NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.
1983-01-01
Based on the works of Ruze (1966) and Vu (1969), a novel mathematical model has been developed to determine efficiently the average power pattern degradations caused by random surface errors. In this model, both nonuniform root mean square (rms) surface errors and nonuniform illumination functions are employed. In addition, the model incorporates the dependence on F/D in the construction of the solution. The mathematical foundation of the model rests on the assumption that in each prescribed annular region of the antenna, the geometrical rms surface value is known. It is shown that closed-form expressions can then be derived, which result in a very efficient computational method for the average power pattern. Detailed parametric studies are performed with these expressions to determine the effects of different random errors and illumination tapers on parameters such as gain loss and sidelobe levels. The results clearly demonstrate that as sidelobe levels decrease, their dependence on the surface rms/wavelength becomes much stronger and, for a specified tolerance level, a considerably smaller rms/wavelength is required to maintain the low sidelobes within the required bounds.
Copie, X; Blankoff, I; Hnatkova, K; Fei, L; Camm, A J; Malik, M
1996-06-01
The authors studied the possibility of improving the reproducibility of the signal averaged ECG by increasing the number of averaged QRS complexes. One hundred patients were included in the study. In each cases, 400 QRS complexes were recorded on twice, consecutively, in strictly identical conditions. During each recording, the total duration of the amplified and averaged QRS complex (tQRS), the duration of the terminal signal below 40 microV (LAS) and the root mean square of the amplitude of the last 40 ms (RMS) were determined for 100, 200, 300 and 400 recorded QRS complexes. The presence of late potentials was defined as the positivity of two of the following criteria: tQRS > 114 ms, LAS > 38 ms, RMS < 20 microV. The number of contradictory diagnostic conclusions between two successive recordings of the same duration decreased progressively with the number of averaged QRS complexes: 10 for 100 QRS, 10 for 200 QRS, 9 for 300 QRS and 6 for 400 QRS complexes, but this improvement was not statistically significant. The absolute differences of tQRS and RMS between two successive recordings of the same duration were statistically different for the four durations of recording (p = 0.05) and there was a tendency towards statistical significance for LAS (p = 0.09). The best quantitative reproducibility of the 3 parameters was obtained with the recording of 300 QRS complexes. In conclusion, the reproducibility of the signal averaged ECG is improved when the number of average QRS complexes is increased. The authors' results suggests that reproducibility this is optimal with the amplification and averaging of 300 QRS complexes.
Numerical investigation of airflow in an idealised human extra-thoracic airway: a comparison study
Chen, Jie; Gutmark, Ephraim
2013-01-01
Large eddy simulation (LES) technique is employed to numerically investigate the airflow through an idealised human extra-thoracic airway under different breathing conditions, 10 l/min, 30 l/min, and 120 l/min. The computational results are compared with single and cross hot-wire measurements, and with time-averaged flow field computed by standard k-ω and k-ω-SST Reynolds averaged Navier-Stokes (RANS) models and the Lattice-Boltzmann method (LBM). The LES results are also compared to root-mean-square (RMS) flow field computed by the Reynolds stress model (RSM) and LBM. LES generally gives better prediction of the time-averaged flow field than RANS models and LBM. LES also provides better estimation of the RMS flow field than both the RSM and the LBM. PMID:23619907
50 CFR 218.180 - Specified activity and specified geographical area and effective dates.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-1 RMS-ACL—up to 168 hours over the course of 5 years (an average of 33.5 hours per year); (x) BPAUV...); (vii) AN/WLD-1 RMS-ACL—up to 25 hours over the course of 5 years (an average of 5 hours per year...
50 CFR 218.180 - Specified activity and specified geographical area and effective dates.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-1 RMS-ACL—up to 168 hours over the course of 5 years (an average of 33.5 hours per year); (x) BPAUV...); (vii) AN/WLD-1 RMS-ACL—up to 25 hours over the course of 5 years (an average of 5 hours per year...
Penna, Mario; Velásquez, Nelson; Solís, Rigoberto
2008-04-01
Thresholds for evoked vocal responses and thresholds of multiunit midbrain auditory responses to pure tones and synthetic calls were investigated in males of Pleurodema thaul, as behavioral thresholds well above auditory sensitivity have been reported for other anurans. Thresholds for evoked vocal responses to synthetic advertisement calls played back at increasing intensity averaged 43 dB RMS SPL (range 31-52 dB RMS SPL), measured at the subjects' position. Number of pulses increased with stimulus intensities, reaching a plateau at about 18-39 dB above threshold and decreased at higher intensities. Latency to call followed inverse trends relative to number of pulses. Neural audiograms yielded an average best threshold in the high frequency range of 46.6 dB RMS SPL (range 41-51 dB RMS SPL) and a center frequency of 1.9 kHz (range 1.7-2.6 kHz). Auditory thresholds for a synthetic call having a carrier frequency of 2.1 kHz averaged 44 dB RMS SPL (range 39-47 dB RMS SPL). The similarity between thresholds for advertisement calling and auditory thresholds for the advertisement call indicates that male P. thaul use the full extent of their auditory sensitivity in acoustic interactions, likely an evolutionary adaptation allowing chorusing activity in low-density aggregations.
Accuracy Assessment of Global Barotropic Ocean Tide Models
2014-08-07
with our models (with values 182.7◦, 182.0◦, 181.8◦, 183.7◦, 181.8◦, 182.3◦, and 182.2◦). The cause of this problem has not been resolved, but...some- times on both sides of the island—see Figure 4. While these problem stations skew the global RMS statistics, they are nonetheless instructive...DTU10), the mean RMS difference amounts to 16% of the M2 average amplitude and more than 30% for S2, K1, and O1. This illustrates the problem that
Geometric effects resulting from the asymmetry of dipping fault: Hanging wall/ footwall effects
NASA Astrophysics Data System (ADS)
Wang, Dong; Xie, Li-Li; Hu, Jin-Jun
2008-05-01
Root-mean-square distance D rms with characteristic of weighted-average is introduced in this article firstly. D rms can be used to capture the general proximity of a site to a dipping fault plane comparing with the rupture distance D rup and the seismogenic distance D seis. Then, using D rup, D seis and D rms, the hanging wall/footwall effects on the peak ground acceleration (PGA) during the 1999 Chi-Chi earthquake are evaluated by regression analysis. The logarithm residual shows that the PGA on hanging wall is much greater than that on footwall at the same D rup or D seis when the D rup or D seis is used as site-to-source distance measure. In contrast, there is no significant difference between the PGA on hanging wall and that on footwall at the same D rms when D rms is used. This result confirms that the hanging wall/footwall effect is mainly a geometric effect caused by the asymmetry of dipping fault. Therefore, the hanging wall/footwall effect on the near-fault ground motions can be ignored in the future attenuation analysis if the root-mean-square distance D rms is used as the site-to-source distance measure.
Statistical and clustering analysis for disturbances: A case study of voltage dips in wind farms
Garcia-Sanchez, Tania; Gomez-Lazaro, Emilio; Muljadi, Eduard; ...
2016-01-28
This study proposes and evaluates an alternative statistical methodology to analyze a large number of voltage dips. For a given voltage dip, a set of lengths is first identified to characterize the root mean square (rms) voltage evolution along the disturbance, deduced from partial linearized time intervals and trajectories. Principal component analysis and K-means clustering processes are then applied to identify rms-voltage patterns and propose a reduced number of representative rms-voltage profiles from the linearized trajectories. This reduced group of averaged rms-voltage profiles enables the representation of a large amount of disturbances, which offers a visual and graphical representation ofmore » their evolution along the events, aspects that were not previously considered in other contributions. The complete process is evaluated on real voltage dips collected in intense field-measurement campaigns carried out in a wind farm in Spain among different years. The results are included in this paper.« less
Finger muscle attachments for an OpenSim upper-extremity model.
Lee, Jong Hwa; Asakawa, Deanna S; Dennerlein, Jack T; Jindrich, Devin L
2015-01-01
We determined muscle attachment points for the index, middle, ring and little fingers in an OpenSim upper-extremity model. Attachment points were selected to match both experimentally measured locations and mechanical function (moment arms). Although experimental measurements of finger muscle attachments have been made, models differ from specimens in many respects such as bone segment ratio, joint kinematics and coordinate system. Likewise, moment arms are not available for all intrinsic finger muscles. Therefore, it was necessary to scale and translate muscle attachments from one experimental or model environment to another while preserving mechanical function. We used a two-step process. First, we estimated muscle function by calculating moment arms for all intrinsic and extrinsic muscles using the partial velocity method. Second, optimization using Simulated Annealing and Hooke-Jeeves algorithms found muscle-tendon paths that minimized root mean square (RMS) differences between experimental and modeled moment arms. The partial velocity method resulted in variance accounted for (VAF) between measured and calculated moment arms of 75.5% on average (range from 48.5% to 99.5%) for intrinsic and extrinsic index finger muscles where measured data were available. RMS error between experimental and optimized values was within one standard deviation (S.D) of measured moment arm (mean RMS error = 1.5 mm < measured S.D = 2.5 mm). Validation of both steps of the technique allowed for estimation of muscle attachment points for muscles whose moment arms have not been measured. Differences between modeled and experimentally measured muscle attachments, averaged over all finger joints, were less than 4.9 mm (within 7.1% of the average length of the muscle-tendon paths). The resulting non-proprietary musculoskeletal model of the human fingers could be useful for many applications, including better understanding of complex multi-touch and gestural movements.
Finger Muscle Attachments for an OpenSim Upper-Extremity Model
Lee, Jong Hwa; Asakawa, Deanna S.; Dennerlein, Jack T.; Jindrich, Devin L.
2015-01-01
We determined muscle attachment points for the index, middle, ring and little fingers in an OpenSim upper-extremity model. Attachment points were selected to match both experimentally measured locations and mechanical function (moment arms). Although experimental measurements of finger muscle attachments have been made, models differ from specimens in many respects such as bone segment ratio, joint kinematics and coordinate system. Likewise, moment arms are not available for all intrinsic finger muscles. Therefore, it was necessary to scale and translate muscle attachments from one experimental or model environment to another while preserving mechanical function. We used a two-step process. First, we estimated muscle function by calculating moment arms for all intrinsic and extrinsic muscles using the partial velocity method. Second, optimization using Simulated Annealing and Hooke-Jeeves algorithms found muscle-tendon paths that minimized root mean square (RMS) differences between experimental and modeled moment arms. The partial velocity method resulted in variance accounted for (VAF) between measured and calculated moment arms of 75.5% on average (range from 48.5% to 99.5%) for intrinsic and extrinsic index finger muscles where measured data were available. RMS error between experimental and optimized values was within one standard deviation (S.D) of measured moment arm (mean RMS error = 1.5 mm < measured S.D = 2.5 mm). Validation of both steps of the technique allowed for estimation of muscle attachment points for muscles whose moment arms have not been measured. Differences between modeled and experimentally measured muscle attachments, averaged over all finger joints, were less than 4.9 mm (within 7.1% of the average length of the muscle-tendon paths). The resulting non-proprietary musculoskeletal model of the human fingers could be useful for many applications, including better understanding of complex multi-touch and gestural movements. PMID:25853869
NASA Technical Reports Server (NTRS)
Greenwald, Thomas J.; Christopher, Sundar A.; Chou, Joyce
1997-01-01
Satellite observations of the cloud liquid water path (LWP) are compared from special sensor microwave imager (SSM/I) measurements and GOES 8 imager solar reflectance (SR) measurements to ascertain the impact of sub-field-of-view (FOV) cloud effects on SSM/I 37 GHz retrievals. The SR retrievals also incorporate estimates of the cloud droplet effective radius derived from the GOES 8 3.9-micron channel. The comparisons consist of simultaneous collocated and full-resolution measurements and are limited to nonprecipitating marine stratocumulus in the eastern Pacific for two days in October 1995. The retrievals from these independent methods are consistent for overcast SSM/I FOVS, with RMS differences as low as 0.030 kg/sq m, although biases exist for clouds with more open spatial structure, where the RMS differences increase to 0.039 kg/sq m. For broken cloudiness within the SSM/I FOV the average beam-filling error (BFE) in the microwave retrievals is found to be about 22% (average cloud amount of 73%). This systematic error is comparable with the average random errors in the microwave retrievals. However, even larger BFEs can be expected for individual FOVs and for regions with less cloudiness. By scaling the microwave retrievals by the cloud amount within the FOV, the systematic BFE can be significantly reduced but with increased RMS differences of O.046-0.058 kg/sq m when compared to the SR retrievals. The beam-filling effects reported here are significant and are expected to impact directly upon studies that use instantaneous SSM/I measurements of cloud LWP, such as cloud classification studies and validation studies involving surface-based or in situ data.
Vibrations of a Marine Propeller Operating in a Nonuniform Inflow.
1980-04-01
Expanded Blade Midsurface ......... ........................ ... 73 16 - Calculated Normalized Propeller RMS Vibration Velocity as a Function of...averaged over the blade midsurface ), rather thaft the maximum velocities near the blade tip. Then, for the two test propellers, the rms nonuniform inflow...time- averaged midsurface of the blade, then the instantaneous position S of the vibrating midsurface is _S (ric)+ qct S(r,c,t) = (rc) + q(t) i(rc
NASA Astrophysics Data System (ADS)
Yongye, Austin B.; Bender, Andreas; Martínez-Mayorga, Karina
2010-08-01
Representing the 3D structures of ligands in virtual screenings via multi-conformer ensembles can be computationally intensive, especially for compounds with a large number of rotatable bonds. Thus, reducing the size of multi-conformer databases and the number of query conformers, while simultaneously reproducing the bioactive conformer with good accuracy, is of crucial interest. While clustering and RMSD filtering methods are employed in existing conformer generators, the novelty of this work is the inclusion of a clustering scheme (NMRCLUST) that does not require a user-defined cut-off value. This algorithm simultaneously optimizes the number and the average spread of the clusters. Here we describe and test four inter-dependent approaches for selecting computer-generated conformers, namely: OMEGA, NMRCLUST, RMS filtering and averaged- RMS filtering. The bioactive conformations of 65 selected ligands were extracted from the corresponding protein:ligand complexes from the Protein Data Bank, including eight ligands that adopted dissimilar bound conformations within different receptors. We show that NMRCLUST can be employed to further filter OMEGA-generated conformers while maintaining biological relevance of the ensemble. It was observed that NMRCLUST (containing on average 10 times fewer conformers per compound) performed nearly as well as OMEGA, and both outperformed RMS filtering and averaged- RMS filtering in terms of identifying the bioactive conformations with excellent and good matches (0.5 < RMSD < 1.0 Å). Furthermore, we propose thresholds for OMEGA root-mean square filtering depending on the number of rotors in a compound: 0.8, 1.0 and 1.4 for structures with low (1-4), medium (5-9) and high (10-15) numbers of rotatable bonds, respectively. The protocol employed is general and can be applied to reduce the number of conformers in multi-conformer compound collections and alleviate the complexity of downstream data processing in virtual screening experiments.
Kulcsár, Caroline; Raynaud, Henri-François; Garcia-Rissmann, Aurea
2016-01-01
This paper studies the effect of pupil displacements on the best achievable performance of retinal imaging adaptive optics (AO) systems, using 52 trajectories of horizontal and vertical displacements sampled at 80 Hz by a pupil tracker (PT) device on 13 different subjects. This effect is quantified in the form of minimal root mean square (rms) of the residual phase affecting image formation, as a function of the delay between PT measurement and wavefront correction. It is shown that simple dynamic models identified from data can be used to predict horizontal and vertical pupil displacements with greater accuracy (in terms of average rms) over short-term time horizons. The potential impact of these improvements on residual wavefront rms is investigated. These results allow to quantify the part of disturbances corrected by retinal imaging systems that are caused by relative displacements of an otherwise fixed or slowy-varying subject-dependent aberration. They also suggest that prediction has a limited impact on wavefront rms and that taking into account PT measurements in real time improves the performance of AO retinal imaging systems. PMID:27231607
LES FOR SIMULATING THE GAS EXCHANGE PROCESS IN A SPARK IGNITION ENGINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameen, Muhsin M; yang, xiaofeng; kuo, tang-wei
2015-01-01
The gas exchange process is known to be a significant source of cyclic variability in Internal Combustion Engines (ICE). Traditionally, Large Eddy Simulations (LES) are expected to capture these cycle-to-cycle variations. This paper reports a numerical effort to establish best practices for capturing cyclic variability with LES tools in a Transparent Combustion Chamber (TCC) spark ignition engine. The main intention is to examine the sensitivity of cycle averaged mean and Root Mean Square (RMS) flow fields and Proper Orthogonal Decomposition (POD) modes to different computational hardware, adaptive mesh refinement (AMR) and LES sub-grid scale (SGS) models, since these aspects havemore » received little attention in the past couple of decades. This study also examines the effect of near-wall resolution on the predicted wall shear stresses. LES is pursued with commercially available CONVERGE code. Two different SGS models are tested, a one-equation eddy viscosity model and dynamic structure model. The results seem to indicate that both mean and RMS fields without any SGS model are not much different than those with LES models, either one-equation eddy viscosity or dynamic structure model. Computational hardware results in subtle quantitative differences, especially in RMS distributions. The influence of AMR on both mean and RMS fields is negligible. The predicted shear stresses near the liner walls is also found to be relatively insensitive to near-wall resolution except in the valve curtain region.« less
NASA Technical Reports Server (NTRS)
Halpern, D.; Wentz, F.
1993-01-01
Development of decade-long time series of global surface wind measurements for studies ofseasonal-to-interannual climate variability presents unique challenges for space- borne instrumentationbecause of the necessity to combine data sets of 3- to 5-year lifetimes. Before the first Special SensorMicrowave Imager (SSMI), which was launched on the Defence Meteorological Satellite Program(DMSP) F8 spacecraft in July 1987, stopped recording wind speed in December 1991, another SSMIwas launched on DMSP F10 in December 1991. Interpretation of the 1987 - 1993 composite timeseries is dependent upon the space and time characteristics of the differences between concurrent F8and F10 SSMI measurements. This paper emphasizes large geographical regions and 1-month timescale. The F8-F10 area-weighted difference between 60 degrees S and 60 degrees S during 305 daysof 1991 (-0.12 m s^(-1)) was comparable to the year-to-year wind speed variations during 1988-1991. The 10 degree-zonal averaged monthly mean F8-F10 difference was negative (positive) forwind speeds less (greater) than 7.9 m s^(-1), reaching - 0.43(0.32) m s^(-1) at 5(10) m s^(-1). The10 degree-zonal averaged monthly mean F8-F10 bias had considerable variations throughout the yearand between 60 degrees S - 60 degrees N, with the largest temporal variation (1.4 m s^(-1)) in the 50degrees - 60 degrees N region from February to April. The 1991 average value of the monthly meanroot-mean-square (rms) difference between F8 and F10 daily wind speeds in 10 degree-longitudinalbands was 2.0 m s^(-1) over 60 degrees S - 60 degrees N, the amplitude of the annual cycle of therms difference was largest in the northern hemisphere middle latitudes, and the rms difference wasrelated to the wind speed (e.g., at 6 and 10 m s^(-1), the rms difference was 1.7 and 2.7 m s^(-1),respectively). The relationship between monthly mean 1/3 degrees x 1/3 degrees F8-F10 SSMI windspeed differences and integrated water vapor and liquid water content in the atmosphere is discussed.
NASA Technical Reports Server (NTRS)
Hackert, Eric C.; Busalacchi, Antonio J.
1997-01-01
The goal of this paper is to compare TOPEX/Posaidon (T/P) sea level with sea level results from linear ocean model experiments forced by several different wind products for the tropical Pacific. During the period of this study (October 1992 - October 1995), available wind products include satellite winds from the ERS-1 scatterometer product of [HALP 97] and the passive microwave analysis of SSMI winds produced using the variational analysis method (VAM) of [ATLA 91]. In addition, atmospheric GCM winds from the NCEP reanalysis [KALN 96], ECMWF analysis [ECMW94], and the Goddard EOS-1 (GEOS-1) reanalysis experiment [SCHU 93] are available for comparison. The observed ship wind analysis of FSU [STRI 92] is also included in this study. The linear model of [CANE 84] is used as a transfer function to test the quality of each of these wind products for the tropical Pacific. The various wind products are judged by comparing the wind-forced model sea level results against the T/P sea level anomalies. Correlation and RMS difference maps show how well each wind product does in reproducing the T/P sea level signal. These results are summarized in a table showing area average correlations and RMS differences. The large-scale low-frequency temporal signal is reproduced by all of the wind products, However, significant differences exist in both amplitude and phase on regional scales. In general, the model results forced by satellite winds do a better job reproducing the T/P signal (i.e. have a higher average correlation and lower RMS difference) than the results forced by atmospheric model winds.
A complete dc characterization of a constant-frequency, clamped-mode, series-resonant converter
NASA Technical Reports Server (NTRS)
Tsai, Fu-Sheng; Lee, Fred C.
1988-01-01
The dc behavior of a clamped-mode series-resonant converter is characterized systematically. Given a circuit operating condition, the converter's mode of operation is determined and various circuit parameters are calculated, such as average inductor current (load current), rms inductor current, peak capacitor voltage, rms switch currents, average diode currents, switch turn-on currents, and switch turn-off currents. Regions of operation are defined, and various circuit characteristics are derived to facilitate the converter design.
Statistics of the radiated field of a space-to-earth microwave power transfer system
NASA Technical Reports Server (NTRS)
Stevens, G. H.; Leininger, G.
1976-01-01
Statistics such as average power density pattern, variance of the power density pattern and variance of the beam pointing error are related to hardware parameters such as transmitter rms phase error and rms amplitude error. Also a limitation on spectral width of the phase reference for phase control was established. A 1 km diameter transmitter appears feasible provided the total rms insertion phase errors of the phase control modules does not exceed 10 deg, amplitude errors do not exceed 10% rms, and the phase reference spectral width does not exceed approximately 3 kHz. With these conditions the expected radiation pattern is virtually the same as the error free pattern, and the rms beam pointing error would be insignificant (approximately 10 meters).
ASCA Observations of Distant Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Tsuru, T. G.
We present results from ASCA observation of distant clusters of galaxies. The observed clusters are as follows; CL0016+16, A370, A959, AC118, Zw3136, MS1305.4+2941, A1851, A963, A2163, MS0839.8+2938, A665, A1689, A2218, A586 and A1413. The covering range of the redshifts is 0.14-0.55 and their average red-shift is 0.245. The negative correlation between the metal abundance and the plasma temperature seen in near clusters is also detected in the distant clusters. No apparent difference between the two correlation. It suggests no strong metal evolution has been made from z = 0.2-0.3 to z = 0. Data of velocity dispersion is available for seven clusters among our samples. All the betaspec of them are above the average of near clusters. The average betaspec for the distant clusters obtained to be betaspec = 1.85 with an rms scatter of 0.62. The value is significantly higher than the near clusters' value of betaspec = 0.94 plus or minus 0.08 with an rms scatter of 0.46.
Yongye, Austin B.; Bender, Andreas
2010-01-01
Representing the 3D structures of ligands in virtual screenings via multi-conformer ensembles can be computationally intensive, especially for compounds with a large number of rotatable bonds. Thus, reducing the size of multi-conformer databases and the number of query conformers, while simultaneously reproducing the bioactive conformer with good accuracy, is of crucial interest. While clustering and RMSD filtering methods are employed in existing conformer generators, the novelty of this work is the inclusion of a clustering scheme (NMRCLUST) that does not require a user-defined cut-off value. This algorithm simultaneously optimizes the number and the average spread of the clusters. Here we describe and test four inter-dependent approaches for selecting computer-generated conformers, namely: OMEGA, NMRCLUST, RMS filtering and averaged-RMS filtering. The bioactive conformations of 65 selected ligands were extracted from the corresponding protein:ligand complexes from the Protein Data Bank, including eight ligands that adopted dissimilar bound conformations within different receptors. We show that NMRCLUST can be employed to further filter OMEGA-generated conformers while maintaining biological relevance of the ensemble. It was observed that NMRCLUST (containing on average 10 times fewer conformers per compound) performed nearly as well as OMEGA, and both outperformed RMS filtering and averaged-RMS filtering in terms of identifying the bioactive conformations with excellent and good matches (0.5 < RMSD < 1.0 Å). Furthermore, we propose thresholds for OMEGA root-mean square filtering depending on the number of rotors in a compound: 0.8, 1.0 and 1.4 for structures with low (1–4), medium (5–9) and high (10–15) numbers of rotatable bonds, respectively. The protocol employed is general and can be applied to reduce the number of conformers in multi-conformer compound collections and alleviate the complexity of downstream data processing in virtual screening experiments. Electronic supplementary material The online version of this article (doi:10.1007/s10822-010-9365-1) contains supplementary material, which is available to authorized users. PMID:20499135
NASA Astrophysics Data System (ADS)
Tang, Wenqing; Yueh, Simon H.; Fore, Alexander G.; Hayashi, Akiko
2014-09-01
We validate sea surface salinity (SSS) retrieved from Aquarius instrument on SAC-D satellite with in situ measurements by Argo floats and moored buoy arrays. We assess the error structure of three Aquarius SSS products: the standard product processed by Aquarius Data Processing System (ADPS) and two data sets produced at the Jet Propulsion Laboratory (JPL): the Combined Active-Passive algorithm with and without rain correction, CAP and CAP_RC, respectively. We examine the effect of various filters to prevent unreliable point retrievals from entering Level 3 averaging, such as land or ice contamination, radio frequency interference (RFI), and cold water. Our analyses show that Aquarius SSS agrees well with Argo in a monthly average sense between 40°S and 40°N except in the Eastern Pacific Fresh Pool and Amazon River outflow. Buoy data within these regions show excellent agreement with Aquarius but have discrepancies with the Argo gridded products. Possible reasons include strong near-surface stratification and sampling problems in Argo in regions with significant western boundary currents. We observe large root-mean-square (RMS) difference and systematic negative bias between ADPS and Argo in the tropical Indian Ocean and along the Southern Pacific Convergence Zone. Excluding these regions removes the suspicious seasonal peak in the monthly RMS difference between the Aquarius SSS products and Argo. Between 40°S and 40°N, the RMS difference for CAP is less than 0.22 PSU for all 28 months, CAP_RC has essentially met the monthly 0.2 PSU accuracy requirement, while that for ADPS fluctuates between 0.22 and 0.3 PSU.
A Historical Study to Understand Students' Current Difficulties about RMS Values
ERIC Educational Resources Information Center
Khantine-Langlois, Françoise; Munier, Valérie
2016-01-01
Several studies show that students experience more and more difficulties managing the measurements of electrical values in alternating current and that they have trouble making links between theory and practice. They find it difficult to give meaning to root mean square (RMS; or effective) values, which are not understood as average values and are…
Comparative assessment of bone pose estimation using Point Cluster Technique and OpenSim.
Lathrop, Rebecca L; Chaudhari, Ajit M W; Siston, Robert A
2011-11-01
Estimating the position of the bones from optical motion capture data is a challenge associated with human movement analysis. Bone pose estimation techniques such as the Point Cluster Technique (PCT) and simulations of movement through software packages such as OpenSim are used to minimize soft tissue artifact and estimate skeletal position; however, using different methods for analysis may produce differing kinematic results which could lead to differences in clinical interpretation such as a misclassification of normal or pathological gait. This study evaluated the differences present in knee joint kinematics as a result of calculating joint angles using various techniques. We calculated knee joint kinematics from experimental gait data using the standard PCT, the least squares approach in OpenSim applied to experimental marker data, and the least squares approach in OpenSim applied to the results of the PCT algorithm. Maximum and resultant RMS differences in knee angles were calculated between all techniques. We observed differences in flexion/extension, varus/valgus, and internal/external rotation angles between all approaches. The largest differences were between the PCT results and all results calculated using OpenSim. The RMS differences averaged nearly 5° for flexion/extension angles with maximum differences exceeding 15°. Average RMS differences were relatively small (< 1.08°) between results calculated within OpenSim, suggesting that the choice of marker weighting is not critical to the results of the least squares inverse kinematics calculations. The largest difference between techniques appeared to be a constant offset between the PCT and all OpenSim results, which may be due to differences in the definition of anatomical reference frames, scaling of musculoskeletal models, and/or placement of virtual markers within OpenSim. Different methods for data analysis can produce largely different kinematic results, which could lead to the misclassification of normal or pathological gait. Improved techniques to allow non-uniform scaling of generic models to more accurately reflect subject-specific bone geometries and anatomical reference frames may reduce differences between bone pose estimation techniques and allow for comparison across gait analysis platforms.
EMG and oxygen uptake responses during slow and fast ramp exercise in humans.
Scheuermann, Barry W; Tripse McConnell, Joyce H; Barstow, Thomas J
2002-01-01
This study examined the relationship between muscle recruitment patterns using surface electromyography (EMG) and the excess O(2) uptake (Ex.V(O(2))) that accompanies slow (SR, 8 W min(-1)) but not fast (FR, 64 W min(-1)) ramp increases in work rate (WR) during exercise on a cycle ergometer. Nine subjects (2 females) participated in this study (25 +/- 2 years, +/- S.E.M.). EMG was obtained from the vastus lateralis and medialis and analysed in the time (root mean square, RMS) and frequency (median power frequency, MDPF) domain. Results for each muscle were averaged to provide an overall response and expressed relative to a maximal voluntary contraction (%MVC). Delta.V(O(2))/DeltaWR was calculated for exercise below (S(1)) and above (S(2)) the lactate threshold (LT) using linear regression. The increase in RMS relative to the increase in WR for exercise below the LT (DeltaRMS/DeltaWR-S(1)) was determined using linear regression. Due to non-linearities in RMS above the LT, DeltaRMS/DeltaWR-S(2) is reported as the difference in RMS (DeltaRMS) and the difference in WR (DeltaWR) at end-exercise and the LT. SR was associated with a higher (P < 0.05) Delta.V(O(2))/DeltaWR (S(1), 9.3 +/- 0.3 ml min(-1) W(-1); S(2), 12.5 +/- 0.6 ml min(-1) W(-1)) than FR (S(1), 8.5 +/- 0.4 ml min(-1) W(-1); S(2), 7.9 +/- 0.4 ml min(-1) W(-1)) but a similar DeltaRMS/DeltaWR-S(1) (SR, 0.11 +/- 0.01% W(-1); FR, 0.10 +/- 0.01 % W(-1)). Ex.V(O(2)) was greater (P < 0.05) in SR (3.6 +/- 0.7 l) than FR (-0.7 +/- 0.4 l) but was not associated with a difference in either DeltaRMS/DeltaWR-S(2) (SR, 0.14 +/- 0.01% W(-1); FR, 15 +/- 0.02 % W(-1)) or MDPF (SR, 2.6 +/- 5.9 %; FR, -15.4 +/- 4.5 %). The close matching between power output and RMS during SR and FR suggests that the Ex.V(O(2)) of heavy exercise is not associated with the recruitment of additional motor units since Ex.V(O(2)) was observed during SR only. Compared to the progressive decrease in MDPF observed during FR, the MDPF remained relatively constant during SR suggesting that either (i) there was no appreciable recruitment of the less efficient type II muscle fibres, at least in addition to those recruited initially at the onset of exercise, or (ii) the decrease in MDPF associated with fatigue was offset by the addition of a higher frequency of type II fibres recruited to replace the fatigued motor units.
Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy.
D'Antò, Vincenzo; Rongo, Roberto; Ametrano, Gianluca; Spagnuolo, Gianrico; Manzo, Paolo; Martina, Roberto; Paduano, Sergio; Valletta, Rosa
2012-09-01
To compare the surface roughness of different orthodontic archwires. Four nickel-titanium wires (Sentalloy(®), Sentalloy(®) High Aesthetic, Titanium Memory ThermaTi Lite(®), and Titanium Memory Esthetic(®)), three β-titanium wires (TMA(®), Colored TMA(®), and Beta Titanium(®)), and one stainless-steel wire (Stainless Steel(®)) were considered for this study. Three samples for each wire were analyzed by atomic force microscopy (AFM). Three-dimensional images were processed using Gwiddion software, and the roughness average (Ra), the root mean square (Rms), and the maximum height (Mh) values of the scanned surface profile were recorded. Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Tukey's post hoc test (P < .05). The Ra, Rms, and Mh values were expressed as the mean ± standard deviation. Among as-received archwires, the Stainless Steel (Ra = 36.6 ± 5.8; Rms = 48 ± 7.7; Mh = 328.1 ± 64) archwire was less rough than the others (ANOVA, P < .05). The Sentalloy High Aesthetic was the roughest (Ra = 133.5 ± 10.8; Rms = 165.8 ± 9.8; Mh = 949.6 ± 192.1) of the archwires. The surface quality of the wires investigated differed significantly. Ion implantation effectively reduced the roughness of TMA. Moreover, Teflon(®)-coated Titanium Memory Esthetic was less rough than was ion-implanted Sentalloy High Aesthetic.
Van Uffelen, Lora J; Nosal, Eva-Marie; Howe, Bruce M; Carter, Glenn S; Worcester, Peter F; Dzieciuch, Matthew A; Heaney, Kevin D; Campbell, Richard L; Cross, Patrick S
2013-10-01
Four acoustic Seagliders were deployed in the Philippine Sea November 2010 to April 2011 in the vicinity of an acoustic tomography array. The gliders recorded over 2000 broadband transmissions at ranges up to 700 km from moored acoustic sources as they transited between mooring sites. The precision of glider positioning at the time of acoustic reception is important to resolve the fundamental ambiguity between position and sound speed. The Seagliders utilized GPS at the surface and a kinematic model below for positioning. The gliders were typically underwater for about 6.4 h, diving to depths of 1000 m and traveling on average 3.6 km during a dive. Measured acoustic arrival peaks were unambiguously associated with predicted ray arrivals. Statistics of travel-time offsets between received arrivals and acoustic predictions were used to estimate range uncertainty. Range (travel time) uncertainty between the source and the glider position from the kinematic model is estimated to be 639 m (426 ms) rms. Least-squares solutions for glider position estimated from acoustically derived ranges from 5 sources differed by 914 m rms from modeled positions, with estimated uncertainty of 106 m rms in horizontal position. Error analysis included 70 ms rms of uncertainty due to oceanic sound-speed variability.
Effect of Liquid Surface Turbulent Motion on the Vapor Condensation in a Mixing Tank
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.
1991-01-01
The effect of liquid surface motion on the vapor condensation in a tank mixed by an axial turbulent jet is numerically investigated. The average value (over the interface area) of the root-mean-squared (rms) turbulent velocity at the interface is shown to be linearly increasing with decreasing liquid height and increasing jet diameter for a given tank size. The average rms turbulent velocity is incorporated in Brown et al. (1990) condensation correlation to predict the condensation of vapor on a liquid surface. The results are in good agreement with available condensation data.
Pulse-echo probe of rock permeability near oil wells
NASA Technical Reports Server (NTRS)
Narasimhan, K. Y.; Parthasarathy, S. P.
1978-01-01
Processing method involves sequential insonifications of borehole wall at number of different frequencies. Return signals are normalized in amplitude, and root-mean-square (rms) value of each signal is determined. Values can be processed to yield information on size and number density of microfractures at various depths in rock matrix by using averaging methods developed for pulse-echo technique.
Wake loss and energy spread factor of the LEReC Booster cavity caused by short range wake field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Binping; Blaskiewicz, Michael; Fedotov, Alexei
LEReC project uses a DC photoemission gun with multi-alkali (CsK 2Sb or NaK 2Sb) cathode [1]. To get 24 mm “flat-top” distribution, 32 Gaussian laser bunches with 0.6 mm rms length are stacked together with 0.75 mm distance [2]. In this case one cannot simply use a 1 cm rms length Gaussian/step/delta bunch for short range wake field simulation since a 0.6 mm bunch contains frequency much higher than the 1 cm bunch. A short range wake field simulation was done using CST Particle Studio™ with 0.6 mm rms Gaussian bunch at the speed of light, and this result wasmore » compared with the result for 1 cm rms Gaussian bunch in Figure 1, from where one notice that the wake potential for the 0.6 mm bunch is ~10 times higher than that of the 1 cm bunch. The wake potential of the 0.6 mm bunch, as well as the charge distribution, was then “shift and stack” every 0.75 mm, the normalized results are shown in Figure 2. The wake loss factor (WLF) is the integration of the product of wake potential and normalized bunch charge, and the energy spread factor (ESF) is the rms deviation from the average energy loss. It is calculated by summing the weighted squares of the differences and taking the square root of the sum. These two factors were then divided by β 2 for 1.6 MV beam energy. The wake loss factor is at 0.86 V/pC and energy spread factor is at 0.54 V/pC rms. With 100 pC electron bunch, the energy spread inter-bunch is 54 V rms.« less
Precision orbit determination performance for CryoSat-2
NASA Astrophysics Data System (ADS)
Schrama, Ernst
2018-01-01
In this paper we discuss our efforts to perform precision orbit determination (POD) of CryoSat-2 which depends on Doppler and satellite laser ranging tracking data. A dynamic orbit model is set-up and the residuals between the model and the tracking data is evaluated. The average r.m.s. of the 10 s averaged Doppler tracking pass residuals is approximately 0.39 mm/s; and the average of the laser tracking pass residuals becomes 1.42 cm. There are a number of other tests to verify the quality of the orbit solution, we compare our computed orbits against three independent external trajectories provided by the CNES. The CNES products are part of the CryoSat-2 products distributed by ESA. The radial differences of our solution relative to the CNES precision orbits shows an average r.m.s. of 1.25 cm between Jun-2010 and Apr-2017. The SIRAL altimeter crossover difference statistics demonstrate that the quality of our orbit solution is comparable to that of the POE solution computed by the CNES. In this paper we will discuss three important changes in our POD activities that have brought the orbit performance to this level. The improvements concern the way we implement temporal gravity accelerations observed by GRACE; the implementation of ITRF2014 coordinates and velocities for the DORIS beacons and the SLR tracking sites. We also discuss an adjustment of the SLR retroreflector position within the satellite reference frame. An unexpected result is that we find a systematic difference between the median of the 10 s Doppler tracking residuals which displays a statistically significant pattern in the South Atlantic Anomaly (SSA) area where the median of the velocity residuals varies in the range of -0.15 to +0.15 mm/s.
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Kundu, Prasun K.; Kummerow, Christian D.; Einaudi, Franco (Technical Monitor)
2000-01-01
Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the satellite estimates. The rainfall estimate for a given map grid box is subject to both remote-sensing error and, in the case of low-orbiting satellites, sampling error due to the limited number of observations of the grid box provided by the satellite. A simple model of rain behavior predicts that Root-mean-square (RMS) random error in grid-box averages should depend in a simple way on the local average rain rate, and the predicted behavior has been seen in simulations using surface rain-gauge and radar data. This relationship was examined using satellite SSM/I data obtained over the western equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I rainfall estimates was found to be larger than predicted from surface data, and to depend less on local rain rate than was predicted. Preliminary examination of TRMM microwave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite rainfall estimates is suggested, based on quantities that can be directly computed from the satellite data.
Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal
2009-01-01
A study was performed to evaluate fault detection effectiveness as applied to gear tooth pitting fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4) were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters performed average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant amount of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.
NASA Astrophysics Data System (ADS)
Schmidt, C. M.; Bürgler, D. E.; Schaller, D. M.; Meisinger, F.; Güntherodt, H.-J.; Temst, K.
2001-01-01
A Cr(001)/Fe(001) superlattice with ten bilayers grown by molecular beam epitaxy on a Ag(001) substrate is studied by in situ scanning tunneling microscopy (STM) and ex situ x-ray diffraction (XRD). Layer-resolved roughness parameters determined from STM images taken in various stages of the superlattice fabrication are compared with average values reported in the literature or obtained from the fits of our XRD data. Good agreement is found for the rms roughnesses describing vertical roughness and for the lateral correlation lengths characterizing correlated as well as uncorrelated interface roughness if peculiarities of STM and XRD are taken into account. We discuss in detail (i) the possible differences between the STM topography of a free surface and the morphology of a subsequently formed interface, (ii) contributions due to chemical intermixing at the interfaces, (iii) the comparison of XRD parameters averaged over all interfaces versus layer-resolved STM parameters, and (iv) the question of the coherent field of view for the determination of rms values.
Large-scale sea surface temperature variability from satellite and shipboard measurements
NASA Technical Reports Server (NTRS)
Bernstein, R. L.; Chelton, D. B.
1985-01-01
A series of satellite sea surface temperature intercomparison workshops were conducted under NASA sponsorship at the Jet Propulsion Laboratory. Three different satellite data sets were compared with each other, with routinely collected ship data, and with climatology, for the months of November 1979, December 1981, March 1982, and July 1982. The satellite and ship data were differenced against an accepted climatology to produce anomalies, which in turn were spatially and temporally averaged into two-degree latitude-longitude, one-month bins. Monthly statistics on the satellite and ship bin average temperatures yielded rms differences ranging from 0.58 to 1.37 C, and mean differences ranging from -0.48 to 0.72 C, varying substantially from month to month, and sensor to sensor.
Modeling the effect of control on the wake of a utility-scale turbine via large-eddy simulation
NASA Astrophysics Data System (ADS)
Yang, Xiaolei; Annoni, Jennifer; Seiler, Pete; Sotiropoulos, Fotis
2014-06-01
A model of the University of Minnesota EOLOS research turbine (Clipper Liberty C96) is developed, integrating the C96 torque control law with a high fidelity actuator line large- eddy simulation (LES) model. Good agreement with the blade element momentum theory is obtained for the power coefficient curve under uniform inflow. Three different cases, fixed rotor rotational speed ω, fixed tip-speed ratio (TSR) and generator torque control, have been simulated for turbulent inflow. With approximately the same time-averaged ω, the time- averaged power is in good agreement with measurements for all three cases. Although the time-averaged aerodynamic torque is nearly the same for the three cases, the root-mean-square (rms) of the aerodynamic torque fluctuations is significantly larger for the case with fixed ω. No significant differences have been observed for the time-averaged flow fields behind the turbine for these three cases.
Ochieng, C A; Vardoulakis, S; Tonne, C
2013-02-01
Household use of biomass fuels is a major source of indoor air pollution and poor health in developing countries. We conducted a cross-sectional investigation in rural Kenya to assess household air pollution in homes with traditional three-stone stove and rocket mud stove (RMS), a low-cost unvented wood stove. We conducted continuous measurements of kitchen carbon monoxide (CO) concentrations and personal exposures in 102 households. Median 48-h kitchen and personal CO concentrations were 7.3 and 6.5 ppm, respectively, for three-stone stoves, while the corresponding concentrations for RMS were 5.8 and 4.4 ppm. After adjusting for kitchen location, ventilation, socio-economic status, and fuel moisture content, the use of RMS was associated with 33% lower levels of kitchen CO [95% Confidence Interval (CI), 64.4-25.1%] and 42% lower levels of personal CO (95% CI, 66.0-1.1%) as compared to three-stone stoves. Differences in CO concentrations by stove type were more pronounced when averaged over the cooking periods, although they were attenuated after adjusting for confounding. In conclusion, RMS appear to lower kitchen and personal CO concentrations compared to the traditional three-stone stoves but overall, the CO concentrations remain high. The rocket mud stoves (RMS) were associated with lower CO concentrations compared to three-stone stoves. However, the difference in concentrations was modest and concentrations in both stove groups exceeded the WHO guideline of 7 μg/m(3) , suggesting the unvented RMSs on their own are unlikely to appreciably benefit health in this population. Greater air quality benefit could be realized if the stoves were complemented with behavior change, including education on extinguishing fire when not in use as well as fuel drying, and cooking in locations that are separate from the main house. © 2012 John Wiley & Sons A/S.
Czarkowski, Marek; Oreziak, Artur; Radomski, Dariusz
2006-04-01
Coexistence of the goitre, proptosis and palpitations was observed in XIX century for the first time. Sinus tachyarytmias and atrial fibrillation are typical cardiac symptoms of hyperthyroidism. Atrial fibrillation occurs more often in patients with toxic goiter than in young patients with Grave's disease. These findings suggest that causes of atrial fibrillation might be multifactorial in the elderly. The aims of our study were to evaluate correlations between the parameters of atrial signal averaged ECG (SAECG) and the serum concentration of thyroid free hormones. 25 patient with untreated Grave's disease (G-B) (age 29,6 +/- 9,0 y.o.) and 26 control patients (age 29,3 +/- 6,9 y.o.) were enrolled to our study. None of them had history of atrial fibrillation what was confirmed by 24-hour ECG Holter monitoring. The serum fT3, fT4, TSH were determined in the venous blood by the immunoenzymatic method. Atrial SAECG recording with filtration by zero phase Butterworth filter (45-150 Hz) was done in all subjects. The duration of atrial vector magnitude (hfP) and root meat square of terminal 20ms of atrial vector magnitude (RMS20) were analysed. There were no significant differences in values of SAECG parameters (hfP, RMS20) between investigated groups. The positive correlation between hfP and serum fT3 concentration in group G-B was observed (Spearman's correlation coefficient R = 0.462, p < 0.02). No significant correlations were found between RMS20 and serum fT3 in G-B group and between hfP or RMS 20 and serum fT3 in group K. These findings suggest that occurrence of atrial fibrillation in patients with Grave's disease depends not only on hyperthyroidism but on serum concentration of fT3 also.
Reference materials for molecular diagnostics: Current achievements and future strategies.
Jing, Rongrong; Wang, Huimin; Ju, Shaoqing; Cui, Ming
2018-06-01
Molecular diagnoses have become more widespread in many areas of laboratory medicine where qualitative or quantitative approaches are used to detect nucleic acids. The increasing number of assay methods and the targets for molecular diagnostics contribute to variability in the test results among clinical laboratories. Thus, reference materials (RMs) are required to enhance the comparability of results. This review focuses on the definition of RMs as well as the production and characteristics of higher order RMs from different organizations and their future strategies. We describe the recent progress in RMs, including the definition of RMs by the Joint Committee for Guides in Metrology, as well as the production and characteristics of higher order RMs by international official bodies. There is an urgent need for RMs in nucleic acid testing, especially higher order RMs. To advance the harmonization and standardization of clinical nucleic acid detection, cooperation between the above organizations is proposed and different approaches to higher order RMs development are also needed. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Menon, Prahlad G.; Morris, Lailonny; Staines, Mara; Lima, Joao; Lee, Daniel C.; Gopalakrishnan, Vanathi
2014-03-01
Characterization of regional left ventricular (LV) function may have application in prognosticating timely response and informing choice therapy in patients with ischemic cardiomyopathy. The purpose of this study is to characterize LV function through a systematic analysis of 4D (3D + time) endocardial motion over the cardiac cycle in an effort to define objective, clinically useful metrics of pathological remodeling and declining cardiac performance, using standard cardiac MRI data for two distinct patient cohorts accessed from CardiacAtlas.org: a) MESA - a cohort of asymptomatic patients; and b) DETERMINE - a cohort of symptomatic patients with a history of ischemic heart disease (IHD) or myocardial infarction. The LV endocardium was segmented and a signed phase-to-phase Hausdorff distance (HD) was computed at 3D uniformly spaced points tracked on segmented endocardial surface contours, over the cardiac cycle. An LV-averaged index of phase-to-phase endocardial displacement (P2PD) time-histories was computed at each tracked point, using the HD computed between consecutive cardiac phases. Average and standard deviation in P2PD over the cardiac cycle was used to prepare characteristic curves for the asymptomatic and IHD cohort. A novel biomarker of RMS error between mean patient-specific characteristic P2PD over the cardiac cycle for each individual patient and the cumulative P2PD characteristic of a cohort of asymptomatic patients was established as the RMS-P2PD marker. The novel RMS-P2PD marker was tested as a cardiac function based feature for automatic patient classification using a Bayesian Rule Learning (BRL) framework. The RMS-P2PD biomarker indices were significantly different for the symptomatic patient and asymptomatic control cohorts (p<0.001). BRL accurately classified 83.8% of patients correctly from the patient and control populations, with leave-one-out cross validation, using standard indices of LV ejection fraction (LV-EF) and LV end-systolic volume index (LV-ESVI). This improved to 91.9% with inclusion of the RMS-P2PD biomarker and was congruent with improvements in both sensitivity for classifying patients and specificity for identifying asymptomatic controls from 82.6% up to 95.7%. RMS-P2PD, when contrasted against a collective normal reference, is a promising biomarker to investigate further in its utility for identifying quantitative signs of pathological endocardial function which may boost standard image makers as precursors of declining cardiac performance.
Early turbulence in von Karman swirling flow of polymer solutions
NASA Astrophysics Data System (ADS)
Burnishev, Yuri; Steinberg, Victor
2015-01-01
We present quantitative experimental results on the transition to early turbulence in von Karman swirling flow of water- and water-sugar-based polymer solutions compared to the transition to turbulence in their Newtonian solvents by measurements of solely global quantities as torque Γ(t) and pressure p(t) with large statistics as a function of Re. For the first time the transition values of Re_c\\textit{turb} to fully developed turbulence and turbulent drag reduction regime Re_c\\textit{TDR} are obtained as functions of elasticity El by using the solvents with different viscosities and polymer concentrations ϕ. Two scaling regions for fundamental turbulent characteristics are identified and they correspond to the turbulent and TDR regimes. Both Re_c\\textit{turb} and Re_c\\textit{TDR} are found via the dependence of the friction coefficient Cf and Cp, defined through scaled average torque \\barΓ and rms pressure fluctuations p\\textit{rms} , respectively, on Re for different El and ϕ and via the limits of the two scaling regions.
van de Streek, Jacco; Neumann, Marcus A
2010-10-01
This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.
NASA Astrophysics Data System (ADS)
Taylor, Decarlos E.; Sausa, Rosario C.
2018-06-01
The determination of crystal structures plays an important role for model testing and validation, and understanding intra and intermolecular interactions that influence crystal packing. Here, we report the molecular structure of two recently synthesized energetic molecules, 3,3-bis-isoxazole-5,5‧-bis-methylene dinitrate (C8H6N4O8, BIDN) and bis-isoxazole tetramethylene tetranitrate (C10H8N6O14, BITN) determined by single crystal x-ray diffraction and solid state density functional theory (DFT). BIDN is composed of two planar alkyl nitrate groups (r.m.s deviation = 0.0004 (1) Å) bonded to two planar azole rings (r.m.s deviation = 0.001 (1) Å, whereas BITN is composed of four planar alkyl nitrate groups (average r.m.s deviation = 0.002 (1) Å) bonded to two planar azole rings (average r.m.s deviation = 0.002 (1) Å). The theoretical calculations predict very well the planarity of both the alkyl nitrate groups and rings for both compounds. Furthermore, they predict well the bond lengths and angles of both molecules with mean deviation values of 0.018 Å (BIDN) and 0.017 Å (BITN) and 0.481° (BIDN) and 0.747° (BITN). Overall, the DFT determined torsion angles agree well with those determined experimentally for both BIDN (average deviation = 1.139°) and BITN (average deviation = 0.604°). The theoretical cell constant values are in excellent agreement with those determined experimentally for both molecules, with the BIDN a cell value and β angle showing the largest deviation, 2.1% and -1.3%, respectively. Contacts between the atoms N and H dominate the intermolecular interactions of BIDN, whereas contacts involving the atoms O and H dominate the BITN intermolecular interactions. Electrostatic potential calculations at the B3LYP/6-31G* level reveal BIDN exhibits a lower sensitivity to impact compared to BITN.
From Not-So-Great to Worse: The Myth of Best Practice Methodologies
2016-09-13
Collins’ arguments and suggested principled commonalities about great fi rms were unsupported. Resnick and Smunt conducted a fi nancial analysis over... market performance according to Collins’ measure, and that none do so when measured according to a metric based on modern portfolio theory. We...applying the fi ve principles to other fi rms or time periods will lead to anything other than average results.” By the way, Col- lins’ list of 11 great
Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal
2010-01-01
A study was performed to evaluate fault detection effectiveness as applied to gear-tooth-pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4 [Ed. 's note: See Appendix A-Definitions D were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters perfomu:d average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant 8lDOunt of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.
Matthews, Leanna P; Parks, Susan E; Fournet, Michelle E H; Gabriele, Christine M; Womble, Jamie N; Klinck, Holger
2017-03-01
Source levels of harbor seal breeding vocalizations were estimated using a three-element planar hydrophone array near the Beardslee Islands in Glacier Bay National Park and Preserve, Alaska. The average source level for these calls was 144 dB RMS re 1 μPa at 1 m in the 40-500 Hz frequency band. Source level estimates ranged from 129 to 149 dB RMS re 1 μPa. Four call parameters, including minimum frequency, peak frequency, total duration, and pulse duration, were also measured. These measurements indicated that breeding vocalizations of harbor seals near the Beardslee Islands of Glacier Bay National Park are similar in duration (average total duration: 4.8 s, average pulse duration: 3.0 s) to previously reported values from other populations, but are 170-220 Hz lower in average minimum frequency (78 Hz).
Mingxing Zhu; Wanzhang Yang; Samuel, Oluwarotimi Williams; Yun Xiang; Jianping Huang; Haiqing Zou; Guanglin Li
2016-08-01
Pharyngeal phase is a central hub of swallowing in which food bolus pass through from the oral cavity to the esophageal. Proper understanding of the muscular activities in the pharyngeal phase is useful for assessing swallowing function and the occurrence of dysphagia in humans. In this study, high-density (HD) surface electromyography (sEMG) was used to study the muscular activities in the pharyngeal phase during swallowing tasks involving three healthy male subjects. The root mean square (RMS) of the HD sEMG data was computed by using a series of segmented windows as myoelectrical energy. And the RMS of each window covering all channels (16×5) formed a matrix. During the pharyngeal phase of swallowing, three of the matrixes were chosen and normalized to obtain the HD energy maps and the statistical parameter. The maps across different viscosity levels offered the energy distribution which showed the muscular activities of the left and right sides of the front neck muscles. In addition, the normalized average RMS (NARE) across different viscosity levels revealed a left-right significant correlation (r=0.868±0.629, p<;0.01) quantitatively, while it showed even stronger correlation when swallowing water. This pilot study suggests that HD sEMG would be a potential tool to evaluate muscular activities in pharyngeal phase during normal swallowing. Also, it might provide useful information for dysphagia diagnosis.
Ghaderi, Parviz; Marateb, Hamid R
2017-07-01
The aim of this study was to reconstruct low-quality High-density surface EMG (HDsEMG) signals, recorded with 2-D electrode arrays, using image inpainting and surface reconstruction methods. It is common that some fraction of the electrodes may provide low-quality signals. We used variety of image inpainting methods, based on partial differential equations (PDEs), and surface reconstruction methods to reconstruct the time-averaged or instantaneous muscle activity maps of those outlier channels. Two novel reconstruction algorithms were also proposed. HDsEMG signals were recorded from the biceps femoris and brachial biceps muscles during low-to-moderate-level isometric contractions, and some of the channels (5-25%) were randomly marked as outliers. The root-mean-square error (RMSE) between the original and reconstructed maps was then calculated. Overall, the proposed Poisson and wave PDE outperformed the other methods (average RMSE 8.7 μV rms ± 6.1 μV rms and 7.5 μV rms ± 5.9 μV rms ) for the time-averaged single-differential and monopolar map reconstruction, respectively. Biharmonic Spline, the discrete cosine transform, and the Poisson PDE outperformed the other methods for the instantaneous map reconstruction. The running time of the proposed Poisson and wave PDE methods, implemented using a Vectorization package, was 4.6 ± 5.7 ms and 0.6 ± 0.5 ms, respectively, for each signal epoch or time sample in each channel. The proposed reconstruction algorithms could be promising new tools for reconstructing muscle activity maps in real-time applications. Proper reconstruction methods could recover the information of low-quality recorded channels in HDsEMG signals.
A historical study to understand students’ current difficulties about RMS values
NASA Astrophysics Data System (ADS)
Khantine-Langlois, Françoise; Munier, Valérie
2016-07-01
Several studies show that students experience more and more difficulties managing the measurements of electrical values in alternating current and that they have trouble making links between theory and practice. They find it difficult to give meaning to root mean square (RMS; or effective) values, which are not understood as average values and are confused with instantaneous values. This shows that students do not clearly differentiate variable and direct currents. In this paper we try, with a historical study and a study of teaching the concept of RMS values, to understand students’ difficulties with this concept. In the first part we present an epistemological analysis of the concept of RMS values, showing that it is multifaceted and can be approached from different points of view. In the second part we analyse the evolution of French secondary school curricula and textbooks from the explicit introduction of variable currents to today, questioning the links between the evolution of the curricula and the evolution of the place of science and technology in our societies. We point out that the evolution of the curricula is linked to the social context and to the connections between science, technology and society, and also to the relationship with mathematics curricula. We show that alternating current is introduced earlier in the curriculum but has gradually lost all phenomenological description. This study allows us to better understand students’ difficulties and to discuss some implications for teaching.
Accuracy assessment of high-rate GPS measurements for seismology
NASA Astrophysics Data System (ADS)
Elosegui, P.; Davis, J. L.; Ekström, G.
2007-12-01
Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.
Hypercalibration: A Pan-STARRS1-Based Recalibration of the Sloan Digital Sky Survey Photometry
Finkbeiner, Douglas P.; Schlafly, Edward F.; Schlegel, David J.; ...
2016-05-05
In this paper, we present a recalibration of the Sloan Digital Sky Survey (SDSS) photometry with new flat fields and zero points derived from Pan-STARRS1. Using point-spread function (PSF) photometry of 60 million stars with 16 < r < 20, we derive a model of amplifier gain and flat-field corrections with per-run rms residuals of 3 millimagnitudes (mmag) in griz bands and 15 mmag in u band. The new photometric zero points are adjusted to leave the median in the Galactic north unchanged for compatibility with previous SDSS work. We also identify transient non-photometric periods in SDSS ("contrails") based onmore » photometric deviations co-temporal in SDSS bands. Finally, the recalibrated stellar PSF photometry of SDSS and PS1 has an rms difference of {9, 7, 7, 8} mmag in griz, respectively, when averaged over 15' regions.« less
NASA Technical Reports Server (NTRS)
Pandey, Prem C.
1987-01-01
The retrieval of ocean-surface wind speed from different channel combinations of Seasat SMMR measurements is demonstrated. Wind speeds derived using the best two channel subsets (10.6 H and 18.0 V) were compared with in situ data collected during the Joint Air-Sea Interaction (JASIN) experiment and an rms difference of 1.5 m/s was found. Global maps of wind speed generated with the present algorithm show that the averaged winds are arranged in well-ordered belts.
Mastropasqua, L; Toto, L; Zuppardi, E; Nubile, M; Carpineto, P; Di Nicola, M; Ballone, E
2006-01-01
To evaluate the refractive and aberrometric outcome of wavefront-guided photorefractive keratectomy (PRK) compared to standard PRK in myopic patients. Fifty-six eyes of 56 patients were included in the study and were randomly divided into two groups. The study group consisted of 28 eyes with a mean spherical equivalent (SE) of -2.25+/-0.76 diopters (D) (range: -1.5 to -3.5 D) treated with wavefront-guided PRK using the Zywave ablation profile and the Bausch & Lomb Technolas 217z excimer laser (Zyoptix system) and the control group included 28 eyes with a SE of -2.35+/-1.01 D (range: -1.5 to -3.5 D) treated with standard PRK (PlanoScan ablation) using the same laser. A Zywave aberrometer was used to analyze and calculate the root-mean-square (RMS) of total high order aberrations (HOA) and Zernike coefficients of third and fourth order before and after (over a 6-month follow-up period) surgery in both groups. Preoperative and postoperative SE, un-corrected visual acuity (UCVA), and best-corrected visual acuity (BCVA) were evaluated in all cases. There was a high correlation between achieved and intended correction. The differences between the two treatment groups were not statistically significant for UCVA, BCVA, or SE cycloplegic refraction . Postoperatively the RMS value of high order aberrations was raised in both groups. At 6-month control, on average it increased by a factor of 1.17 in the Zyoptix PRK group and 1.54 in the PlanoScan PRK group (p=0.22). In the Zyoptix group there was a decrease of coma aberration, while in the PlanoScan group this third order aberration increased. The difference between postoperative and preoperative values between the two groups was statistically significant for coma aberration (p=0.013). No statistically significant difference was observed for spherical-like aberration between the two groups. In the study group eyes with a low amount of preoperative aberrations (HOA RMS lower than the median value; <0.28 microm) showed an increase of HOA RMS while eyes with RMS higher than 0.28 microm showed a decrease (p<0.05). Zyoptix wavefront-guided PRK is as safe and efficacious for the correction of myopia and myopic astigmatism as PlanoScan PRK. Moreover this technique induces a smaller increase of third order coma aberration compared to standard PRK. The use of Zyoptix wavefront-guided PRK is particularly indicated in eyes with higher preoperative RMS values.
3D quantitative analysis of early decomposition changes of the human face.
Caplova, Zuzana; Gibelli, Daniele Maria; Poppa, Pasquale; Cummaudo, Marco; Obertova, Zuzana; Sforza, Chiarella; Cattaneo, Cristina
2018-03-01
Decomposition of the human body and human face is influenced, among other things, by environmental conditions. The early decomposition changes that modify the appearance of the face may hamper the recognition and identification of the deceased. Quantitative assessment of those changes may provide important information for forensic identification. This report presents a pilot 3D quantitative approach of tracking early decomposition changes of a single cadaver in controlled environmental conditions by summarizing the change with weekly morphological descriptions. The root mean square (RMS) value was used to evaluate the changes of the face after death. The results showed a high correlation (r = 0.863) between the measured RMS and the time since death. RMS values of each scan are presented, as well as the average weekly RMS values. The quantification of decomposition changes could improve the accuracy of antemortem facial approximation and potentially could allow the direct comparisons of antemortem and postmortem 3D scans.
Metrics of Balance Control for Use in Screening Tests of Vestibular Function
NASA Technical Reports Server (NTRS)
Fiedler, Matthew; Cohen, Helen; Mulavara, Ajitkumar; Peters, Brian; Miller, Chris; Bloomberg, Jacob
2011-01-01
Decrements in balance control have been documented in astronauts after space flight. Reliable measures of balance control are needed for use in postflight field tests at remote landing sites. Diffusion analysis (DA) is a statistical mechanical tool that shows the average difference of the dependent variable on varying time scales. These techniques have been shown to measure differences in open-loop and closed-loop postural control in astronauts and elderly subjects. The goal of this study was to investigate the reliability of these measures of balance control. Eleven subjects were tested using the Clinical Test of Sensory Interaction on Balance: the subject stood with feet together and arms crossed on a stable or compliant surface, with eyes open or closed and with or without head movements in the pitch or yaw plane. Subjects were instrumented with inertial motion sensors attached to their trunk segment. The DA curves for linear acceleration measures were characterized by linear fits measuring open- (Ds) and closed-loop (Dl) control, and their intersection point (X-int, Y-int). Ds and Y-int showed significant differences between the test conditions. Additionally, Ds was correlated with the root mean square (RMS) of the signal, indicating that RMS was dominated by open-loop events (< 0.5 seconds). The Y-int was found to be correlated with the average linear velocity of trunk movements. Thus DA measures could be applied to derive reliable metrics of balance stability during field tests.
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 3 of the four major tasks included in the study. Task 3 compares flight plans developed on the Suitland forecast with actual data observed by the aircraft (and averaged over 10 degree segments). The results show that the average difference between the forecast and observed wind speed is 9 kts. without considering direction, and the average difference in the component of the forecast wind parallel to the direction of the observed wind is 13 kts. - both indicating that the Suitland forecast underestimates the wind speeds. The Root Mean Square (RMS) vector error is 30.1 kts. The average absolute difference in direction between the forecast and observed wind is 26 degrees and the temperature difference is 3 degree Centigrade. These results indicate that the forecast model as well as the verifying analysis used to develop comparison flight plans in Tasks 1 and 2 is a limiting factor and that the average potential fuel savings or penalty are up to 3.6 percent depending on the direction of flight.
NASA Astrophysics Data System (ADS)
Narayanan, S. Shankara; Sinha, Sudarson Sekhar; Sarkar, Rupa; Pal, Samir Kumar
2008-02-01
We report the effect of different geometrical restrictions on the dynamical properties of water using dynamic light scattering (DLS), Fourier transform infrared (FTIR) and picosecond-resolved fluorescence studies. By preparing AOT/lecithin mixed reverse micelles (RMs) of different morphologies (spherical and ellipsoidal), we have investigated the effect of the degree of confinement on the mobility of water in the mixed RMs of similar degree of hydration. The FTIR studies along with solvation dynamics of two fluorescent probes, ANS and coumarin 500 in the RMs reveal structural and dynamical information about the micellar water, which varies with the morphology of the mixed RMs.
A Comparative Study of Automated Infrasound Detectors - PMCC and AFD with Analyst Review.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Junghyun; Hayward, Chris; Zeiler, Cleat
Automated detections calculated by the progressive multi-channel correlation (PMCC) method (Cansi, 1995) and the adaptive F detector (AFD) (Arrowsmith et al., 2009) are compared to the signals identified by five independent analysts. Each detector was applied to a four-hour time sequence recorded by the Korean infrasound array CHNAR. This array was used because it is composed of both small (<100 m) and large (~1000 m) aperture element spacing. The four hour time sequence contained a number of easily identified signals under noise conditions that have average RMS amplitudes varied from 1.2 to 4.5 mPa (1 to 5 Hz), estimated withmore » running five-minute window. The effectiveness of the detectors was estimated for the small aperture, large aperture, small aperture combined with the large aperture, and full array. The full and combined arrays performed the best for AFD under all noise conditions while the large aperture array had the poorest performance for both detectors. PMCC produced similar results as AFD under the lower noise conditions, but did not produce as dramatic an increase in detections using the full and combined arrays. Both automated detectors and the analysts produced a decrease in detections under the higher noise conditions. Comparing the detection probabilities with Estimated Receiver Operating Characteristic (EROC) curves we found that the smaller value of consistency for PMCC and the larger p-value for AFD had the highest detection probability. These parameters produced greater changes in detection probability than estimates of the false alarm rate. The detection probability was impacted the most by noise level, with low noise (average RMS amplitude of 1.7 mPa) having an average detection probability of ~40% and high noise (average RMS amplitude of 2.9 mPa) average detection probability of ~23%.« less
NASA Astrophysics Data System (ADS)
Peng, W. Q.; Li, Y.; Wang, Z.; Li, S. Y.
2018-01-01
Hydrodynamic effect polishing (HEP), in which the material removal relies on the chemisorption between nanoparticles and the workpiece surface in elastic mode, can realize automatic level smooth surface without surface/subsurface damage. The machinability of different types of optical material (such as monocrystalline silicon and crystalline quartz, amorphous silicate glass, Zerodur and so on) were investigated experimentally. The workpiece surfaces before and after being polished by HEP was observed by atomic force microscopy. The experimental results show the surface roughness of monocrystalline silicon and quartz, amorphous silicate glass have decreased from Rms 0.737nm to Rms 0.175nm, Rms 0.490nm to Rms 0.187nm, Rms 0.469nm to Rms 0.157nm respectively, and meanwhile all the defects and bumpy structures have been removed clearly. However the surface roughness has increased from Rms 0.213nm to Rms 0.321nm with the obvious increment of micro unevenness. By comparison, we can conclude that excellent performance is shown when HEP is applied on the optical material structure with a single monocrystalline or amorphous component. However the ultrasmooth surface cannot be obtained when HEP was applied on the combinational materials such as Zerodur glass. The micro unevenness increases gradually along with polishing process due to the different material removal of the monocrystalline and amorphous component.
A new weighted mean temperature model in China
NASA Astrophysics Data System (ADS)
Liu, Jinghong; Yao, Yibin; Sang, Jizhang
2018-01-01
The Global Positioning System (GPS) has been applied in meteorology to monitor the change of Precipitable Water Vapor (PWV) in atmosphere, transformed from Zenith Wet Delay (ZWD). A key factor in converting the ZWD into the PWV is the weighted mean temperature (Tm), which has a direct impact on the accuracy of the transformation. A number of Bevis-type models, like Tm -Ts and Tm -Ts,Ps type models, have been developed by statistics approaches, and are not able to clearly depict the relationship between Tm and the surface temperature, Ts . A new model for Tm , called weighted mean temperature norm model (abbreviated as norm model), is derived as a function of Ts , the lapse rate of temperature, δ, the tropopause height, htrop , and the radiosonde station height, hs . It is found that Tm is better related to Ts through an intermediate temperature. The small effects of lapse rate can be ignored and the tropopause height be obtained from an empirical model. Then the norm model is reduced to a simplified form, which causes fewer loss of accuracy and needs two inputs, Ts and hs . In site-specific fittings, the norm model performs much better, with RMS values reduced averagely by 0.45 K and the Mean of Absolute Differences (MAD) values by 0.2 K. The norm model is also found more appropriate than the linear models to fit Tm in a large area, not only with the RMS value reduced from 4.3 K to 3.80 K, correlation coefficient R2 increased from 0.84 to 0.88, and MAD decreased from 3.24 K to 2.90 K, but also with the distribution of simplified model values to be more reasonable. The RMS and MAD values of the differences between reference and computed PWVs are reduced by on average 16.3% and 14.27%, respectively, when using the new norm models instead of the linear model.
Husfeldt, A W; Endres, M I; Salfer, J A; Janni, K A
2012-04-01
Interest in using recycled manure solids (RMS) as a bedding material for dairy cows has grown in the US Midwest. Cost of common bedding materials has increased in recent years and availability has decreased. Information regarding the composition of RMS and its use as a bedding material for dairy cows in the Midwest is very limited. The objectives of this study were to characterize RMS as a bedding material, observe bedding management practices, document methods of obtaining RMS, and describe housing facilities. We visited 38 Midwest dairy operations bedding freestalls with RMS to collect data. Methods of obtaining RMS for bedding included separation of anaerobic digested manure, separation of raw manure, and separation of raw manure followed by mechanical drum-composting for 18 to 24 h. Average bedding moisture of unused RMS was 72.4% with a pH of 9.16. Unused samples contained (on a dry basis) 1.4% N, 44.9% C, 32.7C:N ratio, 0.44% P, 0.70% K, 76.5% neutral detergent fiber, 9.4% ash, 4.4% nonfiber carbohydrates, and 1.1% fat. Moisture was lowest for drum-composted solids before and after use as freestall bedding. After use in the stalls, digested solids had lower neutral detergent fiber content (70.5%) than drum-composted (75.0%) and separated raw (73.1%) solids. Total N content was greater in digested solids (2.0%) than in separated raw (1.7%) solids. Total bacterial populations in unused bedding were greatest in separated raw manure solids but were similar between digested and drum-composted manure solids. Drum-composted manure solids had no coliform bacteria before use as freestall bedding. After use as bedding, digested manure solids had lower total bacteria counts compared with drum-composted and separated raw manure solids, which had similar counts. Used bedding samples of digested solids contained fewer environmental streptococci than drum-composted and separated raw solids and had reduced Bacillus counts compared with separated raw solids. Coliform counts were similar for all 3 bedding sources. Addition of a mechanical blower post-separation and use of a shelter for storage were associated with reduced fresh-bedding moisture but not associated with bacterial counts. This was the first survey of herds using RMS for bedding in the Midwest. We learned that RMS was being used successfully as a source of bedding for dairy cows. For most farms in the study, somatic cell count was comparable to the average in the region and not excessively high. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Muhlisin, Ahmad; Susilo, Herawati; Amin, Mohamad; Rohman, Fatchur
2016-01-01
The purposes of this study were to: 1) Examine the effect of RMS learning model towards critical thinking skills. 2) Examine the effect of different academic abilities against critical thinking skills. 3) Examine the effect of the interaction between RMS learning model and different academic abilities against critical thinking skills. The research…
Branching in Pea (Action of Genes Rms3 and Rms4).
Beveridge, C. A.; Ross, J. J.; Murfet, I. C.
1996-01-01
The nonallelic ramosus mutations rms3-2 and rms4 of pea (Pisum sativum L.) cause extensive release of vegetative axillary buds and lateral growth in comparison with wild-type (cv Torsdag) plants, in which axillary buds are not normally released under the conditions utilized. Grafting studies showed that the expression of the rms4 mutation in the shoot is independent of the genotype of the root-stock. In contrast, the length of the branches at certain nodes of rms3-2 plants was reduced by grafting to wild-type stocks, indicating that the wild-type Rms3 gene may control the level of a mobile substance produced in the root. This substance also appears to be produced in the shoot because Rms3 shoots did not branch when grafted to mutant rms3-2 rootstocks. However, the end product of the Rms3 gene appears to differ from that of the Rms2 gene (C.A. Beveridge, J.J. Ross, and I.C. Murfet [1994] Plant Physiol 104: 953-959) because reciprocal grafts between rms3-2 and rms2 seedlings produced mature shoots with apical dominance similar to that of rms3-2 and rms2 shoots grafted to wild-type stocks. Indole-3-acetic acid levels were not reduced in apical or nodal portions of rms4 plants and were actually elevated (up to 2-fold) in rms3-2 plants. It is suggested that further studies with these branching mutants may enable significant progress in understanding the normal control of apical dominance and the related communication between the root and shoot. PMID:12226224
Duarte, R P; Sentanin, A C; da Silva, A M O; Tonella, R M; Duarte, G L; Ratti, L S R; Boin, I F S F
2017-05-01
Liver disease induces many organic and metabolic changes, leading to malnutrition and weight and muscular function loss. Surface electromyography is an easily applicable, noninvasive study, through which the magnitudes of the peaks on the charts depict voluntary muscle activity. To evaluate the diaphragmatic surface electromyography of postoperative liver transplantation subjects. Subjects were patients who underwent liver transplantation and extubation in the Clinical Hospital of State University of Campinas. Electromyography data were collected with support pressure of ≤10 cm H 2 O, Glasgow Coma Scale = 11, and minimum dosages of vasoactive drugs, and data were collected again 30 minutes after extubation. Signal collection was performed with sEMG System Brazil SAS1000V3 electromyograph and electrode stickers. Statistical analysis was performed using R software. The average time of surgery was 345.36 ± 125.62 minutes. Time from spontaneous mode until extubation was 417.14 ± 362.97 minutes. The RMS (root mean square) values of the right and left domes in spontaneous mode with minimal ventilation parameters were 26.68 ± 10.92 and 26.55 ± 10.53, respectively, and the RMS values after extubation were 31.93 ± 18.69 to 34.62 ± 13.55, for right and left domes. The last calculated pretransplant Model for End-stage Liver Disease score averaged 19.64 ± 8.41. There were significant differences between the RMS of the diaphragm domes under mechanical ventilation and after extubation, showing lower effectiveness of the diaphragm muscle against resistance, without the aid of positive pressure and the existing overload of the left dome. Copyright © 2017 Elsevier Inc. All rights reserved.
Salmon-Mulanovich, Gabriela; Blazes, David L.; Lescano, Andres G.; Bausch, Daniel G.; Montgomery, Joel M.; Pan, William K.
2015-01-01
Dengue virus (DENV) was reintroduced to Peru in the 1990s and has been reported in Puerto Maldonado (population ~65,000) in the Peruvian southern Amazon basin since 2000. This region also has the highest human migration rate in the country, mainly from areas not endemic for DENV. The objective of this study was to assess the proportion of household income that is diverted to costs incurred because of dengue illness and to compare these expenses between recent migrants (RMs) and long-term residents (LTRs). We administered a standardized questionnaire to persons diagnosed with dengue illness at Hospital Santa Rosa in Puerto Maldonado from December 2012 to March 2013. We compared direct and indirect medical costs between RMs and LTRs. A total of 80 participants completed the survey, of whom 28 (35%) were RMs and 52 (65%) were LTRs. Each dengue illness episode cost the household an average of US$105 (standard deviation [SD] = 107), representing 24% of their monthly income. Indirect costs were the greatest expense (US$56, SD = 87), especially lost wages. The proportion of household income diverted to dengue illness did not differ significantly between RM and LTR households. The study highlights the significant financial burden incurred by households when a family member suffers dengue illness. PMID:26217040
Temporal length-scale cascade and expansion rate on planar liquid jet instability
NASA Astrophysics Data System (ADS)
Sirignano, William; Zandian, Arash; Hussain, Fazle
2016-11-01
Using the local radius of curvature of the surface and the local transverse dimension of the two-phase (i.e., spray) domain as length scales, we obtained two PDFs over a wide range of length-scales at different times and for different Reynolds and Weber (We) numbers. The PDFs were developed via post-processing of DNS Navier-Stokes results for a 3D planar liquid sheet segment with level-set and Volume-of-Fluid surface tracking, giving better statistical data for the length scales compared to the former methods. The radius PDF shows that, with increasing We , the average radius of curvature decreases, number of small droplets increases, and cascade occurs at a faster rate. In time, the mean of the radius PDF decreases while the rms increases. The other PDF represents the spray expansion in a more realistic and meaningful form, showing that the spray angle is larger at higher We and density-ratios. Both the mean and the rms of the spray-size PDF increase with time. The PDFs also track the transitions between symmetric and anti-symmetric modes.
Month-to-Month and Year-to-Year Reproducibility of High Frequency QRS ECG signals
NASA Technical Reports Server (NTRS)
Batdorf, Niles; Feiveson, Alan H.; Schlegel, Todd T.
2006-01-01
High frequency (HF) electrocardiography analyzing the entire QRS complex in the frequency range of 150 to 250 Hz may prove useful in the detection of coronary artery disease, yet the long-term stability of these waveforms has not been fully characterized. We therefore prospectively investigated the reproducibility of the root mean squared (RMS) voltage, kurtosis, and the presence versus absence of reduced amplitude zones (RAzs) in signal averaged 12-lead HF QRS recordings acquired in the supine position one month apart in 16 subjects and one year apart in 27 subjects. Reproducibility of RMS voltage and kurtosis was excellent over these time intervals in the limb leads, and acceptable in the precordial leads using both the V-lead and CR-lead derivations. The relative error of RMS voltage was 12% month-to-month and 16% year-to-year in the serial recordings when averaged over all 12 leads. RAzs were also reproducible at a rate of up to 87% and 8 1 %, respectively, for the month-to-month and year-to-year recordings. We conclude that 12-lead HF QRS electrocardiograms are sufficiently reproducible for clinical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrieze, Thomas J.; Sturchio, Glenn M.; McCollough, Cynthia H.
