the effect of uncertainty in coregistrations at all points of interest. In total, 5544 data sets with sensor-to-head and 128 head-to-MRI coregistrations, from a single MEG laboratory, were analyzed. An adaptive Metropolis algorithm was used to estimate the optimal coregistration and to sample the coregistration parameters (rotation and translation). We found an average TRE between 1.3 and 2.3 mm at the head surface. Further, we observed a mean absolute difference in coregistration parameters between the Metropolis and iterative closest point algorithm of (1.9 +/- 15){\\hspace{0pt}}\\circ and (1.1 +/- 9) m. A paired sample t-test indicated a significant improvement in goal function minimization by using the Metropolis algorithm. The sampled parameters allowed computation of TRE on the entire grid of the MRI volume. Hence, we recommend the Metropolis algorithm for head-to-MRI coregistrations.
Simultaneous detection of resolved glutamate, glutamine, and γ-aminobutyric acid at 4 T
NASA Astrophysics Data System (ADS)
Hu, Jiani; Yang, Shaolin; Xuan, Yang; Jiang, Quan; Yang, Yihong; Haacke, E. Mark
2007-04-01
A new approach is introduced to simultaneously detect resolved glutamate (Glu), glutamine (Gln), and γ-aminobutyric acid (GABA) using a standard STEAM localization pulse sequence with the optimized sequence timing parameters. This approach exploits the dependence of the STEAM spectra of the strongly coupled spin systems of Glu, Gln, and GABA on the echo time TE and the mixing time TM at 4 T to find an optimized sequence parameter set, i.e., {TE, TM}, where the outer-wings of the Glu C4 multiplet resonances around 2.35 ppm, the Gln C4 multiplet resonances around 2.45 ppm, and the GABA C2 multiplet resonance around 2.28 ppm are significantly suppressed and the three resonances become virtual singlets simultaneously and thus resolved. Spectral simulation and optimization were conducted to find the optimized sequence parameters, and phantom and in vivo experiments (on normal human brains, one patient with traumatic brain injury, and one patient with brain tumor) were carried out for verification. The results have demonstrated that the Gln, Glu, and GABA signals at 2.2-2.5 ppm can be well resolved using a standard STEAM sequence with the optimized sequence timing parameters around {82 ms, 48 ms} at 4 T, while the other main metabolites, such as N-acetyl aspartate (NAA), choline (tCho), and creatine (tCr), are still preserved in the same spectrum. The technique can be easily implemented and should prove to be a useful tool for the basic and clinical studies associated with metabolism of Glu, Gln, and/or GABA.
Low losses left-handed materials with optimized electric and magnetic resonance
NASA Astrophysics Data System (ADS)
Zhou, Xin; Liu, Yahong; Zhao, Xiaopeng
2010-03-01
We propose that the losses in left-handed materials (LHMs) can be significantly affected by changing the coupling relationship between electric and magnetic resonance. A double bowknot shaped structure (DBS) is used to construct the LHMs. And the magnetic resonance of the DBS, which resonated in the case of lower and higher frequencies than the electric resonant dip, is studied in simulation and experiment by tailoring the structural parameters. The case of magnetic resonance located at low electric resonance frequencies band is confirmed to have relatively low losses. Using full wave simulation of prism shaped structure composed of DBS unit cells, we prove the negative refraction behavior in such a frame. This study can serve as a guide for designing other similar metal-dielectric-metal (MDM) in low losses at terahertz or higher frequencies.
Lopes, Ana Catarina; Sagasti, Ariane; Lasheras, Andoni; Muto, Virginia; Gutiérrez, Jon; Kouzoudis, Dimitris; Barandiarán, José Manuel
2018-03-16
The main parameters of magnetoelastic resonators in the detection of chemical (i.e., salts, gases, etc.) or biological (i.e., bacteria, phages, etc.) agents are the sensitivity S (or external agent change magnitude per Hz change in the resonance frequency) and the quality factor Q of the resonance. We present an extensive study on the experimental determination of the Q factor in such magnetoelastic resonant platforms, using three different strategies: (a) analyzing the real and imaginary components of the susceptibility at resonance; (b) numerical fitting of the modulus of the susceptibility; (c) using an exact mathematical expression for the real part of the susceptibility. Q values obtained by the three methods are analyzed and discussed, aiming to establish the most adequate one to accurately determine the quality factor of the magnetoelastic resonance.
