Wang, Hongzhi; Das, Sandhitsu R.; Suh, Jung Wook; Altinay, Murat; Pluta, John; Craige, Caryne; Avants, Brian; Yushkevich, Paul A.
2011-01-01
We propose a simple but generally applicable approach to improving the accuracy of automatic image segmentation algorithms relative to manual segmentations. The approach is based on the hypothesis that a large fraction of the errors produced by automatic segmentation are systematic, i.e., occur consistently from subject to subject, and serves as a wrapper method around a given host segmentation method. The wrapper method attempts to learn the intensity, spatial and contextual patterns associated with systematic segmentation errors produced by the host method on training data for which manual segmentations are available. The method then attempts to correct such errors in segmentations produced by the host method on new images. One practical use of the proposed wrapper method is to adapt existing segmentation tools, without explicit modification, to imaging data and segmentation protocols that are different from those on which the tools were trained and tuned. An open-source implementation of the proposed wrapper method is provided, and can be applied to a wide range of image segmentation problems. The wrapper method is evaluated with four host brain MRI segmentation methods: hippocampus segmentation using FreeSurfer (Fischl et al., 2002); hippocampus segmentation using multi-atlas label fusion (Artaechevarria et al., 2009); brain extraction using BET (Smith, 2002); and brain tissue segmentation using FAST (Zhang et al., 2001). The wrapper method generates 72%, 14%, 29% and 21% fewer erroneously segmented voxels than the respective host segmentation methods. In the hippocampus segmentation experiment with multi-atlas label fusion as the host method, the average Dice overlap between reference segmentations and segmentations produced by the wrapper method is 0.908 for normal controls and 0.893 for patients with mild cognitive impairment. Average Dice overlaps of 0.964, 0.905 and 0.951 are obtained for brain extraction, white matter segmentation and gray matter segmentation, respectively. PMID:21237273
LANDSAT-4 horizon scanner full orbit data averages
NASA Technical Reports Server (NTRS)
Stanley, J. P.; Bilanow, S.
1983-01-01
Averages taken over full orbit data spans of the pitch and roll residual measurement errors of the two conical Earth sensors operating on the LANDSAT 4 spacecraft are described. The variability of these full orbit averages over representative data throughtout the year is analyzed to demonstrate the long term stability of the sensor measurements. The data analyzed consist of 23 segments of sensor measurements made at 2 to 4 week intervals. Each segment is roughly 24 hours in length. The variation of full orbit average as a function of orbit within a day as a function of day of year is examined. The dependence on day of year is based on association the start date of each segment with the mean full orbit average for the segment. The peak-to-peak and standard deviation values of the averages for each data segment are computed and their variation with day of year are also examined.
Colour application on mammography image segmentation
NASA Astrophysics Data System (ADS)
Embong, R.; Aziz, N. M. Nik Ab.; Karim, A. H. Abd; Ibrahim, M. R.
2017-09-01
The segmentation process is one of the most important steps in image processing and computer vision since it is vital in the initial stage of image analysis. Segmentation of medical images involves complex structures and it requires precise segmentation result which is necessary for clinical diagnosis such as the detection of tumour, oedema, and necrotic tissues. Since mammography images are grayscale, researchers are looking at the effect of colour in the segmentation process of medical images. Colour is known to play a significant role in the perception of object boundaries in non-medical colour images. Processing colour images require handling more data, hence providing a richer description of objects in the scene. Colour images contain ten percent (10%) additional edge information as compared to their grayscale counterparts. Nevertheless, edge detection in colour image is more challenging than grayscale image as colour space is considered as a vector space. In this study, we implemented red, green, yellow, and blue colour maps to grayscale mammography images with the purpose of testing the effect of colours on the segmentation of abnormality regions in the mammography images. We applied the segmentation process using the Fuzzy C-means algorithm and evaluated the percentage of average relative error of area for each colour type. The results showed that all segmentation with the colour map can be done successfully even for blurred and noisy images. Also the size of the area of the abnormality region is reduced when compare to the segmentation area without the colour map. The green colour map segmentation produced the smallest percentage of average relative error (10.009%) while yellow colour map segmentation gave the largest percentage of relative error (11.367%).
NASA Astrophysics Data System (ADS)
Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-03-01
The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.
Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R.
2013-01-01
Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation on 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54 ± 0.75 mm prior to refinement vs. 1.11 ± 0.43 mm post-refinement, p ≪ 0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction per case was about 2 min. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes the OSF framework. The two reported segmentation refinement tools were optimized for lung segmentation and might need some adaptation for other application domains. PMID:23415254
NASA Astrophysics Data System (ADS)
Luiza Bondar, M.; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben
2013-08-01
For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.
Bondar, M Luiza; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben
2013-08-07
For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsitt, Mitchell M., E-mail: goodsitt@umich.edu; Shenoy, Apeksha; Howard, David
2014-05-15
Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correctionmore » factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa.« less
Goodsitt, Mitchell M.; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J.; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K.
2014-01-01
Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa. PMID:24784380
Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R
2013-01-01
Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation of 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54±0.75 mm prior to refinement vs. 1.11±0.43 mm post-refinement, p≪0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction was about 2 min per case. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes the OSF framework. The two reported segmentation refinement tools were optimized for lung segmentation and might need some adaptation for other application domains. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mundermann, Lars; Mundermann, Annegret; Chaudhari, Ajit M.; Andriacchi, Thomas P.
2005-01-01
Anthropometric parameters are fundamental for a wide variety of applications in biomechanics, anthropology, medicine and sports. Recent technological advancements provide methods for constructing 3D surfaces directly. Of these new technologies, visual hull construction may be the most cost-effective yet sufficiently accurate method. However, the conditions influencing the accuracy of anthropometric measurements based on visual hull reconstruction are unknown. The purpose of this study was to evaluate the conditions that influence the accuracy of 3D shape-from-silhouette reconstruction of body segments dependent on number of cameras, camera resolution and object contours. The results demonstrate that the visual hulls lacked accuracy in concave regions and narrow spaces, but setups with a high number of cameras reconstructed a human form with an average accuracy of 1.0 mm. In general, setups with less than 8 cameras yielded largely inaccurate visual hull constructions, while setups with 16 and more cameras provided good volume estimations. Body segment volumes were obtained with an average error of 10% at a 640x480 resolution using 8 cameras. Changes in resolution did not significantly affect the average error. However, substantial decreases in error were observed with increasing number of cameras (33.3% using 4 cameras; 10.5% using 8 cameras; 4.1% using 16 cameras; 1.2% using 64 cameras).
Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z
2014-01-01
Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Modeling methodology for MLS range navigation system errors using flight test data
NASA Technical Reports Server (NTRS)
Karmali, M. S.; Phatak, A. V.
1982-01-01
Flight test data was used to develop a methodology for modeling MLS range navigation system errors. The data used corresponded to the constant velocity and glideslope approach segment of a helicopter landing trajectory. The MLS range measurement was assumed to consist of low frequency and random high frequency components. The random high frequency component was extracted from the MLS range measurements. This was done by appropriate filtering of the range residual generated from a linearization of the range profile for the final approach segment. This range navigation system error was then modeled as an autoregressive moving average (ARMA) process. Maximum likelihood techniques were used to identify the parameters of the ARMA process.
NASA Technical Reports Server (NTRS)
Howard, Joseph M.; Ha, Kong Q.
2004-01-01
This is part two of a series on the optical modeling activities for JWST. Starting with the linear optical model discussed in part one, we develop centroid and wavefront error sensitivities for the special case of a segmented optical system such as JWST, where the primary mirror consists of 18 individual segments. Our approach extends standard sensitivity matrix methods used for systems consisting of monolithic optics, where the image motion is approximated by averaging ray coordinates at the image and residual wavefront error is determined with global tip/tilt removed. We develop an exact formulation using the linear optical model, and extend it to cover multiple field points for performance prediction at each instrument aboard JWST. This optical model is then driven by thermal and dynamic structural perturbations in an integrated modeling environment. Results are presented.
Automatic multi-organ segmentation using learning-based segmentation and level set optimization.
Kohlberger, Timo; Sofka, Michal; Zhang, Jingdan; Birkbeck, Neil; Wetzl, Jens; Kaftan, Jens; Declerck, Jérôme; Zhou, S Kevin
2011-01-01
We present a novel generic segmentation system for the fully automatic multi-organ segmentation from CT medical images. Thereby we combine the advantages of learning-based approaches on point cloud-based shape representation, such a speed, robustness, point correspondences, with those of PDE-optimization-based level set approaches, such as high accuracy and the straightforward prevention of segment overlaps. In a benchmark on 10-100 annotated datasets for the liver, the lungs, and the kidneys we show that the proposed system yields segmentation accuracies of 1.17-2.89 mm average surface errors. Thereby the level set segmentation (which is initialized by the learning-based segmentations) contributes with an 20%-40% increase in accuracy.
Automatic knee cartilage delineation using inheritable segmentation
NASA Astrophysics Data System (ADS)
Dries, Sebastian P. M.; Pekar, Vladimir; Bystrov, Daniel; Heese, Harald S.; Blaffert, Thomas; Bos, Clemens; van Muiswinkel, Arianne M. C.
2008-03-01
We present a fully automatic method for segmentation of knee joint cartilage from fat suppressed MRI. The method first applies 3-D model-based segmentation technology, which allows to reliably segment the femur, patella, and tibia by iterative adaptation of the model according to image gradients. Thin plate spline interpolation is used in the next step to position deformable cartilage models for each of the three bones with reference to the segmented bone models. After initialization, the cartilage models are fine adjusted by automatic iterative adaptation to image data based on gray value gradients. The method has been validated on a collection of 8 (3 left, 5 right) fat suppressed datasets and demonstrated the sensitivity of 83+/-6% compared to manual segmentation on a per voxel basis as primary endpoint. Gross cartilage volume measurement yielded an average error of 9+/-7% as secondary endpoint. For cartilage being a thin structure, already small deviations in distance result in large errors on a per voxel basis, rendering the primary endpoint a hard criterion.
Hartman Testing of X-Ray Telescopes
NASA Technical Reports Server (NTRS)
Saha, Timo T.; Biskasch, Michael; Zhang, William W.
2013-01-01
Hartmann testing of x-ray telescopes is a simple test method to retrieve and analyze alignment errors and low-order circumferential errors of x-ray telescopes and their components. A narrow slit is scanned along the circumference of the telescope in front of the mirror and the centroids of the images are calculated. From the centroid data, alignment errors, radius variation errors, and cone-angle variation errors can be calculated. Mean cone angle, mean radial height (average radius), and the focal length of the telescope can also be estimated if the centroid data is measured at multiple focal plane locations. In this paper we present the basic equations that are used in the analysis process. These equations can be applied to full circumference or segmented x-ray telescopes. We use the Optical Surface Analysis Code (OSAC) to model a segmented x-ray telescope and show that the derived equations and accompanying analysis retrieves the alignment errors and low order circumferential errors accurately.
Holló, Gábor; Shu-Wei, Hsu; Naghizadeh, Farzaneh
2016-06-01
To compare the current (6.3) and a novel software version (6.12) of the RTVue-100 optical coherence tomograph (RTVue-OCT) for ganglion cell complex (GCC) and retinal nerve fiber layer thickness (RNFLT) image segmentation and detection of glaucoma in high myopia. RNFLT and GCC scans were acquired with software version 6.3 of the RTVue-OCT on 51 highly myopic eyes (spherical refractive error ≤-6.0 D) of 51 patients, and were analyzed with both the software versions. Twenty-two eyes were nonglaucomatous, 13 were ocular hypertensive and 16 eyes had glaucoma. No difference was seen for any RNFLT, and average GCC parameter between the software versions (paired t test, P≥0.084). Global loss volume was significantly lower (more normal) with version 6.12 than with version 6.3 (Wilcoxon signed-rank test, P<0.001). The percentage agreement (κ) between the clinical (normal and ocular hypertensive vs. glaucoma) and the software-provided classifications (normal and borderline vs. outside normal limits) were 0.3219 and 0.4442 for average RNFLT, and 0.2926 and 0.4977 for average GCC with versions 1 and 2, respectively (McNemar symmetry test, P≥0.289). No difference in average RNFLT and GCC classification (McNemar symmetry test, P≥0.727) and the number of eyes with at least 1 segmentation error (P≥0.109) was found between the software versions, respectively. Although GCC segmentation was improved with software version 6.12 compared with the current version in highly myopic eyes, this did not result in a significant change of the average RNFLT and GCC values, and did not significantly improve the software-provided classification for glaucoma.
An ICA-based method for the segmentation of pigmented skin lesions in macroscopic images.
Cavalcanti, Pablo G; Scharcanski, Jacob; Di Persia, Leandro E; Milone, Diego H
2011-01-01
Segmentation is an important step in computer-aided diagnostic systems for pigmented skin lesions, since that a good definition of the lesion area and its boundary at the image is very important to distinguish benign from malignant cases. In this paper a new skin lesion segmentation method is proposed. This method uses Independent Component Analysis to locate skin lesions in the image, and this location information is further refined by a Level-set segmentation method. Our method was evaluated in 141 images and achieved an average segmentation error of 16.55%, lower than the results for comparable state-of-the-art methods proposed in literature.
Almeida, Diogo F; Ruben, Rui B; Folgado, João; Fernandes, Paulo R; Audenaert, Emmanuel; Verhegghe, Benedict; De Beule, Matthieu
2016-12-01
Femur segmentation can be an important tool in orthopedic surgical planning. However, in order to overcome the need of an experienced user with extensive knowledge on the techniques, segmentation should be fully automatic. In this paper a new fully automatic femur segmentation method for CT images is presented. This method is also able to define automatically the medullary canal and performs well even in low resolution CT scans. Fully automatic femoral segmentation was performed adapting a template mesh of the femoral volume to medical images. In order to achieve this, an adaptation of the active shape model (ASM) technique based on the statistical shape model (SSM) and local appearance model (LAM) of the femur with a novel initialization method was used, to drive the template mesh deformation in order to fit the in-image femoral shape in a time effective approach. With the proposed method a 98% convergence rate was achieved. For high resolution CT images group the average error is less than 1mm. For the low resolution image group the results are also accurate and the average error is less than 1.5mm. The proposed segmentation pipeline is accurate, robust and completely user free. The method is robust to patient orientation, image artifacts and poorly defined edges. The results excelled even in CT images with a significant slice thickness, i.e., above 5mm. Medullary canal segmentation increases the geometric information that can be used in orthopedic surgical planning or in finite element analysis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Automatic training and reliability estimation for 3D ASM applied to cardiac MRI segmentation
NASA Astrophysics Data System (ADS)
Tobon-Gomez, Catalina; Sukno, Federico M.; Butakoff, Constantine; Huguet, Marina; Frangi, Alejandro F.
2012-07-01
Training active shape models requires collecting manual ground-truth meshes in a large image database. While shape information can be reused across multiple imaging modalities, intensity information needs to be imaging modality and protocol specific. In this context, this study has two main purposes: (1) to test the potential of using intensity models learned from MRI simulated datasets and (2) to test the potential of including a measure of reliability during the matching process to increase robustness. We used a population of 400 virtual subjects (XCAT phantom), and two clinical populations of 40 and 45 subjects. Virtual subjects were used to generate simulated datasets (MRISIM simulator). Intensity models were trained both on simulated and real datasets. The trained models were used to segment the left ventricle (LV) and right ventricle (RV) from real datasets. Segmentations were also obtained with and without reliability information. Performance was evaluated with point-to-surface and volume errors. Simulated intensity models obtained average accuracy comparable to inter-observer variability for LV segmentation. The inclusion of reliability information reduced volume errors in hypertrophic patients (EF errors from 17 ± 57% to 10 ± 18% LV MASS errors from -27 ± 22 g to -14 ± 25 g), and in heart failure patients (EF errors from -8 ± 42% to -5 ± 14%). The RV model of the simulated images needs further improvement to better resemble image intensities around the myocardial edges. Both for real and simulated models, reliability information increased segmentation robustness without penalizing accuracy.
Automatic training and reliability estimation for 3D ASM applied to cardiac MRI segmentation.
Tobon-Gomez, Catalina; Sukno, Federico M; Butakoff, Constantine; Huguet, Marina; Frangi, Alejandro F
2012-07-07
Training active shape models requires collecting manual ground-truth meshes in a large image database. While shape information can be reused across multiple imaging modalities, intensity information needs to be imaging modality and protocol specific. In this context, this study has two main purposes: (1) to test the potential of using intensity models learned from MRI simulated datasets and (2) to test the potential of including a measure of reliability during the matching process to increase robustness. We used a population of 400 virtual subjects (XCAT phantom), and two clinical populations of 40 and 45 subjects. Virtual subjects were used to generate simulated datasets (MRISIM simulator). Intensity models were trained both on simulated and real datasets. The trained models were used to segment the left ventricle (LV) and right ventricle (RV) from real datasets. Segmentations were also obtained with and without reliability information. Performance was evaluated with point-to-surface and volume errors. Simulated intensity models obtained average accuracy comparable to inter-observer variability for LV segmentation. The inclusion of reliability information reduced volume errors in hypertrophic patients (EF errors from 17 ± 57% to 10 ± 18%; LV MASS errors from -27 ± 22 g to -14 ± 25 g), and in heart failure patients (EF errors from -8 ± 42% to -5 ± 14%). The RV model of the simulated images needs further improvement to better resemble image intensities around the myocardial edges. Both for real and simulated models, reliability information increased segmentation robustness without penalizing accuracy.
NASA Astrophysics Data System (ADS)
Botter Martins, Samuel; Vallin Spina, Thiago; Yasuda, Clarissa; Falcão, Alexandre X.
2017-02-01
Statistical Atlases have played an important role towards automated medical image segmentation. However, a challenge has been to make the atlas more adaptable to possible errors in deformable registration of anomalous images, given that the body structures of interest for segmentation might present significant differences in shape and texture. Recently, deformable registration errors have been accounted by a method that locally translates the statistical atlas over the test image, after registration, and evaluates candidate objects from a delineation algorithm in order to choose the best one as final segmentation. In this paper, we improve its delineation algorithm and extend the model to be a multi-object statistical atlas, built from control images and adaptable to anomalous images, by incorporating a texture classifier. In order to provide a first proof of concept, we instantiate the new method for segmenting, object-by-object and all objects simultaneously, the left and right brain hemispheres, and the cerebellum, without the brainstem, and evaluate it on MRT1-images of epilepsy patients before and after brain surgery, which removed portions of the temporal lobe. The results show efficiency gain with statistically significant higher accuracy, using the mean Average Symmetric Surface Distance, with respect to the original approach.
NASA Astrophysics Data System (ADS)
Yin, Y.; Sonka, M.
2010-03-01
A novel method is presented for definition of search lines in a variety of surface segmentation approaches. The method is inspired by properties of electric field direction lines and is applicable to general-purpose n-D shapebased image segmentation tasks. Its utility is demonstrated in graph construction and optimal segmentation of multiple mutually interacting objects. The properties of the electric field-based graph construction guarantee that inter-object graph connecting lines are non-intersecting and inherently covering the entire object-interaction space. When applied to inter-object cross-surface mapping, our approach generates one-to-one and all-to-all vertex correspondent pairs between the regions of mutual interaction. We demonstrate the benefits of the electric field approach in several examples ranging from relatively simple single-surface segmentation to complex multiobject multi-surface segmentation of femur-tibia cartilage. The performance of our approach is demonstrated in 60 MR images from the Osteoarthritis Initiative (OAI), in which our approach achieved a very good performance as judged by surface positioning errors (average of 0.29 and 0.59 mm for signed and unsigned cartilage positioning errors, respectively).
NASA Astrophysics Data System (ADS)
Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A.; Chee, Kok Han; Liew, Yih Miin
2017-12-01
Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame.
Xu, Xu; Faber, Gert S; Kingma, Idsart; Chang, Chien-Chi; Hsiang, Simon M
2013-07-26
In ergonomics studies, linked segment models are commonly used for estimating dynamic L5/S1 joint moments during lifting tasks. The kinematics data input to these models are with respect to an arbitrary stationary reference frame. However, a body-centered reference frame, which is defined using the position and the orientation of human body segments, is sometimes used to conveniently identify the location of the load relative to the body. When a body-centered reference frame is moving with the body, it is a non-inertial reference frame and fictitious force exists. Directly applying a linked segment model to the kinematics data with respect to a body-centered non-inertial reference frame will ignore the effect of this fictitious force and introduce errors during L5/S1 moment estimation. In the current study, various lifting tasks were performed in the laboratory environment. The L5/S1 joint moments during the lifting tasks were calculated by a linked segment model with respect to a stationary reference frame and to a body-centered non-inertial reference frame. The results indicate that applying a linked segment model with respect to a body-centered non-inertial reference frame will result in overestimating the peak L5/S1 joint moments of the coronal plane, sagittal plane, and transverse plane during lifting tasks by 78%, 2%, and 59% on average, respectively. The instant when the peak moment occurred was delayed by 0.13, 0.03, and 0.09s on average, correspondingly for the three planes. The root-mean-square errors of the L5/S1 joint moment for the three planes are 21Nm, 19Nm, and 9Nm, correspondingly. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A; Chee, Kok Han; Liew, Yih Miin
2017-12-01
Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Novel multimodality segmentation using level sets and Jensen-Rényi divergence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markel, Daniel, E-mail: daniel.markel@mail.mcgill.ca; Zaidi, Habib; Geneva Neuroscience Center, Geneva University, CH-1205 Geneva
2013-12-15
Purpose: Positron emission tomography (PET) is playing an increasing role in radiotherapy treatment planning. However, despite progress, robust algorithms for PET and multimodal image segmentation are still lacking, especially if the algorithm were extended to image-guided and adaptive radiotherapy (IGART). This work presents a novel multimodality segmentation algorithm using the Jensen-Rényi divergence (JRD) to evolve the geometric level set contour. The algorithm offers improved noise tolerance which is particularly applicable to segmentation of regions found in PET and cone-beam computed tomography. Methods: A steepest gradient ascent optimization method is used in conjunction with the JRD and a level set activemore » contour to iteratively evolve a contour to partition an image based on statistical divergence of the intensity histograms. The algorithm is evaluated using PET scans of pharyngolaryngeal squamous cell carcinoma with the corresponding histological reference. The multimodality extension of the algorithm is evaluated using 22 PET/CT scans of patients with lung carcinoma and a physical phantom scanned under varying image quality conditions. Results: The average concordance index (CI) of the JRD segmentation of the PET images was 0.56 with an average classification error of 65%. The segmentation of the lung carcinoma images had a maximum diameter relative error of 63%, 19.5%, and 14.8% when using CT, PET, and combined PET/CT images, respectively. The estimated maximal diameters of the gross tumor volume (GTV) showed a high correlation with the macroscopically determined maximal diameters, with aR{sup 2} value of 0.85 and 0.88 using the PET and PET/CT images, respectively. Results from the physical phantom show that the JRD is more robust to image noise compared to mutual information and region growing. Conclusions: The JRD has shown improved noise tolerance compared to mutual information for the purpose of PET image segmentation. Presented is a flexible framework for multimodal image segmentation that can incorporate a large number of inputs efficiently for IGART.« less
Novel multimodality segmentation using level sets and Jensen-Rényi divergence.
Markel, Daniel; Zaidi, Habib; El Naqa, Issam
2013-12-01
Positron emission tomography (PET) is playing an increasing role in radiotherapy treatment planning. However, despite progress, robust algorithms for PET and multimodal image segmentation are still lacking, especially if the algorithm were extended to image-guided and adaptive radiotherapy (IGART). This work presents a novel multimodality segmentation algorithm using the Jensen-Rényi divergence (JRD) to evolve the geometric level set contour. The algorithm offers improved noise tolerance which is particularly applicable to segmentation of regions found in PET and cone-beam computed tomography. A steepest gradient ascent optimization method is used in conjunction with the JRD and a level set active contour to iteratively evolve a contour to partition an image based on statistical divergence of the intensity histograms. The algorithm is evaluated using PET scans of pharyngolaryngeal squamous cell carcinoma with the corresponding histological reference. The multimodality extension of the algorithm is evaluated using 22 PET/CT scans of patients with lung carcinoma and a physical phantom scanned under varying image quality conditions. The average concordance index (CI) of the JRD segmentation of the PET images was 0.56 with an average classification error of 65%. The segmentation of the lung carcinoma images had a maximum diameter relative error of 63%, 19.5%, and 14.8% when using CT, PET, and combined PET/CT images, respectively. The estimated maximal diameters of the gross tumor volume (GTV) showed a high correlation with the macroscopically determined maximal diameters, with a R(2) value of 0.85 and 0.88 using the PET and PET/CT images, respectively. Results from the physical phantom show that the JRD is more robust to image noise compared to mutual information and region growing. The JRD has shown improved noise tolerance compared to mutual information for the purpose of PET image segmentation. Presented is a flexible framework for multimodal image segmentation that can incorporate a large number of inputs efficiently for IGART.
A volumetric pulmonary CT segmentation method with applications in emphysema assessment
NASA Astrophysics Data System (ADS)
Silva, José Silvestre; Silva, Augusto; Santos, Beatriz S.
2006-03-01
A segmentation method is a mandatory pre-processing step in many automated or semi-automated analysis tasks such as region identification and densitometric analysis, or even for 3D visualization purposes. In this work we present a fully automated volumetric pulmonary segmentation algorithm based on intensity discrimination and morphologic procedures. Our method first identifies the trachea as well as primary bronchi and then the pulmonary region is identified by applying a threshold and morphologic operations. When both lungs are in contact, additional procedures are performed to obtain two separated lung volumes. To evaluate the performance of the method, we compared contours extracted from 3D lung surfaces with reference contours, using several figures of merit. Results show that the worst case generally occurs at the middle sections of high resolution CT exams, due the presence of aerial and vascular structures. Nevertheless, the average error is inferior to the average error associated with radiologist inter-observer variability, which suggests that our method produces lung contours similar to those drawn by radiologists. The information created by our segmentation algorithm is used by an identification and representation method in pulmonary emphysema that also classifies emphysema according to its severity degree. Two clinically proved thresholds are applied which identify regions with severe emphysema, and with highly severe emphysema. Based on this thresholding strategy, an application for volumetric emphysema assessment was developed offering new display paradigms concerning the visualization of classification results. This framework is easily extendable to accommodate other classifiers namely those related with texture based segmentation as it is often the case with interstitial diseases.
Automatic short axis orientation of the left ventricle in 3D ultrasound recordings
NASA Astrophysics Data System (ADS)
Pedrosa, João.; Heyde, Brecht; Heeren, Laurens; Engvall, Jan; Zamorano, Jose; Papachristidis, Alexandros; Edvardsen, Thor; Claus, Piet; D'hooge, Jan
2016-04-01
The recent advent of three-dimensional echocardiography has led to an increased interest from the scientific community in left ventricle segmentation frameworks for cardiac volume and function assessment. An automatic orientation of the segmented left ventricular mesh is an important step to obtain a point-to-point correspondence between the mesh and the cardiac anatomy. Furthermore, this would allow for an automatic division of the left ventricle into the standard 17 segments and, thus, fully automatic per-segment analysis, e.g. regional strain assessment. In this work, a method for fully automatic short axis orientation of the segmented left ventricle is presented. The proposed framework aims at detecting the inferior right ventricular insertion point. 211 three-dimensional echocardiographic images were used to validate this framework by comparison to manual annotation of the inferior right ventricular insertion point. A mean unsigned error of 8, 05° +/- 18, 50° was found, whereas the mean signed error was 1, 09°. Large deviations between the manual and automatic annotations (> 30°) only occurred in 3, 79% of cases. The average computation time was 666ms in a non-optimized MATLAB environment, which potentiates real-time application. In conclusion, a successful automatic real-time method for orientation of the segmented left ventricle is proposed.
Chen, Yasheng; Juttukonda, Meher; Su, Yi; Benzinger, Tammie; Rubin, Brian G.; Lee, Yueh Z.; Lin, Weili; Shen, Dinggang; Lalush, David
2015-01-01
Purpose To develop a positron emission tomography (PET) attenuation correction method for brain PET/magnetic resonance (MR) imaging by estimating pseudo computed tomographic (CT) images from T1-weighted MR and atlas CT images. Materials and Methods In this institutional review board–approved and HIPAA-compliant study, PET/MR/CT images were acquired in 20 subjects after obtaining written consent. A probabilistic air segmentation and sparse regression (PASSR) method was developed for pseudo CT estimation. Air segmentation was performed with assistance from a probabilistic air map. For nonair regions, the pseudo CT numbers were estimated via sparse regression by using atlas MR patches. The mean absolute percentage error (MAPE) on PET images was computed as the normalized mean absolute difference in PET signal intensity between a method and the reference standard continuous CT attenuation correction method. Friedman analysis of variance and Wilcoxon matched-pairs tests were performed for statistical comparison of MAPE between the PASSR method and Dixon segmentation, CT segmentation, and population averaged CT atlas (mean atlas) methods. Results The PASSR method yielded a mean MAPE ± standard deviation of 2.42% ± 1.0, 3.28% ± 0.93, and 2.16% ± 1.75, respectively, in the whole brain, gray matter, and white matter, which were significantly lower than the Dixon, CT segmentation, and mean atlas values (P < .01). Moreover, 68.0% ± 16.5, 85.8% ± 12.9, and 96.0% ± 2.5 of whole-brain volume had within ±2%, ±5%, and ±10% percentage error by using PASSR, respectively, which was significantly higher than other methods (P < .01). Conclusion PASSR outperformed the Dixon, CT segmentation, and mean atlas methods by reducing PET error owing to attenuation correction. © RSNA, 2014 PMID:25521778
Reliable Fusion of Stereo Matching and Depth Sensor for High Quality Dense Depth Maps
Liu, Jing; Li, Chunpeng; Fan, Xuefeng; Wang, Zhaoqi
2015-01-01
Depth estimation is a classical problem in computer vision, which typically relies on either a depth sensor or stereo matching alone. The depth sensor provides real-time estimates in repetitive and textureless regions where stereo matching is not effective. However, stereo matching can obtain more accurate results in rich texture regions and object boundaries where the depth sensor often fails. We fuse stereo matching and the depth sensor using their complementary characteristics to improve the depth estimation. Here, texture information is incorporated as a constraint to restrict the pixel’s scope of potential disparities and to reduce noise in repetitive and textureless regions. Furthermore, a novel pseudo-two-layer model is used to represent the relationship between disparities in different pixels and segments. It is more robust to luminance variation by treating information obtained from a depth sensor as prior knowledge. Segmentation is viewed as a soft constraint to reduce ambiguities caused by under- or over-segmentation. Compared to the average error rate 3.27% of the previous state-of-the-art methods, our method provides an average error rate of 2.61% on the Middlebury datasets, which shows that our method performs almost 20% better than other “fused” algorithms in the aspect of precision. PMID:26308003
Cha, Kenny H.; Hadjiiski, Lubomir; Samala, Ravi K.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.
2016-01-01
Purpose: The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder cancer. Methods: A deep-learning convolutional neural network (DL-CNN) was trained to distinguish between the inside and the outside of the bladder using 160 000 regions of interest (ROI) from CTU images. The trained DL-CNN was used to estimate the likelihood of an ROI being inside the bladder for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and hole-filling were applied to the map to generate the initial contour for the bladder, which was then refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 cases in the training set (42 lesions, 21 wall thickenings, and 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, and 13 normal bladders). The computerized segmentation accuracy using the DL likelihood map was compared to that using a likelihood map generated by Haar features and a random forest classifier, and that using our previous conjoint level set analysis and segmentation system (CLASS) without using a likelihood map. All methods were evaluated relative to the 3D hand-segmented reference contours. Results: With DL-CNN-based likelihood map and level sets, the average volume intersection ratio, average percent volume error, average absolute volume error, average minimum distance, and the Jaccard index for the test set were 81.9% ± 12.1%, 10.2% ± 16.2%, 14.0% ± 13.0%, 3.6 ± 2.0 mm, and 76.2% ± 11.8%, respectively. With the Haar-feature-based likelihood map and level sets, the corresponding values were 74.3% ± 12.7%, 13.0% ± 22.3%, 20.5% ± 15.7%, 5.7 ± 2.6 mm, and 66.7% ± 12.6%, respectively. With our previous CLASS with local contour refinement (LCR) method, the corresponding values were 78.0% ± 14.7%, 16.5% ± 16.8%, 18.2% ± 15.0%, 3.8 ± 2.3 mm, and 73.9% ± 13.5%, respectively. Conclusions: The authors demonstrated that the DL-CNN can overcome the strong boundary between two regions that have large difference in gray levels and provides a seamless mask to guide level set segmentation, which has been a problem for many gradient-based segmentation methods. Compared to our previous CLASS with LCR method, which required two user inputs to initialize the segmentation, DL-CNN with level sets achieved better segmentation performance while using a single user input. Compared to the Haar-feature-based likelihood map, the DL-CNN-based likelihood map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility of our new approach of using DL-CNN in combination with level sets for segmentation of the bladder. PMID:27036584
Ji, Hongwei; He, Jiangping; Yang, Xin; Deklerck, Rudi; Cornelis, Jan
2013-05-01
In this paper, we present an autocontext model(ACM)-based automatic liver segmentation algorithm, which combines ACM, multiatlases, and mean-shift techniques to segment liver from 3-D CT images. Our algorithm is a learning-based method and can be divided into two stages. At the first stage, i.e., the training stage, ACM is performed to learn a sequence of classifiers in each atlas space (based on each atlas and other aligned atlases). With the use of multiple atlases, multiple sequences of ACM-based classifiers are obtained. At the second stage, i.e., the segmentation stage, the test image will be segmented in each atlas space by applying each sequence of ACM-based classifiers. The final segmentation result will be obtained by fusing segmentation results from all atlas spaces via a multiclassifier fusion technique. Specially, in order to speed up segmentation, given a test image, we first use an improved mean-shift algorithm to perform over-segmentation and then implement the region-based image labeling instead of the original inefficient pixel-based image labeling. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that the average volume overlap error and the average surface distance achieved by our method are 8.3% and 1.5 m, respectively, which are comparable to the results reported in the existing state-of-the-art work on liver segmentation.
Influence of nuclei segmentation on breast cancer malignancy classification
NASA Astrophysics Data System (ADS)
Jelen, Lukasz; Fevens, Thomas; Krzyzak, Adam
2009-02-01
Breast Cancer is one of the most deadly cancers affecting middle-aged women. Accurate diagnosis and prognosis are crucial to reduce the high death rate. Nowadays there are numerous diagnostic tools for breast cancer diagnosis. In this paper we discuss a role of nuclear segmentation from fine needle aspiration biopsy (FNA) slides and its influence on malignancy classification. Classification of malignancy plays a very important role during the diagnosis process of breast cancer. Out of all cancer diagnostic tools, FNA slides provide the most valuable information about the cancer malignancy grade which helps to choose an appropriate treatment. This process involves assessing numerous nuclear features and therefore precise segmentation of nuclei is very important. In this work we compare three powerful segmentation approaches and test their impact on the classification of breast cancer malignancy. The studied approaches involve level set segmentation, fuzzy c-means segmentation and textural segmentation based on co-occurrence matrix. Segmented nuclei were used to extract nuclear features for malignancy classification. For classification purposes four different classifiers were trained and tested with previously extracted features. The compared classifiers are Multilayer Perceptron (MLP), Self-Organizing Maps (SOM), Principal Component-based Neural Network (PCA) and Support Vector Machines (SVM). The presented results show that level set segmentation yields the best results over the three compared approaches and leads to a good feature extraction with a lowest average error rate of 6.51% over four different classifiers. The best performance was recorded for multilayer perceptron with an error rate of 3.07% using fuzzy c-means segmentation.
NASA Astrophysics Data System (ADS)
Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B.
2017-05-01
Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.
Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B
2017-05-07
Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.
Granados, Alejandro; Vakharia, Vejay; Rodionov, Roman; Schweiger, Martin; Vos, Sjoerd B; O'Keeffe, Aidan G; Li, Kuo; Wu, Chengyuan; Miserocchi, Anna; McEvoy, Andrew W; Clarkson, Matthew J; Duncan, John S; Sparks, Rachel; Ourselin, Sébastien
2018-06-01
The accurate and automatic localisation of SEEG electrodes is crucial for determining the location of epileptic seizure onset. We propose an algorithm for the automatic segmentation of electrode bolts and contacts that accounts for electrode bending in relation to regional brain anatomy. Co-registered post-implantation CT, pre-implantation MRI, and brain parcellation images are used to create regions of interest to automatically segment bolts and contacts. Contact search strategy is based on the direction of the bolt with distance and angle constraints, in addition to post-processing steps that assign remaining contacts and predict contact position. We measured the accuracy of contact position, bolt angle, and anatomical region at the tip of the electrode in 23 post-SEEG cases comprising two different surgical approaches when placing a guiding stylet close to and far from target point. Local and global bending are computed when modelling electrodes as elastic rods. Our approach executed on average in 36.17 s with a sensitivity of 98.81% and a positive predictive value (PPV) of 95.01%. Compared to manual segmentation, the position of contacts had a mean absolute error of 0.38 mm and the mean bolt angle difference of [Formula: see text] resulted in a mean displacement error of 0.68 mm at the tip of the electrode. Anatomical regions at the tip of the electrode were in strong concordance with those selected manually by neurosurgeons, [Formula: see text], with average distance between regions of 0.82 mm when in disagreement. Our approach performed equally in two surgical approaches regardless of the amount of electrode bending. We present a method robust to electrode bending that can accurately segment contact positions and bolt orientation. The techniques presented in this paper will allow further characterisation of bending within different brain regions.
Wang, Jinke; Guo, Haoyan
2016-01-01
This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD) 11.15 ± 69.63 cm 3 , volume overlap error (VOE) 3.5057 ± 1.3719%, average surface distance (ASD) 0.7917 ± 0.2741 mm, root mean square distance (RMSD) 1.6957 ± 0.6568 mm, maximum symmetric absolute surface distance (MSD) 21.3430 ± 8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S; Robinson, A; Kiess, A
2015-06-15
Purpose: The purpose of this study is to develop an accurate and effective technique to predict and monitor volume changes of the tumor and organs at risk (OARs) from daily cone-beam CTs (CBCTs). Methods: While CBCT is typically used to minimize the patient setup error, its poor image quality impedes accurate monitoring of daily anatomical changes in radiotherapy. Reconstruction artifacts in CBCT often cause undesirable errors in registration-based contour propagation from the planning CT, a conventional way to estimate anatomical changes. To improve the registration and segmentation accuracy, we developed a new deformable image registration (DIR) that iteratively corrects CBCTmore » intensities using slice-based histogram matching during the registration process. Three popular DIR algorithms (hierarchical B-spline, demons, optical flow) augmented by the intensity correction were implemented on a graphics processing unit for efficient computation, and their performances were evaluated on six head and neck (HN) cancer cases. Four trained scientists manually contoured nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs for each case, to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial software, VelocityAI (Varian Medical Systems Inc.). Results: Manual contouring showed significant variations, [-76, +141]% from the mean of all four sets of contours. The volume differences (mean±std in cc) between the average manual segmentation and four automatic segmentations are 3.70±2.30(B-spline), 1.25±1.78(demons), 0.93±1.14(optical flow), and 4.39±3.86 (VelocityAI). In comparison to the average volume of the manual segmentations, the proposed approach significantly reduced the estimation error by 9%(B-spline), 38%(demons), and 51%(optical flow) over the conventional mutual information based method (VelocityAI). Conclusion: The proposed CT-CBCT registration with local CBCT intensity correction can accurately predict the tumor volume change with reduced errors. Although demonstrated only on HN nodal GTVs, the results imply improved accuracy for other critical structures. This work was supported by NIH/NCI under grant R42CA137886.« less
Fast retinal layer segmentation of spectral domain optical coherence tomography images
NASA Astrophysics Data System (ADS)
Zhang, Tianqiao; Song, Zhangjun; Wang, Xiaogang; Zheng, Huimin; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao
2015-09-01
An approach to segment macular layer thicknesses from spectral domain optical coherence tomography has been proposed. The main contribution is to decrease computational costs while maintaining high accuracy via exploring Kalman filtering, customized active contour, and curve smoothing. Validation on 21 normal volumes shows that 8 layer boundaries could be segmented within 5.8 s with an average layer boundary error <2.35 μm. It has been compared with state-of-the-art methods for both normal and age-related macular degeneration cases to yield similar or significantly better accuracy and is 37 times faster. The proposed method could be a potential tool to clinically quantify the retinal layer boundaries.
Adapting Active Shape Models for 3D segmentation of tubular structures in medical images.
de Bruijne, Marleen; van Ginneken, Bram; Viergever, Max A; Niessen, Wiro J
2003-07-01
Active Shape Models (ASM) have proven to be an effective approach for image segmentation. In some applications, however, the linear model of gray level appearance around a contour that is used in ASM is not sufficient for accurate boundary localization. Furthermore, the statistical shape model may be too restricted if the training set is limited. This paper describes modifications to both the shape and the appearance model of the original ASM formulation. Shape model flexibility is increased, for tubular objects, by modeling the axis deformation independent of the cross-sectional deformation, and by adding supplementary cylindrical deformation modes. Furthermore, a novel appearance modeling scheme that effectively deals with a highly varying background is developed. In contrast with the conventional ASM approach, the new appearance model is trained on both boundary and non-boundary points, and the probability that a given point belongs to the boundary is estimated non-parametrically. The methods are evaluated on the complex task of segmenting thrombus in abdominal aortic aneurysms (AAA). Shape approximation errors were successfully reduced using the two shape model extensions. Segmentation using the new appearance model significantly outperformed the original ASM scheme; average volume errors are 5.1% and 45% respectively.
CT Urography: Segmentation of Urinary Bladder using CLASS with Local Contour Refinement
Cha, Kenny; Hadjiiski, Lubomir; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Zhou, Chuan
2016-01-01
Purpose We are developing a computerized system for bladder segmentation on CT urography (CTU), as a critical component for computer-aided detection of bladder cancer. Methods The presence of regions filled with intravenous contrast and without contrast presents a challenge for bladder segmentation. Previously, we proposed a Conjoint Level set Analysis and Segmentation System (CLASS). In case the bladder is partially filled with contrast, CLASS segments the non-contrast (NC) region and the contrast-filled (C) region separately and automatically conjoins the NC and C region contours; however, inaccuracies in the NC and C region contours may cause the conjoint contour to exclude portions of the bladder. To alleviate this problem, we implemented a local contour refinement (LCR) method that exploits model-guided refinement (MGR) and energy-driven wavefront propagation (EDWP). MGR propagates the C region contours if the level set propagation in the C region stops prematurely due to substantial non-uniformity of the contrast. EDWP with regularized energies further propagates the conjoint contours to the correct bladder boundary. EDWP uses changes in energies, smoothness criteria of the contour, and previous slice contour to determine when to stop the propagation, following decision rules derived from training. A data set of 173 cases was collected for this study: 81 cases in the training set (42 lesions, 21 wall thickenings, 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, 13 normal bladders). For all cases, 3D hand segmented contours were obtained as reference standard and used for the evaluation of the computerized segmentation accuracy. Results For CLASS with LCR, the average volume intersection ratio, average volume error, absolute average volume error, average minimum distance and Jaccard index were 84.2±11.4%, 8.2±17.4%, 13.0±14.1%, 3.5±1.9 mm, 78.8±11.6%, respectively, for the training set and 78.0±14.7%, 16.4±16.9%, 18.2±15.0%, 3.8±2.3 mm, 73.8±13.4% respectively, for the test set. With CLASS only, the corresponding values were 75.1±13.2%, 18.7±19.5%, 22.5±14.9%, 4.3±2.2 mm, 71.0±12.6%, respectively, for the training set and 67.3±14.3%, 29.3±15.9%, 29.4±15.6%, 4.9±2.6 mm, 65.0±13.3%, respectively, for the test set. The differences between the two methods for all five measures were statistically significant (p<0.001) for both the training and test sets. Conclusions The results demonstrate the potential of CLASS with LCR for segmentation of the bladder. PMID:24801066
Blurry-frame detection and shot segmentation in colonoscopy videos
NASA Astrophysics Data System (ADS)
Oh, JungHwan; Hwang, Sae; Tavanapong, Wallapak; de Groen, Piet C.; Wong, Johnny
2003-12-01
Colonoscopy is an important screening procedure for colorectal cancer. During this procedure, the endoscopist visually inspects the colon. Human inspection, however, is not without error. We hypothesize that colonoscopy videos may contain additional valuable information missed by the endoscopist. Video segmentation is the first necessary step for the content-based video analysis and retrieval to provide efficient access to the important images and video segments from a large colonoscopy video database. Based on the unique characteristics of colonoscopy videos, we introduce a new scheme to detect and remove blurry frames, and segment the videos into shots based on the contents. Our experimental results show that the average precision and recall of the proposed scheme are over 90% for the detection of non-blurry images. The proposed method of blurry frame detection and shot segmentation is extensible to the videos captured from other endoscopic procedures such as upper gastrointestinal endoscopy, enteroscopy, cystoscopy, and laparoscopy.
Automated segmentation of intraretinal layers from macular optical coherence tomography images
NASA Astrophysics Data System (ADS)
Haeker, Mona; Sonka, Milan; Kardon, Randy; Shah, Vinay A.; Wu, Xiaodong; Abràmoff, Michael D.
2007-03-01
Commercially-available optical coherence tomography (OCT) systems (e.g., Stratus OCT-3) only segment and provide thickness measurements for the total retina on scans of the macula. Since each intraretinal layer may be affected differently by disease, it is desirable to quantify the properties of each layer separately. Thus, we have developed an automated segmentation approach for the separation of the retina on (anisotropic) 3-D macular OCT scans into five layers. Each macular series consisted of six linear radial scans centered at the fovea. Repeated series (up to six, when available) were acquired for each eye and were first registered and averaged together, resulting in a composite image for each angular location. The six surfaces defining the five layers were then found on each 3-D composite image series by transforming the segmentation task into that of finding a minimum-cost closed set in a geometric graph constructed from edge/regional information and a priori-determined surface smoothness and interaction constraints. The method was applied to the macular OCT scans of 12 patients with unilateral anterior ischemic optic neuropathy (corresponding to 24 3-D composite image series). The boundaries were independently defined by two human experts on one raw scan of each eye. Using the average of the experts' tracings as a reference standard resulted in an overall mean unsigned border positioning error of 6.7 +/- 4.0 μm, with five of the six surfaces showing significantly lower mean errors than those computed between the two observers (p < 0.05, pixel size of 50 × 2 μm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L; Qian, J; Gonzales, R
Purpose: To investigate the accuracy, sensitivity and constancy of integral quality monitor (IQM), a new system for in vivo dosimetry of conventional intensity modulated radiation therapy (IMRT) or rotational volumetric modulated arc therapy (VMAT) Methods: A beta-version IQM system was commissioned on an Elekta Infinity LINAC equipped with 160-MLCs Agility head. The stationary and rotational dosimetric constancy of IQM was evaluated, using five-field IMRT and single-or double-arc VMAT plans for prostate and head-and-neck (H&N) patients. The plans were delivered three times over three days to assess the constancy of IQM response. Picket fence (PF) fields were used to evaluate themore » sensitivity of detecting MLC leaf errors. A single leaf offset was intentionally introduced during delivery of various PF fields with segment apertures of 3×1, 5×1, 10×1, and 24×1cm2. Both 2mm and 5mm decrease in the field width were used. Results: Repeated IQM measurements of prostate and H&N IMRT deliveries showed 0.4 and 0.5% average standard deviation (SD) for segment-by-segment comparison and 0.1 and 0.2% for cumulative comparison. The corresponding SDs for VMAT deliveries were 6.5, 9.4% and 0.7, 1.3%, respectively. Statistical analysis indicates that the dosimetric differences detected by IQM were significant (p < 0.05) in all PF test deliveries. The largest average IQM signal response of a 2 mm leaf error was found to be 2.1% and 5.1% by a 5mm leaf error for 3×1 cm2 field size. The same error in 24×1 cm2 generates a 0.7% and 1.4% difference in the signal. Conclusion: IQM provides an effective means for real-time dosimetric verification of IMRT/ VMAT treatment delivery. For VMAT delivery, the cumulative dosimetry of IQM needs to be used in clinical practice.« less
Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar
2014-01-01
Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410
Moore, Laura J.; Griggs, Gary B.
2002-01-01
Quantification of cliff retreat rates for the southern half of Santa Cruz County, CA, USA, located within the Monterey Bay National Marine Sanctuary, using the softcopy/geographic information system (GIS) methodology results in average cliff retreat rates of 7–15 cm/yr between 1953 and 1994. The coastal dunes at the southern end of Santa Cruz County migrate seaward and landward through time and display net accretion between 1953 and 1994, which is partially due to development. In addition, three critically eroding segments of coastline with high average erosion rates ranging from 20 to 63 cm/yr are identified as erosion ‘hotspots’. These locations include: Opal Cliffs, Depot Hill and Manresa. Although cliff retreat is episodic, spatially variable at the scale of meters, and the factors affecting cliff retreat vary along the Santa Cruz County coastline, there is a compensation between factors affecting retreat such that over the long-term the coastline maintains a relatively smooth configuration. The softcopy/GIS methodology significantly reduces errors inherent in the calculation of retreat rates in high-relief areas (e.g. erosion rates generated in this study are generally correct to within 10 cm) by removing errors due to relief displacement. Although the resulting root mean squared error for erosion rates is relatively small, simple projections of past erosion rates are inadequate to provide predictions of future cliff position. Improved predictions can be made for individual coastal segments by using a mean erosion rate and the standard deviation as guides to future cliff behavior in combination with an understanding of processes acting along the coastal segments in question. This methodology can be applied on any high-relief coast where retreat rates can be measured.
Model-based registration for assessment of spinal deformities in idiopathic scoliosis
NASA Astrophysics Data System (ADS)
Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans
2014-01-01
Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.
Local and global evaluation for remote sensing image segmentation
NASA Astrophysics Data System (ADS)
Su, Tengfei; Zhang, Shengwei
2017-08-01
In object-based image analysis, how to produce accurate segmentation is usually a very important issue that needs to be solved before image classification or target recognition. The study for segmentation evaluation method is key to solving this issue. Almost all of the existent evaluation strategies only focus on the global performance assessment. However, these methods are ineffective for the situation that two segmentation results with very similar overall performance have very different local error distributions. To overcome this problem, this paper presents an approach that can both locally and globally quantify segmentation incorrectness. In doing so, region-overlapping metrics are utilized to quantify each reference geo-object's over and under-segmentation error. These quantified error values are used to produce segmentation error maps which have effective illustrative power to delineate local segmentation error patterns. The error values for all of the reference geo-objects are aggregated through using area-weighted summation, so that global indicators can be derived. An experiment using two scenes of very different high resolution images showed that the global evaluation part of the proposed approach was almost as effective as other two global evaluation methods, and the local part was a useful complement to comparing different segmentation results.
Quantifying the interplay effect in prostate IMRT delivery using a convolution-based method.
Li, Haisen S; Chetty, Indrin J; Solberg, Timothy D
2008-05-01
The authors present a segment-based convolution method to account for the interplay effect between intrafraction organ motion and the multileaf collimator position for each particular segment in intensity modulated radiation therapy (IMRT) delivered in a step-and-shoot manner. In this method, the static dose distribution attributed to each segment is convolved with the probability density function (PDF) of motion during delivery of the segment, whereas in the conventional convolution method ("average-based convolution"), the static dose distribution is convolved with the PDF averaged over an entire fraction, an entire treatment course, or even an entire patient population. In the case of IMRT delivered in a step-and-shoot manner, the average-based convolution method assumes that in each segment the target volume experiences the same motion pattern (PDF) as that of population. In the segment-based convolution method, the dose during each segment is calculated by convolving the static dose with the motion PDF specific to that segment, allowing both intrafraction motion and the interplay effect to be accounted for in the dose calculation. Intrafraction prostate motion data from a population of 35 patients tracked using the Calypso system (Calypso Medical Technologies, Inc., Seattle, WA) was used to generate motion PDFs. These were then convolved with dose distributions from clinical prostate IMRT plans. For a single segment with a small number of monitor units, the interplay effect introduced errors of up to 25.9% in the mean CTV dose compared against the planned dose evaluated by using the PDF of the entire fraction. In contrast, the interplay effect reduced the minimum CTV dose by 4.4%, and the CTV generalized equivalent uniform dose by 1.3%, in single fraction plans. For entire treatment courses delivered in either a hypofractionated (five fractions) or conventional (> 30 fractions) regimen, the discrepancy in total dose due to interplay effect was negligible.
NASA Astrophysics Data System (ADS)
Dangi, Shusil; Linte, Cristian A.
2017-03-01
Segmentation of right ventricle from cardiac MRI images can be used to build pre-operative anatomical heart models to precisely identify regions of interest during minimally invasive therapy. Furthermore, many functional parameters of right heart such as right ventricular volume, ejection fraction, myocardial mass and thickness can also be assessed from the segmented images. To obtain an accurate and computationally efficient segmentation of right ventricle from cardiac cine MRI, we propose a segmentation algorithm formulated as an energy minimization problem in a graph. Shape prior obtained by propagating label from an average atlas using affine registration is incorporated into the graph framework to overcome problems in ill-defined image regions. The optimal segmentation corresponding to the labeling with minimum energy configuration of the graph is obtained via graph-cuts and is iteratively refined to produce the final right ventricle blood pool segmentation. We quantitatively compare the segmentation results obtained from our algorithm to the provided gold-standard expert manual segmentation for 16 cine-MRI datasets available through the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge according to several similarity metrics, including Dice coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.