Purpose: To determine the precision and accuracy of CTDI{sub 100} measurements made using commercially available optically stimulated luminescent (OSL) dosimeters (Landaur, Inc.) as beam width, tube potential, and attenuating material were varied. Methods: One hundred forty OSL dosimeters were individually exposed to a single axial CT scan, either in air, a 16-cm (head), or 32-cm (body) CTDI phantom at both center and peripheral positions. Scans were performed using nominal total beam widths of 3.6, 6, 19.2, and 28.8 mm at 120 kV and 28.8 mm at 80 kV. Five measurements were made for each of 28 parameter combinations. Measurements weremore » made under the same conditions using a 100-mm long CTDI ion chamber. Exposed OSL dosimeters were returned to the manufacturer, who reported dose to air (in mGy) as a function of distance along the probe, integrated dose, and CTDI{sub 100}. Results: The mean precision averaged over 28 datasets containing five measurements each was 1.4%{+-} 0.6%, range = 0.6%-2.7% for OSL and 0.08%{+-} 0.06%, range = 0.02%-0.3% for ion chamber. The root mean square (RMS) percent differences between OSL and ion chamber CTDI{sub 100} values were 13.8%, 6.4%, and 8.7% for in-air, head, and body measurements, respectively, with an overall RMS percent difference of 10.1%. OSL underestimated CTDI{sub 100} relative to the ion chamber 21/28 times (75%). After manual correction of the 80 kV measurements, the RMS percent differences between OSL and ion chamber measurements were 9.9% and 10.0% for 80 and 120 kV, respectively. Conclusions: Measurements of CTDI{sub 100} with commercially available CT OSL dosimeters had a percent standard deviation of 1.4%. After energy-dependent correction factors were applied, the RMS percent difference in the measured CTDI{sub 100} values was about 10%, with a tendency of OSL to underestimate CTDI relative to the ion chamber. Unlike ion chamber methods, however, OSL dosimeters allow measurement of the radiation dose profile.« less
Vrieze, Thomas J.; Sturchio, Glenn M.; McCollough, Cynthia H.
2012-01-01
Purpose: To determine the precision and accuracy of CTDI100 measurements made using commercially available optically stimulated luminescent (OSL) dosimeters (Landaur, Inc.) as beam width, tube potential, and attenuating material were varied. Methods: One hundred forty OSL dosimeters were individually exposed to a single axial CT scan, either in air, a 16-cm (head), or 32-cm (body) CTDI phantom at both center and peripheral positions. Scans were performed using nominal total beam widths of 3.6, 6, 19.2, and 28.8 mm at 120 kV and 28.8 mm at 80 kV. Five measurements were made for each of 28 parameter combinations. Measurements were made under the same conditions using a 100-mm long CTDI ion chamber. Exposed OSL dosimeters were returned to the manufacturer, who reported dose to air (in mGy) as a function of distance along the probe, integrated dose, and CTDI100. Results: The mean precision averaged over 28 datasets containing five measurements each was 1.4% ± 0.6%, range = 0.6%–2.7% for OSL and 0.08% ± 0.06%, range = 0.02%–0.3% for ion chamber. The root mean square (RMS) percent differences between OSL and ion chamber CTDI100 values were 13.8%, 6.4%, and 8.7% for in-air, head, and body measurements, respectively, with an overall RMS percent difference of 10.1%. OSL underestimated CTDI100 relative to the ion chamber 21/28 times (75%). After manual correction of the 80 kV measurements, the RMS percent differences between OSL and ion chamber measurements were 9.9% and 10.0% for 80 and 120 kV, respectively. Conclusions: Measurements of CTDI100 with commercially available CT OSL dosimeters had a percent standard deviation of 1.4%. After energy-dependent correction factors were applied, the RMS percent difference in the measured CTDI100 values was about 10%, with a tendency of OSL to underestimate CTDI relative to the ion chamber. Unlike ion chamber methods, however, OSL dosimeters allow measurement of the radiation dose profile. PMID:23127052
Vrieze, Thomas J; Sturchio, Glenn M; McCollough, Cynthia H
2012-11-01
To determine the precision and accuracy of CTDI(100) measurements made using commercially available optically stimulated luminescent (OSL) dosimeters (Landaur, Inc.) as beam width, tube potential, and attenuating material were varied. One hundred forty OSL dosimeters were individually exposed to a single axial CT scan, either in air, a 16-cm (head), or 32-cm (body) CTDI phantom at both center and peripheral positions. Scans were performed using nominal total beam widths of 3.6, 6, 19.2, and 28.8 mm at 120 kV and 28.8 mm at 80 kV. Five measurements were made for each of 28 parameter combinations. Measurements were made under the same conditions using a 100-mm long CTDI ion chamber. Exposed OSL dosimeters were returned to the manufacturer, who reported dose to air (in mGy) as a function of distance along the probe, integrated dose, and CTDI(100). The mean precision averaged over 28 datasets containing five measurements each was 1.4% ± 0.6%, range = 0.6%-2.7% for OSL and 0.08% ± 0.06%, range = 0.02%-0.3% for ion chamber. The root mean square (RMS) percent differences between OSL and ion chamber CTDI(100) values were 13.8%, 6.4%, and 8.7% for in-air, head, and body measurements, respectively, with an overall RMS percent difference of 10.1%. OSL underestimated CTDI(100) relative to the ion chamber 21∕28 times (75%). After manual correction of the 80 kV measurements, the RMS percent differences between OSL and ion chamber measurements were 9.9% and 10.0% for 80 and 120 kV, respectively. Measurements of CTDI(100) with commercially available CT OSL dosimeters had a percent standard deviation of 1.4%. After energy-dependent correction factors were applied, the RMS percent difference in the measured CTDI(100) values was about 10%, with a tendency of OSL to underestimate CTDI relative to the ion chamber. Unlike ion chamber methods, however, OSL dosimeters allow measurement of the radiation dose profile.
Pain-evoked trunk muscle activity changes during fatigue and DOMS.
Larsen, L H; Hirata, R P; Graven-Nielsen, T
2017-05-01
Muscle pain may reorganize trunk muscle activity but interactions with exercise-related muscle fatigue and delayed onset muscle soreness (DOMS) is to be clarified. In 19 healthy participants, the trunk muscle activity during 20 multi-directional unpredictable surface perturbations were recorded after bilateral isotonic saline injections (control) and during unilateral and bilateral hypertonic saline-induced low back pain (LBP) in conditions of back muscle fatigue (Day-1) and DOMS (Day-2). Pain intensity and distribution were assessed by visual analogue scale (VAS) scores and pain drawings. The degree of fatigue and DOMS were assessed by Likert scale scores. Root-mean-square electromyographic (RMS-EMG) signals were recorded post-perturbation from six bilateral trunk muscles and the difference from baseline conditions (Delta-RMS-EMG) was extracted and averaged across abdominal and back muscles. In DOMS, peak VAS scores were higher during bilateral control and bilateral saline-induced pain than fatigue (p < 0.001) and during bilateral compared with unilateral pain (p < 0.001). The saline-induced pain areas were larger during DOMS than fatigue (p < 0.01). In response to surface perturbations during fatigue and DOMS, the back muscle Delta-RMS-EMG increased during bilateral compared with unilateral pain and control injections (p < 0.001) and decreased during unilateral pain compared with control injections (p < 0.04). In DOMS compared with fatigue, the post-perturbation Delta-RMS-EMG in back muscles was higher during bilateral pain and lower during unilateral pain (p < 0.001). The abdominal Delta-RMS-EMG was not significantly affected. Facilitated and attenuated back muscle responses to surface perturbations in bilateral and unilateral LBP, respectively, was more expressed during exercise-induced back muscle soreness compared with fatigue. Back muscle activity decreased during unilateral and increased during bilateral pain after unpredictable surface perturbations during muscle fatigue and DOMS. Accumulation effects of DOMS on pain intensity and spreading and trunk muscle activity after pain-induction. © 2017 European Pain Federation - EFIC®.
NASA Astrophysics Data System (ADS)
Lewis, C. H.; Griffin, M. J.
1998-08-01
There are three current standards that might be used to assess the vibration and shock transmitted by a vehicle seat with respect to possible effects on human health: ISO 2631/1 (1985), BS 6841 (1987) and ISO 2631-1 (1997). Evaluations have been performed on the seat accelerations measured in nine different transport environments (bus, car, mobile crane, fork-lift truck, tank, ambulance, power boat, inflatable boat, mountain bike) in conditions that might be considered severe. For each environment, limiting daily exposure durations were estimated by comparing the frequency weighted root mean square (i.e., r.m.s.) accelerations and the vibration dose values (i.e.,VDV), calculated according to each standard with the relevant exposure limits, action level and health guidance caution zones. Very different estimates of the limiting daily exposure duration can be obtained using the methods described in the three standards. Differences were observed due to variations in the shapes of the frequency weightings, the phase responses of the frequency weighting filters, the method of combining multi-axis vibration, the averaging method, and the assessment method. With the evaluated motions, differences in the shapes of the weighting filters results in up to about 31% difference in r.m.s. acceleration between the “old” and the “new” ISO standard and up to about 14% difference between BS 6841 and the “new” ISO 2631. There were correspondingly greater differences in the estimates of safe daily exposure durations. With three of the more severe motions there was a difference of more than 250% between estimated safe daily exposure durations based on r.m.s. acceleration and those based on fourth power vibration dose values. The vibration dose values provided the more cautious assessments of the limiting daily exposure duration.
NASA Astrophysics Data System (ADS)
Richey, J. N.; Flannery, J. A.; Toth, L. T.; Kuffner, I. B.; Poore, R. Z.
2017-12-01
The Sr/Ca in massive corals can be used as a proxy for sea surface temperature (SST) in shallow tropical to sub-tropical regions; however, the relationship between Sr/Ca and SST varies throughout the ocean, between different species of coral, and often between different colonies of the same species. We aimed to quantify the uncertainty associated with the Sr/Ca-SST proxy due to sample handling (e.g., micro-drilling or analytical error), vital effects (e.g., among-colony differences in coral growth), and local-scale variability in microhabitat. We examine the intra- and inter-colony reproducibility of Sr/Ca records extracted from five modern Orbicella faveolata colonies growing in the Dry Tortugas, Florida, USA. The average intra-colony absolute difference (AD) in Sr/Ca of the five colonies during an overlapping interval (1997-2008) was 0.055 ± 0.044 mmol mol-1 (0.96 ºC) and the average inter-colony Sr/Ca AD was 0.039 ± 0.01 mmol mol-1 (0.51 ºC). All available Sr/Ca-SST data pairs from 1997-2008 were combined and regressed against the HadISST1 gridded SST data set (24 ºN and 82 ºW) to produce a calibration equation that could be applied to O. faveolata specimens from throughout the Gulf of Mexico/Caribbean/Atlantic region after accounting for the potential uncertainties in Sr/Ca-derived SSTs. We quantified a combined error term for O. faveolata using the root-sum-square (RMS) of the analytical, intra-, and inter-colony uncertainties and suggest that an overall uncertainty of 0.046 mmol mol-1 (0.81 ºC, 1σ), should be used to interpret Sr/Ca records from O. faveolata specimens of unknown age or origin to reconstruct SST. We also explored how uncertainty is affected by the number of corals used in a reconstruction by iteratively calculating the RMS error for composite coral time-series using two, three, four, and five overlapping coral colonies. Our results indicate that maximum RMS error at the 95% confidence interval on mean annual SST estimates is 1.4 ºC when a composite record is made from only two overlapping coral Sr/Ca records. The uncertainty decreases as additional coral Sr/Ca data are added, with a maximum RMS error of 0.5 ºC on mean annual SST for a five-colony composite. To reduce uncertainty to under 1 ºC, it is best to use Sr/Ca from three or more coral colonies from the same geographic location and time period.
NASA Technical Reports Server (NTRS)
Long, S. A. T.
1974-01-01
Formulas are derived for the root-mean-square (rms) displacement, slope, and curvature errors in an azimuth-elevation image trace of an elongated object in space, as functions of the number and spacing of the input data points and the rms elevation error in the individual input data points from a single observation station. Also, formulas are derived for the total rms displacement, slope, and curvature error vectors in the triangulation solution of an elongated object in space due to the rms displacement, slope, and curvature errors, respectively, in the azimuth-elevation image traces from different observation stations. The total rms displacement, slope, and curvature error vectors provide useful measure numbers for determining the relative merits of two or more different triangulation procedures applicable to elongated objects in space.
NASA Technical Reports Server (NTRS)
Cornwell, Donald M., Jr.; Saif, Babak N.
1991-01-01
The spatial pointing angle and far field beamwidth of a high-power semiconductor laser are characterized as a function of CW power and also as a function of temperature. The time-averaged spatial pointing angle and spatial lobe width were measured under intensity-modulated conditions. The measured pointing deviations are determined to be well within the pointing requirements of the NASA Laser Communications Transceiver (LCT) program. A computer-controlled Mach-Zehnder phase-shifter interferometer is used to characterize the wavefront quality of the laser. The rms phase error over the entire pupil was measured as a function of CW output power. Time-averaged measurements of the wavefront quality are also made under intensity-modulated conditions. The measured rms phase errors are determined to be well within the wavefront quality requirements of the LCT program.
An Assessment of How Facial Mimicry Can Change Facial Morphology: Implications for Identification.
Gibelli, Daniele; De Angelis, Danilo; Poppa, Pasquale; Sforza, Chiarella; Cattaneo, Cristina
2017-03-01
The assessment of facial mimicry is important in forensic anthropology; in addition, the application of modern 3D image acquisition systems may help for the analysis of facial surfaces. This study aimed at exposing a novel method for comparing 3D profiles in different facial expressions. Ten male adults, aged between 30 and 40 years, underwent acquisitions by stereophotogrammetry (VECTRA-3D ® ) with different expressions (neutral, happy, sad, angry, surprised). The acquisition of each individual was then superimposed on the neutral one according to nine landmarks, and the root mean square (RMS) value between the two expressions was calculated. The highest difference in comparison with the neutral standard was shown by the happy expression (RMS 4.11 mm), followed by the surprised (RMS 2.74 mm), sad (RMS 1.3 mm), and angry ones (RMS 1.21 mm). This pilot study shows that the 3D-3D superimposition may provide reliable results concerning facial alteration due to mimicry. © 2016 American Academy of Forensic Sciences.
Kanneganti, Praveen; Huestis, Marilyn A.; Kolbrich, Erin A.; Robert, Goodwin; Ziegelstein, Roy C.; Gorelick, David A.
2008-01-01
Objectives 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) use has been associated with cardiac arrhythmias. Markers of ventricular late potentials (VLP), which may be a precursor to malignant ventricular arrhythmias, can be detected by signal-averaged electrocardiography (SA-ECG), but not by standard ECG. Methods We evaluated SA-ECG parameters in 21 physically healthy, recently abstinent MDMA users who also used cannabis (11 males, mean [SD] age 23.3 [4.6] years, 2.8 [2.0] years of use), 18 physically healthy cannabis users (8 males, mean [SD] age 26.6 [7.1] years, 11.2 [5.4] years of use) and 54 non-drug-using controls (21 males, mean [SD] age 28.4 [7.8] years). We analyzed three SA-ECG parameters considered markers of VLPs: duration of filtered QRS complex (fQRS), duration of low amplitude potentials during terminal 40 ms of QRS complex (LAS40), and root mean square voltage during terminal 40 ms of QRS complex (RMS40). Results MDMA users, cannabis users, and non-drug-using controls did not differ significantly from each other in fQRS, LAS40, or RMS40 values or in the proportion of subjects with abnormal SA-ECG parameters. There were significant gender differences among controls, but not among MDMA users. Conclusion These findings suggest that chronic MDMA use is neither quantitatively nor qualitatively associated with a high prevalence of abnormal SA-ECG parameters indicative of VLP markers. PMID:18855243
NASA Technical Reports Server (NTRS)
Pandey, P. C.
1982-01-01
Eight subsets using two to five frequencies of the SEASAT scanning multichannel microwave radiometer are examined to determine their potential in the retrieval of atmospheric water vapor content. Analysis indicates that the information concerning the 18 and 21 GHz channels are optimum for water vapor retrieval. A comparison with radiosonde observations gave an rms accuracy of approximately 0.40 g sq cm. The rms accuracy of precipitable water using different subsets was within 10 percent. Global maps of precipitable water over oceans using two and five channel retrieval (average of two and five channel retrieval) are given. Study of these maps reveals the possibility of global moisture distribution associated with oceanic currents and large scale general circulation in the atmosphere. A stable feature of the large scale circulation is noticed. The precipitable water is maximum over the Bay of Bengal and in the North Pacific over the Kuroshio current and shows a general latitudinal pattern.
Aerosol Measurements in the Mid-Atlantic: Trends and Uncertainty
NASA Astrophysics Data System (ADS)
Hains, J. C.; Chen, L. A.; Taubman, B. F.; Dickerson, R. R.
2006-05-01
Elevated levels of PM2.5 are associated with cardiovascular and respiratory problems and even increased mortality rates. In 2002 we ran two commonly used PM2.5 speciation samplers (an IMPROVE sampler and an EPA sampler) in parallel at Fort Meade, Maryland (a suburban site located in the Baltimore- Washington urban corridor). The filters were analyzed at different labs. This experiment allowed us to calculate the 'real world' uncertainties associated with these instruments. The EPA method retrieved a January average PM2.5 mass of 9.3 μg/m3 with a standard deviation of 2.8 μg/m3, while the IMPROVE method retrieved an average mass of 7.3 μg/m3 with a standard deviation of 2.1 μg/m3. The EPA method retrieved a July average PM2.5 mass of 26.4 μg/m3 with a standard deviation of 14.6 μg/m3, while the IMPROVE method retrieved an average mass of 23.3 μg/m3 with a standard deviation of 13.0 μg/m3. We calculated a 5% uncertainty associated with the EPA and IMPROVE methods that accounts for uncertainties in flow control strategies and laboratory analysis. The RMS difference between the two methods in January was 2.1 μg/m3, which is about 25% of the monthly average mass and greater than the uncertainty we calculated. In July the RMS difference between the two methods was 5.2 μg/m3, about 20% of the monthly average mass, and greater than the uncertainty we calculated. The EPA methods retrieve consistently higher concentrations of PM2.5 than the IMPROVE methods on a daily basis in January and July. This suggests a systematic bias possibly resulting from contamination of either of the sampling methods. We reconstructed the mass and found that both samplers have good correlation between reconstructed and gravimetric mass, though the IMPROVE method has slightly better correlation than the EPA method. In January, organic carbon is the largest contributor to PM2.5 mass, and in July both sulfate and organic matter contribute substantially to PM2.5. Source apportionment models suggest that regional and local power plants are the major sources of sulfate, while mobile and vegetative burning factors are the major sources of organic carbon.
NASA Astrophysics Data System (ADS)
Mendonca, J.; Strong, K.; Toon, G. C.; Wunch, D.; Sung, K.; Deutscher, N. M.; Griffith, D. W. T.; Franklin, J. E.
2016-05-01
A quadratic speed-dependent Voigt spectral line shape with line mixing (qSDV + LM) has been included in atmospheric trace-gas retrievals to improve the accuracy of the calculated CO2 absorption coefficients. CO2 laboratory spectra were used to validate absorption coefficient calculations for three bands: the strong 20013 ← 00001 band centered at 4850 cm-1, and the weak 30013 ← 00001 and 30012 ← 00001 bands centered at 6220 cm-1 and 6340 cm-1 respectively, and referred to below as bands 1 and 2. Several different line lists were tested. Laboratory spectra were best reproduced for the strong CO2 band when using HITRAN 2008 spectroscopic data with air-broadened widths divided by 0.985, self-broadened widths divided by 0.978, line mixing coefficients calculated using the exponential power gap (EPG) law, and a speed-dependent parameter of 0.11 used for all lines. For the weak CO2 bands, laboratory spectra were best reproduced using spectroscopic parameters from the studies by Devi et al. in 2007 coupled with line mixing coefficients calculated using the EPG law. A total of 132,598 high-resolution ground-based solar absorption spectra were fitted using qSDV + LM to calculate CO2 absorption coefficients and compared to fits that used the Voigt line shape. For the strong CO2 band, the average root mean square (RMS) residual is 0.49 ± 0.22% when using qSDV + LM to calculate the absorption coefficients. This is an improvement over the results with the Voigt line shape, which had an average RMS residual of 0.60 ± 0.21%. When using the qSDV + LM to fit the two weak CO2 bands, the average RMS residual is 0.47 ± 0.19% and 0.51 ± 0.20% for bands 1 and 2, respectively. These values are identical to those obtained with the Voigt line shape. Finally, we find that using the qSDV + LM decreases the airmass dependence of the column averaged dry air mole fraction of CO2 retrieved from the strong and both weak CO2 bands when compared to the retrievals obtained using the Voigt line shape.
NASA Technical Reports Server (NTRS)
Thompson, T. W.; Moore, H. J.
1990-01-01
Researchers developed a radar-echo model for Mars based on 12.6 cm continuous wave radio transmissions backscattered from the planet. The model broadly matches the variations in depolarized and polarized total radar cross sections with longitude observed by Goldstone in 1986 along 7 degrees S. and yields echo spectra that are generally similiar to the observed spectra. Radar map units in the model include an extensive cratered uplands unit with weak depolarized echo cross sections, average thermal inertias, moderate normal refelectivities, and moderate rms slopes; the volcanic units of Tharsis, Elysium, and Amazonis regions with strong depolarized echo cross sections, low thermal inertia, low normal reflectivities, and large rms slopes; and the northern planes units with moderate to strong depolarized echo cross sections, moderate to very high thermal inertias, moderate to large normal reflectivities, and moderate rms slopes. The relevance of the model to the interpretation of radar echoes from Mars is discussed.
Silicon Detector System for High Rate EXAFS Applications.
Pullia, A; Kraner, H W; Siddons, D P; Furenlid, L R; Bertuccio, G
1995-08-01
A multichannel silicon pad detector for EXAFS (Extended X-ray Absorption Fine Structure) applications has been designed and built. The X-ray spectroscopic measurements demonstrate that an adequate energy resolution of 230 eV FWHM (corresponding to 27 rms electrons in silicon) can be achieved reliably at -35 °C. A resolution of 190 eV FWHM (corresponding to 22 rms electrons) has been obtained from individual pads at -35 °C. At room temperature (25 °C) an average energy resolution of 380 eV FWHM is achieved and a resolution of 350 eV FWHM (41 rms electrons) is the best performance. A simple cooling system constituted of Peltier cells is sufficient to reduce the reverse currents of the pads and their related shot noise contribution, in order to achieve resolutions better than 300 eV FWHM which is adequate for the EXAFS applications.
Silicon Detector System for High Rate EXAFS Applications
Pullia, A.; Kraner, H. W.; Siddons, D. P.; Furenlid, L. R.; Bertuccio, G.
2015-01-01
A multichannel silicon pad detector for EXAFS (Extended X-ray Absorption Fine Structure) applications has been designed and built. The X-ray spectroscopic measurements demonstrate that an adequate energy resolution of 230 eV FWHM (corresponding to 27 rms electrons in silicon) can be achieved reliably at −35 °C. A resolution of 190 eV FWHM (corresponding to 22 rms electrons) has been obtained from individual pads at −35 °C. At room temperature (25 °C) an average energy resolution of 380 eV FWHM is achieved and a resolution of 350 eV FWHM (41 rms electrons) is the best performance. A simple cooling system constituted of Peltier cells is sufficient to reduce the reverse currents of the pads and their related shot noise contribution, in order to achieve resolutions better than 300 eV FWHM which is adequate for the EXAFS applications. PMID:26538683
Salmon-Mulanovich, Gabriela; Blazes, David L; Lescano, Andres G; Bausch, Daniel G; Montgomery, Joel M; Pan, William K
2015-10-01
Dengue virus (DENV) was reintroduced to Peru in the 1990s and has been reported in Puerto Maldonado (population ~65,000) in the Peruvian southern Amazon basin since 2000. This region also has the highest human migration rate in the country, mainly from areas not endemic for DENV. The objective of this study was to assess the proportion of household income that is diverted to costs incurred because of dengue illness and to compare these expenses between recent migrants (RMs) and long-term residents (LTRs). We administered a standardized questionnaire to persons diagnosed with dengue illness at Hospital Santa Rosa in Puerto Maldonado from December 2012 to March 2013. We compared direct and indirect medical costs between RMs and LTRs. A total of 80 participants completed the survey, of whom 28 (35%) were RMs and 52 (65%) were LTRs. Each dengue illness episode cost the household an average of US$105 (standard deviation [SD] = 107), representing 24% of their monthly income. Indirect costs were the greatest expense (US$56, SD = 87), especially lost wages. The proportion of household income diverted to dengue illness did not differ significantly between RM and LTR households. The study highlights the significant financial burden incurred by households when a family member suffers dengue illness. © The American Society of Tropical Medicine and Hygiene.
Some new concepts in the n-body and 3-body problems
NASA Astrophysics Data System (ADS)
Kyrala, A.
1982-06-01
A new approach to the n-body problem in terms of an rms particle velocity and a harmonic mean particle separation has been constructed by using averaging procedures formulated in terms of a single parameter. A systematic classification of escape and collision processes by means of specific polynomials, which can be used somewhat like generating functions, is introduced. For n-body problems with non-null total angular momentum, an rms angular momentum is defined which together with a harmonic mean centroidal moment of inertia characterizes the rotational kinetic energy. Finally, a graphical construction for the equipotentials of the three-body problem is given and attention is drawn to the use of the apex, defined as the point of least average separation, in this problem. It is supposed that the n-bodies interact with one another via the Newtonian potential in an inertial system.
Reynolds Number Scaling and Parameterization of Stratified Turbulent Wakes
2017-04-17
orbital shape remains repeatable from one wave cycle to the next. Depth- averaged values of the mean and rms IWB-mean Lagrangian drifts (not shown here...suggest that these drifts will be accompanied by average particle displacements of CJ = (10KxT)112 = 10- 1 .AJ = :::o:O(lOm). Our fmdings on Lagrangian ...of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, gathering and
Defining the gene expression signature of rhabdomyosarcoma by meta-analysis
Romualdi, Chiara; De Pittà, Cristiano; Tombolan, Lucia; Bortoluzzi, Stefania; Sartori, Francesca; Rosolen, Angelo; Lanfranchi, Gerolamo
2006-01-01
Background Rhabdomyosarcoma is a highly malignant soft tissue sarcoma in childhood and arises as a consequence of regulatory disruption of the growth and differentiation pathways of myogenic precursor cells. The pathogenic pathways involved in this tumor are mostly unknown and therefore a better characterization of RMS gene expression profile would represent a considerable advance. The availability of publicly available gene expression datasets have opened up new challenges especially for the integration of data generated by different research groups and different array platforms with the purpose of obtaining new insights on the biological process investigated. Results In this work we performed a meta-analysis on four microarray and two SAGE datasets of gene expression data on RMS in order to evaluate the degree of agreement of the biological results obtained by these different studies and to identify common regulatory pathways that could be responsible of tumor growth. Regulatory pathways and biological processes significantly enriched has been investigated and a list of differentially meta-profiles have been identified as possible candidate of aggressiveness of RMS. Conclusion Our results point to a general down regulation of the energy production pathways, suggesting a hypoxic physiology for RMS cells. This result agrees with the high malignancy of RMS and with its resistance to most of the therapeutic treatments. In this context, different isoforms of the ANT gene have been consistently identified for the first time as differentially expressed in RMS. This gene is involved in anti-apoptotic processes when cells grow in low oxygen conditions. These new insights in the biological processes responsible of RMS growth and development demonstrate the effective advantage of the use of integrated analysis of gene expression studies. PMID:17090319
Ching, Teresa Y C; Quar, Tian Kar; Johnson, Earl E; Newall, Philip; Sharma, Mridula
2015-03-01
An important goal of providing amplification to children with hearing loss is to ensure that hearing aids are adjusted to match targets of prescriptive procedures as closely as possible. The Desired Sensation Level (DSL) v5 and the National Acoustic Laboratories' prescription for nonlinear hearing aids, version 1 (NAL-NL1) procedures are widely used in fitting hearing aids to children. Little is known about hearing aid fitting outcomes for children with severe or profound hearing loss. The purpose of this study was to investigate the prescribed and measured gain of hearing aids fit according to the NAL-NL1 and the DSL v5 procedure for children with moderately severe to profound hearing loss; and to examine the impact of choice of prescription on predicted speech intelligibility and loudness. Participants were fit with Phonak Naida V SP hearing aids according to the NAL-NL1 and DSL v5 procedures. The Speech Intelligibility Index (SII) and estimated loudness were calculated using published models. The sample consisted of 16 children (30 ears) aged between 7 and 17 yr old. The measured hearing aid gains were compared with the prescribed gains at 50 (low), 65 (medium), and 80 dB SPL (high) input levels. The goodness of fit-to-targets was quantified by calculating the average root-mean-square (RMS) error of the measured gain compared with prescriptive gain targets for 0.5, 1, 2, and 4 kHz. The significance of difference between prescriptions for hearing aid gains, SII, and loudness was examined by performing analyses of variance. Correlation analyses were used to examine the relationship between measures. The DSL v5 prescribed significantly higher overall gain than the NAL-NL1 procedure for the same audiograms. For low and medium input levels, the hearing aids of all children fit with NAL-NL1 were within 5 dB RMS of prescribed targets, but 33% (10 ears) deviated from the DSL v5 targets by more than 5 dB RMS on average. For high input level, the hearing aid fittings of 60% and 43% of ears deviated by more than 5 dB RMS from targets of NAL-NL1 and DSL v5, respectively. Greater deviations from targets were associated with more severe hearing loss. On average, the SII was higher for DSL v5 than for NAL-NL1 at low input level. No significant difference in SII was found between prescriptions at medium or high input level, despite greater loudness for DSL v5 than for NAL-NL1. Although targets between 0.25 and 2 kHz were well matched for both prescriptions in commercial hearing aids, gain targets at 4 kHz were matched for NAL-NL1 only. Although the two prescriptions differ markedly in estimated loudness, they resulted in comparable predicted speech intelligibility for medium and high input levels. American Academy of Audiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsitt, Mitchell M., E-mail: goodsitt@umich.edu; Shenoy, Apeksha; Howard, David
2014-05-15
Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correctionmore » factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa.« less
Goodsitt, Mitchell M.; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J.; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K.
2014-01-01
Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa. PMID:24784380
Maiti, Subodh Kumar; Rana, Vivek
2017-01-01
The metal contamination in reclaimed mine soil (RMS) of Jharia coal field, Dhanbad (India) using various contamination indices and their accumulation in tissues of Eucalyptus hybrid were assessed. In RMS, metal concentrations were found higher (202%-533%) than control soil (CS) with major contribution of Co and Mn followed by Zn, Cu and Pb. Principal component analysis (PCA) of metals present in RMS was carried out to assess their origin in RMS. The contamination factor (CF) values in RMS indicated moderate to very high level of pollution (ranged between 2.02 and 5.33). Higher accumulation of Pb in barks (three times), Zn in leaves (4.5 times), Mn in leaves (19 times), and Cu in roots (1.4 times) was found in trees growing on RMS than CS. The study concluded that different tree tissues accumulate varied concentration of heavy metals in RMS and thus for biomonitoring of metals, specific tissues has to be selected.
Emg Amplitude Estimators Based on Probability Distribution for Muscle-Computer Interface
NASA Astrophysics Data System (ADS)
Phinyomark, Angkoon; Quaine, Franck; Laurillau, Yann; Thongpanja, Sirinee; Limsakul, Chusak; Phukpattaranont, Pornchai
To develop an advanced muscle-computer interface (MCI) based on surface electromyography (EMG) signal, the amplitude estimations of muscle activities, i.e., root mean square (RMS) and mean absolute value (MAV) are widely used as a convenient and accurate input for a recognition system. Their classification performance is comparable to advanced and high computational time-scale methods, i.e., the wavelet transform. However, the signal-to-noise-ratio (SNR) performance of RMS and MAV depends on a probability density function (PDF) of EMG signals, i.e., Gaussian or Laplacian. The PDF of upper-limb motions associated with EMG signals is still not clear, especially for dynamic muscle contraction. In this paper, the EMG PDF is investigated based on surface EMG recorded during finger, hand, wrist and forearm motions. The results show that on average the experimental EMG PDF is closer to a Laplacian density, particularly for male subject and flexor muscle. For the amplitude estimation, MAV has a higher SNR, defined as the mean feature divided by its fluctuation, than RMS. Due to a same discrimination of RMS and MAV in feature space, MAV is recommended to be used as a suitable EMG amplitude estimator for EMG-based MCIs.
Loudness of dynamic stimuli in acoustic and electric hearing.
Zhang, C; Zeng, F G
1997-11-01
Traditional loudness models have been based on the average energy and the critical band analysis of steady-state sounds. However, most environmental sounds, including speech, are dynamic stimuli, in which the average level [e.g., the root-mean-square (rms) level] does not account for the large temporal fluctuations. The question addressed here was whether two stimuli of the same rms level but different peak levels would produce an equal loudness sensation. A modern adaptive procedure was used to replicate two classic experiments demonstrating that the sensation of "beats" in a two- or three-tone complex resulted in a louder sensation [E. Zwicker and H. Fastl, Psychoacoustics-Facts and Models (Springer-Verlag, Berlin, 1990)]. Two additional experiments were conducted to study exclusively the effects of the temporal envelope on the loudness sensation of dynamic stimuli. Loudness balance was performed by normal-hearing listeners between a white noise and a sinusoidally amplitude-modulated noise in one experiment, and by cochlear implant listeners between two harmonic stimuli of the same magnitude spectra, but different phase spectra, in the other experiment. The results from both experiments showed that, for two stimuli of the same rms level, the stimulus with greater temporal fluctuations sometimes produced a significantly louder sensation, depending on the temporal frequency and overall stimulus level. In normal-hearing listeners, the louder sensation was produced for the amplitude-modulated stimuli with modulation frequencies lower than 400 Hz, and gradually disappeared above 400 Hz, resulting in a low-pass filtering characteristic which bore some similarity to the temporal modulation transfer function. The extent to which loudness was greater was a nonmonotonic function of level in acoustic hearing and a monotonically increasingly function in electric hearing. These results suggest that the loudness sensation of a dynamic stimulus is not limited to a 100-ms temporal integration process, and may be determined jointly by a compression process in the cochlea and an expansion process in the brain. A level-dependent compression scheme that may better restore normal loudness of dynamic stimuli in hearing aids and cochlear implants is proposed.
A single-frequency double-pulse Ho:YLF laser for CO2-lidar
NASA Astrophysics Data System (ADS)
Kucirek, P.; Meissner, A.; Eiselt, P.; Höfer, M.; Hoffmann, D.
2016-03-01
A single-frequency q-switched Ho:YLF laser oscillator with a bow-tie ring resonator, specifically designed for highspectral stability, is reported. It is pumped with a dedicated Tm:YLF laser at 1.9 μm. The ramp-and-fire method with a DFB-diode laser as a reference is employed for generating single-frequency emission at 2051 nm. The laser is tested with different operating modes, including cw-pumping at different pulse repetition frequencies and gain-switched pumping. The standard deviation of the emission wavelength of the laser pulses is measured with the heterodyne technique at the different operating modes. Its dependence on the single-pass gain in the crystal and on the cavity finesse is investigated. At specific operating points the spectral stability of the laser pulses is 1.5 MHz (rms over 10 s). Under gain-switched pumping with 20% duty cycle and 2 W of average pump power, stable single-frequency pulse pairs with a temporal separation of 580 μs are produced at a repetition rate of 50 Hz. The measured pulse energy is 2 mJ (<2 % rms error on the pulse energy over 10 s) and the measured pulse duration is approx. 20 ns for each of the two pulses in the burst.
A state-based probabilistic model for tumor respiratory motion prediction
NASA Astrophysics Data System (ADS)
Kalet, Alan; Sandison, George; Wu, Huanmei; Schmitz, Ruth
2010-12-01
This work proposes a new probabilistic mathematical model for predicting tumor motion and position based on a finite state representation using the natural breathing states of exhale, inhale and end of exhale. Tumor motion was broken down into linear breathing states and sequences of states. Breathing state sequences and the observables representing those sequences were analyzed using a hidden Markov model (HMM) to predict the future sequences and new observables. Velocities and other parameters were clustered using a k-means clustering algorithm to associate each state with a set of observables such that a prediction of state also enables a prediction of tumor velocity. A time average model with predictions based on average past state lengths was also computed. State sequences which are known a priori to fit the data were fed into the HMM algorithm to set a theoretical limit of the predictive power of the model. The effectiveness of the presented probabilistic model has been evaluated for gated radiation therapy based on previously tracked tumor motion in four lung cancer patients. Positional prediction accuracy is compared with actual position in terms of the overall RMS errors. Various system delays, ranging from 33 to 1000 ms, were tested. Previous studies have shown duty cycles for latencies of 33 and 200 ms at around 90% and 80%, respectively, for linear, no prediction, Kalman filter and ANN methods as averaged over multiple patients. At 1000 ms, the previously reported duty cycles range from approximately 62% (ANN) down to 34% (no prediction). Average duty cycle for the HMM method was found to be 100% and 91 ± 3% for 33 and 200 ms latency and around 40% for 1000 ms latency in three out of four breathing motion traces. RMS errors were found to be lower than linear and no prediction methods at latencies of 1000 ms. The results show that for system latencies longer than 400 ms, the time average HMM prediction outperforms linear, no prediction, and the more general HMM-type predictive models. RMS errors for the time average model approach the theoretical limit of the HMM, and predicted state sequences are well correlated with sequences known to fit the data.
Estimating earthquake location and magnitude from seismic intensity data
Bakun, W.H.; Wentworth, C.M.
1997-01-01
Analysis of Modified Mercalli intensity (MMI) observations for a training set of 22 California earthquakes suggests a strategy for bounding the epicentral region and moment magnitude M from MMI observations only. We define an intensity magnitude MI that is calibrated to be equal in the mean to M. MI = mean (Mi), where Mi = (MMIi + 3.29 + 0.0206 * ??i)/1.68 and ??i is the epicentral distance (km) of observation MMIi. The epicentral region is bounded by contours of rms [MI] = rms (MI - Mi) - rms0 (MI - Mi-), where rms is the root mean square, rms0 (MI - Mi) is the minimum rms over a grid of assumed epicenters, and empirical site corrections and a distance weighting function are used. Empirical contour values for bounding the epicenter location and empirical bounds for M estimated from MI appropriate for different levels of confidence and different quantities of intensity observations are tabulated. The epicentral region bounds and MI obtained for an independent test set of western California earthquakes are consistent with the instrumental epicenters and moment magnitudes of these earthquakes. The analysis strategy is particularly appropriate for the evaluation of pre-1900 earthquakes for which the only available data are a sparse set of intensity observations.
Effect of Seating on Exposures to Whole-Body Vibration in Vehicles
NASA Astrophysics Data System (ADS)
PADDAN, G. S.; GRIFFIN, M. J.
2002-05-01
The vibration isolation efficiency of seating has been evaluated in 100 work vehicles in 14 categories (cars, vans, lift trucks, lorries, tractors, buses, dumpers, excavators, helicopters, armoured vehicles, mobile cranes, grass rollers, mowers and milk floats). Seat isolation efficiency, expressed by the SEAT value, was determined for all seats (67 conventional seats and 33 suspension seats) from the vertical acceleration measured on the floors and on the seats of the vehicles.For most categories of vehicle, the average SEAT value was less than 100%, indicating that the average seat provided some attenuation of vibration. However, there were large variations in SEAT values between vehicles within categories. Two alternative vibration frequency weightings (Wb from BS 6841, 1987; Wk from ISO 2631, 1997) yielded SEAT values that differed by less than 6%. Overall, the SEAT values determined by two alternative methods (the ratio of r.m.s. values and the ratio of vibration dose values) differed by less than 4·5% when using weighting Wb, although larger differences may be expected in some situations. The median SEAT value for the suspension seats was 84·6%; the median SEAT value for the conventional seats was 86·9% (based on weighting Wb and the ratio of r.m.s. values).Predicted SEAT values were obtained assuming that each seat could be interchanged between vehicles without altering its transmissibility. The calculations suggest that 94% of the vehicles investigated might benefit from changing the current seat to a seat from one of the other vehicles investigated. Although the predictions are based on assumptions that will not always apply, it is concluded that the severity of whole-body vibration exposures in many work environments can be lessened by improvements to seating dynamics.
NASA Technical Reports Server (NTRS)
Chang, Alfred T. C.; Chiu, Long S.; Wilheit, Thomas T.
1993-01-01
Global averages and random errors associated with the monthly oceanic rain rates derived from the Special Sensor Microwave/Imager (SSM/I) data using the technique developed by Wilheit et al. (1991) are computed. Accounting for the beam-filling bias, a global annual average rain rate of 1.26 m is computed. The error estimation scheme is based on the existence of independent (morning and afternoon) estimates of the monthly mean. Calculations show overall random errors of about 50-60 percent for each 5 deg x 5 deg box. The results are insensitive to different sampling strategy (odd and even days of the month). Comparison of the SSM/I estimates with raingage data collected at the Pacific atoll stations showed a low bias of about 8 percent, a correlation of 0.7, and an rms difference of 55 percent.
Medkour, Terkia; Ferrone, Frank; Galactéros, Frédéric; Hannaert, Patrick
2008-06-01
Sickle cell haemoglobin (HbS) polymerization reduces erythrocyte deformability, causing deleterous vaso-occlusions. The double-nucleation model states that polymers grow from HbS aggregates, the nuclei, (i) in solution (homogeneous nucleation), (ii) onto existing polymers (heterogeneous nucleation). When linearized at initial HbS concentration, this model predicts early polymerization and its characteristic delay-time (Ferrone et al. J Mol Biol 183(4):591-610, 611-631, 1985). Addressing its relevance for describing complete polymerization, we constructed the full, non-linearized model (Simulink), The MathWorks). Here, we compare the simulated outputs to experimental progress curves (n = 6-8 different [HbS], 3-6 mM range, from Ferrone's group). Within 10% from start, average root mean square (rms) deviation between simulated and experimental curves is 0.04 +/- 0.01 (25 degrees C, n = 8; mean +/- standard error). Conversely, for complete progress curves, averaged rms is 0.48 +/- 0.04. This figure is improved to 0.13 +/- 0.01 by adjusting heterogeneous pathway parameters (p < 0.01): the nucleus stability (sigma(2) micro( cc ): + 40%), and the fraction of polymer surface available for nucleation (phi), from 5e(-7), (3 mM) to 13 (6 mM). Similar results are obtained at 37 degrees C. We conclude that the physico-chemical description of heterogeneous nucleation warrants refinements in order to capture the whole HbS polymerization process.
Dai, Wujiao; Shi, Qiang; Cai, Changsheng
2017-01-01
The carrier phase multipath effect is one of the most significant error sources in the precise positioning of BeiDou Navigation Satellite System (BDS). We analyzed the characteristics of BDS multipath, and found the multipath errors of geostationary earth orbit (GEO) satellite signals are systematic, whereas those of inclined geosynchronous orbit (IGSO) or medium earth orbit (MEO) satellites are both systematic and random. The modified multipath mitigation methods, including sidereal filtering algorithm and multipath hemispherical map (MHM) model, were used to improve BDS dynamic deformation monitoring. The results indicate that the sidereal filtering methods can reduce the root mean square (RMS) of positioning errors in the east, north and vertical coordinate directions by 15%, 37%, 25% and 18%, 51%, 27% in the coordinate and observation domains, respectively. By contrast, the MHM method can reduce the RMS by 22%, 52% and 27% on average. In addition, the BDS multipath errors in static baseline solutions are a few centimeters in multipath-rich environments, which is different from that of Global Positioning System (GPS) multipath. Therefore, we add a parameter representing the GEO multipath error in observation equation to the adjustment model to improve the precision of BDS static baseline solutions. And the results show that the modified model can achieve an average precision improvement of 82%, 54% and 68% in the east, north and up coordinate directions, respectively. PMID:28387744
Dai, Wujiao; Shi, Qiang; Cai, Changsheng
2017-04-07
The carrier phase multipath effect is one of the most significant error sources in the precise positioning of BeiDou Navigation Satellite System (BDS). We analyzed the characteristics of BDS multipath, and found the multipath errors of geostationary earth orbit (GEO) satellite signals are systematic, whereas those of inclined geosynchronous orbit (IGSO) or medium earth orbit (MEO) satellites are both systematic and random. The modified multipath mitigation methods, including sidereal filtering algorithm and multipath hemispherical map (MHM) model, were used to improve BDS dynamic deformation monitoring. The results indicate that the sidereal filtering methods can reduce the root mean square (RMS) of positioning errors in the east, north and vertical coordinate directions by 15%, 37%, 25% and 18%, 51%, 27% in the coordinate and observation domains, respectively. By contrast, the MHM method can reduce the RMS by 22%, 52% and 27% on average. In addition, the BDS multipath errors in static baseline solutions are a few centimeters in multipath-rich environments, which is different from that of Global Positioning System (GPS) multipath. Therefore, we add a parameter representing the GEO multipath error in observation equation to the adjustment model to improve the precision of BDS static baseline solutions. And the results show that the modified model can achieve an average precision improvement of 82%, 54% and 68% in the east, north and up coordinate directions, respectively.
Measuring Skew in Average Surface Roughness as a Function of Surface Preparation
NASA Technical Reports Server (NTRS)
Stahl, Mark T.
2015-01-01
Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces grinding saving both time and money and allows the science requirements to be better defined. In this study various materials are polished from a fine grind to a fine polish. Each sample's RMS surface roughness is measured at 81 locations in a 9x9 square grid using a Zygo white light interferometer at regular intervals during the polishing process. Each data set is fit with various standard distributions and tested for goodness of fit. We show that the skew in the RMS data changes as a function of polishing time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segal Rozenhaimer, Michal; Russell, P. B.; Schmid, Beat
2014-03-16
Total columnar amounts of water vapor, nitrogen dioxide (NO2) and ozone (O3) are derived from a newly developed, hyperspectral airborne sun-sky spectrometer (4STAR) for the first time during the two intensive phases of the Two Column Aerosol Project (TCAP) in summer 2012 and winter 2013 aboard the DOE G-1 aircraft. We compare results with coincident measurements. We find 0.045 g/cm2 (4.2%) negative bias and 0.28 g/cm2 (26.3%) root-mean-square (RMS) difference in water vapor layer comparison with in-situ hygrometer, and an overall RMS difference of 1.28 g/m3 (38%) water vapor amount in profile by profile comparisons, with differences distributed evenly aroundmore » zero in most cases. The RMS differences for O3 values average to 3%, with a 1% negative bias for 4STAR compared with the spaceborne Ozone Measuring Instrument (OMI) along the aircraft flight-track for 14 flights during both TCAP phases. Ground-based comparisons with the Pandora spectrometer system at the Goddard Space Flight Center (GSFC), Greenbelt, Maryland showed excellent agreement between the instruments for both O3 and NO2, further emphasizing 4STAR’s new capabilities. During the summer phase, we have succeeded in identifying variations in elevated pollution layers corresponding to urban pollution outflow and transported biomass burning. This was done using clustering analysis of the retrieved products (e.g. Ångstrom exponent, NO2 and columnar water vapor), and was confirmed by aerosol type identification by HSRL2 aboard the NASA B-200 aircraft. These newly demonstrated 4STAR capabilities are expected to be instrumental in improving our understanding of atmospheric composition variability and aerosol-trace-gas interactions; they open new horizons and opportunities in airborne sunphotometry.« less
NASA Technical Reports Server (NTRS)
Abboud, S.; Blatt, C. M.; Lown, B.; Graboys, T. B.; Sadeh, D.; Cohen, R. J.
1987-01-01
An advanced non invasive signal averaging technique was used to detect late potentials in two groups of patients: Group A (24 patients) with coronary artery disease (CAD) and without sustained ventricular tachycardia (VT) and Group B (8 patients) with CAD and sustained VT. Recorded analog data were digitized and aligned using a cross correlation function with fast Fourier transform schema, averaged and band pass filtered between 60 and 200 Hz with a non-recursive digital filter. Averaged filtered waveforms were analyzed by computer program for 3 parameters: (1) filtered QRS (fQRS) duration (2) interval between the peak of the R wave peak and the end of fQRS (R-LP) (3) RMS value of last 40 msec of fQRS (RMS). Significant change was found between Groups A and B in fQRS (101 -/+ 13 msec vs 123 -/+ 15 msec; p < .0005) and in R-LP vs 52 -/+ 11 msec vs 71-/+18 msec, p <.002). We conclude that (1) the use of a cross correlation triggering method and non-recursive digital filter enables a reliable recording of late potentials from the body surface; (2) fQRS and R-LP durations are sensitive indicators of CAD patients susceptible to VT.
Bonnet, Vincent; Richard, Vincent; Camomilla, Valentina; Venture, Gentiane; Cappozzo, Aurelio; Dumas, Raphaël
2017-09-06
To reduce the impact of the soft tissue artefact (STA) on the estimate of skeletal movement using stereophotogrammetric and skin-marker data, multi-body kinematics optimisation (MKO) and extended Kalman filters (EKF) have been proposed. This paper assessed the feasibility and efficiency of these methods when they embed a mathematical model of the STA and simultaneously estimate the ankle, knee and hip joint kinematics and the model parameters. A STA model was used that provides an estimate of the STA affecting the marker-cluster located on a body segment as a function of the kinematics of the adjacent joints. The MKO and the EKF were implemented with and without the STA model. To assess these methods, intra-cortical pin and skin markers located on the thigh, shank, and foot of three subjects and tracked during the stance phase of running were used. Embedding the STA model in MKO and EKF reduced the average RMS of marker tracking from 12.6 to 1.6mm and from 4.3 to 1.9mm, respectively, showing that a STA model trial-specific calibration is feasible. Nevertheless, with the STA model embedded in MKO, the RMS difference between the estimated and the reference joint kinematics determined from the pin markers slightly increased (from 2.0 to 2.1deg) On the contrary, when the STA model was embedded in the EKF, this RMS difference was slightly reduced (from 2.0 to 1.7deg) thus showing a better potentiality of this method to attenuate STA effects and improve the accuracy of joint kinematics estimate. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Srivatsangam, S.; Reiter, E. R.
1973-01-01
Extratropical eddy distributions in four months typical of the four seasons are treated in terms of temporal mean and temporal r.m.s. values of the geostrophic relative vorticity. The geographical distributions of these parameters at the 300 mb level show that the arithmetic mean fields are highly biased representatives of the extratropical eddy distributions. The zonal arithmetic means of these parameters are also presented. These show that the zonal-and-time mean relative vorticity is but a small fraction of the zonal mean of the temporal r.m.s. relative vorticity, K. The reasons for considering the r.m.s. values as the temporal normal values of vorticity in the extratropics are given in considerable detail. The parameter K is shown to be of considerable importance in locating the extratropical frontal jet streams (EFJ) in time-and-zonal average distributions. The study leads to an understanding of the seasonal migrations of the EFJ which have not been explored until now.
2017-01-01
When adjusting the contrast setting on a television set, we experience a perceptual change in the global image contrast. But how is that statistic computed? We addressed this using a contrast-matching task for checkerboard configurations of micro-patterns in which the contrasts and spatial spreads of two interdigitated components were controlled independently. When the patterns differed greatly in contrast, the higher contrast determined the perceived global contrast. Crucially, however, low contrast additions of one pattern to intermediate contrasts of the other caused a paradoxical reduction in the perceived global contrast. None of the following metrics/models predicted this: max, linear sum, average, energy, root mean squared (RMS), Legge and Foley. However, a nonlinear gain control model, derived from contrast detection and discrimination experiments, incorporating wide-field summation and suppression, did predict the results with no free parameters, but only when spatial filtering was removed. We conclude that our model describes fundamental processes in human contrast vision (the pattern of results was the same for expert and naive observers), but that above threshold—when contrast pedestals are clearly visible—vision's spatial filtering characteristics become transparent, tending towards those of a delta function prior to spatial summation. The global contrast statistic from our model is as easily derived as the RMS contrast of an image, and since it more closely relates to human perception, we suggest it be used as an image contrast metric in practical applications. PMID:28989735
NASA Astrophysics Data System (ADS)
Fredriksson, Ingemar; Saager, Rolf B.; Durkin, Anthony J.; Strömberg, Tomas
2017-11-01
A fiber-optic probe-based instrument, designed for assessment of parameters related to microcirculation, red blood cell tissue fraction (fRBC), oxygen saturation (S), and speed resolved perfusion, has been evaluated using state-of-the-art tissue phantoms. The probe integrates diffuse reflectance spectroscopy (DRS) at two source-detector separations and laser Doppler flowmetry, using an inverse Monte Carlo method for identifying the parameters of a multilayered tissue model. Here, we characterize the accuracy of the DRS aspect of the instrument using (1) liquid blood phantoms containing yeast and (2) epidermis-dermis mimicking solid-layered phantoms fabricated from polydimethylsiloxane, titanium oxide, hemoglobin, and coffee. The root-mean-square (RMS) deviations for fRBC for the two liquid phantoms were 11% and 5.3%, respectively, and 11% for the solid phantoms with highest hemoglobin signatures. The RMS deviation for S was 5.2% and 2.9%, respectively, for the liquid phantoms, and 2.9% for the solid phantoms. RMS deviation for the reduced scattering coefficient (μs‧), for the solid phantoms was 15% (475 to 850 nm). For the liquid phantoms, the RMS deviation in average vessel diameter (D) was 1 μm. In conclusion, the skin microcirculation parameters fRBC and S, as well as, μs‧ and D are estimated with reasonable accuracy.
Virtual reality applications in robotic simulations
NASA Technical Reports Server (NTRS)
Homan, David J.; Gott, Charles J.; Goza, S. Michael
1994-01-01
Virtual reality (VR) provides a means to practice integrated extravehicular activities (EVA)/remote manipulator system (RMS) operations in the on-orbit configuration with no discomfort or risk to crewmembers. VR afforded the STS-61 crew the luxury of practicing the integrated EVA/RMS operations in an on-orbit configuration prior to the actual flight. The VR simulation was developed by the Automation and Robotics Division's Telepresence/Virtual Reality Lab and Integrated Graphics, Operations, and Analysis Lab (IGOAL) at JSC. The RMS Part Task Trainer (PTT) was developed by the IGOAL for RMS training in 1988 as a fully functional, kinematic simulation of the shuttle RMS and served as the RMS portion of the integrated VR simulation. Because the EVA crewmember could get a realistic view of the shuttle and payload bay in the VR simulation, he/she could explore different positions and views to determine the best method for performing a specific task, thus greatly increasing the efficiency of use of the neutral buoyancy facilities.
The Constitutive Modeling of Thin Films with Randon Material Wrinkles
NASA Technical Reports Server (NTRS)
Murphey, Thomas W.; Mikulas, Martin M.
2001-01-01
Material wrinkles drastically alter the structural constitutive properties of thin films. Normally linear elastic materials, when wrinkled, become highly nonlinear and initially inelastic. Stiffness' reduced by 99% and negative Poisson's ratios are typically observed. This paper presents an effective continuum constitutive model for the elastic effects of material wrinkles in thin films. The model considers general two-dimensional stress and strain states (simultaneous bi-axial and shear stress/strain) and neglects out of plane bending. The constitutive model is derived from a traditional mechanics analysis of an idealized physical model of random material wrinkles. Model parameters are the directly measurable wrinkle characteristics of amplitude and wavelength. For these reasons, the equations are mechanistic and deterministic. The model is compared with bi-axial tensile test data for wrinkled Kaptong(Registered Trademark) HN and is shown to deterministically predict strain as a function of stress with an average RMS error of 22%. On average, fitting the model to test data yields an RMS error of 1.2%
Dual tasking and balance in those with central and peripheral vision loss.
Kotecha, Aachal; Chopra, Reena; Fahy, Rachel T A; Rubin, Gary S
2013-08-09
To investigate the effects of a secondary task on standing balance in patients with glaucoma or AMD compared with age-similar control subjects. Twelve AMD, 12 glaucoma, and 12 control participants underwent posturography under two standing conditions (eyes open on a firm or foam-rubber surface) and two tasks: quiet standing and undertaking a mental arithmetic task. Center of foot-pressure average displacement (root mean square [RMS]; in millimeters) was calculated. The mean (SD) age of the participants in each group was as follows: controls 66.2 (6.4) years, glaucoma 69.2 (4.3) years, and AMD 72.2 (5.3) years. There were significant differences in RMS between controls and AMD patients when undertaking the mental arithmetic task standing on the firm surface (mean difference [SE]: 2.8 [0.8] mm, P = 0.005). There were significant differences between controls and AMD patients when undertaking the mental arithmetic task on the foam surface, with the difference between controls and glaucoma patients approaching significance (mean difference [SE]: control versus AMD = 3.1 [0.9] mm, P = 0.005; control versus glaucoma = 2.2 [0.9] mm, P = 0.06). Postural instability increases with the addition of a secondary task in older persons, which may put them at greater risk of falls. Patients with central losses exhibit greater instability with the addition of a secondary task, particularly during somatosensory perturbations. The negative effects of secondary tasks on balance control in those with peripheral visual losses become more apparent under somatosensory perturbations.
Estimation of the sea surface's two-scale backscatter parameters
NASA Technical Reports Server (NTRS)
Wentz, F. J.
1978-01-01
The relationship between the sea-surface normalized radar cross section and the friction velocity vector is determined using a parametric two-scale scattering model. The model parameters are found from a nonlinear maximum likelihood estimation. The estimation is based on aircraft scatterometer measurements and the sea-surface anemometer measurements collected during the JONSWAP '75 experiment. The estimates of the ten model parameters converge to realistic values that are in good agreement with the available oceanographic data. The rms discrepancy between the model and the cross section measurements is 0.7 db, which is the rms sum of a 0.3 db average measurement error and a 0.6 db modeling error.
Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules
Li, Yi-Pei; Bell, Alexis T.; Head-Gordon, Martin
2016-05-26
The partition functions, heat capacities, entropies, and enthalpies of selected molecules were calculated using uncoupled mode (UM) approximations, where the full-dimensional potential energy surface for internal motions was modeled as a sum of independent one-dimensional potentials for each mode. The computational cost of such approaches scales the same with molecular size as standard harmonic oscillator vibrational analysis using harmonic frequencies (HO hf). To compute thermodynamic properties, a computational protocol for obtaining the energy levels of each mode was established. The accuracy of the UM approximation depends strongly on how the one-dimensional potentials of each modes are defined. If the potentialsmore » are determined by the energy as a function of displacement along each normal mode (UM-N), the accuracies of the calculated thermodynamic properties are not significantly improved versus the HO hf model. Significant improvements can be achieved by constructing potentials for internal rotations and vibrations using the energy surfaces along the torsional coordinates and the remaining vibrational normal modes, respectively (UM-VT). For hydrogen peroxide and its isotopologs at 300 K, UM-VT captures more than 70% of the partition functions on average. By con trast, the HO hf model and UM-N can capture no more than 50%. For a selected test set of C2 to C8 linear and branched alkanes and species with different moieties, the enthalpies calculated using the HO hf model, UM-N, and UM-VT are all quite accurate comparing with reference values though the RMS errors of the HO model and UM-N are slightly higher than UM-VT. However, the accuracies in entropy calculations differ significantly between these three models. For the same test set, the RMS error of the standard entropies calculated by UM-VT is 2.18 cal mol -1 K -1 at 1000 K. By contrast, the RMS error obtained using the HO model and UM-N are 6.42 and 5.73 cal mol -1 K -1, respectively. For a test set composed of nine alkanes ranging from C5 to C8, the heat capacities calculated with the UM-VT model agree with the experimental values to within a RMS error of 0.78 cal mol -1 K -1 , which is less than one-third of the RMS error of the HO hf (2.69 cal mol -1 K -1) and UM-N (2.41 cal mol -1 K -1) models.« less
Some considerations on the vibrational environment of the DSC-DCMIX1 experiment onboard ISS
NASA Astrophysics Data System (ADS)
Jurado, R.; Gavaldà, Jna.; Simón, M. J.; Pallarés, J.; Laverón-Simavilla, A.; Ruiz, X.; Shevtsova, V.
2016-12-01
The present work attempts to characterize the accelerometric environment of the DSC-DCMIX1 thermodiffusion experiment carried out in the International Space Station, from November 7th 2011 until January 16th 2012. Quasi-steady and vibrational/transient data coming from MAMS and SAMS2 sensors have been downloaded from the database of the PIMS NASA website. To be as exhaustive as possible, simultaneous digital signals coming from different SAMS2 sensors located in the Destiny and Columbus modules have also been considered. In order to detect orbital adjustments, dockings, undockings, as well as, quiescent periods, when the experiment runs were active, we have used the quasi-steady eight hours averaged (XA, YA and ZA) acceleration functions as well as the eight hours RMS ones. To determine the spectral contents of the different signals the Thomson multitaper and Welch methods have been used. On the other hand, to suppress the high levels of noise always existing in the raw SAMS2 signals, denoising techniques have been preferred for comparative reboostings considerations. Finally, the RMS values for specific 1/3 octave frequency bands showed that the International Space Station vibratory limit requirements have not been totally accomplished during both quiescent periods and strong disturbances, specially in the low frequency range.
Wilson, Richard H
2015-04-01
In 1940, a cooperative effort by the radio networks and Bell Telephone produced the volume unit (vu) meter that has been the mainstay instrument for monitoring the level of speech signals in commercial broadcasting and research laboratories. With the use of computers, today the amplitude of signals can be quantified easily using the root mean square (rms) algorithm. Researchers had previously reported that amplitude estimates of sentences and running speech were 4.8 dB higher when measured with a vu meter than when calculated with rms. This study addresses the vu-rms relation as applied to the carrier phrase and target word paradigm used to assess word-recognition abilities, the premise being that by definition the word-recognition paradigm is a special and different case from that described previously. The purpose was to evaluate the vu and rms amplitude relations for the carrier phrases and target words commonly used to assess word-recognition abilities. In addition, the relations with the target words between rms level and recognition performance were examined. Descriptive and correlational. Two recoded versions of the Northwestern University Auditory Test No. 6 were evaluated, the Auditec of St. Louis (Auditec) male speaker and the Department of Veterans Affairs (VA) female speaker. Using both visual and auditory cues from a waveform editor, the temporal onsets and offsets were defined for each carrier phrase and each target word. The rms amplitudes for those segments then were computed and expressed in decibels with reference to the maximum digitization range. The data were maintained for each of the four Northwestern University Auditory Test No. 6 word lists. Descriptive analyses were used with linear regressions used to evaluate the reliability of the measurement technique and the relation between the rms levels of the target words and recognition performances. Although there was a 1.3 dB difference between the calibration tones, the mean levels of the carrier phrases for the two recordings were -14.8 dB (Auditec) and -14.1 dB (VA) with standard deviations <1 dB. For the target words, the mean amplitudes were -19.9 dB (Auditec) and -18.3 dB (VA) with standard deviations ranging from 1.3 to 2.4 dB. The mean durations for the carrier phrases of both recordings were 593-594 msec, with the mean durations of the target words a little different, 509 msec (Auditec) and 528 msec (VA). Random relations were observed between the recognition performances and rms levels of the target words. Amplitude and temporal data for the individual words are provided. The rms levels of the carrier phrases closely approximated (±1 dB) the rms levels of the calibration tones, both of which were set to 0 vu (dB). The rms levels of the target words were 5-6 dB below the levels of the carrier phrases and were substantially more variable than the levels of the carrier phrases. The relation between the rms levels of the target words and recognition performances on the words was random. American Academy of Audiology.
Neuromuscular trunk activation patterns in back pain patients during one-handed lifting.
Mueller, Juliane; Engel, Tilman; Kopinski, Stephan; Mayer, Frank; Mueller, Steffen
2017-02-18
To analyze neuromuscular activity patterns of the trunk in healthy controls (H) and back pain patients (BPP) during one-handed lifting of light to heavy loads. After assessment of back pain (graded chronic pain scale according to von Korff) all subjects ( n = 43) performed a warm-up (treadmill walking). Next, subjects were instructed to lift 3 × a 20 kg weight placed in front of them (with both hand) onto a table (height: 0.75 m). Subsequently, all subjects lifted with one hand (left-side, 3 repetitions) a weight of 1 kg (light), 10 kg (middle) and 20 kg (heavy) in random order from the ground up onto the table left of them. Trunk muscle activity was assessed with a 12-lead EMG (6 ventral/6 dorsal muscles; 4000 Hz). EMG-RMS (%) was averaged over the 3 repetitions and analyzed for the whole one-handed lifting cycle, then normalized to RMS of the two-handed lifting. Additionally, the mean (normalized) EMG-RMS of four trunk areas [right/left ventral area (VR/VL); right/left dorsal area (DR/DL)] was calculated. Data were analyzed descriptively (mean ± SD) followed by student's t -test comparing H and BPP (α = 0.05). With respect to the unequal distribution of subjects in H and BPP, a matched-group analysis was conducted. Seven healthy controls were gender- and age-matched (group H matched ) to the 7 BPP. In addition, task failure was calculated and compared between H/H matched vs BPP using χ 2 . Seven subjects (3m/4f; 32 ± 7 years; 171 ± 7 cm; 65 ± 11 kg) were assigned to BPP (pain grade ≥ 2) and 36 (13m/23f; 28 ± 8 years; 174 ± 10 cm; 71 ± 12 kg) to H (pain grade ≤ 1). H and BPP did not differ significantly in anthropometrics ( P > 0.05). All subjects were able to lift the light and middle loads, but 57% of BPP and 22% of H were not able to lift the heavy load (all women). χ 2 analysis revealed statistically significant differences in task failure between H vs BPP ( P = 0.03). EMG-RMS ranged from 33% ± 10%/30% ± 9% (DL, 1 kg) to 356% ± 148%/283% ± 80% (VR, 20 kg) in H/BPP with no statistical difference between groups regardless of load ( P > 0.05). However, the EMG-RMS of the VR was greatest in all lifting tasks for both groups and increased with heavier loads. Heavier loading leads to an increase (2- to 3-fold) in trunk muscle activity with comparable patterns. Heavy loading (20 kg) leads to task failure, especially in women with back pain.
Neuromuscular trunk activation patterns in back pain patients during one-handed lifting
Mueller, Juliane; Engel, Tilman; Kopinski, Stephan; Mayer, Frank; Mueller, Steffen
2017-01-01
AIM To analyze neuromuscular activity patterns of the trunk in healthy controls (H) and back pain patients (BPP) during one-handed lifting of light to heavy loads. METHODS After assessment of back pain (graded chronic pain scale according to von Korff) all subjects (n = 43) performed a warm-up (treadmill walking). Next, subjects were instructed to lift 3 × a 20 kg weight placed in front of them (with both hand) onto a table (height: 0.75 m). Subsequently, all subjects lifted with one hand (left-side, 3 repetitions) a weight of 1 kg (light), 10 kg (middle) and 20 kg (heavy) in random order from the ground up onto the table left of them. Trunk muscle activity was assessed with a 12-lead EMG (6 ventral/6 dorsal muscles; 4000 Hz). EMG-RMS (%) was averaged over the 3 repetitions and analyzed for the whole one-handed lifting cycle, then normalized to RMS of the two-handed lifting. Additionally, the mean (normalized) EMG-RMS of four trunk areas [right/left ventral area (VR/VL); right/left dorsal area (DR/DL)] was calculated. Data were analyzed descriptively (mean ± SD) followed by student’s t-test comparing H and BPP (α = 0.05). With respect to the unequal distribution of subjects in H and BPP, a matched-group analysis was conducted. Seven healthy controls were gender- and age-matched (group Hmatched) to the 7 BPP. In addition, task failure was calculated and compared between H/Hmatched vs BPP using χ2. RESULTS Seven subjects (3m/4f; 32 ± 7 years; 171 ± 7 cm; 65 ± 11 kg) were assigned to BPP (pain grade ≥ 2) and 36 (13m/23f; 28 ± 8 years; 174 ± 10 cm; 71 ± 12 kg) to H (pain grade ≤ 1). H and BPP did not differ significantly in anthropometrics (P > 0.05). All subjects were able to lift the light and middle loads, but 57% of BPP and 22% of H were not able to lift the heavy load (all women). χ2 analysis revealed statistically significant differences in task failure between H vs BPP (P = 0.03). EMG-RMS ranged from 33% ± 10%/30% ± 9% (DL, 1 kg) to 356% ± 148%/283% ± 80% (VR, 20 kg) in H/BPP with no statistical difference between groups regardless of load (P > 0.05). However, the EMG-RMS of the VR was greatest in all lifting tasks for both groups and increased with heavier loads. CONCLUSION Heavier loading leads to an increase (2- to 3-fold) in trunk muscle activity with comparable patterns. Heavy loading (20 kg) leads to task failure, especially in women with back pain. PMID:28251064
Petošić, Antonio; Horvat, Marko; Režek Jambrak, Anet
2017-11-01
The paper reports and compares the results of the electromechanical, acoustical and thermodynamical characterization of a low-frequency sonotrode-type ultrasonic device inside a small sonoreactor, immersed in three different loading media, namely, water, juice and milk, excited at different excitation levels, both below and above the cavitation threshold. The electroacoustic efficiency factor determined at system resonance through electromechanical characterization in degassed water as the reference medium is 88.7% for the device in question. This efficiency can be reduced up to three times due to the existence of a complex sound field in the reactor in linear driving conditions below the cavitation threshold. The behaviour of the system is more stable at higher excitation levels than in linear operating conditions. During acoustical characterization, acoustic pressure is spatially averaged, both below and above the cavitation threshold. The standing wave patterns inside the sonoreactor have a stronger influence on the variation of the spatially distributed RMS pressure in linear operating conditions. For these conditions, the variation of ±1.7dB was obtained, compared to ±1.4dB obtained in highly nonlinear regime. The acoustic power in the sonoreactor was estimated from the magnitude of the averaged RMS pressure, and from the reverberation time of the sonoreactor as the representation of the losses. The electroacoustic efficiency factors obtained through acoustical and electromechanical characterization are in a very good agreement at low excitation levels. The irradiated acoustic power estimated in nonlinear conditions differs from the dissipated acoustic power determined with the calorimetric method by several orders of magnitude. The number of negative pressure peaks that represent transient cavitation decreases over time during longer treatments of a medium with high-power ultrasound. The number of negative peaks decreases faster when the medium and the vessel are allowed to heat up. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lifeng, E-mail: walfe@nuaa.edu.cn; Hu, Haiyan
The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermalmore » vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.« less
On the status of IAEA delta-13C stable isotope reference materials.
NASA Astrophysics Data System (ADS)
Assonov, Sergey; Groening, Manfred; Fajgelj, Ales
2016-04-01
For practical reasons all isotope measurements are performed on relative scales realized through the use of international, scale-defining primary standards. In fact these standards were materials (artefacts, similar to prototypes of meter and kg) selected based on their properties. The VPDB delta-13C scale is realised via two highest-level reference materials NBS19 and LSVEC, the first defining the scale and the second aimed to normalise lab-to-lab calibrations. These two reference materials (RMs) have been maintained and distributed by IAEA and NIST. The priority task is to maintain these primary RMs at the required uncertainty level, thus ensuring the long-term scale consistency. The second task is to introduce replacements when needed (currently for exhausted NBS19, work in progress). The next is to produce a family of lower level RMs (secondary, tertiary) addressing needs of various applications (with different delta values, in different physical-chemical forms) and their needs for the uncertainty; these RMs should be traceable to the highest level RMs. Presently three is a need for a range of RMs addressing existing and newly emerging analytical techniques (e.g. optical isotopic analysers) in form of calibrated CO2 gases with different delta-13C values. All that implies creating a family of delta-13C stable isotope reference materials. Presently IAEA works on replacement for NBS19 and planning new RMs. Besides, we found that LSVEC (introduced as second anchor for the VPDB scale in 2006) demonstrate a considerable scatter of its delta-13C value which implies a potential bias of the property value and increased value uncertainty which may conflict with uncertainty requirements for atmospheric monitoring. That is not compatible with the status of LSVEC, and therefore it should be replaced as soon as possible. The presentation will give an overview of the current status, the strategic plan of developments and the near future steps.
Hariprasad, V; Kulkarni, V M
1996-01-01
Different modes of binding of transition state mimics: amide, phosphonate and difluoro ketone, to human synovial fluid phospholipase A2 (HSF PLA2) are studies by molecular dynamics simulations computed in solvent. The results are analysed in the light of primary binding sites. Hydrogen bonding interaction plays an important role for amino acids such as Gly32, Val30, and Glu55, apart from the well known active site residues viz Asp48, Gly25, Gly29, Gly31, His27, His47, Lys62, Phe23, Asn114 and Tyr112. In addition, the hydrogen bonding interaction between Sn-1 tetrahedral phosphonate group of amide and difluoro ketone inhibitors and crystallographic water molecules (H2O 523, H2O 524 and H2O 401) seems to have a significant role. Many of the active site charged residues display considerable movement upon ligand binding. The structural effects of ligand binding were analyzed from RMS deviations of C alpha in the resulting energy-minimized average structures of the receptor-ligand complexes. The values of the RMS deviations differ among the HSF PLA2s, in a pattern that is not the same for the three complexes. This suggests that ligands with different pharmacological efficacies induce different types of conformational changes of the receptor. Our active-orientation model is, at least qualitatively, consistent with experimental data and should be useful for the rational design of more potent inhibitors.
Czuba, Christiana R.; Barton, Gary J.
2011-01-01
The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. The restoration project is focused on recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. River restoration is a complex undertaking that requires a thorough understanding of the river and floodplain landscape prior to restoration efforts. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey developed an updated one-dimensional hydraulic model of the Kootenai River in Idaho between river miles (RMs) 105.6 and 171.9 to characterize the current hydraulic conditions. A previously calibrated model of the study area, based on channel geometry data collected during 2002 and 2003, was the basis for this updated model. New high-resolution bathymetric surveys conducted in the study reach between RMs 138 and 161.4 provided additional detail of channel morphology. A light detection and ranging (LIDAR) survey was flown in the Kootenai River valley in 2005 between RMs 105.6 and 159.5 to characterize the floodplain topography. Six temporary gaging stations installed in 2006-08 between RMs 154.1 and 161.2, combined with five permanent gaging stations in the study reach, provided discharge and water-surface elevations for model calibration and verification. Measured discharges ranging from about 4,800 to 63,000 cubic feet per second (ft3/s) were simulated for calibration events, and calibrated water-surface elevations ranged from about 1,745 to 1,820 feet (ft) throughout the extent of the model. Calibration was considered acceptable when the simulated and measured water-surface elevations at gaging stations differed by less than (+/-)0.15 ft. Model verification consisted of simulating 10 additional events with measured discharges ranging from about 4,900 to 52,000 ft3/s, and comparing simulated and measured water-surface elevations at gaging stations. Average water-surface-elevation error in the verification simulations was 0.05 ft, with the error ranging from -1.17 to 0.94 ft over the range of events and gaging stations. Additional verification included a graphical comparison of measured average velocities that range from 1.0 to 6.2 feet per second to simulated velocities at four sites within the study reach for measured discharges ranging from about 7,400 to 46,600 ft3/s. The availability of high-resolution bathymetric and LIDAR data, along with the additional gaging stations in the study reach, allowed for more detail to be added to the model and a more thorough calibration, sensitivity, and verification analysis to be conducted. Model resolution and performance is most improved between RMs 140 and 160, which includes the 18.3-mile reach of the Kootenai River white sturgeon critical habitat.
NASA Technical Reports Server (NTRS)
Piersol, Allan G.
1991-01-01
Analytical expressions have been derived to describe the mean square error in the estimation of the maximum rms value computed from a step-wise (or running) time average of a nonstationary random signal. These analytical expressions have been applied to the problem of selecting the optimum averaging times that will minimize the total mean square errors in estimates of the maximum sound pressure levels measured inside the Titan IV payload fairing (PLF) and the Space Shuttle payload bay (PLB) during lift-off. Based on evaluations of typical Titan IV and Space Shuttle launch data, it has been determined that the optimum averaging times for computing the maximum levels are (1) T (sub o) = 1.14 sec for the maximum overall level, and T(sub oi) = 4.88 f (sub i) (exp -0.2) sec for the maximum 1/3 octave band levels inside the Titan IV PLF, and (2) T (sub o) = 1.65 sec for the maximum overall level, and T (sub oi) = 7.10 f (sub i) (exp -0.2) sec for the maximum 1/3 octave band levels inside the Space Shuttle PLB, where f (sub i) is the 1/3 octave band center frequency. However, the results for both vehicles indicate that the total rms error in the maximum level estimates will be within 25 percent the minimum error for all averaging times within plus or minus 50 percent of the optimum averaging time, so a precise selection of the exact optimum averaging time is not critical. Based on these results, linear averaging times (T) are recommended for computing the maximum sound pressure level during lift-off.
Cloud Motion Vectors from MISR using Sub-pixel Enhancements
NASA Technical Reports Server (NTRS)
Davies, Roger; Horvath, Akos; Moroney, Catherine; Zhang, Banglin; Zhu, Yanqiu
2007-01-01
The operational retrieval of height-resolved cloud motion vectors by the Multiangle Imaging SpectroRadiometer on the Terra satellite has been significantly improved by using sub-pixel approaches to co-registration and disparity assessment, and by imposing stronger quality control based on the agreement between independent forward and aft triplet retrievals. Analysis of the fore-aft differences indicates that CMVs pass the basic operational quality control 67% of the time, with rms differences - in speed of 2.4 m/s, in direction of 17 deg, and in height assignment of 290 m. The use of enhanced quality control thresholds reduces these rms values to 1.5 m/s, 17 deg and 165 m, respectively, at the cost of reduced coverage to 45%. Use of the enhanced thresholds also eliminates a tendency for the rms differences to increase with height. Comparison of CMVs from an earlier operational version that had slightly weaker quality control, with 6-hour forecast winds from the Global Modeling and Assimilation Office yielded very low bias values and an rms vector difference that ranged from 5 m/s for low clouds to 10 m/s for high clouds.