Xu, Xiaolun; Li, Yongqian; Wang, Binbin; Zhou, Zili
2015-10-01
The resonance characteristics of plasmonic metamaterials absorbers (PMAs) are strongly dependent on geometric parameters. A resistor-inductor-capacitor (RLC) circuit model has been extended to predict the resonance wavelengths and the bandwidths of multiple magnetic polaritons modes in PMAs. For a typical metallic-dielectric-metallic structure absorber working in the infrared region, the developed model describes the correlation between the resonance characteristics and the dimensional sizes. In particular, the RLC model is suitable for not only the fundamental resonance mode, but also for the second- and third-order resonance modes. The prediction of the resonance characteristics agrees fairly well with those calculated by the finite-difference time-domain simulation and the experimental results. The developed RLC model enables the facilitation of designing multi-band PMAs for infrared radiation detectors and thermal emitters.
Lopes, Ana Catarina; Sagasti, Ariane; Lasheras, Andoni; Muto, Virginia; Gutiérrez, Jon; Kouzoudis, Dimitris; Barandiarán, José Manuel
2018-01-01
The main parameters of magnetoelastic resonators in the detection of chemical (i.e., salts, gases, etc.) or biological (i.e., bacteria, phages, etc.) agents are the sensitivity S (or external agent change magnitude per Hz change in the resonance frequency) and the quality factor Q of the resonance. We present an extensive study on the experimental determination of the Q factor in such magnetoelastic resonant platforms, using three different strategies: (a) analyzing the real and imaginary components of the susceptibility at resonance; (b) numerical fitting of the modulus of the susceptibility; (c) using an exact mathematical expression for the real part of the susceptibility. Q values obtained by the three methods are analyzed and discussed, aiming to establish the most adequate one to accurately determine the quality factor of the magnetoelastic resonance. PMID:29547578
NASA Astrophysics Data System (ADS)
Ye, Bo; Dingel, Benjamin B.; Cui, Weili
2013-01-01
We present a minimalist design but high functionality micro-ring resonator based optical filter with narrow linewidth and low group delay using a novel design we called LOBOUR for LOoped-Back Over- and Under- Coupled Resonator (LOBOUR). The characteristics of both narrow linewidth and low group delay (low chromatic dispersion) generally do not come together especially when using a single ring resonator. The Cascaded Over- and Under-Coupled Resonator (COUR) design was able to achieve this goal but introduced many practical fabrication issues. Here, we present an alternative design to COUR which uses only one ring resonator and without fabrication and manufacturing issues. It can achieve 50 dB extinction ratio and tens of ps performance. We also present important parameter selection mapping for LOBOUR.
Nucleon resonances in exclusive reactions of photo- and electroproduction of mesons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skorodumina, Iu. A.; Burkert, V. D.; Golovach, E. N.
2015-11-01
Methods for extracting nucleon resonance parameters from experimental data are reviewed. The formalism for the description of exclusive reactions of meson photo- and electroproduction off nucleons is discussed. Recent experimental data on exclusive meson production in the scattering of electrons and photons off protons are analyzed.
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas
2011-07-01
A novel technique for the label-free analysis of micro and nanoparticles including biomolecules using optical micro cavity resonance of whispering-gallery-type modes is being developed. Various schemes of the method using both standard and specially produced microspheres have been investigated to make further development for microbial application. It was demonstrated that optical resonance under optimal geometry could be detected under the laser power of less 1 microwatt. The sensitivity of developed schemes has been tested by monitoring the spectral shift of the whispering gallery modes. Water solutions of ethanol, ascorbic acid, blood phantoms including albumin and HCl, glucose, biotin, biomarker like C reactive protein so as bacteria and virus phantoms (gels of silica micro and nanoparticles) have been used. Structure of resonance spectra of the solutions was a specific subject of investigation. Probabilistic neural network classifier for biological agents and micro/nano particles classification has been developed. Several parameters of resonance spectra as spectral shift, broadening, diffuseness and others have been used as input parameters to develop a network classifier for micro and nanoparticles and biological agents in solution. Classification probability of approximately 98% for probes under investigation have been achieved. Developed approach have been demonstrated to be a promising technology platform for sensitive, lab-on-chip type sensor which can be used for development of diagnostic tools for different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells as well as in different experimental contexts e.g. proteomics, genomics, drug discovery, and membrane studies.