NASA Astrophysics Data System (ADS)
Burgos, Ninon; Guerreiro, Filipa; McClelland, Jamie; Presles, Benoît; Modat, Marc; Nill, Simeon; Dearnaley, David; deSouza, Nandita; Oelfke, Uwe; Knopf, Antje-Christin; Ourselin, Sébastien; Cardoso, M. Jorge
2017-06-01
To tackle the problem of magnetic resonance imaging (MRI)-only radiotherapy treatment planning (RTP), we propose a multi-atlas information propagation scheme that jointly segments organs and generates pseudo x-ray computed tomography (CT) data from structural MR images (T1-weighted and T2-weighted). As the performance of the method strongly depends on the quality of the atlas database composed of multiple sets of aligned MR, CT and segmented images, we also propose a robust way of registering atlas MR and CT images, which combines structure-guided registration, and CT and MR image synthesis. We first evaluated the proposed framework in terms of segmentation and CT synthesis accuracy on 15 subjects with prostate cancer. The segmentations obtained with the proposed method were compared using the Dice score coefficient (DSC) to the manual segmentations. Mean DSCs of 0.73, 0.90, 0.77 and 0.90 were obtained for the prostate, bladder, rectum and femur heads, respectively. The mean absolute error (MAE) and the mean error (ME) were computed between the reference CTs (non-rigidly aligned to the MRs) and the pseudo CTs generated with the proposed method. The MAE was on average 45.7+/- 4.6 HU and the ME -1.6+/- 7.7 HU. We then performed a dosimetric evaluation by re-calculating plans on the pseudo CTs and comparing them to the plans optimised on the reference CTs. We compared the cumulative dose volume histograms (DVH) obtained for the pseudo CTs to the DVH obtained for the reference CTs in the planning target volume (PTV) located in the prostate, and in the organs at risk at different DVH points. We obtained average differences of -0.14 % in the PTV for {{D}98 % } , and between -0.14 % and 0.05% in the PTV, bladder, rectum and femur heads for D mean and {{D}2 % } . Overall, we demonstrate that the proposed framework is able to automatically generate accurate pseudo CT images and segmentations in the pelvic region, potentially bypassing the need for CT scan for accurate RTP.
Localized-atlas-based segmentation of breast MRI in a decision-making framework.
Fooladivanda, Aida; Shokouhi, Shahriar B; Ahmadinejad, Nasrin
2017-03-01
Breast-region segmentation is an important step for density estimation and Computer-Aided Diagnosis (CAD) systems in Magnetic Resonance Imaging (MRI). Detection of breast-chest wall boundary is often a difficult task due to similarity between gray-level values of fibroglandular tissue and pectoral muscle. This paper proposes a robust breast-region segmentation method which is applicable for both complex cases with fibroglandular tissue connected to the pectoral muscle, and simple cases with high contrast boundaries. We present a decision-making framework based on geometric features and support vector machine (SVM) to classify breasts in two main groups, complex and simple. For complex cases, breast segmentation is done using a combination of intensity-based and atlas-based techniques; however, only intensity-based operation is employed for simple cases. A novel atlas-based method, that is called localized-atlas, accomplishes the processes of atlas construction and registration based on the region of interest (ROI). Atlas-based segmentation is performed by relying on the chest wall template. Our approach is validated using a dataset of 210 cases. Based on similarity between automatic and manual segmentation results, the proposed method achieves Dice similarity coefficient, Jaccard coefficient, total overlap, false negative, and false positive values of 96.3, 92.9, 97.4, 2.61 and 4.77%, respectively. The localization error of the breast-chest wall boundary is 1.97 mm, in terms of averaged deviation distance. The achieved results prove that the suggested framework performs the breast segmentation with negligible errors and efficient computational time for different breasts from the viewpoints of size, shape, and density pattern.
Simultaneous segmentation of the bone and cartilage surfaces of a knee joint in 3D
NASA Astrophysics Data System (ADS)
Yin, Y.; Zhang, X.; Anderson, D. D.; Brown, T. D.; Hofwegen, C. Van; Sonka, M.
2009-02-01
We present a novel framework for the simultaneous segmentation of multiple interacting surfaces belonging to multiple mutually interacting objects. The method is a non-trivial extension of our previously reported optimal multi-surface segmentation. Considering an example application of knee-cartilage segmentation, the framework consists of the following main steps: 1) Shape model construction: Building a mean shape for each bone of the joint (femur, tibia, patella) from interactively segmented volumetric datasets. Using the resulting mean-shape model - identification of cartilage, non-cartilage, and transition areas on the mean-shape bone model surfaces. 2) Presegmentation: Employment of iterative optimal surface detection method to achieve approximate segmentation of individual bone surfaces. 3) Cross-object surface mapping: Detection of inter-bone equidistant separating sheets to help identify corresponding vertex pairs for all interacting surfaces. 4) Multi-object, multi-surface graph construction and final segmentation: Construction of a single multi-bone, multi-surface graph so that two surfaces (bone and cartilage) with zero and non-zero intervening distances can be detected for each bone of the joint, according to whether or not cartilage can be locally absent or present on the bone. To define inter-object relationships, corresponding vertex pairs identified using the separating sheets were interlinked in the graph. The graph optimization algorithm acted on the entire multiobject, multi-surface graph to yield a globally optimal solution. The segmentation framework was tested on 16 MR-DESS knee-joint datasets from the Osteoarthritis Initiative database. The average signed surface positioning error for the 6 detected surfaces ranged from 0.00 to 0.12 mm. When independently initialized, the signed reproducibility error of bone and cartilage segmentation ranged from 0.00 to 0.26 mm. The results showed that this framework provides robust, accurate, and reproducible segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multi-object segmentation problems.
Improve accuracy for automatic acetabulum segmentation in CT images.
Liu, Hao; Zhao, Jianning; Dai, Ning; Qian, Hongbo; Tang, Yuehong
2014-01-01
Separation of the femur head and acetabulum is one of main difficulties in the diseased hip joint due to deformed shapes and extreme narrowness of the joint space. To improve the segmentation accuracy is the key point of existing automatic or semi-automatic segmentation methods. In this paper, we propose a new method to improve the accuracy of the segmented acetabulum using surface fitting techniques, which essentially consists of three parts: (1) design a surface iterative process to obtain an optimization surface; (2) change the ellipsoid fitting to two-phase quadric surface fitting; (3) bring in a normal matching method and an optimization region method to capture edge points for the fitting quadric surface. Furthermore, this paper cited vivo CT data sets of 40 actual patients (with 79 hip joints). Test results for these clinical cases show that: (1) the average error of the quadric surface fitting method is 2.3 (mm); (2) the accuracy ratio of automatically recognized contours is larger than 89.4%; (3) the error ratio of section contours is less than 10% for acetabulums without severe malformation and less than 30% for acetabulums with severe malformation. Compared with similar methods, the accuracy of our method, which is applied in a software system, is significantly enhanced.
Zhang, Xiangmin; Williams, Rachel; Wu, Xiaodong; Anderson, Donald D.; Sonka, Milan
2011-01-01
A novel method for simultaneous segmentation of multiple interacting surfaces belonging to multiple interacting objects, called LOGISMOS (layered optimal graph image segmentation of multiple objects and surfaces), is reported. The approach is based on the algorithmic incorporation of multiple spatial inter-relationships in a single n-dimensional graph, followed by graph optimization that yields a globally optimal solution. The LOGISMOS method’s utility and performance are demonstrated on a bone and cartilage segmentation task in the human knee joint. Although trained on only a relatively small number of nine example images, this system achieved good performance. Judged by dice similarity coefficients (DSC) using a leave-one-out test, DSC values of 0.84 ± 0.04, 0.80 ± 0.04 and 0.80 ± 0.04 were obtained for the femoral, tibial, and patellar cartilage regions, respectively. These are excellent DSC values, considering the narrow-sheet character of the cartilage regions. Similarly, low signed mean cartilage thickness errors were obtained when compared to a manually-traced independent standard in 60 randomly selected 3-D MR image datasets from the Osteoarthritis Initiative database—0.11 ± 0.24, 0.05 ± 0.23, and 0.03 ± 0.17 mm for the femoral, tibial, and patellar cartilage thickness, respectively. The average signed surface positioning errors for the six detected surfaces ranged from 0.04 ± 0.12 mm to 0.16 ± 0.22 mm. The reported LOGISMOS framework provides robust and accurate segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multiobject multisurface segmentation problems. PMID:20643602
Flexible methods for segmentation evaluation: results from CT-based luggage screening.
Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry
2014-01-01
Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms' behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms.
Bauer, Jan Stefan; Noël, Peter Benjamin; Vollhardt, Christiane; Much, Daniela; Degirmenci, Saliha; Brunner, Stefanie; Rummeny, Ernst Josef; Hauner, Hans
2015-01-01
Purpose MR might be well suited to obtain reproducible and accurate measures of fat tissues in infants. This study evaluates MR-measurements of adipose tissue in young infants in vitro and in vivo. Material and Methods MR images of ten phantoms simulating subcutaneous fat of an infant’s torso were obtained using a 1.5T MR scanner with and without simulated breathing. Scans consisted of a cartesian water-suppression turbo spin echo (wsTSE) sequence, and a PROPELLER wsTSE sequence. Fat volume was quantified directly and by MR imaging using k-means clustering and threshold-based segmentation procedures to calculate accuracy in vitro. Whole body MR was obtained in sleeping young infants (average age 67±30 days). This study was approved by the local review board. All parents gave written informed consent. To obtain reproducibility in vivo, cartesian and PROPELLER wsTSE sequences were repeated in seven and four young infants, respectively. Overall, 21 repetitions were performed for the cartesian sequence and 13 repetitions for the PROPELLER sequence. Results In vitro accuracy errors depended on the chosen segmentation procedure, ranging from 5.4% to 76%, while the sequence showed no significant influence. Artificial breathing increased the minimal accuracy error to 9.1%. In vivo reproducibility errors for total fat volume of the sleeping infants ranged from 2.6% to 3.4%. Neither segmentation nor sequence significantly influenced reproducibility. Conclusion With both cartesian and PROPELLER sequences an accurate and reproducible measure of body fat was achieved. Adequate segmentation was mandatory for high accuracy. PMID:25706876
Bauer, Jan Stefan; Noël, Peter Benjamin; Vollhardt, Christiane; Much, Daniela; Degirmenci, Saliha; Brunner, Stefanie; Rummeny, Ernst Josef; Hauner, Hans
2015-01-01
MR might be well suited to obtain reproducible and accurate measures of fat tissues in infants. This study evaluates MR-measurements of adipose tissue in young infants in vitro and in vivo. MR images of ten phantoms simulating subcutaneous fat of an infant's torso were obtained using a 1.5T MR scanner with and without simulated breathing. Scans consisted of a cartesian water-suppression turbo spin echo (wsTSE) sequence, and a PROPELLER wsTSE sequence. Fat volume was quantified directly and by MR imaging using k-means clustering and threshold-based segmentation procedures to calculate accuracy in vitro. Whole body MR was obtained in sleeping young infants (average age 67±30 days). This study was approved by the local review board. All parents gave written informed consent. To obtain reproducibility in vivo, cartesian and PROPELLER wsTSE sequences were repeated in seven and four young infants, respectively. Overall, 21 repetitions were performed for the cartesian sequence and 13 repetitions for the PROPELLER sequence. In vitro accuracy errors depended on the chosen segmentation procedure, ranging from 5.4% to 76%, while the sequence showed no significant influence. Artificial breathing increased the minimal accuracy error to 9.1%. In vivo reproducibility errors for total fat volume of the sleeping infants ranged from 2.6% to 3.4%. Neither segmentation nor sequence significantly influenced reproducibility. With both cartesian and PROPELLER sequences an accurate and reproducible measure of body fat was achieved. Adequate segmentation was mandatory for high accuracy.
Comparison of algorithms for automatic border detection of melanoma in dermoscopy images
NASA Astrophysics Data System (ADS)
Srinivasa Raghavan, Sowmya; Kaur, Ravneet; LeAnder, Robert
2016-09-01
Melanoma is one of the most rapidly accelerating cancers in the world [1]. Early diagnosis is critical to an effective cure. We propose a new algorithm for more accurately detecting melanoma borders in dermoscopy images. Proper border detection requires eliminating occlusions like hair and bubbles by processing the original image. The preprocessing step involves transforming the RGB image to the CIE L*u*v* color space, in order to decouple brightness from color information, then increasing contrast, using contrast-limited adaptive histogram equalization (CLAHE), followed by artifacts removal using a Gaussian filter. After preprocessing, the Chen-Vese technique segments the preprocessed images to create a lesion mask which undergoes a morphological closing operation. Next, the largest central blob in the lesion is detected, after which, the blob is dilated to generate an image output mask. Finally, the automatically-generated mask is compared to the manual mask by calculating the XOR error [3]. Our border detection algorithm was developed using training and test sets of 30 and 20 images, respectively. This detection method was compared to the SRM method [4] by calculating the average XOR error for each of the two algorithms. Average error for test images was 0.10, using the new algorithm, and 0.99, using SRM method. In comparing the average error values produced by the two algorithms, it is evident that the average XOR error for our technique is lower than the SRM method, thereby implying that the new algorithm detects borders of melanomas more accurately than the SRM algorithm.
Investigation of Primary Mirror Segment's Residual Errors for the Thirty Meter Telescope
NASA Technical Reports Server (NTRS)
Seo, Byoung-Joon; Nissly, Carl; Angeli, George; MacMynowski, Doug; Sigrist, Norbert; Troy, Mitchell; Williams, Eric
2009-01-01
The primary mirror segment aberrations after shape corrections with warping harness have been identified as the single largest error term in the Thirty Meter Telescope (TMT) image quality error budget. In order to better understand the likely errors and how they will impact the telescope performance we have performed detailed simulations. We first generated unwarped primary mirror segment surface shapes that met TMT specifications. Then we used the predicted warping harness influence functions and a Shack-Hartmann wavefront sensor model to determine estimates for the 492 corrected segment surfaces that make up the TMT primary mirror. Surface and control parameters, as well as the number of subapertures were varied to explore the parameter space. The corrected segment shapes were then passed to an optical TMT model built using the Jet Propulsion Laboratory (JPL) developed Modeling and Analysis for Controlled Optical Systems (MACOS) ray-trace simulator. The generated exit pupil wavefront error maps provided RMS wavefront error and image-plane characteristics like the Normalized Point Source Sensitivity (PSSN). The results have been used to optimize the segment shape correction and wavefront sensor designs as well as provide input to the TMT systems engineering error budgets.
Unified framework for automated iris segmentation using distantly acquired face images.
Tan, Chun-Wei; Kumar, Ajay
2012-09-01
Remote human identification using iris biometrics has high civilian and surveillance applications and its success requires the development of robust segmentation algorithm to automatically extract the iris region. This paper presents a new iris segmentation framework which can robustly segment the iris images acquired using near infrared or visible illumination. The proposed approach exploits multiple higher order local pixel dependencies to robustly classify the eye region pixels into iris or noniris regions. Face and eye detection modules have been incorporated in the unified framework to automatically provide the localized eye region from facial image for iris segmentation. We develop robust postprocessing operations algorithm to effectively mitigate the noisy pixels caused by the misclassification. Experimental results presented in this paper suggest significant improvement in the average segmentation errors over the previously proposed approaches, i.e., 47.5%, 34.1%, and 32.6% on UBIRIS.v2, FRGC, and CASIA.v4 at-a-distance databases, respectively. The usefulness of the proposed approach is also ascertained from recognition experiments on three different publicly available databases.
Shahedi, Maysam; Halicek, Martin; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei
2018-06-01
Prostate segmentation in computed tomography (CT) images is useful for treatment planning and procedure guidance such as external beam radiotherapy and brachytherapy. However, because of the low, soft tissue contrast of CT images, manual segmentation of the prostate is a time-consuming task with high interobserver variation. In this study, we proposed a semiautomated, three-dimensional (3D) segmentation for prostate CT images using shape and texture analysis and we evaluated the method against manual reference segmentations. The prostate gland usually has a globular shape with a smoothly curved surface, and its shape could be accurately modeled or reconstructed having a limited number of well-distributed surface points. In a training dataset, using the prostate gland centroid point as the origin of a coordination system, we defined an intersubject correspondence between the prostate surface points based on the spherical coordinates. We applied this correspondence to generate a point distribution model for prostate shape using principal component analysis and to study the local texture difference between prostate and nonprostate tissue close to the different prostate surface subregions. We used the learned shape and texture characteristics of the prostate in CT images and then combined them with user inputs to segment a new image. We trained our segmentation algorithm using 23 CT images and tested the algorithm on two sets of 10 nonbrachytherapy and 37 postlow dose rate brachytherapy CT images. We used a set of error metrics to evaluate the segmentation results using two experts' manual reference segmentations. For both nonbrachytherapy and post-brachytherapy image sets, the average measured Dice similarity coefficient (DSC) was 88% and the average mean absolute distance (MAD) was 1.9 mm. The average measured differences between the two experts on both datasets were 92% (DSC) and 1.1 mm (MAD). The proposed, semiautomatic segmentation algorithm showed a fast, robust, and accurate performance for 3D prostate segmentation of CT images, specifically when no previous, intrapatient information, that is, previously segmented images, was available. The accuracy of the algorithm is comparable to the best performance results reported in the literature and approaches the interexpert variability observed in manual segmentation. © 2018 American Association of Physicists in Medicine.
Farooq, Muhammad; Sazonov, Edward
2017-11-01
Several methods have been proposed for automatic and objective monitoring of food intake, but their performance suffers in the presence of speech and motion artifacts. This paper presents a novel sensor system and algorithms for detection and characterization of chewing bouts from a piezoelectric strain sensor placed on the temporalis muscle. The proposed data acquisition device was incorporated into the temple of eyeglasses. The system was tested by ten participants in two part experiments, one under controlled laboratory conditions and the other in unrestricted free-living. The proposed food intake recognition method first performed an energy-based segmentation to isolate candidate chewing segments (instead of using epochs of fixed duration commonly reported in research literature), with the subsequent classification of the segments by linear support vector machine models. On participant level (combining data from both laboratory and free-living experiments), with ten-fold leave-one-out cross-validation, chewing were recognized with average F-score of 96.28% and the resultant area under the curve was 0.97, which are higher than any of the previously reported results. A multivariate regression model was used to estimate chew counts from segments classified as chewing with an average mean absolute error of 3.83% on participant level. These results suggest that the proposed system is able to identify chewing segments in the presence of speech and motion artifacts, as well as automatically and accurately quantify chewing behavior, both under controlled laboratory conditions and unrestricted free-living.
NASA Astrophysics Data System (ADS)
Egger, Jan; Nimsky, Christopher
2016-03-01
Due to the aging population, spinal diseases get more and more common nowadays; e.g., lifetime risk of osteoporotic fracture is 40% for white women and 13% for white men in the United States. Thus the numbers of surgical spinal procedures are also increasing with the aging population and precise diagnosis plays a vital role in reducing complication and recurrence of symptoms. Spinal imaging of vertebral column is a tedious process subjected to interpretation errors. In this contribution, we aim to reduce time and error for vertebral interpretation by applying and studying the GrowCut - algorithm for boundary segmentation between vertebral body compacta and surrounding structures. GrowCut is a competitive region growing algorithm using cellular automata. For our study, vertebral T2-weighted Magnetic Resonance Imaging (MRI) scans were first manually outlined by neurosurgeons. Then, the vertebral bodies were segmented in the medical images by a GrowCut-trained physician using the semi-automated GrowCut-algorithm. Afterwards, results of both segmentation processes were compared using the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HD) which yielded to a DSC of 82.99+/-5.03% and a HD of 18.91+/-7.2 voxel, respectively. In addition, the times have been measured during the manual and the GrowCut segmentations, showing that a GrowCutsegmentation - with an average time of less than six minutes (5.77+/-0.73) - is significantly shorter than a pure manual outlining.
Flexible methods for segmentation evaluation: Results from CT-based luggage screening
Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry
2017-01-01
BACKGROUND Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms’ behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. OBJECTIVE To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. METHODS We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. RESULTS Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. CONCLUSIONS Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms. PMID:24699346
A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots.
Lee, Tae-Jae; Yi, Dong-Hoon; Cho, Dong-Il Dan
2016-03-01
This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM) method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%.
Boundary overlap for medical image segmentation evaluation
NASA Astrophysics Data System (ADS)
Yeghiazaryan, Varduhi; Voiculescu, Irina
2017-03-01
All medical image segmentation algorithms need to be validated and compared, and yet no evaluation framework is widely accepted within the imaging community. Collections of segmentation results often need to be compared and ranked by their effectiveness. Evaluation measures which are popular in the literature are based on region overlap or boundary distance. None of these are consistent in the way they rank segmentation results: they tend to be sensitive to one or another type of segmentation error (size, location, shape) but no single measure covers all error types. We introduce a new family of measures, with hybrid characteristics. These measures quantify similarity/difference of segmented regions by considering their overlap around the region boundaries. This family is more sensitive than other measures in the literature to combinations of segmentation error types. We compare measure performance on collections of segmentation results sourced from carefully compiled 2D synthetic data, and also on 3D medical image volumes. We show that our new measure: (1) penalises errors successfully, especially those around region boundaries; (2) gives a low similarity score when existing measures disagree, thus avoiding overly inflated scores; and (3) scores segmentation results over a wider range of values. We consider a representative measure from this family and the effect of its only free parameter on error sensitivity, typical value range, and running time.
Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-10-01
The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.
Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-01-01
Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070
Segmented Mirror Image Degradation Due to Surface Dust, Alignment and Figure
NASA Technical Reports Server (NTRS)
Schreur, Julian J.
1999-01-01
In 1996 an algorithm was developed to include the effects of surface roughness in the calculation of the point spread function of a telescope mirror. This algorithm has been extended to include the effects of alignment errors and figure errors for the individual elements, and an overall contamination by surface dust. The final algorithm builds an array for a guard-banded pupil function of a mirror that may or may not have a central hole, a central reflecting segment, or an outer ring of segments. The central hole, central reflecting segment, and outer ring may be circular or polygonal, and the outer segments may have trimmed comers. The modeled point spread functions show that x-tilt and y-tilt, or the corresponding R-tilt and theta-tilt for a segment in an outer ring, is readily apparent for maximum wavefront errors of 0.1 lambda. A similar sized piston error is also apparent, but integral wavelength piston errors are not. Severe piston error introduces a focus error of the opposite sign, so piston could be adjusted to compensate for segments with varying focal lengths. Dust affects the image principally by decreasing the Strehl ratio, or peak intensity of the image. For an eight-meter telescope a 25% coverage by dust produced a scattered light intensity of 10(exp -9) of the peak intensity, a level well below detectability.
An improved pulse coupled neural network with spectral residual for infrared pedestrian segmentation
NASA Astrophysics Data System (ADS)
He, Fuliang; Guo, Yongcai; Gao, Chao
2017-12-01
Pulse coupled neural network (PCNN) has become a significant tool for the infrared pedestrian segmentation, and a variety of relevant methods have been developed at present. However, these existing models commonly have several problems of the poor adaptability of infrared noise, the inaccuracy of segmentation results, and the fairly complex determination of parameters in current methods. This paper presents an improved PCNN model that integrates the simplified framework and spectral residual to alleviate the above problem. In this model, firstly, the weight matrix of the feeding input field is designed by the anisotropic Gaussian kernels (ANGKs), in order to suppress the infrared noise effectively. Secondly, the normalized spectral residual saliency is introduced as linking coefficient to enhance the edges and structural characteristics of segmented pedestrians remarkably. Finally, the improved dynamic threshold based on the average gray values of the iterative segmentation is employed to simplify the original PCNN model. Experiments on the IEEE OTCBVS benchmark and the infrared pedestrian image database built by our laboratory, demonstrate that the superiority of both subjective visual effects and objective quantitative evaluations in information differences and segmentation errors in our model, compared with other classic segmentation methods.
On Inertial Body Tracking in the Presence of Model Calibration Errors
Miezal, Markus; Taetz, Bertram; Bleser, Gabriele
2016-01-01
In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266
Automatic and hierarchical segmentation of the human skeleton in CT images.
Fu, Yabo; Liu, Shi; Li, Harold; Yang, Deshan
2017-04-07
Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.
Automatic and hierarchical segmentation of the human skeleton in CT images
NASA Astrophysics Data System (ADS)
Fu, Yabo; Liu, Shi; Li, H. Harold; Yang, Deshan
2017-04-01
Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.
NASA Astrophysics Data System (ADS)
Park, Seyoun; Robinson, Adam; Quon, Harry; Kiess, Ana P.; Shen, Colette; Wong, John; Plishker, William; Shekhar, Raj; Lee, Junghoon
2016-03-01
In this paper, we propose a CT-CBCT registration method to accurately predict the tumor volume change based on daily cone-beam CTs (CBCTs) during radiotherapy. CBCT is commonly used to reduce patient setup error during radiotherapy, but its poor image quality impedes accurate monitoring of anatomical changes. Although physician's contours drawn on the planning CT can be automatically propagated to daily CBCTs by deformable image registration (DIR), artifacts in CBCT often cause undesirable errors. To improve the accuracy of the registration-based segmentation, we developed a DIR method that iteratively corrects CBCT intensities by local histogram matching. Three popular DIR algorithms (B-spline, demons, and optical flow) with the intensity correction were implemented on a graphics processing unit for efficient computation. We evaluated their performances on six head and neck (HN) cancer cases. For each case, four trained scientists manually contoured the nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial image registration software based on conventional mutual information (MI), VelocityAI (Varian Medical Systems Inc.). The volume differences (mean±std in cc) between the average of the manual segmentations and automatic segmentations are 3.70+/-2.30 (B-spline), 1.25+/-1.78 (demons), 0.93+/-1.14 (optical flow), and 4.39+/-3.86 (VelocityAI). The proposed method significantly reduced the estimation error by 9% (B-spline), 38% (demons), and 51% (optical flow) over the results using VelocityAI. Although demonstrated only on HN nodal GTVs, the results imply that the proposed method can produce improved segmentation of other critical structures over conventional methods.
Wicke, Jason; Dumas, Genevieve A; Costigan, Patrick A
2009-01-05
Modeling of the body segments to estimate segment inertial parameters is required in the kinetic analysis of human motion. A new geometric model for the trunk has been developed that uses various cross-sectional shapes to estimate segment volume and adopts a non-uniform density function that is gender-specific. The goal of this study was to test the accuracy of the new model for estimating the trunk's inertial parameters by comparing it to the more current models used in biomechanical research. Trunk inertial parameters estimated from dual X-ray absorptiometry (DXA) were used as the standard. Twenty-five female and 24 male college-aged participants were recruited for the study. Comparisons of the new model to the accepted models were accomplished by determining the error between the models' trunk inertial estimates and that from DXA. Results showed that the new model was more accurate across all inertial estimates than the other models. The new model had errors within 6.0% for both genders, whereas the other models had higher average errors ranging from 10% to over 50% and were much more inconsistent between the genders. In addition, there was little consistency in the level of accuracy for the other models when estimating the different inertial parameters. These results suggest that the new model provides more accurate and consistent trunk inertial estimates than the other models for both female and male college-aged individuals. However, similar studies need to be performed using other populations, such as elderly or individuals from a distinct morphology (e.g. obese). In addition, the effect of using different models on the outcome of kinetic parameters, such as joint moments and forces needs to be assessed.
Sample Training Based Wildfire Segmentation by 2D Histogram θ-Division with Minimum Error
Dong, Erqian; Sun, Mingui; Jia, Wenyan; Zhang, Dengyi; Yuan, Zhiyong
2013-01-01
A novel wildfire segmentation algorithm is proposed with the help of sample training based 2D histogram θ-division and minimum error. Based on minimum error principle and 2D color histogram, the θ-division methods were presented recently, but application of prior knowledge on them has not been explored. For the specific problem of wildfire segmentation, we collect sample images with manually labeled fire pixels. Then we define the probability function of error division to evaluate θ-division segmentations, and the optimal angle θ is determined by sample training. Performances in different color channels are compared, and the suitable channel is selected. To further improve the accuracy, the combination approach is presented with both θ-division and other segmentation methods such as GMM. Our approach is tested on real images, and the experiments prove its efficiency for wildfire segmentation. PMID:23878526
NASA Astrophysics Data System (ADS)
Schramm, G.; Maus, J.; Hofheinz, F.; Petr, J.; Lougovski, A.; Beuthien-Baumann, B.; Platzek, I.; van den Hoff, J.
2014-06-01
The aim of this paper is to describe a new automatic method for compensation of metal-implant-induced segmentation errors in MR-based attenuation maps (MRMaps) and to evaluate the quantitative influence of those artifacts on the reconstructed PET activity concentration. The developed method uses a PET-based delineation of the patient contour to compensate metal-implant-caused signal voids in the MR scan that is segmented for PET attenuation correction. PET emission data of 13 patients with metal implants examined in a Philips Ingenuity PET/MR were reconstructed with the vendor-provided method for attenuation correction (MRMaporig, PETorig) and additionally with a method for attenuation correction (MRMapcor, PETcor) developed by our group. MRMaps produced by both methods were visually inspected for segmentation errors. The segmentation errors in MRMaporig were classified into four classes (L1 and L2 artifacts inside the lung and B1 and B2 artifacts inside the remaining body depending on the assigned attenuation coefficients). The average relative SUV differences (\\varepsilon _{rel}^{av}) between PETorig and PETcor of all regions showing wrong attenuation coefficients in MRMaporig were calculated. Additionally, relative SUVmean differences (ɛrel) of tracer accumulations in hot focal structures inside or in the vicinity of these regions were evaluated. MRMaporig showed erroneous attenuation coefficients inside the regions affected by metal artifacts and inside the patients' lung in all 13 cases. In MRMapcor, all regions with metal artifacts, except for the sternum, were filled with the soft-tissue attenuation coefficient and the lung was correctly segmented in all patients. MRMapcor only showed small residual segmentation errors in eight patients. \\varepsilon _{rel}^{av} (mean ± standard deviation) were: ( - 56 ± 3)% for B1, ( - 43 ± 4)% for B2, (21 ± 18)% for L1, (120 ± 47)% for L2 regions. ɛrel (mean ± standard deviation) of hot focal structures were: ( - 52 ± 12)% in B1, ( - 45 ± 13)% in B2, (19 ± 19)% in L1, (51 ± 31)% in L2 regions. Consequently, metal-implant-induced artifacts severely disturb MR-based attenuation correction and SUV quantification in PET/MR. The developed algorithm is able to compensate for these artifacts and improves SUV quantification accuracy distinctly.
TED: A Tolerant Edit Distance for segmentation evaluation.
Funke, Jan; Klein, Jonas; Moreno-Noguer, Francesc; Cardona, Albert; Cook, Matthew
2017-02-15
In this paper, we present a novel error measure to compare a computer-generated segmentation of images or volumes against ground truth. This measure, which we call Tolerant Edit Distance (TED), is motivated by two observations that we usually encounter in biomedical image processing: (1) Some errors, like small boundary shifts, are tolerable in practice. Which errors are tolerable is application dependent and should be explicitly expressible in the measure. (2) Non-tolerable errors have to be corrected manually. The effort needed to do so should be reflected by the error measure. Our measure is the minimal weighted sum of split and merge operations to apply to one segmentation such that it resembles another segmentation within specified tolerance bounds. This is in contrast to other commonly used measures like Rand index or variation of information, which integrate small, but tolerable, differences. Additionally, the TED provides intuitive numbers and allows the localization and classification of errors in images or volumes. We demonstrate the applicability of the TED on 3D segmentations of neurons in electron microscopy images where topological correctness is arguable more important than exact boundary locations. Furthermore, we show that the TED is not just limited to evaluation tasks. We use it as the loss function in a max-margin learning framework to find parameters of an automatic neuron segmentation algorithm. We show that training to minimize the TED, i.e., to minimize crucial errors, leads to higher segmentation accuracy compared to other learning methods. Copyright © 2016. Published by Elsevier Inc.
Duvivier, Wilco F; van Beek, Teris A; Meijer, Thijs; Peeters, Ruth J P; Groot, Maria J; Sterk, Saskia S; Nielen, Michel W F
2015-01-21
In agriforensics, time of administration is often debated when illegal drug residues, such as clenbuterol, are found in frequently traded cattle. In this proof-of-concept work, the feasibility of obtaining retrospective timeline information from segmented calf tail hair analyses has been studied. First, an ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) hair analysis method was adapted to accommodate smaller sample sizes and in-house validated. Then, longitudinal 1 cm segments of calf tail hair were analyzed to obtain clenbuterol concentration profiles. The profiles found were in good agreement with calculated, theoretical positions of the clenbuterol residues along the hair. Following assessment of the average growth rate of calf tail hair, time of clenbuterol administration could be retrospectively determined from segmented hair analysis data. The data from the initial animal treatment study (n = 2) suggest that time of treatment can be retrospectively estimated with an error of 3-17 days.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L; Tan, S; Lu, W
Purpose: PET images are usually blurred due to the finite spatial resolution, while CT images suffer from low contrast. Segment a tumor from either a single PET or CT image is thus challenging. To make full use of the complementary information between PET and CT, we propose a novel variational method for simultaneous PET image restoration and PET/CT images co-segmentation. Methods: The proposed model was constructed based on the Γ-convergence approximation of Mumford-Shah (MS) segmentation model for PET/CT co-segmentation. Moreover, a PET de-blur process was integrated into the MS model to improve the segmentation accuracy. An interaction edge constraint termmore » over the two modalities were specially designed to share the complementary information. The energy functional was iteratively optimized using an alternate minimization (AM) algorithm. The performance of the proposed method was validated on ten lung cancer cases and five esophageal cancer cases. The ground truth were manually delineated by an experienced radiation oncologist using the complementary visual features of PET and CT. The segmentation accuracy was evaluated by Dice similarity index (DSI) and volume error (VE). Results: The proposed method achieved an expected restoration result for PET image and satisfactory segmentation results for both PET and CT images. For lung cancer dataset, the average DSI (0.72) increased by 0.17 and 0.40 than single PET and CT segmentation. For esophageal cancer dataset, the average DSI (0.85) increased by 0.07 and 0.43 than single PET and CT segmentation. Conclusion: The proposed method took full advantage of the complementary information from PET and CT images. This work was supported in part by the National Cancer Institute Grants R01CA172638. Shan Tan and Laquan Li were supported in part by the National Natural Science Foundation of China, under Grant Nos. 60971112 and 61375018.« less
NASA Astrophysics Data System (ADS)
Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien
2007-03-01
The accurate segmentation of the articular cartilages from magnetic resonance (MR) images of the knee is important for clinical studies and drug trials into conditions like osteoarthritis. Currently, segmentations are obtained using time-consuming manual or semi-automatic algorithms which have high inter- and intra-observer variabilities. This paper presents an important step towards obtaining automatic and accurate segmentations of the cartilages, namely an approach to automatically segment the bones and extract the bone-cartilage interfaces (BCI) in the knee. The segmentation is performed using three-dimensional active shape models, which are initialized using an affine registration to an atlas. The BCI are then extracted using image information and prior knowledge about the likelihood of each point belonging to the interface. The accuracy and robustness of the approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images. The (femur, tibia, patella) bone segmentation had a median Dice similarity coefficient of (0.96, 0.96, 0.89) and an average point-to-surface error of 0.16 mm on the BCI. The extracted BCI had a median surface overlap of 0.94 with the real interface, demonstrating its usefulness for subsequent cartilage segmentation or quantitative analysis.
Stereo matching using census cost over cross window and segmentation-based disparity refinement
NASA Astrophysics Data System (ADS)
Li, Qingwu; Ni, Jinyan; Ma, Yunpeng; Xu, Jinxin
2018-03-01
Stereo matching is a vital requirement for many applications, such as three-dimensional (3-D) reconstruction, robot navigation, object detection, and industrial measurement. To improve the practicability of stereo matching, a method using census cost over cross window and segmentation-based disparity refinement is proposed. First, a cross window is obtained using distance difference and intensity similarity in binocular images. Census cost over the cross window and color cost are combined as the matching cost, which is aggregated by the guided filter. Then, winner-takes-all strategy is used to calculate the initial disparities. Second, a graph-based segmentation method is combined with color and edge information to achieve moderate under-segmentation. The segmented regions are classified into reliable regions and unreliable regions by consistency checking. Finally, the two regions are optimized by plane fitting and propagation, respectively, to match the ambiguous pixels. The experimental results are on Middlebury Stereo Datasets, which show that the proposed method has good performance in occluded and discontinuous regions, and it obtains smoother disparity maps with a lower average matching error rate compared with other algorithms.
NASA Astrophysics Data System (ADS)
Patel, Ajay; van de Leemput, Sil C.; Prokop, Mathias; van Ginneken, Bram; Manniesing, Rashindra
2017-03-01
Segmentation of anatomical structures is fundamental in the development of computer aided diagnosis systems for cerebral pathologies. Manual annotations are laborious, time consuming and subject to human error and observer variability. Accurate quantification of cerebrospinal fluid (CSF) can be employed as a morphometric measure for diagnosis and patient outcome prediction. However, segmenting CSF in non-contrast CT images is complicated by low soft tissue contrast and image noise. In this paper we propose a state-of-the-art method using a multi-scale three-dimensional (3D) fully convolutional neural network (CNN) to automatically segment all CSF within the cranial cavity. The method is trained on a small dataset comprised of four manually annotated cerebral CT images. Quantitative evaluation of a separate test dataset of four images shows a mean Dice similarity coefficient of 0.87 +/- 0.01 and mean absolute volume difference of 4.77 +/- 2.70 %. The average prediction time was 68 seconds. Our method allows for fast and fully automated 3D segmentation of cerebral CSF in non-contrast CT, and shows promising results despite a limited amount of training data.
Improving graph-based OCT segmentation for severe pathology in retinitis pigmentosa patients
NASA Astrophysics Data System (ADS)
Lang, Andrew; Carass, Aaron; Bittner, Ava K.; Ying, Howard S.; Prince, Jerry L.
2017-03-01
Three dimensional segmentation of macular optical coherence tomography (OCT) data of subjects with retinitis pigmentosa (RP) is a challenging problem due to the disappearance of the photoreceptor layers, which causes algorithms developed for segmentation of healthy data to perform poorly on RP patients. In this work, we present enhancements to a previously developed graph-based OCT segmentation pipeline to enable processing of RP data. The algorithm segments eight retinal layers in RP data by relaxing constraints on the thickness and smoothness of each layer learned from healthy data. Following from prior work, a random forest classifier is first trained on the RP data to estimate boundary probabilities, which are used by a graph search algorithm to find the optimal set of nine surfaces that fit the data. Due to the intensity disparity between normal layers of healthy controls and layers in various stages of degeneration in RP patients, an additional intensity normalization step is introduced. Leave-one-out validation on data acquired from nine subjects showed an average overall boundary error of 4.22 μm as compared to 6.02 μm using the original algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueegsegger, Michael B.; Bach Cuadra, Meritxell; Pica, Alessia
Purpose: Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors. Methods and Materials: Manual and automatic segmentations were compared for 17 patients, based on head computed tomography (CT) volume scans. A 3Dmore » statistical shape model of the cornea, lens, and sclera as well as of the optic disc position was developed. Furthermore, an active shape model was built to enable automatic fitting of the eye model to CT slice stacks. Cross-validation was performed based on leave-one-out tests for all training shapes by measuring dice coefficients and mean segmentation errors between automatic segmentation and manual segmentation by an expert. Results: Cross-validation revealed a dice similarity of 95% {+-} 2% for the sclera and cornea and 91% {+-} 2% for the lens. Overall, mean segmentation error was found to be 0.3 {+-} 0.1 mm. Average segmentation time was 14 {+-} 2 s on a standard personal computer. Conclusions: Our results show that the solution presented outperforms state-of-the-art methods in terms of accuracy, reliability, and robustness. Moreover, the eye model shape as well as its variability is learned from a training set rather than by making shape assumptions (eg, as with the spherical or elliptical model). Therefore, the model appears to be capable of modeling nonspherically and nonelliptically shaped eyes.« less
Sanz-Requena, Roberto; Moratal, David; García-Sánchez, Diego Ramón; Bodí, Vicente; Rieta, José Joaquín; Sanchis, Juan Manuel
2007-03-01
Intravascular ultrasound (IVUS) imaging is used along with X-ray coronary angiography to detect vessel pathologies. Manual analysis of IVUS images is slow and time-consuming and it is not feasible for clinical purposes. A semi-automated method is proposed to generate 3D reconstructions from IVUS video sequences, so that a fast diagnose can be easily done, quantifying plaque length and severity as well as plaque volume of the vessels under study. The methodology described in this work has four steps: a pre-processing of IVUS images, a segmentation of media-adventitia contour, a detection of intima and plaque and a 3D reconstruction of the vessel. Preprocessing is intended to remove noise from the images without blurring the edges. Segmentation of media-adventitia contour is achieved using active contours (snakes). In particular, we use the gradient vector flow (GVF) as external force for the snakes. The detection of lumen border is obtained taking into account gray-level information of the inner part of the previously detected contours. A knowledge-based approach is used to determine which level of gray corresponds statistically to the different regions of interest: intima, plaque and lumen. The catheter region is automatically discarded. An estimate of plaque type is also given. Finally, 3D reconstruction of all detected regions is made. The suitability of this methodology has been verified for the analysis and visualization of plaque length, stenosis severity, automatic detection of the most problematic regions, calculus of plaque volumes and a preliminary estimation of plaque type obtaining for automatic measures of lumen and vessel area an average error smaller than 1mm(2) (equivalent aproximately to 10% of the average measure), for calculus of plaque and lumen volume errors smaller than 0.5mm(3) (equivalent approximately to 20% of the average measure) and for plaque type estimates a mismatch of less than 8% in the analysed frames.
Segmentation of facial bone surfaces by patch growing from cone beam CT volumes
Lilja, Mikko; Kalke, Martti
2016-01-01
Objectives: The motivation behind this work was to design an automatic algorithm capable of segmenting the exterior of the dental and facial bones including the mandible, teeth, maxilla and zygomatic bone with an open surface (a surface with a boundary) from CBCT images for the anatomy-based reconstruction of radiographs. Such an algorithm would provide speed, consistency and improved image quality for clinical workflows, for example, in planning of implants. Methods: We used CBCT images from two studies: first to develop (n = 19) and then to test (n = 30) a segmentation pipeline. The pipeline operates by parameterizing the topology and shape of the target, searching for potential points on the facial bone–soft tissue edge, reconstructing a triangular mesh by growing patches on from the edge points with good contrast and regularizing the result with a surface polynomial. This process is repeated for convergence. Results: The output of the algorithm was benchmarked against a hand-drawn reference and reached a 0.50 ± 1.0-mm average and 1.1-mm root mean squares error in Euclidean distance from the reference to our automatically segmented surface. These results were achieved with images affected by inhomogeneity, noise and metal artefacts that are typical for dental CBCT. Conclusions: Previously, this level of accuracy and precision in dental CBCT has been reported in segmenting only the mandible, a much easier target. The segmentation results were consistent throughout the data set and the pipeline was found fast enough (<1-min average computation time) to be considered for clinical use. PMID:27482878
Evaluating segmentation error without ground truth.
Kohlberger, Timo; Singh, Vivek; Alvino, Chris; Bahlmann, Claus; Grady, Leo
2012-01-01
The automatic delineation of the boundaries of organs and other anatomical structures is a key component of many medical image processing systems. In this paper we present a generic learning approach based on a novel space of segmentation features, which can be trained to predict the overlap error and Dice coefficient of an arbitrary organ segmentation without knowing the ground truth delineation. We show the regressor to be much stronger a predictor of these error metrics than the responses of probabilistic boosting classifiers trained on the segmentation boundary. The presented approach not only allows us to build reliable confidence measures and fidelity checks, but also to rank several segmentation hypotheses against each other during online usage of the segmentation algorithm in clinical practice.
Optimal wavefront control for adaptive segmented mirrors
NASA Technical Reports Server (NTRS)
Downie, John D.; Goodman, Joseph W.
1989-01-01
A ground-based astronomical telescope with a segmented primary mirror will suffer image-degrading wavefront aberrations from at least two sources: (1) atmospheric turbulence and (2) segment misalignment or figure errors of the mirror itself. This paper describes the derivation of a mirror control feedback matrix that assumes the presence of both types of aberration and is optimum in the sense that it minimizes the mean-squared residual wavefront error. Assumptions of the statistical nature of the wavefront measurement errors, atmospheric phase aberrations, and segment misalignment errors are made in the process of derivation. Examples of the degree of correlation are presented for three different types of wavefront measurement data and compared to results of simple corrections.
Error analysis of speed of sound reconstruction in ultrasound limited angle transmission tomography.
Jintamethasawat, Rungroj; Lee, Won-Mean; Carson, Paul L; Hooi, Fong Ming; Fowlkes, J Brian; Goodsitt, Mitchell M; Sampson, Richard; Wenisch, Thomas F; Wei, Siyuan; Zhou, Jian; Chakrabarti, Chaitali; Kripfgans, Oliver D
2018-04-07
We have investigated limited angle transmission tomography to estimate speed of sound (SOS) distributions for breast cancer detection. That requires both accurate delineations of major tissues, in this case by segmentation of prior B-mode images, and calibration of the relative positions of the opposed transducers. Experimental sensitivity evaluation of the reconstructions with respect to segmentation and calibration errors is difficult with our current system. Therefore, parametric studies of SOS errors in our bent-ray reconstructions were simulated. They included mis-segmentation of an object of interest or a nearby object, and miscalibration of relative transducer positions in 3D. Close correspondence of reconstruction accuracy was verified in the simplest case, a cylindrical object in homogeneous background with induced segmentation and calibration inaccuracies. Simulated mis-segmentation in object size and lateral location produced maximum SOS errors of 6.3% within 10 mm diameter change and 9.1% within 5 mm shift, respectively. Modest errors in assumed transducer separation produced the maximum SOS error from miscalibrations (57.3% within 5 mm shift), still, correction of this type of error can easily be achieved in the clinic. This study should aid in designing adequate transducer mounts and calibration procedures, and in specification of B-mode image quality and segmentation algorithms for limited angle transmission tomography relying on ray tracing algorithms. Copyright © 2018 Elsevier B.V. All rights reserved.
Lee, Hansang; Hong, Helen; Kim, Junmo
2014-12-01
We propose a graph-cut-based segmentation method for the anterior cruciate ligament (ACL) in knee MRI with a novel shape prior and label refinement. As the initial seeds for graph cuts, candidates for the ACL and the background are extracted from knee MRI roughly by means of adaptive thresholding with Gaussian mixture model fitting. The extracted ACL candidate is segmented iteratively by graph cuts with patient-specific shape constraints. Two shape constraints termed fence and neighbor costs are suggested such that the graph cuts prevent any leakage into adjacent regions with similar intensity. The segmented ACL label is refined by means of superpixel classification. Superpixel classification makes the segmented label propagate into missing inhomogeneous regions inside the ACL. In the experiments, the proposed method segmented the ACL with Dice similarity coefficient of 66.47±7.97%, average surface distance of 2.247±0.869, and root mean squared error of 3.538±1.633, which increased the accuracy by 14.8%, 40.3%, and 37.6% from the Boykov model, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Antong; Deeley, Matthew A.; Niermann, Kenneth J.
2010-12-15
Purpose: Intensity-modulated radiation therapy (IMRT) is the state of the art technique for head and neck cancer treatment. It requires precise delineation of the target to be treated and structures to be spared, which is currently done manually. The process is a time-consuming task of which the delineation of lymph node regions is often the longest step. Atlas-based delineation has been proposed as an alternative, but, in the authors' experience, this approach is not accurate enough for routine clinical use. Here, the authors improve atlas-based segmentation results obtained for level II-IV lymph node regions using an active shape model (ASM)more » approach. Methods: An average image volume was first created from a set of head and neck patient images with minimally enlarged nodes. The average image volume was then registered using affine, global, and local nonrigid transformations to the other volumes to establish a correspondence between surface points in the atlas and surface points in each of the other volumes. Once the correspondence was established, the ASMs were created for each node level. The models were then used to first constrain the results obtained with an atlas-based approach and then to iteratively refine the solution. Results: The method was evaluated through a leave-one-out experiment. The ASM- and atlas-based segmentations were compared to manual delineations via the Dice similarity coefficient (DSC) for volume overlap and the Euclidean distance between manual and automatic 3D surfaces. The mean DSC value obtained with the ASM-based approach is 10.7% higher than with the atlas-based approach; the mean and median surface errors were decreased by 13.6% and 12.0%, respectively. Conclusions: The ASM approach is effective in reducing segmentation errors in areas of low CT contrast where purely atlas-based methods are challenged. Statistical analysis shows that the improvements brought by this approach are significant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L; Tan, S; Lu, W
Purpose: To propose a new variational method which couples image restoration with tumor segmentation for PET images using multiple regularizations. Methods: Partial volume effect (PVE) is a major degrading factor impacting tumor segmentation accuracy in PET imaging. The existing segmentation methods usually need to take prior calibrations to compensate PVE and they are highly system-dependent. Taking into account that image restoration and segmentation can promote each other and they are tightly coupled, we proposed a variational method to solve the two problems together. Our method integrated total variation (TV) semi-blind deconvolution and Mumford-Shah (MS) segmentation. The TV norm was usedmore » on edges to protect the edge information, and the L{sub 2} norm was used to avoid staircase effect in the no-edge area. The blur kernel was constrained to the Gaussian model parameterized by its variance and we assumed that the variances in the X-Y and Z directions are different. The energy functional was iteratively optimized by an alternate minimization algorithm. Segmentation performance was tested on eleven patients with non-Hodgkin’s lymphoma, and evaluated by Dice similarity index (DSI) and classification error (CE). For comparison, seven other widely used methods were also tested and evaluated. Results: The combination of TV and L{sub 2} regularizations effectively improved the segmentation accuracy. The average DSI increased by around 0.1 than using either the TV or the L{sub 2} norm. The proposed method was obviously superior to other tested methods. It has an average DSI and CE of 0.80 and 0.41, while the FCM method — the second best one — has only an average DSI and CE of 0.66 and 0.64. Conclusion: Coupling image restoration and segmentation can handle PVE and thus improves tumor segmentation accuracy in PET. Alternate use of TV and L2 regularizations can further improve the performance of the algorithm. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant No.61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086. Wei Lu was supported in part by the National Institutes of Health (NIH) Grant No. R01 CA172638.« less
Chen, Ting; Zhang, Miao; Jabbour, Salma; Wang, Hesheng; Barbee, David; Das, Indra J; Yue, Ning
2018-04-10
Through-plane motion introduces uncertainty in three-dimensional (3D) motion monitoring when using single-slice on-board imaging (OBI) modalities such as cine MRI. We propose a principal component analysis (PCA)-based framework to determine the optimal imaging plane to minimize the through-plane motion for single-slice imaging-based motion monitoring. Four-dimensional computed tomography (4DCT) images of eight thoracic cancer patients were retrospectively analyzed. The target volumes were manually delineated at different respiratory phases of 4DCT. We performed automated image registration to establish the 4D respiratory target motion trajectories for all patients. PCA was conducted using the motion information to define the three principal components of the respiratory motion trajectories. Two imaging planes were determined perpendicular to the second and third principal component, respectively, to avoid imaging with the primary principal component of the through-plane motion. Single-slice images were reconstructed from 4DCT in the PCA-derived orthogonal imaging planes and were compared against the traditional AP/Lateral image pairs on through-plane motion, residual error in motion monitoring, absolute motion amplitude error and the similarity between target segmentations at different phases. We evaluated the significance of the proposed motion monitoring improvement using paired t test analysis. The PCA-determined imaging planes had overall less through-plane motion compared against the AP/Lateral image pairs. For all patients, the average through-plane motion was 3.6 mm (range: 1.6-5.6 mm) for the AP view and 1.7 mm (range: 0.6-2.7 mm) for the Lateral view. With PCA optimization, the average through-plane motion was 2.5 mm (range: 1.3-3.9 mm) and 0.6 mm (range: 0.2-1.5 mm) for the two imaging planes, respectively. The absolute residual error of the reconstructed max-exhale-to-inhale motion averaged 0.7 mm (range: 0.4-1.3 mm, 95% CI: 0.4-1.1 mm) using optimized imaging planes, averaged 0.5 mm (range: 0.3-1.0 mm, 95% CI: 0.2-0.8 mm) using an imaging plane perpendicular to the minimal motion component only and averaged 1.3 mm (range: 0.4-2.8 mm, 95% CI: 0.4-2.3 mm) in AP/Lateral orthogonal image pairs. The root-mean-square error of reconstructed displacement was 0.8 mm for optimized imaging planes, 0.6 mm for imaging plane perpendicular to the minimal motion component only, and 1.6 mm for AP/Lateral orthogonal image pairs. When using the optimized imaging planes for motion monitoring, there was no significant absolute amplitude error of the reconstructed motion (P = 0.0988), while AP/Lateral images had significant error (P = 0.0097) with a paired t test. The average surface distance (ASD) between overlaid two-dimensional (2D) tumor segmentation at end-of-inhale and end-of-exhale for all eight patients was 0.6 ± 0.2 mm in optimized imaging planes and 1.4 ± 0.8 mm in AP/Lateral images. The Dice similarity coefficient (DSC) between overlaid 2D tumor segmentation at end-of-inhale and end-of-exhale for all eight patients was 0.96 ± 0.03 in optimized imaging planes and 0.89 ± 0.05 in AP/Lateral images. Both ASD (P = 0.034) and DSC (P = 0.022) were significantly improved in the optimized imaging planes. Motion monitoring using imaging planes determined by the proposed PCA-based framework had significantly improved performance. Single-slice image-based motion tracking can be used for clinical implementations such as MR image-guided radiation therapy (MR-IGRT). © 2018 American Association of Physicists in Medicine.
Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections
NASA Astrophysics Data System (ADS)
Bertholet, J.; Wan, H.; Toftegaard, J.; Schmidt, M. L.; Chotard, F.; Parikh, P. J.; Poulsen, P. R.
2017-02-01
Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.