Optical control of the Advanced Technology Solar Telescope.
Upton, Robert
2006-08-10
The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented.
Unicompartmental knee arthroplasty: is robotic technology more accurate than conventional technique?
Citak, Mustafa; Suero, Eduardo M; Citak, Musa; Dunbar, Nicholas J; Branch, Sharon H; Conditt, Michael A; Banks, Scott A; Pearle, Andrew D
2013-08-01
Robotic-assisted unicompartmental knee arthroplasty (UKA) with rigid bone fixation "can significantly improve implant placement and leg alignment. The aim of this cadaveric study was to determine whether the use of robotic systems with dynamic bone tracking would provide more accurate UKA implant positioning compared to the conventional manual technique. Three-dimensional CT-based preoperative plans were created to determine the desired position and orientation for the tibial and femoral components. For each pair of cadaver knees, UKA was performed using traditional instrumentation on the left side and using a haptic robotic system on the right side. Postoperative CT scans were obtained and 3D-to-3D iterative closest point registration was performed. Implant position and orientation were compared to the preoperative plan. Surgical RMS errors for femoral component placement were within 1.9 mm and 3.7° in all directions of the planned implant position for the robotic group, while RMS errors for the manual group were within 5.4mm and 10.2°. Average RMS errors for tibial component placement were within 1.4mm and 5.0° in all directions for the robotic group; while, for the manual group, RMS errors were within 5.7 mm and 19.2°. UKA was more precise using a semiactive robotic system with dynamic bone tracking technology compared to the manual technique. Copyright © 2012 Elsevier B.V. All rights reserved.
A compiled catalog of rotation measures of radio point sources
NASA Astrophysics Data System (ADS)
Xu, Jun; Han, Jin-Lin
2014-08-01
We compiled a catalog of Faraday rotation measures (RMs) for 4553 extragalactic radio point sources published in literature. These RMs were derived from multi-frequency polarization observations. The RM data are compared to those in the NRAO VLA Sky Survey (NVSS) RM catalog. We reveal a systematic uncertainty of about 10.0 ± 1.5 rad m-2 in the NVSS RM catalog. The Galactic foreground RM is calculated through a weighted averaging method by using the compiled RM catalog together with the NVSS RM catalog, with careful consideration of uncertainties in the RM data. The data from the catalog and the interface for the Galactic foreground RM calculations are publicly available on the webpage: http://zmtt.bao.ac.cn/RM/.
Luvizutto, Gustavo José; Dos Santos, Maria Regina Lopes; Sartor, Lorena Cristina Alvarez; da Silva Rodrigues, Josiela Cristina; da Costa, Rafael Dalle Molle; Braga, Gabriel Pereira; de Oliveira Antunes, Letícia Cláudia; Souza, Juli Thomaz; de Carvalho Nunes, Hélio Rubens; Bazan, Silméia Garcia Zanati; Bazan, Rodrigo
2017-10-01
During hospitalization, stroke patients are bedridden due to neurologic impairment, leading to loss of muscle mass, weakness, and functional limitation. There have been few studies examining respiratory muscle strength (RMS) in the acute phase of stroke. This study aimed to evaluate the RMS of patients with acute stroke compared with predicted values and to relate this to anthropometric variables, risk factors, and neurologic severity. This is a cross-sectional study in the acute phase of stroke. After admission, RMS was evaluated by maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP); anthropometric data were collected; and neurologic severity was evaluated by the National Institutes of Health Stroke Scale. The analysis of MIP and MEP with predicted values was performed by chi-square test, and the relationship between anthropometric variables, risk factors, and neurologic severity was determined through multiple linear regression followed by residue analysis by the Shapiro-Wilk test; P < .05 was considered statistically significant. In the 32 patients studied, MIP and MEP were reduced when compared with the predicted values. MIP declined significantly by 4.39 points for each 1 kg/m 2 increase in body mass index (BMI), and MEP declined significantly by an average of 3.89 points for each 1 kg/m 2 increase in BMI. There was no statistically significant relationship between MIP or MEP and risk factors, and between MIP or MIP and neurologic severity in acute phase of stroke. There is a reduction of RMS in the acute phase of stroke, and RMS was lower in individuals with increased age and BMI. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
The effects of a 28-Hz vibration on arm muscle activity during isometric exercise.
Mischi, Massimo; Cardinale, Marco
2009-03-01
The aim of this study was to evaluate activation and coactivation of biceps and triceps muscles during isometric exercise performed with and without superimposing a vibration stimulation. Twelve healthy volunteers (age = 22.7 +/- 2.6 yr) participated in this study. The subjects performed five trials of isometric elbow flexion and five trials of elbow extension with increasing levels of force in two conditions: vibration (V) and normal loading (C). V stimulation was characterized by a frequency of 28 Hz. Surface EMG activity of biceps and triceps muscles was simultaneously measured by bipolar surface electromyography and assessed by the estimation of the root mean square (RMS) of the electrical recordings over a fixed 5-s interval. Frequency analysis was adopted to estimate the RMS related to muscle activation and to exclude the harmonics generated by movement artifacts due to V. The analysis of the recordings revealed a significant EMG RMS increase when V was applied. On average, the EMG RMS of biceps and triceps during elbow flexion was, respectively, 26.1% (P < 0.05) and 18.2% (P = 0.15) higher than C. During elbow extension, the EMG RMS of biceps and triceps was 77.2% and 45.2% (P < 0.05) higher than C, respectively. The coactivation was assessed as the ratio between the activation of antagonist and agonist muscles during arm flexion and extension tasks. The results revealed an increase of coactivation during V exercise, especially for lighter loads. This study shows that V exercise at 28 Hz produces an increase of the activation and the coactivation of biceps and triceps. This exercise modality seems therefore suitable for various applications.
Average CsI Neutron Density Distribution from COHERENT Data
NASA Astrophysics Data System (ADS)
Cadeddu, M.; Giunti, C.; Li, Y. F.; Zhang, Y. Y.
2018-02-01
Using the coherent elastic neutrino-nucleus scattering data of the COHERENT experiment, we determine for the first time the average neutron rms radius of
Application of an image-guided navigation system in breast cancer localization
NASA Astrophysics Data System (ADS)
Alderliesten, Tanja; Loo, Claudette; Schlief, Angelique T. E. F.; Paape, Anita; van der Meer, Michiel; Gilhuijs, Kenneth G. A.
2009-02-01
Image-guided navigation on the basis of pre-therapy images in a deformable organ, such as the breast, requires a survey of the factors that cause uncertainties. A deformable breast-tissue-mimicking phantom with simulated tumors was employed to investigate the accuracy of lesion localization with a needle instrument coupled to an optical measurement system. The RMS deviation was 1.1 mm with errors <= 2.0 mm in 96% of the procedures. Ultrasonography data acquired during needle localization of breast tumors were analyzed in 20 patients (23 tumors; 12 benign, 11 malignant) to investigate the deformation due to presence of instruments. The overall RMS tumor shift was 2.3 mm after release of pressure on the needle. To establish an optimal strategy to correct for breast motion due to breathing experiments with a volunteer were performed. Tracking a single centre marker was found to be most effective to improve registration accuracy. Average deviations of 8.2 mm were reduced to 1.1 mm. The combined impact of these different uncertainties resulted in distributions defined by: μ = 2.5 mm, σ = 1.4 mm (benign and malignant), μ = 3.1 mm, σ = 1.8 mm (benign), μ = 1.7 mm, σ = 0.9 mm (malignant).
In vivo validation of patellofemoral kinematics during overground gait and stair ascent.
Pitcairn, Samuel; Lesniak, Bryson; Anderst, William
2018-06-18
The patellofemoral (PF) joint is a common site for non-specific anterior knee pain. The pathophysiology of patellofemoral pain may be related to abnormal motion of the patella relative to the femur, leading to increased stress at the patellofemoral joint. Patellofemoral motion cannot be accurately measured using conventional motion capture. The aim of this study was to determine the accuracy of a biplane radiography system for measuring in vivo PF motion during walking and stair ascent. Four subjects had three 1.0 mm diameter tantalum beads implanted into the patella. Participants performed three trials each of over ground walking and stair ascent while biplane radiographs were collected at 100 Hz. Patella motion was tracked using radiostereophotogrammetric analysis (RSA) as a "gold standard", and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. The average RMS difference between the RSA and model-based tracking was 0.41 mm and 1.97° when there was no obstruction from the contralateral leg. These differences increased by 34% and 40%, respectively, when the patella was at least partially obstructed by the contralateral leg. The average RMS difference in patellofemoral joint space between tracking methods was 0.9 mm or less. Previous validations of biplane radiographic systems have estimated tracking accuracy by moving cadaveric knees through simulated motions. These validations were unable to replicate in vivo kinematics, including patella motion due to muscle activation, and failed to assess the imaging and tracking challenges related to contralateral limb obstruction. By replicating the muscle contraction, movement velocity, joint range of motion, and obstruction of the patella by the contralateral limb, the present study provides a realistic estimate of patellofemoral tracking accuracy for future in vivo studies. Copyright © 2018 Elsevier B.V. All rights reserved.
The use of reference materials in quality assurance programmes in food microbiology laboratories.
In't Veld, P H
1998-11-24
Nine different reference materials (RMs) for use in food and water microbiology have been developed with the support of the European Commission (EC). The production process of RMs is based on spray drying bacteria suspended in milk. The highly contaminated milk powder (HCMP) obtained is mixed with sterile milk powder to achieve the desired level of contamination and is subsequently filled into gelatine capsules. The HCMP may need to be stabilised by storage for more than a year before a stable RM can be prepared. The HCMP are mixed with sterile milk powder using a pestle and mortar in order to produce homogeneous RMs. For routine use of RMs Shewhart control charts can be produced. Based on log10 transformed counts, control limits are calculated. Rules for the interpretation of results facilitate the detection of out of control situations. Besides RMs there are also CRMs (Certified Reference Materials) that are certified by the EC Community Bureau of Reference (BCR) and are intended for occasional use. Based on the BCR certificate, user tables are produced presenting the 95% confidence limits for the number of capsules likely to be examined in practice. Also power analysis is made to indicate the minimum difference between the certified value and the observed geometric mean value in relation to the number of capsules examined.
Vanhoorne, Bart; Decock, Wim; Vranken, Sofie; Lanssens, Thomas; Dekeyzer, Stefanie; Verfaille, Kevin; Horton, Tammy; Kroh, Andreas; Hernandez, Francisco; Mees, Jan
2018-01-01
The World Register of Marine Species (WoRMS) celebrated its 10th anniversary in 2017. WoRMS is a unique database: there is no comparable global database for marine species, which is driven by a large, global expert community, is supported by a Data Management Team and can rely on a permanent host institute, dedicated to keeping WoRMS online. Over the past ten years, the content of WoRMS has grown steadily, and the system currently contains more than 242,000 accepted marine species. WoRMS has not yet reached completeness: approximately 2,000 newly described species per year are added, and editors also enter the remaining missing older names–both accepted and unaccepted–an effort amounting to approximately 20,000 taxon name additions per year. WoRMS is used extensively, through different channels, indicating that it is recognized as a high-quality database on marine species information. It is updated on a daily basis by its Editorial Board, which currently consists of 490 taxonomic and thematic experts located around the world. Owing to its unique qualities, WoRMS has become a partner in many large-scale initiatives including OBIS, LifeWatch and the Catalogue of Life, where it is recognized as a high-quality and reliable source of information for marine taxonomy. PMID:29624577
Fresh Fuel Measurements With the Differential Die-Away Self-Interrogation Instrument
NASA Astrophysics Data System (ADS)
Trahan, Alexis C.; Belian, Anthony P.; Swinhoe, Martyn T.; Menlove, Howard O.; Flaska, Marek; Pozzi, Sara A.
2017-07-01
The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) Project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: 1) verify the initial enrichment, burnup, and cooling time of facility declaration; 2) detect the diversion or replacement of pins; 3) estimate the plutonium mass; 4) estimate decay heat; and 5) determine the reactivity of spent fuel assemblies. The differential die-away self-interrogation (DDSI) instrument is one instrument that was assessed for years regarding its feasibility for robust, timely verification of spent fuel assemblies. The instrument was recently built and was tested using fresh fuel assemblies in a variety of configurations, including varying enrichment, neutron absorber content, and symmetry. The early die-away method, a multiplication determination method developed in simulation space, was successfully tested on the fresh fuel assembly data and determined multiplication with a root-mean-square (RMS) error of 2.9%. The experimental results were compared with MCNP simulations of the instrument as well. Low multiplication assemblies had agreement with an average RMS error of 0.2% in the singles count rate (i.e., total neutrons detected per second) and 3.4% in the doubles count rates (i.e., neutrons detected in coincidence per second). High-multiplication assemblies had agreement with an average RMS error of 4.1% in the singles and 13.3% in the doubles count rates.
Fresh Fuel Measurements With the Differential Die-Away Self-Interrogation Instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trahan, Alexis C.; Belian, Anthony P.; Swinhoe, Martyn T.
The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) Project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. Thus the NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: 1) verify the initial enrichment, burnup, and cooling time of facility declaration; 2) detect the diversion or replacement of pins; 3) estimate the plutonium mass; 4) estimate decay heat; and 5) determine the reactivity of spent fuel assemblies. The differential die-away self-interrogation (DDSI) instrument is one instrumentmore » that was assessed for years regarding its feasibility for robust, timely verification of spent fuel assemblies. The instrument was recently built and was tested using fresh fuel assemblies in a variety of configurations, including varying enrichment, neutron absorber content, and symmetry. The early die-away method, a multiplication determination method developed in simulation space, was successfully tested on the fresh fuel assembly data and determined multiplication with a root-mean-square (RMS) error of 2.9%. The experimental results were compared with MCNP simulations of the instrument as well. Low multiplication assemblies had agreement with an average RMS error of 0.2% in the singles count rate (i.e., total neutrons detected per second) and 3.4% in the doubles count rates (i.e., neutrons detected in coincidence per second). High-multiplication assemblies had agreement with an average RMS error of 4.1% in the singles and 13.3% in the doubles count rates.« less
Comprehensive quantification of the spastic catch in children with cerebral palsy.
Lynn, Bar-On; Erwin, Aertbeliën; Guy, Molenaers; Herman, Bruyninckx; Davide, Monari; Ellen, Jaspers; Anne, Cazaerck; Kaat, Desloovere
2013-01-01
In clinical settings, the spastic catch is judged subjectively. This study assessed the psychometric properties of objective parameters that define and quantify the severity of the spastic catch in children with cerebral palsy (CP). A convenience sample of children with spastic CP (N=46; age range: 4-16 years) underwent objective spasticity assessments. High velocity, passive stretches were applied to the gastrocnemius (GAS) and medial hamstrings (MEH). Muscle activity was measured with surface electromyography (sEMG), joint angle characteristics using inertial sensors and reactive torque using a force sensor. To test reliability, a group of 12 children were retested after an average of 13 ± 9 days. The angle of spastic catch (AOC) was estimated by three biomechanical definitions: joint angle at (1) maximum angular deceleration; (2) maximum change in torque; and (3) minimum power. Each definition was checked for reliability and validity. Construct and clinical validity were evaluated by correlating each AOC definition to the averaged root mean square envelope of EMG (RMS-EMG) and the Modified Tardieu Scale (MTS). Severity categories were created based on selected parameters to establish face validity. All definitions showed moderate to high reliability. Significant correlations were found between AOC3 and the MTS of both muscles and the RMS-EMG of the MEH, though coefficients were only weak. AOC3 further distinguished between mild, moderate and severe catches. Objective parameters can define and quantify the severity of the spastic catch in children with CP. However, a comprehensive understanding requires the integration of both biomechanical and RMS-EMG data. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fresh Fuel Measurements With the Differential Die-Away Self-Interrogation Instrument
Trahan, Alexis C.; Belian, Anthony P.; Swinhoe, Martyn T.; ...
2017-01-05
The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) Project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. Thus the NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: 1) verify the initial enrichment, burnup, and cooling time of facility declaration; 2) detect the diversion or replacement of pins; 3) estimate the plutonium mass; 4) estimate decay heat; and 5) determine the reactivity of spent fuel assemblies. The differential die-away self-interrogation (DDSI) instrument is one instrumentmore » that was assessed for years regarding its feasibility for robust, timely verification of spent fuel assemblies. The instrument was recently built and was tested using fresh fuel assemblies in a variety of configurations, including varying enrichment, neutron absorber content, and symmetry. The early die-away method, a multiplication determination method developed in simulation space, was successfully tested on the fresh fuel assembly data and determined multiplication with a root-mean-square (RMS) error of 2.9%. The experimental results were compared with MCNP simulations of the instrument as well. Low multiplication assemblies had agreement with an average RMS error of 0.2% in the singles count rate (i.e., total neutrons detected per second) and 3.4% in the doubles count rates (i.e., neutrons detected in coincidence per second). High-multiplication assemblies had agreement with an average RMS error of 4.1% in the singles and 13.3% in the doubles count rates.« less
The rhesus measurement system: A new instrument for space research
NASA Technical Reports Server (NTRS)
Schonfeld, Julie E.; Hines, John W.
1993-01-01
The Rhesus Research Facility (RRF) is a research environment designed to study the effects of microgravity using rhesus primates as human surrogates. This experimental model allows investigators to study numerous aspects of microgravity exposure without compromising crew member activities. Currently, the RRF is slated for two missions to collect its data, the first mission is SLS-3, due to fly in late 1995. The RRF is a joint effort between the United States and France. The science and hardware portions of the project are being shared between the National Aeronautics and Space Administration (NASA) and France's Centre National D'Etudes Spatiales (CNES). The RRF is composed of many different subsystems in order to acquire data, provide life support, environmental enrichment, computer facilities and measurement capabilities for two rhesus primates aboard a nominal sixteen day mission. One of these subsystems is the Rhesus Measurement System (RMS). The RMS is designed to obtain in-flight physiological measurements from sensors interfaced with the subject. The RMS will acquire, preprocess, and transfer the physiologic data to the Flight Data System (FDS) for relay to the ground during flight. The measurements which will be taken by the RMS during the first flight will be respiration, measured at two different sites; electromyogram (EMG) at three different sites; electroencephalogram (EEG); electrocardiogram (ECG); and body temperature. These measurements taken by the RMS will assist the research team in meeting the science objectives of the RRF project.
Comparison of Dst Forecast Models for Intense Geomagnetic Storms
NASA Technical Reports Server (NTRS)
Ji, Eun-Young; Moon, Y.-J.; Gopalswamy, N.; Lee, D.-H.
2012-01-01
We have compared six disturbance storm time (Dst) forecast models using 63 intense geomagnetic storms (Dst <=100 nT) that occurred from 1998 to 2006. For comparison, we estimated linear correlation coefficients and RMS errors between the observed Dst data and the predicted Dst during the geomagnetic storm period as well as the difference of the value of minimum Dst (Delta Dst(sub min)) and the difference in the absolute value of Dst minimum time (Delta t(sub Dst)) between the observed and the predicted. As a result, we found that the model by Temerin and Li gives the best prediction for all parameters when all 63 events are considered. The model gives the average values: the linear correlation coefficient of 0.94, the RMS error of 14.8 nT, the Delta Dst(sub min) of 7.7 nT, and the absolute value of Delta t(sub Dst) of 1.5 hour. For further comparison, we classified the storm events into two groups according to the magnitude of Dst. We found that the model of Temerin and Lee is better than the other models for the events having 100 <= Dst < 200 nT, and three recent models (the model of Wang et al., the model of Temerin and Li, and the model of Boynton et al.) are better than the other three models for the events having Dst <= 200 nT.
Measuring Total Column Water Vapor by Pointing an Infrared Thermometer at the Sky
NASA Technical Reports Server (NTRS)
Mims, Forrest M., III; Chambers, Lin H.; Brooks, David R.
2011-01-01
A 2-year study affirms that the temperature (Tz) indicated by an inexpensive ($20 to $60) IR thermometer pointed at the cloud-free zenith sky provides an approximate indication of the total column water vapor (precipitable water or PW). PW was measured by a MICROTOPS II sun photometer. The coefficient of correlation (r2) of the PW and Tz was 0.90, and the rms difference was 3.2 mm. A comparison of the Tz data with the PW provided by a GPS site 31 km NNE yielded an r2 of 0.79, and an rms difference of 5.8 mm. An expanded study compared Tz from eight IR thermometers with PW at various times during the day and night from 17 May to 18 October 2010, mainly at the Texas site and 10 days at Hawaii's Mauna Loa Observatory (MLO). The best results of this comparison were provided by two IR thermometers models that yielded an r2 of 0.96 and an rms difference with the PW of 2.7 mm. The results of both the ongoing 2-year study and the 5-month instrument comparison show that IR thermometers can measure PW with an accuracy (rms difference/mean PW) approaching 10%, the accuracy typically ascribed to sun photometers.
Kundu, Niloy; Roy, Arpita; Banik, Debasis; Sarkar, Nilmoni
2016-02-18
In this Article, we demonstrate a detailed characterization of binding interaction of berberine chloride (BBCl) with calf-thymus DNA (CT-DNA) in buffer solution as well as in two differently charged reverse micelles (RMs). The photophyscial properties of this alkaloid have been modulated within these microheterogeneous bioassemblies. The mode of binding of this alkaloid with DNA is of debate to date. However, fluorescence spectroscopic measurements, circular dichroism (CD) measurement, and temperature-dependent study unambiguously establish that BBCl partially intercalates into the DNA base pairs. The nonplanarity imposed by partial saturation in their structure causes the nonclassical types of intercalation into DNA. Besides the intercalation, electrostatic interactions also play a significant role in the binding between BBCl and DNA. DNA structure turns into a condensed form after encapsulation into RMs, which is followed by the CD spectra and microscopy study. The probe location and dynamics in the nanopool of the RMs depended on the electrostatic interaction between the charged surfactants and cationic berberine. The structural alteration of CT-DNA from B form to condensed form and the interplay of surface charge between RMs and DNA determine the interaction between the alkaloid and DNA in RMs. Time-resolved study and fluorescence anisotropy measurements successfully provide the binding interaction of BBCl in the nanopool of the RMs in the absence and in the presence of DNA. This study motivates us to judge further the potential applicability of this alkaloid in other biological systems or other biomimicking organized assemblies.
VizieR Online Data Catalog: Rotation measures of radio point sources (Xu+, 2014)
NASA Astrophysics Data System (ADS)
Xu, J.; Han, J.-L.
2015-04-01
We compiled a catalog of Faraday rotation measures (RMs) for 4553 extragalactic radio point sources published in literature. These RMs were derived from multi-frequency polarization observations. The RM data are compared to those in the NRAO VLA Sky Survey (NVSS) RM catalog. We reveal a systematic uncertainty of about 10.0+/-1.5rad/m2 in the NVSS RM catalog. The Galactic foreground RM is calculated through a weighted averaging method by using the compiled RM catalog together with the NVSS RM catalog, with careful consideration of uncertainties in the RM data. The data from the catalog and the interface for the Galactic foreground RM calculations are publicly available on the webpage: http://zmtt.bao.ac.cn/RM/ . (2 data files).
Feedback-controlled laser fabrication of micromirror substrates.
Petrak, Benjamin; Konthasinghe, Kumarasiri; Perez, Sonia; Muller, Andreas
2011-12-01
Short (40-200 μs) single focused CO(2) laser pulses of energy ≳100 μJ were used to fabricate high quality concave micromirror templates on silica and fluoride glass. The ablated features have diameters of ≈20-100 μm and average root-mean-square (RMS) surface microroughness near their center of less than 0.2 nm. Temporally monitoring the fabrication process revealed that it proceeds on a time scale shorter than the laser pulse duration. We implement a fast feedback control loop (≈20 kHz bandwidth) based on the light emitted by the sample that ensures an RMS size dispersion of less than 5% in arrays on chips or in individually fabricated features on an optical fiber tip, a significant improvement over previous approaches using longer pulses and open loop operation.
Whistle source levels of free-ranging beluga whales in Saguenay-St. Lawrence marine park.
Le Bot, Olivier; Simard, Yvan; Roy, Nathalie; Mars, Jérôme I; Gervaise, Cédric
2016-07-01
Wild beluga whistle source levels (SLs) are estimated from 52 three-dimensional (3D) localized calls using a 4-hydrophone array. The probability distribution functions of the root-mean-square (rms) SL in the time domain, and the peak, the strongest 3-dB, and 10-dB SLs from the spectrogram, were non-Gaussian. The average rms SL was 143.8 ± 6.7 dB re 1 μPa at 1 m. SL spectral metrics were, respectively, 145.8 ± 8 dB, 143.2 ± 7.1 dB, and 138.5 ± 6.9 dB re 1 μPa(2)·Hz(-1) at 1 m.
Zhou, Chongchong; Peng, Bibo; Li, Wei; Zhong, Shiming; Ou, Jikun; Chen, Runjing; Zhao, Xinglong
2017-07-27
China is a country of vast territory with complicated geographical environment and climate conditions. With the rapid progress of the Chinese BeiDou satellite navigation system (BDS); more accurate tropospheric models must be applied to improve the accuracy of navigation and positioning. Based on the formula of the Saastamoinen and Callahan models; this study develops two single-site tropospheric models (named SAAS_S and CH_S models) for the Chinese region using radiosonde data from 2005 to 2012. We assess the two single-site tropospheric models with radiosonde data for 2013 and zenith tropospheric delay (ZTD) data from four International GNSS Service (IGS) stations and compare them to the results of the Saastamoinen and Callahan models. The experimental results show that: the mean accuracy of the SAAS_S model (bias: 0.19 cm; RMS: 3.19 cm) at all radiosonde stations is superior to those of the Saastamoinen (bias: 0.62 cm; RMS: 3.62 cm) and CH_S (bias: -0.05 cm; RMS: 3.38 cm) models. In most Chinese regions; the RMS values of the SAAS_S and CH_S models are about 0.51~2.12 cm smaller than those of their corresponding source models. The SAAS_S model exhibits a clear improvement in the accuracy over the Saastamoinen model in low latitude regions. When the SAAS_S model is replaced by the SAAS model in the positioning of GNSS; the mean accuracy of vertical direction in the China region can be improved by 1.12~1.55 cm and the accuracy of vertical direction in low latitude areas can be improved by 1.33~7.63 cm. The residuals of the SAAS_S model are closer to a normal distribution compared to those of the Saastamoinen model. Single-site tropospheric models based on the short period of the most recent data (for example 2 years) can also achieve a satisfactory accuracy. The average performance of the SAAS_S model (bias: 0.83 cm; RMS: 3.24 cm) at four IGS stations is superior to that of the Saastamoinen (bias: -0.86 cm; RMS: 3.59 cm) and CH_S (bias: 0.45 cm; RMS: 3.38 cm) models.
Zhou, Chongchong; Peng, Bibo; Li, Wei; Zhong, Shiming; Ou, Jikun; Chen, Runjing; Zhao, Xinglong
2017-01-01
China is a country of vast territory with complicated geographical environment and climate conditions. With the rapid progress of the Chinese BeiDou satellite navigation system (BDS); more accurate tropospheric models must be applied to improve the accuracy of navigation and positioning. Based on the formula of the Saastamoinen and Callahan models; this study develops two single-site tropospheric models (named SAAS_S and CH_S models) for the Chinese region using radiosonde data from 2005 to 2012. We assess the two single-site tropospheric models with radiosonde data for 2013 and zenith tropospheric delay (ZTD) data from four International GNSS Service (IGS) stations and compare them to the results of the Saastamoinen and Callahan models. The experimental results show that: the mean accuracy of the SAAS_S model (bias: 0.19 cm; RMS: 3.19 cm) at all radiosonde stations is superior to those of the Saastamoinen (bias: 0.62 cm; RMS: 3.62 cm) and CH_S (bias: −0.05 cm; RMS: 3.38 cm) models. In most Chinese regions; the RMS values of the SAAS_S and CH_S models are about 0.51~2.12 cm smaller than those of their corresponding source models. The SAAS_S model exhibits a clear improvement in the accuracy over the Saastamoinen model in low latitude regions. When the SAAS_S model is replaced by the SAAS model in the positioning of GNSS; the mean accuracy of vertical direction in the China region can be improved by 1.12~1.55 cm and the accuracy of vertical direction in low latitude areas can be improved by 1.33~7.63 cm. The residuals of the SAAS_S model are closer to a normal distribution compared to those of the Saastamoinen model. Single-site tropospheric models based on the short period of the most recent data (for example 2 years) can also achieve a satisfactory accuracy. The average performance of the SAAS_S model (bias: 0.83 cm; RMS: 3.24 cm) at four IGS stations is superior to that of the Saastamoinen (bias: −0.86 cm; RMS: 3.59 cm) and CH_S (bias: 0.45 cm; RMS: 3.38 cm) models. PMID:28749429
Poon, Anna; Goldowitz, Daniel
2014-03-19
Adult neurogenesis, which is the continual production of new neurons in the mature brain, demonstrates the strikingly plastic nature of the nervous system. Adult neural stem cells and their neural precursors, collectively referred to as neural progenitor cells (NPCs), are present in the subgranular zone (SGZ) of the dentate gyrus, the subventricular zone (SVZ), and rostral migratory stream (RMS). In order to harness the potential of NPCs to treat neurodegenerative diseases and brain injuries, it will be important to understand the molecules that regulate NPCs in the adult brain. The genetic basis underlying NPC proliferation is still not fully understood. From our previous quantitative trait locus (QTL) analysis, we had success in using a relatively small reference population of recombinant inbred strains of mice (AXBXA) to identify a genetic region that is significantly correlated with NPC proliferation in the RMS. In this study, we expanded our initial QTL mapping of RMS proliferation to a far richer genetic resource, the BXD RI mouse strains. A 3-fold difference in the number of proliferative, bromodeoxyuridine (BrdU)-labeled cells was quantified in the adult RMS of 61 BXD RI strains. RMS cell proliferation is highly dependent on the genetic background of the mice with an estimated heritability of 0.58. Genome-wide mapping revealed a significant QTL on chromosome (Chr) 6 and a suggestive QTL on Chr 11 regulating the number of NPCs in the RMS. Composite interval analysis further revealed secondary QTLs on Chr 14 and Chr 18. The loci regulating RMS cell proliferation did not overlap with the suggestive loci modulating cell proliferation in the SGZ. These mapped loci serve as starting points to identify genes important for this process. A subset of candidate genes in this region is associated with cell proliferation and neurogenesis. Interconnectivity of these candidate genes was demonstrated using pathway and transcriptional covariance analyses. Differences in RMS cell proliferation across the BXD RI strains identifies genetic loci that serve to provide insights into the interplay of underlying genes that may be important for regulating NPC proliferation in the adult mouse brain.
Variability of higher order wavefront aberrations after blinks.
Hagyó, Krisztina; Csákány, Béla; Lang, Zsolt; Németh, János
2009-01-01
To investigate the rapid alterations in value and fluctuation of ocular wavefront aberrations during the interblink interval. Forty-two volunteers were examined with a WASCA Wavefront Analyzer (Carl Zeiss Meditec AG) using modified software. For each subject, 150 images (about 6 frames/second) were registered during an interblink period. The outcome measures were spherical and cylindrical refraction and root-mean-square (RMS) values for spherical, coma, and total higher order aberrations. Fifth order polynomials were fitted to the data and the fluctuation trends of the parameters were determined. We calculated the prevalence of the trends with an early local minimum (type 1). The tear production status (Schirmer test) and tear film break-up time (BUT) were also measured. Fluctuation trends with an early minimum (type 1) were significantly more frequent than trends with an early local maximum (type 2) for total higher order aberrations RMS (P=.036). The incidence of type 1 fluctuation trends was significantly greater for coma and total higher order aberrations RMS (P=.041 and P=.003, respectively) in subjects with normal results in the BUT or Schirmer test than in those with abnormal results. In the normal subjects, the first minimum of type 1 RMS fluctuation trends occurred, on average, between 3.8 and 5.1 seconds after blink. We suggest that wavefront aberrations can be measured most accurately at the time after blink when they exhibit a decreased degree of dispersion. We recommend that a snapshot of wavefront measurements be made 3 to 5 seconds after blink.
Correcting highly aberrated eyes using large-stroke adaptive optics.
Sabesan, Ramkumar; Ahmad, Kamran; Yoon, Geunyoung
2007-11-01
To investigate the optical performance of a large-stroke deformable mirror in correcting large aberrations in highly aberrated eyes. A large-stroke deformable mirror (Mirao 52D; Imagine Eyes) and a Shack-Hartmann wavefront sensor were used in an adaptive optics system. Closed-loop correction of the static aberrations of a phase plate designed for an advanced keratoconic eye was performed for a 6-mm pupil. The same adaptive optics system was also used to correct the aberrations in one eye each of two moderate keratoconic and three normal human eyes for a 6-mm pupil. With closed-loop correction of the phase plate, the total root-mean-square (RMS) over a 6-mm pupil was reduced from 3.54 to 0.04 microm in 30 to 40 iterations, corresponding to 3 to 4 seconds. Adaptive optics closed-loop correction reduced an average total RMS of 1.73+/-0.998 to 0.10+/-0.017 microm (higher order RMS of 0.39+/-0.124 to 0.06+/-0.004 microm) in the three normal eyes and 2.73+/-1.754 to 0.10+/-0.001 microm (higher order RMS of 1.82+/-1.058 to 0.05+/-0.017 microm) in the two keratoconic eyes. Aberrations in both normal and highly aberrated eyes were successfully corrected using the large-stroke deformable mirror to provide almost perfect optical quality. This mirror can be a powerful tool to assess the limit of visual performance achievable after correcting the aberrations, especially in eyes with abnormal corneal profiles.
2011-01-01
Background This paper reports the development of an in-vitro technique allowing quantification of relative (not absolute) deformations measured at the level of the cancellous bone of the tibial proximal epiphysis (CBTPE) during knee flexion-extension. This method has been developed to allow a future study of the effects of low femoral osteotomies consequence on the CBTPE. Methods Six strain gages were encapsulated in an epoxy resin solution to form, after resin polymerisation, six measurement elements (ME). The latter were inserted into the CBTPE of six unembalmed specimens, just below the tibial plateau. Knee motion data were collected by three-dimensional (3D) electrogoniometry during several cycles of knee flexion-extension. Intra- and inter-observer reproducibility was estimated on one specimen for all MEs. Intra-specimen repeatability was calculated to determine specimen's variability and the error of measurement. A varum and valgum chirurgical procedure was realised on another specimen to observed CBTPE deformation after these kind of procedure. Results Average intra-observer variation of the deformation ranged from 8% to 9% (mean coefficient of variation, MCV) respectively for extension and flexion movement. The coefficient of multiple correlations (CMC) ranged from 0.93 to 0.96 for flexion and extension. No phase shift of maximum strain peaks was observed. Inter-observer MCV averaged 23% and 28% for flexion and extension. The CMC were 0.82 and 0.87 respectively for extension and flexion. For the intra-specimen repeatability, the average of mean RMS difference and the mean ICC were calculated only for flexion movement. The mean RMS variability ranged from 7 to 10% and the mean ICC was 0.98 (0.95 - 0.99). A Pearson's correlation coefficient was calculated showing that RMS was independent of signal intensity. For the chirurgical procedure, valgum and varum deviation seems be in agree with the frontal misalignment theory. Conclusions Results show that the methodology is reproducible within a range of 10%. This method has been developed to allow analysis the indirect reflect of deformation variations in CBTPE before and after distal femoral osteotomies. The first results of the valgum and varum deformation show that our methodology allows this kind of measurement and are encourageant for latter studies. It will therefore allow quantification and enhance the understanding of the effects of this kind of surgery on the CBTPE loading. PMID:21371297
Sobczak, Stéphane; Salvia, Patrick; Dugailly, Pierre-Michel; Lefèvre, Philippe; Feipel, Véronique; Van Sint Jan, Serge; Rooze, Marcel
2011-03-03
This paper reports the development of an in-vitro technique allowing quantification of relative (not absolute) deformations measured at the level of the cancellous bone of the tibial proximal epiphysis (CB(TPE)) during knee flexion-extension. This method has been developed to allow a future study of the effects of low femoral osteotomies consequence on the CB(TPE). Six strain gages were encapsulated in an epoxy resin solution to form, after resin polymerisation, six measurement elements (ME). The latter were inserted into the CB(TPE) of six unembalmed specimens, just below the tibial plateau. Knee motion data were collected by three-dimensional (3D) electrogoniometry during several cycles of knee flexion-extension. Intra- and inter-observer reproducibility was estimated on one specimen for all MEs. Intra-specimen repeatability was calculated to determine specimen's variability and the error of measurement. A varum and valgum chirurgical procedure was realised on another specimen to observed CB(TPE) deformation after these kind of procedure. Average intra-observer variation of the deformation ranged from 8% to 9% (mean coefficient of variation, MCV) respectively for extension and flexion movement. The coefficient of multiple correlations (CMC) ranged from 0.93 to 0.96 for flexion and extension. No phase shift of maximum strain peaks was observed. Inter-observer MCV averaged 23% and 28% for flexion and extension. The CMC were 0.82 and 0.87 respectively for extension and flexion. For the intra-specimen repeatability, the average of mean RMS difference and the mean ICC were calculated only for flexion movement. The mean RMS variability ranged from 7 to 10% and the mean ICC was 0.98 (0.95-0.99). A Pearson's correlation coefficient was calculated showing that RMS was independent of signal intensity. For the chirurgical procedure, valgum and varum deviation seems be in agree with the frontal misalignment theory. Results show that the methodology is reproducible within a range of 10%. This method has been developed to allow analysis the indirect reflect of deformation variations in CB(TPE) before and after distal femoral osteotomies. The first results of the valgum and varum deformation show that our methodology allows this kind of measurement and are encourageant for latter studies. It will therefore allow quantification and enhance the understanding of the effects of this kind of surgery on the CB(TPE) loading.
NASA Astrophysics Data System (ADS)
Arola, Antti; Kalliskota, S.; den Outer, P. N.; Edvardsen, K.; Hansen, G.; Koskela, T.; Martin, T. J.; Matthijsen, J.; Meerkoetter, R.; Peeters, P.; Seckmeyer, G.; Simon, P. C.; Slaper, H.; Taalas, P.; Verdebout, J.
2002-08-01
Four different satellite-UV mapping methods are assessed by comparing them against ground-based measurements. The study includes most of the variability found in geographical, meteorological and atmospheric conditions. Three of the methods did not show any significant systematic bias, except during snow cover. The mean difference (bias) in daily doses for the Rijksinstituut voor Volksgezondheid en Milieu (RIVM) and Joint Research Centre (JRC) methods was found to be less than 10% with a RMS difference of the order of 30%. The Deutsches Zentrum für Luft- und Raumfahrt (DLR) method was assessed for a few selected months, and the accuracy was similar to the RIVM and JRC methods. It was additionally used to demonstrate how spatial averaging of high-resolution cloud data improves the estimation of UV daily doses. For the Institut d'Aéronomie Spatiale de Belgique (IASB) method the differences were somewhat higher, because of their original cloud algorithm. The mean difference in daily doses for IASB was about 30% or more, depending on the station, while the RMS difference was about 60%. The cloud algorithm of IASB has been replaced recently, and as a result the accuracy of the IASB method has improved. Evidence is found that further research and development should focus on the improvement of the cloud parameterization. Estimation of daily exposures is likely to be improved if additional time-resolved cloudiness information is available for the satellite-based methods. It is also demonstrated that further development work should be carried out on the treatment of albedo of snow-covered surfaces.
Bradbury-Squires, David J; Noftall, Jennifer C; Sullivan, Kathleen M; Behm, David G; Power, Kevin E; Button, Duane C
2015-02-01
Roller massagers are used as a recovery and rehabilitative tool to initiate muscle relaxation and improve range of motion (ROM) and muscular performance. However, research demonstrating such effects is lacking. To determine the effects of applying a roller massager for 20 and 60 seconds on knee-joint ROM and dynamic muscular performance. Randomized controlled clinical trial. University laboratory. Ten recreationally active men (age = 26.6 ± 5.2 years, height = 175.3 ± 4.3 cm, mass = 84.4 ± 8.8 kg). Participants performed 3 randomized experimental conditions separated by 24 to 48 hours. In condition 1 (5 repetitions of 20 seconds) and condition 2 (5 repetitions of 60 seconds), they applied a roller massager to the quadriceps muscles. Condition 3 served as a control condition in which participants sat quietly. Visual analog pain scale, electromyography (EMG) of the vastus lateralis (VL) and biceps femoris during roller massage and lunge, and knee-joint ROM. We found no differences in pain between the 20-second and 60-second roller-massager conditions. During 60 seconds of roller massage, pain was 13.5% (5.7 ± 0.70) and 20.6% (6.2 ± 0.70) greater at 40 seconds and 60 seconds, respectively, than at 20 seconds (P < .05). During roller massage, VL and biceps femoris root mean square (RMS) EMG was 8% and 7%, respectively, of RMS EMG recorded during maximal voluntary isometric contraction. Knee-joint ROM was 10% and 16% greater in the 20-second and 60-second roller-massager conditions, respectively, than the control condition (P < .05). Finally, average lunge VL RMS EMG decreased as roller-massage time increased (P < .05). Roller massage was painful and induced muscle activity, but it increased knee-joint ROM and neuromuscular efficiency during a lunge.
Shocked plagioclase signatures in Thermal Emission Spectrometer data of Mars
Johnson, J. R.; Staid, M.I.; Titus, T.N.; Becker, K.
2006-01-01
The extensive impact cratering record on Mars combined with evidence from SNC meteorites suggests that a significant fraction of the surface is composed of materials subjected to variable shock pressures. Pressure-induced structural changes in minerals during high-pressure shock events alter their thermal infrared spectral emission features, particularly for feldspars, in a predictable fashion. To understand the degree to which the distribution and magnitude of shock effects influence martian surface mineralogy, we used standard spectral mineral libraries supplemented by laboratory spectra of experimentally shocked bytownite feldspar [Johnson, J.R., Ho??rz, F., Christensen, P., Lucey, P.G., 2002b. J. Geophys. Res. 107 (E10), doi:10.1029/2001JE001517] to deconvolve Thermal Emission Spectrometer (TES) data from six relatively large (>50 km) impact craters on Mars. We used both TES orbital data and TES mosaics (emission phase function sequences) to study local and regional areas near the craters, and compared the differences between models using single TES detector data and 3 ?? 2 detector-averaged data. Inclusion of shocked feldspar spectra in the deconvolution models consistently improved the rms errors compared to models in which the spectra were not used, and resulted in modeled shocked feldspar abundances of >15% in some regions. However, the magnitudes of model rms error improvements were within the noise equivalent rms errors for the TES instrument [Hamilton V., personal communication]. This suggests that while shocked feldspars may be a component of the regions studied, their presence cannot be conclusively demonstrated in the TES data analyzed here. If the distributions of shocked feldspars suggested by the models are real, the lack of spatial correlation to crater materials may reflect extensive aeolian mixing of martian regolith materials composed of variably shocked impact ejecta from both local and distant sources. ?? 2005 Elsevier Inc. All rights reserved.
Design and performance evaluation of a high resolution IRI-microPET preclinical scanner
NASA Astrophysics Data System (ADS)
Islami rad, S. Z.; Peyvandi, R. Gholipour; lehdarboni, M. Askari; Ghafari, A. A.
2015-05-01
PET for small animal, IRI-microPET, was designed and built at the NSTRI. The scanner is made of four detectors positioned on a rotating gantry at a distance 50 mm from the center. Each detector consists of a 10×10 crystal matrix of 2×2×10 mm3 directly coupled to a PS-PMT. A position encoding circuit for specific PS-PMT has been designed, built and tested with a PD-MFS-2MS/s-8/14 data acquisition board. After implementing reconstruction algorithms (FBP, MLEM and SART) on sinograms, images quality and system performance were evaluated by energy resolution, timing resolution, spatial resolution, scatter fraction, sensitivity, RMS contrast and SNR parameters. The energy spectra were obtained for the crystals with an energy window of 300-700 keV. The energy resolution in 511 keV averaged over all modules, detectors, and crystals, was 23.5%. A timing resolution of 2.4 ns FWHM obtained by coincidence timing spectrum was measured with crystal LYSO. The radial and tangential resolutions for 18F (1.15-mm inner diameter) at the center of the field of view were 1.81 mm and 1.90 mm, respectively. At a radial offset of 5 mm, the FWHM values were 1.96 and 2.06 mm. The system scatter fraction was 7.1% for the mouse phantom. The sensitivity was measured for different energy windows, leading to a sensitivity of 1.74% at the center of FOV. Also, images quality was evaluated by RMS contrast and SNR factors, and the results show that the reconstructed images by MLEM algorithm have the best RMS contrast, and SNR. The IRI-microPET presents high image resolution, low scatter fraction values and improved SNR for animal studies.
Motor unit recruitment and EMG power spectra during ramp contractions of a bifunctional muscle.
Dupont, L; Gamet, D; Pérot, C
2000-08-01
Surface electromyograms (EMGs) were analysed on the short and long head of the biceps brachii (BBSH and BBLH) during single (F and S) or dual (F+S) flexion and supination tasks. It was confirmed, by the analysis of EMG root-mean-square (RMS) values, that the highest activations of BBSH and BBLH were obtained during a maximal dual task. This study was essentially concerned with the analysis of power spectra data obtained during progressive or ramp contractions (RCs). The shape of the power spectra established during the first second of the RCs differs between F, S and F+S tasks. Differences in mean power frequency (MPF) calculated during RCs would be representative of a recruitment of motor units (MUs) that is, at least partly, task-dependent. In order to compare MPF values calculated from RCs performed under different mechanical conditions (F, S and F+S), MPF-RMS(PSD) relationships have been established (RMS(PSD) being defined as the power spectrum density RMS). Both BBSH and BBLH exhibited initial MPF values higher in supination RC than in flexion RC. Because of plateau values reached at the same level of muscle activation whatever the task performed, the slope of the MPF-RMS(PSD) relationship was lower in S than in F. These results are in favour of MU recruitment that is, at least partly, different in F and in S conditions. Dual submaximal tasks seem to mix the activation of the F and S subpopulations of MUs as revealed by the spectral parameters obtained during F+S ramp contractions. This study could find some implication in the field of muscle rehabilitation or reinforcement.
Estimation of Rainfall Sampling Uncertainty: A Comparison of Two Diverse Approaches
NASA Technical Reports Server (NTRS)
Steiner, Matthias; Zhang, Yu; Baeck, Mary Lynn; Wood, Eric F.; Smith, James A.; Bell, Thomas L.; Lau, William K. M. (Technical Monitor)
2002-01-01
The spatial and temporal intermittence of rainfall causes the averages of satellite observations of rain rate to differ from the "true" average rain rate over any given area and time period, even if the satellite observations are perfectly accurate. The difference of satellite averages based on occasional observation by satellite systems and the continuous-time average of rain rate is referred to as sampling error. In this study, rms sampling error estimates are obtained for average rain rates over boxes 100 km, 200 km, and 500 km on a side, for averaging periods of 1 day, 5 days, and 30 days. The study uses a multi-year, merged radar data product provided by Weather Services International Corp. at a resolution of 2 km in space and 15 min in time, over an area of the central U.S. extending from 35N to 45N in latitude and 100W to 80W in longitude. The intervals between satellite observations are assumed to be equal, and similar In size to what present and future satellite systems are able to provide (from 1 h to 12 h). The sampling error estimates are obtained using a resampling method called "resampling by shifts," and are compared to sampling error estimates proposed by Bell based on earlier work by Laughlin. The resampling estimates are found to scale with areal size and time period as the theory predicts. The dependence on average rain rate and time interval between observations is also similar to what the simple theory suggests.
The effects of the structure characteristics on Magnetic Barkhausen noise in commercial steels
NASA Astrophysics Data System (ADS)
Deng, Yu; Li, Zhe; Chen, Juan; Qi, Xin
2018-04-01
This study has been done by separately measuring Magnetic Barkhausen noise (MBN) under different structure characteristics, namely the carbon content, hardness, roughness, and elastic modulus in commercial steels. The result of the experiments shows a strong dependence of MBN parameters (peak height, Root mean square (RMS), and average value) on structure characteristics. These effects, according to this study, can be explained by two kinds of source mechanisms of the MBN, domain wall nucleation and wall propagation. The discovery obtained in this paper can provide basic knowledge to understand the existing surface condition problem of Magnetic Barkhausen noise as a non-destructive evaluation technique and bring MBN into wider application.
Investigation of Sideband Index Response to Prototype Gear Tooth Damage
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2013-01-01
The objective of this analysis was to evaluate the ability of gear condition indicators (CI) to detect contact fatigue damage on spiral bevel gear teeth. Tests were performed in the NASA Glenn Spiral Bevel Gear Fatigue Rig on eight prototype gear sets (pinion/gear). Damage was initiated and progressed on the gear and pinion teeth. Vibration data was measured during damage progression at varying torque values while varying damage modes to the gear teeth were observed and documented with inspection photos. Sideband indexes (SI) and root mean square (RMS) CIs were calculated from the time synchronous averaged vibration data. Results found that both CIs respond differently to varying torque levels, damage levels and damage modes
Toward an affordable and user-friendly visual motion capture system.
Bonnet, V; Sylla, N; Cherubini, A; Gonzáles, A; Azevedo Coste, C; Fraisse, P; Venture, G
2014-01-01
The present study aims at designing and evaluating a low-cost, simple and portable system for arm joint angle estimation during grasping-like motions. The system is based on a single RGB-D camera and three customized markers. The automatically detected and tracked marker positions were used as inputs to an offline inverse kinematic process based on bio-mechanical constraints to reduce noise effect and handle marker occlusion. The method was validated on 4 subjects with different motions. The joint angles were estimated both with the proposed low-cost system and, a stereophotogrammetric system. Comparative analysis shows good accuracy with high correlation coefficient (r= 0.92) and low average RMS error (3.8 deg).
OCT 3-D surface topography of isolated human crystalline lenses
Sun, Mengchan; Birkenfeld, Judith; de Castro, Alberto; Ortiz, Sergio; Marcos, Susana
2014-01-01
Quantitative 3-D Optical Coherence Tomography was used to measure surface topography of 36 isolated human lenses, and to evaluate the relationship between anterior and posterior lens surface shape and their changes with age. All lens surfaces were fitted to 6th order Zernike polynomials. Astigmatism was the predominant surface aberration in anterior and posterior lens surfaces (accounting for ~55% and ~63% of the variance respectively), followed by spherical terms, coma, trefoil and tetrafoil. The amount of anterior and posterior surface astigmatism did not vary significantly with age. The relative angle between anterior and posterior surface astigmatism axes was on average 36.5 deg, tended to decrease with age, and was >45 deg in 36.1% lenses. The anterior surface RMS spherical term, RMS coma and 3rd order RMS decreased significantly with age. In general, there was a statistically significant correlation between the 3rd and 4th order terms of the anterior and posterior surfaces. Understanding the coordination of anterior and posterior lens surface geometries and their topographical changes with age sheds light into the role of the lens in the optical properties of the eye and the lens aging mechanism. PMID:25360371
OCT 3-D surface topography of isolated human crystalline lenses.
Sun, Mengchan; Birkenfeld, Judith; de Castro, Alberto; Ortiz, Sergio; Marcos, Susana
2014-10-01
Quantitative 3-D Optical Coherence Tomography was used to measure surface topography of 36 isolated human lenses, and to evaluate the relationship between anterior and posterior lens surface shape and their changes with age. All lens surfaces were fitted to 6th order Zernike polynomials. Astigmatism was the predominant surface aberration in anterior and posterior lens surfaces (accounting for ~55% and ~63% of the variance respectively), followed by spherical terms, coma, trefoil and tetrafoil. The amount of anterior and posterior surface astigmatism did not vary significantly with age. The relative angle between anterior and posterior surface astigmatism axes was on average 36.5 deg, tended to decrease with age, and was >45 deg in 36.1% lenses. The anterior surface RMS spherical term, RMS coma and 3rd order RMS decreased significantly with age. In general, there was a statistically significant correlation between the 3rd and 4th order terms of the anterior and posterior surfaces. Understanding the coordination of anterior and posterior lens surface geometries and their topographical changes with age sheds light into the role of the lens in the optical properties of the eye and the lens aging mechanism.
Kwok, Garcia; Yip, Joanne; Cheung, Mei-Chun; Yick, Kit-Lun
2015-01-01
There is a number of research work in the literature that have applied sEMG biofeedback as an instrument for muscle rehabilitation. Therefore, sEMG is a good tool for this research work and is used to record the myoelectric activity in the paraspinal muscles of those with AIS during habitual standing and sitting. After the sEMG evaluation, the root-mean-square (RMS) sEMG values of the paraspinal muscles in the habitual postures reflect the spinal curvature situation of the PUMC Type Ia and IIc subjects. Both groups have a stronger average RMS sEMG value on the convex side of the affected muscle regions. Correction to posture as instructed by the physiotherapist has helped the subjects to achieve a more balanced RMS sEMG ratio in the trapezius and latissimus dorsi regions; the erector spinae in the thoracic region and/or erector spinae in the lumbar region. It is, therefore, considered that with regular practice of the suggested positions, those with AIS can use motor learning to achieve a more balanced posture. Consequently, the findings can be used in less intrusive early orthotic intervention and provision of care to those with AIS.
Rhabdomyosarcoma: Current Challenges and Their Implications for Developing Therapies
Hettmer, Simone; Li, Zhizhong; Billin, Andrew N.; Barr, Frederic G.; Cornelison, D.D.W.; Ehrlich, Alan R.; Guttridge, Denis C.; Hayes-Jordan, Andrea; Helman, Lee J.; Houghton, Peter J.; Khan, Javed; Langenau, David M.; Linardic, Corinne M.; Pal, Ranadip; Partridge, Terence A.; Pavlath, Grace K.; Rota, Rossella; Schäfer, Beat W.; Shipley, Janet; Stillman, Bruce; Wexler, Leonard H.; Wagers, Amy J.; Keller, Charles
2014-01-01
Rhabdomyosarcoma (RMS) represents a rare, heterogeneous group of mesodermal malignancies with skeletal muscle differentiation. One major subgroup of RMS tumors (so-called “fusion-positive” tumors) carries exclusive chromosomal translocations that join the DNA-binding domain of the PAX3 or PAX7 gene to the transactivation domain of the FOXO1 (previously known as FKHR) gene. Fusion-negative RMS represents a heterogeneous spectrum of tumors with frequent RAS pathway activation. Overtly metastatic disease at diagnosis is more frequently found in individuals with fusion-positive than in those with fusion-negative tumors. RMS is the most common pediatric soft-tissue sarcoma, and approximately 60% of all children and adolescents diagnosed with RMS are cured by currently available multimodal therapies. However, a curative outcome is achieved in <30% of high-risk individuals with RMS, including all those diagnosed as adults, those diagnosed with fusion-positive tumors during childhood (including metastatic and nonmetastatic tumors), and those diagnosed with metastatic disease during childhood (including fusion-positive and fusion-negative tumors). This white paper outlines current challenges in RMS research and their implications for developing more effective therapies. Urgent clinical problems include local control, systemic disease, need for improved risk stratification, and characterization of differences in disease course in children and adults. Biological challenges include definition of the cellular functions of PAX-FOXO1 fusion proteins, clarification of disease heterogeneity, elucidation of the cellular origins of RMS, delineation of the tumor microenvironment, and identification of means for rational selection and testing of new combination therapies. To streamline future therapeutic developments, it will be critical to improve access to fresh tumor tissue for research purposes, consider alternative trial designs to optimize early clinical testing of candidate drugs, coalesce advocacy efforts to garner public and industry support, and facilitate collaborative efforts between academia and industry. PMID:25368019
Schimmelmann, Arndt; Qi, Haiping; Coplen, Tyler B; Brand, Willi A; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen F; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita T; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Gröning, Manfred; Hélie, Jean-François; Herrero-Martín, Sara; Meijer, Harro A J; Sauer, Peter E; Sessions, Alex L; Werner, Roland A
2016-04-19
An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ(2)H(VSMOW-SLAP) values from -210.8 to +397.0 mUr or ‰, for δ(13)C(VPDB-LSVEC) from -40.81 to +0.49 mUr and for δ(15)N(Air) from -5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a (2)H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ(2)H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain (13)C and carbon-bound organic (2)H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.
Schimmelmann, Arndt; Qi, Haiping; Coplen, Tyler B.; Brand, Willi A.; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen F.; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Gröning, Manfred; Hélie, Jean-François; Herrero-Martín, Sara; Meijer, Harro A.J.; Sauer, Peter E.; Sessions, Alex L.; Werner, Roland A.
2016-01-01
An international project developed, quality-tested, and determined isotope−δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope−δ scales. The RMs span a range of δ2HVSMOW-SLAP values from −210.8 to +397.0 mUr or ‰, for δ13CVPDB-LSVEC from −40.81 to +0.49 mUr and for δ15NAir from −5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a 2H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ2H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain 13C and carbon-bound organic 2H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.
Sensitivity study of voxel-based PET image comparison to image registration algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, Stephen, E-mail: syip@lroc.harvard.edu; Chen, Aileen B.; Berbeco, Ross
2014-11-01
Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to themore » respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor subvolume with R{sub rigid} = − 0.60 (p = 0.01) and R{sub deformable} = − 0.46 (p = 0.01–0.20) averaging over all deformable algorithms. For stable-disease subvolumes, the correlations were significant (p < 0.001) for all registration algorithms with R{sub rigid} = − 0.71 and R{sub deformable} = − 0.72. Progressor and stable-disease subvolumes resulting from rigid registration were in excellent agreement (DSI > 70%) for RMS{sub rigid} < 150 HU. However, tumor deformation was observed to have negligible effect on DSI for responder subvolumes with insignificant |R| < 0.26, p > 0.27. Conclusions: This study demonstrated that deformable algorithms cannot be arbitrarily chosen; different deformable algorithms can result in large differences of voxel-based PET image comparison. For low tumor deformation (RMS{sub rigid} < 150 HU), rigid and deformable algorithms yield similar results, suggesting deformable registration is not required for these cases.« less
Hunt, Charlotte M; Widener, Gail; Allen, Diane D
2014-10-01
People with multiple sclerosis (MS) have diminished postural control, and center of pressure (COP) displacement varies more in this population than in healthy controls. Balance-based torso-weighting (BBTW) can improve clinical balance and mobility in people with MS, and exploration using both linear and nonlinear measures of COP may help determine whether BBTW optimizes movement variability. The aim of this study was to investigate the effects of BBTW on people with MS and healthy controls during quiet standing. This was a quasi-experimental study comparing COP variability between groups, between eye closure conditions, and between weighting conditions in the anterior-posterior and medial-lateral directions. Twenty participants with MS and 18 healthy controls stood on a forceplate in 4 conditions: eyes open and closed and with and without BBTW. Linear measures of COP displacement included range and root mean square (RMS). Nonlinear measures included approximate entropy (ApEn) and Lyapunov exponent (LyE). Three-way repeated-measures analyses of variance compared measures across groups and conditions. The association between weighting response and baseline nonlinear variables was examined. When significant associations were found, MS subgroups were created and compared. The MS and control groups had significantly different range, RMS, and ApEn values. The eyes-open and eyes-closed conditions had significantly different range and RMS values. Change with weighting correlated with LyE (r=-.70) and ApEn (r=-.59). Two MS subgroups, with low and high baseline LyE values, responded to BBTW in opposite directions, with a significant main effect for weighting condition for the LyE variable in the medial-lateral direction. The small samples and no identification of impairments related to LyE at baseline were limitations of the study. The LyE may help differentiate subgroups who respond differently to BBTW. In both subgroups, LyE values moved toward the average of healthy controls, suggesting that BBTW may help optimize movement variability in people with MS. © 2014 American Physical Therapy Association.
Widener, Gail; Allen, Diane D.
2014-01-01
Background People with multiple sclerosis (MS) have diminished postural control, and center of pressure (COP) displacement varies more in this population than in healthy controls. Balance-based torso-weighting (BBTW) can improve clinical balance and mobility in people with MS, and exploration using both linear and nonlinear measures of COP may help determine whether BBTW optimizes movement variability. Objective The aim of this study was to investigate the effects of BBTW on people with MS and healthy controls during quiet standing. Design This was a quasi-experimental study comparing COP variability between groups, between eye closure conditions, and between weighting conditions in the anterior-posterior and medial-lateral directions. Methods Twenty participants with MS and 18 healthy controls stood on a forceplate in 4 conditions: eyes open and closed and with and without BBTW. Linear measures of COP displacement included range and root mean square (RMS). Nonlinear measures included approximate entropy (ApEn) and Lyapunov exponent (LyE). Three-way repeated-measures analyses of variance compared measures across groups and conditions. The association between weighting response and baseline nonlinear variables was examined. When significant associations were found, MS subgroups were created and compared. Results The MS and control groups had significantly different range, RMS, and ApEn values. The eyes-open and eyes-closed conditions had significantly different range and RMS values. Change with weighting correlated with LyE (r=−.70) and ApEn (r=−.59). Two MS subgroups, with low and high baseline LyE values, responded to BBTW in opposite directions, with a significant main effect for weighting condition for the LyE variable in the medial-lateral direction. Limitations The small samples and no identification of impairments related to LyE at baseline were limitations of the study. Conclusions The LyE may help differentiate subgroups who respond differently to BBTW. In both subgroups, LyE values moved toward the average of healthy controls, suggesting that BBTW may help optimize movement variability in people with MS. PMID:24903118
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Liang; Yang, Yi; Harley, Ronald Gordon
A system is for a plurality of different electric load types. The system includes a plurality of sensors structured to sense a voltage signal and a current signal for each of the different electric loads; and a processor. The processor acquires a voltage and current waveform from the sensors for a corresponding one of the different electric load types; calculates a power or current RMS profile of the waveform; quantizes the power or current RMS profile into a set of quantized state-values; evaluates a state-duration for each of the quantized state-values; evaluates a plurality of state-types based on the powermore » or current RMS profile and the quantized state-values; generates a state-sequence that describes a corresponding finite state machine model of a generalized load start-up or transient profile for the corresponding electric load type; and identifies the corresponding electric load type.« less
NASA Astrophysics Data System (ADS)
Schlittenhardt, J.
- A comparison of regional and teleseismic log rms (root-mean-square) Lg amplitude measurements have been made for 14 underground nuclear explosions from the East Kazakh test site recorded both by the BRV (Borovoye) station in Kazakhstan and the GRF (Gräfenberg) array in Germany. The log rms Lg amplitudes observed at the BRV regional station at a distance of 690km and at the teleseismic GRF array at a distance exceeding 4700km show very similar relative values (standard deviation 0.048 magnitude units) for underground explosions of different sizes at the Shagan River test site. This result as well as the comparison of BRV rms Lg magnitudes (which were calculated from the log rms amplitudes using an appropriate calibration) with magnitude determinations for P waves of global seismic networks (standard deviation 0.054 magnitude units) point to a high precision in estimating the relative source sizes of explosions from Lg-based single station data. Similar results were also obtained by other investigators (Patton, 1988; Ringdaletal., 1992) using Lg data from different stations at different distances.Additionally, GRF log rms Lg and P-coda amplitude measurements were made for a larger data set from Novaya Zemlya and East Kazakh explosions, which were supplemented with mb(Lg) amplitude measurements using a modified version of Nuttli's (1973, 1986a) method. From this test of the relative performance of the three different magnitude scales, it was found that the Lg and P-coda based magnitudes performed equally well, whereas the modified Nuttli mb(Lg) magnitudes show greater scatter when compared to the worldwide mb reference magnitudes. Whether this result indicates that the rms amplitude measurements are superior to the zero-to-peak amplitude measurement of a single cycle used for the modified Nuttli method, however, cannot be finally assessed, since the calculated mb(Lg) magnitudes are only preliminary until appropriate attenuation corrections are available for the specific path to GRF.
NASA Technical Reports Server (NTRS)
Jourdan, Didier; Gautier, Catherine
1995-01-01
Comprehensive Ocean-Atmosphere Data Set (COADS) and satellite-derived parameters are input to a similarity theory-based model and treated in completely equivalent ways to compute global latent heat flux (LHF). In order to compute LHF exclusively from satellite measurements, an empirical relationship (Q-W relationship) is used to compute the air mixing ratio from Special Sensor Microwave/Imager (SSM/I) precipitable water W and a new one is derived to compute the air temperature also from retrieved W(T-W relationship). First analyses indicate that in situ and satellite LHF computations compare within 40%, but systematic errors increase the differences up to 100% in some regions. By investigating more closely the origin of the discrepancies, the spatial sampling of ship reports has been found to be an important source of error in the observed differences. When the number of in situ data records increases (more than 20 per month), the agreement is about 50 W/sq m rms (40 W/sq m rms for multiyear averages). Limitations of both empirical relationships and W retrieval errors strongly affect the LHF computation. Systematic LHF overestimation occurs in strong subsidence regions and LHF underestimation occurs within surface convergence zones and over oceanic upwelling areas. The analysis of time series of the different parameters in these regions confirms that systematic LHF discrepancies are negatively correlated with the differences between COADS and satellite-derived values of the air mixing ratio and air temperature. To reduce the systematic differences in satellite-derived LHF, a preliminary ship-satellite blending procedure has been developed for the air mixing ratio and air temperature.
ERIC Educational Resources Information Center
Deemer, Eric D.; Mahoney, Kevin T.; Ball, Jacqueline Hebert
2012-01-01
The authors examined the psychometric properties of the Research Motivation Scale (RMS) in a sample of faculty members (N = 337) in university science departments. It was hypothesized that the RMS would evidence partial measurement invariance across tenure status and noninvariance across gender, given the different sociocultural factors (e.g.,…
NASA Technical Reports Server (NTRS)
Huang, Junji; Duan, Lian; Choudhari, Meelan M.
2017-01-01
The acoustic radiation from the turbulent boundary layer on the nozzle wall of a Mach 6 Ludwieg Tube is simulated using Direct Numerical Simulations (DNS), with the flow conditions falling within the operational range of the Mach 6 Hypersonic Ludwieg Tube, Braunschweig (HLB). The mean and turbulence statistics of the nozzle-wall boundary layer show good agreement with those predicted by Pate's correlation and Reynolds Averaged Navier-Stokes (RANS) computations. The rms pressure fluctuation P'(rms)/T(w) plateaus in the freestream core of the nozzle. The intensity of the freestream noise within the nozzle is approximately 20% higher than that radiated from a single at pate with a similar freestream Mach number, potentially because of the contributions to the acoustic radiation from multiple azimuthal segments of the nozzle wall.
Characterization of gigahertz (GHz) bandwidth photomultipliers
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Rowe, H. E.
1977-01-01
The average impulse response, root-mean-square times jitter as a function of signal level, single photoelectron distribution, and multiphotoelectron dark-count distribution have been measured for two static crossed-field and five electrostatic photomultipliers. The optical signal source for the first three of these tests was a 30 picosecond mode-locked laser pulse at 0.53 micron. The static crossed-field detectors had 2-photoelectron resolution, less than 200 ps rise times, and rms time jitters of 30 ps at the single photoelectron level. The electrostatic photomultipliers had rise times from 1 to 2.5 nanoseconds, and rms time jitters from 160 to 650 ps at the same signal level. The two static crossed-field photomultipliers had ion-feedback-generated dark pulses to the 50-photoelectron level, whereas one electrostatic photomultiplier had dark pulses to the 30-photoelectron level.
The Influence of Positive Mood on Different Aspects of Cognitive Control
Martin, Elizabeth A.; Kerns, John G.
2010-01-01
Some evidence suggests that positive mood influences cognitive control. The current research investigated whether positive mood has differential effects on two aspects of cognitive control, working memory and prepotent response inhibition. In Study 1, following either a positive or neutral mood induction, participants completed the Running Memory Span (RMS), a measure primarily of working memory storage capacity, and the Stroop task, a measure of prepotent response inhibition. Results were that the positive mood group performed worse on the RMS task but not on the Stroop task. In Study 2, participants completed the RMS and another measure of prepotent response inhibition, the Flanker task. Results were that when in a positive mood state participants performed worse on the RMS but not on the Flanker task. Overall, this research suggests that positive mood has differential effects on cognitive control, impairing working memory but having no effect on prepotent response inhibition. PMID:21399720
Scatter and veiling glare corrections for quantitative digital subtraction angiography
NASA Astrophysics Data System (ADS)
Ersahin, Atila; Molloi, Sabee Y.; Qian, Yao-Jin
1994-05-01
In order to quantitate anatomical and physiological parameters such as vessel dimensions and volumetric blood flow, it is necessary to make corrections for scatter and veiling glare (SVG), which are the major sources of nonlinearities in videodensitometric digital subtraction angiography (DSA). A convolution filtering technique has been investigated to estimate SVG distribution in DSA images without the need to sample the SVG for each patient. This technique utilizes exposure parameters and image gray levels to estimate SVG intensity by predicting the total thickness for every pixel in the image. At this point, corrections were also made for variation of SVG fraction with beam energy and field size. To test its ability to estimate SVG intensity, the correction technique was applied to images of a Lucite step phantom, anthropomorphic chest phantom, head phantom, and animal models at different thicknesses, projections, and beam energies. The root-mean-square (rms) percentage error of these estimates were obtained by comparison with direct SVG measurements made behind a lead strip. The average rms percentage errors in the SVG estimate for the 25 phantom studies and for the 17 animal studies were 6.22% and 7.96%, respectively. These results indicate that the SVG intensity can be estimated for a wide range of thicknesses, projections, and beam energies.
Acceleration profile of an acrobatic act during training and shows using wearable technology.
Barker, Leland; Burnstein, Bryan; Mercer, John
2018-05-24
The purpose of this study was to describe the mechanical characteristics of a trampoline circus act and its individual tracks performed in training and shows using a tri-axial accelerometer. A track is an artist's specific role within a choreographed act. Seven male acrobats performed their trampoline act during training and shows while wearing a triaxial accelerometer and reported ratings of perceived exertion (RPE) after each trial. Average acceleration (AVG), root mean square (RMS), root mean to the fourth (RM4), time spent in specific acceleration ranges and RPE were measured/recorded from training and show acts. Paired t-tests compared dependent variables between training and show. Acceleration AVG, RMS and RM4 were significantly higher (p < 0.05) in training than show. RPE was significantly higher (p < 0.05) in show than training. No significant differences existed in time spent in any of the acceleration ranges between training and show. GPS devices have been used to manage workloads in field sports but are inoperable in theatres. But, inertial measurements may be an effective alternative to describe mechanical demands in theatre or arena environments. Wearable technology may be useful to coaches to improve understanding of track demands to manage artist workloads.
SU-E-T-261: Plan Quality Assurance of VMAT Using Fluence Images Reconstituted From Log-Files
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsuta, Y; Shimizu, E; Matsunaga, K
2014-06-01
Purpose: A successful VMAT plan delivery includes precise modulations of dose rate, gantry rotational and multi-leaf collimator (MLC) shapes. One of the main problem in the plan quality assurance is dosimetric errors associated with leaf-positional errors are difficult to analyze because they vary with MU delivered and leaf number. In this study, we calculated integrated fluence error image (IFEI) from log-files and evaluated plan quality in the area of all and individual MLC leaves scanned. Methods: The log-file reported the expected and actual position for inner 20 MLC leaves and the dose fraction every 0.25 seconds during prostate VMAT onmore » Elekta Synergy. These data were imported to in-house software that developed to calculate expected and actual fluence images from the difference of opposing leaf trajectories and dose fraction at each time. The IFEI was obtained by adding all of the absolute value of the difference between expected and actual fluence images corresponding. Results: In the area all MLC leaves scanned in the IFEI, the average and root mean square (rms) were 2.5 and 3.6 MU, the area of errors below 10, 5 and 3 MU were 98.5, 86.7 and 68.1 %, the 95 % of area was covered with less than error of 7.1 MU. In the area individual MLC leaves scanned in the IFEI, the average and rms value were 2.1 – 3.0 and 3.1 – 4.0 MU, the area of errors below 10, 5 and 3 MU were 97.6 – 99.5, 81.7 – 89.5 and 51.2 – 72.8 %, the 95 % of area was covered with less than error of 6.6 – 8.2 MU. Conclusion: The analysis of the IFEI reconstituted from log-file was provided detailed information about the delivery in the area of all and individual MLC leaves scanned.« less
Quantifying integrated SIV-DNA by repetitive-sampling Alu-gag PCR.
Mavigner, Maud; Lee, S Thera; Habib, Jakob; Robinson, Cameron; Silvestri, Guido; O'Doherty, Una; Chahroudi, Ann
2016-10-05
Although antiretroviral therapy (ART) effectively suppresses HIV-1 replication, it does not eradicate the virus and ART interruption consistently results in rebound of viraemia, demonstrating the persistence of a long-lived viral reservoir. Several approaches aimed at reducing virus persistence are being developed, and accurate measurements of the latent reservoir (LR) are necessary to assess the effectiveness of anti-latency interventions. We sought to measure the LR in SIV/SHIV-infected rhesus macaques (RMs) by quantifying integrated SIV-DNA. We optimised a repetitive sampling Alu-gag PCR to quantify integrated SIV-DNA ex vivo in ART-naïve and ART-experienced SIV/SHIV-infected RMs. In ART-naïve RMs, we found the median level of integrated SIV-DNA to be 1660 copies and 866 copies per million PBMC during untreated acute and chronic SHIV infection, respectively. Integrated and total SIV-DNA levels were positively correlated with one another. In ART-treated RMs, integrated SIV-DNA was readily detected in lymph nodes and spleen and levels of total (3319 copies/million cells) and integrated (3160 copies/million cells) SIV-DNA were similar after a median of 404 days of ART. In peripheral blood CD4+ T cells from ART-treated RMs, levels of total (3319 copies/million cells) and integrated (2742 copies/million cells) SIV-DNA were not significantly different and were positively correlated. The assay described here is validated and can be used in interventional studies testing HIV/SIV cure strategies in RMs. Measurement of integrated SIV-DNA in ART-treated RMs, along with other reservoir analyses, gives an estimate of the size of the LR.
NASA Astrophysics Data System (ADS)
Loreto, R. P.; Moura-Melo, W. A.; Pereira, A. R.; Zhang, X.; Zhou, Y.; Ezawa, M.; de Araujo, C. I. L.
2018-06-01
With the recent proposition of skyrmion utilization in racetrack memories at room temperature, skyrmionics has become a very attractive field. However, for the stability of skyrmions, it is essential to incorporate the Dzyaloshinskii-Moriya interaction (DMI) and the out-of-plane magnetic field into the system. In this work, we explore a system without these interactions. First, we propose a controlled way for the creation of magnetic skyrmions and skyrmioniums imprinted on a ferromagnetic nanotrack via a nanopatterned nanodisk with the magnetic vortex state. Then we investigate the detachment of the imprinted spin textures from the underneath of the nanodisk, as well as its transport by the spin-transfer torque imposed by spin-polarized current pulses applied in the nanotrack. A prominent feature of the moving imprinted spin texture is that its topological number Q is oscillating around the averaged value of Q = 0 as if it is a resonant state between the skyrmions with Q = ± 1 and the bubble with Q = 0 . We may call it a resonant magnetic soliton (RMS). A RMS moves along a straight line since it is free from the skyrmion Hall effect. In our studied device, the same electrodes are employed to realize the imprinted spin texture detachment and its transport. In addition, we have investigated the interaction between the RMS and a magnetic tunnel junction sensor, where the passing of the RMS in the nanotrack can be well detected. Our results would be useful for the development of novel spintronic devices based on moveable spin textures.
Rotational Raman-based temperature measurements in a high-velocity, turbulent jet
NASA Astrophysics Data System (ADS)
Locke, Randy J.; Wernet, Mark P.; Anderson, Robert C.
2018-01-01
Spontaneous rotational Raman scattering spectroscopy is used to acquire measurements of the mean and root mean square (rms) temperature fluctuations in turbulent, high-velocity heated jets. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 50 mm diameter nozzle operating from subsonic to supersonic conditions over a wide range of temperatures and Mach numbers, in accordance with the Tanna matrix frequently used in jet noise studies. These data were acquired in the hostile, high noise (115 dB) environment of a large scale open air test facility at NASA Glenn Research Center (GRC). Temperature estimates were determined by performing non-linear least squares fitting of the single shot spectra to the theoretical rotational Stokes spectra of N2 and O2. The laser employed in this study was a high energy, long-pulsed, frequency doubled Nd:YAG laser. One thousand single-shot spectra were acquired at each spatial coordinate. Mean temperature and rms temperature variations were calculated at each measurement location. Excellent agreement between the averaged and single-shot temperatures was observed with an accuracy better than 2.5% for temperature, and rms variations in temperature between ±2.2% at 296 K and ±4.5% at 850 K. The mean and normalized rms temperatures measured here were then compared to NASA’s Consensus data set of PIV velocity and turbulence measurements in similar jet flows. The results of this and planned follow-on studies will support NASA GRC’s development of physics-based jet noise prediction, turbulence modeling and aeroacoustic source modeling codes.
Baldwin, Mark A; Clary, Chadd; Maletsky, Lorin P; Rullkoetter, Paul J
2009-10-16
Verified computational models represent an efficient method for studying the relationship between articular geometry, soft-tissue constraint, and patellofemoral (PF) mechanics. The current study was performed to evaluate an explicit finite element (FE) modeling approach for predicting PF kinematics in the natural and implanted knee. Experimental three-dimensional kinematic data were collected on four healthy cadaver specimens in their natural state and after total knee replacement in the Kansas knee simulator during a simulated deep knee bend activity. Specimen-specific FE models were created from medical images and CAD implant geometry, and included soft-tissue structures representing medial-lateral PF ligaments and the quadriceps tendon. Measured quadriceps loads and prescribed tibiofemoral kinematics were used to predict dynamic kinematics of an isolated PF joint between 10 degrees and 110 degrees femoral flexion. Model sensitivity analyses were performed to determine the effect of rigid or deformable patellar representations and perturbed PF ligament mechanical properties (pre-tension and stiffness) on model predictions and computational efficiency. Predicted PF kinematics from the deformable analyses showed average root mean square (RMS) differences for the natural and implanted states of less than 3.1 degrees and 1.7 mm for all rotations and translations. Kinematic predictions with rigid bodies increased average RMS values slightly to 3.7 degrees and 1.9 mm with a five-fold decrease in computational time. Two-fold increases and decreases in PF ligament initial strain and linear stiffness were found to most adversely affect kinematic predictions for flexion, internal-external tilt and inferior-superior translation in both natural and implanted states. The verified models could be used to further investigate the effects of component alignment or soft-tissue variability on natural and implant PF mechanics.