206Pb+n resonances for E=600-900 keV: Neutron strength functions
NASA Astrophysics Data System (ADS)
Horen, D. J.; Harvey, J. A.; Hill, N. W.
1981-11-01
Data from high resolution neutron transmission and differential scattering measurements performed on 206Pb have been analyzed for E=600-900 keV. Resonance parameters (i.e., E, l, J, and Γn) have been deduced for many of the 161 resonances observed. Strength functions and potential phase shifts for s-, p-, and d-wave neutrons for En-0-900 keV are compared with optical model calculations. It is found that the phase contributed by the external R function as well as the integrated neutron strength functions can be reproduced for the s and d waves with a well depth of V0=50.4 MeV for the real potential and WD=6.0 MeV for an imaginary surface potential. Somewhat smaller values (V0=48.7 MeV and WD=2.0 MeV) are required to reproduce the p-wave data. These values of the real potential are also found to give the experimentally observed binding energies for the 4s12, 3d32, and 3d52 single particle levels (V0=50.4 MeV), and the 3p12 single particle level (V0=48.7 MeV). Nuclear level densities for s and d waves are found to be well represented by a constant temperature model. However, the model under estimates the number of p-wave resonances. NUCLEAR REACTIONS 206Pb(n), (n,n), E=600-900 keV; measured σT(E), σ(E,θ). 207Pb deduced resonance parameters, Jπ, Γn, neutron strength functions, optical model parameters for l=0,1,2.
Lee, Hyunyeol; Sohn, Chul-Ho; Park, Jaeseok
2017-07-01
To develop a current-induced, alternating reversed dual-echo-steady-state-based magnetic resonance electrical impedance tomography for joint estimation of tissue relaxation and electrical properties. The proposed method reverses the readout gradient configuration of conventional, in which steady-state-free-precession (SSFP)-ECHO is produced earlier than SSFP-free-induction-decay (FID) while alternating current pulses are applied in between the two SSFPs to secure high sensitivity of SSFP-FID to injection current. Additionally, alternating reversed dual-echo-steady-state signals are modulated by employing variable flip angles over two orthogonal injections of current pulses. Ratiometric signal models are analytically constructed, from which T 1 , T 2 , and current-induced B z are jointly estimated by solving a nonlinear inverse problem for conductivity reconstruction. Numerical simulations and experimental studies are performed to investigate the feasibility of the proposed method in estimating relaxation parameters and conductivity. The proposed method, if compared with conventional magnetic resonance electrical impedance tomography, enables rapid data acquisition and simultaneous estimation of T 1 , T 2 , and current-induced B z , yielding a comparable level of signal-to-noise ratio in the parameter estimates while retaining a relative conductivity contrast. We successfully demonstrated the feasibility of the proposed method in jointly estimating tissue relaxation parameters as well as conductivity distributions. It can be a promising, rapid imaging strategy for quantitative conductivity estimation. Magn Reson Med 78:107-120, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
David Jebaraj, D; Utsumi, Hideo; Milton Franklin Benial, A
2018-04-01
Low-frequency electron spin resonance studies were performed for 2 mM concentration of deuterated permeable and impermeable nitroxyl spin probes, 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl and 3-carboxy-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy in pure water and various concentrations of corn oil solution. The electron spin resonance parameters such as the line width, hyperfine coupling constant, g factor, rotational correlation time, permeability, and partition parameter were estimated. The broadening of line width was observed for nitroxyl radicals in corn oil mixture. The rotational correlation time increases with increasing concentration of corn oil, which indicates the less mobile nature of spin probe in corn oil mixture. The membrane permeability and partition parameter values were estimated as a function of corn oil concentration, which reveals that the nitroxyl radicals permeate equally into the aqueous phase and oil phase at the corn oil concentration of 50%. The electron spin resonance spectra demonstrate the permeable and impermeable nature of nitroxyl spin probes. From these results, the corn oil concentration was optimized as 50% for phantom studies. In this work, the corn oil and pure water mixture phantom models with various viscosities correspond to plasma membrane, and whole blood membrane with different hematocrit levels was studied for monitoring the biological characteristics and their interactions with permeable nitroxyl spin probe. These results will be useful for the development of electron spin resonance and Overhauser-enhanced magnetic resonance imaging modalities in biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Nammari, Abdullah; Caskey, Logan; Negrete, Johnny; Bardaweel, Hamzeh
2018-03-01