A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots
Lee, Tae-Jae; Yi, Dong-Hoon; Cho, Dong-Il “Dan”
2016-01-01
This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM) method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%. PMID:26938540
Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C
2012-01-27
In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed for systematic method development in high-temperature liquid chromatography (HT-HPLC). The ability to predict isothermal retention times based on temperature-gradient as well as isothermal input data was investigated. For a small temperature interval of ΔT=40°C, both approaches result in very similar predictions. Average relative errors of predicted retention times of 2.7% and 1.9% were observed for simulations based on isothermal and temperature-gradient measurements, respectively. Concurrently, it was investigated whether the accuracy of retention time predictions of segmented temperature gradients can be further improved by temperature dependent calculation of the parameter S(T) of the LES relationship. It was found that the accuracy of retention time predictions of multi-step temperature gradients can be improved to around 1.5%, if S(T) was also calculated temperature dependent. The adjusted experimental design making use of four temperature-gradient measurements was applied for systematic method development of selected food additives by high-temperature liquid chromatography. Method development was performed within a temperature interval from 40°C to 180°C using water as mobile phase. Two separation methods were established where selected food additives were baseline separated. In addition, a good agreement between simulation and experiment was observed, because an average relative error of predicted retention times of complex segmented temperature gradients less than 5% was observed. Finally, a schedule of recommendations to assist the practitioner during systematic method development in high-temperature liquid chromatography was established. Copyright © 2011 Elsevier B.V. All rights reserved.
Chuang, Bo-I; Kuo, Li-Chieh; Yang, Tai-Hua; Su, Fong-Chin; Jou, I-Ming; Lin, Wei-Jr; Sun, Yung-Nien
2017-01-01
Trigger finger has become a prevalent disease that greatly affects occupational activity and daily life. Ultrasound imaging is commonly used for the clinical diagnosis of trigger finger severity. Due to image property variations, traditional methods cannot effectively segment the finger joint’s tendon structure. In this study, an adaptive texture-based active shape model method is used for segmenting the tendon and synovial sheath. Adapted weights are applied in the segmentation process to adjust the contribution of energy terms depending on image characteristics at different positions. The pathology is then determined according to the wavelet and co-occurrence texture features of the segmented tendon area. In the experiments, the segmentation results have fewer errors, with respect to the ground truth, than contours drawn by regular users. The mean values of the absolute segmentation difference of the tendon and synovial sheath are 3.14 and 4.54 pixels, respectively. The average accuracy of pathological determination is 87.14%. The segmentation results are all acceptable in data of both clear and fuzzy boundary cases in 74 images. And the symptom classifications of 42 cases are also a good reference for diagnosis according to the expert clinicians’ opinions. PMID:29077737
Effects of modeling errors on trajectory predictions in air traffic control automation
NASA Technical Reports Server (NTRS)
Jackson, Michael R. C.; Zhao, Yiyuan; Slattery, Rhonda
1996-01-01
Air traffic control automation synthesizes aircraft trajectories for the generation of advisories. Trajectory computation employs models of aircraft performances and weather conditions. In contrast, actual trajectories are flown in real aircraft under actual conditions. Since synthetic trajectories are used in landing scheduling and conflict probing, it is very important to understand the differences between computed trajectories and actual trajectories. This paper examines the effects of aircraft modeling errors on the accuracy of trajectory predictions in air traffic control automation. Three-dimensional point-mass aircraft equations of motion are assumed to be able to generate actual aircraft flight paths. Modeling errors are described as uncertain parameters or uncertain input functions. Pilot or autopilot feedback actions are expressed as equality constraints to satisfy control objectives. A typical trajectory is defined by a series of flight segments with different control objectives for each flight segment and conditions that define segment transitions. A constrained linearization approach is used to analyze trajectory differences caused by various modeling errors by developing a linear time varying system that describes the trajectory errors, with expressions to transfer the trajectory errors across moving segment transitions. A numerical example is presented for a complete commercial aircraft descent trajectory consisting of several flight segments.
Heft Lemisphere: Exchanges Predominate in Segmental Speech Errors
ERIC Educational Resources Information Center
Nooteboom, Sieb G.; Quene, Hugo
2013-01-01
In most collections of segmental speech errors, exchanges are less frequent than anticipations and perseverations. However, it has been suggested that in inner speech exchanges might be more frequent than either anticipations or perseverations, because many half-way repaired errors (Yew...uhh...New York) are classified as repaired anticipations,…
"Fragment errors" in deep dysgraphia: further support for a lexical hypothesis.
Bormann, Tobias; Wallesch, Claus-W; Blanken, Gerhard
2008-07-01
In addition to various lexical errors, the writing of patients with deep dysgraphia may include a large number of segmental spelling errors, which increase towards the end of the word. Frequently, these errors involve deletion of two or more letters resulting in so-called "fragment errors". Different positions have been brought forward regarding their origin, including rapid decay of activation in the graphemic buffer and an impairment of more central (i.e., lexical or semantic) processing. We present data from a patient (M.D.) with deep dysgraphia who showed an increase of segmental spelling errors towards the end of the word. Several tasks were carried out to explore M.D.'s underlying functional impairment. Errors affected word-final positions in tasks like backward spelling and fragment completion. In a delayed copying task, length of the delay had no influence. In addition, when asked to recall three serially presented letters, a task which had not been carried out before, M.D. exhibited a preference for the first and the third letter and poor performance for the second letter. M.D.'s performance on these tasks contradicts the rapid decay account and instead supports a lexical-semantic account of segmental errors in deep dysgraphia. In addition, the results fit well with an implemented computational model of deep dysgraphia and segmental spelling errors.
Wang, Jinke; Cheng, Yuanzhi; Guo, Changyong; Wang, Yadong; Tamura, Shinichi
2016-05-01
Propose a fully automatic 3D segmentation framework to segment liver on challenging cases that contain the low contrast of adjacent organs and the presence of pathologies from abdominal CT images. First, all of the atlases are weighted in the selected training datasets by calculating the similarities between the atlases and the test image to dynamically generate a subject-specific probabilistic atlas for the test image. The most likely liver region of the test image is further determined based on the generated atlas. A rough segmentation is obtained by a maximum a posteriori classification of probability map, and the final liver segmentation is produced by a shape-intensity prior level set in the most likely liver region. Our method is evaluated and demonstrated on 25 test CT datasets from our partner site, and its results are compared with two state-of-the-art liver segmentation methods. Moreover, our performance results on 10 MICCAI test datasets are submitted to the organizers for comparison with the other automatic algorithms. Using the 25 test CT datasets, average symmetric surface distance is [Formula: see text] mm (range 0.62-2.12 mm), root mean square symmetric surface distance error is [Formula: see text] mm (range 0.97-3.01 mm), and maximum symmetric surface distance error is [Formula: see text] mm (range 12.73-26.67 mm) by our method. Our method on 10 MICCAI test data sets ranks 10th in all the 47 automatic algorithms on the site as of July 2015. Quantitative results, as well as qualitative comparisons of segmentations, indicate that our method is a promising tool to improve the efficiency of both techniques. The applicability of the proposed method to some challenging clinical problems and the segmentation of the liver are demonstrated with good results on both quantitative and qualitative experimentations. This study suggests that the proposed framework can be good enough to replace the time-consuming and tedious slice-by-slice manual segmentation approach.
Improving Arterial Spin Labeling by Using Deep Learning.
Kim, Ki Hwan; Choi, Seung Hong; Park, Sung-Hong
2018-05-01
Purpose To develop a deep learning algorithm that generates arterial spin labeling (ASL) perfusion images with higher accuracy and robustness by using a smaller number of subtraction images. Materials and Methods For ASL image generation from pair-wise subtraction, we used a convolutional neural network (CNN) as a deep learning algorithm. The ground truth perfusion images were generated by averaging six or seven pairwise subtraction images acquired with (a) conventional pseudocontinuous arterial spin labeling from seven healthy subjects or (b) Hadamard-encoded pseudocontinuous ASL from 114 patients with various diseases. CNNs were trained to generate perfusion images from a smaller number (two or three) of subtraction images and evaluated by means of cross-validation. CNNs from the patient data sets were also tested on 26 separate stroke data sets. CNNs were compared with the conventional averaging method in terms of mean square error and radiologic score by using a paired t test and/or Wilcoxon signed-rank test. Results Mean square errors were approximately 40% lower than those of the conventional averaging method for the cross-validation with the healthy subjects and patients and the separate test with the patients who had experienced a stroke (P < .001). Region-of-interest analysis in stroke regions showed that cerebral blood flow maps from CNN (mean ± standard deviation, 19.7 mL per 100 g/min ± 9.7) had smaller mean square errors than those determined with the conventional averaging method (43.2 ± 29.8) (P < .001). Radiologic scoring demonstrated that CNNs suppressed noise and motion and/or segmentation artifacts better than the conventional averaging method did (P < .001). Conclusion CNNs provided superior perfusion image quality and more accurate perfusion measurement compared with those of the conventional averaging method for generation of ASL images from pair-wise subtraction images. © RSNA, 2017.
Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences.
Gupta, Vikas; Hendriks, Emile A; Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F
2010-11-01
Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.
Automated Quantification of Pneumothorax in CT
Do, Synho; Salvaggio, Kristen; Gupta, Supriya; Kalra, Mannudeep; Ali, Nabeel U.; Pien, Homer
2012-01-01
An automated, computer-aided diagnosis (CAD) algorithm for the quantification of pneumothoraces from Multidetector Computed Tomography (MDCT) images has been developed. Algorithm performance was evaluated through comparison to manual segmentation by expert radiologists. A combination of two-dimensional and three-dimensional processing techniques was incorporated to reduce required processing time by two-thirds (as compared to similar techniques). Volumetric measurements on relative pneumothorax size were obtained and the overall performance of the automated method shows an average error of just below 1%. PMID:23082091
The Structure of Segmental Errors in the Speech of Deaf Children.
ERIC Educational Resources Information Center
Levitt, H.; And Others
1980-01-01
A quantitative description of the segmental errors occurring in the speech of deaf children is developed. Journal availability: Elsevier North Holland, Inc., 52 Vanderbilt Avenue, New York, NY 10017. (Author)
Decroos, Francis Char; Stinnett, Sandra S; Heydary, Cynthia S; Burns, Russell E; Jaffe, Glenn J
2013-11-01
To determine the impact of segmentation error correction and precision of standardized grading of time domain optical coherence tomography (OCT) scans obtained during an interventional study for macular edema secondary to central retinal vein occlusion (CRVO). A reading center team of two readers and a senior reader evaluated 1199 OCT scans. Manual segmentation error correction (SEC) was performed. The frequency of SEC, resulting change in central retinal thickness after SEC, and reproducibility of SEC were quantified. Optical coherence tomography characteristics associated with the need for SECs were determined. Reading center teams graded all scans, and the reproducibility of this evaluation for scan quality at the fovea and cystoid macular edema was determined on 97 scans. Segmentation errors were observed in 360 (30.0%) scans, of which 312 were interpretable. On these 312 scans, the mean machine-generated central subfield thickness (CST) was 507.4 ± 208.5 μm compared to 583.0 ± 266.2 μm after SEC. Segmentation error correction resulted in a mean absolute CST correction of 81.3 ± 162.0 μm from baseline uncorrected CST. Segmentation error correction was highly reproducible (intraclass correlation coefficient [ICC] = 0.99-1.00). Epiretinal membrane (odds ratio [OR] = 2.3, P < 0.0001), subretinal fluid (OR = 2.1, P = 0.0005), and increasing CST (OR = 1.6 per 100-μm increase, P < 0.001) were associated with need for SEC. Reading center teams reproducibly graded scan quality at the fovea (87% agreement, kappa = 0.64, 95% confidence interval [CI] 0.45-0.82) and cystoid macular edema (92% agreement, kappa = 0.84, 95% CI 0.74-0.94). Optical coherence tomography images obtained during an interventional CRVO treatment trial can be reproducibly graded. Segmentation errors can cause clinically meaningful deviation in central retinal thickness measurements; however, these errors can be corrected reproducibly in a reading center setting. Segmentation errors are common on these images, can cause clinically meaningful errors in central retinal thickness measurement, and can be corrected reproducibly in a reading center setting.
Reliability of Semi-Automated Segmentations in Glioblastoma.
Huber, T; Alber, G; Bette, S; Boeckh-Behrens, T; Gempt, J; Ringel, F; Alberts, E; Zimmer, C; Bauer, J S
2017-06-01
In glioblastoma, quantitative volumetric measurements of contrast-enhancing or fluid-attenuated inversion recovery (FLAIR) hyperintense tumor compartments are needed for an objective assessment of therapy response. The aim of this study was to evaluate the reliability of a semi-automated, region-growing segmentation tool for determining tumor volume in patients with glioblastoma among different users of the software. A total of 320 segmentations of tumor-associated FLAIR changes and contrast-enhancing tumor tissue were performed by different raters (neuroradiologists, medical students, and volunteers). All patients underwent high-resolution magnetic resonance imaging including a 3D-FLAIR and a 3D-MPRage sequence. Segmentations were done using a semi-automated, region-growing segmentation tool. Intra- and inter-rater-reliability were addressed by intra-class-correlation (ICC). Root-mean-square error (RMSE) was used to determine the precision error. Dice score was calculated to measure the overlap between segmentations. Semi-automated segmentation showed a high ICC (> 0.985) for all groups indicating an excellent intra- and inter-rater-reliability. Significant smaller precision errors and higher Dice scores were observed for FLAIR segmentations compared with segmentations of contrast-enhancement. Single rater segmentations showed the lowest RMSE for FLAIR of 3.3 % (MPRage: 8.2 %). Both, single raters and neuroradiologists had the lowest precision error for longitudinal evaluation of FLAIR changes. Semi-automated volumetry of glioblastoma was reliably performed by all groups of raters, even without neuroradiologic expertise. Interestingly, segmentations of tumor-associated FLAIR changes were more reliable than segmentations of contrast enhancement. In longitudinal evaluations, an experienced rater can detect progressive FLAIR changes of less than 15 % reliably in a quantitative way which could help to detect progressive disease earlier.
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This summary report discusses the results of each of the four major tasks of the study. Task 1 compared airline flight plans based on operational forecasts to plans based on the verifying analyses and found that average fuel savings of 1.2 to 2.5 percent are possible with improved forecasts. Task 2 consisted of similar comparisons but used a model developed for the FAA by SRI International that simulated the impact of ATc diversions on the flight plans. While parts of Task 2 confirm the Task I findings, inconsistency with other data and the known impact of ATC suggests that other Task 2 findings are the result of errors in the model. Task 3 compares segment weather data from operational flight plans with the weather actually observed by the aircraft and finds the average error could result in fuel burn penalties (or savings) of up to 3.6 percent for the average 8747 flight. In Task 4 an in-depth analysis of the weather forecast for the 33 days included in the study finds that significant errors exist on 15 days. Wind speeds in the area of maximum winds are underestimated by 20 to 50 kts., a finding confirmed in the other three tasks.
Model-based segmentation of abdominal aortic aneurysms in CTA images
NASA Astrophysics Data System (ADS)
de Bruijne, Marleen; van Ginneken, Bram; Niessen, Wiro J.; Loog, Marco; Viergever, Max A.
2003-05-01
Segmentation of thrombus in abdominal aortic aneurysms is complicated by regions of low boundary contrast and by the presence of many neighboring structures in close proximity to the aneurysm wall. We present an automated method that is similar to the well known Active Shape Models (ASM), combining a three-dimensional shape model with a one-dimensional boundary appearance model. Our contribution is twofold: we developed a non-parametric appearance modeling scheme that effectively deals with a highly varying background, and we propose a way of generalizing models of curvilinear structures from small training sets. In contrast with the conventional ASM approach, the new appearance model trains on both true and false examples of boundary profiles. The probability that a given image profile belongs to the boundary is obtained using k nearest neighbor (kNN) probability density estimation. The performance of this scheme is compared to that of original ASMs, which minimize the Mahalanobis distance to the average true profile in the training set. The generalizability of the shape model is improved by modeling the objects axis deformation independent of its cross-sectional deformation. A leave-one-out experiment was performed on 23 datasets. Segmentation using the kNN appearance model significantly outperformed the original ASM scheme; average volume errors were 5.9% and 46% respectively.
Segment phasing experiments on the High Order Test bench
NASA Astrophysics Data System (ADS)
Aller-Carpentier, E.; Kasper, M.; Martinez, P.
The segmented primary mirror of the E-ELT imposes particular requirements on an Extreme Adaptive Optics (XAO) system. At present, there are already several AO systems working on segmented telescopes but the achieved performances are too low to draw conclusions for XAO systems aiming at some 90% Strehl ratio in the NIR. On other hand, several analytical studies and simulations were done, but laboratory studies are required to confirm the corrections expected. The goal of the present study is to determina the capability of XAO systems to deal with segmentation piston errors. In particular, the effects on the AO performance and the ability of the AO system to correct the segmentation piston errors were studied. The experiments were carried out on the High Order Test Bench at ESO (Munich) using a Shack-Hartmann wave front sensor and under most realistic conditions with phase screens simulating atmospheric turbulence and segmentation piston errors. Segment geometry was chosen such that about 6 actuators of the XAO DM cover one segment representing the design of EPICS at the EELT.
Automated measurement of uptake in cerebellum, liver, and aortic arch in full-body FDG PET/CT scans.
Bauer, Christian; Sun, Shanhui; Sun, Wenqing; Otis, Justin; Wallace, Audrey; Smith, Brian J; Sunderland, John J; Graham, Michael M; Sonka, Milan; Buatti, John M; Beichel, Reinhard R
2012-06-01
The purpose of this work was to develop and validate fully automated methods for uptake measurement of cerebellum, liver, and aortic arch in full-body PET/CT scans. Such measurements are of interest in the context of uptake normalization for quantitative assessment of metabolic activity and/or automated image quality control. Cerebellum, liver, and aortic arch regions were segmented with different automated approaches. Cerebella were segmented in PET volumes by means of a robust active shape model (ASM) based method. For liver segmentation, a largest possible hyperellipsoid was fitted to the liver in PET scans. The aortic arch was first segmented in CT images of a PET/CT scan by a tubular structure analysis approach, and the segmented result was then mapped to the corresponding PET scan. For each of the segmented structures, the average standardized uptake value (SUV) was calculated. To generate an independent reference standard for method validation, expert image analysts were asked to segment several cross sections of each of the three structures in 134 F-18 fluorodeoxyglucose (FDG) PET/CT scans. For each case, the true average SUV was estimated by utilizing statistical models and served as the independent reference standard. For automated aorta and liver SUV measurements, no statistically significant scale or shift differences were observed between automated results and the independent standard. In the case of the cerebellum, the scale and shift were not significantly different, if measured in the same cross sections that were utilized for generating the reference. In contrast, automated results were scaled 5% lower on average although not shifted, if FDG uptake was calculated from the whole segmented cerebellum volume. The estimated reduction in total SUV measurement error ranged between 54.7% and 99.2%, and the reduction was found to be statistically significant for cerebellum and aortic arch. With the proposed methods, the authors have demonstrated that automated SUV uptake measurements in cerebellum, liver, and aortic arch agree with expert-defined independent standards. The proposed methods were found to be accurate and showed less intra- and interobserver variability, compared to manual analysis. The approach provides an alternative to manual uptake quantification, which is time-consuming. Such an approach will be important for application of quantitative PET imaging to large scale clinical trials. © 2012 American Association of Physicists in Medicine.
New algorithm for detecting smaller retinal blood vessels in fundus images
NASA Astrophysics Data System (ADS)
LeAnder, Robert; Bidari, Praveen I.; Mohammed, Tauseef A.; Das, Moumita; Umbaugh, Scott E.
2010-03-01
About 4.1 million Americans suffer from diabetic retinopathy. To help automatically diagnose various stages of the disease, a new blood-vessel-segmentation algorithm based on spatial high-pass filtering was developed to automatically segment blood vessels, including the smaller ones, with low noise. Methods: Image database: Forty, 584 x 565-pixel images were collected from the DRIVE image database. Preprocessing: Green-band extraction was used to obtain better contrast, which facilitated better visualization of retinal blood vessels. A spatial highpass filter of mask-size 11 was applied. A histogram stretch was performed to enhance contrast. A median filter was applied to mitigate noise. At this point, the gray-scale image was converted to a binary image using a binary thresholding operation. Then, a NOT operation was performed by gray-level value inversion between 0 and 255. Postprocessing: The resulting image was AND-ed with its corresponding ring mask to remove the outer-ring (lens-edge) artifact. At this point, the above algorithm steps had extracted most of the major and minor vessels, with some intersections and bifurcations missing. Vessel segments were reintegrated using the Hough transform. Results: After applying the Hough transform, both the average peak SNR and the RMS error improved by 10%. Pratt's Figure of Merit (PFM) was decreased by 6%. Those averages were better than [1] by 10-30%. Conclusions: The new algorithm successfully preserved the details of smaller blood vessels and should prove successful as a segmentation step for automatically identifying diseases that affect retinal blood vessels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciller, Carlos, E-mail: carlos.cillerruiz@unil.ch; Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern; Centre d’Imagerie BioMédicale, University of Lausanne, Lausanne
Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manualmore » and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.« less
Ciller, Carlos; De Zanet, Sandro I; Rüegsegger, Michael B; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L; Kowal, Jens H; Cuadra, Meritxell Bach
2015-07-15
Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor. Copyright © 2015 Elsevier Inc. All rights reserved.
The Dipole Segment Model for Axisymmetrical Elongated Asteroids
NASA Astrophysics Data System (ADS)
Zeng, Xiangyuan; Zhang, Yonglong; Yu, Yang; Liu, Xiangdong
2018-02-01
Various simplified models have been investigated as a way to understand the complex dynamical environment near irregular asteroids. A dipole segment model is explored in this paper, one that is composed of a massive straight segment and two point masses at the extremities of the segment. Given an explicitly simple form of the potential function that is associated with the dipole segment model, five topological cases are identified with different sets of system parameters. Locations, stabilities, and variation trends of the system equilibrium points are investigated in a parametric way. The exterior potential distribution of nearly axisymmetrical elongated asteroids is approximated by minimizing the acceleration error in a test zone. The acceleration error minimization process determines the parameters of the dipole segment. The near-Earth asteroid (8567) 1996 HW1 is chosen as an example to evaluate the effectiveness of the approximation method for the exterior potential distribution. The advantages of the dipole segment model over the classical dipole and the traditional segment are also discussed. Percent error of acceleration and the degree of approximation are illustrated by using the dipole segment model to approximate four more asteroids. The high efficiency of the simplified model over the polyhedron is clearly demonstrated by comparing the CPU time.
HOSVD-Based 3D Active Appearance Model: Segmentation of Lung Fields in CT Images.
Wang, Qingzhu; Kang, Wanjun; Hu, Haihui; Wang, Bin
2016-07-01
An Active Appearance Model (AAM) is a computer vision model which can be used to effectively segment lung fields in CT images. However, the fitting result is often inadequate when the lungs are affected by high-density pathologies. To overcome this problem, we propose a Higher-order Singular Value Decomposition (HOSVD)-based Three-dimensional (3D) AAM. An evaluation was performed on 310 diseased lungs form the Lung Image Database Consortium Image Collection. Other contemporary AAMs operate directly on patterns represented by vectors, i.e., before applying the AAM to a 3D lung volume,it has to be vectorized first into a vector pattern by some technique like concatenation. However, some implicit structural or local contextual information may be lost in this transformation. According to the nature of the 3D lung volume, HOSVD is introduced to represent and process the lung in tensor space. Our method can not only directly operate on the original 3D tensor patterns, but also efficiently reduce the computer memory usage. The evaluation resulted in an average Dice coefficient of 97.0 % ± 0.59 %, a mean absolute surface distance error of 1.0403 ± 0.5716 mm, a mean border positioning errors of 0.9187 ± 0.5381 pixel, and a Hausdorff Distance of 20.4064 ± 4.3855, respectively. Experimental results showed that our methods delivered significant and better segmentation results, compared with the three other model-based lung segmentation approaches, namely 3D Snake, 3D ASM and 3D AAM.
Extracellular space preservation aids the connectomic analysis of neural circuits.
Pallotto, Marta; Watkins, Paul V; Fubara, Boma; Singer, Joshua H; Briggman, Kevin L
2015-12-09
Dense connectomic mapping of neuronal circuits is limited by the time and effort required to analyze 3D electron microscopy (EM) datasets. Algorithms designed to automate image segmentation suffer from substantial error rates and require significant manual error correction. Any improvement in segmentation error rates would therefore directly reduce the time required to analyze 3D EM data. We explored preserving extracellular space (ECS) during chemical tissue fixation to improve the ability to segment neurites and to identify synaptic contacts. ECS preserved tissue is easier to segment using machine learning algorithms, leading to significantly reduced error rates. In addition, we observed that electrical synapses are readily identified in ECS preserved tissue. Finally, we determined that antibodies penetrate deep into ECS preserved tissue with only minimal permeabilization, thereby enabling correlated light microscopy (LM) and EM studies. We conclude that preservation of ECS benefits multiple aspects of the connectomic analysis of neural circuits.
Automatic lung segmentation using control feedback system: morphology and texture paradigm.
Noor, Norliza M; Than, Joel C M; Rijal, Omar M; Kassim, Rosminah M; Yunus, Ashari; Zeki, Amir A; Anzidei, Michele; Saba, Luca; Suri, Jasjit S
2015-03-01
Interstitial Lung Disease (ILD) encompasses a wide array of diseases that share some common radiologic characteristics. When diagnosing such diseases, radiologists can be affected by heavy workload and fatigue thus decreasing diagnostic accuracy. Automatic segmentation is the first step in implementing a Computer Aided Diagnosis (CAD) that will help radiologists to improve diagnostic accuracy thereby reducing manual interpretation. Automatic segmentation proposed uses an initial thresholding and morphology based segmentation coupled with feedback that detects large deviations with a corrective segmentation. This feedback is analogous to a control system which allows detection of abnormal or severe lung disease and provides a feedback to an online segmentation improving the overall performance of the system. This feedback system encompasses a texture paradigm. In this study we studied 48 males and 48 female patients consisting of 15 normal and 81 abnormal patients. A senior radiologist chose the five levels needed for ILD diagnosis. The results of segmentation were displayed by showing the comparison of the automated and ground truth boundaries (courtesy of ImgTracer™ 1.0, AtheroPoint™ LLC, Roseville, CA, USA). The left lung's performance of segmentation was 96.52% for Jaccard Index and 98.21% for Dice Similarity, 0.61 mm for Polyline Distance Metric (PDM), -1.15% for Relative Area Error and 4.09% Area Overlap Error. The right lung's performance of segmentation was 97.24% for Jaccard Index, 98.58% for Dice Similarity, 0.61 mm for PDM, -0.03% for Relative Area Error and 3.53% for Area Overlap Error. The segmentation overall has an overall similarity of 98.4%. The segmentation proposed is an accurate and fully automated system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogunovic, Hrvoje; Pozo, Jose Maria; Villa-Uriol, Maria Cruz
Purpose: To evaluate the suitability of an improved version of an automatic segmentation method based on geodesic active regions (GAR) for segmenting cerebral vasculature with aneurysms from 3D x-ray reconstruction angiography (3DRA) and time of flight magnetic resonance angiography (TOF-MRA) images available in the clinical routine. Methods: Three aspects of the GAR method have been improved: execution time, robustness to variability in imaging protocols, and robustness to variability in image spatial resolutions. The improved GAR was retrospectively evaluated on images from patients containing intracranial aneurysms in the area of the Circle of Willis and imaged with two modalities: 3DRA andmore » TOF-MRA. Images were obtained from two clinical centers, each using different imaging equipment. Evaluation included qualitative and quantitative analyses of the segmentation results on 20 images from 10 patients. The gold standard was built from 660 cross-sections (33 per image) of vessels and aneurysms, manually measured by interventional neuroradiologists. GAR has also been compared to an interactive segmentation method: isointensity surface extraction (ISE). In addition, since patients had been imaged with the two modalities, we performed an intermodality agreement analysis with respect to both the manual measurements and each of the two segmentation methods. Results: Both GAR and ISE differed from the gold standard within acceptable limits compared to the imaging resolution. GAR (ISE) had an average accuracy of 0.20 (0.24) mm for 3DRA and 0.27 (0.30) mm for TOF-MRA, and had a repeatability of 0.05 (0.20) mm. Compared to ISE, GAR had a lower qualitative error in the vessel region and a lower quantitative error in the aneurysm region. The repeatability of GAR was superior to manual measurements and ISE. The intermodality agreement was similar between GAR and the manual measurements. Conclusions: The improved GAR method outperformed ISE qualitatively as well as quantitatively and is suitable for segmenting 3DRA and TOF-MRA images from clinical routine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Weili; Kim, Joshua P.; Kadbi, Mo
2015-11-01
Purpose: To incorporate a novel imaging sequence for robust air and tissue segmentation using ultrashort echo time (UTE) phase images and to implement an innovative synthetic CT (synCT) solution as a first step toward MR-only radiation therapy treatment planning for brain cancer. Methods and Materials: Ten brain cancer patients were scanned with a UTE/Dixon sequence and other clinical sequences on a 1.0 T open magnet with simulation capabilities. Bone-enhanced images were generated from a weighted combination of water/fat maps derived from Dixon images and inverted UTE images. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessedmore » by calculating segmentation errors (true-positive rate, false-positive rate, and Dice similarity indices using CT simulation (CT-SIM) as ground truth. The synCTs were generated using a voxel-based, weighted summation method incorporating T2, fluid attenuated inversion recovery (FLAIR), UTE1, and bone-enhanced images. Mean absolute error (MAE) characterized Hounsfield unit (HU) differences between synCT and CT-SIM. A dosimetry study was conducted, and differences were quantified using γ-analysis and dose-volume histogram analysis. Results: On average, true-positive rate and false-positive rate for the CT and MR-derived air masks were 80.8% ± 5.5% and 25.7% ± 6.9%, respectively. Dice similarity indices values were 0.78 ± 0.04 (range, 0.70-0.83). Full field of view MAE between synCT and CT-SIM was 147.5 ± 8.3 HU (range, 138.3-166.2 HU), with the largest errors occurring at bone–air interfaces (MAE 422.5 ± 33.4 HU for bone and 294.53 ± 90.56 HU for air). Gamma analysis revealed pass rates of 99.4% ± 0.04%, with acceptable treatment plan quality for the cohort. Conclusions: A hybrid MRI phase/magnitude UTE image processing technique was introduced that significantly improved bone and air contrast in MRI. Segmented air masks and bone-enhanced images were integrated into our synCT pipeline for brain, and results agreed well with clinical CTs, thereby supporting MR-only radiation therapy treatment planning in the brain.« less
Zheng, Weili; Kim, Joshua P; Kadbi, Mo; Movsas, Benjamin; Chetty, Indrin J; Glide-Hurst, Carri K
2015-11-01
To incorporate a novel imaging sequence for robust air and tissue segmentation using ultrashort echo time (UTE) phase images and to implement an innovative synthetic CT (synCT) solution as a first step toward MR-only radiation therapy treatment planning for brain cancer. Ten brain cancer patients were scanned with a UTE/Dixon sequence and other clinical sequences on a 1.0 T open magnet with simulation capabilities. Bone-enhanced images were generated from a weighted combination of water/fat maps derived from Dixon images and inverted UTE images. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessed by calculating segmentation errors (true-positive rate, false-positive rate, and Dice similarity indices using CT simulation (CT-SIM) as ground truth. The synCTs were generated using a voxel-based, weighted summation method incorporating T2, fluid attenuated inversion recovery (FLAIR), UTE1, and bone-enhanced images. Mean absolute error (MAE) characterized Hounsfield unit (HU) differences between synCT and CT-SIM. A dosimetry study was conducted, and differences were quantified using γ-analysis and dose-volume histogram analysis. On average, true-positive rate and false-positive rate for the CT and MR-derived air masks were 80.8% ± 5.5% and 25.7% ± 6.9%, respectively. Dice similarity indices values were 0.78 ± 0.04 (range, 0.70-0.83). Full field of view MAE between synCT and CT-SIM was 147.5 ± 8.3 HU (range, 138.3-166.2 HU), with the largest errors occurring at bone-air interfaces (MAE 422.5 ± 33.4 HU for bone and 294.53 ± 90.56 HU for air). Gamma analysis revealed pass rates of 99.4% ± 0.04%, with acceptable treatment plan quality for the cohort. A hybrid MRI phase/magnitude UTE image processing technique was introduced that significantly improved bone and air contrast in MRI. Segmented air masks and bone-enhanced images were integrated into our synCT pipeline for brain, and results agreed well with clinical CTs, thereby supporting MR-only radiation therapy treatment planning in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.
Martin, Sébastien; Troccaz, Jocelyne; Daanenc, Vincent
2010-04-01
The authors present a fully automatic algorithm for the segmentation of the prostate in three-dimensional magnetic resonance (MR) images. The approach requires the use of an anatomical atlas which is built by computing transformation fields mapping a set of manually segmented images to a common reference. These transformation fields are then applied to the manually segmented structures of the training set in order to get a probabilistic map on the atlas. The segmentation is then realized through a two stage procedure. In the first stage, the processed image is registered to the probabilistic atlas. Subsequently, a probabilistic segmentation is obtained by mapping the probabilistic map of the atlas to the patient's anatomy. In the second stage, a deformable surface evolves toward the prostate boundaries by merging information coming from the probabilistic segmentation, an image feature model and a statistical shape model. During the evolution of the surface, the probabilistic segmentation allows the introduction of a spatial constraint that prevents the deformable surface from leaking in an unlikely configuration. The proposed method is evaluated on 36 exams that were manually segmented by a single expert. A median Dice similarity coefficient of 0.86 and an average surface error of 2.41 mm are achieved. By merging prior knowledge, the presented method achieves a robust and completely automatic segmentation of the prostate in MR images. Results show that the use of a spatial constraint is useful to increase the robustness of the deformable model comparatively to a deformable surface that is only driven by an image appearance model.
NASA Astrophysics Data System (ADS)
Su, Tengfei
2018-04-01
In this paper, an unsupervised evaluation scheme for remote sensing image segmentation is developed. Based on a method called under- and over-segmentation aware (UOA), the new approach is improved by overcoming the defect in the part of estimating over-segmentation error. Two cases of such error-prone defect are listed, and edge strength is employed to devise a solution to this issue. Two subsets of high resolution remote sensing images were used to test the proposed algorithm, and the experimental results indicate its superior performance, which is attributed to its improved OSE detection model.
Fallah, Faezeh; Machann, Jürgen; Martirosian, Petros; Bamberg, Fabian; Schick, Fritz; Yang, Bin
2017-04-01
To evaluate and compare conventional T1-weighted 2D turbo spin echo (TSE), T1-weighted 3D volumetric interpolated breath-hold examination (VIBE), and two-point 3D Dixon-VIBE sequences for automatic segmentation of visceral adipose tissue (VAT) volume at 3 Tesla by measuring and compensating for errors arising from intensity nonuniformity (INU) and partial volume effects (PVE). The body trunks of 28 volunteers with body mass index values ranging from 18 to 41.2 kg/m 2 (30.02 ± 6.63 kg/m 2 ) were scanned at 3 Tesla using three imaging techniques. Automatic methods were applied to reduce INU and PVE and to segment VAT. The automatically segmented VAT volumes obtained from all acquisitions were then statistically and objectively evaluated against the manually segmented (reference) VAT volumes. Comparing the reference volumes with the VAT volumes automatically segmented over the uncorrected images showed that INU led to an average relative volume difference of -59.22 ± 11.59, 2.21 ± 47.04, and -43.05 ± 5.01 % for the TSE, VIBE, and Dixon images, respectively, while PVE led to average differences of -34.85 ± 19.85, -15.13 ± 11.04, and -33.79 ± 20.38 %. After signal correction, differences of -2.72 ± 6.60, 34.02 ± 36.99, and -2.23 ± 7.58 % were obtained between the reference and the automatically segmented volumes. A paired-sample two-tailed t test revealed no significant difference between the reference and automatically segmented VAT volumes of the corrected TSE (p = 0.614) and Dixon (p = 0.969) images, but showed a significant VAT overestimation using the corrected VIBE images. Under similar imaging conditions and spatial resolution, automatically segmented VAT volumes obtained from the corrected TSE and Dixon images agreed with each other and with the reference volumes. These results demonstrate the efficacy of the signal correction methods and the similar accuracy of TSE and Dixon imaging for automatic volumetry of VAT at 3 Tesla.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuhn, Heinz-Dieter.
The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, andmore » post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment.« less
LACIE performance predictor final operational capability program description, volume 1
NASA Technical Reports Server (NTRS)
1976-01-01
The program EPHEMS computes the orbital parameters for up to two vehicles orbiting the earth for up to 549 days. The data represents a continuous swath about the earth, producing tables which can be used to determine when and if certain land segments will be covered. The program GRID processes NASA's climatology tape to obtain the weather indices along with associated latitudes and longitudes. The program LUMP takes substrata historical data and sample segment ID, crop window, crop window error and statistical data, checks for valid input parameters and generates the segment ID file, crop window file and the substrata historical file. Finally, the System Error Executive (SEE) Program checks YES error and truth data, CAMS error data, and signature extension data for validity and missing elements. A message is printed for each error found.
Model-Based Wavefront Control for CCAT
NASA Technical Reports Server (NTRS)
Redding, David; Lou, John Z.; Kissil, Andy; Bradford, Matt; Padin, Steve; Woody, David
2011-01-01
The 25-m aperture CCAT submillimeter-wave telescope will have a primary mirror that is divided into 162 individual segments, each of which is provided with 3 positioning actuators. CCAT will be equipped with innovative Imaging Displacement Sensors (IDS) inexpensive optical edge sensors capable of accurately measuring all segment relative motions. These measurements are used in a Kalman-filter-based Optical State Estimator to estimate wavefront errors, permitting use of a minimum-wavefront controller without direct wavefront measurement. This controller corrects the optical impact of errors in 6 degrees of freedom per segment, including lateral translations of the segments, using only the 3 actuated degrees of freedom per segment. The global motions of the Primary and Secondary Mirrors are not measured by the edge sensors. These are controlled using a gravity-sag look-up table. Predicted performance is illustrated by simulated response to errors such as gravity sag.
Cao, Haifeng; Zhang, Jingxu; Yang, Fei; An, Qichang; Zhao, Hongchao; Guo, Peng
2018-05-01
The Thirty Meter Telescope (TMT) project will design and build a 30-m-diameter telescope for research in astronomy in visible and infrared wavelengths. The primary mirror of TMT is made up of 492 hexagonal mirror segments under active control. The highly segmented primary mirror will utilize edge sensors to align and stabilize the relative piston, tip, and tilt degrees of segments. The support system assembly (SSA) of the segmented mirror utilizes a guide flexure to decouple the axial support and lateral support, while its deformation will cause measurement error of the edge sensor. We have analyzed the theoretical relationship between the segment movement and the measurement value of the edge sensor. Further, we have proposed an error correction method with a matrix. The correction process and the simulation results of the edge sensor will be described in this paper.
Identification of Matra Region and Overlapping Characters for OCR of Printed Bengali Scripts
NASA Astrophysics Data System (ADS)
Goswami, Subhra Sundar
One of the important reasons for poor recognition rate in optical character recognition (OCR) system is the error in character segmentation. In case of Bangla scripts, the errors occur due to several reasons, which include incorrect detection of matra (headline), over-segmentation and under-segmentation. We have proposed a robust method for detecting the headline region. Existence of overlapping characters (in under-segmented parts) in scanned printed documents is a major problem in designing an effective character segmentation procedure for OCR systems. In this paper, a predictive algorithm is developed for effectively identifying overlapping characters and then selecting the cut-borders for segmentation. Our method can be successfully used in achieving high recognition result.
Moghbel, Mehrdad; Mashohor, Syamsiah; Mahmud, Rozi; Saripan, M. Iqbal Bin
2016-01-01
Segmentation of liver tumors from Computed Tomography (CT) and tumor burden analysis play an important role in the choice of therapeutic strategies for liver diseases and treatment monitoring. In this paper, a new segmentation method for liver tumors from contrast-enhanced CT imaging is proposed. As manual segmentation of tumors for liver treatment planning is both labor intensive and time-consuming, a highly accurate automatic tumor segmentation is desired. The proposed framework is fully automatic requiring no user interaction. The proposed segmentation evaluated on real-world clinical data from patients is based on a hybrid method integrating cuckoo optimization and fuzzy c-means algorithm with random walkers algorithm. The accuracy of the proposed method was validated using a clinical liver dataset containing one of the highest numbers of tumors utilized for liver tumor segmentation containing 127 tumors in total with further validation of the results by a consultant radiologist. The proposed method was able to achieve one of the highest accuracies reported in the literature for liver tumor segmentation compared to other segmentation methods with a mean overlap error of 22.78 % and dice similarity coefficient of 0.75 in 3Dircadb dataset and a mean overlap error of 15.61 % and dice similarity coefficient of 0.81 in MIDAS dataset. The proposed method was able to outperform most other tumor segmentation methods reported in the literature while representing an overlap error improvement of 6 % compared to one of the best performing automatic methods in the literature. The proposed framework was able to provide consistently accurate results considering the number of tumors and the variations in tumor contrast enhancements and tumor appearances while the tumor burden was estimated with a mean error of 0.84 % in 3Dircadb dataset. PMID:27540353
Antunes, Sofia; Esposito, Antonio; Palmisano, Anna; Colantoni, Caterina; Cerutti, Sergio; Rizzo, Giovanna
2016-05-01
Extraction of the cardiac surfaces of interest from multi-detector computed tomographic (MDCT) data is a pre-requisite step for cardiac analysis, as well as for image guidance procedures. Most of the existing methods need manual corrections, which is time-consuming. We present a fully automatic segmentation technique for the extraction of the right ventricle, left ventricular endocardium and epicardium from MDCT images. The method consists in a 3D level set surface evolution approach coupled to a new stopping function based on a multiscale directional second derivative Gaussian filter, which is able to stop propagation precisely on the real boundary of the structures of interest. We validated the segmentation method on 18 MDCT volumes from healthy and pathologic subjects using manual segmentation performed by a team of expert radiologists as gold standard. Segmentation errors were assessed for each structure resulting in a surface-to-surface mean error below 0.5 mm and a percentage of surface distance with errors less than 1 mm above 80%. Moreover, in comparison to other segmentation approaches, already proposed in previous work, our method presented an improved accuracy (with surface distance errors less than 1 mm increased of 8-20% for all structures). The obtained results suggest that our approach is accurate and effective for the segmentation of ventricular cavities and myocardium from MDCT images.
Sensitivity analysis for future space missions with segmented telescopes for high-contrast imaging
NASA Astrophysics Data System (ADS)
Leboulleux, Lucie; Pueyo, Laurent; Sauvage, Jean-François; Mazoyer, Johan; Soummer, Remi; Fusco, Thierry; Sivaramakrishnan, Anand
2018-01-01
The detection and analysis of biomarkers on earth-like planets using direct-imaging will require both high-contrast imaging and spectroscopy at very close angular separation (10^10 star to planet flux ratio at a few 0.1”). This goal can only be achieved with large telescopes in space to overcome atmospheric turbulence, often combined with a coronagraphic instrument with wavefront control. Large segmented space telescopes such as studied for the LUVOIR mission will generate segment-level instabilities and cophasing errors in addition to local mirror surface errors and other aberrations of the overall optical system. These effects contribute directly to the degradation of the final image quality and contrast. We present an analytical model that produces coronagraphic images of a segmented pupil telescope in the presence of segment phasing aberrations expressed as Zernike polynomials. This model relies on a pair-based projection of the segmented pupil and provides results that match an end-to-end simulation with an rms error on the final contrast of ~3%. This analytical model can be applied both to static and dynamic modes, and either in monochromatic or broadband light. It retires the need for end-to-end Monte-Carlo simulations that are otherwise needed to build a rigorous error budget, by enabling quasi-instantaneous analytical evaluations. The ability to invert directly the analytical model provides direct constraints and tolerances on all segments-level phasing and aberrations.
A comparison of hepatic segmental anatomy as revealed by cross-sections and MPR CT imaging.
Liu, Xue-Jing; Zhang, Jian-Fei; Sui, Hong-Jin; Yu, Sheng-Bo; Gong, Jin; Liu, Jie; Wu, Le-Bin; Liu, Cheng; Bai, Jian; Shi, Bing-Yi
2013-05-01
To compare the areas of human liver horizontal sections with computed tomography (CT) images and to evaluate whether the subsegments determined by CT are consistent with the actual anatomy. Six human cadaver livers were made into horizontal slices with multislice spiral CT three-dimensional (3D) reconstruction was used during infusion process. Each liver segment was displayed using different color, and 3D images of the portal and hepatic vein were reconstructed. Each segmental area was measured on CT-reconstructed images, which were compared with the actual area on the sections of the same liver. The measurements were performed at four key levels namely: (1) the three hepatic veins, (2) the left, and (3) the right branch of portal vein (PV), and (4) caudal to the bifurcation of the PV. By dividing the sum of these areas by the total area of the liver, the authors got the percentage of the incorrectly determined subsegmental areas. In addition to these percentage values, the maximum distances of the radiologically determined intersegmental boundaries from the true anatomic boundaries were measured. On the four key levels, an average of 28.64 ± 10.26% of the hepatic area of CT images was attributed to an incorrect segment. The mean-maximum error between artificial segments on images and actual anatomical segments was 3.81 ± 1.37 cm. The correlation between radiological segmenting method and actual anatomy was poor. The hepatic segments being divided strictly according to the branching point of the PV could be more informative during liver segmental resection. Copyright © 2012 Wiley Periodicals, Inc.
A wavefront compensation approach to segmented mirror figure control
NASA Technical Reports Server (NTRS)
Redding, David; Breckenridge, Bill; Sevaston, George; Lau, Ken
1991-01-01
We consider the 'figure-control' problem for a spaceborn sub-millimeter wave telescope, the Precision Segmented Reflector Project Focus Mission Telescope. We show that performance of any figure control system is subject to limits on the controllability and observability of the quality of the wavefront. We present a wavefront-compensation method for the Focus Mission Telescope which uses mirror-figure sensors and three-axis segment actuator to directly minimize wavefront errors due to segment position errors. This approach shows significantly better performance when compared with a panel-state-compensation approach.
NASA Astrophysics Data System (ADS)
Becker, Meike; Kirschner, Matthias; Sakas, Georgios
2014-03-01
Our research project investigates a multi-port approach for minimally-invasive otologic surgery. For planning such a surgery, an accurate segmentation of the risk structures is crucial. However, the segmentation of these risk structures is a challenging task: The anatomical structures are very small and some have a complex shape, low contrast and vary both in shape and appearance. Therefore, prior knowledge is needed which is why we apply model-based approaches. In the present work, we use the Probabilistic Active Shape Model (PASM), which is a more flexible and specific variant of the Active Shape Model (ASM), to segment the following risk structures: cochlea, semicircular canals, facial nerve, chorda tympani, ossicles, internal auditory canal, external auditory canal and internal carotid artery. For the evaluation we trained and tested the algorithm on 42 computed tomography data sets using leave-one-out tests. Visual assessment of the results shows in general a good agreement of manual and algorithmic segmentations. Further, we achieve a good Average Symmetric Surface Distance while the maximum error is comparatively large due to low contrast at start and end points. Last, we compare the PASM to the standard ASM and show that the PASM leads to a higher accuracy.
Klous, Miriam; Klous, Sander
2010-07-01
The aim of skin-marker-based motion analysis is to reconstruct the motion of a kinematical model from noisy measured motion of skin markers. Existing kinematic models for reconstruction of chains of segments can be divided into two categories: analytical methods that do not take joint constraints into account and numerical global optimization methods that do take joint constraints into account but require numerical optimization of a large number of degrees of freedom, especially when the number of segments increases. In this study, a new and largely analytical method for a chain of rigid bodies is presented, interconnected in spherical joints (chain-method). In this method, the number of generalized coordinates to be determined through numerical optimization is three, irrespective of the number of segments. This new method is compared with the analytical method of Veldpaus et al. [1988, "A Least-Squares Algorithm for the Equiform Transformation From Spatial Marker Co-Ordinates," J. Biomech., 21, pp. 45-54] (Veldpaus-method, a method of the first category) and the numerical global optimization method of Lu and O'Connor [1999, "Bone Position Estimation From Skin-Marker Co-Ordinates Using Global Optimization With Joint Constraints," J. Biomech., 32, pp. 129-134] (Lu-method, a method of the second category) regarding the effects of continuous noise simulating skin movement artifacts and regarding systematic errors in joint constraints. The study is based on simulated data to allow a comparison of the results of the different algorithms with true (noise- and error-free) marker locations. Results indicate a clear trend that accuracy for the chain-method is higher than the Veldpaus-method and similar to the Lu-method. Because large parts of the equations in the chain-method can be solved analytically, the speed of convergence in this method is substantially higher than in the Lu-method. With only three segments, the average number of required iterations with the chain-method is 3.0+/-0.2 times lower than with the Lu-method when skin movement artifacts are simulated by applying a continuous noise model. When simulating systematic errors in joint constraints, the number of iterations for the chain-method was almost a factor 5 lower than the number of iterations for the Lu-method. However, the Lu-method performs slightly better than the chain-method. The RMSD value between the reconstructed and actual marker positions is approximately 57% of the systematic error on the joint center positions for the Lu-method compared with 59% for the chain-method.
Extracellular space preservation aids the connectomic analysis of neural circuits
Pallotto, Marta; Watkins, Paul V; Fubara, Boma; Singer, Joshua H; Briggman, Kevin L
2015-01-01
Dense connectomic mapping of neuronal circuits is limited by the time and effort required to analyze 3D electron microscopy (EM) datasets. Algorithms designed to automate image segmentation suffer from substantial error rates and require significant manual error correction. Any improvement in segmentation error rates would therefore directly reduce the time required to analyze 3D EM data. We explored preserving extracellular space (ECS) during chemical tissue fixation to improve the ability to segment neurites and to identify synaptic contacts. ECS preserved tissue is easier to segment using machine learning algorithms, leading to significantly reduced error rates. In addition, we observed that electrical synapses are readily identified in ECS preserved tissue. Finally, we determined that antibodies penetrate deep into ECS preserved tissue with only minimal permeabilization, thereby enabling correlated light microscopy (LM) and EM studies. We conclude that preservation of ECS benefits multiple aspects of the connectomic analysis of neural circuits. DOI: http://dx.doi.org/10.7554/eLife.08206.001 PMID:26650352
NASA Astrophysics Data System (ADS)
Frasson, R. P. M.; Wei, R.; Minear, J. T.; Tuozzolo, S.; Domeneghetti, A.; Durand, M. T.
2016-12-01
Averaging is a powerful method to reduce measurement noise associated with remote sensing observation of water surfaces. However, when dealing with river measurements, the choice of which points are averaged may affect the quality of the products. We examine the effectiveness of three fully automated reach definition strategies: In the first, we break up reaches at regular intervals measured along the rivers' centerlines. The second strategy consists of identifying hydraulic controls by searching for inflection points on water surface profiles. The third strategy takes into consideration river planform features, breaking up reaches according to channel sinuosity. We employed the Jet Propulsion Laboratory's (JPL) SWOT hydrology simulator to generate 9 synthetic SWOT observations of the Sacramento River in California, USA and 14 overpasses of the Po River in northern Italy. In order to create the synthetic SWOT data, the simulator requires the true water digital elevation model (DEM), which we constructed from hydraulic models of both rivers, and the terrain DEM, which we built from LiDAR data of both basins. We processed the simulated pixel clouds using the JPL's RiverObs package, which traces the river centerline and estimates water surface height and river width on equally spaced nodes located along the centerline. Subsequently, we applied the three reach definition methodologies to the nodes and to the hydraulic models' outputs to generate simulated reach-averaged observations and the reach-averaged truth respectively. Our results generally indicate that height, width, slope, and discharge errors decrease with increasing reach length, with most of the accuracy gains occurring when reach length increases to up to 15 km for both the narrow (Sacramento) and the wide (Po) rivers. The "smart" methods led to smaller slope, width, and discharge errors for the Sacramento River when compared to arbitrary reaches of similar length whereas, for the for the Po River all methods had comparable performance. Our results suggest that river segmentation strategies that take into consideration the hydraulic characteristics of rivers may lead to more meaningful reach boundaries and to better products especially for narrower and more complex rivers.
Oghli, Mostafa Ghelich; Dehlaghi, Vahab; Zadeh, Ali Mohammad; Fallahi, Alireza; Pooyan, Mohammad
2014-07-01
Assessment of cardiac right-ventricle functions plays an essential role in diagnosis of arrhythmogenic right ventricular dysplasia (ARVD). Among clinical tests, cardiac magnetic resonance imaging (MRI) is now becoming the most valid imaging technique to diagnose ARVD. Fatty infiltration of the right ventricular free wall can be visible on cardiac MRI. Finding right-ventricle functional parameters from cardiac MRI images contains segmentation of right-ventricle in each slice of end diastole and end systole phases of cardiac cycle and calculation of end diastolic and end systolic volume and furthermore other functional parameters. The main problem of this task is the segmentation part. We used a robust method based on deformable model that uses shape information for segmentation of right-ventricle in short axis MRI images. After segmentation of right-ventricle from base to apex in end diastole and end systole phases of cardiac cycle, volume of right-ventricle in these phases calculated and then, ejection fraction calculated. We performed a quantitative evaluation of clinical cardiac parameters derived from the automatic segmentation by comparison against a manual delineation of the ventricles. The manually and automatically determined quantitative clinical parameters were statistically compared by means of linear regression. This fits a line to the data such that the root-mean-square error (RMSE) of the residuals is minimized. The results show low RMSE for Right Ventricle Ejection Fraction and Volume (≤ 0.06 for RV EF, and ≤ 10 mL for RV volume). Evaluation of segmentation results is also done by means of four statistical measures including sensitivity, specificity, similarity index and Jaccard index. The average value of similarity index is 86.87%. The Jaccard index mean value is 83.85% which shows a good accuracy of segmentation. The average of sensitivity is 93.9% and mean value of the specificity is 89.45%. These results show the reliability of proposed method in these cases that manual segmentation is inapplicable. Huge shape variety of right-ventricle led us to use a shape prior based method and this work can develop by four-dimensional processing for determining the first ventricular slices.