The 2004 Hyperflare from SGR 1806-20: Further Evidence for Global Torsional Vibrations
NASA Technical Reports Server (NTRS)
Strohmayer, Tod E.; Watts, Anna L.
2006-01-01
We report an analysis of the archival Rossi X-ray Timing Explorer (RXTE) data from the December 2004 hyperflare from SGR 1806-20. In addition to the approx. equal to 90 Hz QPO first discovered by Israel et al., we report the detection of higher frequency oscillations at approx. equal to 150, 625, and 1,835 Hz. In addition to these frequencies there are indications of oscillations at approx. equal to 720, and 2,384 Hz, but with lower significances. The 150 Hz QPO has a width (FWHM) of about 17 Hz, an average amplitude (rms) of 6.5%, and is detected in average power spectra centered on the rotational phase of the strongest peak in the pulse profile. This is approximately half a rotational cycle from the phase at which the 90 Hz QPO is strongly detected. The 625 Hz oscillation was first detected in an average power spectrum from nine successive cycles beginning approximately 180 s after the initial hard spike. It has a width (FWHM) of approx. equal to 2 Hz and an average amplitude (rms) during this interval of 9%. We find a strong detection of the 625 Hz oscillation in a pair of successive rotation cycles beginning about 230 s after the start of the flare. In these cycles we also detect the 1,835 Hz QPO with the 625 Hz oscillation. The rotational phase in which the 625 Hz &PO is detected is similar to that for the 90 Hz QPO, indeed, this feature is seen in the same average power spectrum. During the time the 625 Hz QPO is detected we also confirm the simultaneous presence of 30 and 92 Hz QPOs, first reported by Israel et al. The centroid frequency of the 625 Hz QPO detected with RXTE is within 1 Hz of the M 626 Hz oscillation recently found in RHESSI data from this hyperflare by Watts & Strohmayer, however, the two detections were made in different phase and energy intervals. Nevertheless, we argue that the two results likely represent detections of the same oscillation frequency intrinsic to the source, but we comment on some of the difficulties in making direct comparisons between the RXTE and RHESSI measurements
The Impact of Surgical Patent Ductus Arteriosus Closure on Autonomic Function in Premature Infants.
Andescavage, Nickie N; Metzler, Marina; Govindan, Vedavalli; Al-Shargabi, Tareq; Nath, Dilip S; Krishnan, Anita; Massaro, An; Wang, Yunfei; duPlessis, Adre J; Govindan, R B
2017-07-01
Background Patent ductus arteriosus (PDA) is a common complication of prematurity and a risk factor for poor outcome. Infants undergoing surgical PDA ligation are at highest risk for neurodevelopmental injury. Autonomic dysfunction has been described in premature infants with PDA. Aim To interrogate the autonomic nervous system by analysis of advanced heart rate variability (HRV) metrics before and after surgical closure of the PDA. Study Design Prospective, observational study. Subjects Twenty-seven infants born before 28 weeks' gestation were included in this study. Methods Continuous electrocardiogram data were sampled at a rate of 125 Hz for a total of 6 hours before and 6 hours after 30 hours of surgical closure. HRV was determined by detrended fluctuation analysis to calculate the short and long root mean square (RMS L and RMS S ) and α components at two time scales (long and short). Results Gestational age (GA) was positively associated with RMS L , RMS S , and α S and was negatively associated with α L . There was no difference between RMS s , RMS L , α S , or α L before and after surgery; however, median heart rate was lower after surgery ( p < 0.01). Conclusion Advancing GA is highly associated with increasing HRV; however, surgical ligation does not affect HRV in the postoperative period. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Scaling depth-induced wave-breaking in two-dimensional spectral wave models
NASA Astrophysics Data System (ADS)
Salmon, J. E.; Holthuijsen, L. H.; Zijlema, M.; van Vledder, G. Ph.; Pietrzak, J. D.
2015-03-01
Wave breaking in shallow water is still poorly understood and needs to be better parameterized in 2D spectral wave models. Significant wave heights over horizontal bathymetries are typically under-predicted in locally generated wave conditions and over-predicted in non-locally generated conditions. A joint scaling dependent on both local bottom slope and normalized wave number is presented and is shown to resolve these issues. Compared to the 12 wave breaking parameterizations considered in this study, this joint scaling demonstrates significant improvements, up to ∼50% error reduction, over 1D horizontal bathymetries for both locally and non-locally generated waves. In order to account for the inherent differences between uni-directional (1D) and directionally spread (2D) wave conditions, an extension of the wave breaking dissipation models is presented. By including the effects of wave directionality, rms-errors for the significant wave height are reduced for the best performing parameterizations in conditions with strong directional spreading. With this extension, our joint scaling improves modeling skill for significant wave heights over a verification data set of 11 different 1D laboratory bathymetries, 3 shallow lakes and 4 coastal sites. The corresponding averaged normalized rms-error for significant wave height in the 2D cases varied between 8% and 27%. In comparison, using the default setting with a constant scaling, as used in most presently operating 2D spectral wave models, gave equivalent errors between 15% and 38%.
Development of a neuromorphic control system for a lightweight humanoid robot
NASA Astrophysics Data System (ADS)
Folgheraiter, Michele; Keldibek, Amina; Aubakir, Bauyrzhan; Salakchinov, Shyngys; Gini, Giuseppina; Mauro Franchi, Alessio; Bana, Matteo
2017-03-01
A neuromorphic control system for a lightweight middle size humanoid biped robot built using 3D printing techniques is proposed. The control architecture consists of different modules capable to learn and autonomously reproduce complex periodic trajectories. Each module is represented by a chaotic Recurrent Neural Network (RNN) with a core of dynamic neurons randomly and sparsely connected with fixed synapses. A set of read-out units with adaptable synapses realize a linear combination of the neurons output in order to reproduce the target signals. Different experiments were conducted to find out the optimal initialization for the RNN’s parameters. From simulation results, using normalized signals obtained from the robot model, it was proven that all the instances of the control module can learn and reproduce the target trajectories with an average RMS error of 1.63 and variance 0.74.
Gibelli, Daniele; Codari, Marina; Pucciarelli, Valentina; Dolci, Claudia; Sforza, Chiarella
2017-11-23
The quantitative assessment of facial modifications from mimicry is of relevant interest for the rehabilitation of patients who can no longer produce facial expressions. This study investigated a novel application of 3-dimensional on 3-dimensional superimposition for facial mimicry. This cross-sectional study was based on 10 men 30 to 40 years old who underwent stereophotogrammetry for neutral, happy, sad, and angry expressions. Registration of facial expressions on the neutral expression was performed. Root mean square (RMS) point-to-point distance in the labial area was calculated between each facial expression and the neutral one and was considered the main parameter for assessing facial modifications. In addition, effect size (Cohen d) was calculated to assess the effects of labial movements in relation to facial modifications. All participants were free from possible facial deformities, pathologies, or trauma that could affect facial mimicry. RMS values of facial areas differed significantly among facial expressions (P = .0004 by Friedman test). The widest modifications of the lips were observed in happy expressions (RMS, 4.06 mm; standard deviation [SD], 1.14 mm), with a statistically relevant difference compared with the sad (RMS, 1.42 mm; SD, 1.15 mm) and angry (RMS, 0.76 mm; SD, 0.45 mm) expressions. The effect size of labial versus total face movements was limited for happy and sad expressions and large for the angry expression. This study found that a happy expression provides wider modifications of the lips than the other facial expressions and suggests a novel procedure for assessing regional changes from mimicry. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Design and performance of the ALMA-J prototype antenna
NASA Astrophysics Data System (ADS)
Ukita, Nobuharu; Saito, Masao; Ezawa, Hajime; Ikenoue, Bungo; Ishizaki, Hideharu; Iwashita, Hiroyuki; Yamaguchi, Nobuyuki; Hayakawa, Takahiro
2004-10-01
The National Astronomical Observatory of Japan has constructed a prototype 12-m antenna of the Atacama Compact Array to evaluate its performance at the ALMA Test Facility in the NRAO VLA observatory in New Mexico, the United States. The antenna has a CFRP tube backup structure (BUS) with CFRP boards to support 205 machined Aluminum surface panels. Their accuracies were measured to be 5.9 m rms on average. A chemical treatment technique of the surface panels has successfully applied to scatter the solar radiation, which resulted in a subreflector temperature increase of about 25 degrees relative to ambient temperature during direct solar observations. Holography measurements and panel adjustments led to a final surface accuracy of 20 m rms, (weighted by 12dB edge taper), after three rounds of the panel adjustments. Based on a long term temperature monitoring of the BUS and thermal deformation FEM calculation, the BUS thermal deformation was estimated to be less than 3.1 m rms. We have employed gear drive mechanism both for a fast position switching capability and for smooth drive at low velocities. Servo errors measured with angle encoders were found to be less than 0.1 arcseconds rms at rotational velocities below 0.1 degrees s-1 and to increase to 0.7 arcseconds rms at the maximum speed of the 'on-the-fly' scan as a single dish, 0.5 deg s-1 induced by the irregularity of individual gear tooth profiles. Simultaneous measurements of the antenna motion with the angle encoders and seismic accelerometers mounted at the primary reflector mirror edges and at the subreflector showed the same amplitude and phase of oscillation, indicating that they are rigid, suggesting that it is possible to estimate where the antenna is actually pointing from the encoder readout. Continuous tracking measurements of Polaris during day and night have revealed a large pointing drift due to thermal distortion of the yoke structure. We have applied retrospective thermal corrections to tracking data for two hours, with a preliminary thermal deformation model of the yoke, and have found the tracking accuracy improved to be 0.1 - 0.3 arcseconds rms for a 15-munites period. The whole sky absolute pointing error under no wind and during night was measured to be 1.17 arcseconds rms. We need to make both an elaborated modeling of thermal deformation of the structure and systematic searches for significant correlation among pointing errors and metrology sensor outputs to achieve the stable tracking performance requested by ALMA.
NASA Astrophysics Data System (ADS)
Nakagawa, Yujin; Ebisawa, Ken; Enoto, Teruaki
2018-03-01
The emission mechanism of magnetars is still controversial even though various observational and theoretical studies have been made. In order to investigate mechanisms of both the persistent X-ray emission and the burst emission of the magnetars, we propose a model in which the persistent X-ray emission consists of numerous micro-bursts of various sizes. If this model is correct, root mean square (rms) intensity variations of the persistent emission would exceed the values expected from the Poisson distribution. Using Suzaku archive data of 11 magnetars (22 observations), the rms intensity variations were calculated from 0.2 keV to 70 keV. As a result, we found significant excess rms intensity variations from all 11 magnetars. We suppose that numerous micro-bursts constituting the persistent X-ray emission cause the observed variations, suggesting that the persistent X-ray emission and the burst emission have identical emission mechanisms. In addition, we found that the rms intensity variations clearly increase toward higher energy bands for four magnetars (six observations). The energy-dependent rms intensity variations imply that the soft thermal component and the hard X-ray component are emitted from different regions far apart from each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolden, Suzanne L., E-mail: woldens@mskcc.org; Lyden, Elizabeth R.; Arndt, Carola A.
Purpose: To determine local control according to clinical variables for patients with intermediate-risk rhabdomyosarcoma (RMS) treated on Children's Oncology Group protocol D9803. Patients and Methods: Of 702 patients enrolled, we analyzed 423 patients with central pathology–confirmed group III embryonal (n=280) or alveolar (group III, n=102; group I-II, n=41) RMS. Median age was 5 years. Patients received 42 weeks of VAC (vincristine, dactinomycin, cyclophosphamide) or VAC alternating with VTC (T = topotecan). Local therapy with 50.4 Gy radiation therapy with or without delayed primary excision began at week 12 for group III patients. Patients with group I/II alveolar RMS received 36-41.4 Gy. Local failure (LF) was definedmore » as local progression as a first event with or without concurrent regional or distant failure. Results: At a median follow-up of 6.6 years, patients with clinical group I/II alveolar RMS had a 5-year event-free survival rate of 69% and LF of 10%. Among patients with group III RMS, 5-year event-free survival and LF rates were 70% and 19%, respectively. Local failure rates did not differ by histology, nodal status, or primary site, though there was a trend for increased LF for retroperitoneal (RP) tumors (P=.12). Tumors ≥5 cm were more likely to fail locally than tumors <5 cm (25% vs 10%, P=.0004). Almost all (98%) RP tumors were ≥5 cm, with no difference in LF by site when the analysis was restricted to tumors ≥5 cm (P=.86). Conclusion: Local control was excellent for clinical group I/II alveolar RMS. Local failure constituted 63% of initial events in clinical group III patients and did not vary by histology or nodal status. The trend for higher LF in RP tumors was related to tumor size. There has been no clear change in local control over RMS studies, including IRS-III and IRS-IV. Novel approaches are warranted for larger tumors (≥5 cm).« less
Determination of stratospheric temperature and height gradients from nimbus 3 radiation data
NASA Technical Reports Server (NTRS)
Nicholas, G. W.; Hovland, D. N.; Belmont, A. D.
1971-01-01
To improve the specification of stratospheric horizontal temperature and geopotential height fields from satellite radiation data, needed for high flying aircraft, a technique was derived to estimate data between satellite tracks using interpolated IRIS 15-micron data from Nimbus III. The interpolation is based on the observed gradients of the MRIR 15-micron radiances between subsatellite tracks. The technique was verified with radiosonde data taken within 6 hours of the satellite data. The sample varied from 1126 pairs at low levels to 383 pairs at 10 mb using northern hemisphere data for June 15 to July 20, 1969. The data were separated into five latitude bands. The Rms temperature differences were generally from 2 to 5 C for all levels above 300 mb. From 500 to 300 mb RMS differences vary from 4 to 9C except at high latitudes which show values near 3C. The RMS differences between radiosonde heights and those calculated hydrostatically from the surface were from 30 to 280 meters increasing from the surface to 10 mb. Integration starting at 100 mb reduced the RMS difference in the stratosphere to 20 to 120 meters from 70 to 10 mb. From a comparison with actual operational maps at 50 and 10 mb, it appears the techniques developed produce analyses in general agreement with those from radiosonde data. In addition, they are able to indicate details over areas of sparse data not shown by conventional techniques.
Hourly Updated GNSS Orbit and Clock
NASA Astrophysics Data System (ADS)
Song, S.; Xue, J.
2016-12-01
With the development of the performance of GNSS, the hourly updated orbit and clock of GNSS are paid much more attention and used by more and more users because of the timeliness and high accuracy. The hourly GNSS orbit and clock are produced routinely in Shanghai Analysis Center(AC) of the International GNSS Monitoring and Assessment Service (iGMAS).In this article, the accuracy of hourly and 6-hourly updated ultra-rapid GPS,GLONASS,GALILEO,BDS orbit and clock (SHU1 and SHU6) are analyzed relative to the final production in detail. The analysis show that, in calculation session, there's no much difference between the mean SHU1 and SHU6 RMS and STD for GNSS orbit and clock. However, for BDS clock in prediction session, the RMS and STD of BDS SHU1 are 2.6ns and 0.5ns respectively, the RMS of BDS SHU6 increase from 2.7ns to 4.5ns from the 1st to the 6th hour prediction session, but there's no much changes of STD. For GPS clock in prediction session, the RMS and STD of GPS SHU1 is quite stable with 0.5ns and 0.2ns.The RMS of GPS SHU6 clock increase from 0.6ns to 1.0ns from the 1st to the 6th hour, but STD is stable at about 0.2ns.For the orbit in calculate session, the RMS of BDS SHU1 is a little less than that of SHU6,the RMS of GPS SHU1 and SHU6 orbit are approximately at the same level. In prediction session, the RMS of IGSO/MEO for BDS SHU1 is relative stable, but the RMS of SHU6 1st-6th hour prediction session increase from about 26.5cm to 32.7cm. The RMS of GPS SHU1 orbit's prediction session is about 3.4cm,but which increase from 3.3cm to 4.3cm for GPS SHU6 1st-6th hour prediction session.The comparison of GLONASS and GALILEO orbit and clock also will be described.The results show that the hourly update is more important for BDS at this stage.Moreover,some problems appearing in satellites and stations can be found earlier by 1 hourly updated frequency.
Huisinga, Jessie M; Filipi, Mary L; Stergiou, Nicholas
2012-01-01
Postural disturbances are one of the first reported symptoms in patients with Multiple Sclerosis (MS). The purpose of this study was to investigate the effect of supervised resistance training on postural control in MS patients. Postural control was assessed using amount of sway variability [Root Mean Square (RMS)] and temporal structure of sway variability [Lyapunov Exponent (LyE)] from 15 MS patients. Posture was evaluated before and after completion of three months of resistance training. There were significant differences between MS patients pretraining and healthy controls for both LyE (p = .000) and RMS (p = .002), but no differences between groups after training. There was a significant decrease in RMS (p = .025) and a significant increase in LyE (p = .049) for MS patients pre- to posttraining. The findings suggested that postural control of MS patients could be affected by a supervised resistance training intervention.
Research of the aberrations of human eyes with accommodation based on eye model
NASA Astrophysics Data System (ADS)
Quan, Wei; Wang, Feng-lin; Wang, Zhao-qi
2011-06-01
The variation of the wavefront aberration with accommodation was investigated based on the eye model of Gullstrand-Le Grand. The anterior lens radius was optimized at different accommodation to focus the image at the retina, and the RMS and PV wave-front error of human eye were compared at different accommodation. The PV value of wavefront aberration from 0.718 waves increases gradually to 0.904 waves and RMS value from 0.21 waves to 0.26 waves when accommodative stimuli varies from 0 to - 5 diopters. The change of PV value is 0.186 waves which is less than the Rayleigh diffraction limit λ/4, and the change of RMS is 0.05 which under Marechal diffraction limit λ/14. Therefore, the change of the wavefront aberration caused accommodation can be ignored when wavefront aberrations in the human eye are corrected with surgery or wearing glasses.
Oceanwide gravity anomalies from Geos-3, Seasat and Geosat altimeter data
NASA Technical Reports Server (NTRS)
Rapp, Richard H.; Basic, Tomislav
1992-01-01
Three kinds of satellite altimeter data have been combined, along with 5 x 5 arcmin bathymetric data, to calculate a 0.125 deg ocean wide gridded set of 2.3 x 10 exp 6 free-air gravity anomalies. The procedure used was least squares collocation that yields the predicted anomaly and standard deviation. The value of including the bathymetric data was shown in a test around the Dowd Seamount where the root mean square (rms) difference between ship gravity measurements decreased from +/- 40 mgal to +/- 20 mgal when the bathymetry was included. Comparisons between the predicted anomalies and ship gravity data is described in three cases. In the Banda Sea the rms differences were +/- 20 mgal for two lines. In the South Atlantic rms differences over lines of 2000 km in length were +/- 7 mgal. For cruise data in the Antarctica region the discrepancies were +/- 12 mgal. Comparisons of anomalies derived from the Geosat geodetic mission data by Marks and McAdoo (1992) with ship dta gave differences of +/- 6 mgal showing the value of the much denser Geosat geodetic mission altimeter data.
Associations between motor unit action potential parameters and surface EMG features.
Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario
2017-10-01
The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit population behavior to a wide range of voluntary forces. The results fully clarify the potential and limitation of the surface EMG to provide estimates of the neural drive to muscles. Copyright © 2017 the American Physiological Society.
Ionospheric error contribution to GNSS single-frequency navigation at the 2014 solar maximum
NASA Astrophysics Data System (ADS)
Orus Perez, Raul
2017-04-01
For single-frequency users of the global satellite navigation system (GNSS), one of the main error contributors is the ionospheric delay, which impacts the received signals. As is well-known, GPS and Galileo transmit global models to correct the ionospheric delay, while the international GNSS service (IGS) computes precise post-process global ionospheric maps (GIM) that are considered reference ionospheres. Moreover, accurate ionospheric maps have been recently introduced, which allow for the fast convergence of the real-time precise point position (PPP) globally. Therefore, testing of the ionospheric models is a key issue for code-based single-frequency users, which constitute the main user segment. Therefore, the testing proposed in this paper is straightforward and uses the PPP modeling applied to single- and dual-frequency code observations worldwide for 2014. The usage of PPP modeling allows us to quantify—for dual-frequency users—the degradation of the navigation solutions caused by noise and multipath with respect to the different ionospheric modeling solutions, and allows us, in turn, to obtain an independent assessment of the ionospheric models. Compared to the dual-frequency solutions, the GPS and Galileo ionospheric models present worse global performance, with horizontal root mean square (RMS) differences of 1.04 and 0.49 m and vertical RMS differences of 0.83 and 0.40 m, respectively. While very precise global ionospheric models can improve the dual-frequency solution globally, resulting in a horizontal RMS difference of 0.60 m and a vertical RMS difference of 0.74 m, they exhibit a strong dependence on the geographical location and ionospheric activity.
Luo, Jake; Apperson-Hansen, Carolyn; Pelfrey, Clara M; Zhang, Guo-Qiang
2014-11-30
Cross-institutional cross-disciplinary collaboration has become a trend as researchers move toward building more productive and innovative teams for scientific research. Research collaboration is significantly changing the organizational structure and strategies used in the clinical and translational science domain. However, due to the obstacles of diverse administrative structures, differences in area of expertise, and communication barriers, establishing and managing a cross-institutional research project is still a challenging task. We address these challenges by creating an integrated informatics platform to reduce the barriers to biomedical research collaboration. The Request Management System (RMS) is an informatics infrastructure designed to transform a patchwork of expertise and resources into an integrated support network. The RMS facilitates investigators' initiation of new collaborative projects and supports the management of the collaboration process. In RMS, experts and their knowledge areas are categorized and managed structurally to provide consistent service. A role-based collaborative workflow is tightly integrated with domain experts and services to streamline and monitor the life-cycle of a research project. The RMS has so far tracked over 1,500 investigators with over 4,800 tasks. The research network based on the data collected in RMS illustrated that the investigators' collaborative projects increased close to 3 times from 2009 to 2012. Our experience with RMS indicates that the platform reduces barriers for cross-institutional collaboration of biomedical research projects. Building a new generation of infrastructure to enhance cross-disciplinary and multi-institutional collaboration has become an important yet challenging task. In this paper, we share the experience of developing and utilizing a collaborative project management system. The results of this study demonstrate that a web-based integrated informatics platform can facilitate and increase research interactions among investigators.
Cryogenic Target-Implosion Experiments on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, D.R.; Meyerhofer, D.D.; Sangster, T.C.
The University of Rochester’s Laboratory for Laser Energetics has been imploding thick cryogenic targets for six years. Improvements in the Cryogenic Target Handling System and the ability to accurately design laser pulse shapes that properly time shocks and minimize electron preheat, produced high fuel areal densities in deuterium cryogenic targets (202+/-7 mg/cm^2). The areal density was inferred from the energy loss of secondary protons in the fuel (D2) shell. Targets were driven on a low final adiabat (alpha = 2) employing techniques to radially grade the adiabat (the highest adiabat at the ablation surface). The ice layer meets the target-designmore » toughness specification for DT ice of 1-um rms (all modes), while D2 ice layers average 3.0-um-rms roughness. The implosion experiments and the improvements in the quality and understanding of cryogenic targets are presented.« less
On optical imaging through aircraft turbulent boundary layers
NASA Technical Reports Server (NTRS)
Sutton, G. W.
1980-01-01
Optical resolution quality as affected by aircraft turbulent boundary layers is analyzed. Wind-tunnel data was analyzed to obtained the variation of boundary layer turbulence scale length and mass density rms fluctuations with Mach number. The data gave good agreement with a mass density fluctuation turbulence spectrum that is either isotropic of orthogonally anisotropic. The data did not match an isotropic turbulence velocity spectrum which causes an anisotropic non-orthogonal mass density fluctuation spectrum. The results indicate that the average mass density rms fluctuation is about 10% of the maximum mass density across the boundary layer and that the transverse turbulence scale size is about 10% of the boundary layer thickness. The results indicate that the effect of the turbulent boundary layer is large angle scattering which decreases contrast but not resolution. Using extinction as a criteria the range of acceptable aircraft operating conditions are given.
van Gaal, J Carlijn; Roeffen, Melissa H S; Flucke, Uta E; van der Laak, Jeroen A W M; van der Heijden, Gwen; de Bont, Eveline S J M; Suurmeijer, Albert J H; Versleijen-Jonkers, Yvonne M H; van der Graaf, Winette T A
2013-11-01
Rhabdomyosarcoma (RMS) is an aggressive soft tissue tumour mainly affecting children and adolescents. Since survival of high-risk patients remains poor, new treatment options are awaited. The aim of this study is to investigate anaplastic lymphoma kinase (ALK) and insulin-like growth factor-1 receptor (IGF-1R) as potential therapeutic targets in RMS. One-hundred-and-twelve primary tumours (embryonal RMS (eRMS)86; alveolar RMS (aRMS)26) were collected. Expression of IGF-1R, ALK and downstream pathway proteins was evaluated by immunohistochemistry. The effect of ALK inhibitor NVP-TAE684 (Novartis), IGF-1R antibody R1507 (Roche) and combined treatment was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays in cell lines (aRMS Rh30, Rh41; eRMS Rh18, RD). IGF-1R and ALK expression was observed in 72% and 92% of aRMS and 61% and 39% of eRMS, respectively. Co-expression was observed in 68% of aRMS and 32% of eRMS. Nuclear IGF-1R expression was an adverse prognostic factor in eRMS (5-year survival 46.9 ± 18.7% versus 84.4 ± 5.9%, p=0.006). In vitro, R1507 showed diminished viability predominantly in Rh41. NVP-TAE684 showed diminished viability in Rh41 and Rh30, and to a lesser extent in Rh18 and RD. Simultaneous treatment revealed synergistic activity against Rh41 and Rh30. Co-expression of IGF-1R and ALK is detected in eRMS and particularly in aRMS. As combined inhibition reveals synergistic cytotoxic effects, this combination seems promising and needs further investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Transcriptional Coactivator TAZ Is a Potent Mediator of Alveolar Rhabdomyosarcoma Tumorigenesis.
Deel, Michael D; Slemmons, Katherine K; Hinson, Ashley R; Genadry, Katia C; Burgess, Breanne A; Crose, Lisa E S; Kuprasertkul, Nina; Oristian, Kristianne M; Bentley, Rex C; Linardic, Corinne M
2018-03-07
Purpose: Alveolar rhabdomyosarcoma (aRMS) is a childhood soft tissue sarcoma driven by the signature PAX3-FOXO1 (P3F) fusion gene. Five-year survival for aRMS is <50%, with no improvement in over 4 decades. Although the transcriptional coactivator TAZ is oncogenic in carcinomas, the role of TAZ in sarcomas is poorly understood. The aim of this study was to investigate the role of TAZ in P3F-aRMS tumorigenesis. Experimental Design: After determining from publicly available datasets that TAZ is upregulated in human aRMS transcriptomes, we evaluated whether TAZ is also upregulated in our myoblast-based model of P3F-initiated tumorigenesis, and performed IHC staining of 63 human aRMS samples from tissue microarrays. Using constitutive and inducible RNAi, we examined the impact of TAZ loss of function on aRMS oncogenic phenotypes in vitro and tumorigenesis in vivo Finally, we performed pharmacologic studies in aRMS cell lines using porphyrin compounds, which interfere with TAZ-TEAD transcriptional activity. Results: TAZ is upregulated in our P3F-initiated aRMS model, and aRMS cells and tumors have high nuclear TAZ expression. In vitro , TAZ suppression inhibits aRMS cell proliferation, induces apoptosis, supports myogenic differentiation, and reduces aRMS cell stemness. TAZ-deficient aRMS cells are enriched in G 2 -M phase of the cell cycle. In vivo , TAZ suppression attenuates aRMS xenograft tumor growth. Preclinical studies show decreased aRMS xenograft tumor growth with porphyrin compounds alone and in combination with vincristine. Conclusions: TAZ is oncogenic in aRMS sarcomagenesis. While P3F is currently not therapeutically tractable, targeting TAZ could be a promising novel approach in aRMS. Clin Cancer Res; 1-15. ©2018 AACR. ©2018 American Association for Cancer Research.
Detrended fluctuation analysis of non-stationary cardiac beat-to-beat interval of sick infants
NASA Astrophysics Data System (ADS)
Govindan, Rathinaswamy B.; Massaro, An N.; Al-Shargabi, Tareq; Niforatos Andescavage, Nickie; Chang, Taeun; Glass, Penny; du Plessis, Adre J.
2014-11-01
We performed detrended fluctuation analysis (DFA) of cardiac beat-to-beat intervals (RRis) collected from sick newborn infants over 1-4 day periods. We calculated four different metrics from the DFA fluctuation function: the DFA exponents αL (>40 beats up to one-fourth of the record length), αs (15-30 beats), root-mean-square (RMS) fluctuation on a short-time scale (20-50 beats), and RMS fluctuation on a long-time scale (110-150 beats). Except αL , all metrics clearly distinguished two groups of newborn infants (favourable vs. adverse) with well-characterized outcomes. However, the RMS fluctuations distinguished the two groups more consistently over time compared to αS . Furthermore, RMS distinguished the RRi of the two groups earlier compared to the DFA exponent. In all the three measures, the favourable outcome group displayed higher values, indicating a higher magnitude of (auto-)correlation and variability, thus normal physiology, compared to the adverse outcome group.
Benchmarking of measurement and simulation of transverse rms-emittance growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Dong-O
2008-01-01
Transverse emittance growth along the Alvarez DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth appropriated tools to simulate the beam dynamics are indispensable. This paper is about the benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittances for different machine settings. Experimental set-ups, data reduction, the preparation of the simulations, and the evaluation of the simulations will be described. It was found that the measured 100%-rmsemittances behind themore » DTL exceed the simulated values. Comparing measured 90%-rms-emittances to the simulated 95%-rms-emittances gives fair to good agreement instead. The sum of horizontal and vertical emittances is even described well by the codes as long as experimental 90%-rmsemittances are compared to simulated 95%-rms-emittances. Finally, the successful reduction of transverse emittance growth by systematic beam matching is reported.« less
NASA Astrophysics Data System (ADS)
Zoulida, Myriam; Pollet, Arnaud; Coulot, David; Perosanz, Félix; Loyer, Sylvain; Biancale, Richard; Rebischung, Paul
2016-10-01
In order to improve the Precise Orbit Determination (POD) of the GPS constellation and the Jason-2 Low Earth Orbiter (LEO), we carry out a simultaneous estimation of GPS satellite orbits along with Jason-2 orbits, using GINS software. Along with GPS station observations, we use Jason-2 GPS, SLR and DORIS observations, over a data span of 6 months (28/05/2011-03/12/2011). We use the Geophysical Data Records-D (GDR-D) orbit estimation standards for the Jason-2 satellite. A GPS-only solution is computed as well, where only the GPS station observations are used. It appears that adding the LEO GPS observations results in an increase of about 0.7% of ambiguities fixed, with respect to the GPS-only solution. The resulting GPS orbits from both solutions are of equivalent quality, agreeing with each other at about 7 mm on Root Mean Square (RMS). Comparisons of the resulting GPS orbits to the International GNSS Service (IGS) final orbits show the same level of agreement for both the GPS-only orbits, at 1.38 cm in RMS, and the GPS + Jason2 orbits at 1.33 cm in RMS. We also compare the resulting Jason-2 orbits with the 3-technique Segment Sol multi-missions d'ALTimétrie, d'orbitographie et de localisation précise (SSALTO) POD products. The orbits show good agreement, with 2.02 cm of orbit differences global RMS, and 0.98 cm of orbit differences RMS on the radial component.
Recycling manure as cow bedding: Potential benefits and risks for UK dairy farms.
Leach, Katharine A; Archer, Simon C; Breen, James E; Green, Martin J; Ohnstad, Ian C; Tuer, Sally; Bradley, Andrew J
2015-11-01
Material obtained from physical separation of slurry (recycled manure solids; RMS) has been used as bedding for dairy cows in dry climates in the US since the 1970s. Relatively recently, the technical ability to produce drier material has led to adoption of the practice in Europe under different climatic conditions. This review collates the evidence available on benefits and risks of using RMS bedding on dairy farms, with a European context in mind. There was less evidence than expected for anecdotal claims of improved cow comfort. Among animal health risks, only udder health has received appreciable attention. There are some circumstantial reports of difficulties of maintaining udder health on RMS, but no large scale or long term studies of effects on clinical and subclinical mastitis have been published. Existing reports do not give consistent evidence of inevitable problems, nor is there any information on clinical implications for other diseases. The scientific basis for guidelines on management of RMS bedding is limited. Decisions on optimum treatment and management may present conflicts between controls of different groups of organisms. There is no information on the influence that such 'recycling' of manure may have on pathogen virulence. The possibility of influence on genetic material conveying antimicrobial resistance is a concern, but little understood. Should UK or other non-US farmers adopt RMS, they are advised to do so with caution, apply the required strategies for risk mitigation, maintain strict hygiene of bed management and milking practices and closely monitor the effects on herd health. Copyright © 2015 Elsevier Ltd. All rights reserved.
Accuracy and precision of 3D cephalometric landmarks from biorthogonal plain-film x rays
NASA Astrophysics Data System (ADS)
Dean, David; Palomo, Martin; Subramanyan, Krishna; Hans, Mark G.; Broadbent, B. H., Jr.; Moullas, Alexander; Macaraeg, Omar
1998-06-01
Three dimensional (3D) plain film radiographic cephalometric analysis of boney skull landmarks may be used for patient diagnosis, treatment planning, prosthetic design, intra- operatively, and outcome assessment. To test the accuracy and reliability of 50 cephalometric landmarks, three dry human skulls, with and without metallic markers affixed to the landmarks, were digitized in our 3dCEPH software by 4 operators. The average inter-operator variability about mean landmark position, across all operators, for all 3 skull image pairs, was 3.33 mm. Ten landmarks exhibiting least variability were 1.15 mm average distance from the mean, including: B point 0.69 mm, Lower Incisal Edge 0.85 mm, and Anterior Nasal Spine 0.90 mm. The average rms error from the metallic fiducials for these 4 operators across all 50 landmarks, and 3 skulls was 5.03 mm. The 10 landmarks with the least variability exhibited 2.01 mm average distance from the fiducial, including: B point 1.69 mm, upper incisal edge 1.71 mm, lower incisal edge 1.78 mm. Additional studies are needed to test the robusticity of the hypothesis of homologous anatomy. Homology of landmarks is important to cephalometric comparisons between image pairs representing patient and 'normative,' pre- and post-surgical alteration, and different ages of the same patient.
NASA Technical Reports Server (NTRS)
Livingston, J.; Schmid, B.; Redemann, J.; Russell, P. B.; Ramirez, S. A.; Eilers, J.; Gore, W.; Howard, S.; Pommier, J.; Fetzer, E. J.;
2007-01-01
We have retrieved columnar water vapor (CWV) from measurements acquired by the 14-channel NASA Ames Airborne Tracking Sun photometer (AATS-14) during 19 Jetstream 31 (J31) flights over the Gulf of Maine in summer 2004 in support of the Intercontinental Chemical Transport Experiment (INTEX)/Intercontinental Transport and Chemical Transformation (ITCT) experiments. In this paper we compare AATS-14 water vapor retrievals during aircraft vertical profiles with measurements by an onboard Vaisala HMP243 humidity sensor and by ship radiosondes and with water vapor profiles retrieved from AIRS measurements during eight Aqua overpasses. We also compare AATS CWV and MODIS infrared CWV retrievals during five Aqua and five Terra overpasses. For 35 J31 vertical profiles, mean (bias) and RMS AATS-minus-Vaisala layer-integrated water vapor (LWV) differences are -7.1 percent and 8.8 percent, respectively. For 22 aircraft profiles within 1 hour and 130 km of radiosonde soundings, AATS-minus-sonde bias and RMS LWV differences are -5.4 percent and 10.7 percent, respectively, and corresponding J31 Vaisala-minus-sonde differences are 2.3 percent and 8.4 percent, respectively. AIRS LWV retrievals within 80 lan of J31 profiles yield lower bias and RMS differences compared to AATS or Vaisala retrievals than do AIRS retrievals within 150 km of the J31. In particular, for AIRS-minus-AATS LWV differences, the bias decreases from 8.8 percent to 5.8 percent, and the RMS difference decreases from 2 1.5 percent to 16.4 percent. Comparison of vertically resolved AIRS water vapor retrievals (LWVA) to AATS values in fixed pressure layers yields biases of -2 percent to +6 percent and RMS differences of -20 percent below 700 hPa. Variability and magnitude of these differences increase significantly above 700 hPa. MODIS IR retrievals of CWV in 205 grid cells (5 x 5 km at nadir) are biased wet by 10.4 percent compared to AATS over-ocean near-surface retrievals. The MODIS-Aqua subset (79 grid cells) exhibits a wet bias of 5.1 percent, and the MODIS-Terra subset (126 grid cells) yields a wet bias of 13.2 percent.
Reducing representativeness and sampling errors in radio occultation-radiosonde comparisons
NASA Astrophysics Data System (ADS)
Gilpin, Shay; Rieckh, Therese; Anthes, Richard
2018-05-01
Radio occultation (RO) and radiosonde (RS) comparisons provide a means of analyzing errors associated with both observational systems. Since RO and RS observations are not taken at the exact same time or location, temporal and spatial sampling errors resulting from atmospheric variability can be significant and inhibit error analysis of the observational systems. In addition, the vertical resolutions of RO and RS profiles vary and vertical representativeness errors may also affect the comparison. In RO-RS comparisons, RO observations are co-located with RS profiles within a fixed time window and distance, i.e. within 3-6 h and circles of radii ranging between 100 and 500 km. In this study, we first show that vertical filtering of RO and RS profiles to a common vertical resolution reduces representativeness errors. We then test two methods of reducing horizontal sampling errors during RO-RS comparisons: restricting co-location pairs to within ellipses oriented along the direction of wind flow rather than circles and applying a spatial-temporal sampling correction based on model data. Using data from 2011 to 2014, we compare RO and RS differences at four GCOS Reference Upper-Air Network (GRUAN) RS stations in different climatic locations, in which co-location pairs were constrained to a large circle ( ˜ 666 km radius), small circle ( ˜ 300 km radius), and ellipse parallel to the wind direction ( ˜ 666 km semi-major axis, ˜ 133 km semi-minor axis). We also apply a spatial-temporal sampling correction using European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) gridded data. Restricting co-locations to within the ellipse reduces root mean square (RMS) refractivity, temperature, and water vapor pressure differences relative to RMS differences within the large circle and produces differences that are comparable to or less than the RMS differences within circles of similar area. Applying the sampling correction shows the most significant reduction in RMS differences, such that RMS differences are nearly identical to the sampling correction regardless of the geometric constraints. We conclude that implementing the spatial-temporal sampling correction using a reliable model will most effectively reduce sampling errors during RO-RS comparisons; however, if a reliable model is not available, restricting spatial comparisons to within an ellipse parallel to the wind flow will reduce sampling errors caused by horizontal atmospheric variability.
Tests of a Semi-Analytical Case 1 and Gelbstoff Case 2 SeaWiFS Algorithm with a Global Data Set
NASA Technical Reports Server (NTRS)
Carder, Kendall L.; Hawes, Steve K.; Lee, Zhongping
1997-01-01
A semi-analytical algorithm was tested with a total of 733 points of either unpackaged or packaged-pigment data, with corresponding algorithm parameters for each data type. The 'unpackaged' type consisted of data sets that were generally consistent with the Case 1 CZCS algorithm and other well calibrated data sets. The 'packaged' type consisted of data sets apparently containing somewhat more packaged pigments, requiring modification of the absorption parameters of the model consistent with the CalCOFI study area. This resulted in two equally divided data sets. A more thorough scrutiny of these and other data sets using a semianalytical model requires improved knowledge of the phytoplankton and gelbstoff of the specific environment studied. Since the semi-analytical algorithm is dependent upon 4 spectral channels including the 412 nm channel, while most other algorithms are not, a means of testing data sets for consistency was sought. A numerical filter was developed to classify data sets into the above classes. The filter uses reflectance ratios, which can be determined from space. The sensitivity of such numerical filters to measurement resulting from atmospheric correction and sensor noise errors requires further study. The semi-analytical algorithm performed superbly on each of the data sets after classification, resulting in RMS1 errors of 0.107 and 0.121, respectively, for the unpackaged and packaged data-set classes, with little bias and slopes near 1.0. In combination, the RMS1 performance was 0.114. While these numbers appear rather sterling, one must bear in mind what mis-classification does to the results. Using an average or compromise parameterization on the modified global data set yielded an RMS1 error of 0.171, while using the unpackaged parameterization on the global evaluation data set yielded an RMS1 error of 0.284. So, without classification, the algorithm performs better globally using the average parameters than it does using the unpackaged parameters. Finally, the effects of even more extreme pigment packaging must be examined in order to improve algorithm performance at high latitudes. Note, however, that the North Sea and Mississippi River plume studies contributed data to the packaged and unpackaged classess, respectively, with little effect on algorithm performance. This suggests that gelbstoff-rich Case 2 waters do not seriously degrade performance of the semi-analytical algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stathakis, S; Defoor, D; Linden, P
Purpose: To study the frequency of Multi-Leaf Collimator (MLC) leaf failures, investigate methods to predict them and reduce linac downtime. Methods: A Varian HD120 MLC was used in our study. The hyperterminal MLC errors logged from 06/2012 to 12/2014 were collected. Along with the hyperterminal errors, the MLC motor changes and all other MLC interventions by the linear accelerator engineer were recorded. The MLC dynalog files were also recorded on a daily basis for each treatment and during linac QA. The dynalog files were analyzed to calculate root mean square errors (RMS) and cumulative MLC travel distance per motor. Anmore » in-house MatLab code was used to analyze all dynalog files, record RMS errors and calculate the distance each MLC traveled per day. Results: A total of 269 interventions were recorded over a period of 18 months. Of these, 146 included MLC motor leaf change, 39 T-nut replacements, and 84 MLC cleaning sessions. Leaves close to the middle of each side required the most maintenance. In the A bank, leaves A27 to A40 recorded 73% of all interventions, while the same leaves in the B bank counted for 52% of the interventions. On average, leaves in the middle of the bank had their motors changed approximately every 1500m of travel. Finally, it was found that the number of RMS errors increased prior to an MLC motor change. Conclusion: An MLC dynalog file analysis software was developed that can be used to log daily MLC usage. Our eighteen-month data analysis showed that there is a correlation between the distance an MLC travels, the RMS and the life of the MLC motor. We plan to use this tool to predict MLC motor failures and with proper and timely intervention, reduce the downtime of the linac during clinical hours.« less
Ligerot, Yasmine; de Saint Germain, Alexandre; Troadec, Christelle; Citerne, Sylvie; Pillot, Jean-Paul; Prigge, Michael; Aubert, Grégoire; Bendahmane, Abdelhafid; Estelle, Mark; Debellé, Frédéric
2017-01-01
Strigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes. Grafting studies and hormone quantification led to a model where RMS2 mediates a shoot-to-root feedback signal that regulates both SL biosynthesis gene transcript levels and xylem sap levels of cytokinin exported from roots. Here we cloned RMS2 using synteny with Medicago truncatula and demonstrated that it encodes a putative auxin receptor of the AFB4/5 clade. Phenotypes similar to rms2 were found in Arabidopsis afb4/5 mutants, including increased shoot branching, low expression of SL biosynthesis genes and high auxin levels in stems. Moreover, afb4/5 and rms2 display a specific resistance to the herbicide picloram. Yeast-two-hybrid experiments supported the hypothesis that the RMS2 protein functions as an auxin receptor. SL root feeding using hydroponics repressed auxin levels in stems and down-regulated transcript levels of auxin biosynthesis genes within one hour. This auxin down-regulation was also observed in plants treated with the polar auxin transport inhibitor NPA. Together these data suggest a homeostatic feedback loop in which auxin up-regulates SL synthesis in an RMS2-dependent manner and SL down-regulates auxin synthesis in an RMS3 and RMS4-dependent manner. PMID:29220348
Ligerot, Yasmine; de Saint Germain, Alexandre; Waldie, Tanya; Troadec, Christelle; Citerne, Sylvie; Kadakia, Nikita; Pillot, Jean-Paul; Prigge, Michael; Aubert, Grégoire; Bendahmane, Abdelhafid; Leyser, Ottoline; Estelle, Mark; Debellé, Frédéric; Rameau, Catherine
2017-12-01
Strigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes. Grafting studies and hormone quantification led to a model where RMS2 mediates a shoot-to-root feedback signal that regulates both SL biosynthesis gene transcript levels and xylem sap levels of cytokinin exported from roots. Here we cloned RMS2 using synteny with Medicago truncatula and demonstrated that it encodes a putative auxin receptor of the AFB4/5 clade. Phenotypes similar to rms2 were found in Arabidopsis afb4/5 mutants, including increased shoot branching, low expression of SL biosynthesis genes and high auxin levels in stems. Moreover, afb4/5 and rms2 display a specific resistance to the herbicide picloram. Yeast-two-hybrid experiments supported the hypothesis that the RMS2 protein functions as an auxin receptor. SL root feeding using hydroponics repressed auxin levels in stems and down-regulated transcript levels of auxin biosynthesis genes within one hour. This auxin down-regulation was also observed in plants treated with the polar auxin transport inhibitor NPA. Together these data suggest a homeostatic feedback loop in which auxin up-regulates SL synthesis in an RMS2-dependent manner and SL down-regulates auxin synthesis in an RMS3 and RMS4-dependent manner.
Birth characteristics and the risk of childhood rhabdomyosarcoma based on histological subtype.
Ognjanovic, S; Carozza, S E; Chow, E J; Fox, E E; Horel, S; McLaughlin, C C; Mueller, B A; Puumala, S; Reynolds, P; Von Behren, J; Spector, L
2010-01-05
Little is known about risk factors for childhood rhabdomyosarcoma (RMS) and the histology-specific details are rare. Case-control studies formed by linking cancer and birth registries of California, Minnesota, New York, Texas and Washington, which included 583 RMS cases (363 embryonal and 85 alveolar RMS) and 57 966 randomly selected control subjects, were analysed using logistic regression. The associations of RMS (overall, and based on embryonal or alveolar histology) with birth weight across five 500 g categories (from 2000 to 4500 g) were examined using normal birth weight (2500-3999 g) as a reference. Large (>90th percentile) and small (<10th percentile) size for gestational age were calculated based on birth weight distributions in controls and were similarly examined. High birth weight increased the risk of embryonal RMS and RMS overall. Each 500 g increase in birth weight increased the risk of embryonal RMS (odds ratio (OR)=1.27, 95% confidence interval (CI)=1.14-1.42) and RMS overall (OR=1.18, 95% CI=1.09-1.29). Large size for gestational age also significantly increased the risk of embryonal RMS (OR=1.42, 95% CI=1.03-1.96). These data suggest a positive association between accelerated in utero growth and embryonal RMS, but not alveolar RMS. These results warrant cautious interpretation owing to the small number of alveolar RMS cases.
FARADAY ROTATION STRUCTURE ON KILOPARSEC SCALES IN THE RADIO LOBES OF CENTAURUS A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feain, I. J.; Ekers, R. D.; Norris, R. P.
2009-12-10
We present the results of an Australia Telescope Compact Array 1.4 GHz spectropolarimetric aperture synthesis survey of 34 deg{sup 2} centered on Centaurus A-NGC 5128. A catalog of 1005 extragalactic compact radio sources in the field to a continuum flux density of 3 mJy beam{sup -1} is provided along with a table of Faraday rotation measures (RMs) and linear polarized intensities for the 28% of sources with high signal to noise in linear polarization. We use the ensemble of 281 background polarized sources as line-of-sight probes of the structure of the giant radio lobes of Centaurus A. This is themore » first time such a method has been applied to radio galaxy lobes and we explain how it differs from the conventional methods that are often complicated by depth and beam depolarization effects. Assuming a magnetic field strength in the lobes of 1.3 B {sub 1} muG, where B {sub 1} = 1 is implied by equipartition between magnetic fields and relativistic particles, the upper limit we derive on the maximum possible difference between the average RM of 121 sources behind Centaurus A and the average RM of the 160 sources along sightlines outside Centaurus A implies an upper limit on the volume-averaged thermal plasma density in the giant radio lobes of (n{sub e} ) < 5 x 10{sup -5} B {sup -1} {sub 1} cm{sup -3}. We use an RM structure function analysis and report the detection of a turbulent RM signal, with rms sigma{sub RM} = 17 rad m{sup -2} and scale size 0.{sup 0}3, associated with the southern giant lobe. We cannot verify whether this signal arises from turbulent structure throughout the lobe or only in a thin skin (or sheath) around the edge, although we favor the latter. The RM signal is modeled as possibly arising from a thin skin with a thermal plasma density equivalent to the Centaurus intragroup medium density and a coherent magnetic field that reverses its sign on a spatial scale of 20 kpc. For a thermal density of n {sub 1} 10{sup -3} cm{sup -3}, the skin magnetic field strength is 0.8 n {sup -1} {sub 1} muG.« less
In−Vitro and In−Vivo Noise Analysis for Optical Neural Recording
Foust, Amanda J.; Schei, Jennifer L.; Rojas, Manuel J.; Rector, David M.
2008-01-01
Laser diodes (LD) are commonly used for optical neural recordings in chronically recorded animals and humans, primarily due to their brightness and small size. However, noise introduced by LDs may counteract the benefits of brightness when compared to low−noise light emitting diodes (LEDs). To understand noise sources in optical recordings, we systematically compared instrument and physiological noise profiles in two recording paradigms. A better understanding of noise sources will help improve optical recordings and make them more practical with fewer averages. We stimulated lobster nerves and rat cortex, then compared the root mean square (RMS) noise and signal−to−noise ratios (SNRs) of data obtained with LED, superluminescent diode (SLD) and LD illumination for different numbers of averages. The LED data exhibited significantly higher SNRs in fewer averages than LD data in all recordings. In the absence of tissue, LED noise increased linearly with intensity, while LD noise increased sharply in the transition to lasing and settled to noise levels significantly higher than the LED’s, suggesting that speckle noise contributed to the LD’s higher noise and lower SNRs. Our data recommend low coherence and portable light sources for in−vivo chronic neural recording applications. PMID:19021365
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shareghe, Mehraeen; Chi, Miaofang; Browning, Nigel D.
2011-01-01
The structures of small, robust metal clusters on a solid support were determined by a combination of spectroscopic and microscopic methods: extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning transmission electron microscopy (STEM), and aberration-corrected STEM. The samples were synthesized from [Os{sub 3}(CO){sub 12}] on MgO powder to provide supported clusters intended to be triosmium. The results demonstrate that the supported clusters are robust in the absence of oxidants. Conventional high-angle annular dark-field (HAADF) STEM images demonstrate a high degree of uniformity of the clusters, with root-mean-square (rms) radii of 2.03 {+-} 0.06 {angstrom}. The EXAFS OsOs coordination number ofmore » 2.1 {+-} 0.4 confirms the presence of triosmium clusters on average and correspondingly determines an average rms cluster radius of 2.02 {+-} 0.04 {angstrom}. The high-resolution STEM images show the individual Os atoms in the clusters, confirming the triangular structures of their frames and determining OsOs distances of 2.80 {+-} 0.14 {angstrom}, matching the EXAFS value of 2.89 {+-} 0.06 {angstrom}. IR and EXAFS spectra demonstrate the presence of CO ligands on the clusters. This set of techniques is recommended as optimal for detailed and reliable structural characterization of supported clusters.« less
Mechanical-thermal noise in drive-mode of a silicon micro-gyroscope.
Yang, Bo; Wang, Shourong; Li, Hongsheng; Zhou, Bailing
2009-01-01
A new closed-loop drive scheme which decouples the phase and the gain of the closed-loop driving system was designed in a Silicon Micro-Gyroscope (SMG). We deduce the system model of closed-loop driving and use stochastic averaging to obtain an approximate "slow" system that clarifies the effect of thermal noise. The effects of mechanical-thermal noise on the driving performance of the SMG, including the noise spectral density of the driving amplitude and frequency, are derived. By calculating and comparing the noise amplitude due to thermal noise both in the opened-loop driving and in the closed-loop driving, we find that the closed-loop driving does not reduce the RMS noise amplitude. We observe that the RMS noise frequency can be reduced by increasing the quality factor and the drive amplitude in the closed-loop driving system. The experiment and simulation validate the feasibility of closed-loop driving and confirm the validity of the averaged equation and its stablility criterion. The experiment and simulation results indicate the electrical noise of closed-loop driving circuitry is bigger than the mechanical-thermal noise and as the driving mass decreases, the mechanical-thermal noise may get bigger than the electrical noise of the closed-loop driving circuitry.
Large scale modelling of catastrophic floods in Italy
NASA Astrophysics Data System (ADS)
Azemar, Frédéric; Nicótina, Ludovico; Sassi, Maximiliano; Savina, Maurizio; Hilberts, Arno
2017-04-01
The RMS European Flood HD model® is a suite of country scale flood catastrophe models covering 13 countries throughout continental Europe and the UK. The models are developed with the goal of supporting risk assessment analyses for the insurance industry. Within this framework RMS is developing a hydrologic and inundation model for Italy. The model aims at reproducing the hydrologic and hydraulic properties across the domain through a modeling chain. A semi-distributed hydrologic model that allows capturing the spatial variability of the runoff formation processes is coupled with a one-dimensional river routing algorithm and a two-dimensional (depth averaged) inundation model. This model setup allows capturing the flood risk from both pluvial (overland flow) and fluvial flooding. Here we describe the calibration and validation methodologies for this modelling suite applied to the Italian river basins. The variability that characterizes the domain (in terms of meteorology, topography and hydrologic regimes) requires a modeling approach able to represent a broad range of meteo-hydrologic regimes. The calibration of the rainfall-runoff and river routing models is performed by means of a genetic algorithm that identifies the set of best performing parameters within the search space over the last 50 years. We first establish the quality of the calibration parameters on the full hydrologic balance and on individual discharge peaks by comparing extreme statistics to observations over the calibration period on several stations. The model is then used to analyze the major floods in the country; we discuss the different meteorological setup leading to the historical events and the physical mechanisms that induced these floods. We can thus assess the performance of RMS' hydrological model in view of the physical mechanisms leading to flood and highlight the main controls on flood risk modelling throughout the country. The model's ability to accurately simulate antecedent conditions and discharge hydrographs over the affected area is also assessed, showing that spatio-temporal correlation is retained through the modelling chain. Results show that our modelling approach can capture a wide range of conditions leading to major floods in the Italian peninsula. Under the umbrella of the RMS European Flood HD models this constitutes, to our knowledge, the only operational flood risk model to be applied at continental scale with a coherent model methodology and a domain wide MonteCarlo stochastic set.
JPL IGS Analysis Center Report, 2001-2003
NASA Technical Reports Server (NTRS)
Heflin, M. B.; Bar-Sever, Y. E.; Jefferson, D. C.; Meyer, R. F.; Newport, B. J.; Vigue-Rodi, Y.; Webb, F. H.; Zumberge, J. F.
2004-01-01
Three GPS orbit and clock products are currently provided by JPL for consideration by the IGS. Each differs in its latency and quality, with later results being more accurate. Results are typically available in both IGS and GIPSY formats via anonymous ftp. Current performance based on comparisons with the IGS final products is summarized. Orbit performance was determined by computing the 3D RMS difference between each JPL product and the IGS final orbits based on 15 minute estimates from the sp3 files. Clock performance was computed as the RMS difference after subtracting a linear trend based on 15 minute estimates from the sp3 files.
Smith, Cory M; Housh, Terry J; Herda, Trent J; Zuniga, Jorge M; Ryan, Eric D; Camic, Clayton L; Bergstrom, Haley C; Smith, Doug B; Weir, Joseph P; Cramer, Joel T; Hill, Ethan C; Cochrane, Kristen C; Jenkins, Nathaniel D M; Schmidt, Richard J; Johnson, Glen O
2015-08-01
The purposes of the present study were to examine the effects of electrode placements over, proximal, and distal to the innervation zone (IZ) on electromyographic (EMG) amplitude (RMS) and frequency (MPF) responses during: (1) a maximal voluntary isometric contraction (MVIC), and; (2) a sustained, submaximal isometric muscle action. A linear array was used to record EMG signals from the vastus lateralis over the IZ, 30mm proximal, and 30mm distal to the IZ during an MVIC and a sustained isometric muscle action of the leg extensors at 50% MVIC. During the MVIC, lower EMG RMS (p>0.05) and greater EMG MPF (p<0.05) values were recorded over the IZ compared to away from the IZ, however, no differences in slope coefficients for the EMG RMS and MPF versus time relationships over, proximal, and distal to the IZ occurred. Thus, the results of the present study indicated that during an MVIC, EMG RMS and MPF values recorded over the IZ are not comparable to those away from the IZ. However, the rates of fatigue-induced changes in EMG RMS and MPF during sustained, submaximal isometric muscle actions of the leg extensors were the same regardless of the electrode placement locations relative to the IZ. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev
2016-07-01
The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.
Review: Rusticle Formation on the RMS Titanic and the Potential Influence of Oceanography
NASA Astrophysics Data System (ADS)
Salazar, Maxsimo; Little, Brenda
2017-04-01
Meter length iron-rich rusticles on the RMS Titanic contain bacteria that reportedly mobilize iron from the ship structure at a rate that will reduce the wreck to rust in decades. Other sunken ships, such as the World War II shipwrecks in the Gulf of Mexico (GOM) are also similarly covered. However, at the GOM sites, rusticles are only centimeters in length. Minimal differences in water temperature (a few °C) between the two sites and comparable exposure times from wreckage to discovery cannot rationalize the extreme differences in rusticle length. One possible explanation for the observed difference in rusticle size is the differing amounts of dissolved or colloidal iron at the two locations.
Hartmann wavefront sensors and their application at FLASH.
Keitel, Barbara; Plönjes, Elke; Kreis, Svea; Kuhlmann, Marion; Tiedtke, Kai; Mey, Tobias; Schäfer, Bernd; Mann, Klaus
2016-01-01
Different types of Hartmann wavefront sensors are presented which are usable for a variety of applications in the soft X-ray spectral region at FLASH, the free-electron laser (FEL) in Hamburg. As a typical application, online measurements of photon beam parameters during mirror alignment are reported on. A compact Hartmann sensor, operating in the wavelength range from 4 to 38 nm, was used to determine the wavefront quality as well as aberrations of individual FEL pulses during the alignment procedure. Beam characterization and alignment of the focusing optics of the FLASH beamline BL3 were performed with λ(13.5 nm)/116 accuracy for wavefront r.m.s. (w(rms)) repeatability, resulting in a reduction of w(rms) by 33% during alignment.
Combination of GRACE monthly gravity field solutions from different processing strategies
NASA Astrophysics Data System (ADS)
Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian
2018-02-01
We combine the publicly available GRACE monthly gravity field time series to produce gravity fields with reduced systematic errors. We first compare the monthly gravity fields in the spatial domain in terms of signal and noise. Then, we combine the individual gravity fields with comparable signal content, but diverse noise characteristics. We test five different weighting schemes: equal weights, non-iterative coefficient-wise, order-wise, or field-wise weights, and iterative field-wise weights applying variance component estimation (VCE). The combined solutions are evaluated in terms of signal and noise in the spectral and spatial domains. Compared to the individual contributions, they in general show lower noise. In case the noise characteristics of the individual solutions differ significantly, the weighted means are less noisy, compared to the arithmetic mean: The non-seasonal variability over the oceans is reduced by up to 7.7% and the root mean square (RMS) of the residuals of mass change estimates within Antarctic drainage basins is reduced by 18.1% on average. The field-wise weighting schemes in general show better performance, compared to the order- or coefficient-wise weighting schemes. The combination of the full set of considered time series results in lower noise levels, compared to the combination of a subset consisting of the official GRACE Science Data System gravity fields only: The RMS of coefficient-wise anomalies is smaller by up to 22.4% and the non-seasonal variability over the oceans by 25.4%. This study was performed in the frame of the European Gravity Service for Improved Emergency Management (EGSIEM; http://www.egsiem.eu) project. The gravity fields provided by the EGSIEM scientific combination service (ftp://ftp.aiub.unibe.ch/EGSIEM/) are combined, based on the weights derived by VCE as described in this article.
Method to evaluate the noise of 3D intra-oral scanner.
Desoutter, Alban; Yusuf Solieman, Osama; Subsol, Gérard; Tassery, Hervé; Cuisinier, Frédéric; Fages, Michel
2017-01-01
In dentistry, 3D intra-oral scanners are gaining increasing popularity essentially for the production of dental prostheses. However, there is no normalized procedure to evaluate their basic performance and enable comparisons among intra-oral scanners. The noise value highlights the trueness of a 3D intra-oral scanner and its capacity to plan prosthesis with efficient clinical precision. The aim of the present study is to develop a reproducible methodology for determining the noise of an intra-oral scanner. To this aim, and as a reference, an ultra-flat and ultra-smooth alumina wafer is used as a blank test. The roughness is calculated using an AFM (atomic force microscope) and interferometric microscope measurements to validate this ultra-flat characteristic. Then, two intra-oral scanners (Carestream CS3500 and Trios 3Shape) are used. The wafer is imaged by the two intra-oral scanners with three different angles and two different directions, 10 times for each parameter, given a total of 50 3D-meshes per intra-oral scanner. RMS (root mean square), representing the noise, is evaluated and compared for each angle/direction and each intra-oral scanner, for the whole mesh, and then in a central ROI (region of interest). In this study, we obtained RMS values ranging between 5.29 and 12.58 micrometers. No statistically significant differences were found between the mean RMS of the two intra-oral scanners, but significant differences in angulation and orientations were found between different 3D intra-oral scanners. This study shows that the evaluation of RMS can be an indicator of the value of the noise, which can be easily assessed by applying the present methodology.
NASA Technical Reports Server (NTRS)
Larson, Kristine M.; Ray, Richard D.; Williams, Simon D. P.
2017-01-01
A standard geodetic GPS receiver and a conventional Aquatrak tide gauge, collocated at Friday Harbor, Washington, are used to assess the quality of 10 years of water levels estimated from GPS sea surface reflections.The GPS results are improved by accounting for (tidal) motion of the reflecting sea surface and for signal propagation delay by the troposphere. The RMS error of individual GPS water level estimates is about 12 cm. Lower water levels are measured slightly more accurately than higher water levels. Forming daily mean sea levels reduces the RMS difference with the tide gauge data to approximately 2 cm. For monthly means, the RMS difference is 1.3 cm. The GPS elevations, of course, can be automatically placed into a well-defined terrestrial reference frame. Ocean tide coefficients, determined from both the GPS and tide gauge data, are in good agreement, with absolute differences below 1 cm for all constituents save K1 and S1. The latter constituent is especially anomalous, probably owing to daily temperature-induced errors in the Aquatrak tide gauge
Testing the uniqueness of mass models using gravitational lensing
NASA Astrophysics Data System (ADS)
Walls, Levi; Williams, Liliya L. R.
2018-06-01
The positions of images produced by the gravitational lensing of background-sources provide insight to lens-galaxy mass distributions. Simple elliptical mass density profiles do not agree well with observations of the population of known quads. It has been shown that the most promising way to reconcile this discrepancy is via perturbations away from purely elliptical mass profiles by assuming two super-imposed, somewhat misaligned mass distributions: one is dark matter (DM), the other is a stellar distribution. In this work, we investigate if mass modelling of individual lenses can reveal if the lenses have this type of complex structure, or simpler elliptical structure. In other words, we test mass model uniqueness, or how well an extended source lensed by a non-trivial mass distribution can be modeled by a simple elliptical mass profile. We used the publicly-available lensing software, Lensmodel, to generate and numerically model gravitational lenses and “observed” image positions. We then compared “observed” and modeled image positions via root mean square (RMS) of their difference. We report that, in most cases, the RMS is ≤0.05‧‧ when averaged over an extended source. Thus, we show it is possible to fit a smooth mass model to a system that contains a stellar-component with varying levels of misalignment with a DM-component, and hence mass modelling cannot differentiate between simple elliptical versus more complex lenses.
Femoral anatomical frame: assessment of various definitions.
Della Croce, U; Camomilla, V; Leardini, A; Cappozzo, A
2003-06-01
The reliability of the estimate of joint kinematic variables and the relevant functional interpretation are affected by the uncertainty with which bony anatomical landmarks and underlying bony segment anatomical frames are determined. When a stereo-photogrammetric system is used for in vivo studies, minimising and compensating for this uncertainty is crucial. This paper deals with the propagation of the errors associated with the location of both internal and palpable femoral anatomical landmarks to the estimation of the orientation of the femoral anatomical frame and to the knee joint angles during movement. Given eight anatomical landmarks, and the precision with which they can be identified experimentally, 12 different rules were defined for the construction of the anatomical frame and submitted to comparative assessment. Results showed that using more than three landmarks allows for more repeatable anatomical frame orientation and knee joint kinematics estimation. Novel rules are proposed that use optimization algorithms. On the average, the femoral frame orientation dispersion had a standard deviation of 2, 2.5 and 1.5 degrees for the frontal, transverse, and sagittal plane, respectively. However, a proper choice of the relevant construction rule allowed for a reduction of these inaccuracies in selected planes to 1 degrees rms. The dispersion of the knee adduction-abduction and internal-external rotation angles could also be limited to 1 degrees rms irrespective of the flexion angle value.
Comparison of Asymmetric and Ice-cream Cone Models for Halo Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Na, H.; Moon, Y.
2011-12-01
Halo coronal mass ejections (HCMEs) are major cause of the geomagnetic storms. To minimize the projection effect by coronagraph observation, several cone models have been suggested: an ice-cream cone model, an asymmetric cone model etc. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle between sky plane and central axis of the cone. In this study, we compare these parameters obtained from different models using 48 well-observed HCMEs from 2001 to 2002. And we obtain the root mean square error (RMS error) between measured projection speeds and calculated projection speeds for both cone models. As a result, we find that the radial speeds obtained from the models are well correlated with each other (R = 0.86), and the correlation coefficient of angular width is 0.6. The correlation coefficient of the angle between sky plane and central axis of the cone is 0.31, which is much smaller than expected. The reason may be due to the fact that the source locations of the asymmetric cone model are distributed near the center, while those of the ice-cream cone model are located in a wide range. The average RMS error of the asymmetric cone model (85.6km/s) is slightly smaller than that of the ice-cream cone model (87.8km/s).
Quality assessment of MEG-to-MRI coregistrations
NASA Astrophysics Data System (ADS)
Sonntag, Hermann; Haueisen, Jens; Maess, Burkhard
2018-04-01
For high precision in source reconstruction of magnetoencephalography (MEG) or electroencephalography data, high accuracy of the coregistration of sources and sensors is mandatory. Usually, the source space is derived from magnetic resonance imaging (MRI). In most cases, however, no quality assessment is reported for sensor-to-MRI coregistrations. If any, typically root mean squares (RMS) of point residuals are provided. It has been shown, however, that RMS of residuals do not correlate with coregistration errors. We suggest using target registration error (TRE) as criterion for the quality of sensor-to-MRI coregistrations. TRE measures the effect of uncertainty in coregistrations at all points of interest. In total, 5544 data sets with sensor-to-head and 128 head-to-MRI coregistrations, from a single MEG laboratory, were analyzed. An adaptive Metropolis algorithm was used to estimate the optimal coregistration and to sample the coregistration parameters (rotation and translation). We found an average TRE between 1.3 and 2.3 mm at the head surface. Further, we observed a mean absolute difference in coregistration parameters between the Metropolis and iterative closest point algorithm of (1.9 +/- 15){\\hspace{0pt}}\\circ and (1.1 +/- 9) m. A paired sample t-test indicated a significant improvement in goal function minimization by using the Metropolis algorithm. The sampled parameters allowed computation of TRE on the entire grid of the MRI volume. Hence, we recommend the Metropolis algorithm for head-to-MRI coregistrations.
Wavefront aberration changes caused by a gradient of increasing accommodation stimuli
Zhou, X-Y; Wang, L; Zhou, X-T; Yu, Z-Q
2015-01-01
Purpose The aim of this study was to investigate the wavefront aberration changes in human eyes caused by a gradient of increasing accommodation stimuli. Design This is a prospective, single-site study. Methods Healthy volunteers (n=22) aged 18–28 years whose refraction states were emmetropia or mild myopia, with astigmatism <1 diopter (D), were included in this study. After dilating the right pupil with 0.5% phenylephrine drops, the wavefront aberration of the right eye was measured continuously either without or with 1, 2, 3, 4, 5, or 6D accommodation stimuli (WFA1000B psychophysical aberrometer). The root mean square (RMS) values of the total wavefront aberrations, higher-order aberrations, and 35 individual Zernike aberrations under different accommodation stimuli were calculated and compared. Results The average induced accommodations using 1, 2, 3, 4, 5, or 6D accommodation stimuli were 0.848, 1.626, 2.375, 3.249, 4.181, or 5.085 D, respectively. The RMS of total wavefront aberrations, as well as higher-order aberrations, showed no significant effects with 1–3 D accommodation stimuli, but increased significantly under 4, 5, and 6 D accommodation stimuli compared with relaxed accommodation. Zernike coefficients of significantly decreased with increasing levels of accommodation. Conclusion Higher-order wavefront aberrations in human eyes changed with increased accommodation. These results are consistent with Schachar's accommodation theory. PMID:25341432
Walking on ballast impacts balance.
Wade, Chip; Garner, John C; Redfern, Mark S; Andres, Robert O
2014-01-01
Railroad workers often perform daily work activities on irregular surfaces, specifically on ballast rock. Previous research and injury epidemiology have suggested a relationship between working on irregular surfaces and postural instability. The purpose of this study was to examine the impact of walking on ballast for an extended duration on standing balance. A total of 16 healthy adult males walked on a 7.62 m × 4.57 m (25 ft × 15 ft) walking surface of no ballast (NB) or covered with ballast (B) of an average rock size of about 1 inch for 4 h. Balance was evaluated using dynamic posturography with the NeuroCom(®) Equitest System(™) prior to experiencing the NB or B surface and again every 30 min during the 4 h of ballast exposure. Dependent variables were the sway velocity and root-mean-square (RMS) sway components in the medial-lateral and anterior-posterior directions. Repeated measures ANOVA revealed statistically significant differences in RMS and sway velocity between ballast surface conditions and across exposure times. Overall, the ballast surface condition induced greater sway in all of the dynamic posturography conditions. Walking on irregular surfaces for extended durations has a deleterious effect on balance compared to walking on a surface without ballast. These findings of changes in balance during ballast exposure suggest that working on an irregular surface may impact postural control.
Yılmaz, K; Uslu, G; Özyürek, T
2018-02-13
To compare the effect of autoclave cycles on the surface topography and roughness of HyFlex CM and HyFlex EDM instruments using atomic force microscopy (AFM) analysis. Eight new files of each brand were subdivided into four subgroups (n = 2/each subgroup). One group was allocated as the control group and not subjected to autoclave sterilization. The other three groups were subjected to different numbers (1, 5, and 10) of autoclave sterilization cycles. After the cycle instruments were subjected to AFM analysis. Roughness average (Ra) and the root mean square (RMS) values were chosen to investigate the surface features of endodontic files. The data was analyzed using one-way ANOVA and post hoc Tamhane tests at 5% significant level. The lowest Ra and RMS values were observed in the HyFlex EDM files that served as the control and in those subjected to a single cycle of autoclave sterilization (P < 0.05). The highest Ra and RMS values were observed in the HyFlex CM and HyFlex EDM files that were subjected to 10 cycles of autoclave sterilization (P < 0.05). The surface roughness values of the HyFlex CM group showed a significant increase after ten autoclave cycles, whereas those of the HyFlex EDM group exhibited a significant change after five autoclave cycles (P < 0.05). Although the initial surface roughness values of the HyFlex EDM files were lower than those of the HyFlex CM files, the surface roughness values of the EDM files showed a statistically significant increase after 5 cycles of autoclave sterilization. In contrast, the surface roughness values of the HyFlex CM files did not increase until 10 cycles of autoclave sterilization. Present study indicated that autoclave sterilization negatively affected the surface roughness of the tested NiTi files.
NASA Astrophysics Data System (ADS)
Shim, J. S.; Rastätter, L.; Kuznetsova, M.; Bilitza, D.; Codrescu, M.; Coster, A. J.; Emery, B. A.; Fedrizzi, M.; Förster, M.; Fuller-Rowell, T. J.; Gardner, L. C.; Goncharenko, L.; Huba, J.; McDonald, S. E.; Mannucci, A. J.; Namgaladze, A. A.; Pi, X.; Prokhorov, B. E.; Ridley, A. J.; Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Zhu, L.
2017-10-01
In order to assess current modeling capability of reproducing storm impacts on total electron content (TEC), we considered quantities such as TEC, TEC changes compared to quiet time values, and the maximum value of the TEC and TEC changes during a storm. We compared the quantities obtained from ionospheric models against ground-based GPS TEC measurements during the 2006 AGU storm event (14-15 December 2006) in the selected eight longitude sectors. We used 15 simulations obtained from eight ionospheric models, including empirical, physics-based, coupled ionosphere-thermosphere, and data assimilation models. To quantitatively evaluate performance of the models in TEC prediction during the storm, we calculated skill scores such as RMS error, Normalized RMS error (NRMSE), ratio of the modeled to observed maximum increase (Yield), and the difference between the modeled peak time and observed peak time. Furthermore, to investigate latitudinal dependence of the performance of the models, the skill scores were calculated for five latitude regions. Our study shows that RMSE of TEC and TEC changes of the model simulations range from about 3 TECU (total electron content unit, 1 TECU = 1016 el m-2) (in high latitudes) to about 13 TECU (in low latitudes), which is larger than latitudinal average GPS TEC error of about 2 TECU. Most model simulations predict TEC better than TEC changes in terms of NRMSE and the difference in peak time, while the opposite holds true in terms of Yield. Model performance strongly depends on the quantities considered, the type of metrics used, and the latitude considered.
Audenaert, E A; Vigneron, L; Van Hoof, T; D'Herde, K; van Maele, G; Oosterlinck, D; Pattyn, C
2011-12-01
There is growing evidence that femoroacetabular impingement (FAI) is a probable risk factor for the development of early osteoarthritis in the nondysplastic hip. As FAI arises with end range of motion activities, measurement errors related to skin movement might be higher than anticipated when using previously reported methods for kinematic evaluation of the hip. We performed an in vitro validation and reliability study of a noninvasive method to define pelvic and femur positions in end range of motion activities of the hip using an electromagnetic tracking device. Motion data, collected from sensors attached to the bone and skin of 11 cadaver hips, were simultaneously obtained and compared in a global reference frame. Motion data were then transposed in the hip joint local coordinate systems. Observer-related variability in locating the anatomical landmarks required to define the local coordinate system and variability of determining the hip joint center was evaluated. Angular root mean square (RMS) differences between the bony and skin sensors averaged 3.2° (SD 3.5°) and 1.8° (SD 2.3°) in the global reference frame for the femur and pelvic sensors, respectively. Angular RMS differences between the bony and skin sensors in the hip joint local coordinate systems ranged at end range of motion and dependent on the motion under investigation from 1.91 to 5.81°. The presented protocol for evaluation of hip motion seems to be suited for the 3-D description of motion relevant to the experimental and clinical evaluation of femoroacetabular impingement.
14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS ...
14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS CONTROL PANEL IS IDENTICAL TO THE SHUTTLE ORBITER AFT FLIGHT DECK WITH ALL RMS SWITCHES AND CONTROL KNOBS FOR INVOKING ANY POSSIBLE FLIGHT OPERATIONAL MODE. THIS INCLUDES ALL COMPUTER AIDED OPERATIONAL MODES, AS WELL AS FULL MANUAL MODE. THE MONITORS IN THE AFT FLIGHT DECK WINDOWS AND THE GLASSES THE OPERATOR WEARS PROVIDE A 3-D VIDEO PICTURE TO AID THE OPERATOR WITH DEPTH PERCEPTION WHILE OPERATING THE ARM. THIS IS REQUIRED BECAUSE THE RMS OPERATOR CANNOT VIEW RMS MOVEMENTS IN THE WATER WHILE AT THE CONTROL PANEL. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
Evaluation of the Klobuchar model in TaiWan
NASA Astrophysics Data System (ADS)
Li, Jinghua; Wan, Qingtao; Ma, Guanyi; Zhang, Jie; Wang, Xiaolan; Fan, Jiangtao
2017-09-01
Ionospheric delay is the mainly error source in Global Navigation Satellite System (GNSS). Ionospheric model is one of the ways to correct the ionospheric delay. The single-frequency GNSS users modify the ionospheric delay by receiving the correction parameters broadcasted by satellites. Klobuchar model is widely used in Global Positioning System (GPS) and COMPASS because it is simple and convenient for real-time calculation. This model is established on the observations mainly from Europe and USA. It does not describe the equatorial anomaly region. South of China is located near the north crest of the equatorial anomaly, where the ionosphere has complex spatial and temporal variation. The assessment on the validation of Klobuchar model in this area is important to improve this model. Eleven years (2003-2014) data from one GPS receiver located at Taoyuan Taiwan (121°E, 25°N) are used to assess the validation of Klobuchar model in Taiwan. Total electron content (TEC) from the dual-frequency GPS observations is calculated and used as the reference, and TEC based on the Klobuchar model is compared with the reference. The residual is defined as the difference between the TEC from Klobuchar model and the reference. It is a parameter to reflect the absolute correction of the model. RMS correction percentage presents the validation of the model relative to the observations. The residuals' long-term variation, the RMS correction percentage, and their changes with the latitudes are analyzed respectively to access the model. In some months the RMS correction did not reach the goal of 50% purposed by Klobuchar, especially in the winter of the low solar activity years and at nighttime. RMS correction did not depend on the 11-years solar activity, neither the latitudes. Different from RMS correction, the residuals changed with the solar activity, similar to the variation of TEC. The residuals were large in the daytime, during the equinox seasons and in the high solar activity years; they are small at night, during the solstice seasons, and in the low activity years. During 1300-1500 BJT in the high solar activity years, the mean bias was negative, implying the model underestimated TEC on average. The maximum mean bias was 33TECU in April 2014, and the maximum underestimation reached 97TECU in October 2011. During 0000-0200 BJT, the residuals had small mean bias, small variation range and small standard deviation. It suggested that the model could describe the TEC of the ionosphere better than that in the daytime. Besides the variation with the solar activity, the residuals also vary with the latitudes. The means bias reached the maximum at 20-22°N, corresponding to the north crest of the equatorial anomaly. At this latitude, the maximum mean bias was 47TECU lower than the observation in the high activity years, and 12TECU lower in the low activity years. The minimum variation range appeared at 30-32°N in high and low activity years. But the minimum mean bias was at different latitudes in the high and low activity years. In the high activity years, it appeared at 30-32°N, and in the low years it was at 24-26°N. For an ideal model, the residuals should have small mean bias and small variation range. Further study is needed to learn the distribution of the residuals and to improve the model.