This article presents a non-resonant magneto-mechanical vibration energy harvester. When externally excited, the energy harvester converts vibrations into electric charge using a guided levitated magnet oscillating inside a multi-turn coil that is fixed around the exterior of the energy harvester. The levitated magnet is guided using four oblique mechanical springs. A prototype of the energy harvester is fabricated using additive manufacturing. Both experiment and model are used to characterize the static and dynamic behavior of the energy harvester. Measured restoring forces show that the fabricated energy harvester retains a mono-stable potential energy well with desired stiffness nonlinearities. Results show that magnetic spring results in hardening effect which increases the resonant frequency of the energy harvester. Additionally, oblique mechanical springs introduce geometric, negative, nonlinear stiffness which improves the harvester's response towards lower frequency spectrum. The unique design can produce a tunable energy harvester with multi-well potential energy characteristics. A finite element model is developed to estimate the average radial flux density experienced by the multi-turn coil. Also, a lumped parameter model of the energy harvester is developed and validated against measured data. Both upward and downward frequency sweeps are performed to determine the frequency response of the harvester. Results show that at higher excitation levels hardening effects become more apparent, and the system dynamic response turns into non-resonant. Frequency response curves exhibit frequency jump phenomena as a result of coexistence of multiple energy states at the frequency branch. The fabricated energy harvester is hand-held and measures approximately 100.5 [cm3] total volume. For a base excitation of 1.0 g [m/s2], the prototype generates a peak voltage and normalized power density of approximately 3.5 [V] and 0.133 [mW/cm3 g2], respectively, at 15.5 [Hz].
Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes
NASA Technical Reports Server (NTRS)
Artymowicz, Pawel; Lubow, Stephen H.
1994-01-01
We investigate the gravitational interaction of a generally eccentric binary star system with circumbinary and circumstellar gaseous disks. The disks are assumed to be coplanar with the binary, geometrically thin, and primarily governed by gas pressure and (turbulent) viscosity but not self-gravity. Both ordinary and eccentric Lindblad resonances are primarily responsible for truncating the disks in binaries with arbitrary eccentricity and nonextreme mass ratio. Starting from a smooth disk configuration, after the gravitational field of the binary truncates the disk on the dynamical timescale, a quasi-equilibrium is achieved, in which the resonant and viscous torques balance each other and any changes in the structure of the disk (e.g., due to global viscous evolution) occur slowly, preserving the average size of the gap. We analytically compute the approximate sizes of disks (or disk gaps) as a function of binary mass ratio and eccentricity in this quasi-equilibrium. Comparing the gap sizes with results of direct simulations using the smoothed particle hydrodynamics (SPH), we obtain a good agreement. As a by-product of the computations, we verify that standard SPH codes can adequately represent the dynamics of disks with moderate viscosity, Reynolds number R approximately 10(exp 3). For typical viscous disk parameters, and with a denoting the binary semimajor axis, the inner edge location of a circumbinary disk varies from 1.8a to 2.6a with binary eccentricity increasing from 0 to 0.25. For eccentricities 0 less than e less than 0.75, the minimum separation between a component star and the circumbinary disk inner edge is greater than a. Our calculations are relevant, among others, to protobinary stars and the recently discovered T Tau pre-main-sequence binaries. We briefly examine the case of a pre-main-sequence spectroscopic binary GW Ori and conclude that circumbinary disk truncation to the size required by one proposed spectroscopic model cannot be due to Linblad resonances, even if the disk is nonviscous.
Modelling Schumann resonances from ELF measurements using non-linear optimization methods
NASA Astrophysics Data System (ADS)
Castro, Francisco; Toledo-Redondo, Sergio; Fornieles, Jesús; Salinas, Alfonso; Portí, Jorge; Navarro, Enrique; Sierra, Pablo
2017-04-01
Schumann resonances (SR) can be found in planetary atmospheres, inside the cavity formed by the conducting surface of the planet and the lower ionosphere. They are a powerful tool to investigate both the electric processes that occur in the atmosphere and the characteristics of the surface and the lower ionosphere. In this study, the measurements are obtained in the ELF (Extremely Low Frequency) Juan Antonio Morente station located in the national park of Sierra Nevada. The three first modes, contained in the frequency band between 6 to 25 Hz, will be considered. For each time series recorded by the station, the amplitude spectrum was estimated by using Bartlett averaging. Then, the central frequencies and amplitudes of the SRs were obtained by fitting the spectrum with non-linear functions. In the poster, a study of nonlinear unconstrained optimization methods applied to the estimation of the Schumann Resonances will be presented. Non-linear fit, also known as optimization process, is the procedure followed in obtaining Schumann Resonances from the natural electromagnetic noise. The optimization methods that have been analysed are: Levenberg-Marquardt, Conjugate Gradient, Gradient, Newton and Quasi-Newton. The functions that the different methods fit to data are three lorentzian curves plus a straight line. Gaussian curves have also been considered. The conclusions of this study are outlined in the following paragraphs: i) Natural electromagnetic noise is better fitted using Lorentzian functions; ii) the measurement bandwidth can accelerate the convergence of the optimization method; iii) Gradient method has less convergence and has a highest mean squared error (MSE) between measurement and the fitted function, whereas Levenberg-Marquad, Gradient conjugate method and Cuasi-Newton method give similar results (Newton method presents higher MSE); v) There are differences in the MSE between the parameters that define the fit function, and an interval from 1% to 5% has been found.