An active co-phasing imaging testbed with segmented mirrors
NASA Astrophysics Data System (ADS)
Zhao, Weirui; Cao, Genrui
2011-06-01
An active co-phasing imaging testbed with high accurate optical adjustment and control in nanometer scale was set up to validate the algorithms of piston and tip-tilt error sensing and real-time adjusting. Modularization design was adopted. The primary mirror was spherical and divided into three sub-mirrors. One of them was fixed and worked as reference segment, the others were adjustable respectively related to the fixed segment in three freedoms (piston, tip and tilt) by using sensitive micro-displacement actuators in the range of 15mm with a resolution of 3nm. The method of twodimension dispersed fringe analysis was used to sense the piston error between the adjacent segments in the range of 200μm with a repeatability of 2nm. And the tip-tilt error was gained with the method of centroid sensing. Co-phasing image could be realized by correcting the errors measured above with the sensitive micro-displacement actuators driven by a computer. The process of co-phasing error sensing and correcting could be monitored in real time by a scrutiny module set in this testbed. A FISBA interferometer was introduced to evaluate the co-phasing performance, and finally a total residual surface error of about 50nm rms was achieved.
Wilkins, Ruth; Flegal, Farrah; Knoll, Joan H.M.; Rogan, Peter K.
2017-01-01
Accurate digital image analysis of abnormal microscopic structures relies on high quality images and on minimizing the rates of false positive (FP) and negative objects in images. Cytogenetic biodosimetry detects dicentric chromosomes (DCs) that arise from exposure to ionizing radiation, and determines radiation dose received based on DC frequency. Improvements in automated DC recognition increase the accuracy of dose estimates by reclassifying FP DCs as monocentric chromosomes or chromosome fragments. We also present image segmentation methods to rank high quality digital metaphase images and eliminate suboptimal metaphase cells. A set of chromosome morphology segmentation methods selectively filtered out FP DCs arising primarily from sister chromatid separation, chromosome fragmentation, and cellular debris. This reduced FPs by an average of 55% and was highly specific to these abnormal structures (≥97.7%) in three samples. Additional filters selectively removed images with incomplete, highly overlapped, or missing metaphase cells, or with poor overall chromosome morphologies that increased FP rates. Image selection is optimized and FP DCs are minimized by combining multiple feature based segmentation filters and a novel image sorting procedure based on the known distribution of chromosome lengths. Applying the same image segmentation filtering procedures to both calibration and test samples reduced the average dose estimation error from 0.4 Gy to <0.2 Gy, obviating the need to first manually review these images. This reliable and scalable solution enables batch processing for multiple samples of unknown dose, and meets current requirements for triage radiation biodosimetry of high quality metaphase cell preparations. PMID:29026522
Grams, Paul E.; Topping, David J.; Schmidt, John C.; Hazel, Joseph E.; Kaplinski, Matt
2013-01-01
Measurements of morphologic change are often used to infer sediment mass balance. Such measurements may, however, result in gross errors when morphologic changes over short reaches are extrapolated to predict changes in sediment mass balance for long river segments. This issue is investigated by examination of morphologic change and sediment influx and efflux for a 100 km segment of the Colorado River in Grand Canyon, Arizona. For each of four monitoring intervals within a 7 year study period, the direction of sand-storage response within short morphologic monitoring reaches was consistent with the flux-based sand mass balance. Both budgeting methods indicate that sand storage was stable or increased during the 7 year period. Extrapolation of the morphologic measurements outside the monitoring reaches does not, however, provide a reasonable estimate of the magnitude of sand-storage change for the 100 km study area. Extrapolation results in large errors, because there is large local variation in site behavior driven by interactions between the flow and local bed topography. During the same flow regime and reach-average sediment supply, some locations accumulate sand while others evacuate sand. The interaction of local hydraulics with local channel geometry exerts more control on local morphodynamic response than sand supply over an encompassing river segment. Changes in the upstream supply of sand modify bed responses but typically do not completely offset the effect of local hydraulics. Thus, accurate sediment budgets for long river segments inferred from reach-scale morphologic measurements must incorporate the effect of local hydraulics in a sampling design or avoid extrapolation altogether.
Brodic, Darko; Milivojevic, Dragan R.; Milivojevic, Zoran N.
2011-01-01
The paper introduces a testing framework for the evaluation and validation of text line segmentation algorithms. Text line segmentation represents the key action for correct optical character recognition. Many of the tests for the evaluation of text line segmentation algorithms deal with text databases as reference templates. Because of the mismatch, the reliable testing framework is required. Hence, a new approach to a comprehensive experimental framework for the evaluation of text line segmentation algorithms is proposed. It consists of synthetic multi-like text samples and real handwritten text as well. Although the tests are mutually independent, the results are cross-linked. The proposed method can be used for different types of scripts and languages. Furthermore, two different procedures for the evaluation of algorithm efficiency based on the obtained error type classification are proposed. The first is based on the segmentation line error description, while the second one incorporates well-known signal detection theory. Each of them has different capabilities and convenience, but they can be used as supplements to make the evaluation process efficient. Overall the proposed procedure based on the segmentation line error description has some advantages, characterized by five measures that describe measurement procedures. PMID:22164106
Brodic, Darko; Milivojevic, Dragan R; Milivojevic, Zoran N
2011-01-01
The paper introduces a testing framework for the evaluation and validation of text line segmentation algorithms. Text line segmentation represents the key action for correct optical character recognition. Many of the tests for the evaluation of text line segmentation algorithms deal with text databases as reference templates. Because of the mismatch, the reliable testing framework is required. Hence, a new approach to a comprehensive experimental framework for the evaluation of text line segmentation algorithms is proposed. It consists of synthetic multi-like text samples and real handwritten text as well. Although the tests are mutually independent, the results are cross-linked. The proposed method can be used for different types of scripts and languages. Furthermore, two different procedures for the evaluation of algorithm efficiency based on the obtained error type classification are proposed. The first is based on the segmentation line error description, while the second one incorporates well-known signal detection theory. Each of them has different capabilities and convenience, but they can be used as supplements to make the evaluation process efficient. Overall the proposed procedure based on the segmentation line error description has some advantages, characterized by five measures that describe measurement procedures.
FEL Trajectory Analysis for the VISA Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuhn, Heinz-Dieter
1998-10-06
The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, andmore » post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment.« less
Müller-Eschner, Matthias; Müller, Tobias; Biesdorf, Andreas; Wörz, Stefan; Rengier, Fabian; Böckler, Dittmar; Kauczor, Hans-Ulrich; Rohr, Karl; von Tengg-Kobligk, Hendrik
2014-04-01
Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm(3)) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm(3)) (P<0.001). 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA.
Müller-Eschner, Matthias; Müller, Tobias; Biesdorf, Andreas; Wörz, Stefan; Rengier, Fabian; Böckler, Dittmar; Kauczor, Hans-Ulrich; Rohr, Karl
2014-01-01
Introduction Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. Methods and materials Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. Results Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm3) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm3) (P<0.001). Conclusions 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA. PMID:24834406
Brain tumor segmentation with Vander Lugt correlator based active contour.
Essadike, Abdelaziz; Ouabida, Elhoussaine; Bouzid, Abdenbi
2018-07-01
The manual segmentation of brain tumors from medical images is an error-prone, sensitive, and time-absorbing process. This paper presents an automatic and fast method of brain tumor segmentation. In the proposed method, a numerical simulation of the optical Vander Lugt correlator is used for automatically detecting the abnormal tissue region. The tumor filter, used in the simulated optical correlation, is tailored to all the brain tumor types and especially to the Glioblastoma, which considered to be the most aggressive cancer. The simulated optical correlation, computed between Magnetic Resonance Images (MRI) and this filter, estimates precisely and automatically the initial contour inside the tumorous tissue. Further, in the segmentation part, the detected initial contour is used to define an active contour model and presenting the problematic as an energy minimization problem. As a result, this initial contour assists the algorithm to evolve an active contour model towards the exact tumor boundaries. Equally important, for a comparison purposes, we considered different active contour models and investigated their impact on the performance of the segmentation task. Several images from BRATS database with tumors anywhere in images and having different sizes, contrast, and shape, are used to test the proposed system. Furthermore, several performance metrics are computed to present an aggregate overview of the proposed method advantages. The proposed method achieves a high accuracy in detecting the tumorous tissue by a parameter returned by the simulated optical correlation. In addition, the proposed method yields better performance compared to the active contour based methods with the averages of Sensitivity=0.9733, Dice coefficient = 0.9663, Hausdroff distance = 2.6540, Specificity = 0.9994, and faster with a computational time average of 0.4119 s per image. Results reported on BRATS database reveal that our proposed system improves over the recently published state-of-the-art methods in brain tumor detection and segmentation. Copyright © 2018 Elsevier B.V. All rights reserved.
Fast and fully automatic phalanx segmentation using a grayscale-histogram morphology algorithm
NASA Astrophysics Data System (ADS)
Hsieh, Chi-Wen; Liu, Tzu-Chiang; Jong, Tai-Lang; Chen, Chih-Yen; Tiu, Chui-Mei; Chan, Din-Yuen
2011-08-01
Bone age assessment is a common radiological examination used in pediatrics to diagnose the discrepancy between the skeletal and chronological age of a child; therefore, it is beneficial to develop a computer-based bone age assessment to help junior pediatricians estimate bone age easily. Unfortunately, the phalanx on radiograms is not easily separated from the background and soft tissue. Therefore, we proposed a new method, called the grayscale-histogram morphology algorithm, to segment the phalanges fast and precisely. The algorithm includes three parts: a tri-stage sieve algorithm used to eliminate the background of hand radiograms, a centroid-edge dual scanning algorithm to frame the phalanx region, and finally a segmentation algorithm based on disk traverse-subtraction filter to segment the phalanx. Moreover, two more segmentation methods: adaptive two-mean and adaptive two-mean clustering were performed, and their results were compared with the segmentation algorithm based on disk traverse-subtraction filter using five indices comprising misclassification error, relative foreground area error, modified Hausdorff distances, edge mismatch, and region nonuniformity. In addition, the CPU time of the three segmentation methods was discussed. The result showed that our method had a better performance than the other two methods. Furthermore, satisfactory segmentation results were obtained with a low standard error.
Lane Level Localization; Using Images and HD Maps to Mitigate the Lateral Error
NASA Astrophysics Data System (ADS)
Hosseinyalamdary, S.; Peter, M.
2017-05-01
In urban canyon where the GNSS signals are blocked by buildings, the accuracy of measured position significantly deteriorates. GIS databases have been frequently utilized to improve the accuracy of measured position using map matching approaches. In map matching, the measured position is projected to the road links (centerlines) in this approach and the lateral error of measured position is reduced. By the advancement in data acquision approaches, high definition maps which contain extra information, such as road lanes are generated. These road lanes can be utilized to mitigate the positional error and improve the accuracy in position. In this paper, the image content of a camera mounted on the platform is utilized to detect the road boundaries in the image. We apply color masks to detect the road marks, apply the Hough transform to fit lines to the left and right road boundaries, find the corresponding road segment in GIS database, estimate the homography transformation between the global and image coordinates of the road boundaries, and estimate the camera pose with respect to the global coordinate system. The proposed approach is evaluated on a benchmark. The position is measured by a smartphone's GPS receiver, images are taken from smartphone's camera and the ground truth is provided by using Real-Time Kinematic (RTK) technique. Results show the proposed approach significantly improves the accuracy of measured GPS position. The error in measured GPS position with average and standard deviation of 11.323 and 11.418 meters is reduced to the error in estimated postion with average and standard deviation of 6.725 and 5.899 meters.
The performance of the standard rate turn (SRT) by student naval helicopter pilots.
Chapman, F; Temme, L A; Still, D L
2001-04-01
During flight training, student naval helicopter pilots learn the use of flight instruments through a prescribed series of simulator training events. The training simulator is a 6-degrees-of-freedom, motion-based, high-fidelity instrument trainer. From the final basic instrument simulator flights of student pilots, we selected for evaluation and analysis their performance of the Standard Rate Turn (SRT), a routine flight maneuver. The performance of the SRT was scored with air speed, altitude and heading average error from target values and standard deviations. These average errors and standard deviations were used in a Multiple Analysis of Variance (MANOVA) to evaluate the effects of three independent variables: 1) direction of turn (left vs. right), 2) degree of turn (180 vs. 360 degrees); and 3) segment of turn (roll-in, first 30 s, last 30 s, and roll-out of turn). Only the main effects of the three independent variables were significant; there were no significant interactions. This result greatly reduces the number of different conditions that should be scored separately for the evaluation of SRT performance. The results also showed that the magnitude of the heading and altitude errors at the beginning of the SRT correlated with the magnitude of the heading and altitude errors throughout the turn. This result suggests that for the turn to be well executed, it is important for it to begin with little error in these two response parameters. The observations reported here should be considered when establishing SRT performance norms and comparing student scores. Furthermore, it seems easier for pilots to maintain good performance than to correct poor performance.
Template-based automatic breast segmentation on MRI by excluding the chest region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Muqing; Chen, Jeon-Hor; Wang, Xiaoyong
2013-12-15
Purpose: Methods for quantification of breast density on MRI using semiautomatic approaches are commonly used. In this study, the authors report on a fully automatic chest template-based method. Methods: Nonfat-suppressed breast MR images from 31 healthy women were analyzed. Among them, one case was randomly selected and used as the template, and the remaining 30 cases were used for testing. Unlike most model-based breast segmentation methods that use the breast region as the template, the chest body region on a middle slice was used as the template. Within the chest template, three body landmarks (thoracic spine and bilateral boundary ofmore » the pectoral muscle) were identified for performing the initial V-shape cut to determine the posterior lateral boundary of the breast. The chest template was mapped to each subject's image space to obtain a subject-specific chest model for exclusion. On the remaining image, the chest wall muscle was identified and excluded to obtain clean breast segmentation. The chest and muscle boundaries determined on the middle slice were used as the reference for the segmentation of adjacent slices, and the process continued superiorly and inferiorly until all 3D slices were segmented. The segmentation results were evaluated by an experienced radiologist to mark voxels that were wrongly included or excluded for error analysis. Results: The breast volumes measured by the proposed algorithm were very close to the radiologist's corrected volumes, showing a % difference ranging from 0.01% to 3.04% in 30 tested subjects with a mean of 0.86% ± 0.72%. The total error was calculated by adding the inclusion and the exclusion errors (so they did not cancel each other out), which ranged from 0.05% to 6.75% with a mean of 3.05% ± 1.93%. The fibroglandular tissue segmented within the breast region determined by the algorithm and the radiologist were also very close, showing a % difference ranging from 0.02% to 2.52% with a mean of 1.03% ± 1.03%. The total error by adding the inclusion and exclusion errors ranged from 0.16% to 11.8%, with a mean of 2.89% ± 2.55%. Conclusions: The automatic chest template-based breast MRI segmentation method worked well for cases with different body and breast shapes and different density patterns. Compared to the radiologist-established truth, the mean difference in segmented breast volume was approximately 1%, and the total error by considering the additive inclusion and exclusion errors was approximately 3%. This method may provide a reliable tool for MRI-based segmentation of breast density.« less
Diehm, Nicolas; Sin, Sangmun; Hoppe, Hanno; Baumgartner, Iris; Büchler, Philippe
2011-06-01
To assess if finite element (FE) models can be used to predict deformation of the femoropopliteal segment during knee flexion. Magnetic resonance angiography (MRA) images were acquired on the lower limbs of 8 healthy volunteers (5 men; mean age 28 ± 4 years). Images were taken in 2 natural positions, with the lower limb fully extended and with the knee bent at ~ 40°. Patient-specific FE models were developed and used to simulate the experimental situation. The displacements of the artery during knee bending as predicted by the numerical model were compared to the corresponding positions measured on the MRA images. The numerical predictions showed a good overall agreement between the calculated displacements of the motion measures from MRA images. The average position error comparing the calculated vs. actual displacements of the femoropopliteal intersection measured on the MRA was 8 ± 4 mm. Two of the 8 subjects showed large prediction errors (average 13 ± 5 mm); these 2 volunteers were the tallest subjects involved in the study and had a low body mass index (20.5 kg/m²). The present computational model is able to capture the gross mechanical environment of the femoropopliteal intersection during knee bending and provide a better understanding of the complex biomechanical behavior. However, results suggest that patient-specific mechanical properties and detailed muscle modeling are required to provide accurate patient-specific numerical predictions of arterial displacement. Further adaptation of this model is expected to provide an improved ability to predict the multiaxial deformation of this arterial segment during leg movements and to optimize future stent designs.
Li, Xiongwei; Wang, Zhe; Fu, Yangting; Li, Zheng; Liu, Jianmin; Ni, Weidou
2014-01-01
Measurement of coal carbon content using laser-induced breakdown spectroscopy (LIBS) is limited by its low precision and accuracy. A modified spectrum standardization method was proposed to achieve both reproducible and accurate results for the quantitative analysis of carbon content in coal using LIBS. The proposed method used the molecular emissions of diatomic carbon (C2) and cyanide (CN) to compensate for the diminution of atomic carbon emissions in high volatile content coal samples caused by matrix effect. The compensated carbon line intensities were further converted into an assumed standard state with standard plasma temperature, electron number density, and total number density of carbon, under which the carbon line intensity is proportional to its concentration in the coal samples. To obtain better compensation for fluctuations of total carbon number density, the segmental spectral area was used and an iterative algorithm was applied that is different from our previous spectrum standardization calculations. The modified spectrum standardization model was applied to the measurement of carbon content in 24 bituminous coal samples. The results demonstrate that the proposed method has superior performance over the generally applied normalization methods. The average relative standard deviation was 3.21%, the coefficient of determination was 0.90, the root mean square error of prediction was 2.24%, and the average maximum relative error for the modified model was 12.18%, showing an overall improvement over the corresponding values for the normalization with segmental spectrum area, 6.00%, 0.75, 3.77%, and 15.40%, respectively.
SU-C-9A-01: Parameter Optimization in Adaptive Region-Growing for Tumor Segmentation in PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, S; Huazhong University of Science and Technology, Wuhan, Hubei; Xue, M
Purpose: To design a reliable method to determine the optimal parameter in the adaptive region-growing (ARG) algorithm for tumor segmentation in PET. Methods: The ARG uses an adaptive similarity criterion m - fσ ≤ I-PET ≤ m + fσ, so that a neighboring voxel is appended to the region based on its similarity to the current region. When increasing the relaxing factor f (f ≥ 0), the resulting volumes monotonically increased with a sharp increase when the region just grew into the background. The optimal f that separates the tumor from the background is defined as the first point withmore » the local maximum curvature on an Error function fitted to the f-volume curve. The ARG was tested on a tumor segmentation Benchmark that includes ten lung cancer patients with 3D pathologic tumor volume as ground truth. For comparison, the widely used 42% and 50% SUVmax thresholding, Otsu optimal thresholding, Active Contours (AC), Geodesic Active Contours (GAC), and Graph Cuts (GC) methods were tested. The dice similarity index (DSI), volume error (VE), and maximum axis length error (MALE) were calculated to evaluate the segmentation accuracy. Results: The ARG provided the highest accuracy among all tested methods. Specifically, the ARG has an average DSI, VE, and MALE of 0.71, 0.29, and 0.16, respectively, better than the absolute 42% thresholding (DSI=0.67, VE= 0.57, and MALE=0.23), the relative 42% thresholding (DSI=0.62, VE= 0.41, and MALE=0.23), the absolute 50% thresholding (DSI=0.62, VE=0.48, and MALE=0.21), the relative 50% thresholding (DSI=0.48, VE=0.54, and MALE=0.26), OTSU (DSI=0.44, VE=0.63, and MALE=0.30), AC (DSI=0.46, VE= 0.85, and MALE=0.47), GAC (DSI=0.40, VE= 0.85, and MALE=0.46) and GC (DSI=0.66, VE= 0.54, and MALE=0.21) methods. Conclusions: The results suggest that the proposed method reliably identified the optimal relaxing factor in ARG for tumor segmentation in PET. This work was supported in part by National Cancer Institute Grant R01 CA172638; The dataset is provided by AAPM TG211.« less
A variational approach to liver segmentation using statistics from multiple sources
NASA Astrophysics Data System (ADS)
Zheng, Shenhai; Fang, Bin; Li, Laquan; Gao, Mingqi; Wang, Yi
2018-01-01
Medical image segmentation plays an important role in digital medical research, and therapy planning and delivery. However, the presence of noise and low contrast renders automatic liver segmentation an extremely challenging task. In this study, we focus on a variational approach to liver segmentation in computed tomography scan volumes in a semiautomatic and slice-by-slice manner. In this method, one slice is selected and its connected component liver region is determined manually to initialize the subsequent automatic segmentation process. From this guiding slice, we execute the proposed method downward to the last one and upward to the first one, respectively. A segmentation energy function is proposed by combining the statistical shape prior, global Gaussian intensity analysis, and enforced local statistical feature under the level set framework. During segmentation, the shape of the liver shape is estimated by minimization of this function. The improved Chan-Vese model is used to refine the shape to capture the long and narrow regions of the liver. The proposed method was verified on two independent public databases, the 3D-IRCADb and the SLIVER07. Among all the tested methods, our method yielded the best volumetric overlap error (VOE) of 6.5 +/- 2.8 % , the best root mean square symmetric surface distance (RMSD) of 2.1 +/- 0.8 mm, the best maximum symmetric surface distance (MSD) of 18.9 +/- 8.3 mm in 3D-IRCADb dataset, and the best average symmetric surface distance (ASD) of 0.8 +/- 0.5 mm, the best RMSD of 1.5 +/- 1.1 mm in SLIVER07 dataset, respectively. The results of the quantitative comparison show that the proposed liver segmentation method achieves competitive segmentation performance with state-of-the-art techniques.
SU-E-T-613: Dosimetric Consequences of Systematic MLC Leaf Positioning Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathuria, K; Siebers, J
2014-06-01
Purpose: The purpose of this study is to determine the dosimetric consequences of systematic MLC leaf positioning errors for clinical IMRT patient plans so as to establish detection tolerances for quality assurance programs. Materials and Methods: Dosimetric consequences were simulated by extracting mlc delivery instructions from the TPS, altering the file by the specified error, reloading the delivery instructions into the TPS, recomputing dose, and extracting dose-volume metrics for one head-andneck and one prostate patient. Machine error was simulated by offsetting MLC leaves in Pinnacle in a systematic way. Three different algorithms were followed for these systematic offsets, and aremore » as follows: a systematic sequential one-leaf offset (one leaf offset in one segment per beam), a systematic uniform one-leaf offset (same one leaf offset per segment per beam) and a systematic offset of a given number of leaves picked uniformly at random from a given number of segments (5 out of 10 total). Dose to the PTV and normal tissue was simulated. Results: A systematic 5 mm offset of 1 leaf for all delivery segments of all beams resulted in a maximum PTV D98 deviation of 1%. Results showed very low dose error in all reasonably possible machine configurations, rare or otherwise, which could be simulated. Very low error in dose to PTV and OARs was shown in all possible cases of one leaf per beam per segment being offset (<1%), or that of only one leaf per beam being offset (<.2%). The errors resulting from a high number of adjacent leaves (maximum of 5 out of 60 total leaf-pairs) being simultaneously offset in many (5) of the control points (total 10–18 in all beams) per beam, in both the PTV and the OARs analyzed, were similarly low (<2–3%). Conclusions: The above results show that patient shifts and anatomical changes are the main source of errors in dose delivered, not machine delivery. These two sources of error are “visually complementary” and uncorrelated (albeit not additive in the final error) and one can easily incorporate error resulting from machine delivery in an error model based purely on tumor motion.« less
Automatic cortical segmentation in the developing brain.
Xue, Hui; Srinivasan, Latha; Jiang, Shuzhou; Rutherford, Mary; Edwards, A David; Rueckert, Daniel; Hajnal, Jo V
2007-01-01
The segmentation of neonatal cortex from magnetic resonance (MR) images is much more challenging than the segmentation of cortex in adults. The main reason is the inverted contrast between grey matter (GM) and white matter (WM) that occurs when myelination is incomplete. This causes mislabeled partial volume voxels, especially at the interface between GM and cerebrospinal fluid (CSF). We propose a fully automatic cortical segmentation algorithm, detecting these mislabeled voxels using a knowledge-based approach and correcting errors by adjusting local priors to favor the correct classification. Our results show that the proposed algorithm corrects errors in the segmentation of both GM and WM compared to the classic EM scheme. The segmentation algorithm has been tested on 25 neonates with the gestational ages ranging from approximately 27 to 45 weeks. Quantitative comparison to the manual segmentation demonstrates good performance of the method (mean Dice similarity: 0.758 +/- 0.037 for GM and 0.794 +/- 0.078 for WM).
Development of the segment alignment maintenance system (SAMS) for the Hobby-Eberly Telescope
NASA Astrophysics Data System (ADS)
Booth, John A.; Adams, Mark T.; Ames, Gregory H.; Fowler, James R.; Montgomery, Edward E.; Rakoczy, John M.
2000-07-01
A sensing and control system for maintaining optical alignment of ninety-one 1-meter mirror segments forming the Hobby-Eberly Telescope (HET) primary mirror array is now under development. The Segment Alignment Maintenance System (SAMS) is designed to sense relative shear motion between each segment edge pair and calculated individual segment tip, tilt, and piston position errors. Error information is sent to the HET primary mirror control system, which corrects the physical position of each segment as often as once per minute. Development of SAMS is required to meet optical images quality specifications for the telescope. Segment misalignment over time is though to be due to thermal inhomogeneity within the steel mirror support truss. Challenging problems of sensor resolution, dynamic range, mechanical mounting, calibration, stability, robust algorithm development, and system integration must be overcome to achieve a successful operational solution.
Operating Room of the Future: Advanced Technologies in Safe and Efficient Operating Rooms
2010-10-01
research, and treatment purposes. A laser optical mouse and a graphics tablet were used by radiologists to segment 12 simulated reference lesions per...radiologists seg- mented a total of 132 simulated lesions. Overall error in contour segmentation was less with the graphics tablet than with the mouse...PG0.0001). Error in area of segmentation was not significantly different between the tablet and the mouse (P=0.62). Time for segmen- tation was less with
The development and evaluation of accident predictive models
NASA Astrophysics Data System (ADS)
Maleck, T. L.
1980-12-01
A mathematical model that will predict the incremental change in the dependent variables (accident types) resulting from changes in the independent variables is developed. The end product is a tool for estimating the expected number and type of accidents for a given highway segment. The data segments (accidents) are separated in exclusive groups via a branching process and variance is further reduced using stepwise multiple regression. The standard error of the estimate is calculated for each model. The dependent variables are the frequency, density, and rate of 18 types of accidents among the independent variables are: district, county, highway geometry, land use, type of zone, speed limit, signal code, type of intersection, number of intersection legs, number of turn lanes, left-turn control, all-red interval, average daily traffic, and outlier code. Models for nonintersectional accidents did not fit nor validate as well as models for intersectional accidents.
NASA Technical Reports Server (NTRS)
Magness, E. R. (Principal Investigator)
1980-01-01
The success of the Transition Year procedure to separate and label barley and the other small grains was assessed. It was decided that developers of the procedure would carry out the exercise in order to prevent compounding procedural problems with implementation problems. The evaluation proceeded by labeling the sping small grains first. The accuracy of this labeling was, on the average, somewhat better than that in the Transition Year operations. Other departures from the original procedure included a regionalization of the labeling process, the use of trend analysis, and the removal of time constraints from the actual processing. Segment selection, ground truth derivation, and data available for each segment in the analysis are discussed. Labeling accuracy is examined for North Dakota, South Dakota, Minnesota, and Montana as well as for the entire four-state area. Errors are characterized.
A dual-adaptive support-based stereo matching algorithm
NASA Astrophysics Data System (ADS)
Zhang, Yin; Zhang, Yun
2017-07-01
Many stereo matching algorithms use fixed color thresholds and a rigid cross skeleton to segment supports (viz., Cross method), which, however, does not work well for different images. To address this issue, this paper proposes a novel dual adaptive support (viz., DAS)-based stereo matching method, which uses both appearance and shape information of a local region to segment supports automatically, and, then, integrates the DAS-based cost aggregation with the absolute difference plus census transform cost, scanline optimization and disparity refinement to develop a stereo matching system. The performance of the DAS method is also evaluated in the Middlebury benchmark and by comparing with the Cross method. The results show that the average error for the DAS method 25.06% lower than that for the Cross method, indicating that the proposed method is more accurate, with fewer parameters and suitable for parallel computing.
Advanced Dispersed Fringe Sensing Algorithm for Coarse Phasing Segmented Mirror Telescopes
NASA Technical Reports Server (NTRS)
Spechler, Joshua A.; Hoppe, Daniel J.; Sigrist, Norbert; Shi, Fang; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.
2013-01-01
Segment mirror phasing, a critical step of segment mirror alignment, requires the ability to sense and correct the relative pistons between segments from up to a few hundred microns to a fraction of wavelength in order to bring the mirror system to its full diffraction capability. When sampling the aperture of a telescope, using auto-collimating flats (ACFs) is more economical. The performance of a telescope with a segmented primary mirror strongly depends on how well those primary mirror segments can be phased. One such process to phase primary mirror segments in the axial piston direction is dispersed fringe sensing (DFS). DFS technology can be used to co-phase the ACFs. DFS is essentially a signal fitting and processing operation. It is an elegant method of coarse phasing segmented mirrors. DFS performance accuracy is dependent upon careful calibration of the system as well as other factors such as internal optical alignment, system wavefront errors, and detector quality. Novel improvements to the algorithm have led to substantial enhancements in DFS performance. The Advanced Dispersed Fringe Sensing (ADFS) Algorithm is designed to reduce the sensitivity to calibration errors by determining the optimal fringe extraction line. Applying an angular extraction line dithering procedure and combining this dithering process with an error function while minimizing the phase term of the fitted signal, defines in essence the ADFS algorithm.
Katiyar, Prateek; Divine, Mathew R; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Schölkopf, Bernhard; Pichler, Bernd J; Disselhorst, Jonathan A
2017-04-01
In this study, we described and validated an unsupervised segmentation algorithm for the assessment of tumor heterogeneity using dynamic 18 F-FDG PET. The aim of our study was to objectively evaluate the proposed method and make comparisons with compartmental modeling parametric maps and SUV segmentations using simulations of clinically relevant tumor tissue types. Methods: An irreversible 2-tissue-compartmental model was implemented to simulate clinical and preclinical 18 F-FDG PET time-activity curves using population-based arterial input functions (80 clinical and 12 preclinical) and the kinetic parameter values of 3 tumor tissue types. The simulated time-activity curves were corrupted with different levels of noise and used to calculate the tissue-type misclassification errors of spectral clustering (SC), parametric maps, and SUV segmentation. The utility of the inverse noise variance- and Laplacian score-derived frame weighting schemes before SC was also investigated. Finally, the SC scheme with the best results was tested on a dynamic 18 F-FDG measurement of a mouse bearing subcutaneous colon cancer and validated using histology. Results: In the preclinical setup, the inverse noise variance-weighted SC exhibited the lowest misclassification errors (8.09%-28.53%) at all noise levels in contrast to the Laplacian score-weighted SC (16.12%-31.23%), unweighted SC (25.73%-40.03%), parametric maps (28.02%-61.45%), and SUV (45.49%-45.63%) segmentation. The classification efficacy of both weighted SC schemes in the clinical case was comparable to the unweighted SC. When applied to the dynamic 18 F-FDG measurement of colon cancer, the proposed algorithm accurately identified densely vascularized regions from the rest of the tumor. In addition, the segmented regions and clusterwise average time-activity curves showed excellent correlation with the tumor histology. Conclusion: The promising results of SC mark its position as a robust tool for quantification of tumor heterogeneity using dynamic PET studies. Because SC tumor segmentation is based on the intrinsic structure of the underlying data, it can be easily applied to other cancer types as well. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Design and Optimization of the SPOT Primary Mirror Segment
NASA Technical Reports Server (NTRS)
Budinoff, Jason G.; Michaels, Gregory J.
2005-01-01
The 3m Spherical Primary Optical Telescope (SPOT) will utilize a single ring of 0.86111 point-to-point hexagonal mirror segments. The f2.85 spherical mirror blanks will be fabricated by the same replication process used for mass-produced commercial telescope mirrors. Diffraction-limited phasing will require segment-to-segment radius of curvature (ROC) variation of approx.1 micron. Low-cost, replicated segment ROC variations are estimated to be almost 1 mm, necessitating a method for segment ROC adjustment & matching. A mechanical architecture has been designed that allows segment ROC to be adjusted up to 400 microns while introducing a minimum figure error, allowing segment-to-segment ROC matching. A key feature of the architecture is the unique back profile of the mirror segments. The back profile of the mirror was developed with shape optimization in MSC.Nastran(TradeMark) using optical performance response equations written with SigFit. A candidate back profile was generated which minimized ROC-adjustment-induced surface error while meeting the constraints imposed by the fabrication method. Keywords: optimization, radius of curvature, Pyrex spherical mirror, Sigfit
Rigid shape matching by segmentation averaging.
Wang, Hongzhi; Oliensis, John
2010-04-01
We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extensions, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the "central" segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking.
Chang, Wen-Pin; Davies, Patricia L; Gavin, William J
2010-10-01
Recent studies have investigated the relationship between psychological symptoms and personality traits and error monitoring measured by error-related negativity (ERN) and error positivity (Pe) event-related potential (ERP) components, yet there remains a paucity of studies examining the collective simultaneous effects of psychological symptoms and personality traits on error monitoring. This present study, therefore, examined whether measures of hyperactivity-impulsivity, depression, anxiety and antisocial personality characteristics could collectively account for significant interindividual variability of both ERN and Pe amplitudes, in 29 healthy adults with no known disorders, ages 18-30 years. The bivariate zero-order correlation analyses found that only the anxiety measure was significantly related to both ERN and Pe amplitudes. However, multiple regression analyses that included all four characteristic measures while controlling for number of segments in the ERP average revealed that both depression and antisocial personality characteristics were significant predictors for the ERN amplitudes whereas antisocial personality was the only significant predictor for the Pe amplitude. These findings suggest that psychological symptoms and personality traits are associated with individual variations in error monitoring in healthy adults, and future studies should consider these variables when comparing group difference in error monitoring between adults with and without disabilities. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Martínez, Fabio; Romero, Eduardo; Dréan, Gaël; Simon, Antoine; Haigron, Pascal; De Crevoisier, Renaud; Acosta, Oscar
2014-01-01
Accurate segmentation of the prostate and organs at risk in computed tomography (CT) images is a crucial step for radiotherapy (RT) planning. Manual segmentation, as performed nowadays, is a time consuming process and prone to errors due to the a high intra- and inter-expert variability. This paper introduces a new automatic method for prostate, rectum and bladder segmentation in planning CT using a geometrical shape model under a Bayesian framework. A set of prior organ shapes are first built by applying Principal Component Analysis (PCA) to a population of manually delineated CT images. Then, for a given individual, the most similar shape is obtained by mapping a set of multi-scale edge observations to the space of organs with a customized likelihood function. Finally, the selected shape is locally deformed to adjust the edges of each organ. Experiments were performed with real data from a population of 116 patients treated for prostate cancer. The data set was split in training and test groups, with 30 and 86 patients, respectively. Results show that the method produces competitive segmentations w.r.t standard methods (Averaged Dice = 0.91 for prostate, 0.94 for bladder, 0.89 for Rectum) and outperforms the majority-vote multi-atlas approaches (using rigid registration, free-form deformation (FFD) and the demons algorithm) PMID:24594798
NASA Astrophysics Data System (ADS)
Almeida, Isabel P.; Schyns, Lotte E. J. R.; Vaniqui, Ana; van der Heyden, Brent; Dedes, George; Resch, Andreas F.; Kamp, Florian; Zindler, Jaap D.; Parodi, Katia; Landry, Guillaume; Verhaegen, Frank
2018-06-01
Proton beam ranges derived from dual-energy computed tomography (DECT) images from a dual-spiral radiotherapy (RT)-specific CT scanner were assessed using Monte Carlo (MC) dose calculations. Images from a dual-source and a twin-beam DECT scanner were also used to establish a comparison to the RT-specific scanner. Proton ranges extracted from conventional single-energy CT (SECT) were additionally performed to benchmark against literature values. Using two phantoms, a DECT methodology was tested as input for GEANT4 MC proton dose calculations. Proton ranges were calculated for different mono-energetic proton beams irradiating both phantoms; the results were compared to the ground truth based on the phantom compositions. The same methodology was applied in a head-and-neck cancer patient using both SECT and dual-spiral DECT scans from the RT-specific scanner. A pencil-beam-scanning plan was designed, which was subsequently optimized by MC dose calculations, and differences in proton range for the different image-based simulations were assessed. For phantoms, the DECT method yielded overall better material segmentation with >86% of the voxel correctly assigned for the dual-spiral and dual-source scanners, but only 64% for a twin-beam scanner. For the calibration phantom, the dual-spiral scanner yielded range errors below 1.2 mm (0.6% of range), like the errors yielded by the dual-source scanner (<1.1 mm, <0.5%). With the validation phantom, the dual-spiral scanner yielded errors below 0.8 mm (0.9%), whereas SECT yielded errors up to 1.6 mm (2%). For the patient case, where the absolute truth was missing, proton range differences between DECT and SECT were on average in ‑1.2 ± 1.2 mm (‑0.5% ± 0.5%). MC dose calculations were successfully performed on DECT images, where the dual-spiral scanner resulted in media segmentation and range accuracy as good as the dual-source CT. In the patient, the various methods showed relevant range differences.
Segmentation via fusion of edge and needle map
NASA Astrophysics Data System (ADS)
Ahn, Hong-Young; Tou, Julius T.
1991-03-01
This paper presents an integrated image segmentation method using edge and needle map which compensates deficiencies of using either edge-based approach or region-based approach. Segmentation of an image is the first and most difficult step toward symbolic transformation of a raw image, which is essential in image understanding. In industrial applications, the task is further complicated by the ubiquitous presence of specularity in most industrial parts. Three images taken from three different illumination directions were used to separate specular and Lambertian components in the images. Needle map is generated from Lambertian component images using photometric stereo technique. In one channel, edges are extracted and linked from the averaged Lambertian images providing one source of segmentation. The other channel, Gaussian curvature and mean curvature values are estimated at each pixel from least square local surface fit of needle map. Labeled surface type image is then generated using the signs of Gaussian and mean curvatures, where one of ten surface types is assigned to each pixel. Connected regions of identical surface type pixels provide the first level grouping, a rough initial segmentation. Edge information and initial segmentation of surface type are fed to an integration module which interprets the edges and regions in a consistent way. During interpretation regions are merged or split, edges are discarded or generated depending upon global surface fit error and consistency with neighboring regions. The output of integrated segmentation is an explicit description of surface type and contours of each region which facilitates recognition, localization and attitude determination of objects in the image.
Extraction of liver volumetry based on blood vessel from the portal phase CT dataset
NASA Astrophysics Data System (ADS)
Maklad, Ahmed S.; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Utsunomiya, Tohru; Shimada, Mitsuo
2012-02-01
At liver surgery planning stage, the liver volumetry would be essential for surgeons. Main problem at liver extraction is the wide variability of livers in shapes and sizes. Since, hepatic blood vessels structure varies from a person to another and covers liver region, the present method uses that information for extraction of liver in two stages. The first stage is to extract abdominal blood vessels in the form of hepatic and nonhepatic blood vessels. At the second stage, extracted vessels are used to control extraction of liver region automatically. Contrast enhanced CT datasets at only the portal phase of 50 cases is used. Those data include 30 abnormal livers. A reference for all cases is done through a comparison of two experts labeling results and correction of their inter-reader variability. Results of the proposed method agree with the reference at an average rate of 97.8%. Through application of different metrics mentioned at MICCAI workshop for liver segmentation, it is found that: volume overlap error is 4.4%, volume difference is 0.3%, average symmetric distance is 0.7 mm, Root mean square symmetric distance is 0.8 mm, and maximum distance is 15.8 mm. These results represent the average of overall data and show an improved accuracy compared to current liver segmentation methods. It seems to be a promising method for extraction of liver volumetry of various shapes and sizes.
Sun, Chao; Feng, Wenquan; Du, Songlin
2018-01-01
As multipath is one of the dominating error sources for high accuracy Global Navigation Satellite System (GNSS) applications, multipath mitigation approaches are employed to minimize this hazardous error in receivers. Binary offset carrier modulation (BOC), as a modernized signal structure, is adopted to achieve significant enhancement. However, because of its multi-peak autocorrelation function, conventional multipath mitigation techniques for binary phase shift keying (BPSK) signal would not be optimal. Currently, non-parametric and parametric approaches have been studied specifically aiming at multipath mitigation for BOC signals. Non-parametric techniques, such as Code Correlation Reference Waveforms (CCRW), usually have good feasibility with simple structures, but suffer from low universal applicability for different BOC signals. Parametric approaches can thoroughly eliminate multipath error by estimating multipath parameters. The problems with this category are at the high computation complexity and vulnerability to the noise. To tackle the problem, we present a practical parametric multipath estimation method in the frequency domain for BOC signals. The received signal is transferred to the frequency domain to separate out the multipath channel transfer function for multipath parameter estimation. During this process, we take the operations of segmentation and averaging to reduce both noise effect and computational load. The performance of the proposed method is evaluated and compared with the previous work in three scenarios. Results indicate that the proposed averaging-Fast Fourier Transform (averaging-FFT) method achieves good robustness in severe multipath environments with lower computational load for both low-order and high-order BOC signals. PMID:29495589
Leveraging Automatic Speech Recognition Errors to Detect Challenging Speech Segments in TED Talks
ERIC Educational Resources Information Center
Mirzaei, Maryam Sadat; Meshgi, Kourosh; Kawahara, Tatsuya
2016-01-01
This study investigates the use of Automatic Speech Recognition (ASR) systems to epitomize second language (L2) listeners' problems in perception of TED talks. ASR-generated transcripts of videos often involve recognition errors, which may indicate difficult segments for L2 listeners. This paper aims to discover the root-causes of the ASR errors…
Nunez-Iglesias, Juan; Kennedy, Ryan; Plaza, Stephen M.; Chakraborty, Anirban; Katz, William T.
2014-01-01
The aim in high-resolution connectomics is to reconstruct complete neuronal connectivity in a tissue. Currently, the only technology capable of resolving the smallest neuronal processes is electron microscopy (EM). Thus, a common approach to network reconstruction is to perform (error-prone) automatic segmentation of EM images, followed by manual proofreading by experts to fix errors. We have developed an algorithm and software library to not only improve the accuracy of the initial automatic segmentation, but also point out the image coordinates where it is likely to have made errors. Our software, called gala (graph-based active learning of agglomeration), improves the state of the art in agglomerative image segmentation. It is implemented in Python and makes extensive use of the scientific Python stack (numpy, scipy, networkx, scikit-learn, scikit-image, and others). We present here the software architecture of the gala library, and discuss several designs that we consider would be generally useful for other segmentation packages. We also discuss the current limitations of the gala library and how we intend to address them. PMID:24772079
Tey, Wei Keat; Kuang, Ye Chow; Ooi, Melanie Po-Leen; Khoo, Joon Joon
2018-03-01
Interstitial fibrosis in renal biopsy samples is a scarring tissue structure that may be visually quantified by pathologists as an indicator to the presence and extent of chronic kidney disease. The standard method of quantification by visual evaluation presents reproducibility issues in the diagnoses. This study proposes an automated quantification system for measuring the amount of interstitial fibrosis in renal biopsy images as a consistent basis of comparison among pathologists. The system extracts and segments the renal tissue structures based on colour information and structural assumptions of the tissue structures. The regions in the biopsy representing the interstitial fibrosis are deduced through the elimination of non-interstitial fibrosis structures from the biopsy area and quantified as a percentage of the total area of the biopsy sample. A ground truth image dataset has been manually prepared by consulting an experienced pathologist for the validation of the segmentation algorithms. The results from experiments involving experienced pathologists have demonstrated a good correlation in quantification result between the automated system and the pathologists' visual evaluation. Experiments investigating the variability in pathologists also proved the automated quantification error rate to be on par with the average intra-observer variability in pathologists' quantification. Interstitial fibrosis in renal biopsy samples is a scarring tissue structure that may be visually quantified by pathologists as an indicator to the presence and extent of chronic kidney disease. The standard method of quantification by visual evaluation presents reproducibility issues in the diagnoses due to the uncertainties in human judgement. An automated quantification system for accurately measuring the amount of interstitial fibrosis in renal biopsy images is presented as a consistent basis of comparison among pathologists. The system identifies the renal tissue structures through knowledge-based rules employing colour space transformations and structural features extraction from the images. In particular, the renal glomerulus identification is based on a multiscale textural feature analysis and a support vector machine. The regions in the biopsy representing interstitial fibrosis are deduced through the elimination of non-interstitial fibrosis structures from the biopsy area. The experiments conducted evaluate the system in terms of quantification accuracy, intra- and inter-observer variability in visual quantification by pathologists, and the effect introduced by the automated quantification system on the pathologists' diagnosis. A 40-image ground truth dataset has been manually prepared by consulting an experienced pathologist for the validation of the segmentation algorithms. The results from experiments involving experienced pathologists have demonstrated an average error of 9 percentage points in quantification result between the automated system and the pathologists' visual evaluation. Experiments investigating the variability in pathologists involving samples from 70 kidney patients also proved the automated quantification error rate to be on par with the average intra-observer variability in pathologists' quantification. The accuracy of the proposed quantification system has been validated with the ground truth dataset and compared against the pathologists' quantification results. It has been shown that the correlation between different pathologists' estimation of interstitial fibrosis area has significantly improved, demonstrating the effectiveness of the quantification system as a diagnostic aide. Copyright © 2017 Elsevier B.V. All rights reserved.
Estimated landmark calibration of biomechanical models for inverse kinematics.
Trinler, Ursula; Baker, Richard
2018-01-01
Inverse kinematics is emerging as the optimal method in movement analysis to fit a multi-segment biomechanical model to experimental marker positions. A key part of this process is calibrating the model to the dimensions of the individual being analysed which requires scaling of the model, pose estimation and localisation of tracking markers within the relevant segment coordinate systems. The aim of this study is to propose a generic technique for this process and test a specific application to the OpenSim model Gait2392. Kinematic data from 10 healthy adult participants were captured in static position and normal walking. Results showed good average static and dynamic fitting errors between virtual and experimental markers of 0.8 cm and 0.9 cm, respectively. Highest fitting errors were found on the epicondyle (static), feet (static, dynamic) and on the thigh (dynamic). These result from inconsistencies between the model geometry and degrees of freedom and the anatomy and movement pattern of the individual participants. A particular limitation is in estimating anatomical landmarks from the bone meshes supplied with Gait2392 which do not conform with the bone morphology of the participants studied. Soft tissue artefact will also affect fitting the model to walking trials. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Validation of simplified centre of mass models during gait in individuals with chronic stroke.
Huntley, Andrew H; Schinkel-Ivy, Alison; Aqui, Anthony; Mansfield, Avril
2017-10-01
The feasibility of using a multiple segment (full-body) kinematic model in clinical gait assessment is difficult when considering obstacles such as time and cost constraints. While simplified gait models have been explored in healthy individuals, no such work to date has been conducted in a stroke population. The aim of this study was to quantify the errors of simplified kinematic models for chronic stroke gait assessment. Sixteen individuals with chronic stroke (>6months), outfitted with full body kinematic markers, performed a series of gait trials. Three centre of mass models were computed: (i) 13-segment whole-body model, (ii) 3 segment head-trunk-pelvis model, and (iii) 1 segment pelvis model. Root mean squared error differences were compared between models, along with correlations to measures of stroke severity. Error differences revealed that, while both models were similar in the mediolateral direction, the head-trunk-pelvis model had less error in the anteroposterior direction and the pelvis model had less error in the vertical direction. There was some evidence that the head-trunk-pelvis model error is influenced in the mediolateral direction for individuals with more severe strokes, as a few significant correlations were observed between the head-trunk-pelvis model and measures of stroke severity. These findings demonstrate the utility and robustness of the pelvis model for clinical gait assessment in individuals with chronic stroke. Low error in the mediolateral and vertical directions is especially important when considering potential stability analyses during gait for this population, as lateral stability has been previously linked to fall risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aortic root segmentation in 4D transesophageal echocardiography
NASA Astrophysics Data System (ADS)
Chechani, Shubham; Suresh, Rahul; Patwardhan, Kedar A.
2018-02-01
The Aortic Valve (AV) is an important anatomical structure which lies on the left side of the human heart. The AV regulates the flow of oxygenated blood from the Left Ventricle (LV) to the rest of the body through aorta. Pathologies associated with the AV manifest themselves in structural and functional abnormalities of the valve. Clinical management of pathologies often requires repair, reconstruction or even replacement of the valve through surgical intervention. Assessment of these pathologies as well as determination of specific intervention procedure requires quantitative evaluation of the valvular anatomy. 4D (3D + t) Transesophageal Echocardiography (TEE) is a widely used imaging technique that clinicians use for quantitative assessment of cardiac structures. However, manual quantification of 3D structures is complex, time consuming and suffers from inter-observer variability. Towards this goal, we present a semiautomated approach for segmentation of the aortic root (AR) structure. Our approach requires user-initialized landmarks in two reference frames to provide AR segmentation for full cardiac cycle. We use `coarse-to-fine' B-spline Explicit Active Surface (BEAS) for AR segmentation and Masked Normalized Cross Correlation (NCC) method for AR tracking. Our method results in approximately 0.51 mm average localization error in comparison with ground truth annotation performed by clinical experts on 10 real patient cases (139 3D volumes).
Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes
Erkol, Bulent; Moss, Randy H.; Stanley, R. Joe; Stoecker, William V.; Hvatum, Erik
2011-01-01
Background Malignant melanoma has a good prognosis if treated early. Dermoscopy images of pigmented lesions are most commonly taken at × 10 magnification under lighting at a low angle of incidence while the skin is immersed in oil under a glass plate. Accurate skin lesion segmentation from the background skin is important because some of the features anticipated to be used for diagnosis deal with shape of the lesion and others deal with the color of the lesion compared with the color of the surrounding skin. Methods In this research, gradient vector flow (GVF) snakes are investigated to find the border of skin lesions in dermoscopy images. An automatic initialization method is introduced to make the skin lesion border determination process fully automated. Results Skin lesion segmentation results are presented for 70 benign and 30 melanoma skin lesion images for the GVF-based method and a color histogram analysis technique. The average errors obtained by the GVF-based method are lower for both the benign and melanoma image sets than for the color histogram analysis technique based on comparison with manually segmented lesions determined by a dermatologist. Conclusions The experimental results for the GVF-based method demonstrate promise as an automated technique for skin lesion segmentation in dermoscopy images. PMID:15691255
Sensitivity analysis for high-contrast missions with segmented telescopes
NASA Astrophysics Data System (ADS)
Leboulleux, Lucie; Sauvage, Jean-François; Pueyo, Laurent; Fusco, Thierry; Soummer, Rémi; N'Diaye, Mamadou; St. Laurent, Kathryn
2017-09-01
Segmented telescopes enable large-aperture space telescopes for the direct imaging and spectroscopy of habitable worlds. However, the increased complexity of their aperture geometry, due to their central obstruction, support structures, and segment gaps, makes high-contrast imaging very challenging. In this context, we present an analytical model that will enable to establish a comprehensive error budget to evaluate the constraints on the segments and the influence of the error terms on the final image and contrast. Indeed, the target contrast of 1010 to image Earth-like planets requires drastic conditions, both in term of segment alignment and telescope stability. Despite space telescopes evolving in a more friendly environment than ground-based telescopes, remaining vibrations and resonant modes on the segments can still deteriorate the contrast. In this communication, we develop and validate the analytical model, and compare its outputs to images issued from end-to-end simulations.
Accuracy of CT-based attenuation correction in PET/CT bone imaging
NASA Astrophysics Data System (ADS)
Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.
2012-05-01
We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.
Segmentation of corneal endothelium images using a U-Net-based convolutional neural network.
Fabijańska, Anna
2018-04-18
Diagnostic information regarding the health status of the corneal endothelium may be obtained by analyzing the size and the shape of the endothelial cells in specular microscopy images. Prior to the analysis, the endothelial cells need to be extracted from the image. Up to today, this has been performed manually or semi-automatically. Several approaches to automatic segmentation of endothelial cells exist; however, none of them is perfect. Therefore this paper proposes to perform cell segmentation using a U-Net-based convolutional neural network. Particularly, the network is trained to discriminate pixels located at the borders between cells. The edge probability map outputted by the network is next binarized and skeletonized in order to obtain one-pixel wide edges. The proposed solution was tested on a dataset consisting of 30 corneal endothelial images presenting cells of different sizes, achieving an AUROC level of 0.92. The resulting DICE is on average equal to 0.86, which is a good result, regarding the thickness of the compared edges. The corresponding mean absolute percentage error of cell number is at the level of 4.5% which confirms the high accuracy of the proposed approach. The resulting cell edges are well aligned to the ground truths and require a limited number of manual corrections. This also results in accurate values of the cell morphometric parameters. The corresponding errors range from 5.2% for endothelial cell density, through 6.2% for cell hexagonality to 11.93% for the coefficient of variation of the cell size. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Templeton, D.; Rodgers, A.; Helmberger, D.; Dreger, D.