NASA Technical Reports Server (NTRS)
Wentz, F. J.
1977-01-01
The general problem of bistatic scattering from a two scale surface was evaluated. The treatment was entirely two-dimensional and in a vector formulation independent of any particular coordinate system. The two scale scattering model was then applied to backscattering from the sea surface. In particular, the model was used in conjunction with the JONSWAP 1975 aircraft scatterometer measurements to determine the sea surface's two scale roughness distributions, namely the probability density of the large scale surface slope and the capillary wavenumber spectrum. Best fits yield, on the average, a 0.7 dB rms difference between the model computations and the vertical polarization measurements of the normalized radar cross section. Correlations between the distribution parameters and the wind speed were established from linear, least squares regressions.
Compositional analysis of biomass reference materials: Results from an interlaboratory study
Templeton, David W.; Wolfrum, Edward J.; Yen, James H.; ...
2015-10-29
Biomass compositional methods are used to compare different lignocellulosic feedstocks, to measure component balances around unit operations and to determine process yields and therefore the economic viability of biomass-to-biofuel processes. Four biomass reference materials (RMs NIST 8491–8494) were prepared and characterized, via an interlaboratory comparison exercise in the early 1990s to evaluate biomass summative compositional methods, analysts, and laboratories. Having common, uniform, and stable biomass reference materials gives the opportunity to assess compositional data compared to other analysts, to other labs, and to a known compositional value. The expiration date for the original characterization of these RMs was reached andmore » an effort to assess their stability and recharacterize the reference values for the remaining material using more current methods of analysis was initiated. We sent samples of the four biomass RMs to 11 academic, industrial, and government laboratories, familiar with sulfuric acid compositional methods, for recharacterization of the component reference values. In this work, we have used an expanded suite of analytical methods that are more appropriate for herbaceous feedstocks, to recharacterize the RMs’ compositions. We report the median values and the expanded uncertainty values for the four RMs on a dry-mass, whole-biomass basis. The original characterization data has been recalculated using median statistics to facilitate comparisons with this data. We found improved total component closures for three out of the four RMs compared to the original characterization, and the total component closures were near 100 %, which suggests that most components were accurately measured and little double counting occurred. Here, the major components were not statistically different in the recharacterization which suggests that the biomass materials are stable during storage and that additional components, not seen in the original characterization, were quantified here.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaylani, Samer Z.; Xu, Jianmin; Srivastava, Ritesh K.
Graphical abstract: Intervention of poorly differentiated RMS by rapamycin: In poorly differentiated RMS, rapamycin blocks mTOR and Hh signaling pathways concomitantly. This leads to dampening in cell cycle regulation and induction of apoptosis. This study provides a rationale for the therapeutic intervention of poorly differentiated RMS by treating patients with rapamycin alone or in combination with other chemotherapeutic agents. -- Highlights: •Rapamycin abrogates RMS tumor growth by modulating proliferation and apoptosis. •Co-targeting mTOR/Hh pathways underlie the molecular basis of effectiveness. •Reduction in mTOR/Hh pathways diminish EMT leading to reduced invasiveness. -- Abstract: Rhabdomyosarcomas (RMS) represent the most common childhood soft-tissuemore » sarcoma. Over the past few decades outcomes for low and intermediate risk RMS patients have slowly improved while patients with metastatic or relapsed RMS still face a grim prognosis. New chemotherapeutic agents or combinations of chemotherapies have largely failed to improve the outcome. Based on the identification of novel molecular targets, potential therapeutic approaches in RMS may offer a decreased reliance on conventional chemotherapy. Thus, identification of effective therapeutic agents that specifically target relevant pathways may be particularly beneficial for patients with metastatic and refractory RMS. The PI3K/AKT/mTOR pathway has been found to be a potentially attractive target in RMS therapy. In this study, we provide evidence that rapamycin (sirolimus) abrogates growth of RMS development in a RMS xenograft mouse model. As compared to a vehicle-treated control group, more than 95% inhibition in tumor growth was observed in mice receiving parenteral administration of rapamycin. The residual tumors in rapamycin-treated group showed significant reduction in the expression of biomarkers indicative of proliferation and tumor invasiveness. These tumors also showed enhanced apoptosis. Interestingly, the mechanism by which rapamycin diminished RMS tumor growth involved simultaneous inhibition of mTOR and hedgehog (Hh) pathways. Diminution in these pathways in this model of RMS also inhibited epithelial mesenchymal transition (EMT) which then dampened the invasiveness of these tumors. Our data provide bases for using rapamycin either alone or in combination with traditional chemotherapeutic drugs to block the pathogenesis of high risk RMS.« less
Kleine, B U; Schumann, N P; Bradl, I; Grieshaber, R; Scholle, H C
1999-09-01
A study was carried out to investigate temporal changes of activation of shoulder and back muscles in workers at visual display units by means of surface EMG. Moreover, postural parameters were recorded to distinguish fatigue-related from posture-related changes of the myoelectrical activity. Nine healthy female office workers typed texts spoken from tape during three 1-h-long sessions. After the first and again after the second hour there was a break of 15 min. Sixteen-channel surface EMG was bipolarly recorded from the erector spinae, trapezius, deltoid and sternocleidomastoid muscles. Root mean square (RMS) and power spectrum median frequency of the EMG were calculated. Sitting posture was assessed using an eight-channel movement analysis system with ultrasound markers. The position of the seventh cervical spinous process and the left and the right acromion were analysed synchronously with the EMG characteristics using regression analysis. The normalised RMS of the left and right trapezius muscle increased, while the median frequency did not change. The increase of the normalised RMS was significantly lower when the linear influence of posture was excluded. On average, the distance between C7 and the left and right acromion decreased within each working an hour. C7 became lower on average by 5.5 mm within an hour, whereas the acromions became lower by only 1.7 mm (left) and 3.3 mm (right). The increase in trapezius muscle activity was partly related to a lifting of the shoulders to compensate a slight slumping of the back. Another part of the EMG activity increase has to be attributed to fatigue, to attention-related activity or to the combination of both. Therefore, training of the back muscles and a varied organisation of work might have a preventive effect with respect to musculoskeletal complaints in VDU workers.
Point Charges Optimally Placed to Represent the Multipole Expansion of Charge Distributions
Onufriev, Alexey V.
2013-01-01
We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA) retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance the extent of the charge distribution–the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom), is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å ) is half that of the point multipole expansion up to the octupole order. PMID:23861790
NASA Astrophysics Data System (ADS)
Dykas, Brian; Harris, James
2017-09-01
Acoustic emission sensing techniques have been applied in recent years to dynamic machinery with varying degrees of success in diagnosing various component faults and distinguishing between operating conditions. This work explores basic properties of acoustic emission signals measured on a small single cylinder diesel engine in a laboratory setting. As reported in other works in the open literature, the measured acoustic emission on the engine is mostly continuous mode and individual burst events are generally not readily identifiable. Therefore, the AE are processed into the local (instantaneous) root mean square (rms) value of the signal which is averaged over many cycles to obtain a mean rms AE in the crank angle domain. Crank-resolved spectral representation of the AE is also given but rigorous investigation of the AE spectral qualities is left to future study. Cycle-to-cycle statistical dispersion of the AE signal is considered to highlight highly variable engine processes. Engine speed was held constant but load conditions are varied to investigate AE signal sensitivity to operating condition. Furthermore, during the course of testing the fuel injector developed a fault and acoustic emission signals were captured and several signal attributes were successful in distinguishing this altered condition. The sampling and use of instantaneous rms acoustic emission signal demonstrated promise for non-intrusive and economical change detection of engine injection, combustion and valve events.
NASA Astrophysics Data System (ADS)
Bondarenko, N. V.; Head, J. W.
2009-03-01
In order to assess the nature of crater-associated radar-dark diffuse features (DDFs) on Venus and to understand their formation and evolution, we analyzed Magellan radar roughness, emissivity, and reflectivity data in the vicinity of craters accompanied by these features. Following others, we assumed that DDFs are deposits (mantles) of ejected material emplaced during formation of the impact crater. The majority of radar-dark parabolas (the youngest DDFs) are characterized by a smooth mantle-atmosphere interface having low root-mean-square (rms) slopes on scales of 1-100 m, as derived from Magellan altimeter data. Older DDFs also often have areas with low rms slopes, suggesting that the mantle rms slopes can be preserved for geologically long periods of time. Some parabolas and older DDFs have asymmetric small-scale (decimeter-scale) relief that is interpreted to be dunes that formed as a result of eolian processes. This implies that the mantle material is mobile and can saltate under the influence of wind action. On average, aging of these features is accompanied by a decrease of mantle material dielectric permittivity. The most efficient mechanism for parabola degradation seems to be the removal of mantle material from the site of initial deposition by subsequent winds. We found a few examples of features that could be interpreted to be the result of in situ modification of the primary mantle.
Effect of word familiarity on visually evoked magnetic fields.
Harada, N; Iwaki, S; Nakagawa, S; Yamaguchi, M; Tonoike, M
2004-11-30
This study investigated the effect of word familiarity of visual stimuli on the word recognizing function of the human brain. Word familiarity is an index of the relative ease of word perception, and is characterized by facilitation and accuracy on word recognition. We studied the effect of word familiarity, using "Hiragana" (phonetic characters in Japanese orthography) characters as visual stimuli, on the elicitation of visually evoked magnetic fields with a word-naming task. The words were selected from a database of lexical properties of Japanese. The four "Hiragana" characters used were grouped and presented in 4 classes of degree of familiarity. The three components were observed in averaged waveforms of the root mean square (RMS) value on latencies at about 100 ms, 150 ms and 220 ms. The RMS value of the 220 ms component showed a significant positive correlation (F=(3/36); 5.501; p=0.035) with the value of familiarity. ECDs of the 220 ms component were observed in the intraparietal sulcus (IPS). Increments in the RMS value of the 220 ms component, which might reflect ideographical word recognition, retrieving "as a whole" were enhanced with increments of the value of familiarity. The interaction of characters, which increased with the value of familiarity, might function "as a large symbol"; and enhance a "pop-out" function with an escaping character inhibiting other characters and enhancing the segmentation of the character (as a figure) from the ground.
Fekete, Charles-Antoine Collins; Doolan, Paul; Dias, Marta F; Beaulieu, Luc; Seco, Joao
2015-07-07
To develop an accurate phenomenological model of the cubic spline path estimate of the proton path, accounting for the initial proton energy and water equivalent thickness (WET) traversed. Monte Carlo (MC) simulations were used to calculate the path of protons crossing various WET (10-30 cm) of different material (LN300, water and CB2-50% CaCO3) for a range of initial energies (180-330 MeV). For each MC trajectory, cubic spline trajectories (CST) were constructed based on the entrance and exit information of the protons and compared with the MC using the root mean square (RMS) metric. The CST path is dependent on the direction vector magnitudes (|P0,1|). First, |P0,1| is set to the proton path length (with factor Λ(Norm)(0,1) = 1.0). Then, two optimal factor Λ(0,1) are introduced in |P0,1|. The factors are varied to minimize the RMS difference with MC paths for every configuration. A set of Λ(opt)(0,1) factors, function of WET/water equivalent path length (WEPL), that minimizes the RMS are presented. MTF analysis is then performed on proton radiographs of a line-pair phantom reconstructed using the CST trajectories. Λ(opt)(0,1) was fitted to the WET/WEPL ratio using a quadratic function (Y = A + BX(2) where A = 1.01,0.99, B = 0.43,- 0.46 respectively for Λ(opt)(0), Λ(opt)(1)). The RMS deviation calculated along the path, between the CST and the MC, increases with the WET. The increase is larger when using Λ(Norm)(0,1) than Λ(opt)(0,1) (difference of 5.0% with WET/WEPL = 0.66). For 230/330 MeV protons, the MTF10% was found to increase by 40/16% respectively for a thin phantom (15 cm) when using the Λ(opt)(0,1) model compared to the Λ(Norm)(0,1) model. Calculation times for Λ(opt)(0,1) are scaled down compared to MLP and RMS deviation are similar within standard deviation.B ased on the results of this study, using CST with the Λ(opt)(0,1) factors reduces the RMS deviation and increases the spatial resolution when reconstructing proton trajectories.
47 CFR 90.543 - Emission limitations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... centerfrequency (kHz) Measurement bandwidth(kHz) Maximum ACP relative(dBc) 6.25 6.25 −40 12.5 6.25 −60 18.75 6.25...Hz) Measurement bandwidth(kHz) Maximum ACP(dBc) 6.25 6.25 −40 12.50 6.25 −60 18.75 6.25 −60 25.00 6... spectrum analyzer to 30 kHz resolution bandwidth, 1 MHz video bandwidth and average, sample, or RMS...
47 CFR 90.543 - Emission limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... centerfrequency (kHz) Measurement bandwidth(kHz) Maximum ACP relative(dBc) 6.25 6.25 −40 12.5 6.25 −60 18.75 6.25...Hz) Measurement bandwidth(kHz) Maximum ACP(dBc) 6.25 6.25 −40 12.50 6.25 −60 18.75 6.25 −60 25.00 6... video bandwidth and average, sample, or RMS detection. Set the reference level of the spectrum analyzer...
47 CFR 90.543 - Emission limitations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... centerfrequency (kHz) Measurement bandwidth(kHz) Maximum ACP relative(dBc) 6.25 6.25 −40 12.5 6.25 −60 18.75 6.25...Hz) Measurement bandwidth(kHz) Maximum ACP(dBc) 6.25 6.25 −40 12.50 6.25 −60 18.75 6.25 −60 25.00 6... video bandwidth and average, sample, or RMS detection. Set the reference level of the spectrum analyzer...
47 CFR 90.543 - Emission limitations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... centerfrequency (kHz) Measurement bandwidth(kHz) Maximum ACP relative(dBc) 6.25 6.25 −40 12.5 6.25 −60 18.75 6.25...Hz) Measurement bandwidth(kHz) Maximum ACP(dBc) 6.25 6.25 −40 12.50 6.25 −60 18.75 6.25 −60 25.00 6... video bandwidth and average, sample, or RMS detection. Set the reference level of the spectrum analyzer...
47 CFR 90.543 - Emission limitations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... centerfrequency (kHz) Measurement bandwidth(kHz) Maximum ACP relative(dBc) 6.25 6.25 −40 12.5 6.25 −60 18.75 6.25...Hz) Measurement bandwidth(kHz) Maximum ACP(dBc) 6.25 6.25 −40 12.50 6.25 −60 18.75 6.25 −60 25.00 6... video bandwidth and average, sample, or RMS detection. Set the reference level of the spectrum analyzer...
Skill Assessment of a Spectral Ocean-Atmosphere Radiative Model
NASA Technical Reports Server (NTRS)
Gregg, Watson, W.; Casey, Nancy W.
2009-01-01
Ocean phytoplankton, detrital material, and water absorb and scatter light spectrally. The Ocean- Atmosphere Spectral Irradiance Model (OASIM) is intended to provide surface irradiance over the oceans with sufficient spectral resolution to support ocean ecology, biogeochemistry, and heat exchange investigations, and of sufficient duration to support inter-annual and decadal investigations. OASIM total surface irradiance (integrated 200 nm to 4 microns) was compared to in situ data and three publicly available global data products at monthly 1-degree resolution. OASIM spectrally-integrated surface irradiance had root mean square (RMS) difference= 20.1 W/sq m (about 11%), bias=1.6 W/sq m (about 0.8%), regression slope= 1.01 and correlation coefficient= 0.89, when compared to 2322 in situ observations. OASIM had the lowest bias of any of the global data products evaluated (ISCCP-FD, NCEP, and ISLSCP 11), and the best slope (nearest to unity). It had the second best RMS, and the third best correlation coefficient. OASIM total surface irradiance compared well with ISCCP-FD (RMS= 20.7 W/sq m; bias=-11.4 W/sq m, r=0.98) and ISLSCP II (RMS =25.2 W/sq m; bias= -13.8 W/sq m; r=0.97), but less well with NCEP (RMS =43.0 W/sq m ;bias=-22.6 W/sq m; x=0.91). Comparisons of OASIM photosynthetically available radiation (PAR) with PAR derived from SeaWiFS showed low bias (-1.8 mol photons /sq m/d, or about 5%), RMS (4.25 mol photons /sq m/d ' or about 12%), near unity slope (1.03) and high correlation coefficient (0.97). Coupled with previous estimates of clear sky spectral irradiance in OASIM (6.6% RMS at 1 nm resolution), these results suggest that OASIM provides reasonable estimates of surface broadband and spectral irradiance in the oceans, and can support studies on ocean ecosystems, carbon cycling, and heat exchange.
NASA Astrophysics Data System (ADS)
Zhang, Rongxiao; Jee, Kyung-Wook; Cascio, Ethan; Sharp, Gregory C.; Flanz, Jacob B.; Lu, Hsiao-Ming
2018-01-01
Proton radiography, which images patients with the same type of particles as those with which they are to be treated, is a promising approach to image guidance and water equivalent path length (WEPL) verification in proton radiation therapy. We have shown recently that proton radiographs could be obtained by measuring time-resolved dose rate functions (DRFs) using an x-ray amorphous silicon flat panel. The WEPL values were derived solely from the root-mean-square (RMS) of DRFs, while the intensity information in the DRFs was filtered out. In this work, we explored the use of such intensity information for potential improvement in WEPL accuracy and imaging quality. Three WEPL derivation methods based on, respectively, the RMS only, the intensity only, and the intensity-weighted RMS were tested and compared in terms of the quality of obtained radiograph images and the accuracy of WEPL values. A Gammex CT calibration phantom containing inserts made of various tissue substitute materials with independently measured relative stopping powers (RSP) was used to assess the imaging performances. Improved image quality with enhanced interfaces was achieved while preserving the accuracy by using intensity information in the calibration. Other objects, including an anthropomorphic head phantom, a proton therapy range compensator, a frozen lamb’s head and an ‘image quality phantom’ were also imaged. Both the RMS only and the intensity-weighted RMS methods derived RSPs within ± 1% for most of the Gammex phantom inserts, with a mean absolute percentage error of 0.66% for all inserts. In the case of the insert with a titanium rod, the method based on RMS completely failed, whereas that based on the intensity-weighted RMS was qualitatively valid. The use of intensity greatly enhanced the interfaces between different materials in the obtained WEPL images, suggesting the potential for image guidance in areas such as patient positioning and tumor tracking by proton radiography.
Active galactic nucleus X-ray variability in the XMM-COSMOS survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanzuisi, G.; Ponti, G.; Salvato, M.
2014-02-01
We used the observations carried out by XMM in the COSMOS field over 3.5 yr to study the long term variability of a large sample of active galactic nuclei (AGNs) (638 sources) in a wide range of redshifts (0.1 < z < 3.5) and X-ray luminosities (10{sup 41} < L {sub 0.5-10} <10{sup 45.5}). Both a simple statistical method to assess the significance of variability and the Normalized Excess Variance (σ{sub rms}{sup 2}) parameter were used to obtain a quantitative measurement of the variability. Variability is found to be prevalent in most AGNs, whenever we have good statistics to measuremore » it, and no significant differences between type 1 and type 2 AGNs were found. A flat (slope –0.23 ± 0.03) anti-correlation between σ{sub rms}{sup 2} and X-ray luminosity is found when all significantly variable sources are considered together. When divided into three redshift bins, the anti-correlation becomes stronger and evolving with z, with higher redshift AGNs being more variable. We prove, however, that this effect is due to the pre-selection of variable sources: when considering all of the sources with an available σ{sub rms}{sup 2} measurement, the evolution in redshift disappears. For the first time, we were also able to study long term X-ray variability as a function of M {sub BH} and Eddington ratio for a large sample of AGNs spanning a wide range of redshifts. An anti-correlation between σ{sub rms}{sup 2} and M {sub BH} is found, with the same slope of anti-correlation between σ{sub rms}{sup 2} and X-ray luminosity, suggesting that the latter may be a by-product of the former. No clear correlation is found between σ{sub rms}{sup 2} and the Eddington ratio in our sample. Finally, no correlation is found between the X-ray σ{sub rms}{sup 2} and optical variability.« less
Bradley, Andrew J; Leach, Katharine A; Green, Martin J; Gibbons, Jenny; Ohnstad, Ian C; Black, David H; Payne, Barbara; Prout, Victoria E; Breen, James E
2018-03-23
The introduction of bedding dairy cows on recycled manure solids (RMS) in the UK led to concern by competent authorities that there could be an increased, unacceptable risk to animal and human health. A cross-sectional study was designed to evaluate the microbial content of different bedding materials, when used by dairy cows, and its impact on the microbial content of milk. Data were collected from farms bedding lactating cows on sand (n=41), sawdust (n=44) and RMS (n=40). The mean duration of RMS use prior to sampling was 13months. Total bacterial count, and counts of Streptococcus/Enterococcus spp., Staphylococcus spp., Bacillus cereus, thermophilic, thermoduric and psychrotrophic bacteria were determined in used bedding and milk. Samples were evaluated for the presence/absence of Listeria monocytogenes, Salmonella spp. and Yersinia enterocolitica. Data on milking practices were collected to investigate their potential to reduce microbial transfer from bedding to milk. There were substantial differences in bacterial counts both within and between bedding materials. However, there were no significant differences between bedding groups in counts in milk for any of the organisms studied, and no significant correlations between bacterial load in used bedding and milk. Fore-milking was associated with a reduced total bacterial count in milk. Dipping teats with disinfectant and drying, prior to milking, was associated with lower numbers of Streptococcus/Enterococcus spp. in milk. Disinfecting clusters between milking different cows was associated with a reduction in thermophilic and psychrotrophic counts in milk. This study did not provide evidence that use of RMS bedding increased the risk of presence of Y. enterocolitica, Salmonella spp. or L. monocytogenes in milk. However, the strength of this conclusion should be tempered by the relatively small number of farms on which Y. enterocolitica and Salmonella spp. were isolated. It is concluded that, despite the higher bacterial load of RMS, its use as bedding for lactating dairy cows need not be associated with a higher bacterial load in milk than the use of sand or sawdust. However, this finding must be interpreted in the light of the relatively recent introduction of RMS as a bedding material on the farms studied. Teat preparation provides a control point for the potential transfer of microorganisms from bedding to milk. The detection of zoonotic pathogens in a small proportion of milk samples, independent of bedding type, indicates that pasteurisation of milk prior to human consumption remains an important control measure. Copyright © 2017 Elsevier B.V. All rights reserved.
Buggert, Marcus; Nguyen, Son; Salgado-Montes de Oca, Gonzalo; Bengsch, Bertram; Darko, Samuel; Ransier, Amy; Roberts, Emily R; Del Alcazar, Daniel; Brody, Irene Bukh; Vella, Laura A; Beura, Lalit; Wijeyesinghe, Sathi; Herati, Ramin S; Del Rio Estrada, Perla M; Ablanedo-Terrazas, Yuria; Kuri-Cervantes, Leticia; Sada Japp, Alberto; Manne, Sasikanth; Vartanian, Shant; Huffman, Austin; Sandberg, Johan K; Gostick, Emma; Nadolski, Gregory; Silvestri, Guido; Canaday, David H; Price, David A; Petrovas, Constantinos; Su, Laura F; Vahedi, Golnaz; Dori, Yoav; Frank, Ian; Itkin, Maxim G; Wherry, E John; Deeks, Steven G; Naji, Ali; Reyes-Terán, Gustavo; Masopust, David; Douek, Daniel C; Betts, Michael R
2018-06-01
Current paradigms of CD8 + T cell-mediated protection in HIV infection center almost exclusively on studies of peripheral blood, which is thought to provide a window into immune activity at the predominant sites of viral replication in lymphoid tissues (LTs). Through extensive comparison of blood, thoracic duct lymph (TDL), and LTs in different species, we show that many LT memory CD8 + T cells bear phenotypic, transcriptional, and epigenetic signatures of resident memory T cells (T RMs ). Unlike their circulating counterparts in blood or TDL, most of the total and follicular HIV-specific CD8 + T cells in LTs also resemble T RMs Moreover, high frequencies of HIV-specific CD8 + T RMs with skewed clonotypic profiles relative to matched blood samples are present in LTs of individuals who spontaneously control HIV replication in the absence of antiretroviral therapy (elite controllers). Single-cell RNA sequencing analysis confirmed that HIV-specific T RMs are enriched for effector-related immune genes and signatures compared with HIV-specific non-T RMs in elite controllers. Together, these data indicate that previous studies in blood have largely failed to capture the major component of HIV-specific CD8 + T cell responses resident within LTs. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Shi, Fan; Lowe, Mike; Craster, Richard
2017-06-01
Elastic waves scattered by random rough interfaces separating two distinct media play an important role in modeling phonon scattering and impact upon thermal transport models, and are also integral to ultrasonic inspection. We introduce theoretical formulas for the diffuse field of elastic waves scattered by, and transmitted across, random rough solid-solid interfaces using the elastodynamic Kirchhoff approximation. The new formulas are validated by comparison with numerical Monte Carlo simulations, for a wide range of roughness (rms σ ≤λ /3 , correlation length λ0≥ wavelength λ ), demonstrating a significant improvement over the widely used small-perturbation approach, which is valid only for surfaces with small rms values. Physical analysis using the theoretical formulas derived here demonstrates that increasing the rms value leads to a considerable change of the scattering patterns for each mode. The roughness has different effects on the reflection and the transmission, with a strong dependence on the material properties. In the special case of a perfect match of the wave speed of the two solid media, the transmission is the same as the case for a flat interface. We pay particular attention to scattering in the specular direction, often used as an observable quantity, in terms of the roughness parameters, showing a peak at an intermediate value of rms; this rms value coincides with that predicted by the Rayleigh parameter.
Rupture Dynamics and Ground Motion from Earthquakes on Rough Faults in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Bydlon, S. A.; Kozdon, J. E.; Duru, K.; Dunham, E. M.
2013-12-01
Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the amplitude of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. Our goal is to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. Using a 2D high order finite difference rupture dynamics code, we nucleate ruptures on either flat or rough faults that obey strongly rate-weakening friction laws. These faults are embedded in domains with spatially varying material properties characterized by Von Karman autocorrelation functions and their associated power spectral density functions, with variations in wave speed of approximately 5 to 10%. Flat fault simulations demonstrate that off-fault material heterogeneity, at least with this particular form and amplitude, has only a minor influence on the rupture process (i.e., fluctuations in slip and rupture velocity). In contrast, ruptures histories on rough faults in both homogeneous and heterogeneous media include much larger short-wavelength fluctuations in slip and rupture velocity. We therefore conclude that source complexity is dominantly influenced by fault geometric complexity. To examine contributions of scattering versus fault geometry on ground motions, we compute spatially averaged root-mean-square (RMS) acceleration values as a function of fault perpendicular distance for a homogeneous medium and several heterogeneous media characterized by different statistical properties. We find that at distances less than ~6 km from the fault, RMS acceleration values from simulations with homogeneous and heterogeneous media are similar, but at greater distances the RMS values associated with heterogeneous media are larger than those associated with homogeneous media. The magnitude of this divergence increases with the amplitude of the heterogeneities. For instance, for a heterogeneous medium with a 10% standard deviation in material property values relative to mean values, RMS accelerations are ~50% larger than for a homogeneous medium at distances greater than 6 km. This finding is attributed to the scattering of coherent pulses into multiple pulses of decreased amplitude that subsequently arrive at later times. In order to understand the robustness of these results, an extension of our dynamic rupture and wave propagation code to 3D is underway.
Peng, Lingyan; Chen, Li; Harris, Bryan T; Bhandari, Bikash; Morton, Dean; Lin, Wei-Shao
2018-04-24
Although computer-aided design and computer-aided manufacturing (CAD-CAM) complete removable dental prostheses (CRDPs) have gained popularity, conventional impressions are still common for CAD-CAM CRDP treatment. These need to be digitized and converted into virtual edentulous casts with a laboratory impression scan protocol during prosthesis fabrication. How this can best be accomplished is unclear. The purpose of this in vitro study was to compare the accuracy and reproducibility of virtual edentulous casts created by a dental laboratory laser scanner and a cone-beam computed tomography (CBCT) scanner with a digitized master cast. A master cast was digitized as the virtual reference cast. Ten polyvinyl siloxane impressions were made on the master cast and scanned with the dental laboratory laser scanner and CBCT scanner. The impressions were sprayed with antiglare spray and rescanned. Four groups of virtual study casts (N=40) were created from the impression scans. All virtual study casts and the reference cast were registered with surface-matching software, and the root mean square (RMS) values (representation of overall accuracy) and percentage of measurement data points within 1 standard deviation (SD) of mean RMS values (%, representation of overall reproducibility) among the 4 study groups were measured. Additionally, 95 numeric distance differences (representation of accuracy at each region) were measured in 5 distinct regions: the apex of the denture border, 6 mm from denture border, crest of the ridge, palate, and posterior palatal seal. The repeated-measures ANOVA and post hoc test (t grouping) were used to determine statistical differences (α=.05). The laboratory scanner group had a significantly larger RMS value (4.0 ±0.3 μm, P<.001) and smaller percentage of measurement data points within 1 SD of mean RMS value (77.5 ±1.0%, P<.001). The RMS values between the CBCT scanner (1.2 ±0.3 μm) and CBCT scanner-spray (1.1 ±0.2 μm) groups were not significantly different (P=.968), and the percentage of measurement data points within 1 SD of mean RMS values (90.1 ±1.1% versus 89.5 ±0.8%) were also not significantly different (P=.662). The numeric distance differences across 5 regions were affected by the scanning protocols (P<.001). The laboratory scanner and laboratory scanner-spray groups had significantly higher numeric distance differences at the apex of the denture border and crest of the ridge regions (P<.001). The CBCT scanner created more accurate and reproducible virtual edentulous casts, and the antiglare spray only significantly improved the accuracy and reproducibility of virtual edentulous casts created by the dental laboratory laser scanner. The accuracy of the virtual edentulous casts was different across 5 regions and was affected by the scanning protocols. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Absolute Calibration of Si iRMs used for Measurements of Si Paleo-nutrient proxies
NASA Astrophysics Data System (ADS)
Vocke, R. D., Jr.; Rabb, S. A.
2016-12-01
Silicon isotope variations (reported as δ30Si and δ29Si, relative to NBS28) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The resolution and comparability of such measurements depend on the quality of the isotopic Reference Materials (iRMs) defining the delta scale. We report new absolute Si isotopic measurements on the iRMs NBS28 (RM 8546 - Silica Sand), Diatomite, and Big Batch using the Avogadro measurement approach and comparing them with prior assessments of these iRMs. The Avogadro Si measurement technique was developed by the German Physikalish-Technische Bundesanstalt (PTB) to provide a precise and highly accurate method to measure absolute isotopic ratios in highly enriched 28Si (99.996%) material. These measurements are part of an international effort to redefine the kg and mole based on the Planck constant h and the Avogadro constant NA, respectively (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach produces absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement calibration. This is illustrated in Fig. 1 where absolute Si isotopic measurements on SRM 990, separated by 40+ years of advances in instrumentation, are compared. The availability of this new technique does not say that absolute Si isotopic ratios are or ever will be better for normal Si isotopic measurements when seeking isotopic variations in nature, because they are not. However, by determining the absolute isotopic ratios of all the Si iRM scale artifacts, such iRMs become traceable to the metric system (SI); thereby automatically conferring on all the artifact-based δ30Si and δ29Si measurements traceability to the base SI unit, the mole. Such traceability should help reduce the potential of bias between different iRMs and facilitate the replacement of delta-scale artefacts when they run out. Fig. 1 Comparison of absolute isotopic measurements of SRM 990 using two radically different approaches to absolute calibration and mass bias corrections.
SU-E-T-252: Developing a Pencil Beam Dose Calculation Algorithm for CyberKnife System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, B; Duke University Medical Center, Durham, NC; Liu, B
2015-06-15
Purpose: Currently there are two dose calculation algorithms available in the Cyberknife planning system: ray-tracing and Monte Carlo, which is either not accurate or time-consuming for irregular field shaped by the MLC that was recently introduced. The purpose of this study is to develop a fast and accurate pencil beam dose calculation algorithm which can handle irregular field. Methods: A pencil beam dose calculation algorithm widely used in Linac system is modified. The algorithm models both primary (short range) and scatter (long range) components with a single input parameter: TPR{sub 20}/{sub 10}. The TPR{sub 20}/{sub 20}/{sub 10} value was firstmore » estimated to derive an initial set of pencil beam model parameters (PBMP). The agreement between predicted and measured TPRs for all cones were evaluated using the root mean square of the difference (RMSTPR), which was then minimized by adjusting PBMPs. PBMPs are further tuned to minimize OCR RMS (RMSocr) by focusing at the outfield region. Finally, an arbitrary intensity profile is optimized by minimizing RMSocr difference at infield region. To test model validity, the PBMPs were obtained by fitting to only a subset of cones (4) and applied to all cones (12) for evaluation. Results: With RMS values normalized to the dmax and all cones combined, the average RMSTPR at build-up and descending region is 2.3% and 0.4%, respectively. The RMSocr at infield, penumbra and outfield region is 1.5%, 7.8% and 0.6%, respectively. Average DTA in penumbra region is 0.5mm. There is no trend found in TPR or OCR agreement among cones or depths. Conclusion: We have developed a pencil beam algorithm for Cyberknife system. The prediction agrees well with commissioning data. Only a subset of measurements is needed to derive the model. Further improvements are needed for TPR buildup region and OCR penumbra. Experimental validations on MLC shaped irregular field needs to be performed. This work was partially supported by the National Natural Science Foundation of China (61171005) and the China Scholarship Council (CSC)« less
Reed, Donovan S; Apsey, Douglas; Steigleman, Walter; Townley, James; Caldwell, Matthew
2017-11-01
In an attempt to maximize treatment outcomes, refractive surgery techniques are being directed toward customized ablations to correct not only lower-order aberrations but also higher-order aberrations specific to the individual eye. Measurement of the entirety of ocular aberrations is the most definitive means to establish the true effect of refractive surgery on image quality and visual performance. Whether or not there is a statistically significant difference in induced higher-order corneal aberrations between the VISX Star S4 (Abbott Medical Optics, Santa Ana, California) and the WaveLight EX500 (Alcon, Fort Worth, Texas) lasers was examined. A retrospective analysis was performed to investigate the difference in root-mean-square (RMS) value of the higher-order corneal aberrations postoperatively between two currently available laser platforms, the VISX Star S4 and the WaveLight EX500 lasers. The RMS is a compilation of higher-order corneal aberrations. Data from 240 total eyes of active duty military or Department of Defense beneficiaries who completed photorefractive keratectomy (PRK) or laser in situ keratomileusis (LASIK) refractive surgery at the Wilford Hall Ambulatory Surgical Center Joint Warfighter Refractive Surgery Center were examined. Using SPSS statistics software (IBM Corp., Armonk, New York), the mean changes in RMS values between the two lasers and refractive surgery procedures were determined. A Student t test was performed to compare the RMS of the higher-order aberrations of the subjects' corneas from the lasers being studied. A regression analysis was performed to adjust for preoperative spherical equivalent. The study and a waiver of informed consent have been approved by the Clinical Research Division of the 59th Medical Wing Institutional Review Board (Protocol Number: 20150093H). The mean change in RMS value for PRK using the VISX laser was 0.00122, with a standard deviation of 0.02583. The mean change in RMS value for PRK using the WaveLight EX500 laser was 0.004323, with a standard deviation of 0.02916. The mean change in RMS value for LASIK using the VISX laser was 0.00841, with a standard deviation of 0.03011. The mean change in RMS value for LASIK using the WaveLight EX500 laser was 0.0174, with a standard deviation of 0.02417. When comparing the two lasers for PRK and LASIK procedures, the p values were 0.431 and 0.295, respectively. The results of this study suggest no statistically significant difference concerning induced higher-order aberrations between the two laser platforms for either LASIK or PRK. Overall, the VISX laser did have consistently lower induced higher-order aberrations postoperatively, but this did not reach statistical significance. It is likely the statistical significance of this study was hindered by the power, given the relatively small sample size. Additional limitations of the study include its design, being a retrospective analysis, and the generalizability of the study, as the Department of Defense population may be significantly different from the typical refractive surgery population in terms of overall health and preoperative refractive error. Further investigation of visual outcomes between the two laser platforms should be investigated before determining superiority in terms of visual image and quality postoperatively. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Inhibited phenol ionization in reverse micelles: confinement effect at the nanometer scale.
Silva, O Fernando; Fernández, Mariana A; Silber, Juana J; de Rossi, Rita H; Correa, N Mariano
2012-01-16
We found that the absorption spectra of 2-acetylphenol (2-HAP), 4-acetylphenol (4-HAP), and p-nitrophenol (p-NPh) in water/sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane reverse micelles (RMs) at various W(0) (W(0) = [H(2)O]/[surfactant]) values studied changed with time if (-)OH ions were present in the RM water pool. There is an evolution of ionized phenol (phenolate) bands to nonionized phenol absorption bands with time and this process is faster at low W(0) values and with phenols with higher bulk water pK(a) values. That is, in bulk water and at the hydroxide anion concentration used, only phenolate species are observed, whereas in AOT RMs at this fixed hydroxide anion concentration, ionized phenols convert into nonionized phenol species over time. Furthermore, we demonstrate that, independent of the (-)OH concentration used to prepare the AOT RMs, the nonionized phenols are the more stable species in the RM media. We explain our results by considering that strong hydrogen-bonding interactions between phenols and the AOT polar head groups result in the existence of only nonionized phenols at the AOT RM interface. The situation is quite different when the phenols are dissolved in cationic benzyl-n-hexadecyldimethylammonium chloride RMs. Therein, only phenolates species are present at the (-)OH concentrations used. The results clearly demonstrate that the classical definition of pH does not apply in a confined environment, such as in the interior of RMs and challenge the general idea that pH can be determined inside RMs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The repeated-bout effect: influence on biceps brachii oxygenation and myoelectrical activity.
Muthalib, Makii; Lee, Hoseong; Millet, Guillaume Y; Ferrari, Marco; Nosaka, Kazunori
2011-05-01
This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOI(min)), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMG(RMS)) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOI(min), and EMG(RMS) during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOI(min), mean total hemoglobin volume, maximum total hemoglobin volume, and EMG(RMS) during exercise. Smaller (P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOI(min) did not change, but EMG(RMS) increased 1-4 days following ECC1 and ECC2. During 100% MVC tasks, EMG(RMS) did not change, but torque and TOI(min) decreased 1-4 days following ECC1 and ECC2. TOI(min) during 100% MVC tasks and EMG(RMS) during 30% MVC tasks recovered faster (P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.
The EOLE experiment: Early results and current objectives
NASA Technical Reports Server (NTRS)
Morel, P.; Bandeen, W. R.
1972-01-01
The EOLE experiment with 480 constant level balloons released in the Southern Hemisphere is described. Each balloon floating freely at approximately the 200 mb level, is a precise tracer of the horizontal motion of air masses, the accuracy of which is limited only by the laminated structure of the stratospheric flow, within an RMS uncertainty of 1.5 m/sec. The balloons were found after 2 months to distribute at random over the whole hemisphere outside the tropics, irrespective of their original launching site. Early results of Eulerian and Lagrangian averages of the EOLE wind data are given for describing the mean 200 mb zonal and meridional circulations. The effect of the small scale eddies of two-dimensional turbulence has been studied with respect to the relative eddy diffusion of pairs of balloons and the relative dispersion of triangular clusters. New estimates of the RMS divergence of the 200 mb flow are given, together with their scale dependence which was found to be a logarithmic law.
Statistical analysis of the surface figure of the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Lightsey, Paul A.; Chaney, David; Gallagher, Benjamin B.; Brown, Bob J.; Smith, Koby; Schwenker, John
2012-09-01
The performance of an optical system is best characterized by either the point spread function (PSF) or the optical transfer function (OTF). However, for system budgeting purposes, it is convenient to use a single scalar metric, or a combination of a few scalar metrics to track performance. For the James Webb Space Telescope, the Observatory level requirements were expressed in metrics of Strehl Ratio, and Encircled Energy. These in turn were converted to the metrics of total rms WFE and rms WFE within spatial frequency domains. The 18 individual mirror segments for the primary mirror segment assemblies (PMSA), the secondary mirror (SM), tertiary mirror (TM), and Fine Steering Mirror have all been fabricated. They are polished beryllium mirrors with a protected gold reflective coating. The statistical analysis of the resulting Surface Figure Error of these mirrors has been analyzed. The average spatial frequency distribution and the mirror-to-mirror consistency of the spatial frequency distribution are reported. The results provide insight to system budgeting processes for similar optical systems.
Kang, Jinho; Shin, Junho; Kim, Chur; Jung, Kwangyun; Park, Suhyeon; Kim, Jungwon
2014-10-20
We characterize the timing jitter spectral density of the time-of-flight (TOF) in the indoor atmospheric transfer of optical pulse train over 10 decades of Fourier frequency range (10 μHz - 100 kHz) with sub-100-as resolution using a balanced optical cross-correlator (BOC). Based on the well-known theory for atmospheric transfer of a laser beam, we could fit the measured timing jitter power spectral density to the theory and analyze it with a fairly good agreement from 20 mHz to 10 Hz Fourier frequency range. Moreover, we demonstrate that the BOC-based timing stabilization method can suppress the excess fluctuations in timing from >200 fs (rms) to 2.6 fs (rms) maintained over 130 hours when an optical pulse train is transferred over a 76.2-m long free-space beam path in laboratory environment. The demonstrated stabilization result corresponds to 4 × 10(-20) overlapping Allan deviation at 117,000 s averaging time.
Zhang, Shuangyue; Han, Dong; Politte, David G; Williamson, Jeffrey F; O'Sullivan, Joseph A
2018-05-01
The purpose of this study was to assess the performance of a novel dual-energy CT (DECT) approach for proton stopping power ratio (SPR) mapping that integrates image reconstruction and material characterization using a joint statistical image reconstruction (JSIR) method based on a linear basis vector model (BVM). A systematic comparison between the JSIR-BVM method and previously described DECT image- and sinogram-domain decomposition approaches is also carried out on synthetic data. The JSIR-BVM method was implemented to estimate the electron densities and mean excitation energies (I-values) required by the Bethe equation for SPR mapping. In addition, image- and sinogram-domain DECT methods based on three available SPR models including BVM were implemented for comparison. The intrinsic SPR modeling accuracy of the three models was first validated. Synthetic DECT transmission sinograms of two 330 mm diameter phantoms each containing 17 soft and bony tissues (for a total of 34) of known composition were then generated with spectra of 90 and 140 kVp. The estimation accuracy of the reconstructed SPR images were evaluated for the seven investigated methods. The impact of phantom size and insert location on SPR estimation accuracy was also investigated. All three selected DECT-SPR models predict the SPR of all tissue types with less than 0.2% RMS errors under idealized conditions with no reconstruction uncertainties. When applied to synthetic sinograms, the JSIR-BVM method achieves the best performance with mean and RMS-average errors of less than 0.05% and 0.3%, respectively, for all noise levels, while the image- and sinogram-domain decomposition methods show increasing mean and RMS-average errors with increasing noise level. The JSIR-BVM method also reduces statistical SPR variation by sixfold compared to other methods. A 25% phantom diameter change causes up to 4% SPR differences for the image-domain decomposition approach, while the JSIR-BVM method and sinogram-domain decomposition methods are insensitive to size change. Among all the investigated methods, the JSIR-BVM method achieves the best performance for SPR estimation in our simulation phantom study. This novel method is robust with respect to sinogram noise and residual beam-hardening effects, yielding SPR estimation errors comparable to intrinsic BVM modeling error. In contrast, the achievable SPR estimation accuracy of the image- and sinogram-domain decomposition methods is dominated by the CT image intensity uncertainties introduced by the reconstruction and decomposition processes. © 2018 American Association of Physicists in Medicine.
Effect of critical-band smoothing of musical instrument spectral data
NASA Astrophysics Data System (ADS)
Beauchamp, James W.; Horner, Andrew B.
2005-04-01
It has been found that second-order harmonic smoothing of musical instrument spectral data can have a significant effect on timbral perception, depending on the instrument tested [McAdams et al., J. Acoust. Soc. Am. 102, 882-897 (1999)]. With critical-band smoothing, the lower harmonics, since they are in different critical bands, retain their individual amplitudes and temporal envelopes. Thus, it is hypothesized that critical-band smoothing has a lesser perceptual effect on most instrument tones than harmonic smoothing. On the other hand, upper critical bands consist of groups of harmonics. It is hypothesized that it is difficult to hear out individual harmonics within critical bands. Thus, for each band the independent harmonic temporal envelopes can be replaced by a composite rms-amplitude envelope. Spectra within bands can be replaced by time-averaged spectra. Alternatively, time-dependent amplitude versus Bark-frequency spectral envelopes can be smoothed for each individual analysis frame. Further, amplitudes can be averaged in dB or linear units. Results for various processing combinations and various musical instrument sounds will be given and demonstrated.
The coordinate frame of the lunar laser ranging network
NASA Technical Reports Server (NTRS)
Williams, J. G.; Newhall, X. X.; Dickey, J. O.
1986-01-01
The geocentric coordinates for four instruments, which were derived using lunar laser ranging, are compared with the 84L02 coordinates determined from the Lageos satellite. The determination of the geocentric coordinates for the 2.7 m and McDonald Observatory laser ranging system telescopes at McDonald Observatory, the Haleakala site, and the CERGA site near Grasse, France is described. Consideration is given to the McDonald Observatory colocation and station motion due to continential drift. A rms difference of 18 cm is determined for the two sets of geocentric coordinates; however, removing a data anomaly reduces the rms difference to 13 cm.
Multiscale Modeling of Stiffness, Friction and Adhesion in Mechanical Contacts
2012-02-29
over a lateral length l scales as a power law: h lH, where H is called the Hurst exponent . For typical experimental surfaces, H ranges from 0.5 to 0.8...surfaces with a wide range of Hurst exponents using fully atomistic calculations and the Green’s function method. A simple relation like Eq. (2...described above to explore a full range of parameter space with different rms roughness h0, rms slope h’0, Hurst exponent H, adhesion energy
Image stretching on a curved surface to improve satellite gridding
NASA Technical Reports Server (NTRS)
Ormsby, J. P.
1975-01-01
A method for substantially reducing gridding errors due to satellite roll, pitch and yaw is given. A gimbal-mounted curved screen, scaled to 1:7,500,000, is used to stretch the satellite image whereby visible landmarks coincide with a projected map outline. The resulting rms position errors averaged 10.7 km as compared with 25.6 and 34.9 km for two samples of satellite imagery upon which image stretching was not performed.
Stability of a Shock-Decelerated Ablation Front
2009-01-01
the target through the ablation front. Our experiments on the Nike laser at the Naval Research Laboratory (NRL) are aimed at obtaining...separated from the CH foil by a 100-120 μm wide vacuum gap. The front side of the plastic foil is irradiated by 37 overlapping beams of the Nike ...krypton fluoride laser ( 248=Lλ nm) [19]. The Nike laser produces a very uniform irradiation with a time-averaged rms non-uniformity ɘ.3% in a central
Ocular wavefront aberrations in patients with macular diseases
Bessho, Kenichiro; Bartsch, Dirk-Uwe G.; Gomez, Laura; Cheng, Lingyun; Koh, Hyoung Jun; Freeman, William R.
2009-01-01
Background There have been reports that by compensating for the ocular aberrations using adaptive optical systems it may be possible to improve the resolution of clinical retinal imaging systems beyond what is now possible. In order to develop such system to observe eyes with retinal disease, understanding of the ocular wavefront aberrations in individuals with retinal disease is required. Methods 82 eyes of 66 patients with macular disease (epiretinal membrane, macular edema, macular hole etc.) and 85 eyes of 51 patients without retinal disease were studied. Using a ray-tracing wavefront device, each eye was scanned at both small and large pupil apertures and Zernike coefficients up to 6th order were acquired. Results In phakic eyes, 3rd order root mean square errors (RMS) in macular disease group were statistically greater than control, an average of 12% for 5mm and 31% for 3mm scan diameters (p<0.021). In pseudophakic eyes, there also was an elevation of 3rd order RMS, on average 57% for 5mm and 51% for 3mm scan diameters (p<0.031). Conclusion Higher order wavefront aberrations in eyes with macular disease were greater than in control eyes without disease. Our study suggests that such aberrations may result from irregular or multiple reflecting retinal surfaces. Modifications in wavefront sensor technology will be needed to accurately determine wavefront aberration and allow correction using adaptive optics in eyes with macular irregularities. PMID:19574950
Spacecraft automatic umbilical system
NASA Technical Reports Server (NTRS)
Goldin, R. W.; Jacquemin, G. G.; Johnson, W. H.
1981-01-01
An umbilical system design is described that incorporates all the features specified for a power system to payload interconnect capability. A proof-of-concept prototype of the umbilical system was built to determine experimentally the suitability of the threading characteristics of the ram mechanism and to verify freedom from cross threading. It is concluded that Berthing systems that utilize remote manipulator systems (RMS) can be simplified by using RMS targets, closed circuit TV cameras, tie into the RMS control system, and grapple-fixture and end-effector-like capture and secure mechanisms. To effect a remotely controlled umbilical interconnect in proximity with a manned spacecraft and to provide for extravehicular activity backup and maintenance capabilities, 18 different mechanisms are found to be necessary. The weight impact of proving for maintenance capability in a large multiple connector umbilical system was found to be in the order of +60 percent.
Comparison of laser ray-tracing and skiascopic ocular wavefront-sensing devices
Bartsch, D-UG; Bessho, K; Gomez, L; Freeman, WR
2009-01-01
Purpose To compare two wavefront-sensing devices based on different principles. Methods Thirty-eight healthy eyes of 19 patients were measured five times in the reproducibility study. Twenty eyes of 10 patients were measured in the comparison study. The Tracey Visual Function Analyzer (VFA), based on the ray-tracing principle and the Nidek optical pathway difference (OPD)-Scan, based on the dynamic skiascopy principle were compared. Standard deviation (SD) of root mean square (RMS) errors was compared to verify the reproducibility. We evaluated RMS errors, Zernike terms and conventional refractive indexes (Sph, Cyl, Ax, and spherical equivalent). Results In RMS errors reading, both devices showed similar ratios of SD to the mean measurement value (VFA: 57.5±11.7%, OPD-Scan: 53.9±10.9%). Comparison on the same eye showed that almost all terms were significantly greater using the VFA than using the OPD-Scan. However, certain high spatial frequency aberrations (tetrafoil, pentafoil, and hexafoil) were consistently measured near zero with the OPD-Scan. Conclusion Both devices showed similar level of reproducibility; however, there was considerable difference in the wavefront reading between machines when measuring the same eye. Differences in the number of sample points, centration, and measurement algorithms between the two instruments may explain our results. PMID:17571088
VERA Core Simulator methodology for pressurized water reactor cycle depletion
Kochunas, Brendan; Collins, Benjamin; Stimpson, Shane; ...
2017-01-12
This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclidemore » transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. Lastly, these results provide confidence in VERA-CS’s capability to perform high-fidelity calculations for practical PWR reactor problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochunas, Brendan; Collins, Benjamin; Stimpson, Shane
This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclidemore » transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. Lastly, these results provide confidence in VERA-CS’s capability to perform high-fidelity calculations for practical PWR reactor problems.« less
Electron linear accelerator system for natural rubber vulcanization
NASA Astrophysics Data System (ADS)
Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.
2017-09-01
Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.
Tracking through laser-induced clutter for air-to-ground directed energy system
NASA Astrophysics Data System (ADS)
Belen'kii, Mikhail; Brinkley, Timothy; Hughes, Kevin; Tannenbaum, Allen
2003-09-01
The agility and speed with which directed energy can be retargeted and delivered to the target makes a laser weapon highly desirable in tactical battlefield environments. A directed energy system can effectively damage and possibly destroy relatively soft targets on the ground. In order to accurately point a high-energy beam at the target, the directed energy system must be able to acquire and track targets of interest in highly cluttered environments, under different weather, smoke, and camouflage conditions and in the presence of turbulence and thermal blooming. To meet these requirements, we proposed a concept of a multi spectral tracker, which integrates three sensors: SAR radar, a passive MWIR optical tracker, and a range-gated laser illuminated tracker. In this paper we evaluated the feasibility of the integrated optical tracker and arrived to the following conclusions: a) the contrast enhancement by mapping the original pixel distribution to the desired one enhances the target identification capability, b) a reduction of the divergence of the illuminating beam reduces rms pointing error of a laser tracker, c) a clutter removal algorithm based on active contours is capable of capturing targets in highly cluttered environments, d) the daytime rms pointing error caused by anisoplanatism of the track point to the aim point is comparable to the diffraction-limited beam spot size, f) the peak intensity shift from the optical axis caused by thermal blooming at 5 km range for the air-to-ground engagement scenario is on the order of 8 μrad, and it is 10 μrad at 10 km range, and e) the thermal blooming reduces the peak average power in a 2 cm bucket at 5 km range by a factor of 8, and it reduces the peak average power in the bucket at 10 km range by a factor of 22.
Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen
2015-08-11
Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG.
Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan’gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen
2015-01-01
Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG. PMID:26261089
Lux, Robert L.; Sower, Christopher Todd; Allen, Nancy; Etheridge, Susan P.; Tristani-Firouzi, Martin; Saarel, Elizabeth V.
2014-01-01
Background Precise measurement of the QT interval is often hampered by difficulty determining the end of the low amplitude T wave. Root mean square electrocardiography (RMS ECG) provides a novel alternative measure of ventricular repolarization. Experimental data have shown that the interval between the RMS ECG QRS and T wave peaks (RTPK) closely reflects the mean ventricular action potential duration while the RMS T wave width (TW) tracks the dispersion of repolarization timing. Here, we tested the precision of RMS ECG to assess ventricular repolarization in humans in the setting of drug-induced and congenital Long QT Syndrome (LQTS). Methods RMS ECG signals were derived from high-resolution 24 hour Holter monitor recordings from 68 subjects after receiving placebo and moxifloxacin and from standard 12 lead ECGs obtained in 97 subjects with LQTS and 97 age- and sex-matched controls. RTPK, QTRMS and RMS TW intervals were automatically measured using custom software and compared to traditional QT measures using lead II. Results All measures of repolarization were prolonged during moxifloxacin administration and in LQTS subjects, but the variance of RMS intervals was significantly smaller than traditional lead II measurements. TW was prolonged during moxifloxacin and in subjects with LQT-2, but not LQT-1 or LQT-3. Conclusion These data validate the application of RMS ECG for the detection of drug-induced and congenital LQTS. RMS ECG measurements are more precise than the current standard of care lead II measurements. PMID:24454918
Lux, Robert L; Sower, Christopher Todd; Allen, Nancy; Etheridge, Susan P; Tristani-Firouzi, Martin; Saarel, Elizabeth V
2014-01-01
Precise measurement of the QT interval is often hampered by difficulty determining the end of the low amplitude T wave. Root mean square electrocardiography (RMS ECG) provides a novel alternative measure of ventricular repolarization. Experimental data have shown that the interval between the RMS ECG QRS and T wave peaks (RTPK) closely reflects the mean ventricular action potential duration while the RMS T wave width (TW) tracks the dispersion of repolarization timing. Here, we tested the precision of RMS ECG to assess ventricular repolarization in humans in the setting of drug-induced and congenital Long QT Syndrome (LQTS). RMS ECG signals were derived from high-resolution 24 hour Holter monitor recordings from 68 subjects after receiving placebo and moxifloxacin and from standard 12 lead ECGs obtained in 97 subjects with LQTS and 97 age- and sex-matched controls. RTPK, QTRMS and RMS TW intervals were automatically measured using custom software and compared to traditional QT measures using lead II. All measures of repolarization were prolonged during moxifloxacin administration and in LQTS subjects, but the variance of RMS intervals was significantly smaller than traditional lead II measurements. TW was prolonged during moxifloxacin and in subjects with LQT-2, but not LQT-1 or LQT-3. These data validate the application of RMS ECG for the detection of drug-induced and congenital LQTS. RMS ECG measurements are more precise than the current standard of care lead II measurements.
Kephart, Julie J G; Tiller, Rosanne G J; Crose, Lisa E S; Slemmons, Katherine K; Chen, Po-Han; Hinson, Ashley R; Bentley, Rex C; Chi, Jen-Tsan Ashley; Linardic, Corinne M
2015-11-01
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma associated with the skeletal muscle lineage. Of the two predominant subtypes, known as embryonal (eRMS) and alveolar (aRMS), aRMS has the poorer prognosis, with a five-year survival rate of <50%. The majority of aRMS tumors express the fusion protein PAX3-FOXO1. As PAX3-FOXO1 has proven chemically intractable, this study aims to identify targetable proteins that are downstream from or cooperate with PAX3-FOXO1 to support tumorigenesis. Microarray analysis of the transcriptomes of human skeletal muscle myoblasts expressing PAX3-FOXO1 revealed alteration of several Wnt pathway gene members, including secreted frizzled related protein 3 (SFRP3), a secreted Wnt pathway inhibitor. Loss-of-function using shRNAs against SFRP3 was used to interrogate the role of SFRP3 in human aRMS cell lines in vitro and conditional murine xenograft systems in vivo. The combination of SFRP3 genetic suppression and the chemotherapeutic agent vincristine was also examined. In vitro, suppression of SFRP3 inhibited aRMS cell growth, reduced proliferation accompanied by a G1 arrest and induction of p21, and induced apoptosis. In vivo, doxycycline-inducible suppression of SFRP3 reduced aRMS tumor growth and weight by more than three-fold, in addition to increasing myogenic differentiation and β-catenin signaling. The combination of SFRP3 suppression and vincristine was more effective at reducing aRMS cell growth in vitro than either treatment alone, and ablated tumorigenesis in vivo. SFRP3 is necessary for the growth of human aRMS cells both in vitro and in vivo and is a promising new target for investigation in aRMS. ©2015 American Association for Cancer Research.
Characterization of Wnt/β-catenin signaling in rhabdomyosarcoma.
Annavarapu, Srinivas R; Cialfi, Samantha; Dominici, Carlo; Kokai, George K; Uccini, Stefania; Ceccarelli, Simona; McDowell, Heather P; Helliwell, Timothy R
2013-10-01
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and accounts for about 5% of all malignant paediatric tumours. β-Catenin, a multifunctional nuclear transcription factor in the canonical Wnt signaling pathway, is active in myogenesis and embryonal somite patterning. Dysregulation of Wnt signaling facilitates tumour invasion and metastasis. This study characterizes Wnt/β-catenin signaling and functional activity in paediatric embryonal and alveolar RMS. Immunohistochemical assessment of paraffin-embedded tissues from 44 RMS showed β-catenin expression in 26 cases with cytoplasmic/membranous expression in 9/14 cases of alveolar RMS, and 15/30 cases of embryonal RMS, whereas nuclear expression was only seen in 2 cases of embryonal RMS. The potential functional significance of β-catenin expression was tested in four RMS cell lines, two derived from embryonal (RD and RD18) RMS and two from alveolar (Rh4 and Rh30) RMS. Western blot analysis demonstrated the expression of Wnt-associated proteins including β-catenin, glycogen synthase kinase-3β, disheveled, axin-1, naked, LRP-6 and cadherins in all cell lines. Cell fractionation and immunofluorescence studies of the cell lines (after stimulation by human recombinant Wnt3a) showed reduced phosphorylation of β-catenin, stabilization of the active cytosolic form and nuclear translocation of β-catenin. Reporter gene assay demonstrated a T-cell factor/lymphoid-enhancing factor-mediated transactivation in these cells. In response to human recombinant Wnt3a, the alveolar RMS cells showed a significant decrease in proliferation rate and induction of myogenic differentiation (myogenin, MyoD1 and myf5). These data indicate that the central regulatory components of canonical Wnt/β-catenin signaling are expressed and that this pathway is functionally active in a significant subset of RMS tumours and might represent a novel therapeutic target.
Estimation and evaluation of COSMIC radio occultation excess phase using undifferenced measurements
NASA Astrophysics Data System (ADS)
Xia, Pengfei; Ye, Shirong; Jiang, Kecai; Chen, Dezhong
2017-05-01
In the GPS radio occultation technique, the atmospheric excess phase (AEP) can be used to derive the refractivity, which is an important quantity in numerical weather prediction. The AEP is conventionally estimated based on GPS double-difference or single-difference techniques. These two techniques, however, rely on the reference data in the data processing, increasing the complexity of computation. In this study, an undifferenced (ND) processing strategy is proposed to estimate the AEP. To begin with, we use PANDA (Positioning and Navigation Data Analyst) software to perform the precise orbit determination (POD) for the purpose of acquiring the position and velocity of the mass centre of the COSMIC (The Constellation Observing System for Meteorology, Ionosphere and Climate) satellites and the corresponding receiver clock offset. The bending angles, refractivity and dry temperature profiles are derived from the estimated AEP using Radio Occultation Processing Package (ROPP) software. The ND method is validated by the COSMIC products in typical rising and setting occultation events. Results indicate that rms (root mean square) errors of relative refractivity differences between undifferenced and atmospheric profiles (atmPrf) provided by UCAR/CDAAC (University Corporation for Atmospheric Research/COSMIC Data Analysis and Archive Centre) are better than 4 and 3 % in rising and setting occultation events respectively. In addition, we also compare the relative refractivity bias between ND-derived methods and atmPrf profiles of globally distributed 200 COSMIC occultation events on 12 December 2013. The statistical results indicate that the average rms relative refractivity deviation between ND-derived and COSMIC profiles is better than 2 % in the rising occultation event and better than 1.7 % in the setting occultation event. Moreover, the observed COSMIC refractivity profiles from ND processing strategy are further validated using European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data, and the results indicate that the undifferenced method reduces the noise level on the excess phase paths in the lower troposphere compared to the single-difference processing strategy.
Accuracy of relative positioning by interferometry with GPS Double-blind test results
NASA Technical Reports Server (NTRS)
Counselman, C. C., III; Gourevitch, S. A.; Herring, T. A.; King, B. W.; Shapiro, I. I.; Cappallo, R. J.; Rogers, A. E. E.; Whitney, A. R.; Greenspan, R. L.; Snyder, R. E.
1983-01-01
MITES (Miniature Interferometer Terminals for Earth Surveying) observations conducted on December 17 and 29, 1980, are analyzed. It is noted that the time span of the observations used on each day was 78 minutes, during which five satellites were always above 20 deg elevation. The observations are analyzed to determine the intersite position vectors by means of the algorithm described by Couselman and Gourevitch (1981). The average of the MITES results from the two days is presented. The rms differences between the two determinations of the components of the three vectors, which were about 65, 92, and 124 m long, were 8 mm for the north, 3 mm for the east, and 6 mm for the vertical. It is concluded that, at least for short distances, relative positioning by interferometry with GPS can be done reliably with subcentimeter accuracy.
NASA Astrophysics Data System (ADS)
Luque, P. A.; Gómez-Gutiérrez, Claudia M.; Lastra, G.; Carrillo-Castillo, A.; Quevedo-López, M. A.; Olivas, A.
2014-11-01
Zinc sulfide (ZnS) thin films have been grown by chemical bath deposition (CBD) using different zinc sources on a silicon nitride (Si3N4) substrate in an alkaline solution. The zinc precursors used were zinc acetate, zinc nitrate, and zinc sulfate. The structural and optical characteristics of the ZnS thin films obtained were analyzed. The morphology of the surface showed that the films were compact and uniform, with some pinholes in the surface depending on the zinc source. The most homogeneous and compact surfaces were those obtained using zinc nitrate as the zinc source with a root-mean-square (RMS) value of 3 nm. The transmission spectra indicated average transmittance of 80% to 85% in the spectral range from 300 nm to 800 nm, and the optical bandgap calculated for the films was around 3.71 eV to 3.74 eV.
Morphological and structural studies of CBD-CdS thin films by microscopy and diffraction techniques
NASA Astrophysics Data System (ADS)
Martínez, M. A.; Guillén, C.; Herrero, J.
1998-10-01
The influence of cadmium salt and thiourea concentrations on the morphological and structural properties of chemical bath-deposited CdS thin films has been investigated. Two different feature regimes have been distinguished: an inner continuous layer grown directly on the glass and independent on the deposition conditions, and other porous overlayer, more dependent on the chemical concentrations. Root mean square, RMS, and average roughnesses, Ra, as quantified by AFM, are about 10-13 nm and 7-11 nm, respectively, for all CdS samples tested. These films are sulphur-poor, decreasing S/Cd atomic ratio from 0.82 at low cadmium salt, 1 mM, and high thiourea concentrations, 100 mM, down to 0.76 at higher [Cd 2+], 5 mM, and lower [TU], 10 mM.
Measurements of scalar released from point sources in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Talluru, K. M.; Hernandez-Silva, C.; Philip, J.; Chauhan, K. A.
2017-04-01
Measurements of velocity and concentration fluctuations for a horizontal plume released at several wall-normal locations in a turbulent boundary layer (TBL) are discussed in this paper. The primary objective of this study is to establish a systematic procedure to acquire accurate single-point concentration measurements for a substantially long time so as to obtain converged statistics of long tails of probability density functions of concentration. Details of the calibration procedure implemented for long measurements are presented, which include sensor drift compensation to eliminate the increase in average background concentration with time. While most previous studies reported measurements where the source height is limited to, {{s}z}/δ ≤slant 0.2 , where s z is the wall-normal source height and δ is the boundary layer thickness, here results of concentration fluctuations when the plume is released in the outer layer are emphasised. Results of mean and root-mean-square (r.m.s.) profiles of concentration for elevated sources agree with the well-accepted reflected Gaussian model (Fackrell and Robins 1982 J. Fluid. Mech. 117). However, there is clear deviation from the reflected Gaussian model for source in the intermittent region of TBL particularly at locations higher than the source itself. Further, we find that the plume half-widths are different for the mean and r.m.s. concentration profiles. Long sampling times enabled us to calculate converged probability density functions at high concentrations and these are found to exhibit exponential distribution.
Testa, Marco; Geri, Tommaso; Gizzi, Leonardo; Petzke, Frank; Falla, Deborah
2015-01-01
To assess whether patients with persistent neck pain display evidence of altered masticatory muscle behavior during a jaw-clenching task, despite the absence of orofacial pain or temporomandibular disorders. Ten subjects with persistent, nonspecific neck pain and 10 age- and sex-matched healthy controls participated. Maximal voluntary contractions (MVCs) of unilateral jaw clenching followed by 5-second submaximal contractions at 10%, 30%, 50%, and 70% MVC were recorded by two flexible force transducers positioned between the first molar teeth. Task performance was quantified by mean distance and offset error from the reference target force as error indices, and standard deviation of force was used as an index of force steadiness. Electromyographic (EMG) activity was recorded bilaterally from the masseter muscle with 13 X 5 grids of electrodes and from the anterior temporalis with bipolar electrodes. Normalized EMG root mean square (RMS) was computed for each location of the grid to form a map of the EMG amplitude distribution, and the average normalized RMS was determined for the bipolar acquisition. Between-group differences were analyzed with the Kruskal Wallis analysis of variance. Task performance was similar in patients and controls. However, patients displayed greater masseter EMG activity bilaterally at higher force levels (P<.05). This study has provided novel evidence of altered motor control of the jaw in people with neck pain despite the absence of orofacial pain or temporomandibular disorders.
NASA Astrophysics Data System (ADS)
Wei, Junxiong; Chaitanya Kumar, S.; Ye, Hanyu; Schunemann, Peter G.; Ebrahim-Zadeh, M.
2018-02-01
Orientation-patterned gallium phosphide (OP-GaP) is a recently developed nonlinear material with wide transparency across 0.8-12 μm and high nonlinearity (d14 70 pm/V), which is a promising candidate material for mid-infrared generation. Here we report the full performance characterization of a tunable single-pass nanosecond difference frequency generation (DFG) source based on OP-GaP by mixing the output of a Q-switched Nd:YAG laser at 1.064 μm with the signal from a pulsed MgO:PPLN OPO pumped by the same laser. Using the longest OP-GaP crystal (40 mm) deployed to date, the DFG source provides up to 14 mW of average output power at 2719 nm at 80 kHz repetition rate, with >6 mW across 2492-2782 nm, in TEM00 spatial profile. By performing relevant measurements, detrimental issues such as residual absorption and thermal effects have been studied and confirmed. The temperature and spectral acceptance bandwidths for DFG in the 40-mm-log OP-GaP are measured to be 18 °C and 17 nm, respectively, at 1766 nm. The DFG beam exhibits passive power stability better than 1.7% rms over 1.4 hours at 2774 nm, compared to 1.6% and 0.1% rms for the signal and pump, respectively. The polarization dependence of the input beams on the DFG power has also been systematically investigated, for the first time to our knowledge. Further, we have measured the damage threshold of the OP-GaP crystal to be 0.8 J/cm2 at 1064 nm.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)
1998-01-01
A matched set of five tissue-equivalent proportional counters (TEPCs), embedded at the centers of 0 (bare), 3, 5, 8 and 12-inch-diameter polyethylene spheres, were flown on the Shuttle flight STS-81 (inclination 51.65 degrees, altitude approximately 400 km). The data obtained were separated into contributions from trapped protons and galactic cosmic radiation (GCR). From the measured linear energy transfer (LET) spectra, the absorbed dose and dose-equivalent rates were calculated. The results were compared to calculations made with the radiation transport model HZETRN/NUCFRG2, using the GCR free-space spectra, orbit-averaged geomagnetic transmission function and Shuttle shielding distributions. The comparison shows that the model fits the dose rates to a root mean square (rms) error of 5%, and dose-equivalent rates to an rms error of 10%. Fairly good agreement between the LET spectra was found; however, differences are seen at both low and high LET. These differences can be understood as due to the combined effects of chord-length variation and detector response function. These results rule out a number of radiation transport/nuclear fragmentation models. Similar comparisons of trapped-proton dose rates were made between calculations made with the proton transport model BRYNTRN using the AP-8 MIN trapped-proton model and Shuttle shielding distributions. The predictions of absorbed dose and dose-equivalent rates are fairly good. However, the prediction of the LET spectra below approximately 30 keV/microm shows the need to improve the AP-8 model. These results have strong implications for shielding requirements for an interplanetary manned mission.
Kregting, Louise T.; Bass, Anna L.; Guadayol, Òscar; Yund, Philip O.; Thomas, Florence I. M.
2013-01-01
Broadcast spawning invertebrates that live in shallow, high-energy coastal habitats are subjected to oscillatory water motion that creates unsteady flow fields above the surface of animals. The frequency of the oscillatory fluctuations is driven by the wave period, which will influence the stability of local flow structures and may affect fertilization processes. Using an oscillatory water tunnel, we quantified the percentage of eggs fertilized on or near spawning green sea urchins, Strongylocentrotus droebachiensis. Eggs were sampled in the water column, wake eddy, substratum and aboral surface under a range of different periods (T = 4.5 – 12.7 s) and velocities of oscillatory flow. The root-mean-square wave velocity (rms(u w)) was a good predictor of fertilization in oscillatory flow, although the root-mean-square of total velocity (rms(u)), which incorporates all the components of flow (current, wave and turbulence), also provided significant predictions. The percentage of eggs fertilized varied between 50 – 85% at low flows (rms(u w) <0.02 m s−1), depending on the location sampled, but declined to below 10% for most locations at higher rms(u w). The water column was an important location for fertilization with a relative contribution greater than that of the aboral surface, especially at medium and high rms(u w) categories. We conclude that gametes can be successfully fertilized on or near the parent under a range of oscillatory flow conditions. PMID:24098766
Berni, Kelly Cristina dos Santos; Dibai-Filho, Almir Vieira; Pires, Paulo Fernandes; Rodrigues-Bigaton, Delaine
2015-08-01
Due to the multifactor etiology of temporomandibular disorder (TMD), the precise diagnosis remains a matter of debate and validated diagnostic tools are needed. The aim was to determine the accuracy of surface electromyography (sEMG) activity, assessed in the amplitude domain by the root mean square (RMS), in the diagnosis of TMD. One hundred twenty-three volunteers were evaluated using the Research Diagnostic Criteria for Temporomandibular Disorders and distributed into two groups: women with myogenous TMD (n=80) and women without TMD (n=43). The volunteers were then submitted to sEMG evaluation of the anterior temporalis, masseter and suprahyoid muscles at rest and during maximum voluntary teeth clenching (MVC) on parafilm. The accuracy, sensitivity and specificity of the muscle activity were analyzed. Differences between groups were found in all muscles analyzed at rest as well as in the masseter and suprahyoid muscles during MVC on parafilm. Moderate accuracy (AUC: 0.74-0.84) of the RMS sEMG was found in all muscles regarding the diagnosis of TMD at rest and in the suprahyoid muscles during MVC on parafilm. Moreover, sensitivity ranging from 71.3% to 80% and specificity from 60.5% to 76.6%. In contrast, RMS sEMG did not exhibit acceptable degrees of accuracy in the other masticatory muscles during MVC on parafilm. It was concluded that the RMS sEMG is a complementary tool for clinical diagnosis of the myogenous TMD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Some articulatory details of emotional speech
NASA Astrophysics Data System (ADS)
Lee, Sungbok; Yildirim, Serdar; Bulut, Murtaza; Kazemzadeh, Abe; Narayanan, Shrikanth
2005-09-01
Differences in speech articulation among four emotion types, neutral, anger, sadness, and happiness are investigated by analyzing tongue tip, jaw, and lip movement data collected from one male and one female speaker of American English. The data were collected using an electromagnetic articulography (EMA) system while subjects produce simulated emotional speech. Pitch, root-mean-square (rms) energy and the first three formants were estimated for vowel segments. For both speakers, angry speech exhibited the largest rms energy and largest articulatory activity in terms of displacement range and movement speed. Happy speech is characterized by largest pitch variability. It has higher rms energy than neutral speech but articulatory activity is rather comparable to, or less than, neutral speech. That is, happy speech is more prominent in voicing activity than in articulation. Sad speech exhibits longest sentence duration and lower rms energy. However, its articulatory activity is no less than neutral speech. Interestingly, for the male speaker, articulation for vowels in sad speech is consistently more peripheral (i.e., more forwarded displacements) when compared to other emotions. However, this does not hold for female subject. These and other results will be discussed in detail with associated acoustics and perceived emotional qualities. [Work supported by NIH.
Limits in measurements of contact lens surface profile using atomic force microscopy.
Brygoła, Rafał; Sęk, Sławomir; Sokołowski, Maciej; Kowalczyk-Hernández, Marek; Pniewski, Jacek
2018-05-01
In the paper the results of AFM surface profile measurements of seven new long-wear contact lenses (CL) available in Poland are presented. Calculated statistical roughness parameters are shown, namely standard deviation (RMS), mean roughness, maximum difference between peak and valley, skewness, and kurtosis. It is demonstrated that CLs manufactured using recent methods, such as two-stage polimerisation or extending silicon chains exhibit small RMS, less than 10 nm, in comparison with older generation CLs which maintains RMS on the level of tens of nanometers. Then, a comparison of results obtained using a typical silicon tip and a silicon tip covered with alkylsilane is also demonstrated. As a result, roughness parameters, such as RMS, are higher for the case of alkylsilane-coated tip than for a typical silicon tip, 8.39 ± 0.16 nm vs. 6.22 ± 0.9 nm, which leads to the conclusion that the proper choice of the tip material significantly influences the outcome of the experiment. Finally, the reliability and limits of such measurements are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Sorbie, Graeme G; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike C
2017-08-01
Lower back pain is commonly associated with golfers. The study aimed: to determine whether thoracic- and lumbar-erector-spinae muscle display signs of muscular fatigue after completing a golf practice session, and to examine the effect of the completed practice session on club head speed, ball speed and absolute carry distance performance variables. Fourteen right-handed male golfers participated in the laboratory-based-study. Surface electromyography (EMG) data was collected from the lead and trail sides of the thoracic- and lumbar-erector-spinae muscle. Normalized root mean squared (RMS) EMG activation levels and performance variables for the golf swings were compared before and after the session. Fatigue was assessed using median frequency (MDF) and RMS during the maximum voluntary contraction (MVC) performed before and after the session. No significant differences were observed in RMS thoracic- and lumbar-erector-spinae muscle activation levels during the five phases of the golf swing and performance variables before and after the session (p > .05). Significant changes were displayed in MDF and RMS when comparing the MVC performed before and after the session (p < .05). Fatigue was evident in the trail side of the erector-spinae muscle after the session.