Adaptive synchronized switch damping on an inductor: a self-tuning switching law
NASA Astrophysics Data System (ADS)
Kelley, Christopher R.; Kauffman, Jeffrey L.
2017-03-01
Synchronized switch damping (SSD) techniques exploit low-power switching between passive circuits connected to piezoelectric material to reduce structural vibration. In the classical implementation of SSD, the piezoelectric material remains in an open circuit for the majority of the vibration cycle and switches briefly to a shunt circuit at every displacement extremum. Recent research indicates that this switch timing is only optimal for excitation exactly at resonance and points to more general optimal switch criteria based on the phase of the displacement and the system parameters. This work proposes a self-tuning approach that implements the more general optimal switch timing for synchronized switch damping on an inductor (SSDI) without needing any knowledge of the system parameters. The law involves a gradient-based search optimization that is robust to noise and uncertainties in the system. Testing of a physical implementation confirms this law successfully adapts to the frequency and parameters of the system. Overall, the adaptive SSDI controller provides better off-resonance steady-state vibration reduction than classical SSDI while matching performance at resonance.
NASA Astrophysics Data System (ADS)
Yamakou, Marius E.; Jost, Jürgen
2017-10-01
In recent years, several, apparently quite different, weak-noise-induced resonance phenomena have been discovered. Here, we show that at least two of them, self-induced stochastic resonance (SISR) and inverse stochastic resonance (ISR), can be related by a simple parameter switch in one of the simplest models, the FitzHugh-Nagumo (FHN) neuron model. We consider a FHN model with a unique fixed point perturbed by synaptic noise. Depending on the stability of this fixed point and whether it is located to either the left or right of the fold point of the critical manifold, two distinct weak-noise-induced phenomena, either SISR or ISR, may emerge. SISR is more robust to parametric perturbations than ISR, and the coherent spike train generated by SISR is more robust than that generated deterministically. ISR also depends on the location of initial conditions and on the time-scale separation parameter of the model equation. Our results could also explain why real biological neurons having similar physiological features and synaptic inputs may encode very different information.
Jafari, Ramin; Chhabra, Shalini; Prince, Martin R; Wang, Yi; Spincemaille, Pascal
2018-04-01
To propose an efficient algorithm to perform dual input compartment modeling for generating perfusion maps in the liver. We implemented whole field-of-view linear least squares (LLS) to fit a delay-compensated dual-input single-compartment model to very high temporal resolution (four frames per second) contrast-enhanced 3D liver data, to calculate kinetic parameter maps. Using simulated data and experimental data in healthy subjects and patients, whole-field LLS was compared with the conventional voxel-wise nonlinear least-squares (NLLS) approach in terms of accuracy, performance, and computation time. Simulations showed good agreement between LLS and NLLS for a range of kinetic parameters. The whole-field LLS method allowed generating liver perfusion maps approximately 160-fold faster than voxel-wise NLLS, while obtaining similar perfusion parameters. Delay-compensated dual-input liver perfusion analysis using whole-field LLS allows generating perfusion maps with a considerable speedup compared with conventional voxel-wise NLLS fitting. Magn Reson Med 79:2415-2421, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Stochastic resonance in a fractional oscillator driven by multiplicative quadratic noise
NASA Astrophysics Data System (ADS)
Ren, Ruibin; Luo, Maokang; Deng, Ke
2017-02-01
Stochastic resonance of a fractional oscillator subject to an external periodic field as well as to multiplicative and additive noise is investigated. The fluctuations of the eigenfrequency are modeled as the quadratic function of the trichotomous noise. Applying the moment equation method and Shapiro-Loginov formula, we obtain the exact expression of the complex susceptibility and related stability criteria. Theoretical analysis and numerical simulations indicate that the spectral amplification (SPA) depends non-monotonicly both on the external driving frequency and the parameters of the quadratic noise. In addition, the investigations into fractional stochastic systems have suggested that both the noise parameters and the memory effect can induce the phenomenon of stochastic multi-resonance (SMR), which is previously reported and believed to be absent in the case of the multiplicative noise with only a linear term.