2008-12-01
Earthquake source parameters (seismic moment, focal mechanism and depth) are now routinely reported by various institutions and network operators. These parameters are important for seismotectonic and earthquake ground motion studies as well as calibration of moment magnitude scales and model-based earthquake-explosion discrimination. Source parameters are often estimated from long-period three- component waveforms at regional distances using waveform modeling techniques with Green's functions computed for an average plane-layered models. One widely used method is waveform inversion for the full moment tensor (Dreger and Helmberger, 1993). This method (TDMT) solves for the moment tensor elements by performing a linearized inversion in the time-domain that minimizes the difference between the observed and synthetic waveforms. Errors in the seismic velocity structure inevitably arise due to either differences in the true average plane-layered structure or laterally varying structure. The TDMT method can account for errors in the velocity model by applying a single time shift at each station to the observed waveforms to best match the synthetics. Another method for estimating source parameters is the Cut-and-Paste (CAP) method. This method breaks the three-component regional waveforms into five windows: vertical and radial component Pnl; vertical and radial component Rayleigh wave; and transverse component Love waves. The CAP method performs a grid search over double-couple mechanisms and allows the synthetic waveforms for each phase (Pnl, Rayleigh and Love) to shift in time to account for errors in the Green's functions. Different filtering and weighting of the Pnl segment relative to surface wave segments enhances sensitivity to source parameters, however, some bias may be introduced. This study will compare the TDMT and CAP methods in two different regions in order to better understand the advantages and limitations of each method. Firstly, we will consider the northeastern China/Korean Peninsula region where average plane-layered structure is well known and relatively laterally homogenous. Secondly, we will consider the Middle East where crustal and upper mantle structure is laterally heterogeneous due to recent and ongoing tectonism. If time allows we will investigate the efficacy of each method for retrieving source parameters from synthetic data generated using a three-dimensional model of seismic structure of the Middle East, where phase delays are known to arise from path-dependent structure.
Narayanaswamy, Arunachalam; Dwarakapuram, Saritha; Bjornsson, Christopher S; Cutler, Barbara M; Shain, William; Roysam, Badrinath
2010-03-01
This paper presents robust 3-D algorithms to segment vasculature that is imaged by labeling laminae, rather than the lumenal volume. The signal is weak, sparse, noisy, nonuniform, low-contrast, and exhibits gaps and spectral artifacts, so adaptive thresholding and Hessian filtering based methods are not effective. The structure deviates from a tubular geometry, so tracing algorithms are not effective. We propose a four step approach. The first step detects candidate voxels using a robust hypothesis test based on a model that assumes Poisson noise and locally planar geometry. The second step performs an adaptive region growth to extract weakly labeled and fine vessels while rejecting spectral artifacts. To enable interactive visualization and estimation of features such as statistical confidence, local curvature, local thickness, and local normal, we perform the third step. In the third step, we construct an accurate mesh representation using marching tetrahedra, volume-preserving smoothing, and adaptive decimation algorithms. To enable topological analysis and efficient validation, we describe a method to estimate vessel centerlines using a ray casting and vote accumulation algorithm which forms the final step of our algorithm. Our algorithm lends itself to parallel processing, and yielded an 8 x speedup on a graphics processor (GPU). On synthetic data, our meshes had average error per face (EPF) values of (0.1-1.6) voxels per mesh face for peak signal-to-noise ratios from (110-28 dB). Separately, the error from decimating the mesh to less than 1% of its original size, the EPF was less than 1 voxel/face. When validated on real datasets, the average recall and precision values were found to be 94.66% and 94.84%, respectively.
SU-E-T-478: Sliding Window Multi-Criteria IMRT Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craft, D; Papp, D; Unkelbach, J
2014-06-01
Purpose: To demonstrate a method for what-you-see-is-what-you-get multi-criteria Pareto surface navigation for step and shoot IMRT treatment planning. Methods: We show mathematically how multiple sliding window treatment plans can be averaged to yield a single plan whose dose distribution is the dosimetric average of the averaged plans. This is incorporated into the Pareto surface navigation based approach to treatment planning in such a way that as the user navigates the surface, the plans he/she is viewing are ready to be delivered (i.e. there is no extra ‘segment the plans’ step that often leads to unacceptable plan degradation in step andmore » shoot Pareto surface navigation). We also describe how the technique can be applied to VMAT. Briefly, sliding window VMAT plans are created such that MLC leaves paint out fluence maps every 15 degrees or so. These fluence map leaf trajectories are averaged in the same way the static beam IMRT ones are. Results: We show mathematically that fluence maps are exactly averaged using our leaf sweep averaging algorithm. Leaf transmission and output factor corrections effects, which are ignored in this work, can lead to small errors in terms of the dose distributions not being exactly averaged even though the fluence maps are. However, our demonstrations show that the dose distributions are almost exactly averaged as well. We demonstrate the technique both for IMRT and VMAT. Conclusions: By turning to sliding window delivery, we show that the problem of losing plan fidelity during the conversion of an idealized fluence map plan into a deliverable plan is remedied. This will allow for multicriteria optimization that avoids the pitfall that the planning has to be redone after the conversion into MLC segments due to plan quality decline. David Craft partially funded by RaySearch Laboratories.« less
Synthetic aperture imaging in ultrasound calibration
NASA Astrophysics Data System (ADS)
Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.
2014-03-01
Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.
Discriminative confidence estimation for probabilistic multi-atlas label fusion.
Benkarim, Oualid M; Piella, Gemma; González Ballester, Miguel Angel; Sanroma, Gerard
2017-12-01
Quantitative neuroimaging analyses often rely on the accurate segmentation of anatomical brain structures. In contrast to manual segmentation, automatic methods offer reproducible outputs and provide scalability to study large databases. Among existing approaches, multi-atlas segmentation has recently shown to yield state-of-the-art performance in automatic segmentation of brain images. It consists in propagating the labelmaps from a set of atlases to the anatomy of a target image using image registration, and then fusing these multiple warped labelmaps into a consensus segmentation on the target image. Accurately estimating the contribution of each atlas labelmap to the final segmentation is a critical step for the success of multi-atlas segmentation. Common approaches to label fusion either rely on local patch similarity, probabilistic statistical frameworks or a combination of both. In this work, we propose a probabilistic label fusion framework based on atlas label confidences computed at each voxel of the structure of interest. Maximum likelihood atlas confidences are estimated using a supervised approach, explicitly modeling the relationship between local image appearances and segmentation errors produced by each of the atlases. We evaluate different spatial pooling strategies for modeling local segmentation errors. We also present a novel type of label-dependent appearance features based on atlas labelmaps that are used during confidence estimation to increase the accuracy of our label fusion. Our approach is evaluated on the segmentation of seven subcortical brain structures from the MICCAI 2013 SATA Challenge dataset and the hippocampi from the ADNI dataset. Overall, our results indicate that the proposed label fusion framework achieves superior performance to state-of-the-art approaches in the majority of the evaluated brain structures and shows more robustness to registration errors. Copyright © 2017 Elsevier B.V. All rights reserved.
Ocular Biometrics of Myopic Eyes With Narrow Angles.
Chong, Gabriel T; Wen, Joanne C; Su, Daniel Hsien-Wen; Stinnett, Sandra; Asrani, Sanjay
2016-02-01
The purpose of this study was to compare the ocular biometrics between myopic patients with and without narrow angles. Patients with a stable myopic refraction (myopia worse than -1.00 D spherical equivalent) were prospectively recruited. Angle status was assessed using gonioscopy and biometric measurements were performed using an anterior segment optical coherence tomography and an IOLMaster. A total of 29 patients (58 eyes) were enrolled with 13 patients (26 eyes) classified as having narrow angles and 16 patients (32 eyes) classified as having open angles. Baseline demographics of age, sex, and ethnicity did not differ significantly between the 2 groups. The patients with narrow angles were on average older than those with open angles but the difference did not reach statistical significance (P=0.12). The central anterior chamber depth was significantly less in the eyes with narrow angles (P=0.05). However, the average lens thickness, although greater in the eyes with narrow angles, did not reach statistical significance (P=0.10). Refractive error, axial lengths, and iris thicknesses did not differ significantly between the 2 groups (P=0.32, 0.47, 0.15). Narrow angles can occur in myopic eyes. Routine gonioscopy is therefore recommended for all patients regardless of refractive error.
Why Segmentation Matters: Experience-Driven Segmentation Errors Impair "Morpheme" Learning
ERIC Educational Resources Information Center
Finn, Amy S.; Hudson Kam, Carla L.
2015-01-01
We ask whether an adult learner's knowledge of their native language impedes statistical learning in a new language beyond just word segmentation (as previously shown). In particular, we examine the impact of native-language word-form phonotactics on learners' ability to segment words into their component morphemes and learn phonologically…
A Minimal Path Searching Approach for Active Shape Model (ASM)-based Segmentation of the Lung.
Guo, Shengwen; Fei, Baowei
2009-03-27
We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.
A minimal path searching approach for active shape model (ASM)-based segmentation of the lung
NASA Astrophysics Data System (ADS)
Guo, Shengwen; Fei, Baowei
2009-02-01
We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 +/- 0.33 pixels, while the error is 1.99 +/- 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.
A Minimal Path Searching Approach for Active Shape Model (ASM)-based Segmentation of the Lung
Guo, Shengwen; Fei, Baowei
2013-01-01
We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs. PMID:24386531
Nonrigid registration of carotid ultrasound and MR images using a "twisting and bending" model
NASA Astrophysics Data System (ADS)
Nanayakkara, Nuwan D.; Chiu, Bernard; Samani, Abbas; Spence, J. David; Parraga, Grace; Samarabandu, Jagath; Fenster, Aaron
2008-03-01
Atherosclerosis at the carotid bifurcation resulting in cerebral emboli is a major cause of ischemic stroke. Most strokes associated with carotid atherosclerosis can be prevented by lifestyle/dietary changes and pharmacological treatments if identified early by monitoring carotid plaque changes. Plaque composition information from magnetic resonance (MR) carotid images and dynamic characteristics information from 3D ultrasound (US) are necessary for developing and validating US imaging tools to identify vulnerable carotid plaques. Combining these images requires nonrigid registration to correct the non-linear miss-alignments caused by relative twisting and bending in the neck due to different head positions during the two image acquisitions sessions. The high degree of freedom and large number of parameters associated with existing nonrigid image registration methods causes several problems including unnatural plaque morphology alteration, computational complexity, and low reliability. Our approach was to model the normal movement of the neck using a "twisting and bending model" with only six parameters for nonrigid registration. We evaluated our registration technique using intra-subject in-vivo 3D US and 3D MR carotid images acquired on the same day. We calculated the Mean Registration Error (MRE) between the segmented vessel surfaces in the target image and the registered image using a distance-based error metric after applying our "twisting bending model" based nonrigid registration algorithm. We achieved an average registration error of 1.33+/-0.41mm using our nonrigid registration technique. Visual inspection of segmented vessel surfaces also showed a substantial improvement of alignment with our non-rigid registration technique.
Interactive lung segmentation in abnormal human and animal chest CT scans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kockelkorn, Thessa T. J. P., E-mail: thessa@isi.uu.nl; Viergever, Max A.; Schaefer-Prokop, Cornelia M.
2014-08-15
Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling resultsmore » can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in challenging chest CT images. Both systems do not require prior knowledge of the scans under consideration and work on a variety of scans.« less
A Survey of Kurdish Students' Sound Segment & Syllabic Pattern Errors in the Course of Learning EFL
ERIC Educational Resources Information Center
Mohammadi, Jahangir
2014-01-01
This paper is devoted to finding adequate answers to the following queries: (A) what are the segmental and syllabic pattern errors made by Kurdish students in their pronunciation? (B) Can the problematic areas in pronunciation be predicted by a systematic comparison of the sound systems of both native and target languages? (C) Can there be any…
Spine detection in CT and MR using iterated marginal space learning.
Michael Kelm, B; Wels, Michael; Kevin Zhou, S; Seifert, Sascha; Suehling, Michael; Zheng, Yefeng; Comaniciu, Dorin
2013-12-01
Examinations of the spinal column with both, Magnetic Resonance (MR) imaging and Computed Tomography (CT), often require a precise three-dimensional positioning, angulation and labeling of the spinal disks and the vertebrae. A fully automatic and robust approach is a prerequisite for an automated scan alignment as well as for the segmentation and analysis of spinal disks and vertebral bodies in Computer Aided Diagnosis (CAD) applications. In this article, we present a novel method that combines Marginal Space Learning (MSL), a recently introduced concept for efficient discriminative object detection, with a generative anatomical network that incorporates relative pose information for the detection of multiple objects. It is used to simultaneously detect and label the spinal disks. While a novel iterative version of MSL is used to quickly generate candidate detections comprising position, orientation, and scale of the disks with high sensitivity, the anatomical network selects the most likely candidates using a learned prior on the individual nine dimensional transformation spaces. Finally, we propose an optional case-adaptive segmentation approach that allows to segment the spinal disks and vertebrae in MR and CT respectively. Since the proposed approaches are learning-based, they can be trained for MR or CT alike. Experimental results based on 42 MR and 30 CT volumes show that our system not only achieves superior accuracy but also is among the fastest systems of its kind in the literature. On the MR data set the spinal disks of a whole spine are detected in 11.5s on average with 98.6% sensitivity and 0.073 false positive detections per volume. On the CT data a comparable sensitivity of 98.0% with 0.267 false positives is achieved. Detected disks are localized with an average position error of 2.4 mm/3.2 mm and angular error of 3.9°/4.5° in MR/CT, which is close to the employed hypothesis resolution of 2.1 mm and 3.3°. Copyright © 2012 Elsevier B.V. All rights reserved.
Automatic 3D liver location and segmentation via convolutional neural network and graph cut.
Lu, Fang; Wu, Fa; Hu, Peijun; Peng, Zhiyi; Kong, Dexing
2017-02-01
Segmentation of the liver from abdominal computed tomography (CT) images is an essential step in some computer-assisted clinical interventions, such as surgery planning for living donor liver transplant, radiotherapy and volume measurement. In this work, we develop a deep learning algorithm with graph cut refinement to automatically segment the liver in CT scans. The proposed method consists of two main steps: (i) simultaneously liver detection and probabilistic segmentation using 3D convolutional neural network; (ii) accuracy refinement of the initial segmentation with graph cut and the previously learned probability map. The proposed approach was validated on forty CT volumes taken from two public databases MICCAI-Sliver07 and 3Dircadb1. For the MICCAI-Sliver07 test dataset, the calculated mean ratios of volumetric overlap error (VOE), relative volume difference (RVD), average symmetric surface distance (ASD), root-mean-square symmetric surface distance (RMSD) and maximum symmetric surface distance (MSD) are 5.9, 2.7 %, 0.91, 1.88 and 18.94 mm, respectively. For the 3Dircadb1 dataset, the calculated mean ratios of VOE, RVD, ASD, RMSD and MSD are 9.36, 0.97 %, 1.89, 4.15 and 33.14 mm, respectively. The proposed method is fully automatic without any user interaction. Quantitative results reveal that the proposed approach is efficient and accurate for hepatic volume estimation in a clinical setup. The high correlation between the automatic and manual references shows that the proposed method can be good enough to replace the time-consuming and nonreproducible manual segmentation method.
Semisupervised learning using denoising autoencoders for brain lesion detection and segmentation.
Alex, Varghese; Vaidhya, Kiran; Thirunavukkarasu, Subramaniam; Kesavadas, Chandrasekharan; Krishnamurthi, Ganapathy
2017-10-01
The work explores the use of denoising autoencoders (DAEs) for brain lesion detection, segmentation, and false-positive reduction. Stacked denoising autoencoders (SDAEs) were pretrained using a large number of unlabeled patient volumes and fine-tuned with patches drawn from a limited number of patients ([Formula: see text], 40, 65). The results show negligible loss in performance even when SDAE was fine-tuned using 20 labeled patients. Low grade glioma (LGG) segmentation was achieved using a transfer learning approach in which a network pretrained with high grade glioma data was fine-tuned using LGG image patches. The networks were also shown to generalize well and provide good segmentation on unseen BraTS 2013 and BraTS 2015 test data. The manuscript also includes the use of a single layer DAE, referred to as novelty detector (ND). ND was trained to accurately reconstruct nonlesion patches. The reconstruction error maps of test data were used to localize lesions. The error maps were shown to assign unique error distributions to various constituents of the glioma, enabling localization. The ND learns the nonlesion brain accurately as it was also shown to provide good segmentation performance on ischemic brain lesions in images from a different database.
Markel, D; Naqa, I El
2012-06-01
Positron emission tomography (PET) presents a valuable resource for delineating the biological tumor volume (BTV) for image-guided radiotherapy. However, accurate and consistent image segmentation is a significant challenge within the context of PET, owing to its low spatial resolution and high levels of noise. Active contour methods based on the level set methods can be sensitive to noise and susceptible to failing in low contrast regions. Therefore, this work evaluates a novel active contour algorithm applied to the task of PET tumor segmentation. A novel active contour segmentation algorithm based on maximizing the Jensen-Renyi Divergence between regions of interest was applied to the task of segmenting lesions in 7 patients with T3-T4 pharyngolaryngeal squamous cell carcinoma. The algorithm was implemented on an NVidia GEFORCE GTV 560M GPU. The cases were taken from the Louvain database, which includes contours of the macroscopically defined BTV drawn using histology of resected tissue. The images were pre-processed using denoising/deconvolution. The segmented volumes agreed well with the macroscopic contours, with an average concordance index and classification error of 0.6 ± 0.09 and 55 ± 16.5%, respectively. The algorithm in its present implementation requires approximately 0.5-1.3 sec per iteration and can reach convergence within 10-30 iterations. The Jensen-Renyi active contour method was shown to come close to and in terms of concordance, outperforms a variety of PET segmentation methods that have been previously evaluated using the same data. Further evaluation on a larger dataset along with performance optimization is necessary before clinical deployment. © 2012 American Association of Physicists in Medicine.
Shea, C H; Wulf, G; Whitacre, C A; Park, J H
2001-08-01
Implicit learning was investigated in two experiments involving a complex motor task. Participants were required to balance on a stabilometer and to move the platform on which they were standing to match a constantly changing target position. Experiment 1 examined whether a segment (middle third) that was repeated on each trial would be learned without participants becoming aware of the repetitions (i.e., implicitly). The purpose of Experiment 2 was to determine the relative effectiveness of explicit versus implicit learning. Here, two identical segments were presented on each trial (first and last thirds), with participants only being informed that one segment (either first or last) was repeated. The acquisition results from both experiments indicated large improvements in performance across 4 days of practice, with performance on the repeated segments being generally superior to that on the non-repeated segment. On the retention tests on Day 5, errors on the repeated segment(s) were smaller than those on the random segment(s). Furthermore, in Experiment 2, the errors on the repeated-known segment, although smaller than those on the random segment, were larger than those on the repeated-unknown segment. Interview results indicated that participants were not consciously aware that a segment was repeated unless they were informed. These results suggest that implicit learning can occur for relatively complex motor tasks and that withholding information concerning the regularities is more beneficial than providing this information.
Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C
2011-09-28
In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed to predict retention times for segmented-temperature gradients based on temperature-gradient input data in liquid chromatography (LC) with high accuracy. The LES model assumes that retention times for isothermal separations can be predicted based on two temperature gradients and is employed to calculate the retention factor of an analyte when changing the start temperature of the temperature gradient. In this study it was investigated whether this approach can also be employed in LC. It was shown that this approximation cannot be transferred to temperature-programmed LC where a temperature range from 60°C up to 180°C is investigated. Major relative errors up to 169.6% were observed for isothermal retention factor predictions. In order to predict retention times for temperature gradients with different start temperatures in LC, another relationship is required to describe the influence of temperature on retention. Therefore, retention times for isothermal separations based on isothermal input runs were predicted using a plot of the natural logarithm of the retention factor vs. the inverse temperature and a plot of the natural logarithm of the retention factor vs. temperature. It could be shown that a plot of lnk vs. T yields more reliable isothermal/isocratic retention time predictions than a plot of lnk vs. 1/T which is usually employed. Hence, in order to predict retention times for temperature-gradients with different start temperatures in LC, two temperature gradient and two isothermal measurements have been employed. In this case, retention times can be predicted with a maximal relative error of 5.5% (average relative error: 2.9%). In comparison, if the start temperature of the simulated temperature gradient is equal to the start temperature of the input data, only two temperature-gradient measurements are required. Under these conditions, retention times can be predicted with a maximal relative error of 4.3% (average relative error: 2.2%). As an example, the systematic method development for an isothermal as well as a temperature gradient separation of selected sulfonamides by means of the adapted LES model is demonstrated using a pure water mobile phase. Both methods are compared and it is shown that the temperature-gradient separation provides some advantages over the isothermal separation in terms of limits of detection and analysis time. Copyright © 2011 Elsevier B.V. All rights reserved.
Tan, Li Kuo; Liew, Yih Miin; Lim, Einly; Abdul Aziz, Yang Faridah; Chee, Kok Han; McLaughlin, Robert A
2018-06-01
In this paper, we develop and validate an open source, fully automatic algorithm to localize the left ventricular (LV) blood pool centroid in short axis cardiac cine MR images, enabling follow-on automated LV segmentation algorithms. The algorithm comprises four steps: (i) quantify motion to determine an initial region of interest surrounding the heart, (ii) identify potential 2D objects of interest using an intensity-based segmentation, (iii) assess contraction/expansion, circularity, and proximity to lung tissue to score all objects of interest in terms of their likelihood of constituting part of the LV, and (iv) aggregate the objects into connected groups and construct the final LV blood pool volume and centroid. This algorithm was tested against 1140 datasets from the Kaggle Second Annual Data Science Bowl, as well as 45 datasets from the STACOM 2009 Cardiac MR Left Ventricle Segmentation Challenge. Correct LV localization was confirmed in 97.3% of the datasets. The mean absolute error between the gold standard and localization centroids was 2.8 to 4.7 mm, or 12 to 22% of the average endocardial radius. Graphical abstract Fully automated localization of the left ventricular blood pool in short axis cardiac cine MR images.
Estimation of Blood Flow Rates in Large Microvascular Networks
Fry, Brendan C.; Lee, Jack; Smith, Nicolas P.; Secomb, Timothy W.
2012-01-01
Objective Recent methods for imaging microvascular structures provide geometrical data on networks containing thousands of segments. Prediction of functional properties, such as solute transport, requires information on blood flow rates also, but experimental measurement of many individual flows is difficult. Here, a method is presented for estimating flow rates in a microvascular network based on incomplete information on the flows in the boundary segments that feed and drain the network. Methods With incomplete boundary data, the equations governing blood flow form an underdetermined linear system. An algorithm was developed that uses independent information about the distribution of wall shear stresses and pressures in microvessels to resolve this indeterminacy, by minimizing the deviation of pressures and wall shear stresses from target values. Results The algorithm was tested using previously obtained experimental flow data from four microvascular networks in the rat mesentery. With two or three prescribed boundary conditions, predicted flows showed relatively small errors in most segments and fewer than 10% incorrect flow directions on average. Conclusions The proposed method can be used to estimate flow rates in microvascular networks, based on incomplete boundary data and provides a basis for deducing functional properties of microvessel networks. PMID:22506980
Inertial Sensor Error Reduction through Calibration and Sensor Fusion.
Lambrecht, Stefan; Nogueira, Samuel L; Bortole, Magdo; Siqueira, Adriano A G; Terra, Marco H; Rocon, Eduardo; Pons, José L
2016-02-17
This paper presents the comparison between cooperative and local Kalman Filters (KF) for estimating the absolute segment angle, under two calibration conditions. A simplified calibration, that can be replicated in most laboratories; and a complex calibration, similar to that applied by commercial vendors. The cooperative filters use information from either all inertial sensors attached to the body, Matricial KF; or use information from the inertial sensors and the potentiometers of an exoskeleton, Markovian KF. A one minute walking trial of a subject walking with a 6-DoF exoskeleton was used to assess the absolute segment angle of the trunk, thigh, shank, and foot. The results indicate that regardless of the segment and filter applied, the more complex calibration always results in a significantly better performance compared to the simplified calibration. The interaction between filter and calibration suggests that when the quality of the calibration is unknown the Markovian KF is recommended. Applying the complex calibration, the Matricial and Markovian KF perform similarly, with average RMSE below 1.22 degrees. Cooperative KFs perform better or at least equally good as Local KF, we therefore recommend to use cooperative KFs instead of local KFs for control or analysis of walking.
Wang, Li; Li, Gang; Adeli, Ehsan; Liu, Mingxia; Wu, Zhengwang; Meng, Yu; Lin, Weili; Shen, Dinggang
2018-06-01
Tissue segmentation of infant brain MRIs with risk of autism is critically important for characterizing early brain development and identifying biomarkers. However, it is challenging due to low tissue contrast caused by inherent ongoing myelination and maturation. In particular, at around 6 months of age, the voxel intensities in both gray matter and white matter are within similar ranges, thus leading to the lowest image contrast in the first postnatal year. Previous studies typically employed intensity images and tentatively estimated tissue probabilities to train a sequence of classifiers for tissue segmentation. However, the important prior knowledge of brain anatomy is largely ignored during the segmentation. Consequently, the segmentation accuracy is still limited and topological errors frequently exist, which will significantly degrade the performance of subsequent analyses. Although topological errors could be partially handled by retrospective topological correction methods, their results may still be anatomically incorrect. To address these challenges, in this article, we propose an anatomy-guided joint tissue segmentation and topological correction framework for isointense infant MRI. Particularly, we adopt a signed distance map with respect to the outer cortical surface as anatomical prior knowledge, and incorporate such prior information into the proposed framework to guide segmentation in ambiguous regions. Experimental results on the subjects acquired from National Database for Autism Research demonstrate the effectiveness to topological errors and also some levels of robustness to motion. Comparisons with the state-of-the-art methods further demonstrate the advantages of the proposed method in terms of both segmentation accuracy and topological correctness. © 2018 Wiley Periodicals, Inc.
Ohta, Megumi; Midorikawa, Taishi; Hikihara, Yuki; Masuo, Yoshihisa; Sakamoto, Shizuo; Torii, Suguru; Kawakami, Yasuo; Fukunaga, Tetsuo; Kanehisa, Hiroaki
2017-02-01
This study examined the validity of segmental bioelectrical impedance (BI) analysis for predicting the fat-free masses (FFMs) of whole-body and body segments in children including overweight individuals. The FFM and impedance (Z) values of arms, trunk, legs, and whole body were determined using a dual-energy X-ray absorptiometry and segmental BI analyses, respectively, in 149 boys and girls aged 6 to 12 years, who were divided into model-development (n = 74), cross-validation (n = 35), and overweight (n = 40) groups. Simple regression analysis was applied to (length) 2 /Z (BI index) for each of the whole-body and 3 segments to develop the prediction equations of the measured FFM of the related body part. In the model-development group, the BI index of each of the 3 segments and whole body was significantly correlated to the measured FFM (R 2 = 0.867-0.932, standard error of estimation = 0.18-1.44 kg (5.9%-8.7%)). There was no significant difference between the measured and predicted FFM values without systematic error. The application of each equation derived in the model-development group to the cross-validation and overweight groups did not produce significant differences between the measured and predicted FFM values and systematic errors, with an exception that the arm FFM in the overweight group was overestimated. Segmental bioelectrical impedance analysis is useful for predicting the FFM of each of whole-body and body segments in children including overweight individuals, although the application for estimating arm FFM in overweight individuals requires a certain modification.
Development of optimized segmentation map in dual energy computed tomography
NASA Astrophysics Data System (ADS)
Yamakawa, Keisuke; Ueki, Hironori
2012-03-01
Dual energy computed tomography (DECT) has been widely used in clinical practice and has been particularly effective for tissue diagnosis. In DECT the difference of two attenuation coefficients acquired by two kinds of X-ray energy enables tissue segmentation. One problem in conventional DECT is that the segmentation deteriorates in some cases, such as bone removal. This is due to two reasons. Firstly, the segmentation map is optimized without considering the Xray condition (tube voltage and current). If we consider the tube voltage, it is possible to create an optimized map, but unfortunately we cannot consider the tube current. Secondly, the X-ray condition is not optimized. The condition can be set empirically, but this means that the optimized condition is not used correctly. To solve these problems, we have developed methods for optimizing the map (Method-1) and the condition (Method-2). In Method-1, the map is optimized to minimize segmentation errors. The distribution of the attenuation coefficient is modeled by considering the tube current. In Method-2, the optimized condition is decided to minimize segmentation errors depending on tube voltagecurrent combinations while keeping the total exposure constant. We evaluated the effectiveness of Method-1 by performing a phantom experiment under the fixed condition and of Method-2 by performing a phantom experiment under different combinations calculated from the total exposure constant. When Method-1 was followed with Method-2, the segmentation error was reduced from 37.8 to 13.5 %. These results demonstrate that our developed methods can achieve highly accurate segmentation while keeping the total exposure constant.
Nagda, Jyotsna V; Davis, Craig W; Bajwa, Zahid H; Simopoulos, Thomas T
2011-01-01
Chronic lumbosacral radicular pain is a common source of radiating leg pain seen in pain management patients. These patients are frequently managed conservatively with multiple modalities including medications, physical therapy, and epidural steroid injections. Radiofrequency has been used to treat chronic radicular pain for over 30 years; however, there is a paucity of literature about the safety and efficacy of repeat radiofrequency lesioning. To determine the safety, success rate, and duration of pain relief of repeat pulsed radiofrequency (PRF) and continuous radiofrequency (CRF) lesioning of the dorsal root ganglion (DRG)/ sacral segmental nerves (SN) in patients with chronic lumbosacral radicular pain. Retrospective chart review Outpatient multidisciplinary pain center Medical record review of patients who were treated with pulsed and continuous radiofrequency lesioning of the lumbar dorsal root ganglia and segmental nerves and who reported initial success were evaluated for recurrence of pain and repeat radiofrequency treatment. Responses to subsequent treatments were compared to initial treatments for success rates, average duration of relief, and adverse neurologic side-effects. Retrospective chart review without a control group. Twenty-six women and 24 men were identified who received 50% pain relief or better after PRF and CRF of the lumbar DRG/ sacral SN for lumbosacral radicular pain. The mean age was 62 years (range, 25-86). The mean duration of relief for the 40 patients who had 2 treatments was 4.7 months (range 0-24; Se [standard error] 0.74). Twenty-eight patients had 3 treatments with an average duration of relief of 4.5 months (range 0-19 months; Se 0.74). Twenty patients had 4 treatments with a mean duration of relief of 4.4 months (range 0.5-18; Se 0.95) and 18 patients who had 5 or more treatments received an average duration of relief of 4.3 months (range 0.5-18; Se 1.03). The average duration of relief and success frequency remained constant after each subsequent radiofrequency treatment. Of the 50 total patients, there was only 1 reported complication, specifically, transient thigh numbness which resolved after one week. Repeated pulsed and continuous radiofrequency ablation of the lumbar dorsal root ganglion/segmental nerve shows promise to be a safe and effective long-term palliative management for lumbosacral radicular pain in some patients.
Implementation and evaluation of various demons deformable image registration algorithms on a GPU.
Gu, Xuejun; Pan, Hubert; Liang, Yun; Castillo, Richard; Yang, Deshan; Choi, Dongju; Castillo, Edward; Majumdar, Amitava; Guerrero, Thomas; Jiang, Steve B
2010-01-07
Online adaptive radiation therapy (ART) promises the ability to deliver an optimal treatment in response to daily patient anatomic variation. A major technical barrier for the clinical implementation of online ART is the requirement of rapid image segmentation. Deformable image registration (DIR) has been used as an automated segmentation method to transfer tumor/organ contours from the planning image to daily images. However, the current computational time of DIR is insufficient for online ART. In this work, this issue is addressed by using computer graphics processing units (GPUs). A gray-scale-based DIR algorithm called demons and five of its variants were implemented on GPUs using the compute unified device architecture (CUDA) programming environment. The spatial accuracy of these algorithms was evaluated over five sets of pulmonary 4D CT images with an average size of 256 x 256 x 100 and more than 1100 expert-determined landmark point pairs each. For all the testing scenarios presented in this paper, the GPU-based DIR computation required around 7 to 11 s to yield an average 3D error ranging from 1.5 to 1.8 mm. It is interesting to find out that the original passive force demons algorithms outperform subsequently proposed variants based on the combination of accuracy, efficiency and ease of implementation.
Safety modeling of urban arterials in Shanghai, China.
Wang, Xuesong; Fan, Tianxiang; Chen, Ming; Deng, Bing; Wu, Bing; Tremont, Paul
2015-10-01
Traffic safety on urban arterials is influenced by several key variables including geometric design features, land use, traffic volume, and travel speeds. This paper is an exploratory study of the relationship of these variables to safety. It uses a comparatively new method of measuring speeds by extracting GPS data from taxis operating on Shanghai's urban network. This GPS derived speed data, hereafter called Floating Car Data (FCD) was used to calculate average speeds during peak and off-peak hours, and was acquired from samples of 15,000+ taxis traveling on 176 segments over 18 major arterials in central Shanghai. Geometric design features of these arterials and surrounding land use characteristics were obtained by field investigation, and crash data was obtained from police reports. Bayesian inference using four different models, Poisson-lognormal (PLN), PLN with Maximum Likelihood priors (PLN-ML), hierarchical PLN (HPLN), and HPLN with Maximum Likelihood priors (HPLN-ML), was used to estimate crash frequencies. Results showed the HPLN-ML models had the best goodness-of-fit and efficiency, and models with ML priors yielded estimates with the lowest standard errors. Crash frequencies increased with increases in traffic volume. Higher average speeds were associated with higher crash frequencies during peak periods, but not during off-peak periods. Several geometric design features including average segment length of arterial, number of lanes, presence of non-motorized lanes, number of access points, and commercial land use, were positively related to crash frequencies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Razak, Ruslan; Hani, Ahmad Fadzil M; Kumar, Dileep
2017-09-01
Knee osteoarthritis (OA) progression can be monitored by measuring changes in the subchondral bone structure such as area and shape from MR images as an imaging biomarker. However, measurements of these minute changes are highly dependent on the accurate segmentation of bone tissue from MR images and it is challenging task due to the complex tissue structure and inadequate image contrast/brightness. In this paper, a fully automated method for segmenting subchondral bone from knee MR images is proposed. Here, the contrast of knee MR images is enhanced using a gray-level S-curve transformation followed by automatic seed point detection using a three-dimensional multi-edge overlapping technique. Successively, bone regions are initially extracted using distance-regularized level-set evolution followed by identification and correction of leakages along the bone boundary regions using a boundary displacement technique. The performance of the developed technique is evaluated against ground truths by measuring sensitivity, specificity, dice similarity coefficient (DSC), average surface distance (AvgD) and root mean square surface distance (RMSD). An average sensitivity (91.14%), specificity (99.12%) and DSC (90.28%) with 95% confidence interval (CI) in the range 89.74-92.54%, 98.93-99.31% and 88.68-91.88% respectively is achieved for the femur bone segmentation in 8 datasets. For tibia bone, average sensitivity (90.69%), specificity (99.65%) and DSC (91.35%) with 95% CI in the range 88.59-92.79%, 99.50-99.80% and 88.68-91.88% respectively is achieved. AvgD and RMSD values for femur are 1.43 ± 0.23 (mm) and 2.10 ± 0.35 (mm) respectively while for tibia, the values are 0.95 ± 0.28 (mm) and 1.30 ± 0.42 (mm) respectively that demonstrates acceptable error between proposed method and ground truths. In conclusion, results obtained in this work demonstrate substantially significant performance with consistency and robustness that led the proposed method to be applicable for large scale and longitudinal knee OA studies in clinical settings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spatial range of illusory effects in Müller-Lyer figures.
Predebon, J
2001-11-01
The spatial range of the illusory effects in Müller-Lyer (M-L) figures was examined in three experiments. Experiments 1 and 2 assessed the pattern of bisection errors along the shaft of the standard or double-angle (experiment 1) and the single-angle (experiment 2) M-L figures: Subjects bisected the shaft and the resulting two half-segments of the shaft to produce apparently equal quarters, and then each of the quarters to produce eight equal-appearing segments. The bisection judgments of each segment were referenced to the segment's physical midpoints. The expansion or wings-out and the contraction or wings-in figures yielded similar patterns of bisection errors. For the standard M-L figures, there were significant errors in bisecting each half, and each end-quarter, but not the two central quarters of the shaft. For the single-angle M-L figures, there were significant errors in bisecting the length of the shaft, the half-segment, and the quarter, of the shaft adjacent to the vertex but not the second quarter from the vertex nor in dividing the half of the shaft at the open end of the figure into four equal intervals. Experiment 3 assessed the apparent length of the half-segment of the shaft at the open end of the single-angle figures. Length judgments were unaffected by the vertex at the opposite end of the shaft. Taken together, the results indicate that the length distortions in both the standard and single-angle M-L figures are not uniformly distributed along the shaft but rather are confined mainly to the quarters adjacent to the vertices. The present findings imply that theories of the M-L illusion which assume uniform expansion or contraction of the shafts are incomplete.
A novel measure and significance testing in data analysis of cell image segmentation.
Wu, Jin Chu; Halter, Michael; Kacker, Raghu N; Elliott, John T; Plant, Anne L
2017-03-14
Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed. We propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms. A novel measure TER of CIS is proposed. The TER's SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing.
Marateb, Hamid Reza; Farahi, Morteza; Rojas, Monica; Mañanas, Miguel Angel; Farina, Dario
2016-01-01
Knowledge of the location of muscle Innervation Zones (IZs) is important in many applications, e.g. for minimizing the quantity of injected botulinum toxin for the treatment of spasticity or for deciding on the type of episiotomy during child delivery. Surface EMG (sEMG) can be noninvasively recorded to assess physiological and morphological characteristics of contracting muscles. However, it is not often possible to record signals of high quality. Moreover, muscles could have multiple IZs, which should all be identified. We designed a fully-automatic algorithm based on the enhanced image Graph-Cut segmentation and morphological image processing methods to identify up to five IZs in 60-ms intervals of very-low to moderate quality sEMG signal detected with multi-channel electrodes (20 bipolar channels with Inter Electrode Distance (IED) of 5 mm). An anisotropic multilayered cylinder model was used to simulate 750 sEMG signals with signal-to-noise ratio ranging from -5 to 15 dB (using Gaussian noise) and in each 60-ms signal frame, 1 to 5 IZs were included. The micro- and macro- averaged performance indices were then reported for the proposed IZ detection algorithm. In the micro-averaging procedure, the number of True Positives, False Positives and False Negatives in each frame were summed up to generate cumulative measures. In the macro-averaging, on the other hand, precision and recall were calculated for each frame and their averages are used to determine F1-score. Overall, the micro (macro)-averaged sensitivity, precision and F1-score of the algorithm for IZ channel identification were 82.7% (87.5%), 92.9% (94.0%) and 87.5% (90.6%), respectively. For the correctly identified IZ locations, the average bias error was of 0.02±0.10 IED ratio. Also, the average absolute conduction velocity estimation error was 0.41±0.40 m/s for such frames. The sensitivity analysis including increasing IED and reducing interpolation coefficient for time samples was performed. Meanwhile, the effect of adding power-line interference and using other image interpolation methods on the deterioration of the performance of the proposed algorithm was investigated. The average running time of the proposed algorithm on each 60-ms sEMG frame was 25.5±8.9 (s) on an Intel dual-core 1.83 GHz CPU with 2 GB of RAM. The proposed algorithm correctly and precisely identified multiple IZs in each signal epoch in a wide range of signal quality and is thus a promising new offline tool for electrophysiological studies.
Farahi, Morteza; Rojas, Monica; Mañanas, Miguel Angel; Farina, Dario
2016-01-01
Knowledge of the location of muscle Innervation Zones (IZs) is important in many applications, e.g. for minimizing the quantity of injected botulinum toxin for the treatment of spasticity or for deciding on the type of episiotomy during child delivery. Surface EMG (sEMG) can be noninvasively recorded to assess physiological and morphological characteristics of contracting muscles. However, it is not often possible to record signals of high quality. Moreover, muscles could have multiple IZs, which should all be identified. We designed a fully-automatic algorithm based on the enhanced image Graph-Cut segmentation and morphological image processing methods to identify up to five IZs in 60-ms intervals of very-low to moderate quality sEMG signal detected with multi-channel electrodes (20 bipolar channels with Inter Electrode Distance (IED) of 5 mm). An anisotropic multilayered cylinder model was used to simulate 750 sEMG signals with signal-to-noise ratio ranging from -5 to 15 dB (using Gaussian noise) and in each 60-ms signal frame, 1 to 5 IZs were included. The micro- and macro- averaged performance indices were then reported for the proposed IZ detection algorithm. In the micro-averaging procedure, the number of True Positives, False Positives and False Negatives in each frame were summed up to generate cumulative measures. In the macro-averaging, on the other hand, precision and recall were calculated for each frame and their averages are used to determine F1-score. Overall, the micro (macro)-averaged sensitivity, precision and F1-score of the algorithm for IZ channel identification were 82.7% (87.5%), 92.9% (94.0%) and 87.5% (90.6%), respectively. For the correctly identified IZ locations, the average bias error was of 0.02±0.10 IED ratio. Also, the average absolute conduction velocity estimation error was 0.41±0.40 m/s for such frames. The sensitivity analysis including increasing IED and reducing interpolation coefficient for time samples was performed. Meanwhile, the effect of adding power-line interference and using other image interpolation methods on the deterioration of the performance of the proposed algorithm was investigated. The average running time of the proposed algorithm on each 60-ms sEMG frame was 25.5±8.9 (s) on an Intel dual-core 1.83 GHz CPU with 2 GB of RAM. The proposed algorithm correctly and precisely identified multiple IZs in each signal epoch in a wide range of signal quality and is thus a promising new offline tool for electrophysiological studies. PMID:27978535
NASA Astrophysics Data System (ADS)
Soret, Marine; Alaoui, Jawad; Koulibaly, Pierre M.; Darcourt, Jacques; Buvat, Irène
2007-02-01
ObjectivesPartial volume effect (PVE) is a major source of bias in brain SPECT imaging of dopamine transporter. Various PVE corrections (PVC) making use of anatomical data have been developed and yield encouraging results. However, their accuracy in clinical data is difficult to demonstrate because the gold standard (GS) is usually unknown. The objective of this study was to assess the accuracy of PVC. MethodTwenty-three patients underwent MRI and 123I-FP-CIT SPECT. The binding potential (BP) values were measured in the striata segmented on the MR images after coregistration to SPECT images. These values were calculated without and with an original PVC. In addition, for each patient, a Monte Carlo simulation of the SPECT scan was performed. For these simulations where true simulated BP values were known, percent biases in BP estimates were calculated. For the real data, an evaluation method that simultaneously estimates the GS and a quadratic relationship between the observed and the GS values was used. It yields a surrogate mean square error (sMSE) between the estimated values and the estimated GS values. ResultsThe averaged percent difference between BP measured for real and for simulated patients was 0.7±9.7% without PVC and was -8.5±14.5% with PVC, suggesting that the simulated data reproduced the real data well enough. For the simulated patients, BP was underestimated by 66.6±9.3% on average without PVC and overestimated by 11.3±9.5% with PVC, demonstrating the greatest accuracy of BP estimates with PVC. For the simulated data, sMSE were 27.3 without PVC and 0.90 with PVC, confirming that our sMSE index properly captured the greatest accuracy of BP estimates with PVC. For the real patient data, sMSE was 50.8 without PVC and 3.5 with PVC. These results were consistent with those obtained on the simulated data, suggesting that for clinical data, and despite probable segmentation and registration errors, BP were more accurately estimated with PVC than without. ConclusionPVC was very efficient to greatly reduce the error in BP estimates in clinical imaging of dopamine transporter.
Comparison of atlas-based techniques for whole-body bone segmentation.
Arabi, Hossein; Zaidi, Habib
2017-02-01
We evaluate the accuracy of whole-body bone extraction from whole-body MR images using a number of atlas-based segmentation methods. The motivation behind this work is to find the most promising approach for the purpose of MRI-guided derivation of PET attenuation maps in whole-body PET/MRI. To this end, a variety of atlas-based segmentation strategies commonly used in medical image segmentation and pseudo-CT generation were implemented and evaluated in terms of whole-body bone segmentation accuracy. Bone segmentation was performed on 23 whole-body CT/MR image pairs via leave-one-out cross validation procedure. The evaluated segmentation techniques include: (i) intensity averaging (IA), (ii) majority voting (MV), (iii) global and (iv) local (voxel-wise) weighting atlas fusion frameworks implemented utilizing normalized mutual information (NMI), normalized cross-correlation (NCC) and mean square distance (MSD) as image similarity measures for calculating the weighting factors, along with other atlas-dependent algorithms, such as (v) shape-based averaging (SBA) and (vi) Hofmann's pseudo-CT generation method. The performance evaluation of the different segmentation techniques was carried out in terms of estimating bone extraction accuracy from whole-body MRI using standard metrics, such as Dice similarity (DSC) and relative volume difference (RVD) considering bony structures obtained from intensity thresholding of the reference CT images as the ground truth. Considering the Dice criterion, global weighting atlas fusion methods provided moderate improvement of whole-body bone segmentation (DSC= 0.65 ± 0.05) compared to non-weighted IA (DSC= 0.60 ± 0.02). The local weighed atlas fusion approach using the MSD similarity measure outperformed the other strategies by achieving a DSC of 0.81 ± 0.03 while using the NCC and NMI measures resulted in a DSC of 0.78 ± 0.05 and 0.75 ± 0.04, respectively. Despite very long computation time, the extracted bone obtained from both SBA (DSC= 0.56 ± 0.05) and Hofmann's methods (DSC= 0.60 ± 0.02) exhibited no improvement compared to non-weighted IA. Finding the optimum parameters for implementation of the atlas fusion approach, such as weighting factors and image similarity patch size, have great impact on the performance of atlas-based segmentation approaches. The voxel-wise atlas fusion approach exhibited excellent performance in terms of cancelling out the non-systematic registration errors leading to accurate and reliable segmentation results. Denoising and normalization of MR images together with optimization of the involved parameters play a key role in improving bone extraction accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 3 of the four major tasks included in the study. Task 3 compares flight plans developed on the Suitland forecast with actual data observed by the aircraft (and averaged over 10 degree segments). The results show that the average difference between the forecast and observed wind speed is 9 kts. without considering direction, and the average difference in the component of the forecast wind parallel to the direction of the observed wind is 13 kts. - both indicating that the Suitland forecast underestimates the wind speeds. The Root Mean Square (RMS) vector error is 30.1 kts. The average absolute difference in direction between the forecast and observed wind is 26 degrees and the temperature difference is 3 degree Centigrade. These results indicate that the forecast model as well as the verifying analysis used to develop comparison flight plans in Tasks 1 and 2 is a limiting factor and that the average potential fuel savings or penalty are up to 3.6 percent depending on the direction of flight.
Estimation of 3D reconstruction errors in a stereo-vision system
NASA Astrophysics Data System (ADS)
Belhaoua, A.; Kohler, S.; Hirsch, E.
2009-06-01
The paper presents an approach for error estimation for the various steps of an automated 3D vision-based reconstruction procedure of manufactured workpieces. The process is based on a priori planning of the task and built around a cognitive intelligent sensory system using so-called Situation Graph Trees (SGT) as a planning tool. Such an automated quality control system requires the coordination of a set of complex processes performing sequentially data acquisition, its quantitative evaluation and the comparison with a reference model (e.g., CAD object model) in order to evaluate quantitatively the object. To ensure efficient quality control, the aim is to be able to state if reconstruction results fulfill tolerance rules or not. Thus, the goal is to evaluate independently the error for each step of the stereo-vision based 3D reconstruction (e.g., for calibration, contour segmentation, matching and reconstruction) and then to estimate the error for the whole system. In this contribution, we analyze particularly the segmentation error due to localization errors for extracted edge points supposed to belong to lines and curves composing the outline of the workpiece under evaluation. The fitting parameters describing these geometric features are used as quality measure to determine confidence intervals and finally to estimate the segmentation errors. These errors are then propagated through the whole reconstruction procedure, enabling to evaluate their effect on the final 3D reconstruction result, specifically on position uncertainties. Lastly, analysis of these error estimates enables to evaluate the quality of the 3D reconstruction, as illustrated by the shown experimental results.
Statistical analysis of the surface figure of the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Lightsey, Paul A.; Chaney, David; Gallagher, Benjamin B.; Brown, Bob J.; Smith, Koby; Schwenker, John
2012-09-01
The performance of an optical system is best characterized by either the point spread function (PSF) or the optical transfer function (OTF). However, for system budgeting purposes, it is convenient to use a single scalar metric, or a combination of a few scalar metrics to track performance. For the James Webb Space Telescope, the Observatory level requirements were expressed in metrics of Strehl Ratio, and Encircled Energy. These in turn were converted to the metrics of total rms WFE and rms WFE within spatial frequency domains. The 18 individual mirror segments for the primary mirror segment assemblies (PMSA), the secondary mirror (SM), tertiary mirror (TM), and Fine Steering Mirror have all been fabricated. They are polished beryllium mirrors with a protected gold reflective coating. The statistical analysis of the resulting Surface Figure Error of these mirrors has been analyzed. The average spatial frequency distribution and the mirror-to-mirror consistency of the spatial frequency distribution are reported. The results provide insight to system budgeting processes for similar optical systems.
Camera calibration correction in shape from inconsistent silhouette
USDA-ARS?s Scientific Manuscript database
The use of shape from silhouette for reconstruction tasks is plagued by two types of real-world errors: camera calibration error and silhouette segmentation error. When either error is present, we call the problem the Shape from Inconsistent Silhouette (SfIS) problem. In this paper, we show how sm...
Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer's Disease.
Platero, Carlos; Lin, Lin; Tobar, M Carmen
2018-05-21
Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer's Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer's Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) [Formula: see text] 0.947 for the control vs AD, AUC [Formula: see text] 0.720 for mild cognitive impairment (MCI) vs AD, and AUC [Formula: see text] 0.805 for the control vs MCI.
Schwartzkopf, Wade C; Bovik, Alan C; Evans, Brian L
2005-12-01
Traditional chromosome imaging has been limited to grayscale images, but recently a 5-fluorophore combinatorial labeling technique (M-FISH) was developed wherein each class of chromosomes binds with a different combination of fluorophores. This results in a multispectral image, where each class of chromosomes has distinct spectral components. In this paper, we develop new methods for automatic chromosome identification by exploiting the multispectral information in M-FISH chromosome images and by jointly performing chromosome segmentation and classification. We (1) develop a maximum-likelihood hypothesis test that uses multispectral information, together with conventional criteria, to select the best segmentation possibility; (2) use this likelihood function to combine chromosome segmentation and classification into a robust chromosome identification system; and (3) show that the proposed likelihood function can also be used as a reliable indicator of errors in segmentation, errors in classification, and chromosome anomalies, which can be indicators of radiation damage, cancer, and a wide variety of inherited diseases. We show that the proposed multispectral joint segmentation-classification method outperforms past grayscale segmentation methods when decomposing touching chromosomes. We also show that it outperforms past M-FISH classification techniques that do not use segmentation information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J; Gu, X; Lu, W
Purpose: A novel distance-dose weighting method for label fusion was developed to increase segmentation accuracy in dosimetrically important regions for prostate radiation therapy. Methods: Label fusion as implemented in the original SIMPLE (OS) for multi-atlas segmentation relies iteratively on the majority vote to generate an estimated ground truth and DICE similarity measure to screen candidates. The proposed distance-dose weighting puts more values on dosimetrically important regions when calculating similarity measure. Specifically, we introduced distance-to-dose error (DDE), which converts distance to dosimetric importance, in performance evaluation. The DDE calculates an estimated DE error derived from surface distance differences between the candidatemore » and estimated ground truth label by multiplying a regression coefficient. To determine the coefficient at each simulation point on the rectum, we fitted DE error with respect to simulated voxel shift. The DEs were calculated by the multi-OAR geometry-dosimetry training model previously developed in our research group. Results: For both the OS and the distance-dose weighted SIMPLE (WS) results, the evaluation metrics for twenty patients were calculated using the ground truth segmentation. The mean difference of DICE, Hausdorff distance, and mean absolute distance (MAD) between OS and WS have shown 0, 0.10, and 0.11, respectively. In partial MAD of WS which calculates MAD within a certain PTV expansion voxel distance, the lower MADs were observed at the closer distances from 1 to 8 than those of OS. The DE results showed that the segmentation from WS produced more accurate results than OS. The mean DE error of V75, V70, V65, and V60 were decreased by 1.16%, 1.17%, 1.14%, and 1.12%, respectively. Conclusion: We have demonstrated that the method can increase the segmentation accuracy in rectum regions adjacent to PTV. As a result, segmentation using WS have shown improved dosimetric accuracy than OS. The WS will provide dosimetrically important label selection strategy in multi-atlas segmentation. CPRIT grant RP150485.« less
Design, implementation and accuracy of a prototype for medical augmented reality.
Pandya, Abhilash; Siadat, Mohammad-Reza; Auner, Greg
2005-01-01
This paper is focused on prototype development and accuracy evaluation of a medical Augmented Reality (AR) system. The accuracy of such a system is of critical importance for medical use, and is hence considered in detail. We analyze the individual error contributions and the system accuracy of the prototype. A passive articulated arm is used to track a calibrated end-effector-mounted video camera. The live video view is superimposed in real time with the synchronized graphical view of CT-derived segmented object(s) of interest within a phantom skull. The AR accuracy mostly depends on the accuracy of the tracking technology, the registration procedure, the camera calibration, and the image scanning device (e.g., a CT or MRI scanner). The accuracy of the Microscribe arm was measured to be 0.87 mm. After mounting the camera on the tracking device, the AR accuracy was measured to be 2.74 mm on average (standard deviation = 0.81 mm). After using data from a 2-mm-thick CT scan, the AR error remained essentially the same at an average of 2.75 mm (standard deviation = 1.19 mm). For neurosurgery, the acceptable error is approximately 2-3 mm, and our prototype approaches these accuracy requirements. The accuracy could be increased with a higher-fidelity tracking system and improved calibration and object registration. The design and methods of this prototype device can be extrapolated to current medical robotics (due to the kinematic similarity) and neuronavigation systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruland, Robert
The Visible-Infrared SASE Amplifier (VISA) undulator consists of four 99cm long segments. Each undulator segment is set up on a pulsed-wire bench, to characterize the magnetic properties and to locate the magnetic axis of the FODO array. Subsequently, the location of the magnetic axis, as defined by the wire, is referenced to tooling balls on each magnet segment by means of a straightness interferometer. After installation in the vacuum chamber, the four magnet segments are aligned with respect to themselves and globally to the beam line reference laser. A specially designed alignment fixture is used to mount one straightness interferometermore » each in the horizontal and vertical plane of the beam. The goal of these procedures is to keep the combined rms trajectory error, due to magnetic and alignment errors, to 50{micro}m.« less
Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.