Electromyographic amplitude variability of chewing cycles in deaf individuals.
de Oliveira, A Siriani; Vitti, M; Chaves, T C; Bevilaqua-Grossi, D; Zuccolotto, M C C; Regalo, S C H
2006-09-01
This study had the goal of determining if the amplitude of the surface electromyograph signals changes in terms of time of analysis and subjects, deaf or normal listeners, when estimated in a 250 ms of length window, visually determined, considering the most stable signal period from the center of the chewing cycle. In order to do this, groups with control subjects, listeners and deaf individuals, who made use of the Brazilian sign language (LIBRAS), were studied. All participants performed continuous 5 s of chewing for the electromyographic recording of the temporalis and masseter muscles. The normalized RMS values of three chewing cycles were compared between and among groups. The results from the Kruskall-Wallis test did not show any statistically significant differences (p > 0.05) between the normalized RMS values obtained in the three individual chewing cycles, for each of the two completed and evaluated cycles, in both groups studied. The Mann-Whitney test showed that the mean normalized RMS values obtained in the first chewing cycle were higher for the control group when compared to the mean amplitude values of the first chewing cycle of the group of deaf volunteers. It can be concluded that, in these experimental conditions, the RMS values obtained from the select windows of 250 ms length duration, in relatively stable periods of the electromyographic signal of chewing cycles did not suffer any changes in terms of EMG register duration, in both studied groups, but does give evidence of the differences among the groups.
Design of human controlled 1 DOF right hand exoskeleton using electromyography signal
NASA Astrophysics Data System (ADS)
Azzam, M.; Wijaya, S. K.; Prawito
2017-07-01
Exoskeleton in general is a structure that is anatomically designed to be able to accommodate the physical movement of its user and provide additional strength. The use of EMG signal to control a 1 DOF right arm exoskeleton is evaluated in this research. This research aims to achieve optimum control using EMG signal. EMG signal is a variation of voltage that occurs when muscle contracts hence its strong correlation with the user's intention of movement. The RMS values of each EMG signal that originates from bicep and tricep muscle are calculated and processed to determine the direction and speed of rotation of a DC motor that actuates the exoskeleton. The RMS calculation is conducted at various array length that will theoretically affect its accuracy. The difference between those two RMS values is then calculated and interpreted as the intention of flexion or extension movement that will control the DC motor rotational direction. The absolute value of the RMS difference multiplied with a gain factor is used to regulate the duty cycle of a PWM signal that is used to control the rotational speed of the DC motor. To achieve the smallest settling time, array length and gain factor were varied. The test was conducted in two stages, static and dynamic tests. The test result shows a trend where the settling time decreases when array length is shortened and gain is increased. It shows that optimum control can be achieved by selecting the right array length and gain.
Financing development stage biotechnology companies: RMs vs. IPOs.
Ahn, Mark J; Couch, Robert B; Wu, Wei
2011-01-01
We examine reverse mergers (RMs) in the biotechnology industry and find that, when compared to initial public offerings (IPOs), RMs are smaller, have significantly lower market valuations relative to size, and generally invest less. We also find that RMs exhibit positive abnormal returns on the announcement date and throughout the first year after the RM event. In looking at liquidity measures, we find that RMs tend to be less liquid than IPOs and that illiquidity is greater during the six-month lock-up period following the RM event. Thus, RMs may be an appropriate alternative financing vehicle in capital intensive, high-risk biotechnology companies which require accessing deeper and larger pools of investors in public capital markets across multiple milestone periods in a "pay for progress" environment.
Veazey, Ronald S; Ling, Binhua
2017-12-01
Historically, Indian rhesus macaques (iRMs) have been preferred for simian immunodeficiency virus (SIV)/HIV prevention, pathogenesis, and treatment studies, yet their supply is limited. Chinese rhesus macaques (cRMs) are currently more available, yet little is known regarding the relative susceptibility of this subspecies to vaginal transmission of SIV or simian-human immunodeficiency virus (SHIV). In this study, we compared the susceptibility of 40 cRMs and 21 iRMs with a single vaginal challenge with SHIVsf162P. Our results showed that cRMs have comparable primary SHIV infection as iRMs, underscoring their equal importance in studies of HIV transmission and prevention.
NASA Astrophysics Data System (ADS)
Parnis, J. Mark; Mackay, Donald; Harner, Tom
2015-06-01
Henry's Law constants (H) and octanol-air partition coefficients (KOA) for polycyclic aromatic hydrocarbons (PAHs) and selected nitrogen-, oxygen- and sulfur-containing derivatives have been computed using the COSMO-RS method between -5 and 40 °C in 5 °C intervals. The accuracy of the estimation was assessed by comparison of COSMOtherm values with published experimental temperature-dependence data for these and similar PAHs. COSMOtherm log H estimates with temperature-variation for parent PAHs are shown to have a root-mean-square (RMS) error of 0.38 (PAH), based on available validation data. Estimates of O-, N- and S-substituted derivative log H values are found to have RMS errors of 0.30 at 25 °C. Log KOA estimates with temperature variation from COSMOtherm are shown to be strongly correlated with experimental values for a small set of unsubstituted PAHs, but with a systematic underestimation and associated RMS error of 1.11. Similar RMS error of 1.64 was found for COSMO-RS estimates of a group of critically-evaluated log KOA values at room temperature. Validation demonstrates that COSMOtherm estimates of H and KOA are of sufficient accuracy to be used for property screening and preliminary environmental risk assessment, and perform very well for modeling the influence of temperature on partitioning behavior in the temperature range -5 to 40 °C. Temperature-dependent shifts of up to 2 log units in log H and one log unit for log KOA are predicted for PAH species over the range -5 and 40 °C. Within the family of PAH molecules, COSMO-RS is sufficiently accurate to make it useful as a source of estimates for modeling purposes, following corrections for systematic underestimation of KOA. Average changes in the values for log H and log KOA upon substitution are given for various PAH substituent categories, with the most significant shifts being associated with the ionizing nitro functionality and keto groups.
Quantitative evaluation of performance of three-dimensional printed lenses
NASA Astrophysics Data System (ADS)
Gawedzinski, John; Pawlowski, Michal E.; Tkaczyk, Tomasz S.
2017-08-01
We present an analysis of the shape, surface quality, and imaging capabilities of custom three-dimensional (3-D) printed lenses. 3-D printing technology enables lens prototypes to be fabricated without restrictions on surface geometry. Thus, spherical, aspherical, and rotationally nonsymmetric lenses can be manufactured in an integrated production process. This technique serves as a noteworthy alternative to multistage, labor-intensive, abrasive processes, such as grinding, polishing, and diamond turning. Here, we evaluate the quality of lenses fabricated by Luxexcel using patented Printoptical©; technology that is based on an inkjet printing technique by comparing them to lenses made with traditional glass processing technologies (grinding, polishing, etc.). The surface geometry and roughness of the lenses were evaluated using white-light and Fizeau interferometers. We have compared peak-to-valley wavefront deviation, root mean square (RMS) wavefront error, radii of curvature, and the arithmetic roughness average (Ra) profile of plastic and glass lenses. In addition, the imaging performance of selected pairs of lenses was tested using 1951 USAF resolution target. The results indicate performance of 3-D printed optics that could be manufactured with surface roughness comparable to that of injection molded lenses (Ra<20 nm). The RMS wavefront error of 3-D printed prototypes was at a minimum 18.8 times larger than equivalent glass prototypes for a lens with a 12.7 mm clear aperture, but, when measured within 63% of its clear aperture, the 3-D printed components' RMS wavefront error was comparable to glass lenses.
Pressey, Joseph G.; Pressey, Christine S.; Robinson, Gloria; Herring, Richie; Wilson, Landon; Kelly, David R.; Kim, Helen
2011-01-01
To evaluate the consequences of expression of the protein encoded by PAX3-FOXO1 (P3F) in the pediatric malignancy alveolar rhabdomyosarcoma (A-RMS), we developed and evaluated a genetically defined in vitro model of A-RMS tumorigenesis. The expression of P3F in cooperation with simian virus 40 (SV40) Large-T (LT) antigen in murine C3H10T1/2 fibroblasts led to robust malignant transformation. Using 2 dimensional difference gel electrophoresis (2D-DIGE) we compared proteomes from lysates from cells that express P3F + LT versus from cells that express LT alone. Analysis of 2D gel spot patterns by DeCyder™ image analysis software indicated 93 spots that were different in abundance. Peptide mass fingerprint analysis of the 93 spots by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis identified 37 non-redundant proteins. 2D DIGE analysis of cell culture media conditioned by cells transduced by P3F + LT versus by LT alone found 29 spots in the P3F + LT cells leading to the identification of 11 non-redundant proteins. A substantial number of proteins with potential roles in tumorigenesis and myogenesis were detected, most of which have not been identified in previous wide-scale expression studies of RMS experimental models or tumors. We validated the 2D gel image analysis findings by western blot analysis and immunohistochemistry (IHC). Thus, the 2D DIGE proteomics methodology described here provided an important discovery approach to the study of RMS biology and complements the findings of previous mRNA expression studies. PMID:21110518
Pressey, Joseph G; Pressey, Christine S; Robinson, Gloria; Herring, Richie; Wilson, Landon; Kelly, David R; Kim, Helen
2011-02-04
To evaluate the consequences of expression of the protein encoded by PAX3-FOXO1 (P3F) in the pediatric malignancy alveolar rhabdomyosarcoma (A-RMS), we developed and evaluated a genetically defined in vitro model of A-RMS tumorigenesis. The expression of P3F in cooperation with simian virus 40 (SV40) Large-T (LT) antigen in murine C3H10T1/2 fibroblasts led to robust malignant transformation. Using 2-dimensional-difference gel electrophoresis (2D-DIGE), we compared proteomes from lysates from cells that express P3F + LT versus from cells that express LT alone. Analysis of 2D gel spot patterns by DeCyder image analysis software indicated 93 spots that were different in abundance. Peptide mass fingerprint analysis of the 93 spots by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis identified 37 nonredundant proteins. 2D-DIGE analysis of cell culture media conditioned by cells transduced by P3F + LT versus by LT alone found 29 spots in the P3F + LT cells leading to the identification of 11 nonredundant proteins. A substantial number of proteins with potential roles in tumorigenesis and myogenesis were detected, most of which have not been identified in previous wide-scale expression studies of RMS experimental models or tumors. We validated the 2D gel image analysis findings by Western blot analysis and immunohistochemistry (IHC). Thus, the 2D-DIGE proteomics methodology described here provided an important discovery approach to the study of RMS biology and complements the findings of previous mRNA expression studies.
Decay of the supersonic turbulent wakes from micro-ramps
NASA Astrophysics Data System (ADS)
Sun, Z.; Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.
2014-02-01
The wakes resulting from micro-ramps immersed in a supersonic turbulent boundary layer at Ma = 2.0 are investigated by means of particle image velocimetry. Two micro-ramps are investigated with height of 60% and 80% of the undisturbed boundary layer, respectively. The measurement domain is placed at the symmetry plane of the ramp and encompasses the range from 10 to 32 ramp heights downstream of the ramp. The decay of the flow field properties is evaluated in terms of time-averaged and root-mean-square (RMS) statistics. In the time-averaged flow field, the recovery from the imparted momentum deficit and the decay of upwash motion are analyzed. The RMS fluctuations of the velocity components exhibit strong anisotropy at the most upstream location and develop into a more isotropic regime downstream. The self-similarity properties of velocity components and fluctuation components along wall-normal direction are followed. The investigation of the unsteady large scale motion is carried out by means of snapshot analysis and by a statistical approach based on the spatial auto-correlation function. The Kelvin-Helmholtz (K-H) instability at the upper shear layer is observed to develop further with the onset of vortex pairing. The average distance between vortices is statistically estimated using the spatial auto-correlation. A marked transition with the wavelength increase is observed across the pairing regime. The K-H instability, initially observed only at the upper shear layer also begins to appear in the lower shear layer as soon as the wake is elevated sufficiently off the wall. The auto-correlation statistics confirm the coherence of counter-rotating vortices from the upper and lower sides, indicating the formation of vortex rings downstream of the pairing region.
Quality assurance practices in Europe: a survey of molecular genetic testing laboratories
Berwouts, Sarah; Fanning, Katrina; Morris, Michael A; Barton, David E; Dequeker, Elisabeth
2012-01-01
In the 2000s, a number of initiatives were taken internationally to improve quality in genetic testing services. To contribute to and update the limited literature available related to this topic, we surveyed 910 human molecular genetic testing laboratories, of which 291 (32%) from 29 European countries responded. The majority of laboratories were in the public sector (81%), affiliated with a university hospital (60%). Only a minority of laboratories was accredited (23%), and 26% was certified. A total of 22% of laboratories did not participate in external quality assessment (EQA) and 28% did not use reference materials (RMs). The main motivations given for accreditation were to improve laboratory profile (85%) and national recognition (84%). Nearly all respondents (95%) would prefer working in an accredited laboratory. In accredited laboratories, participation in EQA (P<0.0001), use of RMs (P=0.0014) and availability of continuous education (CE) on medical/scientific subjects (P=0.023), specific tasks (P=0.0018), and quality assurance (P<0.0001) were significantly higher than in non-accredited laboratories. Non-accredited laboratories expect higher restriction of development of new techniques (P=0.023) and improvement of work satisfaction (P=0.0002) than accredited laboratories. By using a quality implementation score (QIS), we showed that accredited laboratories (average score 92) comply better than certified laboratories (average score 69, P<0.001), and certified laboratories better than other laboratories (average score 44, P<0.001), with regard to the implementation of quality indicators. We conclude that quality practices vary widely in European genetic testing laboratories. This leads to a potentially dangerous situation in which the quality of genetic testing is not consistently assured. PMID:22739339
NASA Astrophysics Data System (ADS)
Zhang, Rui; Yao, Yi-bin; Hu, Yue-ming; Song, Wei-wei
2017-12-01
The Global Navigation Satellite System presents a plausible and cost-effective way of computing the total electron content (TEC). But TEC estimated value could be seriously affected by the differential code biases (DCB) of frequency-dependent satellites and receivers. Unlike GPS and other satellite systems, GLONASS adopts a frequency-division multiplexing access mode to distinguish different satellites. This strategy leads to different wavelengths and inter-frequency biases (IFBs) for both pseudo-range and carrier phase observations, whose impacts are rarely considered in ionospheric modeling. We obtained observations from four groups of co-stations to analyze the characteristics of the GLONASS receiver P1P2 pseudo-range IFB with a double-difference method. The results showed that the GLONASS P1P2 pseudo-range IFB remained stable for a period of time and could catch up to several meters, which cannot be absorbed by the receiver DCB during ionospheric modeling. Given the characteristics of the GLONASS P1P2 pseudo-range IFB, we proposed a two-step ionosphere modeling method with the priori IFB information. The experimental analysis showed that the new algorithm can effectively eliminate the adverse effects on ionospheric model and hardware delay parameters estimation in different space environments. During high solar activity period, compared to the traditional GPS + GLONASS modeling algorithm, the absolute average deviation of TEC decreased from 2.17 to 2.07 TECu (TEC unit); simultaneously, the average RMS of GPS satellite DCB decreased from 0.225 to 0.219 ns, and the average deviation of GLONASS satellite DCB decreased from 0.253 to 0.113 ns with a great improvement in over 55%.
In Vitro Modeling of Repetitive Motion Injury and Myofascial Release
Meltzer, Kate R.; Cao, Thanh V.; Schad, Joseph F.; King, Hollis; Stoll, Scott T.; Standley, Paul R.
2010-01-01
Objective In this study we modeled repetitive motion strain (RMS) and myofascial release (MFR) in vitro to investigate possible cellular and molecular mechanisms to potentially explain the immediate clinical outcomes associated with RMS and MFR. Method Cultured human fibroblasts were strained with 8 hours RMS, 60 seconds MFR and combined treatment; RMS+MFR. Fibroblasts were immediately sampled upon cessation of strain and evaluated for cell morphology, cytokine secretions, proliferation, apoptosis, and potential changes to intracellular signaling molecules. Results RMS induced fibroblast elongation of lameopodia, cellular decentralization, reduction of cell to cell contact and significant decreases in cell area to perimeter ratios compared to all other experimental groups (p<0.0001). Cellular proliferation indicated no change among any treatment group; however RMS resulted in a significant increase in apoptosis rate (p<0.05) along with increases in death-associated protein kinase (DAPK) and focal adhesion kinase (FAK) phosphorylation by 74% and 58% respectively, when compared to control. These responses were not observed in the MFR and RMS+MFR group. Of the twenty cytokines measured there was a significant increase in GRO secretion in the RMS+MFR group when compared to control and MFR alone. Conclusion Our modeled injury (RMS) appropriately displayed enhanced apoptosis activity and loss of intercellular integrity that is consistent with pro-apoptotic DAPK2 and FAK signaling. Treatment with MFR following RMS resulted in normalization in apoptotic rate and cell morphology both consistent with changes observed in DAPK2. These in vitro studies build upon the cellular evidence base needed to fully explain clinical efficacy of manual manipulative therapies. PMID:20226363
NASA Technical Reports Server (NTRS)
Spaul, W. A.
1983-01-01
Determination of the effects of exposure to vibration on the body's ability to handle heat stress, and, if so, identification of the specific vibration parameters (frequency and intensity) for both whole-body (wbv) and segmental-body vibration (sbv) that would have the most detrimental effect on the body's ability to maintain thermal homeostasis were studied. Rectal and skin temperatures, heart rates, localized sweat rates, arm-segment blood perfusion rates, respiration rates, oxygen uptakes, and respiratory exchange ratios were measured in six men (22 to 33 yr) during simultaneous exposures to heat and vibration - either wbv or sbv, and during a heated 50 min recovery period. The heat conditions were T (sub db) = 43.5 + or - 0.5 C (mean + or S.E.M.), and RH = 20 + or - 4%. All vibration exposures were divided into two exposure conditions - identical frequencies but at a high intensity (HI) and a low intensity (LI) level. The HI wbv exposure was for 25 min/day at 5 Hz, 0.37 g-rms; 10 Hz, 0.46 g-rms; 16 Hz, 0.72 g-rms; 30 Hz, 1.40 g-rms; 80 Hz, 3.70 g-rms. The LI wbv exposure was for 2.5 hr/day at the same frequencies but at the following accelerations: 0.14 g-rms; 0.18 g-rms; 0.28 g-rms; 0.55 g-rms; 1.44 g-rms. During the sbv the subject stood and grasped a vibrating, in the Z-axis, hand grip with both hands.
Molecular dynamics study of di-CF4 based reverse micelles in supercritical CO2.
Liu, Bing; Tang, Xinpeng; Fang, Wenjing; Li, Xiaoqi; Zhang, Jun; Zhang, Zhiliang; Shen, Yue; Yan, Youguo; Sun, Xiaoli; He, Jianying
2016-10-26
Reverse micelles (RMs) in supercritical CO 2 (scCO 2 ) are promising alternatives for organic solvents, especially when both polar and non-polar components are involved. Fluorinated surfactants, particularly double-chain fluorocarbon surfactants, are able to form well-structured RMs in scCO 2 . The inherent self-assembly mechanisms of surfactants in scCO 2 are still subject to discussion. In this study, molecular dynamics simulations are performed to investigate the self-aggregation behavior of di-CF4 based RMs in scCO 2 , and stable and spherical RMs are formed. The dynamics process and the self-assembly structure in the RMs reveal a three-step mechanism to form the RMs, that is, small RMs, rod-like RMs and fusion of the rod-like RMs. Hydrogen-bonds between headgroups and water molecules, and salt bridges linking Na + ions, headgroups and water molecules enhance the interfacial packing efficiency of the surfactant. The results show that di-CF4 molecules have a high surfactant coverage at the RM interface, implying a high CO 2 -philicity. This mainly results from bending of the short chain (C-COO-CH 2 -(CF2) 3 -CF3) due to the flexible carboxyl group. The microscopic insight provided in this study is helpful in understanding surfactant self-assembly phenomena and designing new CO 2 -philic surfactants.
Pursuit gain and saccadic intrusions in first-degree relatives of probands with schizophrenia.
Clementz, B A; Sweeney, J A; Hirt, M; Haas, G
1990-11-01
Oculomotor functioning of 26 probands with schizophrenia, 12 spectrum and 46 nonspectrum first-degree relatives, and 38 nonpsychiatric control subjects was evaluated. Spectrum relatives had more anticipatory saccades (ASs) and lower pursuit gain than nonspectrum relatives, who had more ASs and lower pursuit gain than control subjects. Probands also had lower pursuit gain than nonspectrum relatives and control subjects but did not differ from other groups on AS frequency. Control subjects had more globally accurate pursuit tracking (root mean square [RMS] error deviation) than both relative groups, whereas probands had the poorest RMS scores. Square wave jerk frequency did not differentiate the groups. Attention enhancement affected the frequency of ASs but did not affect either the other intrusive saccadic event or RMS scores. These results offer evidence that eye-movement dysfunction may serve as a biological marker for schizophrenia.
Principles of signal conditioning.
Finkel, A; Bookman, R
2001-05-01
It is rare for biological, physiological, chemical, electrical, or physical signals to be measured in the appropriate format for recording and interpretation. Usually, a signal must be conditioned to optimize it for both of these functions. This overview describes the fundamentals of signal filtering, how to prepare signals for A/D conversion, signal averaging to increase the signal-to-noise ratio, line frequency pickup (hum), peak-to-peak and rms noise measurements, blanking, audio monitoring, testing of electrodes and the common-mode rejection ratio.
Astronaut Terry J. Hart in training session RMS for STS-2 bldg 29
NASA Technical Reports Server (NTRS)
1981-01-01
Astronaut Terry J. Hart in training session with the Remote Manipulator System (RMS) for STS-2 bldg 29. Views show Truly working at the command console while watching out the windows. Karen Ehlers, an RMS procedures specialist, can be seen at left side of frame while Astronaut Sally Ride waits on right for her time at the RMS.
Astronauts Sally Ride and Terry Hart prepare for RMS training for STS-2
1981-07-17
Astronauts Sally Ride and Terry Hart prepare for remote manipulator system (RMS) training for STS-2 in bldg 9A. Views include Ride, Hart and Robert R. Kain of the Flight Activites Branch reviewing procedures for RMS training (34262); Ride and Hart stand beside the RMS control center looking down at the payload bay mock-up (34263).
Chen, Chunyi; Yang, Huamin
2017-11-01
The root-mean-square (RMS) bandwidth of temporal light-flux fluctuations is formulated for both plane and spherical waves propagating in the turbulent atmosphere with location-dependent transverse wind. Two path weighting functions characterizing the joint contributions of turbulent eddies and transverse winds at various locations toward the RMS bandwidth are derived. Based on the developed formulations, the roles of variations in both the direction and magnitude of transverse wind velocity with locations over a path on the RMS bandwidth are elucidated. For propagation paths between ground and space, comparisons of the RMS bandwidth computed based on the Bufton wind profile with that calculated by assuming a nominal constant transverse wind velocity are made to exemplify the effect that location dependence of transverse wind velocity has on the RMS bandwidth. Moreover, an expression for the weighted RMS transverse wind velocity has been derived, which can be used as a nominal constant transverse wind velocity over a path for accurately determining the RMS bandwidth.
NASA Astrophysics Data System (ADS)
Voss, K. J.; Morel, A.; Antoine, D.
2007-06-01
The radiance viewed from the ocean depends on the illumination and viewing geometry along with the water properties and this variation is called the bidirectional effect, or BRDF of the water. This BRDF depends on the inherent optical properties of the water, including the volume scattering function, and is important when comparing data from different satellite sensors. The current model by Morel et al. (2002) depends on modeled water parameters, thus must be carefully validated. In this paper we combined upwelling radiance distribution data from several cruises, in varied water types and with a wide range of solar zenith angles. We found that the average error of the model, when compared to the data was less than 1%, while the RMS difference between the model and data was on the order of 0.02-0.03. This is well within the statistical noise of the data, which was on the order of 0.04-0.05, due to environmental noise sources such as wave focusing.
Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects.
Yang, Huizhen; Soloviev, Oleg; Verhaegen, Michel
2015-09-21
A model-based wavefront sensorless (WFSless) adaptive optics (AO) system with a 61-element deformable mirror is simulated to correct the imaging of a turbulence-degraded extended object. A fast closed-loop control algorithm, which is based on the linear relation between the mean square of the aberration gradients and the second moment of the image intensity distribution, is used to generate the control signals for the actuators of the deformable mirror (DM). The restoration capability and the convergence rate of the AO system are investigated with different turbulence strength wave-front aberrations. Simulation results show the model-based WFSless AO system can restore those images degraded by different turbulence strengths successfully and obtain the correction very close to the achievable capability of the given DM. Compared with the ideal correction of 61-element DM, the averaged relative error of RMS value is 6%. The convergence rate of AO system is independent of the turbulence strength and only depends on the number of actuators of DM.
Structural, morphological and optical studies of ripple-structured ZnO thin films
NASA Astrophysics Data System (ADS)
Navin, Kumar; Kurchania, Rajnish
2015-11-01
Ripple-structured ZnO thin films were prepared on Si (100) substrate by sol-gel spin-coating method with different heating rates during preheating process and finally sintered at 500 °C for 2 h in ambient condition. The structural, morphological and photoluminescence (PL) properties of the nanostructured films were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and PL spectroscopy. XRD analysis revealed that films have hexagonal wurtzite structure and texture coefficient increases along (002) plane with preheating rate. The faster heating rate produced higher crystallization and larger average crystallite size. The AFM and SEM images indicate that all the films have uniformly distributed ripple structure with skeletal branches. The number of ripples increases, while the rms roughness, amplitude and correlation length of the ripple structure decrease with preheating rates. The PL spectra show the presence of different defects in the structure. The ultraviolet emission improved with the heating rate which indicates its better crystallinity.
Analytical formulation of selected activities of the remote manipulator system
NASA Technical Reports Server (NTRS)
Zimmerman, K. J.
1977-01-01
Existing analysis of Orbiter-RMS-Payload kinematics were surveyed, including equations dealing with the two body kinematics in the presence of a massless RMS and compares analytical explicit solutions with numerical solutions. For the following operational phases of the RMS numerical demonstration, problems are provided: (1) payload capture; (2) payload stowage and removal from cargo bay; and (3) payload deployment. The equation of motion provided accounted for RMS control forces and torque moments and could be extended to RMS flexibility and control loop simulation without increasing the degrees of freedom of the two body system.
Astronaut Richard H. Truly in training session RMS for STS-2 bldg 9A
NASA Technical Reports Server (NTRS)
1981-01-01
Astronaut Richard H. Truly in training session with the Remote Manipulator System (RMS) for STS-2 bldg 9A. Views show Truly working at the command console while watching out the windows. Karen Ehlers, an RMS procedures specialist, can be seen at left side of frame (34314); view from behind Truly as he trains at the RMS console (34315).
Re-emergent tremor in Parkinson's disease: Clinical and accelerometric properties.
Aytürk, Zübeyde; Yilmaz, Rezzak; Akbostanci, M Cenk
2017-03-01
Re-emergent tremor (RET) and the classical parkinsonian rest tremor were considered as two different phenomena of the same central tremor circuit. However, clinical and accelerometric characteristics of these tremors were not previously compared in a single study. We evaluated disease characteristics and accelerometric measurements of two tremor types in 42 patients with Parkinson's disease. Disease specific features and accelerometric measurements of peak frequency, amplitude at peak frequency and the root mean square (RMS) amplitude of two tremor types were compared. Eighteen patients had RET and the mean latency of the RET was 9.48 (±9.2)s. Groups of only rest tremor and RET did not differ significantly in age of disease onset, disease duration and severity and mean levodopa equivalent dose. Comparison of peak frequency and amplitude at peak frequency were not different between the groups, but RMS amplitude was significantly higher in the RET group (p=0.03). RMS amplitude of RET was also correlated with disease severity (r=.48, p=0.04). These results support the previous notion that rest tremor and RET are analogue, both are triggered by the same central ossilator with RET being only the suppression of the rest tremor due to arm repositioning. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rawat, Kishan Singh; Sehgal, Vinay Kumar; Pradhan, Sanatan; Ray, Shibendu S.
2018-03-01
We have estimated soil moisture (SM) by using circular horizontal polarization backscattering coefficient (σ o_{RH}), differences of circular vertical and horizontal σ o (σ o_{RV} {-} σ o_{RH}) from FRS-1 data of Radar Imaging Satellite (RISAT-1) and surface roughness in terms of RMS height ({RMS}_{height}). We examined the performance of FRS-1 in retrieving SM under wheat crop at tillering stage. Results revealed that it is possible to develop a good semi-empirical model (SEM) to estimate SM of the upper soil layer using RISAT-1 SAR data rather than using existing empirical model based on only single parameter, i.e., σ o. Near surface SM measurements were related to σ o_{RH}, σ o_{RV} {-} σ o_{RH} derived using 5.35 GHz (C-band) image of RISAT-1 and {RMS}_{height}. The roughness component derived in terms of {RMS}_{height} showed a good positive correlation with σ o_{RV} {-} σ o_{RH} (R2 = 0.65). By considering all the major influencing factors (σ o_{RH}, σ o_{RV} {-} σ o_{RH}, and {RMS}_{height}), an SEM was developed where SM (volumetric) predicted values depend on σ o_{RH}, σ o_{RV} {-} σ o_{RH}, and {RMS}_{height}. This SEM showed R2 of 0.87 and adjusted R2 of 0.85, multiple R=0.94 and with standard error of 0.05 at 95% confidence level. Validation of the SM derived from semi-empirical model with observed measurement ({SM}_{Observed}) showed root mean square error (RMSE) = 0.06, relative-RMSE (R-RMSE) = 0.18, mean absolute error (MAE) = 0.04, normalized RMSE (NRMSE) = 0.17, Nash-Sutcliffe efficiency (NSE) = 0.91 ({≈ } 1), index of agreement (d) = 1, coefficient of determination (R2) = 0.87, mean bias error (MBE) = 0.04, standard error of estimate (SEE) = 0.10, volume error (VE) = 0.15, variance of the distribution of differences ({S}d2) = 0.004. The developed SEM showed better performance in estimating SM than Topp empirical model which is based only on σ o. By using the developed SEM, top soil SM can be estimated with low mean absolute percent error (MAPE) = 1.39 and can be used for operational applications.
Kephart, Julie J.G.; Tiller, Rosanne G.J.; Crose, Lisa E.S.; Slemmons, Katherine K.; Chen, Po-Han; Hinson, Ashley R.; Bentley, Rex C.; Chi, Jen-Tsan Ashley; Linardic, Corinne M.
2015-01-01
Purpose Rhabdomyosarcoma is a soft tissue sarcoma associated with the skeletal muscle lineage. Of the two predominant subtypes, known as embryonal (eRMS) and alveolar (aRMS), aRMS has the poorer prognosis, with a 5-year survival rate of <50%. The majority of aRMS tumors express the fusion protein PAX3-FOXO1. As PAX3-FOXO1 has proven chemically intractable, the current study aims to identify targetable proteins that are downstream from or cooperate with PAX3-FOXO1 to support tumorigenesis. Experimental Design Microarray analysis of the transcriptomes of human skeletal muscle myoblasts expressing PAX3-FOXO1 revealed alteration of several Wnt pathway gene members, including secreted frizzled related protein 3 (SFRP3), a secreted Wnt pathway inhibitor. Loss-of-function using shRNAs against SFRP3 were used to interrogate the role of SFRP3 in human aRMS cell lines in vitro and conditional murine xenograft systems in vivo. The combination of SFRP3 genetic suppression and the chemotherapeutic agent vincristine was also examined. Results In vitro, suppression of SFRP3 inhibited aRMS cell growth, reduced proliferation accompanied by a G1 arrest and induction of p21, and induced apoptosis. In vivo, doxycycline-inducible suppression of SFRP3 reduced aRMS tumor growth and weight by more than three-fold, in addition to increasing myogenic differentiation and β-catenin signaling. The combination of SFRP3 suppression and vincristine was more effective at reducing aRMS cell growth in vitro than either treatment alone, and ablated tumorigenesis in vivo. Conclusions SFRP3 is necessary for the growth of human aRMS cells both in vitro and in vivo and is a promising new target for investigation in aRMS. PMID:26071485
Mars Exploration Rover Landing Site Hectometer Slopes
NASA Astrophysics Data System (ADS)
Haldemann, A. F.; Anderson, F. S.
2002-12-01
The Mars Exploration Rover (MER) airbag landing system imposes a maximum slope of 5 degrees over 100 m length-scales. This limit avoids dangerous changes in elevation over the horizontal travel distance of the lander on its parachute between the time of the last radar altimeter detection of the surface and the time the retro-rockets fire and the bridle to the airbags is cut. Stereo imagery from the MGS MOC can provide information at this length scale, but MOC stereo coverage is sparse, even when targeted to MER landing sites. Additionally, MGS spacecraft stability issues affect the DEMs at precisely the hectometric length-scale1. The MOLA instrument provides global coverage pulse-width measurements2 over a single MOLA-pulse footprint, which is about 100 m in diameter. However, the pulse spread only provides an upper bound on the 100 m slope. We chose another approach. We sample the inter-pulse root-mean-square (RMS) height deviations for MOLA track segments restricted to pixels of 0.1 deg latitude by 0.1 deg longitude. Then, under the assumption of self-affine topography, we determine the scale-dependence of the RMS deviations and extrapolate that behavior over the range of 300 m to 1.2 km downward to the 100 m scale. Shepard et al.3 clearly summarize the statistical properties of the RMS deviation (noting that it also goes by the name structure function, variogram or Allan deviation), and we follow their nomenclature. The RMS deviation is a useful measure in that it can be directly converted to RMS-slope for a given length-scale. We map the results of this self-affine extrapolation method for each of the proposed MER landing sites as well as Viking Lander 1 (VL1) and Pathfiner (MPF). In order of decreasing average hectometer RMS-slopes, Melas (about 4.5 degrees) > Elysium EP80 > Gusev > MPF > Elysium EP78 > VL1 > Athabasca > Isidis > Hematite (about 1 degree). We also map the scaling parameter (Hurst exponent); its behavior in the MER landing site regions is interesting in how it ties together the regional behavior of kilometer slopes (directly measured with MOLA) with the decameter and meter slopes (locally derived from stereo image analysis or radar scattering). 1Kirk, R. L., E. Howington-Kraus, and B. A. Archinal, Int. Arch. Photogramm. Remote Sens., XXVIII(B4), 476 (CD-ROM), 2001; Kirk, R. L., E. Howington-Kraus, and B. A. Archinal, Lunar Planet Sci., XXXIII, abs 1988, 2002. 2Garvin, J. B., and J. J. Frawley, Lunar Planet. Sci., XXXI, abs 1884, 2000. 3Shepard, M. K., R. A. Brackett, and R. E. Arvidson, J. Geophys. Res., 100, 11709-11718, 1995.; Shepard, M. K., et al., J. Geophys. Res., 106, 32777-32796, 2001.
Metrology for Industry for use in the Manufacture of Grazing Incidence Beam Line Mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metz, James P.; Parks, Robert E.
2014-12-01
The goal of this SBIR was to determine the slope sensitivity of Specular Reflection Deflectometry (SRD) and whether shearing methods had the sensitivity to be able to separate errors in the test equipment from slope error in the unit under test (UUT), or mirror. After many variations of test parameters it does not appear that SRD yields results much better than 1 μ radian RMS independent of how much averaging is done. Of course, a single number slope sensitivity over the full range of spatial scales is not a very insightful number in the same sense as a single numbermore » phase or height RMS value in interferometry does not tell the full story. However, the 1 μ radian RMS number is meaningful when contrasted with a sensitivity goal of better than 0.1 μ radian RMS. Shearing is a time proven method of separating the errors in a measurement from the actual shape of a UUT. It is accomplished by taking multiple measurements while moving the UUT relative to the test instrument. This process makes it possible to separate the two errors sources but only to a sensitivity of about 1 μ radian RMS. Another aspect of our conclusions is that this limit probably holds largely independent of the spatial scale of the test equipment. In the proposal for this work it was suggested that a test screen the full size of the UUT could be used to determine the slopes on scales of maybe 0.01 to full scale of the UUT while smaller screens and shorter focal length lenses could be used to measure shorter, or smaller, patches of slope. What we failed to take into consideration was that as the scale of the test equipment got smaller so too did the optical lever arm on which the slope was calculated. Although we did not do a test with a shorter focal length lens over a smaller sample area it is hard to argue with the logic that the slope sensitivity will be about the same independent of the spatial scale of the measurement assuming the test equipment is similarly scaled. On a more positive note, SRD does appear to be a highly flexible, easy to implement, rather inexpensive test for free form optics that require a dynamic range that exceeds that of interferometry. These optics are quite often specified to have more relaxed slope errors, on the order of 1 μ radian RMS or greater. It would be shortsighted to not recognize the value of this test method in the bigger picture.« less
Applegate, Raymond A.; Donnelly, William J.; Marsack, Jason D.; Koenig, Darren E.; Pesudovs, Konrad
2007-01-01
We report root-mean-square (RMS) wavefront error (WFE) for individual aberrations and cumulative high-order (HO) RMS WFE for the normal human eye as a function of age by decade and pupil diameter in 1 mm steps from 3 to 7 mm and determine the relationship among HO RMS WFE, mean age for each decade of life, and luminance for physiologic pupil diameters. Subjects included 146 healthy individuals from 20 to 80 years of age. Ocular aberration was measured on the preferred eye of each subject (for a total of 146 eyes through dilated pupils; computed for 3, 4, 5, 6, and 7 mm pupils; and described with a tenth-radial-order normalized Zernike expansion. We found that HO RMS WFE increases faster with increasing pupil diameter for any given age and pupil diameter than it does with increasing age alone. A planar function accounts for 99% of the variance in the 3-D space defined by mean log HO RMS WFE, mean age for each decade of life, and pupil diameter. When physiologic pupil diameters are used to estimate HO RMS WFE as a function of luminance and age, at low luminance (9 cd/m2) HO RMS WFE decreases with increasing age. This normative data set details (1) the 3-D relationship between HO RMS WFE and age for fixed pupil diameters and (2) the 3-D relationship among HO RMS WFE, age, and luminance for physiologic pupil diameters. PMID:17301847
RMS active damping augmentation
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.; Scott, Michael A.; Demeo, Martha E.
1992-01-01
The topics are presented in viewgraph form and include: RMS active damping augmentation; potential space station assembly benefits to CSI; LaRC/JSC bridge program; control law design process; draper RMS simulator; MIMO acceleration control laws improve damping; potential load reduction benefit; DRS modified to model distributed accelerations; accelerometer location; Space Shuttle aft cockpit simulator; simulated shuttle video displays; SES test goals and objectives; and SES modifications to support RMS active damping augmentation.
N2/O2/H2 Dual-Pump Cars: Validation Experiments
NASA Technical Reports Server (NTRS)
OByrne, S.; Danehy, P. M.; Cutler, A. D.
2003-01-01
The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method is used to measure temperature and the relative species densities of N2, O2 and H2 in two experiments. Average values and root-mean-square (RMS) deviations are determined. Mean temperature measurements in a furnace containing air between 300 and 1800 K agreed with thermocouple measurements within 26 K on average, while mean mole fractions agree to within 1.6 % of the expected value. The temperature measurement standard deviation averaged 64 K while the standard deviation of the species mole fractions averaged 7.8% for O2 and 3.8% for N2, based on 200 single-shot measurements. Preliminary measurements have also been performed in a flat-flame burner for fuel-lean and fuel-rich flames. Temperature standard deviations of 77 K were measured, and the ratios of H2 to N2 and O2 to N2 respectively had standard deviations from the mean value of 12.3% and 10% of the measured ratio.
Motterlini, Roberto; Sawle, Philip; Hammad, Jehad; Mann, Brian E; Johnson, Tony R; Green, Colin J; Foresti, Roberta
2013-02-01
Carbon monoxide-releasing molecules (CO-RMs) are a class of organometallo carbonyl complexes capable of delivering controlled quantities of CO gas to cells and tissues thus exerting a broad spectrum of pharmacological effects. Here we report on the chemical synthesis, CO releasing properties, cytotoxicity profile and pharmacological activities of four novel structurally related iron-allyl carbonyls. The major difference among the new CO-RMs tested was that three compounds (CORM-307, CORM-308 and CORM-314) were soluble in dimethylsulfoxide (DMSO), whereas a fourth one (CORM-319) was rendered water-soluble by reacting the iron-carbonyl with hydrogen tetrafluoroborate. We found that despite the fact all compounds liberated CO, CO-RMs soluble in DMSO caused a more pronounced toxic effect both in vascular and inflammatory cells as well as in isolated vessels. More specifically, iron carbonyls soluble in DMSO released CO with a fast kinetic and displayed a marked cytotoxic effect in smooth muscle cells and RAW 247.6 macrophages despite exerting a rapid and pronounced vasorelaxation ex vivo. In contrast, CORM-319 that is soluble in water and liberated CO with a slower rate, preserved smooth muscle cell viability, relaxed aortic tissue and exerted a significant anti-inflammatory effect in macrophages challenged with endotoxin. These data suggest that iron carbonyls can be used as scaffolds for the design and synthesis of pharmacologically active CO-RMs and indicate that increasing water solubility and controlling the rate of CO release are important parameters for limiting their potential toxic effects. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhou, S; Williams, C; Ionascu, D
2016-06-15
Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived weremore » compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc, Palo Alto, CA.« less
NASA Astrophysics Data System (ADS)
Voss, K. J.; Morel, A.; Antoine, D.
2007-09-01
The radiance viewed from the ocean depends on the illumination and viewing geometry along with the water properties, and this variation is called the bidirectional effect. This bidirectional effect depends on the inherent optical properties of the water, including the volume scattering function, and is important when comparing data from different satellite sensors. The current model of f/Q, which contains the bidirectional effect, by Morel et al. (2002) depends on modeled, not measured, water parameters, thus must be carefully validated. In this paper we combined upwelling radiance distribution data from several cruises, in varied water types and with a wide range of solar zenith angles. We compared modeled and measured Lview/Lnadir and found that the average difference between the model and data was less than 0.01, while the RMS difference between the model and data was on the order of 0.02-0.03. This is well within the statistical noise of the data, which was on the order of 0.04-0.05, due to environmental noise sources such as wave focusing.
Topical meeting on optical interference coatings (OIC'2001): manufacturing problem.
Dobrowolski, J A; Browning, Stephen; Jacobson, Michael; Nadal, Maria
2002-06-01
Measurements are presented of the experimental filters submitted to the first optical thin-film manufacturing problem posed in conjunction with the Topical Meeting on Optical Interference Coatings, in which the object was to produce multilayers with spectral transmittance and reflectance curves that were as close as possible to the target values that were specified in the 400- to 600-nm spectral region. No limit was set on the overall thickness of the solutions or the number of layers used in their construction. The participants were free to use the coating materials of their choice. Six different groups submitted a total of 11 different filters for evaluation. Three different physical vapor deposition processes were used for the manufacture of the coatings: magnetron sputtering, ion-beam sputtering, and plasma-ion-assisted, electron-beam gun evaporation. The solutions ranged in metric thickness from 758 to 4226 nm and consisted of between 8 and 27 layers. For all but two of the samples submitted, the average rms departure of the measured transmittances and reflectances from the target values in the spectral region of interest was between 0.98% and 1.55%.
Seismic Modeling of the Alasehir Graben, Western Turkey
NASA Astrophysics Data System (ADS)
Gozde Okut, Nigar; Demirbag, Emin
2014-05-01
The purpose of this study is to develop a depth model to make synthetic seismic reflection sections, such as stacked and migrated sections with different velocity models. The study area is east-west trending Alasehir graben which is one of the most prominent structure in the western Anatolia, proved to have geothermal energy potential by researchers and exploration companies. Geological formations were taken from Alaşehir-1 borehole drilled by Turkish Petroleum Corporation (Çiftçi, 2007) and seismic interval velocities were taken from check-shots in the same borehole (Kolenoǧlu-Demircioǧlu, 2009). The most important structure is the master graben bounding fault (MGBF) in the southern margin of the Alasehir graben. Another main structure is the northern bounding fault called the antithetic fault of the MGBF with high angle normal fault characteristic. MGBF is a crucial contact between sedimentary cover and the metamorphic basement. From basement to the surface, five different stratigraphic units constitute graben fill . All the sedimentary units thicknesses get thinner from the southern margin to the northern margin of the Alasehir graben displaying roll-over geometry. A commercial seismic data software was used during modeling. In the first step, a 2D velocity/depth model was defined. Ray tracing was carried out with diffraction option to produce the reflection travel times. The reflection coefficients were calculated and wavelet shaping was carried out by means of band-pass filtering. Finally synthetic stacked section of the Alasehir graben was obtained. Then, migrated sections were generated with different velocity models. From interval velocities, average and RMS velocities were calculated for the formation entires to test how the general features of the geological model may change against different seismic models after the migration. Post-stack time migration method was used. Pseudo-velocity analysis was applied at selected CDP locations. In theory, seismic migration moves events to their correct spatial locations and collapse energy from diffractions back to their scattering points. This features of migration can be distinguished in the migrated sections. When interval velocities used, all the diffractions are removed and fault planes can be seen clearly. When average velocities used, MGBF plane extends to greater depths. Additionally, slope angles and locations of antithetic faults in the northern margin of the graben changes. When RMS velocities used, a migrated section was obtained for which to make an interpretation was quite hard, especially for the main structures along the northern margin and reflections related to formations.
Dias, P.; Kumar, P.; Marsden, H. B.; Morris-Jones, P. H.; Birch, J.; Swindell, R.; Kumar, S.
1987-01-01
The diagnostic and prognostic relevance of desmin expression in 80 rhabdomyosarcomas (RMS) and 5 embryonal sarcomas (ES) was examined using a peroxidase anti-peroxidase staining procedure. Fifty-nine RMS but only one ES stained for desmin (P less than 0.05). The maximum percentage of desmin containing cells was 49 in RMS compared with only 1% in ES. Desmin positivity correlated inversely with survival (P less than 0.02) in that RMS with high proportions of desmin positive cells were associated with poorer prognoses than those containing fewer desmin positive cells. If the degree of expression of desmin is related to myogenic differentiation, then our results indicate that poorly differentiated RMS tend to have a better prognosis than the well differentiated tumours. One possible explanation is that the poorly differentiated RMS respond better to chemotherapy than to well differentiated RMS. A multivariant analysis incorporating desmin staining, treatment, histology, age and gender revealed that the two most significant independent prognostic factors were treatment and histology. Images Figure 1 PMID:3311112
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, B; Miften, M
2014-06-15
Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed a method using these projections to determine the trajectory and dose of highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, where the trajectory mimicked a lung tumor with high amplitude (2.4 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each projection. A Gaussian probability density function for tumor position was calculated which best fit the observed trajectory ofmore » the BB in the imager geometry. Two methods to improve the accuracy of tumor track reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation, and second, using the Monte Carlo method to sample the estimated Gaussian tumor position distribution. 15 clinically-drawn abdominal/lung CTV volumes were used to evaluate the accuracy of the proposed methods by comparing the known and calculated BB trajectories. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square (RMS) trajectory errors were lower than 5% of marker amplitude. Use of respiratory phase information decreased RMS errors by 30%, and decreased the fraction of large errors (>3 mm) by half. Mean dose to the clinical volumes was calculated with an average error of 0.1% and average absolute error of 0.3%. Dosimetric parameters D90/D95 were determined within 0.5% of maximum dose. Monte-Carlo sampling increased RMS trajectory and dosimetric errors slightly, but prevented over-estimation of dose in trajectories with high noise. Conclusions: Tumor trajectory and dose-of-the-day were accurately calculated using CBCT projections. This technique provides a widely-available method to evaluate highly-mobile tumors, and could facilitate better strategies to mitigate or compensate for motion during SBRT.« less
Odella, Emmanuel; Falcone, R Darío; Ceolín, Marcelo; Silber, Juana J; Correa, N Mariano
2018-04-19
The most critical problem regarding the use of reverse micelles (RMs) in several fields is the toxicity of their partial components. In this sense, many efforts have been made to characterize nontoxic RM formulations on the basis of biological amphiphiles and/or different oils. In this contribution, the microstructure of biocompatible mixed RMs formulated by sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) and tri- n-octylphosphine oxide (TOPO) surfactants dispersed in the friendly solvent methyl laurate was studied by using SAXS and 31 P NMR and by following the solvatochromic behavior of the molecular probe 4-aminophthalimide (4-AP). The results indicated the presence of RM aggregates upon TOPO incorporation with a droplet size reduction and an increase in the interfacial fluidity in comparison with pure AOT RMs. When confined inside the mixed systems, 4-AP showed a red-edge excitation shift and confirmed the increment of interfacial fluidity upon TOPO addition. Also, the partition between the external nonpolar solvent and the RM interface and an increase in both the local micropolarity and the capability to form a hydrogen bond interaction between 4-AP and a mixed interface were observed. The findings have been explained in terms of the nonionic surfactant structure and its complexing nature expressed at the interfacial level. Notably, we show how two different approaches, i.e., SAXS and the solvatochromism of the probe 4-AP, can be used in a complementary way to enhance our understanding of the interfacial fluidity of RMs, a parameter that is difficult to measure directly.
Orendáčová, Judita; Orendáč, Martin; Mojžiš, Miroslav; Labun, Ján; Martončíková, Marcela; Saganová, Kamila; Lievajová, Kamila; Blaško, Juraj; Abdiová, Henrieta; Gálik, Ján; Račeková, Eniko
2011-11-01
The immediate effects of whole body electromagnetic radiation (EMR) were used to study postnatal neurogenesis in the subventricular zone (SVZ) and rostral migratory stream (RMS) of Wistar rats of both sexes. Newborn postnatal day 7 (P7) and young adult rats (P28) were exposed to pulsed electromagnetic fields (EMF) at a frequency of 2.45 GHz and mean power density of 2.8 mW/cm(2) for 2 h. Post-irradiation changes were studied using immunohistochemical localization of Fos and NADPH-d. We found that short-duration exposure induces increased Fos immunoreactivity selectively in cells of the SVZ of P7 and P28 rats. There were no Fos positive cells visible within the RMS of irradiated rats. These findings indicate that some differences exist in prerequisites of proliferating cells between the SVZ and RMS regardless of the age of the rats. Short-duration exposure also caused praecox maturation of NADPH-d positive cells within the RMS of P7 rats. The NADPH-d positive cells appeared several days earlier than in age-matched controls, and their number and morphology showed characteristics of adult rats. On the other hand, in the young adult P28 rats, EMR induced morphological signs typical of early postnatal age. These findings indicate that EMR causes age-related changes in the production of nitric oxide (NO), which may lead to different courses of the proliferation cascade in newborn and young adult neurogenesis. Copyright © 2010 Elsevier GmbH. All rights reserved.
Differences in Muscle Activity between Natural Forefoot and Rearfoot Strikers during Running
Yong, Jennifer R.; Silder, Amy; Delp, Scott L.
2014-01-01
Running research has focused on reducing injuries by changing running technique. One proposed method is to change from rearfoot striking (RFS) to forefoot striking (FFS) because FFS is thought to be a more natural running pattern that may reduce loading and injury risk. Muscle activity affects loading and influences running patterns; however, the differences in muscle activity between natural FFS runners and natural RFS runners are unknown. The purpose of this study was to measure muscle activity in natural FFS runners and natural RFS runners. We tested the hypotheses that tibialis anterior activity would be significantly lower while activity of the plantarflexors would be significantly greater in FFS runners, compared to RFS runners, during late swing phase and early stance phase. Gait kinematics, ground reaction forces and electromyographic patterns of ten muscles were collected from twelve natural RFS runners and ten natural FFS runners. The root mean square (RMS) of each muscle’s activity was calculated during terminal swing phase and early stance phase. We found significantly lower RMS activity in the tibialis anterior in FFS runners during terminal swing phase, compared to RFS runners. In contrast, the medial and lateral gastrocnemius showed significantly greater RMS activity in terminal swing phase in FFS runners. No significant differences were found during early stance phase for the tibialis anterior or the plantarflexors. Recognizing the differences in muscle activity between FFS and RFS runners is an important step toward understanding how foot strike patterns may contribute to different types of injury. PMID:25458201
Empirical parameterization of setup, swash, and runup
Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H.
2006-01-01
Using shoreline water-level time series collected during 10 dynamically diverse field experiments, an empirical parameterization for extreme runup, defined by the 2% exceedence value, has been developed for use on natural beaches over a wide range of conditions. Runup, the height of discrete water-level maxima, depends on two dynamically different processes; time-averaged wave setup and total swash excursion, each of which is parameterized separately. Setup at the shoreline was best parameterized using a dimensional form of the more common Iribarren-based setup expression that includes foreshore beach slope, offshore wave height, and deep-water wavelength. Significant swash can be decomposed into the incident and infragravity frequency bands. Incident swash is also best parameterized using a dimensional form of the Iribarren-based expression. Infragravity swash is best modeled dimensionally using offshore wave height and wavelength and shows no statistically significant linear dependence on either foreshore or surf-zone slope. On infragravity-dominated dissipative beaches, the magnitudes of both setup and swash, modeling both incident and infragravity frequency components together, are dependent only on offshore wave height and wavelength. Statistics of predicted runup averaged over all sites indicate a - 17 cm bias and an rms error of 38 cm: the mean observed runup elevation for all experiments was 144 cm. On intermediate and reflective beaches with complex foreshore topography, the use of an alongshore-averaged beach slope in practical applications of the runup parameterization may result in a relative runup error equal to 51% of the fractional variability between the measured and the averaged slope.
The seasonal cycle of diabatic heat storage in the Pacific Ocean
White, Warren B.; Cayan, D.R.; Niiler, P.P.; Moisan, J.; Lagerloef, G.; Bonjean, F.; Legler, D.
2005-01-01
This study quantifies uncertainties in closing the seasonal cycle of diabatic heat storage (DHS) over the Pacific Ocean from 20??S to 60??N through the synthesis of World Ocean Circulation Experiment (WOCE) reanalysis products from 1993 to 1999. These products are DHS from Scripps Institution of Oceanography (SIO); near-surface geostrophic and Ekman currents from Earth and Space Research (ESR); and air-sea heat fluxes from Comprehensive Ocean-Atmosphere Data Set (COADS), National Centers for Environmental Prediction (NCEP), and European Center for Mid-Range Weather Forecasts (ECMWF). With these products, we compute residual heat budget components by differencing long-term monthly means from the long-term annual mean. This allows the seasonal cycle of the DHS tendency to be modeled. Everywhere latent heat flux residuals dominate sensible heat flux residuals, shortwave heat flux residuals dominate longwave heat flux residuals, and residual Ekman heat advection dominates residual geostrophic heat advection, with residual dissipation significant only in the Kuroshio-Oyashio current extension. The root-mean-square (RMS) of the differences between observed and model residual DHS tendencies (averaged over 10??latitude-by-20??longitude boxes) is <20 W m-2 in the interior ocean and <100 W m-2 in the Kuroshio-Oyashio current extension. This reveals that the residual DHS tendency is driven everywhere by some mix of residual latent heat flux, shortwave heat flux, and Ekman heat advection. Suppressing bias errors in residual air-sea turbulent heat fluxes and Ekman heat advection through minimization of the RMS differences reduces the latter to <10 W m-2 over the interior ocean and <25 W m -2 in the Kuroshio-Oyashio current extension. This reveals air-sea temperature and specific humidity differences from in situ surface marine weather observations to be a principal source of bias error, overestimated over most of ocean but underestimated near the Intertropical Convergence Zone. ?? 2005 Elsevier Ltd. All rights reserved.
Analysis of Time Data in Korean Almanacs of 1913-1945
NASA Astrophysics Data System (ADS)
Lee, Ki-Won
2017-12-01
We analyze the time data recorded in Korean astronomical almanacs for the years from 1913 to 1945, which belong to the period in which Japan occupied Korea (1910-1945). These almanacs, published by Japanese scholars, differ from previous almanacs in terms of organization, content, and calendrical methods. In this study, we first extract twelve kinds of time data from the almanacs at the following times: solar terms, rising and setting of the Sun and Moon, transit of the Sun, phases of the Moon (i.e., new Moon, first quarter Moon, full Moon, and last quarter Moon), and eclipses of the Sun and Moon. Then, we compare the time data with that obtained from modern calculations. Even though all time data in the almanacs are tabulated in units of minutes, we calculate the data in units of seconds and determine the root mean square (RMS) deviation values for each kind of time data to estimate the accuracy of the data. Our findings are as follows: First, the kind and tabulation method of time data changes several times. For instance, solar transit time is listed only for six years from 1937 to 1942. Second, the times of two equinoxes and those of a new Moon are considerably close to midnight. Third, there are some typographical errors in the almanacs, particularly in the times of moonrise and moonset. Fourth, the contact times for lunar eclipses represent the times of the umbra and not of the penumbra, which is different from the times for solar eclipses. Finally, the RMS deviation values are approximately 0.5 min on average in all kinds of time data, even though they show slightly large differences in the times related to the Moon. In conclusion, we believe that this study is useful for investigating the time data in the almanacs of other East Asian countries that were published during the same period, such as China, Japan, and Manchuria.
Ambient beam motion and its excitation by ghost lines in the Tevatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, V.; /Fermilab
2011-03-01
Transverse betatron motion of the Tevatron proton beam is measured and analyzed. It is shown that the motion is coherent and excited by external sources of unknown origins. Observations of the time-varying 'ghost lines' in the betatron spectrum are reported. The direct measurement of the rms betatron oscillations amplitude estimates it at about 110 nm at {beta}{sub y} {approx} 900 m. Correspondingly, at the amplitudes at the average beta function location with {beta}{sub y} {approx} 50 m is about 25 nm. Given that such direct measurements with clearly observable betatron peak were not repeatedly reproducible, one can conclude that wellmore » know 'ghost lines' are the reason for that - as they are come and go without any obvious regularity. Our analysis of these 'ghost lines' shows that (a) besides slow motion across frequencies, they also exhibit oscillatory movements with period varying from 15-20 min to few hours; (b) for the stores analysed, the lines add about factor of 2 to average - over colliding store duration - Schottky power in the betatron bands. The latter allows to estimate that they contribute about half to the previously determined the rms normalized emittance growth rate of some 0.06 {pi} mm mrad/hr. The Tevatron 'ghost lines' look very similar to infamous 'humps' recently observed in the LHC. Those 'humps' are unwanted oscillations seen repeatedly in the LHC beams (mostly in the vertical plane) and also believed to be caused by external excitations.« less
Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2-6.7 µm
NASA Astrophysics Data System (ADS)
Kumar, S. Chaitanya; Casals, J. Canals; Parsa, S.; Zawilski, K. T.; Schunemann, P. G.; Ebrahim-Zadeh, M.
2018-06-01
We report a high-average-power picosecond optical parametric oscillator (OPO) tunable in the mid-infrared (mid-IR) based on CdSiP2 synchronously pumped by an Yb-fiber laser at 80 MHz repetition rate. Successful operation of this high-repetition-rate singly-resonant picosecond OPO has been enabled by the improved CSP crystal quality over a long interaction length. The OPO can be tuned across 1264-1284 nm in the near-IR signal and 6205-6724 nm in the mid-IR idler by temperature tuning the CSP crystal over 39-134 °C. By deploying a 5% output coupler for the resonant signal, we have extracted up to 44 mW of average power in the near-IR and up to 95 mW of non-resonant idler power at 6205 nm at 6.3% total conversion efficiency, with > 50 mW over > 55% of the mid-IR tuning range. We have investigated temperature-tuning characteristics of the OPO and compared the data with the theoretical calculations using the recent Sellmeier and thermo-optic coefficients for CdSiP2. The signal pulses from the OPO exhibit a Gaussian pulse duration of 19 ps centered at 1284 nm. We have also studied the output power stability of the OPO, resulting in a passive stability better than 1.9% rms for the near-IR signal and 2.4% rms for the mid-IR idler, measured over > 17 h, with both beams in high spatial quality.
Gancberg, David; Corbisier, Philippe; Meeus, Nele; Marki-Zay, Janos; Mannhalter, Christine; Schimmel, Heinz
2008-01-01
There is a need for reference materials (RMs) in the field of genetic testing for verification of test results obtained in patients and probands. For the frequent genetic variation G20210A in the prothrombin gene, it has been shown that purified plasmids containing the gene fragment harbouring the mutation constitute good candidate RMs. Plasmid-type RMs were characterised for homogeneity, stability, sequence identity and fitness for purpose. Their certification required the use of different real-time PCR methods for genotyping and quantification of the plasmid copy number. Homogeneity, stability and fitness for the purpose of the plasmids could be demonstrated. The long-term stability (up to 24 months) of the materials was confirmed by highly sensitive and specific quantitative real-time PCR methods. New types of certified RMs (CRMs) for genetic testing of the human prothrombin gene G20210A sequence variant are available. Their fitness for purpose was demonstrated and no evidence was found that they would not work with other methods as long as these are targeting the whole or parts of the prothrombin gene fragment inserted into the plasmids. The described CRMs support the efforts of the international community in development, validation and harmonisation of tests for molecular genetic testing.
McFee, R H
1975-07-01
The effects of random waviness, curvature, and tracking error of plane-mirror heliostats in a rectangular array around a central-receiver solar power system are determined by subdividing each mirror into 484 elements, assuming the slope of each element to be representative of the surface slope average at its location, and summing the contributions of all elements and then of all mirrors in the array. Total received power and flux density distribution are computed for a given sun location and set of array parameter values. Effects of shading and blocking by adjacent mirrors are included in the calculation. Alt-azimuth mounting of the heliostats is assumed. Representative curves for two receiver diameters and two sun locations indicate a power loss of 20% for random waviness, curvature, and tracking error of 0.1 degrees rms, 0.002 m(-1), and 0.5 degrees , 3sigma, respectively, for an 18.2-m diam receiver and 0.3 degrees rms, 0.005 m(-1), and greater than 1 degrees , respectively, for a 30.4-m diam receiver.
NASA Astrophysics Data System (ADS)
Liu, Zhebing; Huntington, Lee M. J.; Nooijen, Marcel
2015-10-01
The recently introduced multireference equation of motion (MR-EOM) approach is combined with a simple treatment of spin-orbit coupling, as implemented in the ORCA program. The resulting multireference equation of motion spin-orbit coupling (MR-EOM-SOC) approach is applied to the first-row transition metal atoms Cr, Mn, Fe and Co, for which experimental data are readily available. Using the MR-EOM-SOC approach, the splittings in each L-S multiplet can be accurately assessed (root mean square (RMS) errors of about 70 cm-1). The RMS errors for J-specific excitation energies range from 414 to 783 cm-1 and are comparable to previously reported J-averaged MR-EOM results using the ACESII program. The MR-EOM approach is highly efficient. A typical MR-EOM calculation of a full spin-orbit spectrum takes about 2 CPU hours on a single processor of a 12-core node, consisting of Intel XEON 2.93 GHz CPUs with 12.3 MB of shared cache memory.
Comparison of horizontal winds from the LIMS satellite instrument with rocket measurements
NASA Technical Reports Server (NTRS)
Smith, A. K.; Bailey, P. L.
1985-01-01
Statistical results are given for a comparison between horizontal geostrophic winds computed from satellite height data and all available in situ rocket wind soundings during a 7-month period. The satellite data are the daily mapped fields from the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) instrument, which extend from 100 to 0.1 mbar. Results indicate that in both the tropics and the extratropical Northern Hemisphere, the average zonal and meridional wind speeds agree to within 2-4 m/s throughout the stratosphere. The rms differences are much larger, with values of 5-10 m/s in the lower stratosphere, increasing to 20-40 m/s in the lower mesosphere. Time series show that LIMS and rocketsonde zonal wind speeds show coherent variations with temporal periods of 1-2 weeks and more, and both exhibit irregular variations on time scales of less than one week.
GAFFE: a gaze-attentive fixation finding engine.
Rajashekar, U; van der Linde, I; Bovik, A C; Cormack, L K
2008-04-01
The ability to automatically detect visually interesting regions in images has many practical applications, especially in the design of active machine vision and automatic visual surveillance systems. Analysis of the statistics of image features at observers' gaze can provide insights into the mechanisms of fixation selection in humans. Using a foveated analysis framework, we studied the statistics of four low-level local image features: luminance, contrast, and bandpass outputs of both luminance and contrast, and discovered that image patches around human fixations had, on average, higher values of each of these features than image patches selected at random. Contrast-bandpass showed the greatest difference between human and random fixations, followed by luminance-bandpass, RMS contrast, and luminance. Using these measurements, we present a new algorithm that selects image regions as likely candidates for fixation. These regions are shown to correlate well with fixations recorded from human observers.
A formal framework of scenario creation and analysis of extreme hydrological events
NASA Astrophysics Data System (ADS)
Lohmann, D.
2007-12-01
We are presenting a formal framework for a hydrological risk analysis. Different measures of risk will be introduced, such as average annual loss or occurrence exceedance probability. These are important measures for e.g. insurance companies to determine the cost of insurance. One key aspect of investigating the potential consequences of extreme hydrological events (floods and draughts) is the creation of meteorological scenarios that reflect realistic spatial and temporal patterns of precipitation that also have correct local statistics. 100,000 years of these meteorological scenarios are used in a calibrated rainfall-runoff-flood-loss-risk model to produce flood and draught events that have never been observed. The results of this hazard model are statistically analyzed and linked to socio-economic data and vulnerability functions to show the impact of severe flood events. We are showing results from the Risk Management Solutions (RMS) Europe Flood Model to introduce this formal framework.
Spectrometric test of a linear array sensor
NASA Technical Reports Server (NTRS)
Brown, Kenneth S.; Kim, Moon S.
1987-01-01
A spectroradiometer which measures spectral reflectivities and irradiance in discrete spectral channels was tested to determine the accuracy of its wavelength calibration. This sensor is a primary tool in the remote sensing investigations conducted on biomass at NASA's Goddard Space Flight Center. Measurements have been collected on crop and forest plants both in the laboratory and field with this radiometer to develop crop identification and plant stress remote sensing techniques. Wavelength calibration is essential for use in referencing the study measurements with those of other investigations and satellite remote sensor data sets. This calibration determines a wavelength vs channel address conversion which was found to have an RMS deviation of approximately half a channel, or 1.5 nm in the range from 360 to 1050 nm. A comparison of these results with those of another test showed an average difference of approximately 4 nm, sufficiently accurate for most investigative work.
Effects of voluntary and automatic control of center of pressure sway during quiet standing.
Ueta, Kozo; Okada, Yohei; Nakano, Hideki; Osumi, Michihiro; Morioka, Shu
2015-01-01
The authors investigated the effects of voluntary and automatic control on the spatial variables (envelope area, maximal amplitude, and root mean square [RMS]) of center of pressure (COP) displacement during quiet standing and identified differences in their postural control strategies (mean velocity [MV], mean power frequency [MPF], and power density). COP data were recorded under relaxed (experimental control), still (voluntary control), and dual (automatic control) conditions. RMS was significantly lower in the still and dual conditions than in the relaxed condition. MV, MPF, and power density were significantly higher in the still condition than in the dual condition. These results indicate that both voluntary and automatic control decrease the spatial variables of COP displacement; however, their postural control strategies are different.
Sankaran, Hari; Danysh, Heather E.; Scheurer, Michael E.; Okcu, M. Fatih; Skapek, Stephen X.; Hawkins, Douglas S.; Spector, Logan G.; Erhardt, Erik B.; Grufferman, Seymour; Lupo, Philip J.
2016-01-01
Background Rhabdomyosarcoma (RMS) is a rare, highly malignant tumor arising from primitive mesenchymal cells that differentiate into skeletal muscle. Relatively little is known about RMS susceptibility. Based on growing evidence regarding the role of early immunologic challenges on RMS development, we evaluated the role of infections and immunizations on this clinically significant pediatric malignancy Procedure RMS cases (n=322) were enrolled from the third trial coordinated by the Intergroup Rhabdomyosarcoma Study Group. Population-based controls (n=322) were pair matched to cases on race, sex, and age. The following immunizations were assessed: diphtheria-pertussis-tetanus (DPT), measles-mumps-rubella (MMR), and oral polio vaccine (OPV). We also evaluated if immunizations were complete vs. incomplete. We examined selected infections including chickenpox, mumps, pneumonia, scarlet fever, rubella, rubeola, pertussis, mononucleosis, and lung infections. Conditional logistic regression models were used to calculate an odds ratio (OR) and 95% confidence interval (CI) for each exposure, adjusted for maternal education and total annual income Results Incomplete immunization schedules (OR=5.30, 95% CI: 2.47-11.33) and incomplete DPT immunization (OR=1.56, 95% CI: 1.06-2.29) were positively associated with childhood RMS. However, infections did not appear to be associated with childhood RMS. Conclusions This is the largest study of RMS to date demonstrating a possible protective effect of immunizations against development of childhood RMS. Further studies are needed to validate our findings. Our findings add to the growing body of literature suggesting a protective role of routine vaccinations in childhood cancer and specifically in childhood RMS. PMID:27198935
Sankaran, Hari; Danysh, Heather E; Scheurer, Michael E; Okcu, M Fatih; Skapek, Stephen X; Hawkins, Douglas S; Spector, Logan G; Erhardt, Erik B; Grufferman, Seymour; Lupo, Philip J
2016-09-01
Rhabdomyosarcoma (RMS) is a rare, highly malignant tumor arising from primitive mesenchymal cells that differentiate into skeletal muscle. Relatively little is known about RMS susceptibility. Based on growing evidence regarding the role of early immunologic challenges on RMS development, we evaluated the role of infections and immunizations on this clinically significant pediatric malignancy. RMS cases (n = 322) were enrolled from the third trial coordinated by the Intergroup Rhabdomyosarcoma Study Group. Population-based controls (n = 322) were pair matched to cases on race, sex, and age. The following immunizations were assessed: diphtheria, pertussis, and tetanus (DPT); measles, mumps, and rubella; and oral polio vaccine. We also evaluated if immunizations were complete versus incomplete. We examined selected infections including chickenpox, mumps, pneumonia, scarlet fever, rubella, rubeola, pertussis, mononucleosis, and lung infections. Conditional logistic regression models were used to calculate an odds ratio (OR) and 95% confidence interval (CI) for each exposure, adjusted for maternal education and total annual income. Incomplete immunization schedules (OR = 5.30, 95% CI: 2.47-11.33) and incomplete DPT immunization (OR = 1.56, 95% CI: 1.06-2.29) were positively associated with childhood RMS. However, infections did not appear to be associated with childhood RMS. This is the largest study of RMS to date demonstrating a possible protective effect of immunizations against the development of childhood RMS. Further studies are needed to validate our findings. Our findings add to the growing body of literature, suggesting a protective role of routine vaccinations in childhood cancer and specifically in childhood RMS. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Scarino, A. J.; Obland, M. D.; Fast, J. D.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Berg, L. K.; Lefer, B.; Haman, C.; Hair, J. W.; Rogers, R. R.; Butler, C.; Cook, A. L.; Harper, D. B.
2013-05-01
The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying characteristics of the planetary boundary layer (PBL). The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid in characterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with other research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML), which is a subset within the PBL. This work illustrates the temporal and spatial variability of the ML in the vicinity of Los Angeles and Sacramento, CA. ML heights derived from HSRL measurements are compared to PBL heights derived from radiosonde profiles, ML heights measured from ceilometers, and simulated PBL heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. Comparisons between the HSRL ML heights and the radiosonde profiles in Sacramento result in a correlation coefficient value (R) of 0.93 (root-mean-square (RMS) difference of 157 m and bias difference (HSRL - radiosonde) of 57 m). HSRL ML heights compare well with those from the ceilometer in the LA Basin with an R of 0.89 (RMS difference of 108 m and bias difference (HSRL - Ceilometer) of -9.7 m) for distances of up to 30 km between the B-200 flight track and the ceilometer site. Simulated PBL heights from WRF-Chem were compared with those obtained from all flights for each campaign, producing an R of 0.58 (RMS difference of 604 m and a bias difference (WRF-Chem - HSRL) of -157 m) for CalNex and 0.59 (RMS difference of 689 m and a bias difference (WRF-Chem - HSRL) of 220 m) for CARES. Aerosol backscatter simulations are also available from WRF-Chem and are compared to those from HSRL to examine differences among the methods used to derive ML heights.
Williams, Wilton B.; Saunders, Kevin O.; Seaton, Kelly E.; Wiehe, Kevin J.; Vandergrift, Nathan; Von Holle, Tarra A.; Trama, Ashley M.; Parks, Robert J.; Luo, Kan; Gurley, Thaddeus C.; Kepler, Thomas B.; Marshall, Dawn J.; Montefiori, David C.; Sutherland, Laura L.; Alam, Munir S.; Whitesides, John F.; Bowman, Cindy M.; Permar, Sallie R.; Graham, Barney S.; Mascola, John R.; Seed, Patrick C.; Van Rompay, Koen K. A.; Tomaras, Georgia D.; Moody, M. Anthony
2017-01-01
ABSTRACT Dominant antibody responses in vaccinees who received the HIV-1 multiclade (A, B, and C) envelope (Env) DNA/recombinant adenovirus virus type 5 (rAd5) vaccine studied in HIV-1 Vaccine Trials Network (HVTN) efficacy trial 505 (HVTN 505) targeted Env gp41 and cross-reacted with microbial antigens. In this study, we asked if the DNA/rAd5 vaccine induced a similar antibody response in rhesus macaques (RMs), which are commonly used as an animal model for human HIV-1 infections and for testing candidate HIV-1 vaccines. We also asked if gp41 immunodominance could be avoided by immunization of neonatal RMs during the early stages of microbial colonization. We found that the DNA/rAd5 vaccine elicited a higher frequency of gp41-reactive memory B cells than gp120-memory B cells in adult and neonatal RMs. Analysis of the vaccine-induced Env-reactive B cell repertoire revealed that the majority of HIV-1 Env-reactive antibodies in both adult and neonatal RMs were targeted to gp41. Interestingly, a subset of gp41-reactive antibodies isolated from RMs cross-reacted with host antigens, including autologous intestinal microbiota. Thus, gp41-containing DNA/rAd5 vaccine induced dominant gp41-microbiota cross-reactive antibodies derived from blood memory B cells in RMs as observed in the HVTN 505 vaccine efficacy trial. These data demonstrated that RMs can be used to investigate gp41 immunodominance in candidate HIV-1 vaccines. Moreover, colonization of neonatal RMs occurred within the first week of life, and immunization of neonatal RMs during this time also induced a dominant gp41-reactive antibody response. IMPORTANCE Our results are critical to current work in the HIV-1 vaccine field evaluating the phenomenon of gp41 immunodominance induced by HIV-1 Env gp140 in RMs and humans. Our data demonstrate that RMs are an appropriate animal model to study this phenomenon and to determine the immunogenicity in new HIV-1 Env trimer vaccine designs. The demonstration of gp41 immunodominance in memory B cells of both adult and neonatal RMs indicated that early vaccination could not overcome gp41 dominant responses. PMID:28794027
NASA Technical Reports Server (NTRS)
Johannsen, G.; Govindaraj, T.
1980-01-01
The influence of different types of predictor displays in a longitudinal vertical takeoff and landing (VTOL) hover task is analyzed in a theoretical study. Several cases with differing amounts of predictive and rate information are compared. The optimal control model of the human operator is used to estimate human and system performance in terms of root-mean-square (rms) values and to compute optimized attention allocation. The only part of the model which is varied to predict these data is the observation matrix. Typical cases are selected for a subsequent experimental validation. The rms values as well as eye-movement data are recorded. The results agree favorably with those of the theoretical study in terms of relative differences. Better matching is achieved by revised model input data.
GLONASS orbit/clock combination in VNIIFTRI
NASA Astrophysics Data System (ADS)
Bezmenov, I.; Pasynok, S.
2015-08-01
An algorithm and a program for GLONASS satellites orbit/clock combination based on daily precise orbits submitted by several Analytic Centers were developed. Some theoretical estimates for combine orbit positions RMS were derived. It was shown that under condition that RMS of satellite orbits provided by the Analytic Centers during a long time interval are commensurable the RMS of combine orbit positions is no greater than RMS of other satellite positions estimated by any of the Analytic Centers.
Imaging findings in craniofacial childhood rhabdomyosarcoma
Merks, Johannes H. M.; Saeed, Peerooz; Balm, Alfons J. M.; Bras, Johannes; Pieters, Bradley R.; Adam, Judit A.; van Rijn, Rick R.
2010-01-01
Rhabdomyosarcoma (RMS) is the commonest paediatric soft-tissue sarcoma constituting 3–5% of all malignancies in childhood. RMS has a predilection for the head and neck area and tumours in this location account for 40% of all childhood RMS cases. In this review we address the clinical and imaging presentations of craniofacial RMS, discuss the most appropriate imaging techniques, present characteristic imaging features and offer an overview of differential diagnostic considerations. Post-treatment changes will be briefly addressed. PMID:20725831
Srivastava, Ritesh K.; Kaylani, Samer Zaid; Edrees, Nayf; Li, Changzhao; Talwelkar, Sarang S.; Xu, Jianmin; Palle, Komaraiah; Pressey, Joseph G.; Athar, Mohammad
2014-01-01
Rhabdomyosarcoma (RMS) typically arises from skeletal muscle. Currently, RMS in patients with recurrent and metastatic disease have no successful treatment. The molecular pathogenesis of RMS varies based on cancer sub-types. Some embryonal RMS but not other sub-types are driven by sonic hedgehog (Shh) signaling pathway. However, Shh pathway inhibitors particularly smoothened inhibitors are not highly effective in animals. Here, we show that Shh pathway effectors GLI1 and/or GLI2 are over-expressed in the majority of RMS cells and that GANT-61, a specific GLI1/2 inhibitor dampens the proliferation of both embryonal and alveolar RMS cells-derived xenograft tumors thereby blocking their growth. As compared to vehicle-treated control, about 50% tumor growth inhibition occurs in mice receiving GANT-61 treatment. The proliferation inhibition was associated with slowing of cell cycle progression which was mediated by the reduced expression of cyclins D1/2/3 & E and the concomitant induction of p21. GANT-61 not only reduced expression of GLI1/2 in these RMS but also significantly diminished AKT/mTOR signaling. The therapeutic action of GANT-61 was significantly augmented when combined with chemotherapeutic agents employed for RMS therapy such as temsirolimus or vincristine. Finally, reduced expression of proteins driving epithelial mesenchymal transition (EMT) characterized the residual tumors. PMID:25432075
Yamanaka, Hiroaki; Oue, Takaharu; Uehara, Shuichiro; Fukuzawa, Masahiro
2011-02-01
We have previously reported that the Hedgehog (Hh) signaling pathway is activated in pediatric malignancies. In this study, we examined the effect of the Hh signal inhibitor forskolin on the growth of rhabdomyosarcoma (RMS) in vivo and in vitro and thereby elucidated the possibility of considering Hh signaling pathway as a therapeutic target for RMS. We evaluated the messenger RNA expressions of Hh signal mediators in 3 human RMS cell lines using reverse transcriptase-polymerase chain reaction method. The effect of forskolin on the tumor cell proliferation was investigated using WST-1 assay (Dojindo Co, Kumamoto, Japan). We inoculated 10(7) tumor cells into the back of nude mice to create RMS xenograft tumor models. Forskolin was subcutaneously administered in the region around the tumor, and the effect on the tumor growth was evaluated. The messenger RNA expression of glioma-associated oncogene homolog 1, the marker of Hh signaling activation, was expressed at various levels in RMS cell lines. The proliferation of RMS cells was inhibited in a dose-dependent fashion by forskolin. Similarly, in the xenograft model, tumor growth was also significantly reduced by forskolin treatment. Our findings suggest that the Hh signaling pathway plays an important role in the tumorigenesis of RMS and that this pathway can be considered to be a potential molecular target of new treatment strategies for RMS. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, P.C.; Gronenborn, A.M.; Beress, L.