Impact of resonance decays on critical point signals in net-proton fluctuations
Bluhm, Marcus; Nahrgang, Marlene; Bass, Steffen A.; ...
2017-04-03
The non-monotonic beam energy dependence of the higher cumulants of net-proton fluctuations is a widely studied signature of the conjectured presence of a critical point in the QCD phase diagram. In this work we study the effect of resonance decays on critical fluctuations. We show that resonance effects reduce the signatures of critical fluctuations, but that for reasonable parameter choices critical effects in the net-proton cumulants survive. The relative role of resonance decays has a weak dependence on the order of the cumulants studied with a slightly stronger suppression of critical effects for higher-order cumulants.
Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance
NASA Astrophysics Data System (ADS)
Sadeghi, S.; Hamidi, S. M.
2018-04-01
Enhanced Faraday rotation in a new type of magneto-plasmonic structure with the capability of Fano resonance, has been reported theoretically. A magneto-plasmonic structure composed of a gold corrugated layer deposited on a magneto-optically active layer was studied by means of Lumerical software based on finite-difference time-domain. In our proposed structure, plasmonic Fano resonance and localized surface plasmon have induced enhancement in magneto-optical Faraday rotation. It is shown that the influence of geometrical parameters in gold layer offers a desirable platform for engineering spectral position of Fano resonance and enhancement of Faraday rotation.
Moreira, Luiz Felipe Pompeu Prado; Ferrari, Adriana Cristina; Moraes, Tiago Bueno; Reis, Ricardo Andrade; Colnago, Luiz Alberto; Pereira, Fabíola Manhas Verbi
2016-05-19
Time-domain nuclear magnetic resonance and chemometrics were used to predict color parameters, such as lightness (L*), redness (a*), and yellowness (b*) of beef (Longissimus dorsi muscle) samples. Analyzing the relaxation decays with multivariate models performed with partial least-squares regression, color quality parameters were predicted. The partial least-squares models showed low errors independent of the sample size, indicating the potentiality of the method. Minced procedure and weighing were not necessary to improve the predictive performance of the models. The reduction of transverse relaxation time (T 2 ) measured by Carr-Purcell-Meiboom-Gill pulse sequence in darker beef in comparison with lighter ones can be explained by the lower relaxivity Fe 2+ present in deoxymyoglobin and oxymyoglobin (red beef) to the higher relaxivity of Fe 3+ present in metmyoglobin (brown beef). These results point that time-domain nuclear magnetic resonance spectroscopy can become a useful tool for quality assessment of beef cattle on bulk of the sample and through-packages, because this technique is also widely applied to measure sensorial parameters, such as flavor, juiciness and tenderness, and physicochemical parameters, cooking loss, fat and moisture content, and instrumental tenderness using Warner Bratzler shear force. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Contrast detection in fluid-saturated media with magnetic resonance poroelastography
Perriñez, Phillip R.; Pattison, Adam J.; Kennedy, Francis E.; Weaver, John B.; Paulsen, Keith D.