1989-01-01
The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.
Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)
NASA Astrophysics Data System (ADS)
Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.
1989-09-01
The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.
Mansberger, Steven L; Menda, Shivali A; Fortune, Brad A; Gardiner, Stuart K; Demirel, Shaban
2017-02-01
To characterize the error of optical coherence tomography (OCT) measurements of retinal nerve fiber layer (RNFL) thickness when using automated retinal layer segmentation algorithms without manual refinement. Cross-sectional study. This study was set in a glaucoma clinical practice, and the dataset included 3490 scans from 412 eyes of 213 individuals with a diagnosis of glaucoma or glaucoma suspect. We used spectral domain OCT (Spectralis) to measure RNFL thickness in a 6-degree peripapillary circle, and exported the native "automated segmentation only" results. In addition, we exported the results after "manual refinement" to correct errors in the automated segmentation of the anterior (internal limiting membrane) and the posterior boundary of the RNFL. Our outcome measures included differences in RNFL thickness and glaucoma classification (i.e., normal, borderline, or outside normal limits) between scans with automated segmentation only and scans using manual refinement. Automated segmentation only resulted in a thinner global RNFL thickness (1.6 μm thinner, P < .001) when compared to manual refinement. When adjusted by operator, a multivariate model showed increased differences with decreasing RNFL thickness (P < .001), decreasing scan quality (P < .001), and increasing age (P < .03). Manual refinement changed 298 of 3486 (8.5%) of scans to a different global glaucoma classification, wherein 146 of 617 (23.7%) of borderline classifications became normal. Superior and inferior temporal clock hours had the largest differences. Automated segmentation without manual refinement resulted in reduced global RNFL thickness and overestimated the classification of glaucoma. Differences increased in eyes with a thinner RNFL thickness, older age, and decreased scan quality. Operators should inspect and manually refine OCT retinal layer segmentation when assessing RNFL thickness in the management of patients with glaucoma. Copyright © 2016 Elsevier Inc. All rights reserved.
Caca, Ihsan; Cingu, Abdullah Kursat; Sahin, Alparslan; Ari, Seyhmus; Dursun, Mehmet Emin; Dag, Umut; Balsak, Selahattin; Alakus, Fuat; Yavuz, Abdullah; Palanci, Yilmaz
2013-01-01
To investigate the prevalence of refractive errors and other eye diseases, incidence and types of amblyopia in school-aged children, and their relation to gender, age, parental education, and socioeconomic factors. A total of 21,062 children 6 to 14 years old were screened. The examination included visual acuity measurements and ocular motility evaluation. Autorefraction under cycloplegia and examination of the external eye, anterior segment, media, and fundus were performed. There were 11,118 females and 9,944 males. The average age was 10.56 ± 3.59 years. When all of the children were evaluated, 3.2% had myopia and 5.9% had hyperopia. Astigmatism 0.50 D or greater was present in 14.3% of children. Myopia was associated with older age, female gender, and higher parental education. Hyperopia was inversely proportional with older age. Spectacles were needed in 4,476 (22.7%) children with refractive errors, and 10.6% of children were unaware of their spectacle needs. Amblyopia was detected in 2.6% of all children. The most common causes of amblyopia were anisometropia (1.2%) and strabismus (0.9%). Visual impairment is a common disorder in school-aged children. Eye health screening programs are beneficial in early detection and proper treatment of refractive errors. Copyright 2013, SLACK Incorporated.
An integrated method for atherosclerotic carotid plaque segmentation in ultrasound image.
Qian, Chunjun; Yang, Xiaoping
2018-01-01
Carotid artery atherosclerosis is an important cause of stroke. Ultrasound imaging has been widely used in the diagnosis of atherosclerosis. Therefore, segmenting atherosclerotic carotid plaque in ultrasound image is an important task. Accurate plaque segmentation is helpful for the measurement of carotid plaque burden. In this paper, we propose and evaluate a novel learning-based integrated framework for plaque segmentation. In our study, four different classification algorithms, along with the auto-context iterative algorithm, were employed to effectively integrate features from ultrasound images and later also the iteratively estimated and refined probability maps together for pixel-wise classification. The four classification algorithms were support vector machine with linear kernel, support vector machine with radial basis function kernel, AdaBoost and random forest. The plaque segmentation was implemented in the generated probability map. The performance of the four different learning-based plaque segmentation methods was tested on 29 B-mode ultrasound images. The evaluation indices for our proposed methods were consisted of sensitivity, specificity, Dice similarity coefficient, overlap index, error of area, absolute error of area, point-to-point distance, and Hausdorff point-to-point distance, along with the area under the ROC curve. The segmentation method integrated the random forest and an auto-context model obtained the best results (sensitivity 80.4 ± 8.4%, specificity 96.5 ± 2.0%, Dice similarity coefficient 81.0 ± 4.1%, overlap index 68.3 ± 5.8%, error of area -1.02 ± 18.3%, absolute error of area 14.7 ± 10.9%, point-to-point distance 0.34 ± 0.10 mm, Hausdorff point-to-point distance 1.75 ± 1.02 mm, and area under the ROC curve 0.897), which were almost the best, compared with that from the existed methods. Our proposed learning-based integrated framework investigated in this study could be useful for atherosclerotic carotid plaque segmentation, which will be helpful for the measurement of carotid plaque burden. Copyright © 2017 Elsevier B.V. All rights reserved.
System for detecting operating errors in a variable valve timing engine using pressure sensors
Wiles, Matthew A.; Marriot, Craig D
2013-07-02
A method and control module includes a pressure sensor data comparison module that compares measured pressure volume signal segments to ideal pressure volume segments. A valve actuation hardware remedy module performs a hardware remedy in response to comparing the measured pressure volume signal segments to the ideal pressure volume segments when a valve actuation hardware failure is detected.
Foot Structure in Japanese Speech Errors: Normal vs. Pathological
ERIC Educational Resources Information Center
Miyakoda, Haruko
2008-01-01
Although many studies of speech errors have been presented in the literature, most have focused on errors occurring at either the segmental or feature level. Few, if any, studies have dealt with the prosodic structure of errors. This paper aims to fill this gap by taking up the issue of prosodic structure in Japanese speech errors, with a focus on…
Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring.
Kovatchev, Boris P; Patek, Stephen D; Ortiz, Edward Andrew; Breton, Marc D
2015-03-01
The level of continuous glucose monitoring (CGM) accuracy needed for insulin dosing using sensor values (i.e., the level of accuracy permitting non-adjunct CGM use) is a topic of ongoing debate. Assessment of this level in clinical experiments is virtually impossible because the magnitude of CGM errors cannot be manipulated and related prospectively to clinical outcomes. A combination of archival data (parallel CGM, insulin pump, self-monitoring of blood glucose [SMBG] records, and meals for 56 pump users with type 1 diabetes) and in silico experiments was used to "replay" real-life treatment scenarios and relate sensor error to glycemic outcomes. Nominal blood glucose (BG) traces were extracted using a mathematical model, yielding 2,082 BG segments each initiated by insulin bolus and confirmed by SMBG. These segments were replayed at seven sensor accuracy levels (mean absolute relative differences [MARDs] of 3-22%) testing six scenarios: insulin dosing using sensor values, threshold, and predictive alarms, each without or with considering CGM trend arrows. In all six scenarios, the occurrence of hypoglycemia (frequency of BG levels ≤50 mg/dL and BG levels ≤39 mg/dL) increased with sensor error, displaying an abrupt slope change at MARD =10%. Similarly, hyperglycemia (frequency of BG levels ≥250 mg/dL and BG levels ≥400 mg/dL) increased and displayed an abrupt slope change at MARD=10%. When added to insulin dosing decisions, information from CGM trend arrows, threshold, and predictive alarms resulted in improvement in average glycemia by 1.86, 8.17, and 8.88 mg/dL, respectively. Using CGM for insulin dosing decisions is feasible below a certain level of sensor error, estimated in silico at MARD=10%. In our experiments, further accuracy improvement did not contribute substantively to better glycemic outcomes.
Assessing Sensor Accuracy for Non-Adjunct Use of Continuous Glucose Monitoring
Patek, Stephen D.; Ortiz, Edward Andrew; Breton, Marc D.
2015-01-01
Abstract Background: The level of continuous glucose monitoring (CGM) accuracy needed for insulin dosing using sensor values (i.e., the level of accuracy permitting non-adjunct CGM use) is a topic of ongoing debate. Assessment of this level in clinical experiments is virtually impossible because the magnitude of CGM errors cannot be manipulated and related prospectively to clinical outcomes. Materials and Methods: A combination of archival data (parallel CGM, insulin pump, self-monitoring of blood glucose [SMBG] records, and meals for 56 pump users with type 1 diabetes) and in silico experiments was used to “replay” real-life treatment scenarios and relate sensor error to glycemic outcomes. Nominal blood glucose (BG) traces were extracted using a mathematical model, yielding 2,082 BG segments each initiated by insulin bolus and confirmed by SMBG. These segments were replayed at seven sensor accuracy levels (mean absolute relative differences [MARDs] of 3–22%) testing six scenarios: insulin dosing using sensor values, threshold, and predictive alarms, each without or with considering CGM trend arrows. Results: In all six scenarios, the occurrence of hypoglycemia (frequency of BG levels ≤50 mg/dL and BG levels ≤39 mg/dL) increased with sensor error, displaying an abrupt slope change at MARD =10%. Similarly, hyperglycemia (frequency of BG levels ≥250 mg/dL and BG levels ≥400 mg/dL) increased and displayed an abrupt slope change at MARD=10%. When added to insulin dosing decisions, information from CGM trend arrows, threshold, and predictive alarms resulted in improvement in average glycemia by 1.86, 8.17, and 8.88 mg/dL, respectively. Conclusions: Using CGM for insulin dosing decisions is feasible below a certain level of sensor error, estimated in silico at MARD=10%. In our experiments, further accuracy improvement did not contribute substantively to better glycemic outcomes. PMID:25436913
Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.
2009-01-01
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Shijun; Yao Jianhua; Liu Jiamin
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less
Chen, Hsin-Chen; Jou, I-Ming; Wang, Chien-Kuo; Su, Fong-Chin; Sun, Yung-Nien
2010-06-01
The quantitative measurements of hand bones, including volume, surface, orientation, and position are essential in investigating hand kinematics. Moreover, within the measurement stage, bone segmentation is the most important step due to its certain influences on measuring accuracy. Since hand bones are small and tubular in shape, magnetic resonance (MR) imaging is prone to artifacts such as nonuniform intensity and fuzzy boundaries. Thus, greater detail is required for improving segmentation accuracy. The authors then propose using a novel registration-based method on an articulated hand model to segment hand bones from multipostural MR images. The proposed method consists of the model construction and registration-based segmentation stages. Given a reference postural image, the first stage requires construction of a drivable reference model characterized by hand bone shapes, intensity patterns, and articulated joint mechanism. By applying the reference model to the second stage, the authors initially design a model-based registration pursuant to intensity distribution similarity, MR bone intensity properties, and constraints of model geometry to align the reference model to target bone regions of the given postural image. The authors then refine the resulting surface to improve the superimposition between the registered reference model and target bone boundaries. For each subject, given a reference postural image, the proposed method can automatically segment all hand bones from all other postural images. Compared to the ground truth from two experts, the resulting surface image had an average margin of error within 1 mm (mm) only. In addition, the proposed method showed good agreement on the overlap of bone segmentations by dice similarity coefficient and also demonstrated better segmentation results than conventional methods. The proposed registration-based segmentation method can successfully overcome drawbacks caused by inherent artifacts in MR images and obtain more accurate segmentation results automatically. Moreover, realistic hand motion animations can be generated based on the bone segmentation results. The proposed method is found helpful for understanding hand bone geometries in dynamic postures that can be used in simulating 3D hand motion through multipostural MR images.
Soltaninejad, Mohammadreza; Yang, Guang; Lambrou, Tryphon; Allinson, Nigel; Jones, Timothy L; Barrick, Thomas R; Howe, Franklyn A; Ye, Xujiong
2018-04-01
Accurate segmentation of brain tumour in magnetic resonance images (MRI) is a difficult task due to various tumour types. Using information and features from multimodal MRI including structural MRI and isotropic (p) and anisotropic (q) components derived from the diffusion tensor imaging (DTI) may result in a more accurate analysis of brain images. We propose a novel 3D supervoxel based learning method for segmentation of tumour in multimodal MRI brain images (conventional MRI and DTI). Supervoxels are generated using the information across the multimodal MRI dataset. For each supervoxel, a variety of features including histograms of texton descriptor, calculated using a set of Gabor filters with different sizes and orientations, and first order intensity statistical features are extracted. Those features are fed into a random forests (RF) classifier to classify each supervoxel into tumour core, oedema or healthy brain tissue. The method is evaluated on two datasets: 1) Our clinical dataset: 11 multimodal images of patients and 2) BRATS 2013 clinical dataset: 30 multimodal images. For our clinical dataset, the average detection sensitivity of tumour (including tumour core and oedema) using multimodal MRI is 86% with balanced error rate (BER) 7%; while the Dice score for automatic tumour segmentation against ground truth is 0.84. The corresponding results of the BRATS 2013 dataset are 96%, 2% and 0.89, respectively. The method demonstrates promising results in the segmentation of brain tumour. Adding features from multimodal MRI images can largely increase the segmentation accuracy. The method provides a close match to expert delineation across all tumour grades, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management. Copyright © 2018 Elsevier B.V. All rights reserved.
Real-time auto-adaptive margin generation for MLC-tracked radiotherapy
NASA Astrophysics Data System (ADS)
Glitzner, M.; Fast, M. F.; de Senneville, B. Denis; Nill, S.; Oelfke, U.; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.
2017-01-01
In radiotherapy, abdominal and thoracic sites are candidates for performing motion tracking. With real-time control it is possible to adjust the multileaf collimator (MLC) position to the target position. However, positions are not perfectly matched and position errors arise from system delays and complicated response of the electromechanic MLC system. Although, it is possible to compensate parts of these errors by using predictors, residual errors remain and need to be compensated to retain target coverage. This work presents a method to statistically describe tracking errors and to automatically derive a patient-specific, per-segment margin to compensate the arising underdosage on-line, i.e. during plan delivery. The statistics of the geometric error between intended and actual machine position are derived using kernel density estimators. Subsequently a margin is calculated on-line according to a selected coverage parameter, which determines the amount of accepted underdosage. The margin is then applied onto the actual segment to accommodate the positioning errors in the enlarged segment. The proof-of-concept was tested in an on-line tracking experiment and showed the ability to recover underdosages for two test cases, increasing {{V}90 %} in the underdosed area about 47 % and 41 % , respectively. The used dose model was able to predict the loss of dose due to tracking errors and could be used to infer the necessary margins. The implementation had a running time of 23 ms which is compatible with real-time requirements of MLC tracking systems. The auto-adaptivity to machine and patient characteristics makes the technique a generic yet intuitive candidate to avoid underdosages due to MLC tracking errors.
Correction tool for Active Shape Model based lumbar muscle segmentation.
Valenzuela, Waldo; Ferguson, Stephen J; Ignasiak, Dominika; Diserens, Gaelle; Vermathen, Peter; Boesch, Chris; Reyes, Mauricio
2015-08-01
In the clinical environment, accuracy and speed of the image segmentation process plays a key role in the analysis of pathological regions. Despite advances in anatomic image segmentation, time-effective correction tools are commonly needed to improve segmentation results. Therefore, these tools must provide faster corrections with a low number of interactions, and a user-independent solution. In this work we present a new interactive correction method for correcting the image segmentation. Given an initial segmentation and the original image, our tool provides a 2D/3D environment, that enables 3D shape correction through simple 2D interactions. Our scheme is based on direct manipulation of free form deformation adapted to a 2D environment. This approach enables an intuitive and natural correction of 3D segmentation results. The developed method has been implemented into a software tool and has been evaluated for the task of lumbar muscle segmentation from Magnetic Resonance Images. Experimental results show that full segmentation correction could be performed within an average correction time of 6±4 minutes and an average of 68±37 number of interactions, while maintaining the quality of the final segmentation result within an average Dice coefficient of 0.92±0.03.
Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Baochun; Huang, Cheng; Zhou, Shoujun
Purpose: A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. Methods: The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-levelmore » active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods—3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration—are used to establish shape correspondence. Results: The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. Conclusions: The proposed automatic approach achieves robust, accurate, and fast liver segmentation for 3D CTce datasets. The AdaBoost voxel classifier can detect liver area quickly without errors and provides sufficient liver shape information for model initialization. The AdaBoost profile classifier achieves sufficient accuracy and greatly decreases segmentation time. These results show that the proposed segmentation method achieves a level of accuracy comparable to that of state-of-the-art automatic methods based on ASM.« less
Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.
He, Baochun; Huang, Cheng; Sharp, Gregory; Zhou, Shoujun; Hu, Qingmao; Fang, Chihua; Fan, Yingfang; Jia, Fucang
2016-05-01
A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-level active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods-3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration-are used to establish shape correspondence. The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. The proposed automatic approach achieves robust, accurate, and fast liver segmentation for 3D CTce datasets. The AdaBoost voxel classifier can detect liver area quickly without errors and provides sufficient liver shape information for model initialization. The AdaBoost profile classifier achieves sufficient accuracy and greatly decreases segmentation time. These results show that the proposed segmentation method achieves a level of accuracy comparable to that of state-of-the-art automatic methods based on ASM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Jinghao; Kim, Sung; Jabbour, Salma
2010-03-15
Purpose: In the external beam radiation treatment of prostate cancers, successful implementation of adaptive radiotherapy and conformal radiation dose delivery is highly dependent on precise and expeditious segmentation and registration of the prostate volume between the simulation and the treatment images. The purpose of this study is to develop a novel, fast, and accurate segmentation and registration method to increase the computational efficiency to meet the restricted clinical treatment time requirement in image guided radiotherapy. Methods: The method developed in this study used soft tissues to capture the transformation between the 3D planning CT (pCT) images and 3D cone-beam CTmore » (CBCT) treatment images. The method incorporated a global-to-local deformable mesh model based registration framework as well as an automatic anatomy-constrained robust active shape model (ACRASM) based segmentation algorithm in the 3D CBCT images. The global registration was based on the mutual information method, and the local registration was to minimize the Euclidian distance of the corresponding nodal points from the global transformation of deformable mesh models, which implicitly used the information of the segmented target volume. The method was applied on six data sets of prostate cancer patients. Target volumes delineated by the same radiation oncologist on the pCT and CBCT were chosen as the benchmarks and were compared to the segmented and registered results. The distance-based and the volume-based estimators were used to quantitatively evaluate the results of segmentation and registration. Results: The ACRASM segmentation algorithm was compared to the original active shape model (ASM) algorithm by evaluating the values of the distance-based estimators. With respect to the corresponding benchmarks, the mean distance ranged from -0.85 to 0.84 mm for ACRASM and from -1.44 to 1.17 mm for ASM. The mean absolute distance ranged from 1.77 to 3.07 mm for ACRASM and from 2.45 to 6.54 mm for ASM. The volume overlap ratio ranged from 79% to 91% for ACRASM and from 44% to 80% for ASM. These data demonstrated that the segmentation results of ACRASM were in better agreement with the corresponding benchmarks than those of ASM. The developed registration algorithm was quantitatively evaluated by comparing the registered target volumes from the pCT to the benchmarks on the CBCT. The mean distance and the root mean square error ranged from 0.38 to 2.2 mm and from 0.45 to 2.36 mm, respectively, between the CBCT images and the registered pCT. The mean overlap ratio of the prostate volumes ranged from 85.2% to 95% after registration. The average time of the ACRASM-based segmentation was under 1 min. The average time of the global transformation was from 2 to 4 min on two 3D volumes and the average time of the local transformation was from 20 to 34 s on two deformable superquadrics mesh models. Conclusions: A novel and fast segmentation and deformable registration method was developed to capture the transformation between the planning and treatment images for external beam radiotherapy of prostate cancers. This method increases the computational efficiency and may provide foundation to achieve real time adaptive radiotherapy.« less
Ureter tracking and segmentation in CT urography (CTU) using COMPASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjiiski, Lubomir, E-mail: lhadjisk@umich.edu; Zick, David; Chan, Heang-Ping
2014-12-15
Purpose: The authors are developing a computerized system for automated segmentation of ureters in CTU, referred to as combined model-guided path-finding analysis and segmentation system (COMPASS). Ureter segmentation is a critical component for computer-aided diagnosis of ureter cancer. Methods: COMPASS consists of three stages: (1) rule-based adaptive thresholding and region growing, (2) path-finding and propagation, and (3) edge profile extraction and feature analysis. With institutional review board approval, 79 CTU scans performed with intravenous (IV) contrast material enhancement were collected retrospectively from 79 patient files. One hundred twenty-four ureters were selected from the 79 CTU volumes. On average, the uretersmore » spanned 283 computed tomography slices (range: 116–399, median: 301). More than half of the ureters contained malignant or benign lesions and some had ureter wall thickening due to malignancy. A starting point for each of the 124 ureters was identified manually to initialize the tracking by COMPASS. In addition, the centerline of each ureter was manually marked and used as reference standard for evaluation of tracking performance. The performance of COMPASS was quantitatively assessed by estimating the percentage of the length that was successfully tracked and segmented for each ureter and by estimating the average distance and the average maximum distance between the computer and the manually tracked centerlines. Results: Of the 124 ureters, 120 (97%) were segmented completely (100%), 121 (98%) were segmented through at least 70%, and 123 (99%) were segmented through at least 50% of its length. In comparison, using our previous method, 85 (69%) ureters were segmented completely (100%), 100 (81%) were segmented through at least 70%, and 107 (86%) were segmented at least 50% of its length. With COMPASS, the average distance between the computer and the manually generated centerlines is 0.54 mm, and the average maximum distance is 2.02 mm. With our previous method, the average distance between the centerlines was 0.80 mm, and the average maximum distance was 3.38 mm. The improvements in the ureteral tracking length and both distance measures were statistically significant (p < 0.0001). Conclusions: COMPASS improved significantly the ureter tracking, including regions across ureter lesions, wall thickening, and the narrowing of the lumen.« less
LACIE performance predictor FOC users manual
NASA Technical Reports Server (NTRS)
1976-01-01
The LACIE Performance Predictor (LPP) is a computer simulation of the LACIE process for predicting worldwide wheat production. The simulation provides for the introduction of various errors into the system and provides estimates based on these errors, thus allowing the user to determine the impact of selected error sources. The FOC LPP simulates the acquisition of the sample segment data by the LANDSAT Satellite (DAPTS), the classification of the agricultural area within the sample segment (CAMS), the estimation of the wheat yield (YES), and the production estimation and aggregation (CAS). These elements include data acquisition characteristics, environmental conditions, classification algorithms, the LACIE aggregation and data adjustment procedures. The operational structure for simulating these elements consists of the following key programs: (1) LACIE Utility Maintenance Process, (2) System Error Executive, (3) Ephemeris Generator, (4) Access Generator, (5) Acquisition Selector, (6) LACIE Error Model (LEM), and (7) Post Processor.
Automatic lung nodule matching for the follow-up in temporal chest CT scans
NASA Astrophysics Data System (ADS)
Hong, Helen; Lee, Jeongjin; Shin, Yeong Gil
2006-03-01
We propose a fast and robust registration method for matching lung nodules of temporal chest CT scans. Our method is composed of four stages. First, the lungs are extracted from chest CT scans by the automatic segmentation method. Second, the gross translational mismatch is corrected by the optimal cube registration. This initial registration does not require extracting any anatomical landmarks. Third, initial alignment is step by step refined by the iterative surface registration. To evaluate the distance measure between surface boundary points, a 3D distance map is generated by the narrow-band distance propagation, which drives fast and robust convergence to the optimal location. Fourth, nodule correspondences are established by the pairs with the smallest Euclidean distances. The results of pulmonary nodule alignment of twenty patients are reported on a per-center-of mass point basis using the average Euclidean distance (AED) error between corresponding nodules of initial and follow-up scans. The average AED error of twenty patients is significantly reduced to 4.7mm from 30.0mm by our registration. Experimental results show that our registration method aligns the lung nodules much faster than the conventional ones using a distance measure. Accurate and fast result of our method would be more useful for the radiologist's evaluation of pulmonary nodules on chest CT scans.
Oost, Elco; Koning, Gerhard; Sonka, Milan; Oemrawsingh, Pranobe V; Reiber, Johan H C; Lelieveldt, Boudewijn P F
2006-09-01
This paper describes a new approach to the automated segmentation of X-ray left ventricular (LV) angiograms, based on active appearance models (AAMs) and dynamic programming. A coupling of shape and texture information between the end-diastolic (ED) and end-systolic (ES) frame was achieved by constructing a multiview AAM. Over-constraining of the model was compensated for by employing dynamic programming, integrating both intensity and motion features in the cost function. Two applications are compared: a semi-automatic method with manual model initialization, and a fully automatic algorithm. The first proved to be highly robust and accurate, demonstrating high clinical relevance. Based on experiments involving 70 patient data sets, the algorithm's success rate was 100% for ED and 99% for ES, with average unsigned border positioning errors of 0.68 mm for ED and 1.45 mm for ES. Calculated volumes were accurate and unbiased. The fully automatic algorithm, with intrinsically less user interaction was less robust, but showed a high potential, mostly due to a controlled gradient descent in updating the model parameters. The success rate of the fully automatic method was 91% for ED and 83% for ES, with average unsigned border positioning errors of 0.79 mm for ED and 1.55 mm for ES.
Marwani, Hadi M; Lowry, Mark; Keating, Patrick; Warner, Isiah M; Cook, Robert L
2007-11-01
This study introduces a newly developed frequency segmentation and recombination method for frequency-domain fluorescence lifetime measurements to address the effects of changing fractional contributions over time and minimize the effects of photobleaching within multi-component systems. Frequency segmentation and recombination experiments were evaluated using a two component system consisting of fluorescein and rhodamine B. Comparison of experimental data collected in traditional and segmented fashion with simulated data, generated using different changing fractional contributions, demonstrated the validity of the technique. Frequency segmentation and recombination was also applied to a more complex system consisting of pyrene with Suwannee River fulvic acid reference and was shown to improve recovered lifetimes and fractional intensity contributions. It was observed that photobleaching in both systems led to errors in recovered lifetimes which can complicate the interpretation of lifetime results. Results showed clear evidence that the frequency segmentation and recombination method reduced errors resulting from a changing fractional contribution in a multi-component system, and allowed photobleaching issues to be addressed by commercially available instrumentation.
Improving vertebra segmentation through joint vertebra-rib atlases
NASA Astrophysics Data System (ADS)
Wang, Yinong; Yao, Jianhua; Roth, Holger R.; Burns, Joseph E.; Summers, Ronald M.
2016-03-01
Accurate spine segmentation allows for improved identification and quantitative characterization of abnormalities of the vertebra, such as vertebral fractures. However, in existing automated vertebra segmentation methods on computed tomography (CT) images, leakage into nearby bones such as ribs occurs due to the close proximity of these visibly intense structures in a 3D CT volume. To reduce this error, we propose the use of joint vertebra-rib atlases to improve the segmentation of vertebrae via multi-atlas joint label fusion. Segmentation was performed and evaluated on CTs containing 106 thoracic and lumbar vertebrae from 10 pathological and traumatic spine patients on an individual vertebra level basis. Vertebra atlases produced errors where the segmentation leaked into the ribs. The use of joint vertebra-rib atlases produced a statistically significant increase in the Dice coefficient from 92.5 +/- 3.1% to 93.8 +/- 2.1% for the left and right transverse processes and a decrease in the mean and max surface distance from 0.75 +/- 0.60mm and 8.63 +/- 4.44mm to 0.30 +/- 0.27mm and 3.65 +/- 2.87mm, respectively.
Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients.
Mayer, Markus A; Hornegger, Joachim; Mardin, Christian Y; Tornow, Ralf P
2010-11-08
Automated measurements of the retinal nerve fiber layer thickness on circular OCT B-Scans provide physicians additional parameters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer segmentation algorithm for frequency domain data that can be applied on scans from both normal healthy subjects, as well as glaucoma patients, using the same set of parameters. In addition, the algorithm remains almost unaffected by image quality. The main part of the segmentation process is based on the minimization of an energy function consisting of gradient and local smoothing terms. A quantitative evaluation comparing the automated segmentation results to manually corrected segmentations from three reviewers is performed. A total of 72 scans from glaucoma patients and 132 scans from normal subjects, all from different persons, composed the database for the evaluation of the segmentation algorithm. A mean absolute error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6 µm on healthy eyes. The mean absolute segmentation error over all A-Scans lies below 10 µm on 95.1% of the images. Thus our approach provides a reliable tool for extracting diagnostic relevant parameters from OCT B-Scans for glaucoma diagnosis.
Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients
Mayer, Markus A.; Hornegger, Joachim; Mardin, Christian Y.; Tornow, Ralf P.
2010-01-01
Automated measurements of the retinal nerve fiber layer thickness on circular OCT B-Scans provide physicians additional parameters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer segmentation algorithm for frequency domain data that can be applied on scans from both normal healthy subjects, as well as glaucoma patients, using the same set of parameters. In addition, the algorithm remains almost unaffected by image quality. The main part of the segmentation process is based on the minimization of an energy function consisting of gradient and local smoothing terms. A quantitative evaluation comparing the automated segmentation results to manually corrected segmentations from three reviewers is performed. A total of 72 scans from glaucoma patients and 132 scans from normal subjects, all from different persons, composed the database for the evaluation of the segmentation algorithm. A mean absolute error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6 µm on healthy eyes. The mean absolute segmentation error over all A-Scans lies below 10 µm on 95.1% of the images. Thus our approach provides a reliable tool for extracting diagnostic relevant parameters from OCT B-Scans for glaucoma diagnosis. PMID:21258556
Cement bond evaluation method in horizontal wells using segmented bond tool
NASA Astrophysics Data System (ADS)
Song, Ruolong; He, Li
2018-06-01
Most of the existing cement evaluation technologies suffer from tool eccentralization due to gravity in highly deviated wells and horizontal wells. This paper proposes a correction method to lessen the effects of tool eccentralization on evaluation results of cement bond using segmented bond tool, which has an omnidirectional sonic transmitter and eight segmented receivers evenly arranged around the tool 2 ft from the transmitter. Using 3-D finite difference parallel numerical simulation method, we investigate the logging responses of centred and eccentred segmented bond tool in a variety of bond conditions. From the numerical results, we find that the tool eccentricity and channel azimuth can be estimated from measured sector amplitude. The average of the sector amplitude when the tool is eccentred can be corrected to the one when the tool is centred. Then the corrected amplitude will be used to calculate the channel size. The proposed method is applied to both synthetic and field data. For synthetic data, it turns out that this method can estimate the tool eccentricity with small error and the bond map is improved after correction. For field data, the tool eccentricity has a good agreement with the measured well deviation angle. Though this method still suffers from the low accuracy of calculating channel azimuth, the credibility of corrected bond map is improved especially in horizontal wells. It gives us a choice to evaluate the bond condition for horizontal wells using existing logging tool. The numerical results in this paper can provide aids for understanding measurements of segmented tool in both vertical and horizontal wells.
In vivo deformation of thin cartilage layers: Feasibility and applicability of T2* mapping.
Van Ginckel, Ans; Witvrouw, Erik E
2016-05-01
The objectives of this study were as follows: (i) to assess segmentation consistency and scan precision of T2* mapping of human tibio-talar cartilage, and (ii) to monitor changes in T2* relaxation times of ankle cartilage immediately following a clinically relevant in vivo exercise and during recovery. Using multi-echo gradient recalled echo sequences, averaged T2* values were calculated for tibio-talar cartilage layers in 10 healthy volunteers. Segmentation consistency and scan precision were determined from two repeated segmentations and two repeated acquisitions with repositioning, respectively. Subsequently, acute in vivo cartilage loading responses were monitored by calculating averaged tibio-talar T2* values at rest, immediately after (i.e., deformation) and at 15 min (i.e., recovery) following a 30-repetition knee bending exercise. Precision errors attained 4-6% with excellent segmentation consistency point estimates (i.e., intra-rater ICC of 0.95) and acceptable limits of confidence. At deformation, T2* values were increased in both layers [+16.1 (10.7)%, p = 0.004 and +17.3 (15.3)%, p = 0.023, for the talus and tibia, respectively] whereas during recovery no significant changes could be established when comparing to baseline [talar cartilage: +5.2 (8.2)%, p = 0.26 and tibial cartilage: +6.6 (10.4)%, p = 0.23]. T2* mapping is a viable method to monitor deformational behavior in thin cartilage layers such as ankle cartilage. Longitudinal changes in T2* can be reliably appraised and require at least 4-6% differences to ascertain statistical significance. The ability to detect considerable change even after non-strenuous loading events, endorses T2* mapping as an innovative method to evaluate the effects of therapeutic exercise on thin cartilage layers. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:771-778, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning
2018-01-01
Human body motion analysis based on wearable inertial measurement units (IMUs) receives a lot of attention from both the research community and the and industrial community. This is due to the significant role in, for instance, mobile health systems, sports and human computer interaction. In sensor based activity recognition, one of the major issues for obtaining reliable results is the sensor placement/assignment on the body. For inertial motion capture (joint kinematics estimation) and analysis, the IMU-to-segment (I2S) assignment and alignment are central issues to obtain biomechanical joint angles. Existing approaches for I2S assignment usually rely on hand crafted features and shallow classification approaches (e.g., support vector machines), with no agreement regarding the most suitable features for the assignment task. Moreover, estimating the complete orientation alignment of an IMU relative to the segment it is attached to using a machine learning approach has not been shown in literature so far. This is likely due to the high amount of training data that have to be recorded to suitably represent possible IMU alignment variations. In this work, we propose online approaches for solving the assignment and alignment tasks for an arbitrary amount of IMUs with respect to a biomechanical lower body model using a deep learning architecture and windows of 128 gyroscope and accelerometer data samples. For this, we combine convolutional neural networks (CNNs) for local filter learning with long-short-term memory (LSTM) recurrent networks as well as generalized recurrent units (GRUs) for learning time dynamic features. The assignment task is casted as a classification problem, while the alignment task is casted as a regression problem. In this framework, we demonstrate the feasibility of augmenting a limited amount of real IMU training data with simulated alignment variations and IMU data for improving the recognition/estimation accuracies. With the proposed approaches and final models we achieved 98.57% average accuracy over all segments for the I2S assignment task (100% when excluding left/right switches) and an average median angle error over all segments and axes of 2.91° for the I2S alignment task. PMID:29351262
Range camera on conveyor belts: estimating size distribution and systematic errors due to occlusion
NASA Astrophysics Data System (ADS)
Blomquist, Mats; Wernersson, Ake V.
1999-11-01
When range cameras are used for analyzing irregular material on a conveyor belt there will be complications like missing segments caused by occlusion. Also, a number of range discontinuities will be present. In a frame work towards stochastic geometry, conditions are found for the cases when range discontinuities take place. The test objects in this paper are pellets for the steel industry. An illuminating laser plane will give range discontinuities at the edges of each individual object. These discontinuities are used to detect and measure the chord created by the intersection of the laser plane and the object. From the measured chords we derive the average diameter and its variance. An improved method is to use a pair of parallel illuminating light planes to extract two chords. The estimation error for this method is not larger than the natural shape fluctuations (the difference in diameter) for the pellets. The laser- camera optronics is sensitive enough both for material on a conveyor belt and free falling material leaving the conveyor.
Automatic Tracking Algorithm in Coaxial Near-Infrared Laser Ablation Endoscope for Fetus Surgery
NASA Astrophysics Data System (ADS)
Hu, Yan; Yamanaka, Noriaki; Masamune, Ken
2014-07-01
This article reports a stable vessel object tracking method for the treatment of twin-to-twin transfusion syndrome based on our previous 2 DOF endoscope. During the treatment of laser coagulation, it is necessary to focus on the exact position of the target object, however it moves by the mother's respiratory motion and still remains a challenge to obtain and track the position precisely. In this article, an algorithm which uses features from accelerated segment test (FAST) to extract the features and optical flow as the object tracking method, is proposed to deal with above problem. Further, we experimentally simulate the movement due to the mother's respiration, and the results of position errors and similarity verify the effectiveness of the proposed tracking algorithm for laser ablation endoscopy in-vitro and under water considering two influential factors. At average, the errors are about 10 pixels and the similarity over 0.92 are obtained in the experiments.
Automatic liver segmentation on Computed Tomography using random walkers for treatment planning
Moghbel, Mehrdad; Mashohor, Syamsiah; Mahmud, Rozi; Saripan, M. Iqbal Bin
2016-01-01
Segmentation of the liver from Computed Tomography (CT) volumes plays an important role during the choice of treatment strategies for liver diseases. Despite lots of attention, liver segmentation remains a challenging task due to the lack of visible edges on most boundaries of the liver coupled with high variability of both intensity patterns and anatomical appearances with all these difficulties becoming more prominent in pathological livers. To achieve a more accurate segmentation, a random walker based framework is proposed that can segment contrast-enhanced livers CT images with great accuracy and speed. Based on the location of the right lung lobe, the liver dome is automatically detected thus eliminating the need for manual initialization. The computational requirements are further minimized utilizing rib-caged area segmentation, the liver is then extracted by utilizing random walker method. The proposed method was able to achieve one of the highest accuracies reported in the literature against a mixed healthy and pathological liver dataset compared to other segmentation methods with an overlap error of 4.47 % and dice similarity coefficient of 0.94 while it showed exceptional accuracy on segmenting the pathological livers with an overlap error of 5.95 % and dice similarity coefficient of 0.91. PMID:28096782
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Chan, Heang-Ping; Kuriakose, Jean W.; Chughtai, Aamer; Wei, Jun; Hadjiiski, Lubomir M.; Guo, Yanhui; Patel, Smita; Kazerooni, Ella A.
2012-03-01
Vessel segmentation is a fundamental step in an automated pulmonary embolism (PE) detection system. The purpose of this study is to improve the segmentation scheme for pulmonary vessels affected by PE and other lung diseases. We have developed a multiscale hierarchical vessel enhancement and segmentation (MHES) method for pulmonary vessel tree extraction based on the analysis of eigenvalues of Hessian matrices. However, it is difficult to segment the pulmonary vessels accurately under suboptimal conditions, such as vessels occluded by PEs, surrounded by lymphoid tissues or lung diseases, and crossing with other vessels. In this study, we developed a new vessel refinement method utilizing curved planar reformation (CPR) technique combined with optimal path finding method (MHES-CROP). The MHES segmented vessels straightened in the CPR volume was refined using adaptive gray level thresholding where the local threshold was obtained from least-square estimation of a spline curve fitted to the gray levels of the vessel along the straightened volume. An optimal path finding method based on Dijkstra's algorithm was finally used to trace the correct path for the vessel of interest. Two and eight CTPA scans were randomly selected as training and test data sets, respectively. Forty volumes of interest (VOIs) containing "representative" vessels were manually segmented by a radiologist experienced in CTPA interpretation and used as reference standard. The results show that, for the 32 test VOIs, the average percentage volume error relative to the reference standard was improved from 32.9+/-10.2% using the MHES method to 9.9+/-7.9% using the MHES-CROP method. The accuracy of vessel segmentation was improved significantly (p<0.05). The intraclass correlation coefficient (ICC) of the segmented vessel volume between the automated segmentation and the reference standard was improved from 0.919 to 0.988. Quantitative comparison of the MHES method and the MHES-CROP method with the reference standard was also evaluated by the Bland-Altman plot. This preliminary study indicates that the MHES-CROP method has the potential to improve PE detection.
Control of adaptive optic element displacement with the help of a magnetic rheology drive
NASA Astrophysics Data System (ADS)
Deulin, Eugeni A.; Mikhailov, Valeri P.; Sytchev, Victor V.
2000-10-01
The control system of adaptive optic of a large astronomical segmentated telescope was designed and tested. The dynamic model and the amplitude-frequency analysis of the new magnetic rheology (MR) drive are presented. The loop controlled drive consists of hydrostatic carrier, MR hydraulic loop controlling system, elastic thin wall seal, stainless seal which are united in a single three coordinate manipulator. This combination ensures short positioning error (delta) (phi)
Evaluation of a native vegetation masking technique
NASA Technical Reports Server (NTRS)
Kinsler, M. C.
1984-01-01
A crop masking technique based on Ashburn's vegetative index (AVI) was used to evaluate native vegetation as an indicator of crop moisture condition. A mask of the range areas (native vegetation) was generated for each of thirteen Great Plains LANDSAT MSS sample segments. These masks were compared to the digitized ground truth and accuracies were computed. An analysis of the types of errors indicates a consistency in errors among the segments. The mask represents a simple quick-look technique for evaluating vegetative cover.
Three-dimensional printed models in congenital heart disease.
Cantinotti, Massimiliano; Valverde, Israel; Kutty, Shelby
2017-01-01
The purpose of this article is to discuss technical considerations and current applications of three-dimensional (3D) printing in congenital heart disease (CHD). CHD represent an attractive field for the application of 3D printed models, with consistent progress made in the past decade. Current 3D models are able to reproduce complex cardiac and extra-cardiac anatomy including small details with very limited range of errors (<1 mm), so this tool could be of value in the planning of surgical or percutaneous treatments for selected cases of CHD. However, the steps involved in the building of 3D models, consisting of image acquisition and selection, segmentation, and printing are highly operator dependent. Current 3D models may be rigid or flexible, but unable to reproduce the physiologic variations during the cardiac cycle. Furthermore, high costs and long average segmentation and printing times (18-24 h) limit a more extensive use. There is a need for better standardization of the procedure employed for collection of the images, the segmentation methods and processes, the phase of cardiac cycle used, and in the materials employed for printing. More studies are necessary to evaluate the diagnostic accuracy and cost-effectiveness of 3D printed models in congenital cardiac care.
Kroll, Alexandra; Haramagatti, Chandrashekara R.; Lipinski, Hans-Gerd; Wiemann, Martin
2017-01-01
Darkfield and confocal laser scanning microscopy both allow for a simultaneous observation of live cells and single nanoparticles. Accordingly, a characterization of nanoparticle uptake and intracellular mobility appears possible within living cells. Single particle tracking allows to measure the size of a diffusing particle close to a cell. However, within the more complex system of a cell’s cytoplasm normal, confined or anomalous diffusion together with directed motion may occur. In this work we present a method to automatically classify and segment single trajectories into their respective motion types. Single trajectories were found to contain more than one motion type. We have trained a random forest with 9 different features. The average error over all motion types for synthetic trajectories was 7.2%. The software was successfully applied to trajectories of positive controls for normal- and constrained diffusion. Trajectories captured by nanoparticle tracking analysis served as positive control for normal diffusion. Nanoparticles inserted into a diblock copolymer membrane was used to generate constrained diffusion. Finally we segmented trajectories of diffusing (nano-)particles in V79 cells captured with both darkfield- and confocal laser scanning microscopy. The software called “TraJClassifier” is freely available as ImageJ/Fiji plugin via https://git.io/v6uz2. PMID:28107406
Automatic segmentation and reconstruction of the cortex from neonatal MRI.
Xue, Hui; Srinivasan, Latha; Jiang, Shuzhou; Rutherford, Mary; Edwards, A David; Rueckert, Daniel; Hajnal, Joseph V
2007-11-15
Segmentation and reconstruction of cortical surfaces from magnetic resonance (MR) images are more challenging for developing neonates than adults. This is mainly due to the dynamic changes in the contrast between gray matter (GM) and white matter (WM) in both T1- and T2-weighted images (T1w and T2w) during brain maturation. In particular in neonatal T2w images WM typically has higher signal intensity than GM. This causes mislabeled voxels during cortical segmentation, especially in the cortical regions of the brain and in particular at the interface between GM and cerebrospinal fluid (CSF). We propose an automatic segmentation algorithm detecting these mislabeled voxels and correcting errors caused by partial volume effects. Our results show that the proposed algorithm corrects errors in the segmentation of both GM and WM compared to the classic expectation maximization (EM) scheme. Quantitative validation against manual segmentation demonstrates good performance (the mean Dice value: 0.758+/-0.037 for GM and 0.794+/-0.078 for WM). The inner, central and outer cortical surfaces are then reconstructed using implicit surface evolution. A landmark study is performed to verify the accuracy of the reconstructed cortex (the mean surface reconstruction error: 0.73 mm for inner surface and 0.63 mm for the outer). Both segmentation and reconstruction have been tested on 25 neonates with the gestational ages ranging from approximately 27 to 45 weeks. This preliminary analysis confirms previous findings that cortical surface area and curvature increase with age, and that surface area scales to cerebral volume according to a power law, while cortical thickness is not related to age or brain growth.
Evolving geometrical heterogeneities of fault trace data
NASA Astrophysics Data System (ADS)
Wechsler, Neta; Ben-Zion, Yehuda; Christofferson, Shari
2010-08-01
We perform a systematic comparative analysis of geometrical fault zone heterogeneities using derived measures from digitized fault maps that are not very sensitive to mapping resolution. We employ the digital GIS map of California faults (version 2.0) and analyse the surface traces of active strike-slip fault zones with evidence of Quaternary and historic movements. Each fault zone is broken into segments that are defined as a continuous length of fault bounded by changes of angle larger than 1°. Measurements of the orientations and lengths of fault zone segments are used to calculate the mean direction and misalignment of each fault zone from the local plate motion direction, and to define several quantities that represent the fault zone disorder. These include circular standard deviation and circular standard error of segments, orientation of long and short segments with respect to the mean direction, and normal separation distances of fault segments. We examine the correlations between various calculated parameters of fault zone disorder and the following three potential controlling variables: cumulative slip, slip rate and fault zone misalignment from the plate motion direction. The analysis indicates that the circular standard deviation and circular standard error of segments decrease overall with increasing cumulative slip and increasing slip rate of the fault zones. The results imply that the circular standard deviation and error, quantifying the range or dispersion in the data, provide effective measures of the fault zone disorder, and that the cumulative slip and slip rate (or more generally slip rate normalized by healing rate) represent the fault zone maturity. The fault zone misalignment from plate motion direction does not seem to play a major role in controlling the fault trace heterogeneities. The frequency-size statistics of fault segment lengths can be fitted well by an exponential function over the entire range of observations.
2011-01-01
Background Segmentation is the most crucial part in the computer-aided bone age assessment. A well-known type of segmentation performed in the system is adaptive segmentation. While providing better result than global thresholding method, the adaptive segmentation produces a lot of unwanted noise that could affect the latter process of epiphysis extraction. Methods A proposed method with anisotropic diffusion as pre-processing and a novel Bounded Area Elimination (BAE) post-processing algorithm to improve the algorithm of ossification site localization technique are designed with the intent of improving the adaptive segmentation result and the region-of interest (ROI) localization accuracy. Results The results are then evaluated by quantitative analysis and qualitative analysis using texture feature evaluation. The result indicates that the image homogeneity after anisotropic diffusion has improved averagely on each age group for 17.59%. Results of experiments showed that the smoothness has been improved averagely 35% after BAE algorithm and the improvement of ROI localization has improved for averagely 8.19%. The MSSIM has improved averagely 10.49% after performing the BAE algorithm on the adaptive segmented hand radiograph. Conclusions The result indicated that hand radiographs which have undergone anisotropic diffusion have greatly reduced the noise in the segmented image and the result as well indicated that the BAE algorithm proposed is capable of removing the artifacts generated in adaptive segmentation. PMID:21952080
A scalable method to improve gray matter segmentation at ultra high field MRI.
Gulban, Omer Faruk; Schneider, Marian; Marquardt, Ingo; Haast, Roy A M; De Martino, Federico
2018-01-01
High-resolution (functional) magnetic resonance imaging (MRI) at ultra high magnetic fields (7 Tesla and above) enables researchers to study how anatomical and functional properties change within the cortical ribbon, along surfaces and across cortical depths. These studies require an accurate delineation of the gray matter ribbon, which often suffers from inclusion of blood vessels, dura mater and other non-brain tissue. Residual segmentation errors are commonly corrected by browsing the data slice-by-slice and manually changing labels. This task becomes increasingly laborious and prone to error at higher resolutions since both work and error scale with the number of voxels. Here we show that many mislabeled, non-brain voxels can be corrected more efficiently and semi-automatically by representing three-dimensional anatomical images using two-dimensional histograms. We propose both a uni-modal (based on first spatial derivative) and multi-modal (based on compositional data analysis) approach to this representation and quantify the benefits in 7 Tesla MRI data of nine volunteers. We present an openly accessible Python implementation of these approaches and demonstrate that editing cortical segmentations using two-dimensional histogram representations as an additional post-processing step aids existing algorithms and yields improved gray matter borders. By making our data and corresponding expert (ground truth) segmentations openly available, we facilitate future efforts to develop and test segmentation algorithms on this challenging type of data.
A scalable method to improve gray matter segmentation at ultra high field MRI
De Martino, Federico
2018-01-01
High-resolution (functional) magnetic resonance imaging (MRI) at ultra high magnetic fields (7 Tesla and above) enables researchers to study how anatomical and functional properties change within the cortical ribbon, along surfaces and across cortical depths. These studies require an accurate delineation of the gray matter ribbon, which often suffers from inclusion of blood vessels, dura mater and other non-brain tissue. Residual segmentation errors are commonly corrected by browsing the data slice-by-slice and manually changing labels. This task becomes increasingly laborious and prone to error at higher resolutions since both work and error scale with the number of voxels. Here we show that many mislabeled, non-brain voxels can be corrected more efficiently and semi-automatically by representing three-dimensional anatomical images using two-dimensional histograms. We propose both a uni-modal (based on first spatial derivative) and multi-modal (based on compositional data analysis) approach to this representation and quantify the benefits in 7 Tesla MRI data of nine volunteers. We present an openly accessible Python implementation of these approaches and demonstrate that editing cortical segmentations using two-dimensional histogram representations as an additional post-processing step aids existing algorithms and yields improved gray matter borders. By making our data and corresponding expert (ground truth) segmentations openly available, we facilitate future efforts to develop and test segmentation algorithms on this challenging type of data. PMID:29874295
Generation and evaluation of an ultra-high-field atlas with applications in DBS planning
NASA Astrophysics Data System (ADS)
Wang, Brian T.; Poirier, Stefan; Guo, Ting; Parrent, Andrew G.; Peters, Terry M.; Khan, Ali R.
2016-03-01
Purpose Deep brain stimulation (DBS) is a common treatment for Parkinson's disease (PD) and involves the use of brain atlases or intrinsic landmarks to estimate the location of target deep brain structures, such as the subthalamic nucleus (STN) and the globus pallidus pars interna (GPi). However, these structures can be difficult to localize with conventional clinical magnetic resonance imaging (MRI), and thus targeting can be prone to error. Ultra-high-field imaging at 7T has the ability to clearly resolve these structures and thus atlases built with these data have the potential to improve targeting accuracy. Methods T1 and T2-weighted images of 12 healthy control subjects were acquired using a 7T MR scanner. These images were then used with groupwise registration to generate an unbiased average template with T1w and T2w contrast. Deep brain structures were manually labelled in each subject by two raters and rater reliability was assessed. We compared the use of this unbiased atlas with two other methods of atlas-based segmentation (single-template and multi-template) for subthalamic nucleus (STN) segmentation on 7T MRI data. We also applied this atlas to clinical DBS data acquired at 1.5T to evaluate its efficacy for DBS target localization as compared to using a standard atlas. Results The unbiased templates provide superb detail of subcortical structures. Through one-way ANOVA tests, the unbiased template is significantly (p <0.05) more accurate than a single-template in atlas-based segmentation and DBS target localization tasks. Conclusion The generated unbiased averaged templates provide better visualization of deep brain nuclei and an increase in accuracy over single-template and lower field strength atlases.
NASA Astrophysics Data System (ADS)
Wang, Lei; Strehlow, Jan; Rühaak, Jan; Weiler, Florian; Diez, Yago; Gubern-Merida, Albert; Diekmann, Susanne; Laue, Hendrik; Hahn, Horst K.
2015-03-01
In breast cancer screening for high-risk women, follow-up magnetic resonance images (MRI) are acquired with a time interval ranging from several months up to a few years. Prior MRI studies may provide additional clinical value when examining the current one and thus have the potential to increase sensitivity and specificity of screening. To build a spatial correlation between suspicious findings in both current and prior studies, a reliable alignment method between follow-up studies is desirable. However, long time interval, different scanners and imaging protocols, and varying breast compression can result in a large deformation, which challenges the registration process. In this work, we present a fast and robust spatial alignment framework, which combines automated breast segmentation and current-prior registration techniques in a multi-level fashion. First, fully automatic breast segmentation is applied to extract the breast masks that are used to obtain an initial affine transform. Then, a non-rigid registration algorithm using normalized gradient fields as similarity measure together with curvature regularization is applied. A total of 29 subjects and 58 breast MR images were collected for performance assessment. To evaluate the global registration accuracy, the volume overlap and boundary surface distance metrics are calculated, resulting in an average Dice Similarity Coefficient (DSC) of 0.96 and root mean square distance (RMSD) of 1.64 mm. In addition, to measure local registration accuracy, for each subject a radiologist annotated 10 pairs of markers in the current and prior studies representing corresponding anatomical locations. The average distance error of marker pairs dropped from 67.37 mm to 10.86 mm after applying registration.
Lian, Yanyun; Song, Zhijian
2014-01-01
Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning, treatment planning, monitoring of therapy. However, manual tumor segmentation commonly used in clinic is time-consuming and challenging, and none of the existed automated methods are highly robust, reliable and efficient in clinic application. An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results. Based on the symmetry of human brain, we employed sliding-window technique and correlation coefficient to locate the tumor position. At first, the image to be segmented was normalized, rotated, denoised, and bisected. Subsequently, through vertical and horizontal sliding-windows technique in turn, that is, two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image, along with calculating of correlation coefficient of two windows, two windows with minimal correlation coefficient were obtained, and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor. At last, the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length, and threshold segmentation and morphological operations were used to acquire the final tumor region. The method was evaluated on 3D FSPGR brain MR images of 10 patients. As a result, the average ratio of correct location was 93.4% for 575 slices containing tumor, the average Dice similarity coefficient was 0.77 for one scan, and the average time spent on one scan was 40 seconds. An fully automated, simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use. Correlation coefficient is a new and effective feature for tumor location.