The three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata has been determined on the basis of 489 interproton and 24 hydrogen-bonding distance restraints supplemented by 23 {phi} backbone and 21 {sub {chi}1} side-chain torsion angle restraints derived from nuclear magnetic resonance (NMR) measurements. A total of 42 structures is calculated by a hybrid metric matrix distance geometry-dynamical simulated annealing approach. Both the backbone and side-chain atom positions are well defined. The average atomic rms difference between the 42 individual SA structures and the mean structure obtained by averaging their coordinates is 0.67more » {plus minus} 0.12 {angstrom} for the backbone atoms and 0.90 {plus minus} 0.17 {angstrom} for all atoms. The core of the protein is formed by a triple-stranded antiparallel {beta}-sheet composed of residues 14-16 (strand 1), 30-34 (strand 2), and 37-41 (strand 3) with an additional mini-antiparallel {beta}-sheet at the N-terminus (residues 6-9). The first and second strands of the triple-stranded antiparallel {beta}-sheet are connected by a long exposed loop. A number of side-chain interactions are discussed in light of the structure.« less
Rotational Raman-Based Temperature Measurements in a High-Velocity Turbulent Jet
NASA Technical Reports Server (NTRS)
Locke, Randy J.; Wernet, Mark P.; Anderson, Robert C.
2017-01-01
Spontaneous rotational Raman scattering spectroscopy is used to acquire the first ever high quality, spatially-resolved measurements of the mean and root mean square (rms) temperature fluctuations in turbulent, high-velocity heated jets. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 50 mm diameter nozzle operating from subsonic to supersonic conditions over a wide range of temperatures and Mach numbers, in accordance with the Tanna matrix frequently used in jet noise studies. These data were acquired in the hostile, high noise (115 dB) environment of a large scale open air test facility at NASA Glenn Research Center (GRC). Temperature estimates were determined by performing nonlinear least squares fitting of the single shot spectra to the theoretical rotational Stokes spectra of N2 and O2, using a custom in-house code developed specifically for this investigation. The laser employed in this study was a high energy, long-pulsed, frequency doubled Nd:YAG laser. One thousand single-shot spectra were acquired at each spatial coordinate. Mean temperature and rms temperature variations were calculated at each measurement location. Excellent agreement between the averaged and single-shot temperatures was observed with an accuracy better than 2.5 percent for temperature, and rms variations in temperature between +/-2.2 percent at 296 K and +/-4.5 percent at 850 K. The results of this and planned follow-on studies will support NASA GRC's development of physics-based jet noise prediction, turbulence modeling and aeroacoustic source modeling codes.
Chen, B F; Chen, M L; Liang, D C; Huang, Y W; Liu, H C; Chen, S H
1999-02-01
Alveolar rhabdomyosarcoma (RMS) is associated with a characteristic chromosomal translocation t(2;13)(q35;q14). The genes involved in this translocation are paired box (PAX)3 on chromosome 2 and forkhead in RMS (FKHR) on chromosome 13. An occasional variant translocation t(1;13)(p36;q14) affecting PAX7 and FKHR on chromosomes 1 and 13, respectively, has also been described. Chromosomal translocations in RMS are detected using conventional cytogenetic analysis, fluorescence in situ hybridization (FISH) or reverse transcriptase-polymerase chain reaction (RT-PCR) on fresh or frozen tissue samples. We describe the results of RT-PCR analysis of PAX3-FKHR and PAX7-FKHR chimeric messages in formalin-fixed, paraffin-embedded tissue samples from 17 RMS cases. RNA was extracted from formalin-fixed, paraffin-embedded RMS tissue. Oligonucleotide primers corresponding to the regions of PAX3, PAX7 and FKHR were used for the detection of PAX3-FKHR and PAX7-FKHR chimeric messages. A seminested PCR of the PCR products was used to increase the sensitivity of detection. The amplified fragments were purified and directly sequenced to confirm the specificity of the methods. The PAX3-FKHR chimeric message was detected in all three cases of alveolar RMS but not in any of the 12 embryonal and two pleomorphic RMS cases. The PAX7-FKHR fusion transcript was detected in one case of embryonal RMS. The results indicate that the RT-PCR assay is a reliable method for the detection of the PAX3-FKHR fusion transcript of alveolar RMS in formalin-fixed, paraffin-embedded tissue. This simple method enables pathologists to identify chromosomal rearrangements in RMS as a diagnostic aid in cases where fresh or frozen tissue is not available.
NASA Technical Reports Server (NTRS)
Manouchehri, Davoud; Lindsay, Thomas; Ghosh, David
1994-01-01
NASA's Langley Research Center (LaRC) is addressing the problem of isolating the vibrations of the Shuttle remote manipulator system (RMS) from its end-effector and/or payload by modeling an RMS flat-floor simulator with a dynamic payload. Analysis of the model can lead to control techniques that will improve the speed, accuracy, and safety of the RMS in capturing satellites and eventually facilitate berthing with the space station. Rockwell International Corporation, also involved in vibration isolation, has developed a hardware interface unit to isolate the end-effector from the vibrations of an arm on a Shuttle robotic tile processing system (RTPS). To apply the RTPS isolation techniques to long-reach arms like the RMS, engineers have modeled the dynamics of the hardware interface unit with simulation software. By integrating the Rockwell interface model with the NASA LaRC RMS simulator model, investigators can study the use of a hardware interface to isolate dynamic payloads from the RMS. The interface unit uses both active and passive compliance and damping for vibration isolation. Thus equipped, the RMS could be used as a telemanipulator with control characteristics for capture and berthing operations. The hardware interface also has applications in industry.
Digitization of Electrocardiogram From Telemetry Prior to In-hospital Cardiac Arrest: A Pilot Study.
Attin, Mina; Wang, Lu; Soroushmehr, S M Reza; Lin, Chii-Dean; Lemus, Hector; Spadafore, Maxwell; Najarian, Kayvan
2016-03-01
Analyzing telemetry electrocardiogram (ECG) data over an extended period is often time-consuming because digital records are not widely available at hospitals. Investigating trends and patterns in the ECG data could lead to establishing predictors that would shorten response time to in-hospital cardiac arrest (I-HCA). This study was conducted to validate a novel method of digitizing paper ECG tracings from telemetry systems in order to facilitate the use of heart rate as a diagnostic feature prior to I-HCA. This multicenter study used telemetry to investigate full-disclosure ECG papers of 44 cardiovascular patients obtained within 1 hr of I-HCA with initial rhythms of pulseless electrical activity and asystole. Digital ECGs were available for seven of these patients. An algorithm to digitize the full-disclosure ECG papers was developed using the shortest path method. The heart rate was measured manually (averaging R-R intervals) for ECG papers and automatically for digitized and digital ECGs. Significant correlations were found between manual and automated measurements of digitized ECGs (p < .001) and between digitized and digital ECGs (p < .001). Bland-Altman methods showed bias = .001 s, SD = .0276 s, lower and upper 95% limits of agreement for digitized and digital ECGs = .055 and -.053 s, and percentage error = 0.22%. Root mean square (rms), percentage rms difference, and signal to noise ratio values were in acceptable ranges. The digitization method was validated. Digitized ECG provides an efficient and accurate way of measuring heart rate over an extended period of time. © The Author(s) 2015.
Das, Anup; Cole, Oana; Chikhani, Marc; Wang, Wenfei; Ali, Tayyba; Haque, Mainul; Bates, Declan G; Hardman, Jonathan G
2015-01-12
Direct comparison of the relative efficacy of different recruitment maneuvers (RMs) for patients with acute respiratory distress syndrome (ARDS) via clinical trials is difficult, due to the heterogeneity of patient populations and disease states, as well as a variety of practical issues. There is also significant uncertainty regarding the minimum values of positive end-expiratory pressure (PEEP) required to ensure maintenance of effective lung recruitment using RMs. We used patient-specific computational simulation to analyze how three different RMs act to improve physiological responses, and investigate how different levels of PEEP contribute to maintaining effective lung recruitment. We conducted experiments on five 'virtual' ARDS patients using a computational simulator that reproduces static and dynamic features of a multivariable clinical dataset on the responses of individual ARDS patients to a range of ventilator inputs. Three recruitment maneuvers (sustained inflation (SI), maximal recruitment strategy (MRS) followed by a titrated PEEP, and prolonged recruitment maneuver (PRM)) were implemented and evaluated for a range of different pressure settings. All maneuvers demonstrated improvements in gas exchange, but the extent and duration of improvement varied significantly, as did the observed mechanism of operation. Maintaining adequate post-RM levels of PEEP was seen to be crucial in avoiding cliff-edge type re-collapse of alveolar units for all maneuvers. For all five patients, the MRS exhibited the most prolonged improvement in oxygenation, and we found that a PEEP setting of 35 cm H2O with a fixed driving pressure of 15 cm H2O (above PEEP) was sufficient to achieve 95% recruitment. Subsequently, we found that PEEP titrated to a value of 16 cm H2O was able to maintain 95% recruitment in all five patients. There appears to be significant scope for reducing the peak levels of PEEP originally specified in the MRS and hence to avoid exposing the lung to unnecessarily high pressures. More generally, our study highlights the huge potential of computer simulation to assist in evaluating the efficacy of different recruitment maneuvers, in understanding their modes of operation, in optimizing RMs for individual patients, and in supporting clinicians in the rational design of improved treatment strategies.
RMS upper boom framed by aft flight deck viewing window W10
NASA Technical Reports Server (NTRS)
1983-01-01
Remote Manipulator System (RMS) upper arm boom (tear in multilayer beta cloth) deployed during dynamic interaction test using Payload Flight Test Article (PFTA) is visible outside aft viewing window W10. RMS 'Canada' insignia or logo appears on boom.
Independent Orbiter Assessment (IOA): Assessment of the remote manipulator system FMEA/CIL
NASA Technical Reports Server (NTRS)
Tangorra, F.; Grasmeder, R. F.; Montgomery, A. D.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Remote Manipulator System (RMS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter RMS hardware are documented. The IOA product for the RMS analysis consisted of 604 failure mode worksheets that resulted in 458 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 45 FMEAs and 321 CIL items. This comparison produced agreement on all but 154 FMEAs which caused differences in 137 CIL items.
NASA Astrophysics Data System (ADS)
Kärcher, Hans J.; Kunz, Nans; Temi, Pasquale; Krabbe, Alfred; Wagner, Jörg; Süß, Martin
2014-07-01
The original pointing accuracy requirement of the Stratospheric Observatory for Infrared Astronomy SOFIA was defined at the beginning of the program in the late 1980s as very challenging 0.2 arcsec rms. The early science flights of the observatory started in December 2010 and the observatory has reached in the mean time nearly 0.7 arcsec rms, which is sufficient for most of the SOFIA science instruments. NASA and DLR, the owners of SOFIA, are planning now a future 4 year program to bring the pointing down to the ultimate 0.2 arcsec rms. This may be the right time to recall the history of the pointing requirement and its verification and the possibility of its achievement via early computer models and wind tunnel tests, later computer aided end-to-end simulations up to the first commissioning flights some years ago. The paper recollects the tools used in the different project phases for the verification of the pointing performance, explains the achievements and may give hints for the planning of the upcoming final pointing improvement phase.
A Novel Notch-YAP Circuit Drives Stemness and Tumorigenesis in Embryonal Rhabdomyosarcoma.
Slemmons, Katherine K; Crose, Lisa E S; Riedel, Stefan; Sushnitha, Manuela; Belyea, Brian; Linardic, Corinne M
2017-12-01
Rhabdomyosarcoma (RMS), a cancer characterized by skeletal muscle features, is the most common soft-tissue sarcoma of childhood. While low- and intermediate-risk groups have seen improved outcomes, high-risk patients still face a 5-year survival rate of <30%, a statistic that has not changed in over 40 years. Understanding the biologic underpinnings of RMS is critical. The developmental pathways of Notch and YAP have been identified as potent but independent oncogenic signals that support the embryonal variant of RMS (eRMS). Here, the cross-talk between these pathways and the impact on eRMS tumorigenesis is reported. Using human eRMS cells grown as three-dimensional (3D) rhabdospheres, which enriches in stem cells, it was found that Notch signaling transcriptionally upregulates YAP1 gene expression and YAP activity. Reciprocally, YAP transcriptionally upregulates the Notch ligand genes JAG1 and DLL1 and the core Notch transcription factor RBPJ This bidirectional circuit boosts expression of key stem cell genes, including SOX2 , which is functionally required for eRMS spheres. Silencing this circuit for therapeutic purposes may be challenging, because the inhibition of one node (e.g., pharmacologic Notch blockade) can be rescued by upregulation of another (constitutive YAP expression). Instead, dual inhibition of Notch and YAP is necessary. Finally, supporting the existence of this circuit beyond a model system, nuclear Notch and YAP protein expression are correlated in human eRMS tumors, and YAP suppression in vivo decreases Notch signaling and SOX2 expression. Implications: This study identifies a novel oncogenic signaling circuit driving eRMS stemness and tumorigenesis, and provides evidence and rationale for combination therapies co-targeting Notch and YAP. Mol Cancer Res; 15(12); 1777-91. ©2017 AACR . ©2017 American Association for Cancer Research.
Rudzinski, Erin R; Anderson, James R; Chi, Yueh-Yun; Gastier-Foster, Julie M; Astbury, Caroline; Barr, Frederic G; Skapek, Stephen X; Hawkins, Douglas S; Weigel, Brenda J; Pappo, Alberto; Meyer, William H; Arnold, Michael A; Teot, Lisa A; Parham, David M
2017-12-01
Distinguishing alveolar rhabdomyosarcoma (ARMS) from embryonal rhabdomyosarcoma (ERMS) has historically been of prognostic and therapeutic importance. However, classification has been complicated by shifting histologic criteria required for an ARMS diagnosis. Children's Oncology Group (COG) studies after IRS-IV, which included the height of this diagnostic shift, showed both an increased number of ARMS and an increase in the proportion of fusion-negative ARMS. Following diagnostic standardization and histologic re-review of ARMS cases enrolled during this era, analysis of low-risk (D9602) and intermediate-risk (D9803) rhabdomyosarcoma (RMS) studies showed that fusion status rather than histology best predicts prognosis for patients with RMS. This analysis remains to be completed for patients with high-risk RMS. We re-reviewed cases on high-risk COG studies D9802 and ARST0431 with an enrollment diagnosis of ARMS. We compared the event-free survival (EFS) and overall survival by histology, PAX-FOXO1 fusion, and clinical risk factors (Oberlin score) for patients with metastatic RMS using the log-rank test. Histology re-review resulted in reclassification as ERMS for 12% of D9802 cases and 5% of ARST0431 cases. Fusion-negative RMS had a superior EFS to fusion-positive RMS; however, poorer outcome for metastatic RMS was most related to clinical risk factors including age, primary site, and number of metastatic sites. In contrast to low- or intermediate-risk RMS, in metastatic RMS, clinical risk factors have the most impact on patient outcome. PAX-FOXO1 fusion is more common in patients with a high Oberlin score, but fusion status is not an independent biomarker of prognosis. © 2017 Wiley Periodicals, Inc.
Dorin, Ryan; Jackson, Max; Cusano, Antonio; Haddock, Peter; Kiziloz, Halil; Meraney, Anoop; Shichman, Steven
2014-01-01
To determine the growth rate of renal masses (RMs) under active surveillance (AS), and to describe the clinical outcome of AS patients. We conducted a retrospective review of an AS database to obtain demographics, radiological and pathologic characteristics and RM size of patients. RMs were followed at 6-12 month intervals for ≥1 year with computed tomography (CT), magnetic resonance imaging (MRI), or renal ultrasound. Kaplan-Meier analysis determined the annual likelihood of intervention. RMs were divided into 3 radiographic subcategories (solid, cystic, and angiomyolipoma). A linear regression model determined RM growth rates. 131 RMs in 114 patients were included. Median age, Charlson Comorbidity Index score and mean follow-up were 69.1 years, 4.0 and 4.2±2.6 years, respectively. Maximal tumor diameter (MTD) at diagnosis was 2.1 ± 1.3 cm. 49 RMs exhibited negative or zero net growth. Mean MTD growth rate for all RMs was 0.72±3.2 (95% CI: 0.16-1.28) mm/year. When stratified by MTD at diagnosis, mean RM growth rates were 0.84, 0.84, 0.44, 0.74 and 0.71 mm/year for RMs ≤1 cm, 1-≤2cm, 2-≤ 3cm, 3-≤ 4cm and ≥4cm, respectively (p≤0.01). The 5 and 10-year freedom from intervention rates were 93.1% and 88.5%, respectively. There was a single case of suspected metastases, but no deaths related to kidney cancer. RMs under AS grew slowly, and had a low incidence of requiring surgical intervention and progression. Solid enhancing masses grew slowly, and were more likely to trigger intervention. AS should be considered for selected patients with small RMs.
Detecting the Elusive P-Wave: A New ECG Lead to Improve the Recording of Atrial Activity.
Kennedy, Alan; Finlay, Dewar D; Guldenring, Daniel; Bond, Raymond R; McLaughlin, James
2016-02-01
In this study, we report on a lead selection method that was developed to detect the optimal bipolar electrode placement for recording of the P-wave. The study population consisted of 117 lead body surface potential maps recorded from 229 healthy subjects. The optimal bipolar lead was developed using the training set (172 subjects) then extracted from the testing dataset (57 subjects) and compared to other lead systems previously reported for improved recording of atrial activity. All leads were assessed in terms of P-wave, QRS, and STT root mean square (RMS). The P/QRST RMS ratio was also investigated to determine the atrioventricular RMS ratio. Finally, the effect of minor electrode misplacements on the P-lead was investigated. The P-lead discovered in this study outperformed all other investigated leads in terms of P-wave RMS. The P-lead showed a significant improvement in median P-wave RMS (93 versus 72 μV, p < 0.001) over the next best lead, Lead II. An improvement in QRS and STT RMS was also observed from the P-lead in comparison to lead II (668 versus 573 μV, p < 0.001) and (327 versus 196 μV, p < 0.001). Although P-wave RMS was reduced by incorrect electrode placement, significant improvement over Lead II was still evident. The P-lead improves P-wave RMS signal strength over all other investigated leads. Also the P-lead does not reduce QRS and STT RMS making it an appropriate choice for atrial arrhythmia monitoring. Given the improvement in signal-to-noise ratio, an improvement in algorithms that rely on P-wave analysis may be achieved.
NASA Technical Reports Server (NTRS)
Green, S.; Cochrane, D. L.; Truhlar, D. G.
1986-01-01
The utility of the energy-corrected sudden (ECS) scaling method is evaluated on the basis of how accurately it predicts the entire matrix of state-to-state rate constants, when the fundamental rate constants are independently known. It is shown for the case of Ar-CO collisions at 500 K that when a critical impact parameter is about 1.75-2.0 A, the ECS method yields excellent excited state rates on the average and has an rms error of less than 20 percent.
Regression-based model of skin diffuse reflectance for skin color analysis
NASA Astrophysics Data System (ADS)
Tsumura, Norimichi; Kawazoe, Daisuke; Nakaguchi, Toshiya; Ojima, Nobutoshi; Miyake, Yoichi
2008-11-01
A simple regression-based model of skin diffuse reflectance is developed based on reflectance samples calculated by Monte Carlo simulation of light transport in a two-layered skin model. This reflectance model includes the values of spectral reflectance in the visible spectra for Japanese women. The modified Lambert Beer law holds in the proposed model with a modified mean free path length in non-linear density space. The averaged RMS and maximum errors of the proposed model were 1.1 and 3.1%, respectively, in the above range.
1979-05-01
Classification) A Study of the Utility of a Participative Approach to Employee Attitude Surveys as a Management Tool at the Audie L. Murphy Memoria VA...Engineering-49, Medical-38, Laboratory-32, Social Work-23, and RMS-19.) The responses of employees in all other services would be collectively identified...Laboratory 47 Social Work 78 All Others 50 TABLE 3 Positive Responses to Question Thirteen By Service Comparing responses by salary level the average positive
Chen, Shouyuan; Chini, Michael; Wang, He; Yun, Chenxia; Mashiko, Hiroki; Wu, Yi; Chang, Zenghu
2009-10-20
Carrier-envelope (CE) phase stabilization of a two-stage chirped pulse amplifier laser system with regenerative amplification as the preamplifier is demonstrated. The CE phase stability of this laser system is found to have a 90 mrad rms error averaged over 50 laser shots for a locking period of 4.5 h. The CE phase locking was confirmed unambiguously by experimental observation of the 2pi periodicity of the high-order harmonic spectrum generated by double optical gating.
Children’s Oncology Group’s 2013 Blueprint for Research: Soft Tissue Sarcomas
Hawkins, Douglas S.; Spunt, Sheri L.; Skapek, Stephen X.
2013-01-01
In the US, approximately 850-900 children are diagnosed each year with soft tissue sarcomas (STS). Key findings from recent clinical trials include safe reduction in therapy for low risk rhabdomyosarcoma (RMS), validation of FOXO1 fusion as a prognostic factor, a modest improvement in outcome for high-risk RMS, and a biologically-designed non-cytotoxic therapy for pediatric desmoid tumor. Planned Phase 2 trials include targeted agents for VEGF/PDGF, mTOR, and IGF-1R for children with RMS and VEGF for children with non-RMS STS (NRSTS). For RMS, COG Phase 3 trials potentially will explore VEGF/mTOR inhibition or chemotherapy interval compression. For NRSTS, a COG Phase 3 trial will explore VEGF inhibition. PMID:23255356
Rhabdomyosarcomas: an overview on the experimental animal models.
Zanola, Alessandra; Rossi, Stefania; Faggi, Fiorella; Monti, Eugenio; Fanzani, Alessandro
2012-07-01
Rhabdomyosarcomas (RMS) are aggressive childhood soft-tissue malignancies deriving from mesenchymal progenitors that are committed to muscle-specific lineages. Despite the histopathological signatures associated with three main histological variants, termed embryonal, alveolar and pleomorphic, a plethora of genetic and molecular changes are recognized in RMS. Over the years, exposure to carcinogens or ionizing radiations and gene-targeting approaches in vivo have greatly contributed to disclose some of the mechanisms underlying RMS onset. In this review, we describe the principal distinct features associated with RMS variants and focus on the current available experimental animal models to point out the molecular determinants cooperating with RMS development and progression. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Peppler, W T; Kim, W J; Ethans, K; Cowley, K C
2017-05-01
Methodological validation of dual-energy x-ray absorptiometry (DXA)-based measures of leg bone mineral density (BMD) based on the guidelines of the International Society for Clinical Densitometry. The primary objective of this study was to determine the precision of BMD estimates at the knee and heel using the manufacturer provided DXA acquisition algorithm. The secondary objective was to determine the smallest change in DXA-based measurement of BMD that should be surpassed (least significant change (LSC)) before suggesting that a biological change has occurred in the distal femur, proximal tibia and calcaneus. Academic Research Centre, Canada. Ten people with motor-complete SCI of at least 2 years duration and 10 people from the general population volunteered to have four DXA-based measurements taken of their femur, tibia and calcaneus. BMDs for seven regions of interest (RIs) were calculated, as were short-term precision (root-mean-square (RMS) standard deviation (g cm -2 ), RMS-coefficient of variation (RMS-CV, %)) and LSC. Overall, RMS-CV values were similar between SCI (3.63-10.20%, mean=5.3%) and able-bodied (1.85-5.73%, mean=4%) cohorts, despite lower absolute BMD values at each RIs in those with SCI (35%, heel to 54%, knee; P<0.0001). Precision was highest at the calcaneus and lowest at the femur. Except at the femur, RMS-CV values were under 6%. For DXA-based estimates of BMD at the distal femur, proximal tibia and calcaneus, these precision values suggest that LSC values >10% are needed to detect differences between treated and untreated groups in studies aimed at reducing bone mineral loss after SCI.
Texture discrimination and multi-unit recording in the rat vibrissal nerve
Albarracín, Ana L; Farfán, Fernando D; Felice, Carmelo J; Décima, Emilio E
2006-01-01
Background Rats distinguish objects differing in surface texture by actively moving their vibrissae. In this paper we characterized some aspects of texture sensing in anesthetized rats during active touch. We analyzed the multifiber discharge from a deep vibrissal nerve when the vibrissa sweeps materials (wood, metal, acrylic, sandpaper) having different textures. We polished these surfaces with sandpaper (P1000) to obtain close degrees of roughness and we induced vibrissal movement with two-branch facial nerve stimulation. We also consider the change in pressure against the vibrissa as a way to improve the tactile information acquisition. The signals were compared with a reference signal (control) – vibrissa sweeping the air – and were analyzed with the Root Mean Square (RMS) and the Power Spectrum Density (PSD). Results We extracted the information about texture discrimination hidden in the population activity of one vibrissa innervation, using the RMS values and the PSD. The pressure level 3 produced the best differentiation for RMS values and it could represent the "optimum" vibrissal pressure for texture discrimination. The frequency analysis (PSD) provided information only at low-pressure levels and showed that the differences are not related to the roughness of the materials but could be related to other texture parameters. Conclusion Our results suggest that the physical properties of different materials could be transduced by the trigeminal sensory system of rats, as are shown by amplitude and frequency changes. Likewise, varying the pressure could represent a behavioral strategy that improves the information acquisition for texture discrimination. PMID:16719904
Texture discrimination and multi-unit recording in the rat vibrissal nerve.
Albarracín, Ana L; Farfán, Fernando D; Felice, Carmelo J; Décima, Emilio E
2006-05-23
Rats distinguish objects differing in surface texture by actively moving their vibrissae. In this paper we characterized some aspects of texture sensing in anesthetized rats during active touch. We analyzed the multifiber discharge from a deep vibrissal nerve when the vibrissa sweeps materials (wood, metal, acrylic, sandpaper) having different textures. We polished these surfaces with sandpaper (P1000) to obtain close degrees of roughness and we induced vibrissal movement with two-branch facial nerve stimulation. We also consider the change in pressure against the vibrissa as a way to improve the tactile information acquisition. The signals were compared with a reference signal (control)--vibrissa sweeping the air--and were analyzed with the Root Mean Square (RMS) and the Power Spectrum Density (PSD). We extracted the information about texture discrimination hidden in the population activity of one vibrissa innervation, using the RMS values and the PSD. The pressure level 3 produced the best differentiation for RMS values and it could represent the "optimum" vibrissal pressure for texture discrimination. The frequency analysis (PSD) provided information only at low-pressure levels and showed that the differences are not related to the roughness of the materials but could be related to other texture parameters. Our results suggest that the physical properties of different materials could be transduced by the trigeminal sensory system of rats, as are shown by amplitude and frequency changes. Likewise, varying the pressure could represent a behavioral strategy that improves the information acquisition for texture discrimination.
An approximate fluvial equilibrium topography for the Alps
NASA Astrophysics Data System (ADS)
Stüwe, K.; Hergarten, S.
2012-04-01
This contribution addresses the question whether the present topography of the Alps can be approximated by a fluvial equilibrium topography and whether this can be used to determine uplift rates. Based on a statistical analysis of the present topography we use a stream-power approach for erosion where the erosion rate is proportional to the square root of the catchment size for catchment sizes larger than 12 square kilometers and a logarithmic dependence to mimic slope processes at smaller catchment sizes. If we assume a homogeneous uplift rate over the entire region (block uplift), the best-fit fluvial equilibrium topography differs from the real topography by about 500 m RMS (root mean square) with a strong systematic deviation. Regions of low elevation are too high in the equilibrium topography, while high-mountain regions are too low. The RMS difference significantly decreases if a spatially variable uplift function is allowed. If a strong variation of the uplift rate on a scale of 5 km is allowed, the systematic deviation becomes rather small, and the RMS difference decreases to about 150 m. A significant part of the remaining deviation apparently arises from glacially-shaped valleys, while another part may result from prematurity of the relief (Hergarten, Wagner & Stüwe, EPSL 297:453, 2010). The best-fit uplift function can probably be used for forward or backward simulation of the landform evolution.
Guess, Trent M; Razu, Swithin; Jahandar, Amirhossein; Skubic, Marjorie; Huo, Zhiyu
2017-04-01
The Microsoft Kinect is becoming a widely used tool for inexpensive, portable measurement of human motion, with the potential to support clinical assessments of performance and function. In this study, the relative osteokinematic Cardan joint angles of the hip and knee were calculated using the Kinect 2.0 skeletal tracker. The pelvis segments of the default skeletal model were reoriented and 3-dimensional joint angles were compared with a marker-based system during a drop vertical jump and a hip abduction motion. Good agreement between the Kinect and marker-based system were found for knee (correlation coefficient = 0.96, cycle RMS error = 11°, peak flexion difference = 3°) and hip (correlation coefficient = 0.97, cycle RMS = 12°, peak flexion difference = 12°) flexion during the landing phase of the drop vertical jump and for hip abduction/adduction (correlation coefficient = 0.99, cycle RMS error = 7°, peak flexion difference = 8°) during isolated hip motion. Nonsagittal hip and knee angles did not correlate well for the drop vertical jump. When limited to activities in the optimal capture volume and with simple modifications to the skeletal model, the Kinect 2.0 skeletal tracker can provide limited 3-dimensional kinematic information of the lower limbs that may be useful for functional movement assessment.
Reddy, G V Bhaskar; Sen, A R; Nair, Pramod N; Reddy, K Sudhakar; Reddy, K Kondal; Kondaiah, N
2013-10-01
The antioxidant and antimicrobial efficacy of grape seed extract (GSE) was studied in restructured mutton slices (RMS) under aerobic and vacuum packaging conditions during refrigerated storage. The RMS treated with grape seed extract (GSE) had significantly (P<0.05) lower thiobarbituric acid reactive substance (TBARS) values and free fatty acids (FFA) % compared to control (C) and butylated hydroxy anisole (BHA) treated RMS during storage at 4±1°C. Addition of GSE significantly (P<0.05) reduced the total psychrophilic and coliform counts in RMS during refrigerated storage. The GSE treated mutton slices recorded significantly (P<0.05) superior scores of color, flavor, juiciness and overall palatability than C and BHA treated RMS. The TBARS values, FFA % and microbial counts increased significantly (P<0.05) during storage. It can be concluded that GSE has excellent antioxidant and antimicrobial properties compared to control and BHA treated RMS during refrigerated storage under aerobic and vacuum conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-10-01
... potential difference between the foil and all of the individual conductors connected together, such potential difference gradually increased over a 30 second time period to 1500 Volts rms, 60 Hertz, then...
Code of Federal Regulations, 2013 CFR
2013-10-01
... potential difference between the foil and all of the individual conductors connected together, such potential difference gradually increased over a 30 second time period to 1500 Volts rms, 60 Hertz, then...
Code of Federal Regulations, 2011 CFR
2011-10-01
... potential difference between the foil and all of the individual conductors connected together, such potential difference gradually increased over a 30 second time period to 1500 Volts rms, 60 Hertz, then...
Code of Federal Regulations, 2014 CFR
2014-10-01
... potential difference between the foil and all of the individual conductors connected together, such potential difference gradually increased over a 30 second time period to 1500 Volts rms, 60 Hertz, then...
Larson, David B; Chen, Matthew C; Lungren, Matthew P; Halabi, Safwan S; Stence, Nicholas V; Langlotz, Curtis P
2018-04-01
Purpose To compare the performance of a deep-learning bone age assessment model based on hand radiographs with that of expert radiologists and that of existing automated models. Materials and Methods The institutional review board approved the study. A total of 14 036 clinical hand radiographs and corresponding reports were obtained from two children's hospitals to train and validate the model. For the first test set, composed of 200 examinations, the mean of bone age estimates from the clinical report and three additional human reviewers was used as the reference standard. Overall model performance was assessed by comparing the root mean square (RMS) and mean absolute difference (MAD) between the model estimates and the reference standard bone ages. Ninety-five percent limits of agreement were calculated in a pairwise fashion for all reviewers and the model. The RMS of a second test set composed of 913 examinations from the publicly available Digital Hand Atlas was compared with published reports of an existing automated model. Results The mean difference between bone age estimates of the model and of the reviewers was 0 years, with a mean RMS and MAD of 0.63 and 0.50 years, respectively. The estimates of the model, the clinical report, and the three reviewers were within the 95% limits of agreement. RMS for the Digital Hand Atlas data set was 0.73 years, compared with 0.61 years of a previously reported model. Conclusion A deep-learning convolutional neural network model can estimate skeletal maturity with accuracy similar to that of an expert radiologist and to that of existing automated models. © RSNA, 2017 An earlier incorrect version of this article appeared online. This article was corrected on January 19, 2018.
The effect of change in spectral slope and formant frequencies on the perception of loudness.
Duvvuru, Sirisha; Erickson, Molly
2013-11-01
This study attempts to understand how changes in spectral slope and formant frequency influence changes in perceived loudness. It was hypothesized that voices synthesized with steeper spectral slopes will be perceived as less loud than voices synthesized with less steep spectral slopes, in spite of the fact that they are of equal root mean square (RMS) amplitude. It was also hypothesized that stimuli with higher formant patterns will be perceived as louder than those with lower formant patterns, in spite of the fact that they are of equal RMS amplitude. Repeated measures factorial design. For the pitches A3, C4, B4, and F5, three different source signals were synthesized with varying slopes of -9, -12, and -15 dB/octave using a frequency vibrato rate of 5.6 Hz and a frequency vibrato extent of 50 cents. Each of the three source signals were filtered using two formant patterns, a lower formant pattern typical of a mezzo-soprano (pattern A) and a higher formant pattern typical of a soprano (pattern B) for the vowel /a/. For each pitch, the six stimuli were combined into all possible pairs and normalized to equal RMS amplitude. Listeners were presented with 120 paired stimuli (60 pairs repeated twice). The listener's task was to indicate whether the first or second stimulus in the pair was louder. Generally, as the spectral slope decreased, perceived loudness increased, with the magnitude of the perceived difference in loudness being related to the degree of difference in spectral slope. Likewise, at all pitches except A3, perceived loudness increased as formant frequency increased. RMS amplitude is an important predictor of loudness perception, but many other factors also affect the perception of this important vocal parameter. Spectral composition is one such factor and must be considered when using loudness perception in the process of clinical diagnostics. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Small vertical changes in jaw relation affect motor unit recruitment in the masseter.
Terebesi, S; Giannakopoulos, N N; Brüstle, F; Hellmann, D; Türp, J C; Schindler, H J
2016-04-01
Strategies for recruitment of masseter muscle motor units (MUs), provoked by constant bite force, for different vertical jaw relations have not previously been investigated. The objective of this study was to analyse the effect of small changes in vertical jaw relation on MU recruitment behaviour in different regions of the masseter during feedback-controlled submaximum biting tasks. Twenty healthy subjects (mean age: 24·6 ± 2·4 years) were involved in the investigation. Intra-muscular electromyographic (EMG) activity of the right masseter was recorded in different regions of the muscle. MUs were identified by the use of decomposition software, and root-mean-square (RMS) values were calculated for each experimental condition. Six hundred and eleven decomposed MUs with significantly (P < 0·001) different jaw relation-specific recruitment behaviour were organised into localised MU task groups. MUs with different task specificity in seven examined tasks were observed. The RMS EMG values obtained from the different recording sites were also significantly (P < 0·01) different between tasks. Overall MU recruitment was significantly (P < 0·05) greater in the deep masseter than in the superficial muscle. The number of recruited MUs and the RMS EMG values decreased significantly (P < 0·01) with increasing jaw separation. This investigation revealed differential MU recruitment behaviour in discrete subvolumes of the masseter in response to small changes in vertical jaw relations. These fine-motor skills might be responsible for its excellent functional adaptability and might also explain the successful management of temporomandibular disorder patients by somatic intervention, in particular by the use of oral splints. © 2015 John Wiley & Sons Ltd.
Differences in muscle activity between natural forefoot and rearfoot strikers during running.
Yong, Jennifer R; Silder, Amy; Delp, Scott L
2014-11-28
Running research has focused on reducing injuries by changing running technique. One proposed method is to change from rearfoot striking (RFS) to forefoot striking (FFS) because FFS is thought to be a more natural running pattern that may reduce loading and injury risk. Muscle activity affects loading and influences running patterns; however, the differences in muscle activity between natural FFS runners and natural RFS runners are unknown. The purpose of this study was to measure muscle activity in natural FFS runners and natural RFS runners. We tested the hypotheses that tibialis anterior activity would be significantly lower while activity of the plantarflexors would be significantly greater in FFS runners, compared to RFS runners, during late swing phase and early stance phase. Gait kinematics, ground reaction forces and electromyographic patterns of ten muscles were collected from twelve natural RFS runners and ten natural FFS runners. The root mean square (RMS) of each muscle׳s activity was calculated during terminal swing phase and early stance phase. We found significantly lower RMS activity in the tibialis anterior in FFS runners during terminal swing phase, compared to RFS runners. In contrast, the medial and lateral gastrocnemius showed significantly greater RMS activity in terminal swing phase in FFS runners. No significant differences were found during early stance phase for the tibialis anterior or the plantarflexors. Recognizing the differences in muscle activity between FFS and RFS runners is an important step toward understanding how foot strike patterns may contribute to different types of injury. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Dougherty, N. S.; Burnette, D. W.; Holt, J. B.; Nesman, T.
1993-01-01
Unsteady flow computations are being performed with the P&W (ATD) and the Rocketdyne baseline configurations of the SSME LO2 turbine turnaround duct (TAD) and heat exchanger (HEX). The work is in support of the HEX inner turning vane cracking investigation. Fatigue cracking has occurred during hot firings with the P&W configuration on the HEX inner vane, and it appears the fix will involve changes to the TAD splitter vane position and to the TAD inner wall curvature to reduce the dynamic loading on the inner vane. Unsteady flow computations on the P&W baseline and fix and on the Rocketdyne baseline reference follow steady-flow screening computations done by MSFC/ED32 on several trial configurations arriving at the fix. The P&W TAD inlet velocity profile has a strong radial velocity component that directs the flow toward the inner wall and raises the local velocity a factor of two and the dynamic pressure a factor, of four. The fix is intended to redistribute the flow more evenly across the HEX inner and outer vanes like the Rocketdyne baseline reference. Vane buffeting at frequencies around 4,000 Hz is the leading suspected cause of the problem. Our simulations (work in progress) are being done with the USA 2D axisymmetric code approximating the flow as axisymmetric u+v 2D (axial, u, and radial, v, components only). The HEX coils are included in the model to make sure the fix does not adversely affect the HEX environment. Turbulent kinetic energy, k, levels where k = 1/2 v' rms2 are locally as high as 10,000 ft2/sec2 for the P&W baseline at the engine interface (between the TAD and HEX) at the HEX inner vane location. However, k is less than 8,000 on the HEX outer vane and only about 4,500 on the HEX inner vane for the Rocketdyne baseline. Unsteady turbulence intensity, v'rms/v, and pressure, p', are being computed in the present computations to compare with steady-flow Reynolds-averaged computations where p'rms = const (pk) for overall rms random turbulence from 0.1 to 12,000 Hz frequency. Random overall static, p'rms fluctuations as large as 1.7 psi are estimated from k on the HEX inner vane for the P&W baseline configuration but only about 0.7 psi for the Rocketdyne configuration.
Rheology of surface granular flows
NASA Astrophysics Data System (ADS)
Orpe, Ashish V.; Khakhar, D. V.
Surface granular flow, comprising granular material flowing on the surface of a heap of the same material, occurs in several industrial and natural systems. The rheology of such a flow was investigated by means of measurements of velocity and number-density profiles in a quasi-two-dimensional rotating cylinder, half-filled with a model granular material monosize spherical stainless-steel particles. The measurements were made at the centre of the cylinder, where the flow is fully developed, using streakline photography and image analysis. The stress profile was computed from the number-density profile using a force balance which takes into account wall friction. Mean-velocity and root-mean-square (r.m.s.)-velocity profiles are reported for different particle sizes and cylinder rotation speeds. The profiles for the mean velocity superimpose when distance is scaled by the particle diameter d and velocity by a characteristic shear rate dot{gamma}_C = [gsin(beta_m-beta_s)/dcosbeta_s](1/2) and the particle diameter, where beta_m is the maximum dynamic angle of repose and beta_s is the static angle of repose. The maximum dynamic angle of repose is found to vary with the local flow rate. The scaling is also found to work for the r.m.s. velocity profiles. The mean velocity is found to decay exponentially with depth in the bed, with decay length lambda=1.1d. The r.m.s. velocity shows similar behaviour but with lambda=1.7d. The r.m.s. velocity profile shows two regimes: near the free surface the r.m.s. velocity is nearly constant and below a transition point it decays linearly with depth. The shear rate, obtained by numerical differentiation of the velocity profile, is not constant anywhere in the layer and has a maximum which occurs at the same depth as the transition in the r.m.s. velocity profile. Above the transition point the velocity distributions are Gaussian and below the transition point the velocity distributions gradually approach a Poisson distribution. The shear stress increases roughly linearly with depth. The variation in the apparent viscosity eta with r.m.s. velocity u shows a relatively sharp transition at the shear-rate maximum, and in the region below this point the apparent viscosity eta˜ u(-1.5) . The measurements indicate that the flow comprises two layers: an upper low-viscosity layer with a nearly constant r.m.s. velocity and a lower layer of increasing viscosity with a decreasing r.m.s. velocity. The thickness of the upper layer depends on the local flow rate and is independent of particle diameter while the reverse is found to hold for the lower-layer thickness. The experimental data is compared with the predictions of three models for granular flow.
A new network representation of the metabolism to detect chemical transformation modules.
Sorokina, Maria; Medigue, Claudine; Vallenet, David
2015-11-14
Metabolism is generally modeled by directed networks where nodes represent reactions and/or metabolites. In order to explore metabolic pathway conservation and divergence among organisms, previous studies were based on graph alignment to find similar pathways. Few years ago, the concept of chemical transformation modules, also called reaction modules, was introduced and correspond to sequences of chemical transformations which are conserved in metabolism. We propose here a novel graph representation of the metabolic network where reactions sharing a same chemical transformation type are grouped in Reaction Molecular Signatures (RMS). RMS were automatically computed for all reactions and encode changes in atoms and bonds. A reaction network containing all available metabolic knowledge was then reduced by an aggregation of reaction nodes and edges to obtain a RMS network. Paths in this network were explored and a substantial number of conserved chemical transformation modules was detected. Furthermore, this graph-based formalism allows us to define several path scores reflecting different biological conservation meanings. These scores are significantly higher for paths corresponding to known metabolic pathways and were used conjointly to build association rules that should predict metabolic pathway types like biosynthesis or degradation. This representation of metabolism in a RMS network offers new insights to capture relevant metabolic contexts. Furthermore, along with genomic context methods, it should improve the detection of gene clusters corresponding to new metabolic pathways.
Kay-Rivest, E; Varma, N; Scott, G M; Manoukian, J J; Desrosiers, M; Vaccani, J P; Nguyen, L H P
2017-02-27
The residency match is an important event in an aspiring physician's career. Otolaryngology - Head and Neck Surgery (OTL-HNS) is a surgical specialty that has enjoyed high numbers of applicants to its residency programs. However, recent trends in Canada show a decline in first-choice applicants to several surgical fields. Factors thought to influence a medical student's choice include role models, career opportunities and work-life balance. The notion of perceived competitiveness is a factor that has not yet been explored. This study sought to compare competitiveness of OTL-HNS, as perceived by Canadian medical students to residency match statistics published yearly by CaRMS (Canadian Residency Matching Service), with the hope of informing future decisions of surgical residency programs. An electronic survey was created and distributed to all medical students enrolled in the 17 Canadian medical schools. After gathering demographic information, students were asked to rank what they perceived to be the five most competitive disciplines offered by CaRMS. They were also asked to rank surgical specialties from most to least competitive. Publically available data from CaRMS was then collected and analyzed to determine actual competitiveness of admissions to Canadian OTL-HNS residency programs. 1194 students, from first to fourth year of medical school, completed the survey. CaRMS statistics over the period from 2008 to 2014 demonstrated that the five most competitive specialties were Plastic Surgery, Dermatology, Ophthalmology, Emergency Medicine and OTL-HNS. Among surgical disciplines, OTL-HNS was third most competitive, where on average 72% of students match to their first-choice discipline. When students were questioned, 35% ranked OTL-HNS amongst the top five most competitive. On the other hand 72%, 74% and 80% recognized Opthalmology, Dermatology and Plastic Surgery as being among the five most competitive, respectively. We found that fourth-year medical students were significantly more knowledgeable about the competitiveness of both OTL-HNS and Plastic Surgery compared to first-year students (p < 0.01). Overall, Canadian medical students may underestimate the competitiveness of OTL-HNS. Furthermore, competitiveness would appear to be a concept that resonates with medical students during the match process.
2016-09-01
mean- square (RMS) error of 0.29° at ə° resolution. For a P4 coded signal, the RMS error in estimating the AOA is 0.32° at 1° resolution. 14...FMCW signal, it was demonstrated that the system is capable of estimating the AOA with a root-mean- square (RMS) error of 0.29° at ə° resolution. For a...Modulator PCB printed circuit board PD photodetector RF radio frequency RMS root-mean- square xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii
Bus current analysis of high power cryocooler's controller
NASA Astrophysics Data System (ADS)
Jin, Zhanlei; Sun, Qiyang; Dai, Liqun; Dong, Jie
2016-03-01
Current analysis was an important research content for reducing power of cryocooler's controller. Simulation was done among load current, H bridge current and power current refer to 42V bus power voltage. Then relationship among IL1, IC1, ρ and IM1 was established. Simulation results indicate that IL1-max, IL1-ave, IL1-rms, IC1-min and IC1-ave were linearly increasing to ρ and IM1, especially IL1-rms ≈ 0.612ρ IM1-max . IC1-rms increase firstly then decrease with the increasing of ρ. IC1-rms reaches maximum when ρ=0.8, then ICL-rms =(12.32/RM1 + 0.98) exp -((ρ-0.78)/0.57)2. The results were useful for miniaturizing cryocooler's controller.
Investigation of PAX3/7-FKHR fusion genes and IGF2 gene expression in rhabdomyosarcoma tumors.
de Souza, Robson Ramos; Oliveira, Indhira Dias; Caran, Eliana Maria Monteiro; Alves, Maria Teresa de Seixas; Abib, Simone; Toledo, Silvia Regina Caminada
2012-12-01
The purpose of our study was to investigate the prevalence of the PAX3/7-FKHR fusion genes and quantify the IGF2 gene expression in rhabdomyosarcoma (RMS) samples. Soft tissue sarcomas account 5% of childhood cancers and 50% of them are RMS. Morphological evaluation of pediatric RMS has defined two histological subtypes, embryonal (ERMS) and alveolar (ARMS). Chromosomal analyses have demonstrated two translocations associated with ARMS, resulting in the PAX3/7-FKHR rearrangements. Reverse transcriptase-polymerase chain reaction (RT-PCR) is extremely useful in the diagnosis of ARMS positive for these rearrangements. Additionally, several studies have shown a significant involvement of IGF pathway in the pathogenesis of RMS. The presence of PAX3/7-FKHR gene fusions was studied in 25 RMS samples from patients attending the IOP-GRAACC/UNIFESP and three RMS cell lines by RT-PCR. IGF2 gene expression was quantified by qPCR and related with clinic pathological parameters. Of the 25 samples, nine (36%) were ARMS and 16 (64%) were ERMS. PAX3/7-FKHR gene fusions expression was detected in 56% of ARMS tumor samples. IGF2 overexpression was observed in 80% of samples and could indicate an important role of this pathway in RMS biology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Liu, Chunxia; Li, Dongliang; Jiang, Jinfang; Hu, Jianming; Zhang, Wei; Chen, Yunzhao; Cui, Xiaobin; Qi, Yan; Zou, Hong; Zhang, WenJie; Li, Feng
2014-01-01
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma with poor prognosis. The genetic etiology of RMS remains largely unclear underlying its development and progression. To reveal novel genes more precisely and new therapeutic targets associated with RMS, we used high-resolution array comparative genomic hybridization (aCGH) to explore tumor-associated copy number variations (CNVs) and genes in RMS. We confirmed several important genes by quantitative real-time polymerase chain reaction (QRT-PCR). We then performed bioinformatics-based functional enrichment analysis for genes located in the genomic regions with CNVs. In addition, we identified miRNAs located in the corresponding amplification and deletion regions and performed miRNA functional enrichment analysis. aCGH analyses revealed that all RMS showed specific gains and losses. The amplification regions were 12q13.12, 12q13.3, and 12q13.3–q14.1. The deletion regions were 1p21.1, 2q14.1, 5q13.2, 9p12, and 9q12. The recurrent regions with gains were 12q13.3, 12q13.3–q14.1, 12q14.1, and 17q25.1. The recurrent regions with losses were 9p12–p11.2, 10q11.21–q11.22, 14q32.33, 16p11.2, and 22q11.1. The mean mRNA level of GLI1 in RMS was 6.61-fold higher than that in controls (p = 0.0477) by QRT-PCR. Meanwhile, the mean mRNA level of GEFT in RMS samples was 3.92-fold higher than that in controls (p = 0.0354). Bioinformatic analysis showed that genes were enriched in functions such as immunoglobulin domain, induction of apoptosis, and defensin. Proto-oncogene functions were involved in alveolar RMS. miRNAs that located in the amplified regions in RMS tend to be enriched in oncogenic activity (miR-24 and miR-27a). In conclusion, this study identified a number of CNVs in RMS and functional analyses showed enrichment for genes and miRNAs located in these CNVs regions. These findings may potentially help the identification of novel biomarkers and/or drug targets implicated in diagnosis of and targeted therapy for RMS. PMID:24743780
NASA Astrophysics Data System (ADS)
Trefonas, Peter, III; Allen, Mary T.
1992-06-01
Shannon's information theory is adapted to analyze the photolithographic process, defining the mask pattern as the prior state. Definitions and constraints to the general theory are developed so that the information content at various stages of the lithographic process can be described. Its application is illustrated by exploring the information content within projected aerial images and resultant latent images. Next, a 3-dimensional molecular scale model of exposure, acid diffusion, and catalytic crosslinking in acid-hardened resists (AHR) is presented. In this model, initial positions of photogenerated acids are determined by probability functions generated from the aerial images and the local light intensity in the film. In order to simulate post-exposure baking processes, acids are diffused in a random walk manner, for which the catalytic chain length and the average distance between crosslinks can be set. Crosslink locations are defined in terms of the topologically minimized number required to link different chains. The size and location of polymer chains involved in a larger scale crosslinked network is established and related to polymer solubility. In this manner, the nature of the crosslinked latent image can be established. Good correlation with experimental data is found for the calculated percent insolubilization as a function of dose when the rms acid diffusion length is about 500 angstroms. Information analysis is applied in detail to the specific example of AHR chemistry. The information contained within the 3-D crosslinked latent image is explored as a function of exposure dose, catalytic chain length, average distance between crosslinks. Eopt (the exposure dose which optimizes the information contained within the latent image) was found to vary with catalytic chain length in a manner similar to that observed experimentally in a plot of E90 versus post-exposure bake time. Surprisingly, the information content of the crosslinked latent image remains high even when rms diffusion lengths are as long as 1500 angstroms. The information content of a standing wave is shown to decrease with increasing diffusion length, with essentially all standing wave information being lost at diffusion lengths greater than 450 angstroms. A unique mechanism for self-contrast enhancement and high resolution in AHR resist is proposed.
Measuring mental workload: ocular astigmatism aberration as a novel objective index.
Jiménez, Raimundo; Cárdenas, David; González-Anera, Rosario; Jiménez, José R; Vera, Jesús
2018-04-01
This study assessed the effect of two perceptually matched mental tasks with different levels of mental demand on ocular aberrations in a group of young adults. We measured ocular aberration with a wavefront sensor, and total, internal and corneal RMS (root mean square) aberrations were calculated from Zernike coefficients, considering natural and scaled pupils (5, 4.5, and 4 mm). We found that total, internal and corneal astigmatism RMS showed significant differences between mental tasks with natural pupils (p < .05), and this effect was maintained with 5 mm scaled pupils (total RMS astigmatism, p < .05). Consistently, pupil size, intraocular pressure, perceived mental load and cognitive performance were influenced by the level of mental complexity (p < .05 for all). The findings suggest that ocular astigmatism aberration, mediated by intraocular pressure, could be an objective, valid reliable index to evaluate the impact of cognitive processing in conjunction with others physiological markers in real world contexts. Practitioner Summary: The search continues for a valid, reliable, convenient method of measuring mental workload. In this study we found ocular astigmatism aberration is sensitive to the cumulative effect of mental effort. It shows promise of being a novel ocular index which may help to assess mental workload in real situations.
Vorticity Transfer in Shock Wave Interactions with Turbulence and Vortices
NASA Astrophysics Data System (ADS)
Agui, J. H.; Andreopoulos, J.
1998-11-01
Time-dependent, three-dimensional vorticity measurements of shock waves interacting with grid generated turbulence and concentrated tip vortices were conducted in a large diameter shock tube facility. Two different mesh size grids and a NACA-0012 semi-span wing acting as a tip vortex generator were used to carry out different relative Mach number interactions. The turbulence interactions produced a clear amplification of the lateral and spanwise vorticity rms, while the longitudinal component remained mostly unaffected. By comparison, the tip vortex/shock wave interactions produced a two fold increase in the rms of longitudinal vorticity. Considerable attention was given to the vorticity source terms. The mean and rms of the vorticity stretching terms dominated by 5 to 7 orders of magnitude over the dilitational compression terms in all the interactions. All three signals of the stretching terms manifested very intermittent, large amplitude peak events which indicated the bursting character of the stretching process. Distributions of these signals were characterized by extremely large levels of flatness with varying degrees of skewness. These distribution patterns were found to change only slightly through the turbulence interactions. However, the tip vortex/shock wave interactions brought about significant changes in these distributions which were associated with the abrupt structural changes of the vortex after the interaction.
Association between the electromyographic fatigue threshold and ventilatory threshold.
Camata, T V; Lacerda, T R; Altimari, L R; Bortolloti, H; Fontes, E B; Dantas, J L; Nakamura, F Y; Abrão, T; Chacon-Mikahil, M P T; Moraes, A C
2009-01-01
The objective of this study is to verify the coincidence between the occurrence of the electromyographic fatigue threshold (EMGth) and the ventilatory threshold (Vth) in an incremental test in the cyclosimulator, as well as to compare the calculation of the RMS from the EMG signal using different time windows. Thirteen male cyclists (73.7 +/- 12.4 kg and 174.3 +/- 6.2 cm) performed a ramp incremental test (TI) in a cyclosimulator until voluntary exhaustion. Before the start of each TI subjects had the active bipolar electrodes placed over the superficial muscles of the quadriceps femoris (QF) of the right leg: rectus femoris (RF), vastus medialis (VM) and vastus lateralis (VL). The paired student's t test, pearson's correlation coefficient and the analysis method described by Bland and Altman for the determination of the concordance level were used for statistical analysis. The significance level adopted was P < 0.05. Although no significant differences were found between Vth and the EMGth calculated from windows of 2, 5, 10, 30 and 60 seconds in the studied muscles, it is suggested that the EMGth values determined from the calculation of the RMS curve with windows of 5 and 10 seconds seem to be more appropriate for the calculation of the RMS curve and determination of EMGth from visual inspection.
A 20fs synchronization system for lasers and cavities in accelerators and FELs
NASA Astrophysics Data System (ADS)
Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Huang, G.; Staples, J. W.
2010-02-01
A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs. Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications components, and uses regular telecom fiber.
Float polishing of optical materials.
Bennett, J M; Shaffer, J J; Shibano, Y; Namba, Y
1987-02-15
The float-polishing technique has been studied to determine its suitability for producing supersmooth surfaces on optical materials, yielding a roughness of <2 A rms. An attempt was made to polish six different materials including fused quartz, Zerodur, and sapphire. The low surface roughness was achieved on fused quartz, Zerodur, and Corning experimental glass-ceramic materials, and a surface roughness of <1 A rms was obtained on O-cut single-crystal sapphire. Presumably, similar surface finishes can also be obtained on CerVit and ULE quartz, which could not be polished satisfactorily in this set of experiments because of a mismatch between sample mounting and machine configuration.
Electric fence standards comport with human data and AC limits.
Kroll, Mark W; Perkins, Peter E; Panescu, Dorin
2015-08-01
The ubiquitous electric fence is essential to modern agriculture and has saved lives by reducing the number of livestock automobile collisions. Modern safety standards such as IEC 60335-2-76 and UL 69 have played a role in this positive result. However, these standards are essentially based on energy and power (RMS current), which have limited direct relationship to cardiac effects. We compared these standards to bioelectrically more relevant units of charge and average current in view of recent work on VF (ventricular fibrillation) induction and to existing IEC AC current limits. There are 3 limits for normal (low) pulsing rate: IEC energy limit, IEC current limit, and UL current limit. We then calculated the delivered charge allowed for each pulse duration for these limits and then compared them to a charge-based safety model derived from published human ventricular-fibrillation induction data. Both the IEC and UL also allow for rapid pulsing for up to 3 minutes. We calculated maximum outputs for various pulse durations assuming pulsing at 10, 20, and 30 pulses per second. These were then compared to standard utility power safety (AC) limits via the conversion factor of 7.4 to convert average current to RMS current for VF risk. The outputs of TASER electrical weapons (typically < 100 μC and ~100 μs duration) were also compared. The IEC and UL electric fence energizer normal rate standards are conservative in comparison with actual human laboratory experiments. The IEC and UL electric fence energizer rapid-pulsing standards are consistent with accepted IEC AC current limits for commercially used pulse durations.
Casini, Nadia; Forte, Iris Maria; Mastrogiovanni, Gianmarco; Pentimalli, Francesca; Angelucci, Adriano; Festuccia, Claudio; Tomei, Valentina; Ceccherini, Elisa; Di Marzo, Domenico; Schenone, Silvia; Botta, Maurizio; Giordano, Antonio; Indovina, Paola
2015-01-01
Recent data suggest that SRC family kinases (SFKs) could represent potential therapeutic targets for rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children. Here, we assessed the effect of a recently developed selective SFK inhibitor (a pyrazolo[3,4-d]pyrimidine derivative, called SI221) on RMS cell lines. SI221, which showed to be mainly effective against the SFK member YES, significantly reduced cell viability and induced apoptosis, without affecting non-tumor cells, such as primary human skin fibroblasts and differentiated C2C12 cells. Moreover, SI221 decreased in vitro cell migration and invasion and reduced tumor growth in a RMS xenograft model. SFK inhibition also induced muscle differentiation in RMS cells by affecting the NOTCH3 receptor-p38 mitogen-activated protein kinase (MAPK) axis, which regulates the balance between proliferation and differentiation. Overall, our findings suggest that SFK inhibition, besides reducing RMS cell growth and invasive potential, could also represent a differentiation therapeutic strategy for RMS. PMID:25762618
Network-based real-time radiation monitoring system in Synchrotron Radiation Research Center.
Sheu, R J; Wang, J P; Chen, C R; Liu, J; Chang, F D; Jiang, S H
2003-10-01
The real-time radiation monitoring system (RMS) in the Synchrotron Radiation Research Center (SRRC) has been upgraded significantly during the past years. The new framework of the RMS is built on the popular network technology, including Ethernet hardware connections and Web-based software interfaces. It features virtually no distance limitations, flexible and scalable equipment connections, faster response time, remote diagnosis, easy maintenance, as well as many graphic user interface software tools. This paper briefly describes the radiation environment in SRRC and presents the system configuration, basic functions, and some operational results of this real-time RMS. Besides the control of radiation exposures, it has been demonstrated that a variety of valuable information or correlations could be extracted from the measured radiation levels delivered by the RMS, including the changes of operating conditions, beam loss pattern, radiation skyshine, and so on. The real-time RMS can be conveniently accessed either using the dedicated client program or World Wide Web interface. The address of the Web site is http:// www-rms.srrc.gov.tw.
Allen, Zachery W [Mandan, ND; Zevenbergen, Gary A [Arvada, CO
2012-04-03
A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.
NASA Astrophysics Data System (ADS)
Vocke, Robert; Rabb, Savelas
2015-04-01
All isotope amount ratios (hereafter referred to as isotope ratios) produced and measured on any mass spectrometer are biased. This unfortunate situation results mainly from the physical processes in the source area where ions are produced. Because the ionized atoms in poly-isotopic elements have different masses, such processes are typically mass dependent and lead to what is commonly referred to as mass fractionation (for thermal ionization and electron impact sources) and mass bias (for inductively coupled plasma sources.) This biasing process produces a measured isotope ratio that is either larger or smaller than the "true" ratio in the sample. This has led to the development of numerous fractionation "laws" that seek to correct for these effects, many of which are not based on the physical processes giving rise to the biases. The search for tighter and reproducible precisions has led to two isotope ratio measurement systems that exist side-by-side. One still seeks to measure "absolute" isotope ratios while the other utilizes an artifact based measurement system called a delta-scale. The common element between these two measurement systems is the utilization of isotope reference materials (iRMs). These iRMs are used to validate a fractionation "law" in the former case and function as a scale anchor in the latter. Many value assignments of iRMs are based on "best measurements" by the original groups producing the reference material, a not entirely satisfactory approach. Other iRMs, with absolute isotope ratio values, have been produced by calibrated measurements following the Atomic Weight approach (AW) pioneered by NBS nearly 50 years ago. Unfortunately, the AW is not capable of calibrating the new generation of iRMs to sufficient precision. So how do we get iRMs with isotope ratios of sufficient precision and without bias? Such a focus is not to denigrate the extremely precise delta-scale measurements presently being made on non-traditional and tradition stable isotope systems. But even absolute isotope ratio measurements have an important role to play in delta-scale schemes. Highly precise and unbiased measurements of the artifact anchor for any scale facilitates the replacement of that scale's anchor once the initial supply of the iRM is exhausted. Absolute isotope ratio measurements of artifacts at the positive and negative extremes of a delta-scale will allow the appropriate assignment of delta-values to these normalizing iRMs, thereby minimizing any scale contractions or expansions to either side of the anchor artifact. And finally, absolute values for critical iRMs with also allow delta-scale results to be used in other scientific disciplines that employ other units of measure. Precise absolute isotope ratios of Si has been one of the consequences of the Avogadro Project (an international effort to replace the original kilogram artifact with a natural constant, the Planck constant.) We will present the results of applying such measurements to the principal iRMs for the Si isotope system (SRM 990, Big Batch and Diatomite) and its consequences for their delta-Si29 and delta-Si30 values.
Wavefront-Guided Scleral Lens Prosthetic Device for Keratoconus
Sabesan, Ramkumar; Johns, Lynette; Tomashevskaya, Olga; Jacobs, Deborah S.; Rosenthal, Perry; Yoon, Geunyoung
2016-01-01
Purpose To investigate the feasibility of correcting ocular higher order aberrations (HOA) in keratoconus (KC) using wavefront-guided optics in a scleral lens prosthetic device (SLPD). Methods Six advanced keratoconus patients (11 eyes) were fitted with a SLPD with conventional spherical optics. A custom-made Shack-Hartmann wavefront sensor was used to measure aberrations through a dilated pupil wearing the SLPD. The position of SLPD, i.e. horizontal and vertical decentration relative to the pupil and rotation were measured and incorporated into the design of the wavefront-guided optics for the customized SLPD. A submicron-precision lathe created the designed irregular profile on the front surface of the device. The residual aberrations of the same eyes wearing the SLPD with wavefront-guided optics were subsequently measured. Visual performance with natural mesopic pupil was compared between SLPDs having conventional spherical and wavefront-guided optics by measuring best-corrected high-contrast visual acuity and contrast sensitivity. Results Root-mean-square of HOA(RMS) in the 11 eyes wearing conventional SLPD with spherical optics was 1.17±0.57μm for a 6 mm pupil. HOA were effectively corrected by the customized SLPD with wavefront-guided optics and RMS was reduced 3.1 times on average to 0.37±0.19μm for the same pupil. This correction resulted in significant improvement of 1.9 lines in mean visual acuity (p<0.05). Contrast sensitivity was also significantly improved by a factor of 2.4, 1.8 and 1.4 on average for 4, 8 and 12 cycles/degree, respectively (p<0.05 for all frequencies). Although the residual aberration was comparable to that of normal eyes, the average visual acuity in logMAR with the customized SLPD was 0.21, substantially worse than normal acuity. Conclusions The customized SLPD with wavefront-guided optics corrected the HOA of advanced KC patients to normal levels and improved their vision significantly. PMID:23478630
NASA Astrophysics Data System (ADS)
Feltz, M. L.; Borg, L.; Knuteson, R. O.; Tobin, D.; Revercomb, H.; Gambacorta, A.
2017-09-01
The U.S. National Oceanic and Atmospheric Administration (NOAA) recently began operational processing to derive vertical temperature profiles from two new sensors, Cross-Track Infrared Sounder and Advanced Technology Microwave Sounder, which were developed for the next generation of U.S. weather satellites. The NOAA-Unique Combined Atmospheric Processing System (NUCAPS) has been developed by NOAA to routinely process data from future Joint Polar Satellite System operational satellites and the preparatory Suomi-NPP satellite. This paper assesses the NUCAPS vertical temperature profile product from the upper troposphere into the middle stratosphere using radiosonde and GPS radio occultation (RO) data. Radiosonde data from the Department of Energy Atmospheric Radiation Measurement (ARM) program are=] compared to both the NUCAPS and GPS RO temperature products to evaluate bias and RMS errors. At all three fixed ARM sites for time periods investigated the NUCAPS temperature in the 100-40 hPa range is found to have an average bias to the radiosondes of less than 0.45 K and an RMS error of less than 1 K when temperature averaging kernels are applied. At a 95% confidence level, the radiosondes and RO were found to agree within 0.4 K at the North Slope of Alaska site and within 0.83 K at Southern Great Plains and Tropical Western Pacific. The GPS RO-derived dry temperatures, obtained from the University Corporation for Atmospheric Research Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, are used as a common reference for the intercomparison of NUCAPS temperature products to similar products produced by NASA from Atmospheric Infrared Sounder (AIRS) and by European Organisation for the Exploitation of Meteorological Satellites from MetOp-B Infrared Atmospheric Sounding Interferometer (IASI). For seasonal and zonal scales, the NUCAPS agreement with AIRS and IASI is less than 0.5 K after application of averaging kernels.
Kalman, Lisa V; Datta, Vivekananda; Williams, Mickey; Zook, Justin M; Salit, Marc L; Han, Jin Yeong
2016-11-01
Characterized reference materials (RMs) are needed for clinical laboratory test development and validation, quality control procedures, and proficiency testing to assure their quality. In this article, we review the development and characterization of RMs for clinical molecular genetic tests. We describe various types of RMs and how to access and utilize them, especially focusing on the Genetic Testing Reference Materials Coordination Program (Get-RM) and the Genome in a Bottle (GIAB) Consortium. This review also reinforces the need for collaborative efforts in the clinical genetic testing community to develop additional RMs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarino, Amy Jo; Obland, Michael; Fast, Jerome D.
2014-06-05
The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying characteristics of the planetary boundary layer (PBL). The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid incharacterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with othermore » research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML), which is a subset within the PBL. This work illustrates the temporal and spatial variability of the ML in the vicinity of Los Angeles and Sacramento, CA. ML heights derived from HSRL measurements are compared to PBL heights derived from radiosonde profiles, ML heights measured from ceilometers, and simulated PBL heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. Comparisons between the HSRL ML heights and the radiosonde profiles in Sacramento result in a correlation coefficient value (R) of 0.93 (root7 mean-square (RMS) difference of 157 m and bias difference (HSRL radiosonde) of 5 m). HSRL ML heights compare well with those from the ceilometer in the LA Basin with an R of 0.89 (RMS difference of 108 m and bias difference (HSRL Ceilometer) of -9.7 m) for distances of up to 30 km between the B-200 flight track and the ceilometer site. Simulated PBL heights from WRF-Chem were compared with those obtained from all flights for each campaign, producing an R of 0.58 (RMS difference of 604 m and a bias difference (WRF-Chem HSRL) of -157 m) for CalNex and 0.59 (RMS difference of 689 m and a bias difference (WRF-Chem HSRL) of 220 m) for CARES. Aerosol backscatter simulations are also available from WRF15 Chem and are compared to those from HSRL to examine differences among the methods used to derive ML heights.« less
Satellite Vibration Testing: Angle optimisation method to Reduce Overtesting
NASA Astrophysics Data System (ADS)
Knight, Charly; Remedia, Marcello; Aglietti, Guglielmo S.; Richardson, Guy
2018-06-01
Spacecraft overtesting is a long running problem, and the main focus of most attempts to reduce it has been to adjust the base vibration input (i.e. notching). Instead this paper examines testing alternatives for secondary structures (equipment) coupled to the main structure (satellite) when they are tested separately. Even if the vibration source is applied along one of the orthogonal axes at the base of the coupled system (satellite plus equipment), the dynamics of the system and potentially the interface configuration mean the vibration at the interface may not occur all along one axis much less the corresponding orthogonal axis of the base excitation. This paper proposes an alternative testing methodology in which the testing of a piece of equipment occurs at an offset angle. This Angle Optimisation method may have multiple tests but each with an altered input direction allowing for the best match between all specified equipment system responses with coupled system tests. An optimisation process that compares the calculated equipment RMS values for a range of inputs with the maximum coupled system RMS values, and is used to find the optimal testing configuration for the given parameters. A case study was performed to find the best testing angles to match the acceleration responses of the centre of mass and sum of interface forces for all three axes, as well as the von Mises stress for an element by a fastening point. The angle optimisation method resulted in RMS values and PSD responses that were much closer to the coupled system when compared with traditional testing. The optimum testing configuration resulted in an overall average error significantly smaller than the traditional method. Crucially, this case study shows that the optimum test campaign could be a single equipment level test opposed to the traditional three orthogonal direction tests.
Hind, Karen; Oldroyd, Brian; Truscott, John G
2010-01-01
Knowledge of precision is integral to the monitoring of bone mineral density (BMD) changes using dual-energy X-ray absorptiometry (DXA). We evaluated the precision for bone measurements acquired using a GE Lunar iDXA (GE Healthcare, Waukesha, WI) in self-selected men and women, with mean age of 34.8 yr (standard deviation [SD]: 8.4; range: 20.1-50.5), heterogeneous in terms of body mass index (mean: 25.8 kg/m(2); SD: 5.1; range: 16.7-42.7 kg/m(2)). Two consecutive iDXA scans (with repositioning) of the total body, lumbar spine, and femur were conducted within 1h, for each subject. The coefficient of variation (CV), the root-mean-square (RMS) averages of SDs of repeated measurements, and the corresponding 95% least significant change were calculated. Linear regression analyses were also undertaken. We found a high level of precision for BMD measurements, particularly for scans of the total body, lumbar spine, and total hip (RMS: 0.007, 0.004, and 0.007 g/cm(2); CV: 0.63%, 0.41%, and 0.53%, respectively). Precision error for the femoral neck was higher but still represented good reproducibility (RMS: 0.014 g/cm(2); CV: 1.36%). There were associations between body size and total-body BMD and total-hip BMD SD precisions (r=0.534-0.806, p<0.05) in male subjects. Regression parameters showed good association between consecutive measurements for all body sites (r(2)=0.98-0.99). The Lunar iDXA provided excellent precision for BMD measurements of the total body, lumbar spine, femoral neck, and total hip. Copyright © 2010 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Fransz, Duncan P; Huurnink, Arnold; de Boode, Vosse A; Kingma, Idsart; van Dieën, Jaap H
2016-02-08
We aimed to provide insight in how threshold selection affects time to stabilization (TTS) and its reliability to support selection of methods to determine TTS. Eighty-two elite youth soccer players performed six single leg drop jump landings. The TTS was calculated based on four processed signals: raw ground reaction force (GRF) signal (RAW), moving root mean square window (RMS), sequential average (SA) or unbounded third order polynomial fit (TOP). For each trial and processing method a wide range of thresholds was applied. Per threshold, reliability of the TTS was assessed through intra-class correlation coefficients (ICC) for the vertical (V), anteroposterior (AP) and mediolateral (ML) direction of force. Low thresholds resulted in a sharp increase of TTS values and in the percentage of trials in which TTS exceeded trial duration. The TTS and ICC were essentially similar for RAW and RMS in all directions; ICC's were mostly 'insufficient' (<0.4) to 'fair' (0.4-0.6) for the entire range of thresholds. The SA signals resulted in the most stable ICC values across thresholds, being 'substantial' (>0.8) for V, and 'moderate' (0.6-0.8) for AP and ML. The ICC's for TOP were 'substantial' for V, 'moderate' for AP, and 'fair' for ML. The present findings did not reveal an optimal threshold to assess TTS in elite youth soccer players following a single leg drop jump landing. Irrespective of threshold selection, the SA and TOP methods yielded sufficiently reliable TTS values, while for RAW and RMS the reliability was insufficient to differentiate between players. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cai, J-J; Tang, X-N; Ge, J-Y
2017-07-01
To investigate the effect of irrigation on the surface roughness and fatigue resistance of HyFlex and M3 controlled memory (CM) wire nickel-titanium instruments. Two new files of each brand were analysed by atomic force microscopy (AFM). Then, the instruments were dynamically immersed in either 5.25% sodium hypochlorite (NaOCl) or 17% ethylene diamine tetraacetic acid (EDTA) solution for 10 min, followed by AFM analysis. The roughness average (Ra) and root mean square (RMS) values were analysed statistically using an independent sample t-test. Then, 36 files of each brand were randomly assigned to three groups (n = 12). Group 1 (the control group) was composed of new instruments. Groups 2 and 3 were dynamically immersed in 5.25% NaOCl and 17% EDTA solutions for 10 min, respectively. The number of rotations to failure for various groups was analysed using the one-way analysis of variance software. For M3 files, the Ra and RMS values significantly increased (P < 0.05) after the immersion. For the HyFlex file, the Ra and RMS values significantly increased (P < 0.05) only in EDTA, but not (P > 0.05) NaOCl. The resistance to cyclic fatigue of both HyFlex and M3 files did not significantly decrease (P > 0.05) by immersing in 5.25% NaOCl and 17% EDTA solutions. Except the HyFlex files immersed in NaOCl, the surface roughness of other files exposed to irrigants increased. However, a change in the surface tomography of CM wire instruments caused by contact with irrigants for 10 min did not trigger a decrease in cyclic fatigue resistance. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Large Eddy Simulation of Ducted Propulsors in Crashbac
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Mahesh, Krishnan
2008-11-01
Flow around a ducted marine propulsor is computed using the large eddy simulation methodology under crashback conditions. Crashback is an operating condition where a propulsor rotates in the reverse direction while the vessel moves in the forward direction. It is characterized by massive flow separation and highly unsteady propeller loads, which affect both blade life and maneuverability. The simulations are performed on unstructured grids using the algorithm developed by Mahesh at al. (2004, J. Comput. Phys 197). The flow is computed at the advance ratio J=-0.7 and Reynolds number Re=480,000 based on the propeller diameter. Average and RMS values of the unsteady loads such as thrust, torque, and side force on the blades and duct are compared to experiment. It is seen that even though effects of the duct on thrust and torque are not large enough, those on the side force are significant. The rms of side forces is much higher in the presence of the duct. Pressure distributions on blade surfaces and duct surface are examined and used to explain this effect. This work was supported by the United States Office of Naval Research under ONR Grant N00014-05-1-0003.
Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope.
Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Li, Dayu; Peng, Zenghui; Liu, Yonggang; Xuan, Li
2009-02-16
A nematic liquid crystal adaptive optics system (NLC AOS) was assembled for a 2.16-m telescope to correct for atmospheric turbulence. LC AOS was designed and optimized with Zemax optical software. Second, an adaptive correction experiment was performed in the laboratory to test the performance of the NLC AOS. After the correction, the peak to valley (PV) and root mean square (RMS) of the wavefront were down to 0.2 lambda (lambda=633 nm) and 0.05 lambda, respectively. Finally, the star of Pollux (beta Gem) was tracked using the 2.16-m Reflecting Telescope, and real time correction of the atmospheric turbulence was performed with the NLC AOS. After the adaptive correction, the average PV and RMS of the wavefront were reduced from 11 lambda and 2.5 lambda to 2.3 lambda and 0.6 lambda, respectively. Although the intensity distribution of the beta Gem was converged and its peak was sharp, a halo still existed around the peak. These results indicated that the NLC AOS only partially corrected the vertical atmospheric turbulence. The limitations of our NLC AOS are discussed and some proposals are made.