2010-01-01
Purpose: Recent interest in the poroelastic behavior of tissues has led to the development of magnetic resonance poroelastography (MRPE) as an alternative to single-phase MR elastographic image reconstruction. In addition to the elastic parameters (i.e., Lamé’s constants) commonly associated with magnetic resonance elastography (MRE), MRPE enables estimation of the time-harmonic pore-pressure field induced by external mechanical vibration. Methods: This study presents numerical simulations that demonstrate the sensitivity of the computed displacement and pore-pressure fields to a priori estimates of the experimentally derived model parameters. In addition, experimental data collected in three poroelastic phantoms are used to assess the quantitative accuracy of MR poroelastographic imaging through comparisons with both quasistatic and dynamic mechanical tests. Results: The results indicate hydraulic conductivity to be the dominant parameter influencing the deformation behavior of poroelastic media under conditions applied during MRE. MRPE estimation of the matrix shear modulus was bracketed by the values determined from independent quasistatic and dynamic mechanical measurements as expected, whereas the contrast ratios for embedded inclusions were quantitatively similar (10%–15% difference between the reconstructed images and the mechanical tests). Conclusions: The findings suggest that the addition of hydraulic conductivity and a viscoelastic solid component as parameters in the reconstruction may be warranted. PMID:20831058
Lu, Jian; Ozel, I Ozge; Belvin, Carina A; Li, Xian; Skorupskii, Grigorii; Sun, Lei; Ofori-Okai, Benjamin K; Dincă, Mircea; Gedik, Nuh; Nelson, Keith A
2017-11-01
Zero-field splitting (ZFS) parameters are fundamentally tied to the geometries of metal ion complexes. Despite their critical importance for understanding the magnetism and spectroscopy of metal complexes, they are not routinely available through general laboratory-based techniques, and are often inferred from magnetism data. Here we demonstrate a simple tabletop experimental approach that enables direct and reliable determination of ZFS parameters in the terahertz (THz) regime. We report time-domain measurements of electron paramagnetic resonance (EPR) signals associated with THz-frequency ZFSs in molecular complexes containing high-spin transition-metal ions. We measure the temporal profiles of the free-induction decays of spin resonances in the complexes at zero and nonzero external magnetic fields, and we derive the EPR spectra via numerical Fourier transformation of the time-domain signals. In most cases, absolute values of the ZFS parameters are extracted from the measured zero-field EPR frequencies, and the signs can be determined by zero-field measurements at two different temperatures. Field-dependent EPR measurements further allow refined determination of the ZFS parameters and access to the g -factor. The results show good agreement with those obtained by other methods. The simplicity of the method portends wide applicability in chemistry, biology and material science.
Laser-induced polarization of a quantum spin system in the steady-state regime
NASA Astrophysics Data System (ADS)
Zvyagin, A. A.
2016-05-01
The effect of the circularly polarized laser field on quantum spin systems in the steady-state regime, in which relaxation plays the central role, has been studied. The dynamical mean-field-like theory predicts several general results for the behavior of the time-average magnetization caused by the laser field. The induced magnetization oscillates with the frequency of the laser field (while Rabi-like oscillations, which modulate the latter in the dynamical regime, are damped by the relaxation in the steady-state regime). At high frequencies, that magnetization is determined by the value to which the relaxation process is directed. At low frequencies the slope of that magnetization as a function of the frequency is determined by the strength of the laser field. The anisotropy determines the resonance behavior of the time-averaged magnetization in both the ferromagnetic and antiferromagnetic cases with nonzero magnetic anisotropy. Nonlinear effects (in the magnitude of the laser field) have been considered. The effect of the laser field on quantum spin systems is maximal in resonance, where the time-averaged magnetization, caused by the laser field, is changed essentially. Out of resonance the changes in the magnetization are relatively small. The resonance effect is caused by the nonzero magnetic anisotropy. The resonance frequency is small (proportional to the anisotropy value) for spin systems with ferromagnetic interactions and enhanced by exchange interactions in the spin systems with antiferromagnetic couplings. We show that it is worthwhile to study the laser-field-induced magnetization of quantum spin systems caused by the high-frequency laser field in the steady-state regime in "easy-axis" antiferromagnetic spin systems (e.g., in Ising-like antiferromagnetic spin-chain materials). The effects of the Dzyaloshinskii-Moriya interaction and the spin-frustration couplings (in the case of the zigzag spin chain) have been analyzed.
Laser Spectroscopy Investigations of Materials for Solid State Laser Systems.
1988-02-01
34 ing tools such as electron paramagnetic resonance and ". oc Be11 uniaxial stress. 19 However, the lattice structure of chryso- .,Pt AI3 PAIR 4 beryl... paramagnetic of these new emission bands is not known at the present time. resonance spectrum. 15The other features of the optical spectra cannot be...solution is peak absorption c-iefficient, and E, is the saturation field. The detuning parameter which accounts for the width of the resonant electronic
Elastic Characterization of Concrete Materials
NASA Astrophysics Data System (ADS)
Guerra-Vela, Claudio; Ruiz, Abraham; Zypman, Fredy R.