Soltaninejad, Mohammadreza; Yang, Guang; Lambrou, Tryphon; Allinson, Nigel; Jones, Timothy L; Barrick, Thomas R; Howe, Franklyn A; Ye, Xujiong
2017-02-01
We propose a fully automated method for detection and segmentation of the abnormal tissue associated with brain tumour (tumour core and oedema) from Fluid- Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Imaging (MRI). The method is based on superpixel technique and classification of each superpixel. A number of novel image features including intensity-based, Gabor textons, fractal analysis and curvatures are calculated from each superpixel within the entire brain area in FLAIR MRI to ensure a robust classification. Extremely randomized trees (ERT) classifier is compared with support vector machine (SVM) to classify each superpixel into tumour and non-tumour. The proposed method is evaluated on two datasets: (1) Our own clinical dataset: 19 MRI FLAIR images of patients with gliomas of grade II to IV, and (2) BRATS 2012 dataset: 30 FLAIR images with 10 low-grade and 20 high-grade gliomas. The experimental results demonstrate the high detection and segmentation performance of the proposed method using ERT classifier. For our own cohort, the average detection sensitivity, balanced error rate and the Dice overlap measure for the segmented tumour against the ground truth are 89.48 %, 6 % and 0.91, respectively, while, for the BRATS dataset, the corresponding evaluation results are 88.09 %, 6 % and 0.88, respectively. This provides a close match to expert delineation across all grades of glioma, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management.
Enhancement of optic cup detection through an improved vessel kink detection framework
NASA Astrophysics Data System (ADS)
Wong, Damon W. K.; Liu, Jiang; Tan, Ngan Meng; Zhang, Zhuo; Lu, Shijian; Lim, Joo Hwee; Li, Huiqi; Wong, Tien Yin
2010-03-01
Glaucoma is a leading cause of blindness. The presence and extent of progression of glaucoma can be determined if the optic cup can be accurately segmented from retinal images. In this paper, we present a framework which improves the detection of the optic cup. First, a region of interest is obtained from the retinal fundus image, and a pallor-based preliminary cup contour estimate is determined. Patches are then extracted from the ROI along this contour. To improve the usability of the patches, adaptive methods are introduced to ensure the patches are within the optic disc and to minimize redundant information. The patches are then analyzed for vessels by an edge transform which generates pixel segments of likely vessel candidates. Wavelet, color and gradient information are used as input features for a SVM model to classify the candidates as vessel or non-vessel. Subsequently, a rigourous non-parametric method is adopted in which a bi-stage multi-resolution approach is used to probe and localize the location of kinks along the vessels. Finally, contenxtual information is used to fuse pallor and kink information to obtain an enhanced optic cup segmentation. Using a batch of 21 images obtained from the Singapore Eye Research Institute, the new method results in a 12.64% reduction in the average overlap error against a pallor only cup, indicating viable improvements in the segmentation and supporting the use of kinks for optic cup detection.
Karampatos, Sarah; Papaioannou, Alexandra; Beattie, Karen A; Maly, Monica R; Chan, Adrian; Adachi, Jonathan D; Pritchard, Janet M
2016-04-01
Determine the reliability of a magnetic resonance (MR) image segmentation protocol for quantifying intramuscular adipose tissue (IntraMAT), subcutaneous adipose tissue, total muscle and intermuscular adipose tissue (InterMAT) of the lower leg. Ten axial lower leg MRI slices were obtained from 21 postmenopausal women using a 1 Tesla peripheral MRI system. Images were analyzed using sliceOmatic™ software. The average cross-sectional areas of the tissues were computed for the ten slices. Intra-rater and inter-rater reliability were determined and expressed as the standard error of measurement (SEM) (absolute reliability) and intraclass coefficient (ICC) (relative reliability). Intra-rater and inter-rater reliability for IntraMAT were 0.991 (95% confidence interval [CI] 0.978-0.996, p < 0.05) and 0.983 (95% CI 0.958-9.993, p < 0.05), respectively. For the other soft tissue compartments, the ICCs were all >0.90 (p < 0.05). The absolute intra-rater and inter-rater reliability (expressed as SEM) for segmenting IntraMAT were 22.19 mm(2) (95% CI 16.97-32.04) and 78.89 mm(2) (95% CI 60.36-113.92), respectively. This is a reliable segmentation protocol for quantifying IntraMAT and other soft-tissue compartments of the lower leg. A standard operating procedure manual is provided to assist users, and SEM values can be used to estimate sample size and determine confidence in repeated measurements in future research.
Antonova, A A; Absatova, K A; Korneev, A A; Kurgansky, A V
2015-01-01
The production of drawing movements was studied in 29 right-handed children of 9-to-11 years old. The movements were the sequences of horizontal and vertical linear stokes conjoined at right angle (open polygonal chains) referred to throughout the paper as trajectories. The length of a trajectory varied from 4 to 6. The trajectories were presented visually to a subject in static (linedrawing) and dynamic (moving cursor that leaves no trace) modes. The subjects were asked to draw (copy) a trajectory in response to delayed go-signal (short click) as fast as possible without lifting the pen. The production latency time, the average movement duration along a trajectory segment, and overall number of errors committed by a subject during trajectory production were analyzed. A comparison of children's data with similar data in adults (16 subjects) shows the following. First, a substantial reduction in error rate is observed in the age range between 9 and 11 years old for both static and dynamic modes of trajectory presentation, with children of 11 still committing more error than adults. Second, the averaged movement duration shortens with age while the latency time tends to increase. Third, unlike the adults, the children of 9-11 do not show any difference in latency time between static and dynamic modes of visual presentation of trajectories. The difference in trajectory production between adult and children is attributed to the predominant involvement of on-line programming in children and pre-programming in adults.
Martinez-Enriquez, Eduardo; Sun, Mengchan; Velasco-Ocana, Miriam; Birkenfeld, Judith; Pérez-Merino, Pablo; Marcos, Susana
2016-07-01
Measurement of crystalline lens geometry in vivo is critical to optimize performance of state-of-the-art cataract surgery. We used custom-developed quantitative anterior segment optical coherence tomography (OCT) and developed dedicated algorithms to estimate lens volume (VOL), equatorial diameter (DIA), and equatorial plane position (EPP). The method was validated ex vivo in 27 human donor (19-71 years of age) lenses, which were imaged in three-dimensions by OCT. In vivo conditions were simulated assuming that only the information within a given pupil size (PS) was available. A parametric model was used to estimate the whole lens shape from PS-limited data. The accuracy of the estimated lens VOL, DIA, and EPP was evaluated by comparing estimates from the whole lens data and PS-limited data ex vivo. The method was demonstrated in vivo using 2 young eyes during accommodation and 2 cataract eyes. Crystalline lens VOL was estimated within 96% accuracy (average estimation error across lenses ± standard deviation: 9.30 ± 7.49 mm3). Average estimation errors in EPP were below 40 ± 32 μm, and below 0.26 ± 0.22 mm in DIA. Changes in lens VOL with accommodation were not statistically significant (2-way ANOVA, P = 0.35). In young eyes, DIA decreased and EPP increased statistically significantly with accommodation (P < 0.001) by 0.14 mm and 0.13 mm, respectively, on average across subjects. In cataract eyes, VOL = 205.5 mm3, DIA = 9.57 mm, and EPP = 2.15 mm on average. Quantitative OCT with dedicated image processing algorithms allows estimation of human crystalline lens volume, diameter, and equatorial lens position, as validated from ex vivo measurements, where entire lens images are available.
Allen, Vivian; Paxton, Heather; Hutchinson, John R
2009-09-01
Inertial properties of animal bodies and segments are critical input parameters for biomechanical analysis of standing and moving, and thus are important for paleobiological inquiries into the broader behaviors, ecology and evolution of extinct taxa such as dinosaurs. But how accurately can these be estimated? Computational modeling was used to estimate the inertial properties including mass, density, and center of mass (COM) for extant crocodiles (adult and juvenile Crocodylus johnstoni) and birds (Gallus gallus; junglefowl and broiler chickens), to identify the chief sources of variation and methodological errors, and their significance. High-resolution computed tomography scans were segmented into 3D objects and imported into inertial property estimation software that allowed for the examination of variable body segment densities (e.g., air spaces such as lungs, and deformable body outlines). Considerable biological variation of inertial properties was found within groups due to ontogenetic changes as well as evolutionary changes between chicken groups. COM positions shift in variable directions during ontogeny in different groups. Our method was repeatable and the resolution was sufficient for accurate estimations of mass and density in particular. However, we also found considerable potential methodological errors for COM related to (1) assumed body segment orientation, (2) what frames of reference are used to normalize COM for size-independent comparisons among animals, and (3) assumptions about tail shape. Methods and assumptions are suggested to minimize these errors in the future and thereby improve estimation of inertial properties for extant and extinct animals. In the best cases, 10%-15% errors in these estimates are unavoidable, but particularly for extinct taxa errors closer to 50% should be expected, and therefore, cautiously investigated. Nonetheless in the best cases these methods allow rigorous estimation of inertial properties. (c) 2009 Wiley-Liss, Inc.
Guo, Ting; Winterburn, Julie L; Pipitone, Jon; Duerden, Emma G; Park, Min Tae M; Chau, Vann; Poskitt, Kenneth J; Grunau, Ruth E; Synnes, Anne; Miller, Steven P; Mallar Chakravarty, M
2015-01-01
The hippocampus, a medial temporal lobe structure central to learning and memory, is particularly vulnerable in preterm-born neonates. To date, segmentation of the hippocampus for preterm-born neonates has not yet been performed early-in-life (shortly after birth when clinically stable). The present study focuses on the development and validation of an automatic segmentation protocol that is based on the MAGeT-Brain (Multiple Automatically Generated Templates) algorithm to delineate the hippocampi of preterm neonates on their brain MRIs acquired at not only term-equivalent age but also early-in-life. First, we present a three-step manual segmentation protocol to delineate the hippocampus for preterm neonates and apply this protocol on 22 early-in-life and 22 term images. These manual segmentations are considered the gold standard in assessing the automatic segmentations. MAGeT-Brain, automatic hippocampal segmentation pipeline, requires only a small number of input atlases and reduces the registration and resampling errors by employing an intermediate template library. We assess the segmentation accuracy of MAGeT-Brain in three validation studies, evaluate the hippocampal growth from early-in-life to term-equivalent age, and study the effect of preterm birth on the hippocampal volume. The first experiment thoroughly validates MAGeT-Brain segmentation in three sets of 10-fold Monte Carlo cross-validation (MCCV) analyses with 187 different groups of input atlases and templates. The second experiment segments the neonatal hippocampi on 168 early-in-life and 154 term images and evaluates the hippocampal growth rate of 125 infants from early-in-life to term-equivalent age. The third experiment analyzes the effect of gestational age (GA) at birth on the average hippocampal volume at early-in-life and term-equivalent age using linear regression. The final segmentations demonstrate that MAGeT-Brain consistently provides accurate segmentations in comparison to manually derived gold standards (mean Dice's Kappa > 0.79 and Euclidean distance <1.3 mm between centroids). Using this method, we demonstrate that the average volume of the hippocampus is significantly different (p < 0.0001) in early-in-life (621.8 mm(3)) and term-equivalent age (958.8 mm(3)). Using these differences, we generalize the hippocampal growth rate to 38.3 ± 11.7 mm(3)/week and 40.5 ± 12.9 mm(3)/week for the left and right hippocampi respectively. Not surprisingly, younger gestational age at birth is associated with smaller volumes of the hippocampi (p = 0.001). MAGeT-Brain is capable of segmenting hippocampi accurately in preterm neonates, even at early-in-life. Hippocampal asymmetry with a larger right side is demonstrated on early-in-life images, suggesting that this phenomenon has its onset in the 3rd trimester of gestation. Hippocampal volume assessed at the time of early-in-life and term-equivalent age is linearly associated with GA at birth, whereby smaller volumes are associated with earlier birth.
Guo, Ting; Winterburn, Julie L.; Pipitone, Jon; Duerden, Emma G.; Park, Min Tae M.; Chau, Vann; Poskitt, Kenneth J.; Grunau, Ruth E.; Synnes, Anne; Miller, Steven P.; Mallar Chakravarty, M.
2015-01-01
Introduction The hippocampus, a medial temporal lobe structure central to learning and memory, is particularly vulnerable in preterm-born neonates. To date, segmentation of the hippocampus for preterm-born neonates has not yet been performed early-in-life (shortly after birth when clinically stable). The present study focuses on the development and validation of an automatic segmentation protocol that is based on the MAGeT-Brain (Multiple Automatically Generated Templates) algorithm to delineate the hippocampi of preterm neonates on their brain MRIs acquired at not only term-equivalent age but also early-in-life. Methods First, we present a three-step manual segmentation protocol to delineate the hippocampus for preterm neonates and apply this protocol on 22 early-in-life and 22 term images. These manual segmentations are considered the gold standard in assessing the automatic segmentations. MAGeT-Brain, automatic hippocampal segmentation pipeline, requires only a small number of input atlases and reduces the registration and resampling errors by employing an intermediate template library. We assess the segmentation accuracy of MAGeT-Brain in three validation studies, evaluate the hippocampal growth from early-in-life to term-equivalent age, and study the effect of preterm birth on the hippocampal volume. The first experiment thoroughly validates MAGeT-Brain segmentation in three sets of 10-fold Monte Carlo cross-validation (MCCV) analyses with 187 different groups of input atlases and templates. The second experiment segments the neonatal hippocampi on 168 early-in-life and 154 term images and evaluates the hippocampal growth rate of 125 infants from early-in-life to term-equivalent age. The third experiment analyzes the effect of gestational age (GA) at birth on the average hippocampal volume at early-in-life and term-equivalent age using linear regression. Results The final segmentations demonstrate that MAGeT-Brain consistently provides accurate segmentations in comparison to manually derived gold standards (mean Dice's Kappa > 0.79 and Euclidean distance <1.3 mm between centroids). Using this method, we demonstrate that the average volume of the hippocampus is significantly different (p < 0.0001) in early-in-life (621.8 mm3) and term-equivalent age (958.8 mm3). Using these differences, we generalize the hippocampal growth rate to 38.3 ± 11.7 mm3/week and 40.5 ± 12.9 mm3/week for the left and right hippocampi respectively. Not surprisingly, younger gestational age at birth is associated with smaller volumes of the hippocampi (p = 0.001). Conclusions MAGeT-Brain is capable of segmenting hippocampi accurately in preterm neonates, even at early-in-life. Hippocampal asymmetry with a larger right side is demonstrated on early-in-life images, suggesting that this phenomenon has its onset in the 3rd trimester of gestation. Hippocampal volume assessed at the time of early-in-life and term-equivalent age is linearly associated with GA at birth, whereby smaller volumes are associated with earlier birth. PMID:26740912
Le, Huy Q.; Molloi, Sabee
2011-01-01
Purpose: To experimentally investigate whether a computed tomography (CT) system based on CdZnTe (CZT) detectors in conjunction with a least-squares parameter estimation technique can be used to decompose four different materials. Methods: The material decomposition process was divided into a segmentation task and a quantification task. A least-squares minimization algorithm was used to decompose materials with five measurements of the energy dependent linear attenuation coefficients. A small field-of-view energy discriminating CT system was built. The CT system consisted of an x-ray tube, a rotational stage, and an array of CZT detectors. The CZT array was composed of 64 pixels, each of which is 0.8×0.8×3 mm. Images were acquired at 80 kVp in fluoroscopic mode at 50 ms per frame. The detector resolved the x-ray spectrum into energy bins of 22–32, 33–39, 40–46, 47–56, and 57–80 keV. Four phantoms were constructed from polymethylmethacrylate (PMMA), polyethylene, polyoxymethylene, hydroxyapatite, and iodine. Three phantoms were composed of three materials with embedded hydroxyapatite (50, 150, 250, and 350 mg∕ml) and iodine (4, 8, 12, and 16 mg∕ml) contrast elements. One phantom was composed of four materials with embedded hydroxyapatite (150 and 350 mg∕ml) and iodine (8 and 16 mg∕ml). Calibrations consisted of PMMA phantoms with either hydroxyapatite (100, 200, 300, 400, and 500 mg∕ml) or iodine (5, 15, 25, 35, and 45 mg∕ml) embedded. Filtered backprojection and a ramp filter were used to reconstruct images from each energy bin. Material segmentation and quantification were performed and compared between different phantoms. Results: All phantoms were decomposed accurately, but some voxels in the base material regions were incorrectly identified. Average quantification errors of hydroxyapatite∕iodine were 9.26∕7.13%, 7.73∕5.58%, and 12.93∕8.23% for the three-material PMMA, polyethylene, and polyoxymethylene phantoms, respectively. The average errors for the four-material phantom were 15.62% and 2.76% for hydroxyapatite and iodine, respectively. Conclusions: The calibrated least-squares minimization technique of decomposition performed well in breast imaging tasks with an energy resolving detector. This method can provide material basis images containing concentrations of the relevant materials that can potentially be valuable in the diagnostic process. PMID:21361191
Validation of a dynamic linked segment model to calculate joint moments in lifting.
de Looze, M P; Kingma, I; Bussmann, J B; Toussaint, H M
1992-08-01
A two-dimensional dynamic linked segment model was constructed and applied to a lifting activity. Reactive forces and moments were calculated by an instantaneous approach involving the application of Newtonian mechanics to individual adjacent rigid segments in succession. The analysis started once at the feet and once at a hands/load segment. The model was validated by comparing predicted external forces and moments at the feet or at a hands/load segment to actual values, which were simultaneously measured (ground reaction force at the feet) or assumed to be zero (external moments at feet and hands/load and external forces, beside gravitation, at hands/load). In addition, results of both procedures, in terms of joint moments, including the moment at the intervertebral disc between the fifth lumbar and first sacral vertebra (L5-S1), were compared. A correlation of r = 0.88 between calculated and measured vertical ground reaction forces was found. The calculated external forces and moments at the hands showed only minor deviations from the expected zero level. The moments at L5-S1, calculated starting from feet compared to starting from hands/load, yielded a coefficient of correlation of r = 0.99. However, moments calculated from hands/load were 3.6% (averaged values) and 10.9% (peak values) higher. This difference is assumed to be due mainly to erroneous estimations of the positions of centres of gravity and joint rotation centres. The estimation of the location of L5-S1 rotation axis can affect the results significantly. Despite the numerous studies estimating the load on the low back during lifting on the basis of linked segment models, only a few attempts to validate these models have been made. This study is concerned with the validity of the presented linked segment model. The results support the model's validity. Effects of several sources of error threatening the validity are discussed. Copyright © 1992. Published by Elsevier Ltd.
Li, Laquan; Wang, Jian; Lu, Wei; Tan, Shan
2016-01-01
Accurate tumor segmentation from PET images is crucial in many radiation oncology applications. Among others, partial volume effect (PVE) is recognized as one of the most important factors degrading imaging quality and segmentation accuracy in PET. Taking into account that image restoration and tumor segmentation are tightly coupled and can promote each other, we proposed a variational method to solve both problems simultaneously in this study. The proposed method integrated total variation (TV) semi-blind de-convolution and Mumford-Shah segmentation with multiple regularizations. Unlike many existing energy minimization methods using either TV or L2 regularization, the proposed method employed TV regularization over tumor edges to preserve edge information, and L2 regularization inside tumor regions to preserve the smooth change of the metabolic uptake in a PET image. The blur kernel was modeled as anisotropic Gaussian to address the resolution difference in transverse and axial directions commonly seen in a clinic PET scanner. The energy functional was rephrased using the Γ-convergence approximation and was iteratively optimized using the alternating minimization (AM) algorithm. The performance of the proposed method was validated on a physical phantom and two clinic datasets with non-Hodgkin’s lymphoma and esophageal cancer, respectively. Experimental results demonstrated that the proposed method had high performance for simultaneous image restoration, tumor segmentation and scanner blur kernel estimation. Particularly, the recovery coefficients (RC) of the restored images of the proposed method in the phantom study were close to 1, indicating an efficient recovery of the original blurred images; for segmentation the proposed method achieved average dice similarity indexes (DSIs) of 0.79 and 0.80 for two clinic datasets, respectively; and the relative errors of the estimated blur kernel widths were less than 19% in the transversal direction and 7% in the axial direction. PMID:28603407
Mathematical morphology for automated analysis of remotely sensed objects in radar images
NASA Technical Reports Server (NTRS)
Daida, Jason M.; Vesecky, John F.
1991-01-01
A symbiosis of pyramidal segmentation and morphological transmission is described. The pyramidal segmentation portion of the symbiosis has resulted in low (2.6 percent) misclassification error rate for a one-look simulation. Other simulations indicate lower error rates (1.8 percent for a four-look image). The morphological transformation portion has resulted in meaningful partitions with a minimal loss of fractal boundary information. An unpublished version of Thicken, suitable for watersheds transformations of fractal objects, is also presented. It is demonstrated that the proposed symbiosis works with SAR (synthetic aperture radar) images: in this case, a four-look Seasat image of sea ice. It is concluded that the symbiotic forms of both segmentation and morphological transformation seem well suited for unsupervised geophysical analysis.
NASA Astrophysics Data System (ADS)
Frasson, Renato Prata de Moraes; Wei, Rui; Durand, Michael; Minear, J. Toby; Domeneghetti, Alessio; Schumann, Guy; Williams, Brent A.; Rodriguez, Ernesto; Picamilh, Christophe; Lion, Christine; Pavelsky, Tamlin; Garambois, Pierre-André
2017-10-01
The upcoming Surface Water and Ocean Topography (SWOT) mission will measure water surface heights and widths for rivers wider than 100 m. At its native resolution, SWOT height errors are expected to be on the order of meters, which prevent the calculation of water surface slopes and the use of slope-dependent discharge equations. To mitigate height and width errors, the high-resolution measurements will be grouped into reaches (˜5 to 15 km), where slope and discharge are estimated. We describe three automated river segmentation strategies for defining optimum reaches for discharge estimation: (1) arbitrary lengths, (2) identification of hydraulic controls, and (3) sinuosity. We test our methodologies on 9 and 14 simulated SWOT overpasses over the Sacramento and the Po Rivers, respectively, which we compare against hydraulic models of each river. Our results show that generally, height, width, and slope errors decrease with increasing reach length. However, the hydraulic controls and the sinuosity methods led to better slopes and often height errors that were either smaller or comparable to those of arbitrary reaches of compatible sizes. Estimated discharge errors caused by the propagation of height, width, and slope errors through the discharge equation were often smaller for sinuosity (on average 8.5% for the Sacramento and 6.9% for the Po) and hydraulic control (Sacramento: 7.3% and Po: 5.9%) reaches than for arbitrary reaches of comparable lengths (Sacramento: 8.6% and Po: 7.8%). This analysis suggests that reach definition methods that preserve the hydraulic properties of the river network may lead to better discharge estimates.
Multi-GNSS signal-in-space range error assessment - Methodology and results
NASA Astrophysics Data System (ADS)
Montenbruck, Oliver; Steigenberger, Peter; Hauschild, André
2018-06-01
The positioning accuracy of global and regional navigation satellite systems (GNSS/RNSS) depends on a variety of influence factors. For constellation-specific performance analyses it has become common practice to separate a geometry-related quality factor (the dilution of precision, DOP) from the measurement and modeling errors of the individual ranging measurements (known as user equivalent range error, UERE). The latter is further divided into user equipment errors and contributions related to the space and control segment. The present study reviews the fundamental concepts and underlying assumptions of signal-in-space range error (SISRE) analyses and presents a harmonized framework for multi-GNSS performance monitoring based on the comparison of broadcast and precise ephemerides. The implications of inconsistent geometric reference points, non-common time systems, and signal-specific range biases are analyzed, and strategies for coping with these issues in the definition and computation of SIS range errors are developed. The presented concepts are, furthermore, applied to current navigation satellite systems, and representative results are presented along with a discussion of constellation-specific problems in their determination. Based on data for the January to December 2017 time frame, representative global average root-mean-square (RMS) SISRE values of 0.2 m, 0.6 m, 1 m, and 2 m are obtained for Galileo, GPS, BeiDou-2, and GLONASS, respectively. Roughly two times larger values apply for the corresponding 95th-percentile values. Overall, the study contributes to a better understanding and harmonization of multi-GNSS SISRE analyses and their use as key performance indicators for the various constellations.
Storelli, L; Pagani, E; Rocca, M A; Horsfield, M A; Gallo, A; Bisecco, A; Battaglini, M; De Stefano, N; Vrenken, H; Thomas, D L; Mancini, L; Ropele, S; Enzinger, C; Preziosa, P; Filippi, M
2016-07-21
The automatic segmentation of MS lesions could reduce time required for image processing together with inter- and intraoperator variability for research and clinical trials. A multicenter validation of a proposed semiautomatic method for hyperintense MS lesion segmentation on dual-echo MR imaging is presented. The classification technique used is based on a region-growing approach starting from manual lesion identification by an expert observer with a final segmentation-refinement step. The method was validated in a cohort of 52 patients with relapsing-remitting MS, with dual-echo images acquired in 6 different European centers. We found a mathematic expression that made the optimization of the method independent of the need for a training dataset. The automatic segmentation was in good agreement with the manual segmentation (dice similarity coefficient = 0.62 and root mean square error = 2 mL). Assessment of the segmentation errors showed no significant differences in algorithm performance between the different MR scanner manufacturers (P > .05). The method proved to be robust, and no center-specific training of the algorithm was required, offering the possibility for application in a clinical setting. Adoption of the method should lead to improved reliability and less operator time required for image analysis in research and clinical trials in MS. © 2016 American Society of Neuroradiology.
2D/3D fetal cardiac dataset segmentation using a deformable model.
Dindoyal, Irving; Lambrou, Tryphon; Deng, Jing; Todd-Pokropek, Andrew
2011-07-01
To segment the fetal heart in order to facilitate the 3D assessment of the cardiac function and structure. Ultrasound acquisition typically results in drop-out artifacts of the chamber walls. The authors outline a level set deformable model to automatically delineate the small fetal cardiac chambers. The level set is penalized from growing into an adjacent cardiac compartment using a novel collision detection term. The region based model allows simultaneous segmentation of all four cardiac chambers from a user defined seed point placed in each chamber. The segmented boundaries are automatically penalized from intersecting at walls with signal dropout. Root mean square errors of the perpendicular distances between the algorithm's delineation and manual tracings are within 2 mm which is less than 10% of the length of a typical fetal heart. The ejection fractions were determined from the 3D datasets. We validate the algorithm using a physical phantom and obtain volumes that are comparable to those from physically determined means. The algorithm segments volumes with an error of within 13% as determined using a physical phantom. Our original work in fetal cardiac segmentation compares automatic and manual tracings to a physical phantom and also measures inter observer variation.
Comparative study on different types of segmented micro deformable mirrors
NASA Astrophysics Data System (ADS)
Qiao, Dayong; Yuan, Weizheng; Li, Kaicheng; Li, Xiaoying; Rao, Fubo
2006-02-01
In an adaptive-optical (AO) system, the wavefront of optical beam can be corrected with deformable mirror (DM). Based on MicroElectroMechanical System (MEMS) technology, segmented micro deformable mirrors can be built with denser actuator spacing than continuous face-sheet designs and have been widely researched. But the influence of the segment structure has not been thoroughly discussed until now. In this paper, the design, performance and fabrication of several micromachined, segmented deformable mirror for AO were investigated. The wavefront distorted by atmospheric turbulence was simulated in the frame of Kolmogorov turbulence model. Position function was used to describe the surfaces of the micro deformable mirrors in working state. The performances of deformable mirrors featuring square, brick, hexagonal and ring segment structures were evaluated in criteria of phase fitting error, the Strehl ratio after wavefront correction and the design considerations. Then the micro fabrication process and mask layout were designed and the fabrication of micro deformable mirrors was implemented. The results show that the micro deformable mirror with ring segments performs the best, but it is very difficult in terms of layout design. The micro deformable mirrors with square and brick segments are easy to design, but their performances are not good. The micro deformable mirror with hexagonal segments has not only good performance in terms of phase fitting error, the Strehl ratio and actuation voltage, but also no overwhelming difficulty in layout design.
Verifying the error bound of numerical computation implemented in computer systems
Sawada, Jun
2013-03-12
A verification tool receives a finite precision definition for an approximation of an infinite precision numerical function implemented in a processor in the form of a polynomial of bounded functions. The verification tool receives a domain for verifying outputs of segments associated with the infinite precision numerical function. The verification tool splits the domain into at least two segments, wherein each segment is non-overlapping with any other segment and converts, for each segment, a polynomial of bounded functions for the segment to a simplified formula comprising a polynomial, an inequality, and a constant for a selected segment. The verification tool calculates upper bounds of the polynomial for the at least two segments, beginning with the selected segment and reports the segments that violate a bounding condition.
Kim, Hyungjin; Lee, Sang Min; Lee, Hyun-Ju; Goo, Jin Mo
2013-01-01
Objective To compare the segmentation capability of the 2 currently available commercial volumetry software programs with specific segmentation algorithms for pulmonary ground-glass nodules (GGNs) and to assess their measurement accuracy. Materials and Methods In this study, 55 patients with 66 GGNs underwent unenhanced low-dose CT. GGN segmentation was performed by using 2 volumetry software programs (LungCARE, Siemens Healthcare; LungVCAR, GE Healthcare). Successful nodule segmentation was assessed visually and morphologic features of GGNs were evaluated to determine factors affecting segmentation by both types of software. In addition, the measurement accuracy of the software programs was investigated by using an anthropomorphic chest phantom containing simulated GGNs. Results The successful nodule segmentation rate was significantly higher in LungCARE (90.9%) than in LungVCAR (72.7%) (p = 0.012). Vascular attachment was a negatively influencing morphologic feature of nodule segmentation for both software programs. As for measurement accuracy, mean relative volume measurement errors in nodules ≥ 10 mm were 14.89% with LungCARE and 19.96% with LungVCAR. The mean relative attenuation measurement errors in nodules ≥ 10 mm were 3.03% with LungCARE and 5.12% with LungVCAR. Conclusion LungCARE shows significantly higher segmentation success rates than LungVCAR. Measurement accuracy of volume and attenuation of GGNs is acceptable in GGNs ≥ 10 mm by both software programs. PMID:23901328
The Distribution of Lightning Channel Lengths in Northern Alabama Thunderstorms
NASA Technical Reports Server (NTRS)
Peterson, H. S.; Koshak, W. J.
2010-01-01
Lightning is well known to be a major source of tropospheric NOx, and in most cases is the dominant natural source (Huntreiser et al 1998, Jourdain and Hauglustaine 2001). Production of NOx by a segment of a lightning channel is a function of channel segment energy density and channel segment altitude. A first estimate of NOx production by a lightning flash can be found by multiplying production per segment [typically 104 J/m; Hill (1979)] by the total length of the flash s channel. The purpose of this study is to determine average channel length for lightning flashes near NALMA in 2008, and to compare average channel length of ground flashes to the average channel length of cloud flashes.
Pustina, Dorian; Coslett, H. Branch; Turkeltaub, Peter E.; Tustison, Nicholas; Schwartz, Myrna F.; Avants, Brian
2015-01-01
The gold standard for identifying stroke lesions is manual tracing, a method that is known to be observer dependent and time consuming, thus impractical for big data studies. We propose LINDA (Lesion Identification with Neighborhood Data Analysis), an automated segmentation algorithm capable of learning the relationship between existing manual segmentations and a single T1-weighted MRI. A dataset of 60 left hemispheric chronic stroke patients is used to build the method and test it with k-fold and leave-one-out procedures. With respect to manual tracings, predicted lesion maps showed a mean dice overlap of 0.696±0.16, Hausdorff distance of 17.9±9.8mm, and average displacement of 2.54±1.38mm. The manual and predicted lesion volumes correlated at r=0.961. An additional dataset of 45 patients was utilized to test LINDA with independent data, achieving high accuracy rates and confirming its cross-institutional applicability. To investigate the cost of moving from manual tracings to automated segmentation, we performed comparative lesion-to-symptom mapping (LSM) on five behavioral scores. Predicted and manual lesions produced similar neuro-cognitive maps, albeit with some discussed discrepancies. Of note, region-wise LSM was more robust to the prediction error than voxel-wise LSM. Our results show that, while several limitations exist, our current results compete with or exceed the state-of-the-art, producing consistent predictions, very low failure rates, and transferable knowledge between labs. This work also establishes a new viewpoint on evaluating automated methods not only with segmentation accuracy but also with brain-behavior relationships. LINDA is made available online with trained models from over 100 patients. PMID:26756101
Automatic measurement and representation of prosodic features
NASA Astrophysics Data System (ADS)
Ying, Goangshiuan Shawn
Effective measurement and representation of prosodic features of the acoustic signal for use in automatic speech recognition and understanding systems is the goal of this work. Prosodic features-stress, duration, and intonation-are variations of the acoustic signal whose domains are beyond the boundaries of each individual phonetic segment. Listeners perceive prosodic features through a complex combination of acoustic correlates such as intensity, duration, and fundamental frequency (F0). We have developed new tools to measure F0 and intensity features. We apply a probabilistic global error correction routine to an Average Magnitude Difference Function (AMDF) pitch detector. A new short-term frequency-domain Teager energy algorithm is used to measure the energy of a speech signal. We have conducted a series of experiments performing lexical stress detection on words in continuous English speech from two speech corpora. We have experimented with two different approaches, a segment-based approach and a rhythm unit-based approach, in lexical stress detection. The first approach uses pattern recognition with energy- and duration-based measurements as features to build Bayesian classifiers to detect the stress level of a vowel segment. In the second approach we define rhythm unit and use only the F0-based measurement and a scoring system to determine the stressed segment in the rhythm unit. A duration-based segmentation routine was developed to break polysyllabic words into rhythm units. The long-term goal of this work is to develop a system that can effectively detect the stress pattern for each word in continuous speech utterances. Stress information will be integrated as a constraint for pruning the word hypotheses in a word recognition system based on hidden Markov models.
NASA Astrophysics Data System (ADS)
Morais, Pedro; Queirós, Sandro; Heyde, Brecht; Engvall, Jan; 'hooge, Jan D.; Vilaça, João L.
2017-09-01
Cardiovascular diseases are among the leading causes of death and frequently result in local myocardial dysfunction. Among the numerous imaging modalities available to detect these dysfunctional regions, cardiac deformation imaging through tagged magnetic resonance imaging (t-MRI) has been an attractive approach. Nevertheless, fully automatic analysis of these data sets is still challenging. In this work, we present a fully automatic framework to estimate left ventricular myocardial deformation from t-MRI. This strategy performs automatic myocardial segmentation based on B-spline explicit active surfaces, which are initialized using an annular model. A non-rigid image-registration technique is then used to assess myocardial deformation. Three experiments were set up to validate the proposed framework using a clinical database of 75 patients. First, automatic segmentation accuracy was evaluated by comparing against manual delineations at one specific cardiac phase. The proposed solution showed an average perpendicular distance error of 2.35 ± 1.21 mm and 2.27 ± 1.02 mm for the endo- and epicardium, respectively. Second, starting from either manual or automatic segmentation, myocardial tracking was performed and the resulting strain curves were compared. It is shown that the automatic segmentation adds negligible differences during the strain-estimation stage, corroborating its accuracy. Finally, segmental strain was compared with scar tissue extent determined by delay-enhanced MRI. The results proved that both strain components were able to distinguish between normal and infarct regions. Overall, the proposed framework was shown to be accurate, robust, and attractive for clinical practice, as it overcomes several limitations of a manual analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stützer, Kristin; Haase, Robert; Exner, Florian
2016-09-15
Purpose: Rating both a lung segmentation algorithm and a deformable image registration (DIR) algorithm for subsequent lung computed tomography (CT) images by different evaluation techniques. Furthermore, investigating the relative performance and the correlation of the different evaluation techniques to address their potential value in a clinical setting. Methods: Two to seven subsequent CT images (69 in total) of 15 lung cancer patients were acquired prior, during, and after radiochemotherapy. Automated lung segmentations were compared to manually adapted contours. DIR between the first and all following CT images was performed with a fast algorithm specialized for lung tissue registration, requiring themore » lung segmentation as input. DIR results were evaluated based on landmark distances, lung contour metrics, and vector field inconsistencies in different subvolumes defined by eroding the lung contour. Correlations between the results from the three methods were evaluated. Results: Automated lung contour segmentation was satisfactory in 18 cases (26%), failed in 6 cases (9%), and required manual correction in 45 cases (66%). Initial and corrected contours had large overlap but showed strong local deviations. Landmark-based DIR evaluation revealed high accuracy compared to CT resolution with an average error of 2.9 mm. Contour metrics of deformed contours were largely satisfactory. The median vector length of inconsistency vector fields was 0.9 mm in the lung volume and slightly smaller for the eroded volumes. There was no clear correlation between the three evaluation approaches. Conclusions: Automatic lung segmentation remains challenging but can assist the manual delineation process. Proven by three techniques, the inspected DIR algorithm delivers reliable results for the lung CT data sets acquired at different time points. Clinical application of DIR demands a fast DIR evaluation to identify unacceptable results, for instance, by combining different automated DIR evaluation methods.« less
NASA Astrophysics Data System (ADS)
Shahzad, Rahil; Bos, Daniel; Budde, Ricardo P. J.; Pellikaan, Karlijn; Niessen, Wiro J.; van der Lugt, Aad; van Walsum, Theo
2017-05-01
Early structural changes to the heart, including the chambers and the coronary arteries, provide important information on pre-clinical heart disease like cardiac failure. Currently, contrast-enhanced cardiac computed tomography angiography (CCTA) is the preferred modality for the visualization of the cardiac chambers and the coronaries. In clinical practice not every patient undergoes a CCTA scan; many patients receive only a non-contrast-enhanced calcium scoring CT scan (CTCS), which has less radiation dose and does not require the administration of contrast agent. Quantifying cardiac structures in such images is challenging, as they lack the contrast present in CCTA scans. Such quantification would however be relevant, as it enables population based studies with only a CTCS scan. The purpose of this work is therefore to investigate the feasibility of automatic segmentation and quantification of cardiac structures viz whole heart, left atrium, left ventricle, right atrium, right ventricle and aortic root from CTCS scans. A fully automatic multi-atlas-based segmentation approach is used to segment the cardiac structures. Results show that the segmentation overlap between the automatic method and that of the reference standard have a Dice similarity coefficient of 0.91 on average for the cardiac chambers. The mean surface-to-surface distance error over all the cardiac structures is 1.4+/- 1.7 mm. The automatically obtained cardiac chamber volumes using the CTCS scans have an excellent correlation when compared to the volumes in corresponding CCTA scans, a Pearson correlation coefficient (R) of 0.95 is obtained. Our fully automatic method enables large-scale assessment of cardiac structures on non-contrast-enhanced CT scans.
Fully automated chest wall line segmentation in breast MRI by using context information
NASA Astrophysics Data System (ADS)
Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Localio, A. Russell; Schnall, Mitchell D.; Kontos, Despina
2012-03-01
Breast MRI has emerged as an effective modality for the clinical management of breast cancer. Evidence suggests that computer-aided applications can further improve the diagnostic accuracy of breast MRI. A critical and challenging first step for automated breast MRI analysis, is to separate the breast as an organ from the chest wall. Manual segmentation or user-assisted interactive tools are inefficient, tedious, and error-prone, which is prohibitively impractical for processing large amounts of data from clinical trials. To address this challenge, we developed a fully automated and robust computerized segmentation method that intensively utilizes context information of breast MR imaging and the breast tissue's morphological characteristics to accurately delineate the breast and chest wall boundary. A critical component is the joint application of anisotropic diffusion and bilateral image filtering to enhance the edge that corresponds to the chest wall line (CWL) and to reduce the effect of adjacent non-CWL tissues. A CWL voting algorithm is proposed based on CWL candidates yielded from multiple sequential MRI slices, in which a CWL representative is generated and used through a dynamic time warping (DTW) algorithm to filter out inferior candidates, leaving the optimal one. Our method is validated by a representative dataset of 20 3D unilateral breast MRI scans that span the full range of the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) fibroglandular density categorization. A promising performance (average overlay percentage of 89.33%) is observed when the automated segmentation is compared to manually segmented ground truth obtained by an experienced breast imaging radiologist. The automated method runs time-efficiently at ~3 minutes for each breast MR image set (28 slices).
Refinement of ground reference data with segmented image data
NASA Technical Reports Server (NTRS)
Robinson, Jon W.; Tilton, James C.
1991-01-01
One of the ways to determine ground reference data (GRD) for satellite remote sensing data is to photo-interpret low altitude aerial photographs and then digitize the cover types on a digitized tablet and register them to 7.5 minute U.S.G.S. maps (that were themselves digitized). The resulting GRD can be registered to the satellite image or, vice versa. Unfortunately, there are many opportunities for error when using digitizing tablet and the resolution of the edges for the GRD depends on the spacing of the points selected on the digitizing tablet. One of the consequences of this is that when overlaid on the image, errors and missed detail in the GRD become evident. An approach is discussed for correcting these errors and adding detail to the GRD through the use of a highly interactive, visually oriented process. This process involves the use of overlaid visual displays of the satellite image data, the GRD, and a segmentation of the satellite image data. Several prototype programs were implemented which provide means of taking a segmented image and using the edges from the reference data to mask out these segment edges that are beyond a certain distance from the reference data edges. Then using the reference data edges as a guide, those segment edges that remain and that are judged not to be image versions of the reference edges are manually marked and removed. The prototype programs that were developed and the algorithmic refinements that facilitate execution of this task are described.
A., Javadpour; A., Mohammadi
2016-01-01
Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629
SU-E-T-614: Plan Averaging for Multi-Criteria Navigation of Step-And-Shoot IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, M; Gao, H; Craft, D
2015-06-15
Purpose: Step-and-shoot IMRT is fundamentally discrete in nature, while multi-criteria optimization (MCO) is fundamentally continuous: the MCO planning consists of continuous sliding across the Pareto surface (the set of plans which represent the tradeoffs between organ-at-risk doses and target doses). In order to achieve close to real-time dose display during this sliding, it is desired that averaged plans share many of the same apertures as the pre-computed plans, since dose computation for apertures generated on-the-fly would be expensive. We propose a method to ensure that neighboring plans on a Pareto surface share many apertures. Methods: Our baseline step-and-shoot sequencing methodmore » is that of K. Engel (a method which minimizes the number of segments while guaranteeing the minimum number of monitor units), which we customize to sequence a set of Pareto optimal plans simultaneously. We also add an error tolerance to study the relationship between the number of shared apertures, the total number of apertures needed, and the quality of the fluence map re-creation. Results: We run tests for a 2D Pareto surface trading off rectum and bladder dose versus target coverage for a clinical prostate case. We find that if we enforce exact fluence map recreation, we are not able to achieve much sharing of apertures across plans. The total number of apertures for all seven beams and 4 plans without sharing is 217. With sharing and a 2% error tolerance, this number is reduced to 158 (73%). Conclusion: With the proposed method, total number of apertures can be decreased by 42% (averaging) with no increment of total MU, when an error tolerance of 5% is allowed. With this large amount of sharing, dose computations for averaged plans which occur during Pareto navigation will be much faster, leading to a real-time what-you-see-is-what-you-get Pareto navigation experience. Minghao Guo and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less
Automatic mediastinal lymph node detection in chest CT
NASA Astrophysics Data System (ADS)
Feuerstein, Marco; Deguchi, Daisuke; Kitasaka, Takayuki; Iwano, Shingo; Imaizumi, Kazuyoshi; Hasegawa, Yoshinori; Suenaga, Yasuhito; Mori, Kensaku
2009-02-01
Computed tomography (CT) of the chest is a very common staging investigation for the assessment of mediastinal, hilar, and intrapulmonary lymph nodes in the context of lung cancer. In the current clinical workflow, the detection and assessment of lymph nodes is usually performed manually, which can be error-prone and timeconsuming. We therefore propose a method for the automatic detection of mediastinal, hilar, and intrapulmonary lymph node candidates in contrast-enhanced chest CT. Based on the segmentation of important mediastinal anatomy (bronchial tree, aortic arch) and making use of anatomical knowledge, we utilize Hessian eigenvalues to detect lymph node candidates. As lymph nodes can be characterized as blob-like structures of varying size and shape within a specific intensity interval, we can utilize these characteristics to reduce the number of false positive candidates significantly. We applied our method to 5 cases suspected to have lung cancer. The processing time of our algorithm did not exceed 6 minutes, and we achieved an average sensitivity of 82.1% and an average precision of 13.3%.
Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking
NASA Astrophysics Data System (ADS)
Magesan, Easwar; Gambetta, Jay M.; Johnson, B. R.; Ryan, Colm A.; Chow, Jerry M.; Merkel, Seth T.; da Silva, Marcus P.; Keefe, George A.; Rothwell, Mary B.; Ohki, Thomas A.; Ketchen, Mark B.; Steffen, M.
2012-08-01
We describe a scalable experimental protocol for estimating the average error of individual quantum computational gates. This protocol consists of interleaving random Clifford gates between the gate of interest and provides an estimate as well as theoretical bounds for the average error of the gate under test, so long as the average noise variation over all Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find a bounded average error of 0.003 [0,0.016] for the single-qubit gates Xπ/2 and Yπ/2. These bounded values provide better estimates of the average error than those extracted via quantum process tomography.
Printed Arabic optical character segmentation
NASA Astrophysics Data System (ADS)
Mohammad, Khader; Ayyesh, Muna; Qaroush, Aziz; Tumar, Iyad
2015-03-01
A considerable progress in recognition techniques for many non-Arabic characters has been achieved. In contrary, few efforts have been put on the research of Arabic characters. In any Optical Character Recognition (OCR) system the segmentation step is usually the essential stage in which an extensive portion of processing is devoted and a considerable share of recognition errors is attributed. In this research, a novel segmentation approach for machine Arabic printed text with diacritics is proposed. The proposed method reduces computation, errors, gives a clear description for the sub-word and has advantages over using the skeleton approach in which the data and information of the character can be lost. Both of initial evaluation and testing of the proposed method have been developed using MATLAB and shows 98.7% promising results.
Designing image segmentation studies: Statistical power, sample size and reference standard quality.
Gibson, Eli; Hu, Yipeng; Huisman, Henkjan J; Barratt, Dean C
2017-12-01
Segmentation algorithms are typically evaluated by comparison to an accepted reference standard. The cost of generating accurate reference standards for medical image segmentation can be substantial. Since the study cost and the likelihood of detecting a clinically meaningful difference in accuracy both depend on the size and on the quality of the study reference standard, balancing these trade-offs supports the efficient use of research resources. In this work, we derive a statistical power calculation that enables researchers to estimate the appropriate sample size to detect clinically meaningful differences in segmentation accuracy (i.e. the proportion of voxels matching the reference standard) between two algorithms. Furthermore, we derive a formula to relate reference standard errors to their effect on the sample sizes of studies using lower-quality (but potentially more affordable and practically available) reference standards. The accuracy of the derived sample size formula was estimated through Monte Carlo simulation, demonstrating, with 95% confidence, a predicted statistical power within 4% of simulated values across a range of model parameters. This corresponds to sample size errors of less than 4 subjects and errors in the detectable accuracy difference less than 0.6%. The applicability of the formula to real-world data was assessed using bootstrap resampling simulations for pairs of algorithms from the PROMISE12 prostate MR segmentation challenge data set. The model predicted the simulated power for the majority of algorithm pairs within 4% for simulated experiments using a high-quality reference standard and within 6% for simulated experiments using a low-quality reference standard. A case study, also based on the PROMISE12 data, illustrates using the formulae to evaluate whether to use a lower-quality reference standard in a prostate segmentation study. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Multi-Modal Glioblastoma Segmentation: Man versus Machine
Pica, Alessia; Schucht, Philippe; Beck, Jürgen; Verma, Rajeev Kumar; Slotboom, Johannes; Reyes, Mauricio; Wiest, Roland
2014-01-01
Background and Purpose Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. Methods We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. Results Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. Conclusions In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity. PMID:24804720
Zheng, Qiang; Warner, Steven; Tasian, Gregory; Fan, Yong
2018-02-12
Automatic segmentation of kidneys in ultrasound (US) images remains a challenging task because of high speckle noise, low contrast, and large appearance variations of kidneys in US images. Because texture features may improve the US image segmentation performance, we propose a novel graph cuts method to segment kidney in US images by integrating image intensity information and texture feature maps. We develop a new graph cuts-based method to segment kidney US images by integrating original image intensity information and texture feature maps extracted using Gabor filters. To handle large appearance variation within kidney images and improve computational efficiency, we build a graph of image pixels close to kidney boundary instead of building a graph of the whole image. To make the kidney segmentation robust to weak boundaries, we adopt localized regional information to measure similarity between image pixels for computing edge weights to build the graph of image pixels. The localized graph is dynamically updated and the graph cuts-based segmentation iteratively progresses until convergence. Our method has been evaluated based on kidney US images of 85 subjects. The imaging data of 20 randomly selected subjects were used as training data to tune parameters of the image segmentation method, and the remaining data were used as testing data for validation. Experiment results demonstrated that the proposed method obtained promising segmentation results for bilateral kidneys (average Dice index = 0.9446, average mean distance = 2.2551, average specificity = 0.9971, average accuracy = 0.9919), better than other methods under comparison (P < .05, paired Wilcoxon rank sum tests). The proposed method achieved promising performance for segmenting kidneys in two-dimensional US images, better than segmentation methods built on any single channel of image information. This method will facilitate extraction of kidney characteristics that may predict important clinical outcomes such as progression of chronic kidney disease. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
3D automatic anatomy segmentation based on iterative graph-cut-ASM.
Chen, Xinjian; Bagci, Ulas
2011-08-01
This paper studies the feasibility of developing an automatic anatomy segmentation (AAS) system in clinical radiology and demonstrates its operation on clinical 3D images. The AAS system, the authors are developing consists of two main parts: object recognition and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale) information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM (IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. The presented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed previously in Chen et al. [Proc. SPIE, 7259, 72590C1-72590C-8 (2009)]. The proposed methods are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female) of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus, tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated separately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size) error. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV PC with a 3.4 GHZ CPU machine. The recognition accuracies in terms of translation, rotation, and scale error over all organs are about 8 mm, 10 degrees and 0.03, and over all foot bones are about 3.5709 mm, 0.35 degrees and 0.025, respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and FPVF is 93.01% and 0.22%, and all foot bones for all subjects are 93.75% and 0.28%, respectively. While the delineations for the four organs can be accomplished quite rapidly with average of 78 s, the delineations for the five foot bones can be accomplished with average of 70 s. The experimental results showed the feasibility and efficacy of the proposed automatic anatomy segmentation system: (a) the incorporation of shape priors into the GC framework is feasible in 3D as demonstrated previously for 2D images; (b) our results in 3D confirm the accuracy behavior observed in 2D. The hybrid strategy IGCASM seems to be more robust and accurate than ASM and GC individually; and (c) delineations within body regions and foot bones of clinical importance can be accomplished quite rapidly within 1.5 min.
Masked and unmasked error-related potentials during continuous control and feedback
NASA Astrophysics Data System (ADS)
Lopes Dias, Catarina; Sburlea, Andreea I.; Müller-Putz, Gernot R.
2018-06-01
The detection of error-related potentials (ErrPs) in tasks with discrete feedback is well established in the brain–computer interface (BCI) field. However, the decoding of ErrPs in tasks with continuous feedback is still in its early stages. Objective. We developed a task in which subjects have continuous control of a cursor’s position by means of a joystick. The cursor’s position was shown to the participants in two different modalities of continuous feedback: normal and jittered. The jittered feedback was created to mimic the instability that could exist if participants controlled the trajectory directly with brain signals. Approach. This paper studies the electroencephalographic (EEG)—measurable signatures caused by a loss of control over the cursor’s trajectory, causing a target miss. Main results. In both feedback modalities, time-locked potentials revealed the typical frontal-central components of error-related potentials. Errors occurring during the jittered feedback (masked errors) were delayed in comparison to errors occurring during normal feedback (unmasked errors). Masked errors displayed lower peak amplitudes than unmasked errors. Time-locked classification analysis allowed a good distinction between correct and error classes (average Cohen-, average TPR = 81.8% and average TNR = 96.4%). Time-locked classification analysis between masked error and unmasked error classes revealed results at chance level (average Cohen-, average TPR = 60.9% and average TNR = 58.3%). Afterwards, we performed asynchronous detection of ErrPs, combining both masked and unmasked trials. The asynchronous detection of ErrPs in a simulated online scenario resulted in an average TNR of 84.0% and in an average TPR of 64.9%. Significance. The time-locked classification results suggest that the masked and unmasked errors were indistinguishable in terms of classification. The asynchronous classification results suggest that the feedback modality did not hinder the asynchronous detection of ErrPs.
Coadding Techniques for Image-based Wavefront Sensing for Segmented-mirror Telescopes
NASA Technical Reports Server (NTRS)
Smith, Scott; Aronstein, David; Dean, Bruce; Acton, Scott
2007-01-01
Image-based wavefront sensing algorithms are being used to characterize optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be coadded in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on every set of PSFs individually and average the resulting wavefronts. The choice of coadd methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using data collected on and simulations of the James Webb Space Telescope Testbed Telescope (TBT) commissioned at Ball Aerospace, we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the coadd method. Of particular interest, segment piston is more accurately recovered in "image-plane space" coadding, while segment tip/tilt is recovered in "pupil-plane space" coadding.
HIPS: A new hippocampus subfield segmentation method.