Gibelli, Daniele; De Angelis, Danilo; Pucciarelli, Valentina; Riboli, Francesco; Ferrario, Virgilio F; Dolci, Claudia; Sforza, Chiarella; Cattaneo, Cristina
2017-11-20
Palatal rugae are known in literature as individualizing anatomical structures with a strong potential for personal identification. However, a 3D assessment of their uniqueness has not yet been performed. The present study aims at verifying the uniqueness of 3D models of the palate. Twenty-six subjects were recruited among the orthodontic patients of a private dental office; from every patient, at least two dental casts were taken in different time periods, for a total of 62 casts. Dental casts were digitized by a 3D laser scanner (iSeries, Dental Wings©, Montreal, Canada). The palatal area was identified, and a series of 250 superimpositions was then performed automatically through VAM©software in order to reach the minimum point-to point distance between two models. In 36 matches the models belonged to the same individual, whereas in 214 mismatches they came from different subjects. The RMS (root mean square) of point-to-point distances was then calculated by 3D software. Possible statistically significant differences were assessed through Mann-Whitney test (p < 0.05). Results showed a statistically significant difference in RMS mean point-to-point distance between matches (mean 0.26 mm; SD 0.12) and mismatches (mean 1.30; SD 0.44) (p < 0.0001).All matches reached an RMS value below 0.50 mm. This study first provided an assessment of uniqueness of palatal rugae, based on their anatomical 3D conformations, with consequent applications to personal identification.
View of the Columbia's remote manipulator system (RMS)
1982-11-13
STS002-13-226 (13 Nov. 1981) --- Backdropped against Earth's horizon and the darkness of space, the space shuttle Columbia's remote manipulator system (RMS) gets its first workout in zero-gravity during the STS-2 mission. A television camera is mounted near the elbow and another is partially visible near the wrist of the RMS. Photo credit: NASA
Rb1 loss modifies but does not initiate alveolar rhabdomyosarcoma
2013-01-01
Background Alveolar rhabdomyosarcoma (aRMS) is a myogenic childhood sarcoma frequently associated with a translocation-mediated fusion gene, Pax3:Foxo1a. Methods We investigated the complementary role of Rb1 loss in aRMS tumor initiation and progression using conditional mouse models. Results Rb1 loss was not a necessary and sufficient mutational event for rhabdomyosarcomagenesis, nor a strong cooperative initiating mutation. Instead, Rb1 loss was a modifier of progression and increased anaplasia and pleomorphism. Whereas Pax3:Foxo1a expression was unaltered, biomarkers of aRMS versus embryonal rhabdomyosarcoma were both increased, questioning whether these diagnostic markers are reliable in the context of Rb1 loss. Genome-wide gene expression in Pax3:Foxo1a,Rb1 tumors more closely approximated aRMS than embryonal rhabdomyosarcoma. Intrinsic loss of pRb function in aRMS was evidenced by insensitivity to a Cdk4/6 inhibitor regardless of whether Rb1 was intact or null. This loss of function could be attributed to low baseline Rb1, pRb and phospho-pRb expression in aRMS tumors for which the Rb1 locus was intact. Pax3:Foxo1a RNA interference did not increase pRb or improve Cdk inhibitor sensitivity. Human aRMS shared the feature of low and/or heterogeneous tumor cell pRb expression. Conclusions Rb1 loss from an already low pRb baseline is a significant disease modifier, raising the possibility that some cases of pleomorphic rhabdomyosarcoma may in fact be Pax3:Foxo1a-expressing aRMS with Rb1 or pRb loss of function. PMID:24274149
Zhang, Jing; Zhou, Yue-Hua; Li, Rui; Tian, Lei
2013-01-01
AIM To compare visual performance of wavefront-guided laser in situ keratomileusis (LASIK) with iris-registration (Wg-LASIK group) and conventional LASIK (LASIK group) one year after surgery and analyze the correlation between wavefront aberrations and visual performance. METHODS Eight hundred and fifty-two myopic eyes of 430 patients were enrolled in this prospective study and divided into two groups: Wg-LASIK group (436 eyes) and LASIK group (416 eyes). A Wavescan Wavefront aberrometer was used to analyze Zernike coefficients and the root-mean-square (RMS) of higher order aberrations, and Optec 6500 visual function instrument was used to measure contrast sensitivity (CS) before and 3, 6, 12 months after surgery. RESULTS The mean spherical equivalent (SE) in Wg-LASIK group was significantly better than those in LASIK group one year after surgery (P=0.024). Wg-LASIK eyes showed better CS values than LASIK eyes at all spatial frequencies with and without glare after surgery (P all<0.01). Moreover, the increase of higher RMS (RMSh), coma, RMS3, RMS4, RMS5 in Wg-LASIK group were significantly lower than those in LASIK group 1 year after surgery (P all<0.05). The increase of coma, spherical aberration (SA), RMS3 and RMS4 in Wg-LASIK and coma and RMS3 in LASIK group were negatively correlated with reduction of contrast sensitivity 1 year after surgery. CONCLUSION A significant better visual performance is got in Wg-LASIK group compared with LASIK group 1 year after surgery, and the Wg-LASIK is particularly suitable for eyes with high-magnitude RMSh. PMID:23991386
Presotto, L; Bettinardi, V; De Bernardi, E; Belli, M L; Cattaneo, G M; Broggi, S; Fiorino, C
2018-06-01
The analysis of PET images by textural features, also known as radiomics, shows promising results in tumor characterization. However, radiomic metrics (RMs) analysis is currently not standardized and the impact of the whole processing chain still needs deep investigation. We characterized the impact on RM values of: i) two discretization methods, ii) acquisition statistics, and iii) reconstruction algorithm. The influence of tumor volume and standardized-uptake-value (SUV) on RM was also investigated. The Chang-Gung-Image-Texture-Analysis (CGITA) software was used to calculate 39 RMs using phantom data. Thirty noise realizations were acquired to measure statistical effect size indicators for each RM. The parameter η 2 (fraction of variance explained by the nuisance factor) was used to assess the effect of categorical variables, considering η 2 < 20% and 20% < η 2 < 40% as representative of a "negligible" and a "small" dependence respectively. The Cohen's d was used as discriminatory power to quantify the separation of two distributions. We found the discretization method based on fixed-bin-number (FBN) to outperform the one based on fixed-bin-size in units of SUV (FBS), as the latter shows a higher SUV dependence, with 30 RMs showing η 2 > 20%. FBN was also less influenced by the acquisition and reconstruction setup:with FBN 37 RMs had η 2 < 40%, only 20 with FBS. Most RMs showed a good discriminatory power among heterogeneous PET signals (for FBN: 29 out of 39 RMs with d > 3). For RMs analysis, FBN should be preferred. A group of 21 RMs was suggested for PET radiomics analysis. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Molecular diagnostics in the management of rhabdomyosarcoma.
Arnold, Michael A; Barr, Fredric G
2017-02-01
A classification of rhabdomyosarcoma (RMS) with prognostic relevance has primarily relied on clinical features and histologic classification as either embryonal or alveolar RMS. The PAX3-FOXO1 and PAX7-FOXO1 gene fusions occur in 80% of cases with the alveolar subtype and are more predictive of outcome than histologic classification. Identifying additional molecular hallmarks that further subclassify RMS is an active area of research. Areas Covered: The authors review the current state of the PAX3-FOXO1 and PAX7-FOXO1 fusions as prognostic biomarkers. Emerging biomarkers, including mRNA expression profiling, MYOD1 mutations, RAS pathway mutations and gene fusions involving NCOA2 or VGLL2 are also reviewed. Expert commentary: Strategies for modifying RMS risk stratification based on molecular biomarkers are emerging with the potential to transform the clinical management of RMS, ultimately improving patient outcomes by tailoring therapy to predicted patient risk and identifying targets for novel therapies.
Formula for the rms blur circle radius of Wolter telescope based on aberration theory
NASA Technical Reports Server (NTRS)
Shealy, David L.; Saha, Timo T.
1990-01-01
A formula for the rms blur circle for Wolter telescopes has been derived using the transverse ray aberration expressions of Saha (1985), Saha (1984), and Saha (1986). The resulting formula for the rms blur circle radius over an image plane and a formula for the surface of best focus based on third-, fifth-, and seventh-order aberration theory predict results in good agreement with exact ray tracing. It has also been shown that one of the two terms in the empirical formula of VanSpeybroeck and Chase (1972), for the rms blur circle radius of a Wolter I telescope can be justified by the aberration theory results. Numerical results are given comparing the rms blur radius and the surface of best focus vs the half-field angle computed by skew ray tracing and from analytical formulas for grazing incidence Wolter I-II telescopes and a normal incidence Cassegrain telescope.
Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere.
Dan, Youquan; Zhang, Bin
2008-09-29
The Wigner distribution function (WDF) has been used to study the beam propagation factor (M(2)-factor) for partially coherent flat-topped (PCFT) beams with circular symmetry in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle and the definition of the WDF, an expression for the WDF of PCFT beams in turbulence has been given. By use of the second-order moments of the WDF, the analytical formulas for the root-mean-square (rms) spatial width, the rms angular width, and the M(2)-factor of PCFT beams in turbulence have been derived, which can be applied to cases of different spatial power spectra of the refractive index fluctuations. The rms angular width and the M(2)-factor of PCFT beams in turbulence have been discussed with numerical examples. It can be shown that the M(2)-factor of PCFT beams in turbulence depends on the beam order, degree of global coherence of the source, waist width, wavelength, spatial power spectrum of the refractive index fluctuations, and propagation distance.
Application of adaptive Kalman filter in vehicle laser Doppler velocimetry
NASA Astrophysics Data System (ADS)
Fan, Zhe; Sun, Qiao; Du, Lei; Bai, Jie; Liu, Jingyun
2018-03-01
Due to the variation of road conditions and motor characteristics of vehicle, great root-mean-square (rms) error and outliers would be caused. Application of Kalman filter in laser Doppler velocimetry(LDV) is important to improve the velocity measurement accuracy. In this paper, the state-space model is built by using current statistical model. A strategy containing two steps is adopted to make the filter adaptive and robust. First, the acceleration variance is adaptively adjusted by using the difference of predictive observation and measured observation. Second, the outliers would be identified and the measured noise variance would be adjusted according to the orthogonal property of innovation to reduce the impaction of outliers. The laboratory rotating table experiments show that adaptive Kalman filter greatly reduces the rms error from 0.59 cm/s to 0.22 cm/s and has eliminated all the outliers. Road experiments compared with a microwave radar show that the rms error of LDV is 0.0218 m/s, and it proves that the adaptive Kalman filtering is suitable for vehicle speed signal processing.
Application of RMS for damage detection by guided elastic waves
NASA Astrophysics Data System (ADS)
Radzieński, M.; Doliński, Ł.; Krawczuk, M.; dot Zak, A.; Ostachowicz, W.
2011-07-01
This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.
A Fully Sensorized Cooperative Robotic System for Surgical Interventions
Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M.; Aceves, Marco A.; Gorrostieta, Efren; Kalender, Willi A.
2012-01-01
In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements. PMID:23012551
Januario, Leticia Bergamin; Madeleine, Pascal; Cid, Marina Machado; Samani, Afshin; Oliveira, Ana Beatriz
2018-01-01
This study investigated the acute effects of changing the work pace and implementing two pause types during an assembly task. Eighteen healthy women performed a simulated task in four different conditions: 1) slow or 2) fast work pace with 3) passive or 4) active pauses every two minutes. The root mean square (RMS) and exposure variation analysis (EVA) from the trapezius and serratus anterior muscles, as well as the rate of perceived exertion (RPE) from the neck-shoulder region, were observed. Decreased RMS and RPE as well as more variable muscle activity (EVA) were observed in the slow work pace compared with the fast one. The pause types had a limited effect, but active pauses resulted in increased RMS of the clavicular trapezius. The findings revealed the importance of work pace in the reduction of perceived exertion and promotion of variation in muscle activation during assembly tasks. However, the pause types had no important effect on the evaluated outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
O'Neill, N. T.; Campanelli, M.; Lupu, A.; Thulasiraman, S.; Reid, J. S.; Aubé, M.; Neary, L.; Kaminski, J. W.; McConnell, J. C.
The root-mean-square (rms) differences between the Canadian air quality model GEM-AQ and measurements for intensive and extensive optical variables (aerosol optical depth or AOD and Ångström exponent or α) were investigated using data from the July 2002 Québec smoke event. In order to quantify regional differences between model and measurements we employed a three component analysis of rms differences. The behaviour of the two absolute amplitude rms components of AOD (difference of the means and the difference of the standard deviations) enabled us to infer emission properties which would otherwise have been masked by the larger 'anti-correlation' component. We found the inferred emission fluxes to be significantly higher than the original geostationary, satellite-derived FLAMBÉ (fire locating and modelling of burning emissions) emissions flux estimates employed as inputs to the simulations. The model captured the regional decrease of the intensive α exponent (increase of particle size with trajectory time), while the agreement with the extensive AOD parameter was marginal but clearly dependent on the nature of the spatio-temporal statistical tools employed to characterize model performance. In establishing the α versus trajectory time trend, the modelled AOD data was filtered in the same way as the measured data (very large AODs are eliminated). This processing of modelled results was deemed necessary in order to render the α results comparable with the measurements; in the latter case it was difficult, if not impossible, to discriminate between measured α trends due to instrumental artifacts (non-linearities at low signal strength) versus trends due to coagulative effects.
NASA Astrophysics Data System (ADS)
Zhou, Feng; Li, Xingxing; Cai, Miaomiao; Chen, Wen; Dong, Danan; Schuh, Harald
2017-04-01
Since October 2011, the Russian GLONASS has been revitalized and is now fully operational with 24 satellites in orbit. It is critical to assess the benefits and problems of using GLONASS observations (i.e. GLONASS-only or combined GPS/GLONASS) for precise positioning and zenith total delay (ZTD) retrieval on a global scale using the precise point positioning (PPP) technique. In this contribution, extensive evaluations are conducted with GNSS data sets collected from 251 globally distributed stations of the International GNSS Service (IGS) network in July 2016. The stations are divided into 30 groups by antenna/radome types to investigate whether there are antenna/radome-dependent biases in position and ZTD results derived from GLONASS-only PPP. The positioning results do not show obvious antenna/radome-dependent biases except the stations with JAV_RINGANT_G3T/NONE. The averaged biases of the stations with JAV_RINGANT_G3T/NONE in horizontal component especially in north component can even achieve -9.0 mm. The standard deviation (STD) and root mean square (RMS) are used as indicators of positioning repeatability and accuracy, respectively. Compared with GPS-only PPP, smaller averaged STD and RMS values of GLONASS-only PPP are achieved in horizontal component, while larger ones in vertical component. Furthermore, the STD and RMS values of GPS/GLONASS combined PPP solutions are the smallest in horizontal and vertical components, indicating that adding GLONASS observations can achieve better positioning performance than GPS-only PPP. Meanwhile, better positioning repeatability and accuracy are found in north component than that in east component, which may be caused by the configuration of GNSS satellite orbit. With respect to GPS-only PPP-derived ZTD, the ZTD biases, accuracy, and correlation derived from GLONASS-only and GPS/GLONASS PPP solutions are antenna/radome-independent, while the biases and accuracy are slightly latitude- or Geometric Dilution of Precisions (GDOP)-dependent, as well as the ZTD correlation are highly latitude- or GDOP-dependent. We also studied the impact of the chosen elevation cutoff angles on the positioning and ZTD retrieval. GLONASS-only PPP is found more sensitive with the elevation cutoff angles than GPS-only PPP.
Quasi-Periodic Variability in NGC 5408 X-1
NASA Technical Reports Server (NTRS)
Strohmayer, Tod E.; Mushotzky, Richard F.; Winter, Lisa; Soria, Roberto; Uttley, Phil; Cropper, Mark
2007-01-01
We report the discovery with XMM-Newton of quasiperiodic variability in the 0.2 - 10 keV X-ray flux from the ultraluminous X-ray source NGC 5408 X-1. The average power spectrum of all EPIC-pn data reveals a strong 20 mHz QPO with an average amplitude (rms) of 9%, and a coherence, Q identical with nu(sub 0)/sigma approximately equal to 6. In a 33 ksec time interval when the 20 mHz QPO is strongest we also find evidence for a 2nd QPO peak at 15 mHz, the first indication for a close pair of QPOs in a ULX source. Interestingly, the frequency ratio of this QPO pair is inconsistent with 3:2 at the 3 sigma level, but is consistent with a 4:3 ratio. A powerlaw noise component with slope near 1.5 is also present below 0.1 Hz with evidence for a break to a flatter slope at about 3 mHz. The source shows substantial broadband variability, with a total amplitude (rms) of about 30% in the 0.1 - 100 mHz frequency band, and there is strong energy dependence to the variability. The power spectrum of hard X-ray photons (greater than 2 keV) shows a "classic" flat-topped continuum breaking to a power law with index 1.5 - 2. Both the break and 20 mHz QPO are detected in the hard band, and the 20 mHz QPO is essentially at the break. The QPO is both strong and narrow in this band, having an amplitude (rms) of 15%, and Q approx. equal to 25. The energy spectrum is well fit by three components, a "cool" disk with kT = 0.15 keV, a steep power law with index 2.56, and a thermal plasma at kT = 0.87 keV. The disk, power law, and thermal plasma components contribute 35, 60, and 5% of the 0.3 - 10 keV flux, respectively. Both the timing and spectral properties of NGC 5408 X-1 are strikingly reminiscent of Galactic black hole systems at high inferred accretion rates, but with its characteristic frequencies (QPO and break frequencies) scaled down by a factor of 10 - 100. We discuss the implications of these findings in the context of models for ULXs, and their implications for the object's mass.
Spagnuolo, G; Ametrano, G; D'Antò, V; Rengo, C; Simeone, M; Riccitiello, F; Amato, M
2012-12-01
To evaluate the effects of repeated autoclave sterilization cycles on surface topography of conventional nickel-titanium ( NiTi ) and titanium nitride ( TiN )-coated rotary instruments. A total of 60 NiTi rotary instruments, 30 ProTaper (Dentsply Maillefer) and 30 TiN -coated AlphaKite (Komet/Gebr. Brasseler), were analysed. Instruments were evaluated in the as-received condition and after 1, 5 and 10 sterilization cycles. After sterilization, the samples were observed using scanning electron microscope (SEM), and surface chemical analysis was performed on each instrument with energy dispersive X-ray spectroscopy (EDS). Moreover, the samples were analysed by atomic force microscopy (AFM), and roughness average (Ra) and the root mean square value (RMS) of the scanned surface profiles were recorded. Data were analysed by means of anova followed by Tukey's test. Scanning electron microscope observations revealed the presence of pitting and deep milling marks in all instruments. EDS analysis confirmed that both types of instruments were composed mainly of nickel and titanium, whilst AlphaKite had additional nitride. After multiple autoclave sterilization cycles, SEM examinations revealed an increase in surface alterations, and EDS values indicated changes in chemical surface composition in all instruments. Ra and RMS values of ProTaper significantly increased after 5 (P = 0.006) and 10 cycles (P = 0.002) with respect to the as-received instruments, whilst AlphaKite showed significant differences compared with the controls after 10 cycles (P = 0.03). Multiple autoclave sterilization cycles modified the surface topography and chemical composition of conventional and TiN -coated NiTi rotary instruments. © 2012 International Endodontic Journal.
NASA Astrophysics Data System (ADS)
Voityuk, Alexander A.
2008-03-01
The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the π stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15ns MD trajectories for several DNA oligomers, we calculate the average coupling squares ⟨V2⟩ and the energies of basepair triplets XG +Y and XA +Y, where X, Y =G, A, T, and C. For each of the 32 systems, 15 000 conformations separated by 1ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B-DNA structure and show that in several important cases the couplings calculated for the idealized B-DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, ˜0.07eV, while the interstrand couplings are quite different. The energies of hole states G+ and A+ in the stack depend on the nature of the neighboring pairs. The XG +Y are by 0.5eV more stable than XA +Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA.
Anagnostopoulos, G; Baltas, D; Geretschlaeger, A; Martin, T; Papagiannis, P; Tselis, N; Zamboglou, N
2003-11-15
To evaluate the potential of in vivo thermoluminescence dosimetry to estimate the accuracy of dose delivery in conformal high-dose-rate brachytherapy of prostate cancer. A total of 50 LiF, TLD-100 cylindrical rods were calibrated in the dose range of interest and used as a batch for all fractions. Fourteen dosimeters for every treatment fraction were loaded in a plastic 4F catheter that was fixed in either one of the 6F needles implanted for treatment purposes or in an extra needle implanted after consulting with the patient. The 6F needles were placed either close to the urethra or in the vicinity of the median posterior wall of the prostate. Initial results are presented for 18 treatment fractions in 5 patients and compared to corresponding data calculated using the commercial treatment planning system used for the planning of the treatments based on CT images acquired postimplantation. The maximum observed mean difference between planned and delivered dose within a single treatment fraction was 8.57% +/- 2.61% (root mean square [RMS] errors from 4.03% to 9.73%). Corresponding values obtained after averaging results over all fractions of a patient were 6.88% +/- 4.93% (RMS errors from 4.82% to 7.32%). Experimental results of each fraction corresponding to the same patient point were found to agree within experimental uncertainties. Experimental results indicate that the proposed method is feasible for dose verification purposes and suggest that dose delivery in transperineal high-dose-rate brachytherapy after CT-based planning can be of acceptable accuracy.
Distracted Driving in Teens With and Without Attention-Deficit/Hyperactivity Disorder.
Stavrinos, Despina; Garner, Annie A; Franklin, Crystal A; Johnson, Haley D; Welburn, Sharon C; Griffin, Russell; Underhill, Andrea T; Fine, Philip R
2015-01-01
This study is among the first to examine the effect of talking on a cell phone or text messaging while driving in teens with and without attention deficit/hyperactivity disorder (ADHD). Teens (average age 17years) with a diagnosis of ADHD (N=16) were matched with typically developing controls (N=18). All participants operated a driving simulator while (1) conversing on a cell phone, (2) text messaging, and (3) with no distraction during a baseline condition. Six indicators of driving performance were recorded: (a) time to complete the drive; (b) lane deviations; (c) variability in lane position (i.e., root mean square [RMS]); (d) reaction time; (e) motor vehicle collisions; and, (f) speed fluctuation. Significantly greater variation in lane position occurred in the texting task compared to no task and the cell phone task. While texting, in particular, teens with ADHD took significantly less time to complete the scenario. No significant main effects of group were found. Generally, those with ADHD did not differ in regard to driving performance, when compared to controls, with the exception of one outcome: time to complete scenario. These findings suggest that distracted driving impairs driving performance of teen drivers, regardless of ADHD status. Texting while driving had the greatest negative impact on driving performance, particularly with regard to variability in lane position (i.e., RMS). This study sheds light on key issues regarding injury prevention, with the intent of providing pediatric care providers with the knowledge to inform teen drivers of risks associated with distracted driving which will ultimately result in reduced rates of motor vehicle crashes and concomitant injuries. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.
2008-12-01
A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.
Distracted Driving in Teens with and without Attention-Deficit/Hyperactivity Disorder
Stavrinos, Despina; Garner, Annie A.; Franklin, Crystal A.; Johnson, Haley D.; Welburn, Sharon C.; Griffin, Russell; Underhill, Andrea T.; Fine, Philip R.
2015-01-01
Objective This study is among the first to examine the effect of talking on a cell phone or text messaging while driving in teens with and without Attention Deficit/Hyperactivity Disorder (ADHD). Method Teens (average age 17 years) with a diagnosis of ADHD (N=16) were matched with typically developing controls (N=18). All participants operated a driving simulator while (1) conversing on a cell phone, (2) text messaging, and (3) with no distraction during a baseline condition. Six indicators of driving performance were recorded: (a) time to complete the drive; (b) lane deviations; (c) variability in lane position (i.e., Root Mean Square [RMS]); (d) reaction time; (e) motor vehicle collisions; and, (f) speed fluctuation. Results Significantly greater variation in lane position occurred in the texting task compared to no task and the cell phone task. While texting, in particular, teens with ADHD took significantly less time to complete the scenario. No significant main effects of group were found. Conclusions Generally, those with ADHD did not differ in regard to driving performance, when compared to controls, with the exception of one outcome: time to complete scenario. These findings suggest that distracted driving impairs driving performance of teen drivers, regardless of ADHD status. Texting while driving had the greatest negative impact on driving performance, particularly with regard to variability in lane position (i.e., RMS). This study sheds light on key issues regarding injury prevention, with the intent of providing pediatric care providers with the knowledge to inform teen drivers of risks associated with distracted driving which will ultimately result in reduced rates of motor vehicle crashes and concomitant injuries. PMID:26049214
Dust Attenuation and H(alpha) Star Formation Rates of Z Approx. 0.5 Galaxies
NASA Technical Reports Server (NTRS)
Ly, Chun; Malkan, Matthew A.; Kashikawa, Nobunari; Ota, Kazuaki; Shimasaku, Kazuhiro; Iye, Masanori; Currie, Thayne
2012-01-01
Using deep narrow-band and broad-band imaging, we identify 401 z approximately 0.40 and 249 z approximately 0.49 H-alpha line-emitting galaxies in the Subaru Deep Field. Compared to other H-alpha surveys at similar redshifts, our samples are unique since they probe lower H-alpha luminosities, are augmented with multi-wavelength (rest-frame 1000AA--1.5 microns) coverage, and a large fraction (20%) of our samples has already been spectroscopically confirmed. Our spectra allow us to measure the Balmer decrement for nearly 60 galaxies with H-beta detected above 5-sigma. The Balmer decrements indicate an average extinction of A(H-alpha)=0.7(uparrow){+1.4}_{-0.7} mag. We find that the Balmer decrement systematically increases with higher H-alpha luminosities and with larger stellar masses, in agreement with previous studies with sparser samples. We find that the SFRs estimated from modeling the spectral energy distribution (SED) is reliable---we derived an "intrinsic" H-alpha luminosity which is then reddened assuming the color excess from SED modeling. The SED-predicted H-alpha luminosity agrees with H-alpha narrow-band measurements over 3 dex (rms of 0.25 dex). We then use the SED SFRs to test different statistically-based dust corrections for H-alpha and find that adopting one magnitude of extinction is inappropriate: galaxies with lower luminosities are less reddened. We find that the luminosity-dependent dust correction of Hopkins et al. yields consistent results over 3 dex (rms of 0.3 dex). Our comparisons are only possible by assuming that stellar reddening is roughly half of nebular reddening. The strong correspondence argue that with SED modeling, we can derive reliable intrinsic SFRs even in the absence of H-alpha measurements at z approximately 0.5.
Hart, Roger C; Herring, G C; Balla, R Jeffrey
2007-06-15
Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
NASA Technical Reports Server (NTRS)
Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.
2007-01-01
Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
LANDSAT 4 band 6 data evaluation
NASA Technical Reports Server (NTRS)
1983-01-01
Satellite data collected over Lake Ontario were processed to observed surface temperature values. This involved computing apparent radiance values for each point where surface temperatures were known from averaged digital count values. These radiance values were then converted by using the LOWTRAN 5A atmospheric propagation model. This model was modified by incorporating a spectral response function for the LANDSAT band 6 sensors. A downwelled radiance term derived from LOWTRAN was included to account for reflected sky radiance. A blackbody equivalent source radiance was computed. Measured temperatures were plotted against the predicted temperature. The RMS error between the data sets is 0.51K.
Methods for the quantification of pseudo-vibration sensitivities in laser vibrometry
NASA Astrophysics Data System (ADS)
Martin, P.; Rothberg, S. J.
2011-03-01
Pseudo-vibration sensitivities in laser vibrometry are the consequence of measurement noise generated by surface motions other than that on-axis with the incident laser beam(s), such as transverse and tilt vibrations or rotation. On rougher surfaces, laser speckle is the cause but similar noise is observed in measurements from smoother surfaces. This paper's principal aim is to introduce two experimental methods for quantification, including dedicated data processing, to deliver sensitivities in three forms: a spectral map, a mean level per order and a total rms level. Single and parallel beam vibrometers and different surface roughness or treatment are accommodated, with sensitivities presented for two commercial instruments (beam diameters 90 and 520 µm). For transverse sensitivity, a total rms level around 0.05% is found for the larger beam, a quarter of the level for the smaller beam. For tilt sensitivity, advantage shifts to the smaller beam with a total rms level around 0.45 µm s-1/deg s-1, less than one-third of that for the larger beam. Levels hold fairly constant across the rougher surfaces, reducing only for a polished surface. For rotation sensitivities (radial vibrations), advantage remains with the smaller beam with a total rms level around 2 µm s-1/deg s-1, compared to 5 µm s-1/deg s-1 for the larger beam, while sensitivity reduces with diminishing roughness. These sensitivities are especially valuable to vibrometer users in instrumentation selection and data analysis.
Manna, Sudeshna; Panse, Cornelia H; Sontakke, Vyankat A; Sangamesh, Sarangamath; Srivatsan, Seergazhi G
2017-08-17
The development of biophysical systems that enable an understanding of the structure and ligand-binding properties of G-quadruplex (GQ)-forming nucleic acid sequences in cells or models that mimic the cellular environment would be highly beneficial in advancing GQ-directed therapeutic strategies. Herein, the establishment of a biophysical platform to investigate the structure and recognition properties of human telomeric (H-Telo) DNA and RNA repeats in a cell-like confined environment by using conformation-sensitive fluorescent nucleoside probes and a widely used cellular model, bis(2-ethylhexyl) sodium sulfosuccinate reverse micelles (RMs), is described. The 2'-deoxy and ribonucleoside probes, composed of a 5-benzofuran uracil base analogue, faithfully report the aqueous micellar core through changes in their fluorescence properties. The nucleoside probes incorporated into different loops of H-Telo DNA and RNA oligonucleotide repeats are minimally perturbing and photophysically signal the formation of respective GQ structures in both aqueous buffer and RMs. Furthermore, these sensors enable a direct comparison of the binding affinity of a ligand to H-Telo DNA and RNA GQ structures in the bulk and confined environment of RMs. These results demonstrate that this combination of a GQ nucleoside probe and easy-to-handle RMs could provide new opportunities to study and devise screening-compatible assays in a cell-like environment to discover GQ binders of clinical potential. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Taking Aim at Important Targets in Sarcoma | Center for Cancer Research
Rhabdomyosarcoma (RMS) is the most common childhood soft tissue sarcoma, a cancer of the body’s connective or supportive tissues such as muscle, cartilage, or fat. The two major classifications of RMS include the embryonal subtype, which accounts for approximately three-quarters of children diagnosed with RMS, and the more aggressive alveolar (ARMS) subtype, which has a
STS-39 SPAS-II IBSS is grappled by remote manipulator system (RMS)
1991-05-06
STS039-19-015 (28 April- 6 May 1991) --- This STS-39 35mm scene shows the Strategic Defense Initiative Organization (SDIO) Shuttle Pallet Satellite (SPAS-II) on the end of the remote manipulator system (RMS) end effector. During the eight-day flight, SPAS collected data in both a free-flying mode and while attached to the RMS.
NASA Technical Reports Server (NTRS)
Demeo, Martha E.
1990-01-01
The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).
Reconfigurable Mobile System - Ground, sea and air applications
NASA Astrophysics Data System (ADS)
Lamonica, Gary L.; Sturges, James W.
1990-11-01
The Reconfigurable Mobile System (RMS) is a highly mobile data-processing unit for military users requiring real-time access to data gathered by airborne (and other) reconnaissance data. RMS combines high-performance computation and image processing workstations with resources for command/control/communications in a single, lightweight shelter. RMS is composed of off-the-shelf components, and is easily reconfigurable to land-vehicle or shipboard versions. Mission planning, which involves an airborne sensor platform's sensor coverage, considered aircraft/sensor capabilities in conjunction with weather, terrain, and threat scenarios. RMS's man-machine interface concept facilitates user familiarization and features iron-based function selection and windowing.
Mueller, Juliane; Martinez-Valdes, Eduardo; Stoll, Josefine; Mueller, Steffen; Engel, Tilman; Mayer, Frank
2018-03-01
The purpose was to examine gender differences in ankle stabilizing muscle activation during postural disturbances. Seventeen participants (9 females: 27 ± 2yrs., 1.69 ± 0.1 m, 63 ± 7 kg; 8 males: 29 ± 2yrs., 1.81 ± 0.1 m; 83 ± 7 kg) were included in the study. After familiarization on a split-belt-treadmill, participants walked (1 m/s) while 15 right-sided perturbations were randomly applied 200 ms after initial heel contact. Muscle activity of M. tibialis anterior (TA), peroneus longus (PL) and gastrocnemius medialis (GM) was recorded during unperturbed and perturbed walking. The root mean square (RMS; [%]) was analyzed within 200 ms after perturbation. Co-activation was quantified as ratio of antagonist (GM)/agonist (TA) EMG-RMS during unperturbed and perturbed walking. Time to onset was calculated (ms). Data were analyzed descriptively (mean ± SD) followed by three-way-ANOVA (gender/condition/muscle; α = 0.05). Perturbed walking elicited higher EMG activity compared to normal walking for TA and PL in both genders (p < 0.000). RMS amplitude gender comparisons revealed an interaction between gender and condition (F = 4.6, p = 0.049) and, a triple interaction among gender, condition and muscle (F = 4.7, p = 0.02). Women presented significantly higher EMG-RMS [%] PL amplitude than men during perturbed walking (mean difference = 209.6%, 95% confidence interval = -367.0 to -52.2%, p < 0.000). Co-activation showed significant lower values for perturbed compared to normal walking (p < 0.000), without significant gender differences for both walking conditions. GM activated significantly earlier than TA and PL (p < 0.01) without significant differences between the muscle activation onsets of men and women (p = 0.7). The results reflect that activation strategies of the ankle encompassing muscles differ between genders. In provoked stumbling, higher PL EMG activity in women compared to men is present. Future studies should aim to elucidate if this specific behavior has any relationship with ankle injury occurrence between genders. Copyright © 2018 Elsevier B.V. All rights reserved.
DockQ: A Quality Measure for Protein-Protein Docking Models
Basu, Sankar
2016-01-01
The state-of-the-art to assess the structural quality of docking models is currently based on three related yet independent quality measures: Fnat, LRMS, and iRMS as proposed and standardized by CAPRI. These quality measures quantify different aspects of the quality of a particular docking model and need to be viewed together to reveal the true quality, e.g. a model with relatively poor LRMS (>10Å) might still qualify as 'acceptable' with a descent Fnat (>0.50) and iRMS (<3.0Å). This is also the reason why the so called CAPRI criteria for assessing the quality of docking models is defined by applying various ad-hoc cutoffs on these measures to classify a docking model into the four classes: Incorrect, Acceptable, Medium, or High quality. This classification has been useful in CAPRI, but since models are grouped in only four bins it is also rather limiting, making it difficult to rank models, correlate with scoring functions or use it as target function in machine learning algorithms. Here, we present DockQ, a continuous protein-protein docking model quality measure derived by combining Fnat, LRMS, and iRMS to a single score in the range [0, 1] that can be used to assess the quality of protein docking models. By using DockQ on CAPRI models it is possible to almost completely reproduce the original CAPRI classification into Incorrect, Acceptable, Medium and High quality. An average PPV of 94% at 90% Recall demonstrating that there is no need to apply predefined ad-hoc cutoffs to classify docking models. Since DockQ recapitulates the CAPRI classification almost perfectly, it can be viewed as a higher resolution version of the CAPRI classification, making it possible to estimate model quality in a more quantitative way using Z-scores or sum of top ranked models, which has been so valuable for the CASP community. The possibility to directly correlate a quality measure to a scoring function has been crucial for the development of scoring functions for protein structure prediction, and DockQ should be useful in a similar development in the protein docking field. DockQ is available at http://github.com/bjornwallner/DockQ/ PMID:27560519
Ding, Huanjun; Molloi, Sabee
2012-08-07
A simple and accurate measurement of breast density is crucial for the understanding of its impact in breast cancer risk models. The feasibility to quantify volumetric breast density with a photon-counting spectral mammography system has been investigated using both computer simulations and physical phantom studies. A computer simulation model involved polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector has been evaluated for breast density quantification. The figure-of-merit (FOM), which was defined as the signal-to-noise ratio of the dual energy image with respect to the square root of mean glandular dose, was chosen to optimize the imaging protocols, in terms of tube voltage and splitting energy. A scanning multi-slit photon-counting spectral mammography system has been employed in the experimental study to quantitatively measure breast density using dual energy decomposition with glandular and adipose equivalent phantoms of uniform thickness. Four different phantom studies were designed to evaluate the accuracy of the technique, each of which addressed one specific variable in the phantom configurations, including thickness, density, area and shape. In addition to the standard calibration fitting function used for dual energy decomposition, a modified fitting function has been proposed, which brought the tube voltages used in the imaging tasks as the third variable in dual energy decomposition. For an average sized 4.5 cm thick breast, the FOM was maximized with a tube voltage of 46 kVp and a splitting energy of 24 keV. To be consistent with the tube voltage used in current clinical screening exam (∼32 kVp), the optimal splitting energy was proposed to be 22 keV, which offered a FOM greater than 90% of the optimal value. In the experimental investigation, the root-mean-square (RMS) error in breast density quantification for all four phantom studies was estimated to be approximately 1.54% using standard calibration function. The results from the modified fitting function, which integrated the tube voltage as a variable in the calibration, indicated a RMS error of approximately 1.35% for all four studies. The results of the current study suggest that photon-counting spectral mammography systems may potentially be implemented for an accurate quantification of volumetric breast density, with an RMS error of less than 2%, using the proposed dual energy imaging technique.
NASA Astrophysics Data System (ADS)
Ainsbury, Elizabeth A.; Conein, Emma; Henshaw, Denis L.
2005-07-01
Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 ± 0.02 µT across all residences. In contrast, background field ellipticities were high, on average 47 ± 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 ± 21% and 21 ± 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. This work is supported by the charity CHILDREN with LEUKAEMIA, registered charity number 298405.
Dynamic balance in elite karateka.
Zago, Matteo; Mapelli, Andrea; Shirai, Yuri Francesca; Ciprandi, Daniela; Lovecchio, Nicola; Galvani, Christel; Sforza, Chiarella
2015-12-01
In karate, balance control represents a key performance determinant. With the hypothesis that high-level athletes display advanced balance abilities, the purpose of the current study was to quantitatively investigate the motor strategies adopted by elite and non-elite karateka to maintain balance control in competition. The execution of traditional karate techniques (kihon) in two groups of elite Masters (n = 6, 31 ± 19 years) and non-elite Practitioners (n = 4, 25 ± 9 years) was compared assessing body center of mass (CoM) kinematics and other relevant parameters like step width and angular joint behavior. In the considered kihon sequence, normalized average CoM height was 8% lower (p < 0.05), while CoM displacement in the horizontal direction was significantly higher in Masters than in Practitioners (2.5 vs. 1.9 m, p < 0.05), as well as CoM average velocity and rms acceleration (p < 0.05). Step width was higher in Masters in more than half of the sequence steps (p < 0.05). Results suggest that elite karateka showed a refined dynamic balance control, obtained through the increase of the base of support and different maneuvers of lower limbs. The proposed method could be used to objectively detect talented karateka, to measure proficiency level and to assess training effectiveness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ploquin, A; Olmos, D; Lacombe, D; A'Hern, R; Duhamel, A; Twelves, C; Marsoni, S; Morales-Barrera, R; Soria, J-C; Verweij, J; Voest, E E; Schöffski, P; Schellens, J H; Kramar, A; Kristeleit, R S; Arkenau, H-T; Kaye, S B; Penel, N
2012-09-25
Selecting patients with 'sufficient life expectancy' for Phase I oncology trials remains challenging. The Royal Marsden Hospital Score (RMS) previously identified high-risk patients as those with ≥ 2 of the following: albumin <35 g l(-1); LDH > upper limit of normal; >2 metastatic sites. This study developed an alternative prognostic model, and compared its performance with that of the RMS. The primary end point was the 90-day mortality rate. The new model was developed from the same database as RMS, but it used Chi-squared Automatic Interaction Detection (CHAID). The ROC characteristics of both methods were then validated in an independent database of 324 patients enrolled in European Organization on Research and Treatment of Cancer Phase I trials of cytotoxic agents between 2000 and 2009. The CHAID method identified high-risk patients as those with albumin <33 g l(-1) or ≥ 33 g l(-1), but platelet counts ≥ 400.000 mm(-3). In the validation data set, the rates of correctly classified patients were 0.79 vs 0.67 for the CHAID model and RMS, respectively. The negative predictive values (NPV) were similar for the CHAID model and RMS. The CHAID model and RMS provided a similarly high level of NPV, but the CHAID model gave a better accuracy in the validation set. Both CHAID model and RMS may improve the screening process in phase I trials.
Computer-generated scenes depicting the HST capture and EVA repair mission
1993-11-12
Computer generated scenes depicting the Hubble Space Telescope capture and a sequence of planned events on the planned extravehicular activity (EVA). Scenes include the Remote Manipulator System (RMS) arm assisting two astronauts changing out the Wide Field/Planetary Camera (WF/PC) (48699); RMS arm assisting in the temporary mating of the orbiting telescope to the flight support system in Endeavour's cargo bay (48700); Endeavour's RMS arm assisting in the "capture" of the orbiting telescope (48701); Two astronauts changing out the telescope's coprocessor (48702); RMS arm assistign two astronauts replacing one of the telescope's electronic control units (48703); RMS assisting two astronauts replacing the fuse plugs on the telescope's Power Distribution Unit (PDU) (48704); The telescope's High Resolution Spectrograph (HRS) kit is depicted in this scene (48705); Two astronauts during the removal of the high speed photometer and the installation of the COSTAR instrument (48706); Two astronauts, standing on the RMS, during installation of one of the Magnetic Sensing System (MSS) (48707); High angle view of the orbiting Space Shuttle Endeavour with its cargo bay doors open, revealing the bay's pre-capture configuration. Seen are, from the left, the Solar Array Carrier, the ORU Carrier and the flight support system (48708); Two astronauts performing the replacement of HST's Rate Sensor Units (RSU) (48709); The RMS arm assisting two astronauts with the replacement of the telescope's solar array panels (48710); Two astronauts replacing the telescope's Solar Array Drive Electronics (SADE) (48711).
Optical scattering from rough-rolled aluminum surfaces.
Rönnelid, M; Adsten, M; Lindström, T; Nostell, P; Wäckelgård, E
2001-05-01
Bidirectional, angular resolved scatterometry was used to evaluate the feasibility of using rolled aluminum as reflectors in solar thermal collectors and solar cells. Two types of rolled aluminum with different surface roughnesses were investigated. The results show that the smoother of the two samples [rms height, (0.20 ? 0.02) mum] can be used as a nonimaging, concentrating reflector with moderate reflection losses compared with those of optically smooth aluminum reflectors. The sample with the rougher surface [rms height, (0.6 ? 0.1) mum] is not suitable as a concentrating element but can be used as planar reflectors. The orientation of the rolling grooves is then of importance for minimizing reflection losses in the system.
Models of subjective response to in-flight motion data
NASA Technical Reports Server (NTRS)
Rudrapatna, A. N.; Jacobson, I. D.
1973-01-01
Mathematical relationships between subjective comfort and environmental variables in an air transportation system are investigated. As a first step in model building, only the motion variables are incorporated and sensitivities are obtained using stepwise multiple regression analysis. The data for these models have been collected from commercial passenger flights. Two models are considered. In the first, subjective comfort is assumed to depend on rms values of the six-degrees-of-freedom accelerations. The second assumes a Rustenburg type human response function in obtaining frequency weighted rms accelerations, which are used in a linear model. The form of the human response function is examined and the results yield a human response weighting function for different degrees of freedom.
van der Leij, Christiaan; Lavini, Cristina; van de Sande, Marleen G H; de Hair, Marjolein J H; Wijffels, Christophe; Maas, Mario
2015-12-01
To compare the between-session reproducibility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) combined with time-intensity curve (TIC)-shape analysis in arthritis patients, within one scanner and between two different scanners, and to compare this method with qualitative analysis and pharmacokinetic modeling (PKM). Fifteen knee joint arthritis patients were included and scanned twice on a closed-bore 1.5T scanner (n = 9, group 1), or on a closed-bore 1.5T and on an open-bore 1.0T scanner (n = 6, group 2). DCE-MRI data were postprocessed using in-house developed software ("Dynamo"). Disease activity was assessed. Disease activity was comparable between the two visits. In group 1 qualitative analysis showed the highest reproducibility with intraclass correlation coefficients (ICCs) between 0.78 and 0.98 and root mean square-coefficients of variation (RMS-CoV) of 8.0%-14.9%. TIC-shape analysis showed a slightly lower reproducibility with similar ICCs (0.78-0.97) but higher RMS-CoV (18.3%-42.9%). The PKM analysis showed the lowest reproducibility with ICCs between 0.39 and 0.64 (RMS-CoV 21.5%-51.9%). In group 2 TIC-shape analysis of the two most important TIC-shape types showed the highest reproducibility with ICCs of 0.78 and 0.71 (RMS-CoV 29.8% and 59.4%) and outperformed the reproducibility of the most important qualitative parameter (ICC 0.31, RMS-CoV 45.1%) and the within-scanner reproducibility of PKM analysis. TIC-shape analysis is a robust postprocessing method within one scanner, almost as reproducible as the qualitative analysis. Between scanners, the reproducibility of the most important TIC-shapes outperform that of the most important qualitative parameter and the within-scanner reproducibility of PKM analysis. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Chow, L. S. H.; Cheng, H. S.
1976-01-01
The Christensen theory of a stochastic model for hydrodynamic lubrication of rough surfaces was extended to elastohydrodynamic lubrication between two rollers. Solutions for the reduced pressure at the entrance as a function of the ratio of the average nominal film thickness to the rms surface roughness, were obtained numerically. Results were obtained for purely transverse as well as purely longitudinal surface roughness for cases with or without slip. The reduced pressure was shown to decrease slightly by considering longitudinal surface roughness. The same approach was used to study the effect of surface roughness on lubrication between rigid rollers and lubrication of an infinitely wide slider bearing. Using the flow balance concept, the perturbed Reynolds equation, was derived and solved for the perturbed pressure distribution. In addition, Cheng's numerical scheme was modified to incorporate a single two-dimensional elastic asperity on the stationary surface. The perturbed pressures obtained by these three different models were compared.
Robustness study of the pseudo open-loop controller for multiconjugate adaptive optics.
Piatrou, Piotr; Gilles, Luc
2005-02-20
Robustness of the recently proposed "pseudo open-loop control" algorithm against various system errors has been investigated for the representative example of the Gemini-South 8-m telescope multiconjugate adaptive-optics system. The existing model to represent the adaptive-optics system with pseudo open-loop control has been modified to account for misalignments, noise and calibration errors in deformable mirrors, and wave-front sensors. Comparison with the conventional least-squares control model has been done. We show with the aid of both transfer-function pole-placement analysis and Monte Carlo simulations that POLC remains remarkably stable and robust against very large levels of system errors and outperforms in this respect least-squares control. Approximate stability margins as well as performance metrics such as Strehl ratios and rms wave-front residuals averaged over a 1-arc min field of view have been computed for different types and levels of system errors to quantify the expected performance degradation.
16 CFR § 1505.5 - Electrical design and construction.
Code of Federal Regulations, 2013 CFR
2013-01-01
... lampholder contact which is at a potential of more than 30 volts r.m.s. (42.4 volts peak) to any other part... incandescent lamp having a voltage of more than 30 volts r.m.s. (42.4 volts peak) between any of its electrodes... any other part or ground is greater than 30 volts r.m.s. (42.4 volts peak), the contacts shall be...
16 CFR 1505.5 - Electrical design and construction.
Code of Federal Regulations, 2010 CFR
2010-01-01
... contact which is at a potential of more than 30 volts r.m.s. (42.4 volts peak) to any other part or to... having a voltage of more than 30 volts r.m.s. (42.4 volts peak) between any of its electrodes or... ground is greater than 30 volts r.m.s. (42.4 volts peak), the contacts shall be located in an insulating...
16 CFR 1505.5 - Electrical design and construction.
Code of Federal Regulations, 2011 CFR
2011-01-01
... contact which is at a potential of more than 30 volts r.m.s. (42.4 volts peak) to any other part or to... having a voltage of more than 30 volts r.m.s. (42.4 volts peak) between any of its electrodes or... ground is greater than 30 volts r.m.s. (42.4 volts peak), the contacts shall be located in an insulating...
16 CFR 1505.5 - Electrical design and construction.
Code of Federal Regulations, 2014 CFR
2014-01-01
... contact which is at a potential of more than 30 volts r.m.s. (42.4 volts peak) to any other part or to... having a voltage of more than 30 volts r.m.s. (42.4 volts peak) between any of its electrodes or... ground is greater than 30 volts r.m.s. (42.4 volts peak), the contacts shall be located in an insulating...
16 CFR 1505.5 - Electrical design and construction.
Code of Federal Regulations, 2012 CFR
2012-01-01
... contact which is at a potential of more than 30 volts r.m.s. (42.4 volts peak) to any other part or to... having a voltage of more than 30 volts r.m.s. (42.4 volts peak) between any of its electrodes or... ground is greater than 30 volts r.m.s. (42.4 volts peak), the contacts shall be located in an insulating...
A newborn infant with intrapericardial rhabdomyosarcoma: a case report.
Tutak, Ercan; Satar, Mehmet; Ozbarlas, Nazan; Uğuz, Aysun; Yapicioğlu, Hacer; Narli, Nejat; Bayram, Ibrahim
2008-01-01
Cardiac tumors are uncommon in neonates and most of them are histologically benign. The most common cardiac tumor in neonates and infants is rhabdomyoma. Malignant cardiac tumors are considerably rarer, and rhabdomyosarcoma (RMS) is the leading malignancy. To our knowledge, only one case of intrapericardial RMS was reported in the literature, in a seven-month-old baby. Here we present another newborn baby with intrapericardial RMS.
Fujiwara, Takashi; Nishida, Naoya; Nota, Jumpei; Kitani, Takashi; Aoishi, Kunihide; Takahashi, Hirotaka; Sugahara, Takuya; Hato, Naohito
2016-12-01
Chlorophyll c2 extracted from Sargassum horneri improved allergic symptoms in an animal model of allergic rhinitis. In the present study, we explored the efficacy of chlorophyll c2 in patients with seasonal allergic rhinitis. This was a single-center, randomized, double-blind placebo-controlled trial. Sixty-six patients aged 20-43 years, each with a 2-year history of seasonal allergic rhinitis, were randomly assigned to receive either a single daily dose (0.7 mg) of chlorophyll c2 or placebo for 12 weeks. The use of medications including H1-antihistamines and topical nasal steroids was recorded by rescue medication scores (RMSs) noted after 4, 8, and 12 weeks of treatment. Disease-specific quality of life was measured using the Japan Rhinitis Quality of Life Questionnaire (JRQLQ) both before and after 4, 8, and 12 weeks of treatment. The RMS at 8 weeks was significantly better in the chlorophyll c2 than the placebo group (mean RMS difference = -3.09; 95 % confidence interval = -5.96 to -0.22); the mean RMS at 4 weeks was only slightly better in the chlorophyll c2 group. The JRQLQ scores did not differ significantly between the two groups. Chlorophyll c2 would have a potential to be an alternative treatment for allergic rhinitis.
Climate Intervention as an Optimization Problem
NASA Astrophysics Data System (ADS)
Caldeira, Ken; Ban-Weiss, George A.
2010-05-01
Typically, climate models simulations of intentional intervention in the climate system have taken the approach of imposing a change (eg, in solar flux, aerosol concentrations, aerosol emissions) and then predicting how that imposed change might affect Earth's climate or chemistry. Computations proceed from cause to effect. However, humans often proceed from "What do I want?" to "How do I get it?" One approach to thinking about intentional intervention in the climate system ("geoengineering") is to ask "What kind of climate do we want?" and then ask "What pattern of radiative forcing would come closest to achieving that desired climate state?" This involves defining climate goals and a cost function that measures how closely those goals are attained. (An important next step is to ask "How would we go about producing these desired patterns of radiative forcing?" However, this question is beyond the scope of our present study.) We performed a variety of climate simulations in NCAR's CAM3.1 atmospheric general circulation model with a slab ocean model and thermodynamic sea ice model. We then evaluated, for a specific set of climate forcing basis functions (ie, aerosol concentration distributions), the extent to which the climate response to a linear combination of those basis functions was similar to a linear combination of the climate response to each basis function taken individually. We then developed several cost functions (eg, relative to the 1xCO2 climate, minimize rms difference in zonal and annual mean land temperature, minimize rms difference in zonal and annual mean runoff, minimize rms difference in a combination of these temperature and runoff indices) and then predicted optimal combinations of our basis functions that would minimize these cost functions. Lastly, we produced forward simulations of the predicted optimal radiative forcing patterns and compared these with our expected results. Obviously, our climate model is much simpler than reality and predictions from individual models do not provide a sound basis for action; nevertheless, our model results indicate that the general approach outlined here can lead to patterns of radiative forcing that make the zonal annual mean climate of a high CO2 world markedly more similar to that of a low CO2 world simultaneously for both temperature and hydrological indices, where degree of similarity is measured using our explicit cost functions. We restricted ourselves to zonally uniform aerosol concentrations distributions that can be defined in terms of a positive-definite quadratic equation on the sine of latitude. Under this constraint, applying an aerosol distribution in a 2xCO2 climate that minimized a combination of rms difference in zonal and annual mean land temperature and runoff relative to the 1xCO2 climate, the rms difference in zonal and annual mean temperatures was reduced by ~90% and the rms difference in zonal and annual mean runoff was reduced by ~80%. This indicates that there may be potential for stratospheric aerosols to diminish simultaneously both temperature and hydrological cycle changes caused by excess CO2 in the atmosphere. Clearly, our model does not include many factors (eg, socio-political consequences, chemical consequences, ocean circulation changes, aerosol transport and microphysics) so we do not argue strongly for our specific climate model results, however, we do argue strongly in favor of our methodological approach. The proposed approach is general, in the sense that cost functions can be developed that represent different valuations. While the choice of appropriate cost functions is inherently a value judgment, evaluating those functions for a specific climate simulation is a quantitative exercise. Thus, the use of explicit cost functions in evaluating model results for climate intervention scenarios is a clear way of separating value judgments from purely scientific and technical issues.
Accuracy Assessment of the Precise Point Positioning for Different Troposphere Models
NASA Astrophysics Data System (ADS)
Oguz Selbesoglu, Mahmut; Gurturk, Mert; Soycan, Metin
2016-04-01
This study investigates the accuracy and repeatability of PPP technique at different latitudes by using different troposphere delay models. Nine IGS stations were selected between 00-800 latitudes at northern hemisphere and southern hemisphere. Coordinates were obtained for 7 days at 1 hour intervals in summer and winter. At first, the coordinates were estimated by using Niell troposphere delay model with and without including north and east gradients in order to investigate the contribution of troposphere delay gradients to the positioning . Secondly, Saastamoinen model was used to eliminate troposphere path delays by using standart atmosphere parameters were extrapolated for all station levels. Finally, coordinates were estimated by using RTCA-MOPS empirical troposphere delay model. Results demonstrate that Niell troposphere delay model with horizontal gradients has better mean values of rms errors 0.09 % and 65 % than the Niell troposphere model without horizontal gradients and RTCA-MOPS model, respectively. Saastamoinen model mean values of rms errors were obtained approximately 4 times bigger than the Niell troposphere delay model with horizontal gradients.
How to obtain accurate resist simulations in very low-k1 era?
NASA Astrophysics Data System (ADS)
Chiou, Tsann-Bim; Park, Chan-Ha; Choi, Jae-Seung; Min, Young-Hong; Hansen, Steve; Tseng, Shih-En; Chen, Alek C.; Yim, Donggyu
2006-03-01
A procedure for calibrating a resist model iteratively adjusts appropriate parameters until the simulations of the model match the experimental data. The tunable parameters may include the shape of the illuminator, the geometry and transmittance/phase of the mask, light source and scanner-related parameters that affect imaging quality, resist process control and most importantly the physical/chemical factors in the resist model. The resist model can be accurately calibrated by measuring critical dimensions (CD) of a focus-exposure matrix (FEM) and the technique has been demonstrated to be very successful in predicting lithographic performance. However, resist model calibration is more challenging in the low k1 (<0.3) regime because numerous uncertainties, such as mask and resist CD metrology errors, are becoming too large to be ignored. This study demonstrates a resist model calibration procedure for a 0.29 k1 process using a 6% halftone mask containing 2D brickwall patterns. The influence of different scanning electron microscopes (SEM) and their wafer metrology signal analysis algorithms on the accuracy of the resist model is evaluated. As an example of the metrology issue of the resist pattern, the treatment of a sidewall angle is demonstrated for the resist line ends where the contrast is relatively low. Additionally, the mask optical proximity correction (OPC) and corner rounding are considered in the calibration procedure that is based on captured SEM images. Accordingly, the average root-mean-square (RMS) error, which is the difference between simulated and experimental CDs, can be improved by considering the metrological issues. Moreover, a weighting method and a measured CD tolerance are proposed to handle the different CD variations of the various edge points of the wafer resist pattern. After the weighting method is implemented and the CD selection criteria applied, the RMS error can be further suppressed. Therefore, the resist CD and process window can be confidently evaluated using the accurately calibrated resist model. One of the examples simulates the sensitivity of the mask pattern error, which is helpful to specify the mask CD control.
NASA Technical Reports Server (NTRS)
Lubin, Philip M.; Tomizuka, Masayoshi; Chingcuanco, Alfredo O.; Meinhold, Peter R.
1991-01-01
A balloon-born stabilized platform has been developed for the remotely operated altitude-azimuth pointing of a millimeter wave telescope system. This paper presents a development and implementation of model reference adaptive control (MRAC) for the azimuth-pointing system of the stabilized platform. The primary goal of the controller is to achieve pointing rms better than 0.1 deg. Simulation results indicate that MRAC can achieve pointing rms better than 0.1 deg. Ground test results show pointing rms better than 0.03 deg. Data from the first flight at the National Scientific Balloon Facility (NSBF) Palestine, Texas show pointing rms better than 0.02 deg.
Bulska, Ewa; Krata, Agnieszka; Kałabun, Mateusz; Wojciechowski, Marcin
2017-03-01
This work focused on the development and validation of methodologies for the accurate determination of mercury in environmental samples and its further application for the preparation and certification of new reference materials (RMs). Two certified RMs ERM-CC580 (inorganic matrix) and ERM-CE464 (organic matrix) were used for the evaluation of digestion conditions assuring the quantitative recovery of mercury. These conditions were then used for the digestion of new candidates for the environmental RMs: bottom sediment (M_2 BotSed), herring tissue (M_3 HerTis), cormorant tissue (M_4 CormTis), and codfish muscle (M_5 CodTis). Cold vapor atomic absorption spectrometry (CV AAS) and inductively coupled plasma mass spectrometry (ICP MS) were used for the measurement of mercury concentration in all RMs. In order to validate and assure the accuracy of results, isotope dilution mass spectrometry (IDMS) was applied as a primary method of measurement, assuring the traceability of obtained values to the SI units: the mole, the kilogram, and the second. Results obtained by IDMS using n( 200 Hg)/n( 202 Hg) ratio, with estimated combined uncertainty, were as follows: (916 ± 41)/[4.5 %] ng g -1 (M_2 BotSed), (236 ± 14)/[5.9 %] ng g -1 (M_3 HerTis), (2252 ± 54)/[2.4 %] ng g -1 (M_4 CormTis), and (303 ± 15)/[4.9 %] ng g -1 (M_CodTis), respectively. Different types of detection techniques and quantification (external calibration, standard addition, isotope dilution) were applied in order to improve the quality of the analytical results. The good agreement (within less than 2.5 %) between obtained results and those derived from the Inter-laboratory Comparison, executed by the Institute of Nuclear Chemistry and Technology (Warsaw, Poland) on the same sample matrices, further validated the analytical procedures developed in this study, as well as the concentration of mercury in all four new RMs. Although the developed protocol enabling the metrological certification of the reference value was exemplified by the determination of mercury in environmental samples, it could be considered as valid for any certification procedure required whenever new certified RMs are introduced.
An evaluation of training effectiveness of an intelligent tutoring system
NASA Technical Reports Server (NTRS)
Johnson, Debra Steele; Pieper, Kalen F.; Culbert, Chris
1992-01-01
The study evaluated the training effectiveness of an intelligent tutoring system (ITS) for the Remote Manipulator System (RMS). The study examined how well individuals learn the training content and skills from the RMS ITS and to what extent the content and skills learned using the ITS transfer to RMS task performance in the SES, a high fidelity simulator. Three astronauts completed 8 2-hour ITS sessions addressing movement in three coordinate systems, grapple, ungrapple, berth, and unberth procedures, and singularities and reach limits. Their performance was also observed in an SES training session. Performance data were collected using multiple measures: ITS task performance, transfer performance on the SES, a conceptual knowledge test, an opinion survey completed by astronauts, and comments and observations from astronauts and trainers. Results indicated the RMS ITS to be moderately effective and provided evidence of the efficacy of ITS's, in general. Comments and suggestions are provided relating to how the ITS could be improved and to enable decision makers to judge the effectiveness of the RMS ITS.
Analytic Method for Computing Instrument Pointing Jitter
NASA Technical Reports Server (NTRS)
Bayard, David
2003-01-01
A new method of calculating the root-mean-square (rms) pointing jitter of a scientific instrument (e.g., a camera, radar antenna, or telescope) is introduced based on a state-space concept. In comparison with the prior method of calculating the rms pointing jitter, the present method involves significantly less computation. The rms pointing jitter of an instrument (the square root of the jitter variance shown in the figure) is an important physical quantity which impacts the design of the instrument, its actuators, controls, sensory components, and sensor- output-sampling circuitry. Using the Sirlin, San Martin, and Lucke definition of pointing jitter, the prior method of computing the rms pointing jitter involves a frequency-domain integral of a rational polynomial multiplied by a transcendental weighting function, necessitating the use of numerical-integration techniques. In practice, numerical integration complicates the problem of calculating the rms pointing error. In contrast, the state-space method provides exact analytic expressions that can be evaluated without numerical integration.
NASA Astrophysics Data System (ADS)
Haller, Julian; Wilkens, Volker
2012-11-01
For power levels up to 200 W and sonication times up to 60 s, the electrical power, the voltage and the electrical impedance (more exactly: the ratio of RMS voltage and RMS current) have been measured for a piezocomposite high intensity therapeutic ultrasound (HITU) transducer with integrated matching network, two piezoceramic HITU transducers with external matching networks and for a passive dummy 50 Ω load. The electrical power and the voltage were measured during high power application with an inline power meter and an RMS voltage meter, respectively, and the complex electrical impedance was indirectly measured with a current probe, a 100:1 voltage probe and a digital scope. The results clearly show that the input RMS voltage and the input RMS power change unequally during the application. Hence, the indication of only the electrical input power or only the voltage as the input parameter may not be sufficient for reliable characterizations of ultrasound transducers for high power applications in some cases.
Evangelista, Lorraine S.; Moser, Debra K.; Lee, Jung-Ah; Moore, Alison A.; Ghasemzadeh, Hassan; Sarrafzadeh, Majid; Mangione, Carol M.
2015-01-01
Objective: This study was conducted to evaluate the feasibility, usability, and acceptability of using remote monitoring systems (RMS) in monitoring health status (e.g., vital signs, symptom distress) in older adults (≥55) with chronic heart failure (HF). Method: Twenty-one patients (52.4% women, mean age 73.1 ± 9.3) were trained to measure and transmit health data with an RMS. Data transmissions were tracked for 12 weeks. Results: All participants initiated use of RMS within 1 week; 71%, 14%, and 14% of patients transmitted daily health data 100%, ≥75%, and <75% of the time, respectively, for 12 weeks. Overall usability and acceptability of the RMS were 4.08 ± 0.634 and 4.10 ± 0.563, respectively (when scored on a range of 1-5, where 1 = strongly disagree and 5 = strongly agree). Discussion: Findings show that an RMS-based intervention can be successfully implemented in a group of older patients with chronic HF. PMID:28138479
[Effect of vibrational factors on the evaluation of whole-body vibrational intensity].
Suzuki, H
1997-12-01
The aim of this study is to obtain basic data useful to evaluate the riding comfort of railway vehicles. The apparatus used in the present experiment made it possible to simulate various vibrations of railway vehicles. Twenty-two adult subjects participated in this experiment. They were exposed to lateral vibration with varying peak and root mean square (rms) accelerations and frequencies. The types and ranges of vibrations used in this experiment approximated to the typical vibrations of railway vehicles. The subjects were asked to rate the intensity of each vibration given to them successively, using the 7-step rating scale. Results indicated that both peak and rms accelerations significantly affected for the evaluation, although the effect of frequency was not significant. As for interactions, it was found that there were significant interacting effects between frequency and peak acceleration, between frequency and rms acceleration, and between peak and rms accelerations. It was also found that the relationship between the rms acceleration and the evaluated score changed with varying peak accelerations.
Beam based alignment and its relevance in Indus-2.
Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M L; Agrawal, R K; Yadav, S; Ghodke, A D
2015-09-01
Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers that the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.
Beam based alignment and its relevance in Indus-2
NASA Astrophysics Data System (ADS)
Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M. L.; Agrawal, R. K.; Yadav, S.; Ghodke, A. D.
2015-09-01
Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers that the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, Will; Smedley, Scott; Gillingham, Peter
We present Simulated Annealing fiber-to-target allocation simulations for the proposed DESI and 4MOST massively multiplexed spectroscopic surveys, and for both Poisson and realistically clustered mock target samples. We simulate both Echidna and theta-phi actuator designs, including the restrictions caused by the physical actuator characteristics during repositioning. For DESI, with theta-phi actuators, used in 5 passes over the sky for a mock ELG/LRG/QSO sample, with matched fiber and target densities, a total target allocation yield of 89.3% was achieved, but only 83.7% for the high-priority Ly-alpha QSOs. If Echidna actuators are used with the same pitch and number of passes, themore » yield increases by 5.7% and 16% respectively. Echidna also allows a factor-of-two increase in the number of close Ly-alpha QSO pairs that can be observed. Echidna spine tilt causes a variable loss of throughput, with average loss being the same as the loss at the rms tilt. With a natural tilt minimization scheme, we find an rms tilt always close to 0.58 x maximum. There is an additional but much smaller defocus loss, equivalent to an average defocus of 30microns. These tilt losses offset the gains in yield for Echidna, but because the survey strategy is driven by the higher priority targets, a clear survey speed advantage remains. For 4MOST, high and low latitude sample mock catalogs were supplied by the 4MOST team, and allocations were carried out with the proposed Echidna-based positioner geometry. At high latitudes, the resulting target completeness was 85.3% for LR targets and 78.9% for HR targets. At low latitude, the target completeness was 93.9% for LR targets and 71.2% for HR targets.« less
Dellagrana, Rodolfo André; Rossato, Mateus; Sakugawa, Raphael Luiz; Lazzari, Caetano Decian; Baroni, Bruno Manfredini; Diefenthaeler, Fernando
2018-02-01
The purpose of this study was to verify the photobiomodulation therapy (PBMT) effects with different doses on neuromuscular economy during submaximal running tests. Eighteen male recreational runners participate in a randomized, double-blind, and placebo-controlled trial, which each participant was submitted to the same testing protocol in five conditions: control, placebo, and PBMT with doses of 15, 30, and 60 J per site (14 sites in each lower limb). The submaximal running was performed at 8 and 9 km h -1 during 5 min for each velocity. Muscle activation of the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), and gastrocnemius lateralis (GL) was collected during the last minute of each running test. The root mean square (RMS) was normalized by maximal isometric voluntary contraction (MIVC) performed a priori in an isokinetic dynamometer. The RMS sum of all muscles (RMS LEG ) was considered as main neuromuscular economy parameter. PBMT with doses of 15, 30, and 60 J per site [33 diodes = 5 lasers (850 nm), 12 LEDs (670 nm), 8 LEDs (880 nm), and 8 LEDs (950 nm)] or placebo applications occurred before running tests. For the statistical analysis, the effect size was calculated. Moreover, a qualitative inference was used to determine the magnitude of differences between groups. Peak torque and RMS during MIVCs showed small effect sizes. According to magnitude-based inference, PBMT with dose of 15 J per site showed possibly and likely beneficial effects on neuromuscular economy during running at 8 and 9 km h -1 , respectively. On other hand, PBMT with doses of 30 and 60 J per site showed possible beneficial effects only during running at 9 km h -1 . We concluded that PBMT improve neuromuscular economy and the best PBMT dose was 15 J per site (total dose of 420 J).
Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Vanhaecke, Frank
2016-01-01
Mercury (Hg) isotopic analysis via multi-collector inductively coupled plasma (ICP)-mass spectrometry (MC-ICP-MS) can provide relevant biogeochemical information by revealing sources, pathways, and sinks of this highly toxic metal. In this work, the capabilities and limitations of two different sample introduction systems, based on pneumatic nebulization (PN) and cold vapor generation (CVG), respectively, were evaluated in the context of Hg isotopic analysis via MC-ICP-MS. The effect of (i) instrument settings and acquisition parameters, (ii) concentration of analyte element (Hg), and internal standard (Tl)-used for mass discrimination correction purposes-and (iii) different mass bias correction approaches on the accuracy and precision of Hg isotope ratio results was evaluated. The extent and stability of mass bias were assessed in a long-term study (18 months, n = 250), demonstrating a precision ≤0.006% relative standard deviation (RSD). CVG-MC-ICP-MS showed an approximately 20-fold enhancement in Hg signal intensity compared with PN-MC-ICP-MS. For CVG-MC-ICP-MS, the mass bias induced by instrumental mass discrimination was accurately corrected for by using either external correction in a sample-standard bracketing approach (SSB) or double correction, consisting of the use of Tl as internal standard in a revised version of the Russell law (Baxter approach), followed by SSB. Concomitant matrix elements did not affect CVG-ICP-MS results. Neither with PN, nor with CVG, any evidence for mass-independent discrimination effects in the instrument was observed within the experimental precision obtained. CVG-MC-ICP-MS was finally used for Hg isotopic analysis of reference materials (RMs) of relevant environmental origin. The isotopic composition of Hg in RMs of marine biological origin testified of mass-independent fractionation that affected the odd-numbered Hg isotopes. While older RMs were used for validation purposes, novel Hg isotopic data are provided for the latest generations of some biological RMs.
NASA Technical Reports Server (NTRS)
1983-01-01
The Remote Monitoring System (RMS) is manufactured by Perkin Elmer Corporation. The principal component of the RMS was originally developed for spacecraft use to monitor astronaut's respiratory gases in NASA's Gemini and Apollo program. At Wishard Memorial Hospital in Indianapolis, IN, the RMS is used in operating rooms for analysis of anesthetic gases and measurement of oxygen, carbon dioxide and nitrogen concentrations. It assures that the patient undergoing surgery has the proper breathing environment.
Taking Aim at Important Targets in Sarcoma | Center for Cancer Research
Rhabdomyosarcoma (RMS) is the most common childhood soft tissue sarcoma, a cancer of the body’s connective or supportive tissues such as muscle, cartilage, or fat. The two major classifications of RMS include the embryonal subtype, which accounts for approximately three-quarters of children diagnosed with RMS, and the more aggressive alveolar (ARMS) subtype, which has a five-year survival rate of less than 30 percent.
Active vibration damping of the Space Shuttle remote manipulator system
NASA Technical Reports Server (NTRS)
Scott, Michael A.; Gilbert, Michael G.; Demeo, Martha E.
1991-01-01
The feasibility of providing active damping augmentation of the Space Shuttle Remote Manipulator System (RMS) following normal payload handling operations is investigated. The approach used in the analysis is described, and the results for both linear and nonlinear performance analysis of candidate laws are presented, demonstrating that significant improvement in the RMS dynamic response can be achieved through active control using measured RMS tip acceleration data for feedback.
Experimental investigation on aero-optics of supersonic turbulent boundary layers.
Ding, Haolin; Yi, Shihe; Zhu, Yangzhu; He, Lin
2017-09-20
Nanoparticle-based planar laser scattering was used to measure the density distribution of the supersonic (Ma=3.0) turbulent boundary layer and the optical path difference (OPD), which is quite crucial for aero-optics study. Results were obtained using ray tracing. The influences of different layers in the boundary layer, turbulence scales, and light incident angle on aero-optics were examined, and the underlying flow physics were analyzed. The inner layer plays a dominant role, followed by the outer layer. One hundred OPD rms of the outer layer at different times satisfy the normal distribution better than that of the inner layer. Aero-optics induced by the outer layer is sensitive to the filter scale. When induced by the inner layer, it is not sensitive to the filter scale. The vortices with scales less than the Kolmogorov scale (=46.0 μm) have little influence on the aero-optics and could be ignored; the validity of the smallest optically active scale (=88.1 μm) proposed by Mani is verified, and vortices with scales less than that are ignored, resulting in a 1.62% decay of aero-optics; the filter with a width of 16-grid spacing (=182.4 μm) decreases OPD rms by 7.04%. With the increase of the angle between the wall-normal direction and the light-incident direction, the aero-optics becomes more serious, and the difference between the distribution of the OPD rms and the normal distribution increases. The difficulty of aero-optics correction is increased. Light tilted toward downstream experiences more distortions than when tilted toward upstream at the same angle relative to the wall-normal direction.
Alió, Jorge L; Plaza-Puche, Ana B; Javaloy, Jaime; Ayala, María José; Vega-Estrada, Alfredo
2013-04-01
To compare the visual and intraocular optical quality outcomes with different designs of the refractive rotationally asymmetric multifocal intraocular lens (MFIOL) (Lentis Mplus; Oculentis GmbH, Berlin, Germany) with or without capsular tension ring (CTR) implantation. One hundred thirty-five consecutive eyes of 78 patients with cataract (ages 36 to 82 years) were divided into three groups: 43 eyes implanted with the C-Loop haptic design without CTR (C-Loop haptic only group); 47 eyes implanted with the C-Loop haptic design with CTR (C-Loop haptic with CTR group); and 45 eyes implanted with the plate-haptic design (plate-haptic group). Visual acuity, contrast sensitivity, defocus curve, and ocular and intraocular optical quality were evaluated at 3 months postoperatively. Significant differences in the postoperative sphere were found (P = .01), with a more myopic postoperative refraction for the C-Loop haptic only group. No significant differences were detected in photopic and scotopic contrast sensitivity among groups (P ⩾ .05). Significantly better visual acuities were present in the C-Loop haptic with CTR group for the defocus levels of -2.0, -1.5, -1.0, and -0.50 D (P ⩽.03). Statistically significant differences among groups were found in total intraocular root mean square (RMS), high-order intraocular RMS, and intraocular coma-like RMS aberrations (P ⩽.04), with lower values from the plate-haptic group. The plate-haptic design and the C-Loop haptic design with CTR implantation both allow good visual rehabilitation. However, better refractive predictability and intraocular optical quality was obtained with the plate-haptic design without CTR implantation. The plate-haptic design seems to be a better design to support rotational asymmetric MFIOL optics. Copyright 2013, SLACK Incorporated.
NASA Technical Reports Server (NTRS)
Hom, K. W.
1994-01-01
The EM-ANIMATE program is a specialized visualization program that displays and animates the near-field and surface-current solutions obtained from an electromagnetics program, in particular, that from MOM3D (LAR-15074). The EM-ANIMATE program is windows based and contains a user-friendly, graphical interface for setting viewing options, case selection, file manipulation, etc. EM-ANIMATE displays the field and surface-current magnitude as smooth shaded color fields (color contours) ranging from a minimum contour value to a maximum contour value for the fields and surface currents. The program can display either the total electric field or the scattered electric field in either time-harmonic animation mode or in the root mean square (RMS) average mode. The default setting is initially set to the minimum and maximum values within the field and surface current data and can be optionally set by the user. The field and surface-current value are animated by calculating and viewing the solution at user selectable radian time increments between 0 and 2pi. The surface currents can also be displayed in either time-harmonic animation mode or in RMS average mode. In RMS mode, the color contours do not vary with time, but show the constant time averaged field and surface-current magnitude solution. The electric field and surface-current directions can be displayed as scaled vector arrows which have a length proportional to the magnitude at each field grid point or surface node point. These vector properties can be viewed separately or concurrently with the field or surface-current magnitudes. Animation speed is improved by turning off the display of the vector arrows. In RMS modes, the direction vectors are still displayed as varying with time since the time averaged direction vectors would be zero length vectors. Other surface properties can optionally be viewed. These include the surface grid, the resistance value assigned to each element of the grid, and the power dissipation of each element which has an assigned resistance value. The EM-ANIMATE program will accept up to 10 different surface current cases each consisting of up to 20,000 node points and 10,000 triangle definitions and will animate one of these cases. The capability is used to compare surface-current distribution due to various initial excitation directions or electric field orientations. The program can accept up to 50 planes of field data consisting of a grid of 100 by 100 field points. These planes of data are user selectable and can be viewed individually or concurrently. With these preset limits, the program requires 55 megabytes of core memory to run. These limits can be changed in the header files to accommodate the available core memory of an individual workstation. An estimate of memory required can be made as follows: approximate memory in bytes equals (number of nodes times number of surfaces times 14 variables times bytes per word, typically 4 bytes per floating point) plus (number of field planes times number of nodes per plane times 21 variables times bytes per word). This gives the approximate memory size required to store the field and surface-current data. The total memory size is approximately 400,000 bytes plus the data memory size. The animation calculations are performed in real time at any user set time step. For Silicon Graphics Workstations that have multiple processors, this program has been optimized to perform these calculations on multiple processors to increase animation rates. The optimized program uses the SGI PFA (Power FORTRAN Accelerator) library. On single processor machines, the parallelization directives are seen as comments to the program and will have no effect on compilation or execution. EM-ANIMATE is written in FORTRAN 77 for implementation on SGI IRIS workstations running IRIX 3.0 or later. A minimum of 55Mb of RAM is required for execution of this program; however, the code may be modified to accommodate the available memory of an individual workstation. For program execution, twenty-four bit, double-buffered color capability is suggested, but not required. Sample input and output files and a sample executable are provided on the distribution medium. Electronic documentation is provided in PostScript format and in the form of IRIX man pages. The standard distribution medium for EM-ANIMATE is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. EM-ANIMATE is also available as part of a bundled package, COS-10048 that includes MOM3D, an IRIS program that produces electromagnetic near field and surface current solutions. This program was developed in 1993.