2001-03-01
Many geographical locations share a common problem of high environmental humidity. It is thus desirable to build houses that can withstand strong water loading. In this work we study the evolution of High Performance Concrete as a function of hardening stage. The technique that we use is based on the propagation of resonant audio frequency modes of oscillation along the long axis of homemade HPC cylindrical samples. An audio generator fed piezoelectric (at one end of the rod) excites vibrations in the sample. Off resonance these vibrations do not propagate away from the piezoelectric site. On the other hand, when a resonance is reached the vibration extends all over the bar. A second piezoelectric is placed at the other extreme of the cylinder. We measure three parameters: the resonant frequency, speed of sound, and loss factor. To measure the resonant frequency we connect the two piezos to an oscilloscope in the x-y mode. At resonance the oscilloscope displays an ellipse and the audio generator reports the frequency. To measure the speed of sound, we excite the firs piezo with a pulse and measure the delay time in the second piezo. The loss factor can be extracted from the ratio of the exciting pulse and the measured one. From these parameters we calculate the Young modulus, the area moment of inertia and the effective density of the HPC. These quantities are measured twice a day during the 28-day hardening time.
Frequency of resonance of human sweat duct in different modes of operation
NASA Astrophysics Data System (ADS)
Tripathi, Saroj R.; Takahashi, Shogo; Kinumura, Kento; Kawase, Kodo
2018-02-01
Recently, some studies have demonstrated that the sweat ducts present in the skin play a significant role in terahertz (THz) wave interaction with human beings. It was reported that the sweat ducts act as a low-Q-factor helical antenna due to their helical structure, and resonate in the sub-terahertz frequency range according to their structural parameters, such as helix diameter and helix length. According to the antenna theory, a helical antenna resonates in two different modes of operation known as normal mode and axial mode and the dimension of the helix plays a key role to determine the frequency of resonance. Therefore, here we performed the optical coherence tomography (OCT) of number of human subjects on their palm and foot to investigate the density, distribution and morphological features of sweat ducts. Moreover, we calculated the dielectric properties of human skin using terahertz time domain spectroscopy. Based on the structural parameters of human sweat ducts and its THz dielectric properties of surrounding medium, we computed the frequency of resonance of sweat duct in different modes of operation and we found that these ducts resonate in subterahertz frequency region. We believe that these findings will facilitate further investigation of the THz-skin interaction and provide guidelines for safety levels with respect to human exposure to electromagnetic waves at these frequencies.
Astrophysical reaction rate for α(αn,γ)9Be by photodisintegration
NASA Astrophysics Data System (ADS)
Sumiyoshi, K.; Utsunomiya, H.; Goko, S.; Kajino, T.
2002-10-01
We study the astrophysical reaction rate for the formation of 9Be through the three body reaction α(αn,γ). This reaction is one of the key reactions which could bridge the mass gap at A=8 nuclear systems to produce intermediate-to-heavy mass elements in alpha- and neutron-rich environments such as r-process nucleosynthesis in supernova explosions, s-process nucleosynthesis in asymptotic giant branch (AGB) stars, and primordial nucleosynthesis in baryon inhomogeneous cosmological models. To calculate the thermonuclear reaction rate in a wide range of temperatures, we numerically integrate the thermal average of cross sections assuming a two-steps formation through a metastable 8Be, α+α⇌8Be(n,γ)9Be. Off-resonant and on-resonant contributions from the ground state in 8Be are taken into account. As input cross section, we adopt the latest experimental data by photodisintegration of 9Be with laser-electron photon beams, which covers all relevant resonances in 9Be. Experimental data near the neutron threshold are added with γ-ray flux corrections and a new least-squares analysis is made to deduce resonance parameters in the Breit-Wigner formulation. Based on the photodisintegration cross section, we provide the reaction rate for α(αn,γ)9Be in the temperature range from T9=10-3 to T9=101 (T9 is the temperature in units of 109 K) both in the tabular form and in the analytical form for potential usage in nuclear reaction network calculations. The calculated reaction rate is compared with the reaction rates of the CF88 and the NACRE compilations. The CF88 rate, which is based on the photoneutron cross section for the 1/2+ state in 9Be by Berman et al., is valid at T9>0.028 due to lack of the off-resonant contribution. The CF88 rate differs from the present rate by a factor of two in a temperature range T9⩾0.1. The NACRE rate, which adopted different sources of experimental information on resonance states in 9Be, is 4-12 times larger than the present rate at T9⩽0.028, but is consistent with the present rate to within ±20% at T9⩾0.1.