Romero, José E; Coupé, Pierrick; Manjón, José V
2017-12-01
The importance of the hippocampus in the study of several neurodegenerative diseases such as Alzheimer's disease makes it a structure of great interest in neuroimaging. However, few segmentation methods have been proposed to measure its subfields due to its complex structure and the lack of high resolution magnetic resonance (MR) data. In this work, we present a new pipeline for automatic hippocampus subfield segmentation using two available hippocampus subfield delineation protocols that can work with both high and standard resolution data. The proposed method is based on multi-atlas label fusion technology that benefits from a novel multi-contrast patch match search process (using high resolution T1-weighted and T2-weighted images). The proposed method also includes as post-processing a new neural network-based error correction step to minimize systematic segmentation errors. The method has been evaluated on both high and standard resolution images and compared to other state-of-the-art methods showing better results in terms of accuracy and execution time. Copyright © 2017 Elsevier Inc. All rights reserved.
Cophasing techniques for extremely large telescopes
NASA Astrophysics Data System (ADS)
Devaney, Nicholas; Schumacher, Achim
2004-07-01
The current designs of the majority of ELTs envisage that at least the primary mirror will be segmented. Phasing of the segments is therefore a major concern, and a lot of work is underway to determine the most suitable techniques. The techniques which have been developed are either wave optics generalizations of classical geometric optics tests (e.g. Shack-Hartmann and curvature sensing) or direct interferometric measurements. We present a review of the main techniques proposed for phasing and outline their relative merits. We consider problems which are specific to ELTs, e.g. vignetting of large parts of the primary mirror by the secondary mirror spiders, and the need to disentangle phase errors arising in different segmented mirrors. We present improvements in the Shack-Hartmann and curvature sensing techniques which allow greater precision and range. Finally, we describe a piston plate which simulates segment phasing errors and show the results of laboratory experiments carried out to verify the precision of the Shack-Hartmann technique.
Comparative study on the performance of textural image features for active contour segmentation.
Moraru, Luminita; Moldovanu, Simona
2012-07-01
We present a computerized method for the semi-automatic detection of contours in ultrasound images. The novelty of our study is the introduction of a fast and efficient image function relating to parametric active contour models. This new function is a combination of the gray-level information and first-order statistical features, called standard deviation parameters. In a comprehensive study, the developed algorithm and the efficiency of segmentation were first tested for synthetic images. Tests were also performed on breast and liver ultrasound images. The proposed method was compared with the watershed approach to show its efficiency. The performance of the segmentation was estimated using the area error rate. Using the standard deviation textural feature and a 5×5 kernel, our curve evolution was able to produce results close to the minimal area error rate (namely 8.88% for breast images and 10.82% for liver images). The image resolution was evaluated using the contrast-to-gradient method. The experiments showed promising segmentation results.
Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude
2017-09-21
In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units ([Formula: see text]) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into [Formula: see text] was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of [Formula: see text] corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.
NASA Astrophysics Data System (ADS)
Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude
2017-10-01
In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.
NASA Astrophysics Data System (ADS)
Poletti, Enea; Veronese, Elisa; Calabrese, Massimiliano; Bertoldo, Alessandra; Grisan, Enrico
2012-02-01
The automatic segmentation of brain tissues in magnetic resonance (MR) is usually performed on T1-weighted images, due to their high spatial resolution. T1w sequence, however, has some major downsides when brain lesions are present: the altered appearance of diseased tissues causes errors in tissues classification. In order to overcome these drawbacks, we employed two different MR sequences: fluid attenuated inversion recovery (FLAIR) and double inversion recovery (DIR). The former highlights both gray matter (GM) and white matter (WM), the latter highlights GM alone. We propose here a supervised classification scheme that does not require any anatomical a priori information to identify the 3 classes, "GM", "WM", and "background". Features are extracted by means of a local multi-scale texture analysis, computed for each pixel of the DIR and FLAIR sequences. The 9 textures considered are average, standard deviation, kurtosis, entropy, contrast, correlation, energy, homogeneity, and skewness, evaluated on a neighborhood of 3x3, 5x5, and 7x7 pixels. Hence, the total number of features associated to a pixel is 56 (9 textures x3 scales x2 sequences +2 original pixel values). The classifier employed is a Support Vector Machine with Radial Basis Function as kernel. From each of the 4 brain volumes evaluated, a DIR and a FLAIR slice have been selected and manually segmented by 2 expert neurologists, providing 1st and 2nd human reference observations which agree with an average accuracy of 99.03%. SVM performances have been assessed with a 4-fold cross-validation, yielding an average classification accuracy of 98.79%.
Multistage morphological segmentation of bright-field and fluorescent microscopy images
NASA Astrophysics Data System (ADS)
Korzyńska, A.; Iwanowski, M.
2012-06-01
This paper describes the multistage morphological segmentation method (MSMA) for microscopic cell images. The proposed method enables us to study the cell behaviour by using a sequence of two types of microscopic images: bright field images and/or fluorescent images. The proposed method is based on two types of information: the cell texture coming from the bright field images and intensity of light emission, done by fluorescent markers. The method is dedicated to the image sequences segmentation and it is based on mathematical morphology methods supported by other image processing techniques. The method allows for detecting cells in image independently from a degree of their flattening and from presenting structures which produce the texture. It makes use of some synergic information from the fluorescent light emission image as the support information. The MSMA method has been applied to images acquired during the experiments on neural stem cells as well as to artificial images. In order to validate the method, two types of errors have been considered: the error of cell area detection and the error of cell position using artificial images as the "gold standard".
Preliminary Analysis of Effect of Random Segment Errors on Coronagraph Performance
NASA Technical Reports Server (NTRS)
Stahl, Mark T.; Shaklan, Stuart B.; Stahl, H. Philip
2015-01-01
Are we alone in the Universe is probably the most compelling science question of our generation. To answer it requires a large aperture telescope with extreme wavefront stability. To image and characterize Earth-like planets requires the ability to block 10(exp 10) of the host stars light with a 10(exp -11) stability. For an internal coronagraph, this requires correcting wavefront errors and keeping that correction stable to a few picometers rms for the duration of the science observation. This requirement places severe specifications upon the performance of the observatory, telescope and primary mirror. A key task of the AMTD project (initiated in FY12) is to define telescope level specifications traceable to science requirements and flow those specifications to the primary mirror. From a systems perspective, probably the most important question is: What is the telescope wavefront stability specification? Previously, we suggested this specification should be 10 picometers per 10 minutes; considered issues of how this specification relates to architecture, i.e. monolithic or segmented primary mirror; and asked whether it was better to have few or many segmented. This paper reviews the 10 picometers per 10 minutes specification; provides analysis related to the application of this specification to segmented apertures; and suggests that a 3 or 4 ring segmented aperture is more sensitive to segment rigid body motion that an aperture with fewer or more segments.
Wavefront Compensation Segmented Mirror Sensing and Control
NASA Technical Reports Server (NTRS)
Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen
2012-01-01
The primary mirror of very large submillimeter-wave telescopes will necessarily be segmented into many separate mirror panels. These panels must be continuously co-phased to keep the telescope wavefront error less than a small fraction of a wavelength, to ten microns RMS (root mean square) or less. This performance must be maintained continuously across the full aperture of the telescope, in all pointing conditions, and in a variable thermal environment. A wavefront compensation segmented mirror sensing and control system, consisting of optical edge sensors, Wavefront Compensation Estimator/Controller Soft ware, and segment position actuators is proposed. Optical edge sensors are placed two per each segment-to-segment edge to continuously measure changes in segment state. Segment position actuators (three per segment) are used to move the panels. A computer control system uses the edge sensor measurements to estimate the state of all of the segments and to predict the wavefront error; segment actuator commands are computed that minimize the wavefront error. Translational or rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured by the imaging sensor. For high accuracy, the collimator uses a shaped mask, such as one or more slits, so that the light beam forms a pattern on the sensor that permits sensing accuracy of better than 0.1 micron in two axes: in the z or local surface normal direction, and in the y direction parallel to the mirror surface and perpendicular to the beam direction. Using a co-aligned pair of sensors, with the location of the detector and collimated light source interchanged, four degrees of freedom can be sensed: transverse x and y displacements, as well as two bending angles (pitch and yaw). In this approach, each optical edge sensor head has a collimator and an imager, placing one sensor head on each side of a segment gap, with two parallel light beams crossing the gap. Two sets of optical edge sensors are used per segment-to-segment edge, separated by a finite distance along the segment edge, for four optical heads, each with an imager and a collimator. By orienting the beam direction of one edge sensor pair to be +45 away from the segment edge direction, and the other sensor pair to be oriented -45 away from the segment edge direction, all six degrees of freedom of relative motion between the segments can be measured with some redundancy. The software resides in a computer that receives each of the optical edge sensor signals, as well as telescope pointing commands. It feeds back the edge sensor signals to keep the primary mirror figure within specification. It uses a feed-forward control to compensate for global effects such as decollimation of the primary and secondary mirrors due to gravity sag as the telescope pointing changes to track science objects. Three segment position actuators will be provided per segment to enable controlled motions in the piston, tip, and tilt degrees of freedom. These actuators are driven by the software, providing the optical changes needed to keep the telescope phased.
Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino
2018-01-01
Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P < 0.01). Blood flow analysis from manual and automatically corrected segmentations did not differ significantly (P > 0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Geometric error characterization and error budgets. [thematic mapper
NASA Technical Reports Server (NTRS)
Beyer, E.
1982-01-01
Procedures used in characterizing geometric error sources for a spaceborne imaging system are described using the LANDSAT D thematic mapper ground segment processing as the prototype. Software was tested through simulation and is undergoing tests with the operational hardware as part of the prelaunch system evaluation. Geometric accuracy specifications, geometric correction, and control point processing are discussed. Cross track and along track errors are tabulated for the thematic mapper, the spacecraft, and ground processing to show the temporal registration error budget in pixel (42.5 microrad) 90%.
NASA Astrophysics Data System (ADS)
Remy, Charlotte; Lalonde, Arthur; Béliveau-Nadeau, Dominic; Carrier, Jean-François; Bouchard, Hugo
2018-01-01
The purpose of this study is to evaluate the impact of a novel tissue characterization method using dual-energy over single-energy computed tomography (DECT and SECT) on Monte Carlo (MC) dose calculations for low-dose rate (LDR) prostate brachytherapy performed in a patient like geometry. A virtual patient geometry is created using contours from a real patient pelvis CT scan, where known elemental compositions and varying densities are overwritten in each voxel. A second phantom is made with additional calcifications. Both phantoms are the ground truth with which all results are compared. Simulated CT images are generated from them using attenuation coefficients taken from the XCOM database with a 100 kVp spectrum for SECT and 80 and 140Sn kVp for DECT. Tissue segmentation for Monte Carlo dose calculation is made using a stoichiometric calibration method for the simulated SECT images. For the DECT images, Bayesian eigentissue decomposition is used. A LDR prostate brachytherapy plan is defined with 125I sources and then calculated using the EGSnrc user-code Brachydose for each case. Dose distributions and dose-volume histograms (DVH) are compared to ground truth to assess the accuracy of tissue segmentation. For noiseless images, DECT-based tissue segmentation outperforms the SECT procedure with a root mean square error (RMS) on relative errors on dose distributions respectively of 2.39% versus 7.77%, and provides DVHs closest to the reference DVHs for all tissues. For a medium level of CT noise, Bayesian eigentissue decomposition still performs better on the overall dose calculation as the RMS error is found to be of 7.83% compared to 9.15% for SECT. Both methods give a similar DVH for the prostate while the DECT segmentation remains more accurate for organs at risk and in presence of calcifications, with less than 5% of RMS errors within the calcifications versus up to 154% for SECT. In a patient-like geometry, DECT-based tissue segmentation provides dose distributions with the highest accuracy and the least bias compared to SECT. When imaging noise is considered, benefits of DECT are noticeable if important calcifications are found within the prostate.
CT volumetry of the skeletal tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brindle, James M.; Alexandre Trindade, A.; Pichardo, Jose C.
2006-10-15
Computed tomography (CT) is an important and widely used modality in the diagnosis and treatment of various cancers. In the field of molecular radiotherapy, the use of spongiosa volume (combined tissues of the bone marrow and bone trabeculae) has been suggested as a means to improve the patient-specificity of bone marrow dose estimates. The noninvasive estimation of an organ volume comes with some degree of error or variation from the true organ volume. The present study explores the ability to obtain estimates of spongiosa volume or its surrogate via manual image segmentation. The variation among different segmentation raters was exploredmore » and found not to be statistically significant (p value >0.05). Accuracy was assessed by having several raters manually segment a polyvinyl chloride (PVC) pipe with known volumes. Segmentation of the outer region of the PVC pipe resulted in mean percent errors as great as 15% while segmentation of the pipe's inner region resulted in mean percent errors within {approx}5%. Differences between volumes estimated with the high-resolution CT data set (typical of ex vivo skeletal scans) and the low-resolution CT data set (typical of in vivo skeletal scans) were also explored using both patient CT images and a PVC pipe phantom. While a statistically significant difference (p value <0.002) between the high-resolution and low-resolution data sets was observed with excised femoral heads obtained following total hip arthroplasty, the mean difference between high-resolution and low-resolution data sets was found to be only 1.24 and 2.18 cm{sup 3} for spongiosa and cortical bone, respectively. With respect to differences observed with the PVC pipe, the variation between the high-resolution and low-resolution mean percent errors was a high as {approx}20% for the outer region volume estimates and only as high as {approx}6% for the inner region volume estimates. The findings from this study suggest that manual segmentation is a reasonably accurate and reliable means for the in vivo estimation of spongiosa volume. This work also provides a foundation for future studies where spongiosa volumes are estimated by various raters in more comprehensive CT data sets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Z.; Ruland, R.; Dix, B.
The Stanford Linear Accelerator Center is evaluating the feasibility of placing a free electron laser (FEL) at the end of the linear accelerator. The proposal is to inject electrons two thirds of the way down the linac, accelerate the electrons for the last one third of the linac, and then send the electrons into the FEL. This project is known as the LCLS (Linac Coherent Light Source). To test the feasibility of the LCLS, a smaller experiment VISA (Visual to Infrared SASE (Self Amplified Stimulated Emission) Amplifier) is being performed at Brookhaven National Laboratory. VISA consists of four wiggler segments,more » each 0.99 m long. The four segments are required to be aligned to the beam axis with an rms error less than 50 {micro}m [1]. This very demanding alignment is carried out in two steps [2]. First the segments are fiducialized using a pulsed wire system. Then the wiggler segments are placed along a reference laser beam which coincides with the electron beam axis. In the wiggler segment fiducialization, a wire is stretched through a wiggler segment and a current pulse is sent down the wire. The deflection of the wire is monitored. The deflection gives information about the electron beam trajectory. The wire is moved until its x position, the coordinate without wire sag, is on the ideal beam trajectory. (The y position is obtained by rotating the wiggler 90{sup o}.) Once the wire is on the ideal beam trajectory, the wire's location is measured relative to tooling balls on the wiggler segment. To locate the wire, a device was constructed which measures the wire position relative to tooling balls on the device. The device is called the wire finder. It will be discussed in this paper. To place the magnets along the reference laser beam, the position of the laser beam must be determined. A device which can locate the laser beam relative to tooling balls was constructed and is also discussed in this paper. This device is called the laser finder. With a total alignment error budget less than 50 {micro}m, both the fiducialization and magnet placement must be performed with errors much smaller than 50 {micro}m. It is desired to keep the errors from the wire finder and laser finder at the few {micro}m level.« less
Daniels, David J; Luo, T David; Puffer, Ross; McIntosh, Amy L; Larson, A Noelle; Wetjen, Nicholas M; Clarke, Michelle J
2015-03-01
Motocross racing is a popular sport; however, its impact on the growing/developing pediatric spine is unknown. Using a retrospective cohort model, the authors compared the degree of advanced degenerative findings in young motocross racers with findings in age-matched controls. Patients who had been treated for motocross-related injury at the authors' institution between 2000 and 2007 and had been under 18 years of age at the time of injury and had undergone plain radiographic or CT examination of any spinal region were eligible for inclusion. Imaging was reviewed in a blinded fashion by 3 physicians for degenerative findings, including endplate abnormalities, loss of vertebral body height, wedging, and malalignment. Acute pathological segments were excluded. Spine radiographs from age-matched controls were similarly reviewed and the findings were compared. The motocross cohort consisted of 29 riders (mean age 14.7 years; 82% male); the control cohort consisted of 45 adolescents (mean age 14.3 years; 71% male). In the cervical spine, the motocross cohort had 55 abnormalities in 203 segments (average 1.90 abnormalities/patient) compared with 20 abnormalities in 213 segments in the controls (average 0.65/patient) (p = 0.006, Student t-test). In the thoracic spine, the motocross riders had 51 abnormalities in 292 segments (average 2.04 abnormalities/patient) compared with 25 abnormalities in 299 segments in the controls (average 1.00/patient) (p = 0.045). In the lumbar spine, the motocross cohort had 11 abnormalities in 123 segments (average 0.44 abnormalities/patient) compared with 15 abnormalities in 150 segments in the controls (average 0.50/patient) (p = 0.197). Increased degenerative changes in the cervical and thoracic spine were identified in adolescent motocross racers compared with age-matched controls. The long-term consequences of these changes are unknown; however, athletes and parents should be counseled accordingly about participation in motocross activities.
NASA Astrophysics Data System (ADS)
Hayashi, Yoshikatsu; Tamura, Yurie; Sase, Kazuya; Sugawara, Ken; Sawada, Yasuji
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Tumor Burden Analysis on Computed Tomography by Automated Liver and Tumor Segmentation
Linguraru, Marius George; Richbourg, William J.; Liu, Jianfei; Watt, Jeremy M.; Pamulapati, Vivek; Wang, Shijun; Summers, Ronald M.
2013-01-01
The paper presents the automated computation of hepatic tumor burden from abdominal CT images of diseased populations with images with inconsistent enhancement. The automated segmentation of livers is addressed first. A novel three-dimensional (3D) affine invariant shape parameterization is employed to compare local shape across organs. By generating a regular sampling of the organ's surface, this parameterization can be effectively used to compare features of a set of closed 3D surfaces point-to-point, while avoiding common problems with the parameterization of concave surfaces. From an initial segmentation of the livers, the areas of atypical local shape are determined using training sets. A geodesic active contour corrects locally the segmentations of the livers in abnormal images. Graph cuts segment the hepatic tumors using shape and enhancement constraints. Liver segmentation errors are reduced significantly and all tumors are detected. Finally, support vector machines and feature selection are employed to reduce the number of false tumor detections. The tumor detection true position fraction of 100% is achieved at 2.3 false positives/case and the tumor burden is estimated with 0.9% error. Results from the test data demonstrate the method's robustness to analyze livers from difficult clinical cases to allow the temporal monitoring of patients with hepatic cancer. PMID:22893379
Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly
Maier, Andrea B.; Aarts, Ronald G. K. M.; van Gerven, Joop M. A.; Arendzen, J. Hans; Schouten, Alfred C.; Meskers, Carel G. M.; van der Kooij, Herman
2016-01-01
Objectives System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques. Methods In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom) was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory), systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID), standard error of measurement (SEM) and minimal detectable change (MDC). Results A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged. Conclusion This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at least seven trials of two minutes must be performed on one day. PMID:26953694
Rossi X-Ray Timing Explorer All-Sky Monitor Localization of SGR 1627-41
NASA Astrophysics Data System (ADS)
Smith, Donald A.; Bradt, Hale V.; Levine, Alan M.
1999-07-01
The fourth unambiguously identified soft gamma repeater (SGR), SGR 1627-41, was discovered with the BATSE instrument on 1998 June 15. Interplanetary Network (IPN) measurements and BATSE data constrained the location of this new SGR to a 6° segment of a narrow (19") annulus. We present two bursts from this source observed by the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer. We use the ASM data to further constrain the source location to a 5' long segment of the BATSE/IPN error box. The ASM/IPN error box lies within 0.3 arcmin of the supernova remnant G337.0-0.1. The probability that a supernova remnant would fall so close to the error box purely by chance is ~5%.
RXTE All-Sky Monitor Localization of SGR 1627-41
NASA Astrophysics Data System (ADS)
Smith, D. A.; Bradt, H. V.; Levine, A. M.
1999-09-01
The fourth unambiguously identified Soft Gamma Repeater (SGR), SGR 1627--41, was discovered with the BATSE instrument on 1998 June 15 (Kouveliotou et al. 1998). Interplanetary Network (IPN) measurements and BATSE data constrained the location of this new SGR to a 6(deg) segment of a narrow (19('') ) annulus (Hurley et al. 1999; Woods et al. 1998). We report on two bursts from this source observed by the All-Sky Monitor (ASM) on RXTE. We use the ASM data to further constrain the source location to a 5(') long segment of the BATSE/IPN error box. The ASM/IPN error box lies within 0.3(') of the supernova remnant (SNR) G337.0--0.1. The probability that a SNR would fall so close to the error box purely by chance is ~ 5%.
Debuc, Delia Cabrera; Salinas, Harry M; Ranganathan, Sudarshan; Tátrai, Erika; Gao, Wei; Shen, Meixiao; Wang, Jianhua; Somfai, Gábor M; Puliafito, Carmen A
2010-01-01
We demonstrate quantitative analysis and error correction of optical coherence tomography (OCT) retinal images by using a custom-built, computer-aided grading methodology. A total of 60 Stratus OCT (Carl Zeiss Meditec, Dublin, California) B-scans collected from ten normal healthy eyes are analyzed by two independent graders. The average retinal thickness per macular region is compared with the automated Stratus OCT results. Intergrader and intragrader reproducibility is calculated by Bland-Altman plots of the mean difference between both gradings and by Pearson correlation coefficients. In addition, the correlation between Stratus OCT and our methodology-derived thickness is also presented. The mean thickness difference between Stratus OCT and our methodology is 6.53 microm and 26.71 microm when using the inner segment/outer segment (IS/OS) junction and outer segment/retinal pigment epithelium (OS/RPE) junction as the outer retinal border, respectively. Overall, the median of the thickness differences as a percentage of the mean thickness is less than 1% and 2% for the intragrader and intergrader reproducibility test, respectively. The measurement accuracy range of the OCT retinal image analysis (OCTRIMA) algorithm is between 0.27 and 1.47 microm and 0.6 and 1.76 microm for the intragrader and intergrader reproducibility tests, respectively. Pearson correlation coefficients demonstrate R(2)>0.98 for all Early Treatment Diabetic Retinopathy Study (ETDRS) regions. Our methodology facilitates a more robust and localized quantification of the retinal structure in normal healthy controls and patients with clinically significant intraretinal features.
Retinal nerve fiber layer thickness in normals measured by spectral domain OCT.
Bendschneider, Delia; Tornow, Ralf P; Horn, Folkert K; Laemmer, Robert; Roessler, Christopher W; Juenemann, Anselm G; Kruse, Friedrich E; Mardin, Christian Y
2010-09-01
To determine normal values for peripapillary retinal nerve fiber layer thickness (RNFL) measured by spectral domain Optical Coherence Tomography (SOCT) in healthy white adults and to examine the relationship of RNFL with age, gender, and clinical variables. The peripapillary RNFL of 170 healthy patients (96 males and 74 females, age 20 to 78 y) was imaged with a high-resolution SOCT (Spectralis HRA+OCT, Heidelberg Engineering) in an observational cross-sectional study. RNFL thickness was measured around the optic nerve head using 16 automatically averaged, consecutive circular B-scans with 3.4-mm diameter. The automatically segmented RNFL thickness was divided into 32 segments (11.25 degrees each). One randomly selected eye per subject entered the study. Mean RNFL thickness in the study population was 97.2 ± 9.7 μm. Mean RNFL thickness was significantly negatively correlated with age (r = -0.214, P = 0.005), mean RNFL decrease per decade was 1.90 μm. As age dependency was different in different segments, age-correction of RNFL values was made for all segments separately. Age-adjusted RNFL thickness showed a significant correlation with axial length (r = -0.391, P = 0.001) and with refractive error (r = 0.396, P<0.001), but not with disc size (r = 0.124). Normal RNFL results with SOCT are comparable to those reported with time-domain OCT. In accordance with the literature on other devices, RNFL thickness measured with SOCT was significantly correlated with age and axial length. For creating a normative database of SOCT RNFL values have to be age adjusted.
NASA Astrophysics Data System (ADS)
Cabrera Debuc, Delia; Salinas, Harry M.; Ranganathan, Sudarshan; Tátrai, Erika; Gao, Wei; Shen, Meixiao; Wang, Jianhua; Somfai, Gábor M.; Puliafito, Carmen A.
2010-07-01
We demonstrate quantitative analysis and error correction of optical coherence tomography (OCT) retinal images by using a custom-built, computer-aided grading methodology. A total of 60 Stratus OCT (Carl Zeiss Meditec, Dublin, California) B-scans collected from ten normal healthy eyes are analyzed by two independent graders. The average retinal thickness per macular region is compared with the automated Stratus OCT results. Intergrader and intragrader reproducibility is calculated by Bland-Altman plots of the mean difference between both gradings and by Pearson correlation coefficients. In addition, the correlation between Stratus OCT and our methodology-derived thickness is also presented. The mean thickness difference between Stratus OCT and our methodology is 6.53 μm and 26.71 μm when using the inner segment/outer segment (IS/OS) junction and outer segment/retinal pigment epithelium (OS/RPE) junction as the outer retinal border, respectively. Overall, the median of the thickness differences as a percentage of the mean thickness is less than 1% and 2% for the intragrader and intergrader reproducibility test, respectively. The measurement accuracy range of the OCT retinal image analysis (OCTRIMA) algorithm is between 0.27 and 1.47 μm and 0.6 and 1.76 μm for the intragrader and intergrader reproducibility tests, respectively. Pearson correlation coefficients demonstrate R2>0.98 for all Early Treatment Diabetic Retinopathy Study (ETDRS) regions. Our methodology facilitates a more robust and localized quantification of the retinal structure in normal healthy controls and patients with clinically significant intraretinal features.
Ding, Ziyun; Nolte, Daniel; Kit Tsang, Chui; Cleather, Daniel J; Kedgley, Angela E; Bull, Anthony M J
2016-02-01
Segment-based musculoskeletal models allow the prediction of muscle, ligament, and joint forces without making assumptions regarding joint degrees-of-freedom (DOF). The dataset published for the "Grand Challenge Competition to Predict in vivo Knee Loads" provides directly measured tibiofemoral contact forces for activities of daily living (ADL). For the Sixth Grand Challenge Competition to Predict in vivo Knee Loads, blinded results for "smooth" and "bouncy" gait trials were predicted using a customized patient-specific musculoskeletal model. For an unblinded comparison, the following modifications were made to improve the predictions: further customizations, including modifications to the knee center of rotation; reductions to the maximum allowable muscle forces to represent known loss of strength in knee arthroplasty patients; and a kinematic constraint to the hip joint to address the sensitivity of the segment-based approach to motion tracking artifact. For validation, the improved model was applied to normal gait, squat, and sit-to-stand for three subjects. Comparisons of the predictions with measured contact forces showed that segment-based musculoskeletal models using patient-specific input data can estimate tibiofemoral contact forces with root mean square errors (RMSEs) of 0.48-0.65 times body weight (BW) for normal gait trials. Comparisons between measured and predicted tibiofemoral contact forces yielded an average coefficient of determination of 0.81 and RMSEs of 0.46-1.01 times BW for squatting and 0.70-0.99 times BW for sit-to-stand tasks. This is comparable to the best validations in the literature using alternative models.
Automated regional analysis of B-mode ultrasound images of skeletal muscle movement
Darby, John; Costen, Nicholas; Loram, Ian D.
2012-01-01
To understand the functional significance of skeletal muscle anatomy, a method of quantifying local shape changes in different tissue structures during dynamic tasks is required. Taking advantage of the good spatial and temporal resolution of B-mode ultrasound imaging, we describe a method of automatically segmenting images into fascicle and aponeurosis regions and tracking movement of features, independently, in localized portions of each tissue. Ultrasound images (25 Hz) of the medial gastrocnemius muscle were collected from eight participants during ankle joint rotation (2° and 20°), isometric contractions (1, 5, and 50 Nm), and deep knee bends. A Kanade-Lucas-Tomasi feature tracker was used to identify and track any distinctive and persistent features within the image sequences. A velocity field representation of local movement was then found and subdivided between fascicle and aponeurosis regions using segmentations from a multiresolution active shape model (ASM). Movement in each region was quantified by interpolating the effect of the fields on a set of probes. ASM segmentation results were compared with hand-labeled data, while aponeurosis and fascicle movement were compared with results from a previously documented cross-correlation approach. ASM provided good image segmentations (<1 mm average error), with fully automatic initialization possible in sequences from seven participants. Feature tracking provided similar length change results to the cross-correlation approach for small movements, while outperforming it in larger movements. The proposed method provides the potential to distinguish between active and passive changes in muscle shape and model strain distributions during different movements/conditions and quantify nonhomogeneous strain along aponeuroses. PMID:22033532
Sensitivity analysis of brain morphometry based on MRI-derived surface models
NASA Astrophysics Data System (ADS)
Klein, Gregory J.; Teng, Xia; Schoenemann, P. T.; Budinger, Thomas F.
1998-07-01
Quantification of brain structure is important for evaluating changes in brain size with growth and aging and for characterizing neurodegeneration disorders. Previous quantification efforts using ex vivo techniques suffered considerable error due to shrinkage of the cerebrum after extraction from the skull, deformation of slices during sectioning, and numerous other factors. In vivo imaging studies of brain anatomy avoid these problems and allow repetitive studies following progression of brain structure changes due to disease or natural processes. We have developed a methodology for obtaining triangular mesh models of the cortical surface from MRI brain datasets. The cortex is segmented from nonbrain tissue using a 2D region-growing technique combined with occasional manual edits. Once segmented, thresholding and image morphological operations (erosions and openings) are used to expose the regions between adjacent surfaces in deep cortical folds. A 2D region- following procedure is then used to find a set of contours outlining the cortical boundary on each slice. The contours on all slices are tiled together to form a closed triangular mesh model approximating the cortical surface. This model can be used for calculation of cortical surface area and volume, as well as other parameters of interest. Except for the initial segmentation of the cortex from the skull, the technique is automatic and requires only modest computation time on modern workstations. Though the use of image data avoids many of the pitfalls of ex vivo and sectioning techniques, our MRI-based technique is still vulnerable to errors that may impact the accuracy of estimated brain structure parameters. Potential inaccuracies include segmentation errors due to incorrect thresholding, missed deep sulcal surfaces, falsely segmented holes due to image noise and surface tiling artifacts. The focus of this paper is the characterization of these errors and how they affect measurements of cortical surface area and volume.
Kaufhold, John P; Tsai, Philbert S; Blinder, Pablo; Kleinfeld, David
2012-08-01
A graph of tissue vasculature is an essential requirement to model the exchange of gasses and nutriments between the blood and cells in the brain. Such a graph is derived from a vectorized representation of anatomical data, provides a map of all vessels as vertices and segments, and may include the location of nonvascular components, such as neuronal and glial somata. Yet vectorized data sets typically contain erroneous gaps, spurious endpoints, and spuriously merged strands. Current methods to correct such defects only address the issue of connecting gaps and further require manual tuning of parameters in a high dimensional algorithm. To address these shortcomings, we introduce a supervised machine learning method that (1) connects vessel gaps by "learned threshold relaxation"; (2) removes spurious segments by "learning to eliminate deletion candidate strands"; and (3) enforces consistency in the joint space of learned vascular graph corrections through "consistency learning." Human operators are only required to label individual objects they recognize in a training set and are not burdened with tuning parameters. The supervised learning procedure examines the geometry and topology of features in the neighborhood of each vessel segment under consideration. We demonstrate the effectiveness of these methods on four sets of microvascular data, each with >800(3) voxels, obtained with all optical histology of mouse tissue and vectorization by state-of-the-art techniques in image segmentation. Through statistically validated sampling and analysis in terms of precision recall curves, we find that learning with bagged boosted decision trees reduces equal-error error rates for threshold relaxation by 5-21% and strand elimination performance by 18-57%. We benchmark generalization performance across datasets; while improvements vary between data sets, learning always leads to a useful reduction in error rates. Overall, learning is shown to more than halve the total error rate, and therefore, human time spent manually correcting such vectorizations. Copyright © 2012 Elsevier B.V. All rights reserved.
Kaufhold, John P.; Tsai, Philbert S.; Blinder, Pablo; Kleinfeld, David
2012-01-01
A graph of tissue vasculature is an essential requirement to model the exchange of gasses and nutriments between the blood and cells in the brain. Such a graph is derived from a vectorized representation of anatomical data, provides a map of all vessels as vertices and segments, and may include the location of nonvascular components, such as neuronal and glial somata. Yet vectorized data sets typically contain erroneous gaps, spurious endpoints, and spuriously merged strands. Current methods to correct such defects only address the issue of connecting gaps and further require manual tuning of parameters in a high dimensional algorithm. To address these shortcomings, we introduce a supervised machine learning method that (1) connects vessel gaps by “learned threshold relaxation”; (2) removes spurious segments by “learning to eliminate deletion candidate strands”; and (3) enforces consistency in the joint space of learned vascular graph corrections through “consistency learning.” Human operators are only required to label individual objects they recognize in a training set and are not burdened with tuning parameters. The supervised learning procedure examines the geometry and topology of features in the neighborhood of each vessel segment under consideration. We demonstrate the effectiveness of these methods on four sets of microvascular data, each with > 8003 voxels, obtained with all optical histology of mouse tissue and vectorization by state-of-the-art techniques in image segmentation. Through statistically validated sampling and analysis in terms of precision recall curves, we find that learning with bagged boosted decision trees reduces equal-error error rates for threshold relaxation by 5 to 21 % and strand elimination performance by 18 to 57 %. We benchmark generalization performance across datasets; while improvements vary between data sets, learning always leads to a useful reduction in error rates. Overall, learning is shown to more than halve the total error rate, and therefore, human time spent manually correcting such vectorizations. PMID:22854035
Mobile gaze tracking system for outdoor walking behavioral studies
Tomasi, Matteo; Pundlik, Shrinivas; Bowers, Alex R.; Peli, Eli; Luo, Gang
2016-01-01
Most gaze tracking techniques estimate gaze points on screens, on scene images, or in confined spaces. Tracking of gaze in open-world coordinates, especially in walking situations, has rarely been addressed. We use a head-mounted eye tracker combined with two inertial measurement units (IMU) to track gaze orientation relative to the heading direction in outdoor walking. Head movements relative to the body are measured by the difference in output between the IMUs on the head and body trunk. The use of the IMU pair reduces the impact of environmental interference on each sensor. The system was tested in busy urban areas and allowed drift compensation for long (up to 18 min) gaze recording. Comparison with ground truth revealed an average error of 3.3° while walking straight segments. The range of gaze scanning in walking is frequently larger than the estimation error by about one order of magnitude. Our proposed method was also tested with real cases of natural walking and it was found to be suitable for the evaluation of gaze behaviors in outdoor environments. PMID:26894511
Passive quantum error correction of linear optics networks through error averaging
NASA Astrophysics Data System (ADS)
Marshman, Ryan J.; Lund, Austin P.; Rohde, Peter P.; Ralph, Timothy C.
2018-02-01
We propose and investigate a method of error detection and noise correction for bosonic linear networks using a method of unitary averaging. The proposed error averaging does not rely on ancillary photons or control and feedforward correction circuits, remaining entirely passive in its operation. We construct a general mathematical framework for this technique and then give a series of proof of principle examples including numerical analysis. Two methods for the construction of averaging are then compared to determine the most effective manner of implementation and probe the related error thresholds. Finally we discuss some of the potential uses of this scheme.
Computerized tongue image segmentation via the double geo-vector flow
2014-01-01
Background Visual inspection for tongue analysis is a diagnostic method in traditional Chinese medicine (TCM). Owing to the variations in tongue features, such as color, texture, coating, and shape, it is difficult to precisely extract the tongue region in images. This study aims to quantitatively evaluate tongue diagnosis via automatic tongue segmentation. Methods Experiments were conducted using a clinical image dataset provided by the Laboratory of Traditional Medical Syndromes, Shanghai University of TCM. First, a clinical tongue image was refined by a saliency window. Second, we initialized the tongue area as the upper binary part and lower level set matrix. Third, a double geo-vector flow (DGF) was proposed to detect the tongue edge and segment the tongue region in the image, such that the geodesic flow was evaluated in the lower part, and the geo-gradient vector flow was evaluated in the upper part. Results The performance of the DGF was evaluated using 100 images. The DGF exhibited better results compared with other representative studies, with its true-positive volume fraction reaching 98.5%, its false-positive volume fraction being 1.51%, and its false-negative volume fraction being 1.42%. The errors between the proposed automatic segmentation results and manual contours were 0.29 and 1.43% in terms of the standard boundary error metrics of Hausdorff distance and mean distance, respectively. Conclusions By analyzing the time complexity of the DGF and evaluating its performance via standard boundary and area error metrics, we have shown both efficiency and effectiveness of the DGF for automatic tongue image segmentation. PMID:24507094
Computerized tongue image segmentation via the double geo-vector flow.
Shi, Miao-Jing; Li, Guo-Zheng; Li, Fu-Feng; Xu, Chao
2014-02-08
Visual inspection for tongue analysis is a diagnostic method in traditional Chinese medicine (TCM). Owing to the variations in tongue features, such as color, texture, coating, and shape, it is difficult to precisely extract the tongue region in images. This study aims to quantitatively evaluate tongue diagnosis via automatic tongue segmentation. Experiments were conducted using a clinical image dataset provided by the Laboratory of Traditional Medical Syndromes, Shanghai University of TCM. First, a clinical tongue image was refined by a saliency window. Second, we initialized the tongue area as the upper binary part and lower level set matrix. Third, a double geo-vector flow (DGF) was proposed to detect the tongue edge and segment the tongue region in the image, such that the geodesic flow was evaluated in the lower part, and the geo-gradient vector flow was evaluated in the upper part. The performance of the DGF was evaluated using 100 images. The DGF exhibited better results compared with other representative studies, with its true-positive volume fraction reaching 98.5%, its false-positive volume fraction being 1.51%, and its false-negative volume fraction being 1.42%. The errors between the proposed automatic segmentation results and manual contours were 0.29 and 1.43% in terms of the standard boundary error metrics of Hausdorff distance and mean distance, respectively. By analyzing the time complexity of the DGF and evaluating its performance via standard boundary and area error metrics, we have shown both efficiency and effectiveness of the DGF for automatic tongue image segmentation.
NASA Astrophysics Data System (ADS)
Chupin, Marie; Hasboun, Dominique; Mukuna-Bantumbakulu, Romain; Bardinet, Eric; Baillet, Sylvain; Kinkingnéhun, Serge; Lemieux, Louis; Dubois, Bruno; Garnero, Line
2006-03-01
The hippocampus (Hc) and the amygdala (Am) are two cerebral structures that play a central role in main cognitive processes. Their segmentation allows atrophy in specific neurological illnesses to be quantified, but is made difficult by the complexity of the structures. In this work, a new algorithm for the simultaneous segmentation of Hc and Am based on competitive homotopic region deformations is presented. The deformations are constrained by relational priors derived from anatomical knowledge, namely probabilities for each structure around automatically retrieved landmarks at the border of the objects. The approach is designed to perform well on data from diseased subjects. The segmentation is initialized by extracting a bounding box and positioning two seeds; total execution time for both sides is between 10 and 15 minutes including initialization for the two structures. We present the results of validation based on comparison with manual segmentation, using volume error, spatial overlap and border distance measures. For 8 young healthy subjects the mean volume error was 7% for Hc and 11% for Am, the overlap: 84% for Hc and 83% for Am, the maximal distance: 4.2mm for Hc and 3.1mm for Am; for 4 Alzheimer's disease patients the mean volume error was 9% for Hc and Am, the overlap: 83% for Hc and 78% for Am, the maximal distance: 6mm for Hc and 4.4mm for Am. We conclude that the performance of the proposed method compares favourably with that of other published approaches in terms of accuracy and has a short execution time.
Use of scan overlap redundancy to enhance multispectral aircraft scanner data
NASA Technical Reports Server (NTRS)
Lindenlaub, J. C.; Keat, J.
1973-01-01
Two criteria were suggested for optimizing the resolution error versus signal-to-noise-ratio tradeoff. The first criterion uses equal weighting coefficients and chooses n, the number of lines averaged, so as to make the average resolution error equal to the noise error. The second criterion adjusts both the number and relative sizes of the weighting coefficients so as to minimize the total error (resolution error plus noise error). The optimum set of coefficients depends upon the geometry of the resolution element, the number of redundant scan lines, the scan line increment, and the original signal-to-noise ratio of the channel. Programs were developed to find the optimum number and relative weights of the averaging coefficients. A working definition of signal-to-noise ratio was given and used to try line averaging on a typical set of data. Line averaging was evaluated only with respect to its effect on classification accuracy.
Motion compensated shape error concealment.
Schuster, Guido M; Katsaggelos, Aggelos K
2006-02-01
The introduction of Video Objects (VOs) is one of the innovations of MPEG-4. The alpha-plane of a VO defines its shape at a given instance in time and hence determines the boundary of its texture. In packet-based networks, shape, motion, and texture are subject to loss. While there has been considerable attention paid to the concealment of texture and motion errors, little has been done in the field of shape error concealment. In this paper we propose a post-processing shape error concealment technique that uses the motion compensated boundary information of the previously received alpha-plane. The proposed approach is based on matching received boundary segments in the current frame to the boundary in the previous frame. This matching is achieved by finding a maximally smooth motion vector field. After the current boundary segments are matched to the previous boundary, the missing boundary pieces are reconstructed by motion compensation. Experimental results demonstrating the performance of the proposed motion compensated shape error concealment method, and comparing it with the previously proposed weighted side matching method are presented.
Fully automatic cervical vertebrae segmentation framework for X-ray images.
Al Arif, S M Masudur Rahman; Knapp, Karen; Slabaugh, Greg
2018-04-01
The cervical spine is a highly flexible anatomy and therefore vulnerable to injuries. Unfortunately, a large number of injuries in lateral cervical X-ray images remain undiagnosed due to human errors. Computer-aided injury detection has the potential to reduce the risk of misdiagnosis. Towards building an automatic injury detection system, in this paper, we propose a deep learning-based fully automatic framework for segmentation of cervical vertebrae in X-ray images. The framework first localizes the spinal region in the image using a deep fully convolutional neural network. Then vertebra centers are localized using a novel deep probabilistic spatial regression network. Finally, a novel shape-aware deep segmentation network is used to segment the vertebrae in the image. The framework can take an X-ray image and produce a vertebrae segmentation result without any manual intervention. Each block of the fully automatic framework has been trained on a set of 124 X-ray images and tested on another 172 images, all collected from real-life hospital emergency rooms. A Dice similarity coefficient of 0.84 and a shape error of 1.69 mm have been achieved. Copyright © 2018 Elsevier B.V. All rights reserved.
White matter lesion extension to automatic brain tissue segmentation on MRI.
de Boer, Renske; Vrooman, Henri A; van der Lijn, Fedde; Vernooij, Meike W; Ikram, M Arfan; van der Lugt, Aad; Breteler, Monique M B; Niessen, Wiro J
2009-05-01
A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.
Wasatch fault zone, Utah - segmentation and history of Holocene earthquakes
Machette, Michael N.; Personius, Stephen F.; Nelson, Alan R.; Schwartz, David P.; Lund, William R.
1991-01-01
The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. The authors have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a-1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of <0.5 mm a-1, recurrence intervals of ???10,000 years and average lengths of about 20 km. Surface-faulting events on each of the medial segments of the WFZ formed 2-4-m-high scarps repeatedly during the Holocene. Paleoseismological records for the past 6000 years indicate that a major surface-rupturing earthquake has occurred along one of the medial segments about every 395 ?? 60 years. However, between about 400 and 1500 years ago, the WFZ experienced six major surface-rupturing events, an average of one event every 220 years, or about twice as often as expected from the 6000-year record. Evidence has been found that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval.
Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.
Fechter, Tobias; Adebahr, Sonja; Baltas, Dimos; Ben Ayed, Ismail; Desrosiers, Christian; Dolz, Jose
2017-12-01
Precise delineation of organs at risk is a crucial task in radiotherapy treatment planning for delivering high doses to the tumor while sparing healthy tissues. In recent years, automated segmentation methods have shown an increasingly high performance for the delineation of various anatomical structures. However, this task remains challenging for organs like the esophagus, which have a versatile shape and poor contrast to neighboring tissues. For human experts, segmenting the esophagus from CT images is a time-consuming and error-prone process. To tackle these issues, we propose a random walker approach driven by a 3D fully convolutional neural network (CNN) to automatically segment the esophagus from CT images. First, a soft probability map is generated by the CNN. Then, an active contour model (ACM) is fitted to the CNN soft probability map to get a first estimation of the esophagus location. The outputs of the CNN and ACM are then used in conjunction with a probability model based on CT Hounsfield (HU) values to drive the random walker. Training and evaluation were done on 50 CTs from two different datasets, with clinically used peer-reviewed esophagus contours. Results were assessed regarding spatial overlap and shape similarity. The esophagus contours generated by the proposed algorithm showed a mean Dice coefficient of 0.76 ± 0.11, an average symmetric square distance of 1.36 ± 0.90 mm, and an average Hausdorff distance of 11.68 ± 6.80, compared to the reference contours. These results translate to a very good agreement with reference contours and an increase in accuracy compared to existing methods. Furthermore, when considering the results reported in the literature for the publicly available Synapse dataset, our method outperformed all existing approaches, which suggests that the proposed method represents the current state-of-the-art for automatic esophagus segmentation. We show that a CNN can yield accurate estimations of esophagus location, and that the results of this model can be refined by a random walk step taking pixel intensities and neighborhood relationships into account. One of the main advantages of our network over previous methods is that it performs 3D convolutions, thus fully exploiting the 3D spatial context and performing an efficient volume-wise prediction. The whole segmentation process is fully automatic and yields esophagus delineations in very good agreement with the gold standard, showing that it can compete with previously published methods. © 2017 American Association of Physicists in Medicine.
Zahnd, Guillaume; Kapellas, Kostas; van Hattem, Martijn; van Dijk, Anouk; Sérusclat, André; Moulin, Philippe; van der Lugt, Aad; Skilton, Michael; Orkisz, Maciej
2017-01-01
The aim of this study was to introduce and evaluate a contour segmentation method to extract the interfaces of the intima-media complex in carotid B-mode ultrasound images. The method was applied to assess the temporal variation of intima-media thickness during the cardiac cycle. The main methodological contribution of the proposed approach is the introduction of an augmented dimension to process 2-D images in a 3-D space. The third dimension, which is added to the two spatial dimensions of the image, corresponds to the tentative local thickness of the intima-media complex. The method is based on a dynamic programming scheme that runs in a 3-D space generated with a shape-adapted filter bank. The optimal solution corresponds to a single medial axis representation that fully describes the two anatomical interfaces of the arterial wall. The method is fully automatic and does not require any input from the user. The method was trained on 60 subjects and validated on 184 other subjects from six different cohorts and four different medical centers. The arterial wall was successfully segmented in all analyzed images (average pixel size = 57 ± 20 mm), with average segmentation errors of 47 ± 70 mm for the lumen-intima interface, 55 ± 68 mm for the media-adventitia interface and 66 ± 90 mm for the intima-media thickness. The amplitude of the temporal variations in IMT during the cardiac cycle was significantly higher in the diseased population than in healthy volunteers (106 ± 48 vs. 86 ± 34 mm, p = 0.001). The introduced framework is a promising approach to investigate an emerging functional parameter of the arterial wall by assessing the cyclic compression-decompression pattern of the tissues. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Strong, Laurence L.
2012-01-01
A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.
Strong, Laurence L.
2012-01-01
A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.
Patient-specific atrium models for training and pre-procedure surgical planning
NASA Astrophysics Data System (ADS)
Laing, Justin; Moore, John; Bainbridge, Daniel; Drangova, Maria; Peters, Terry
2017-03-01
Minimally invasive cardiac procedures requiring a trans-septal puncture such as atrial ablation and MitraClip® mitral valve repair are becoming increasingly common. These procedures are performed on the beating heart, and require clinicians to rely on image-guided techniques. For cases of complex or diseased anatomy, in which fluoroscopic and echocardiography images can be difficult to interpret, clinicians may benefit from patient-specific atrial models that can be used for training, surgical planning, and the validation of new devices and guidance techniques. Computed tomography (CT) images of a patient's heart were segmented and used to generate geometric models to create a patient-specific atrial phantom. Using rapid prototyping, the geometric models were converted into physical representations and used to build a mold. The atria were then molded using tissue-mimicking materials and imaged using CT. The resulting images were segmented and used to generate a point cloud data set that could be registered to the original patient data. The absolute distance of the two point clouds was compared and evaluated to determine the model's accuracy. The result when comparing the molded model point cloud to the original data set, resulted in a maximum Euclidean distance error of 4.5 mm, an average error of 0.5 mm and a standard deviation of 0.6 mm. Using our workflow for creating atrial models, potential complications, particularly for complex repairs, may be accounted for in pre-operative planning. The information gained by clinicians involved in planning and performing the procedure should lead to shorter procedural times and better outcomes for patients.
The segmentation of bones in pelvic CT images based on extraction of key frames.
Yu, Hui; Wang, Haijun; Shi, Yao; Xu, Ke; Yu, Xuyao; Cao, Yuzhen
2018-05-22
Bone segmentation is important in computed tomography (CT) imaging of the pelvis, which assists physicians in the early diagnosis of pelvic injury, in planning operations, and in evaluating the effects of surgical treatment. This study developed a new algorithm for the accurate, fast, and efficient segmentation of the pelvis. The proposed method consists of two main parts: the extraction of key frames and the segmentation of pelvic CT images. Key frames were extracted based on pixel difference, mutual information and normalized correlation coefficient. In the pelvis segmentation phase, skeleton extraction from CT images and a marker-based watershed algorithm were combined to segment the pelvis. To meet the requirements of clinical application, physician's judgment is needed. Therefore the proposed methodology is semi-automated. In this paper, 5 sets of CT data were used to test the overlapping area, and 15 CT images were used to determine the average deviation distance. The average overlapping area of the 5 sets was greater than 94%, and the minimum average deviation distance was approximately 0.58 pixels. In addition, the key frame extraction efficiency and the running time of the proposed method were evaluated on 20 sets of CT data. For each set, approximately 13% of the images were selected as key frames, and the average processing time was approximately 2 min (the time for manual marking was not included). The proposed method is able to achieve accurate, fast, and efficient segmentation of pelvic CT image sequences. Segmentation results not only provide an important reference for early diagnosis and decisions regarding surgical procedures, they also offer more accurate data for medical image registration, recognition and 3D reconstruction.
Co-adding techniques for image-based wavefront sensing for segmented-mirror telescopes
NASA Astrophysics Data System (ADS)
Smith, J. S.; Aronstein, David L.; Dean, Bruce H.; Acton, D. S.
2007-09-01
Image-based wavefront sensing algorithms are being used to characterize the optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be co-added in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on each PSF frame individually and average the resulting wavefronts. The choice of co-add methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using models and data from the James Webb Space Telescope (JWST) Testbed Telescope (TBT), we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the co-add method. Of particular interest, segment piston is more accurately recovered in "image-plane space" co-adding, while segment tip/tilt is recovered in "pupil-plane space" co-adding.
Robust keyword retrieval method for OCRed text
NASA Astrophysics Data System (ADS)
Fujii, Yusaku; Takebe, Hiroaki; Tanaka, Hiroshi; Hotta, Yoshinobu
2011-01-01
Document management systems have become important because of the growing popularity of electronic filing of documents and scanning of books, magazines, manuals, etc., through a scanner or a digital camera, for storage or reading on a PC or an electronic book. Text information acquired by optical character recognition (OCR) is usually added to the electronic documents for document retrieval. Since texts generated by OCR generally include character recognition errors, robust retrieval methods have been introduced to overcome this problem. In this paper, we propose a retrieval method that is robust against both character segmentation and recognition errors. In the proposed method, the insertion of noise characters and dropping of characters in the keyword retrieval enables robustness against character segmentation errors, and character substitution in the keyword of the recognition candidate for each character in OCR or any other character enables robustness against character recognition errors. The recall rate of the proposed method was 15% higher than that of the conventional method. However, the precision rate was 64% lower.
NASA Technical Reports Server (NTRS)
Pierson, W. J.; Salfi, R. E.
1978-01-01
Significant wave heights estimated from the shape of the return pulse wave form of the altimeter on GEOS-3 for forty-four orbit segments obtained during 1975 and 1976 are compared with the significant wave heights specified by the spectral ocean wave model (SOWM), which is the presently operational numerical wave forecasting model at the Fleet Numerical Weather Central. Except for a number of orbit segments with poor agreement and larger errors, the SOWM specifications tended to be biased from 0.5 to 1.0 meters too low and to have RMS errors of 1.0 to 1.4 meters. The much fewer larger errors can be attributed to poor wind data for some parts of the Northern Hemisphere oceans. The bias can be attributed to the somewhat too light winds used to generate the waves in the model. Other sources of error are identified in the equatorial and trade wind areas.
An Analysis of Image Segmentation Time in Beam’s-Eye-View Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chun; Spelbring, D.R.; Chen, George T.Y.
In this work we tabulate and histogram the image segmentation time for beam’s eye view (BEV) treatment planning in our center. The average time needed to generate contours on CT images delineating normal structures and treatment target volumes is calculated using a data base containing over 500 patients’ BEV plans. The average number of contours and total image segmentation time needed for BEV plans in three common treatment sites, namely, head/neck, lung/chest, and prostate, were estimated.
Jung, Chanho; Kim, Changick
2014-08-01
Automatic segmentation of cell nuclei clusters is a key building block in systems for quantitative analysis of microscopy cell images. For that reason, it has received a great attention over the last decade, and diverse automatic approaches to segment clustered nuclei with varying levels of performance under different test conditions have been proposed in literature. To the best of our knowledge, however, so far there is no comparative study on the methods. This study is a first attempt to fill this research gap. More precisely, the purpose of this study is to present an objective performance comparison of existing state-of-the-art segmentation methods. Particularly, the impact of their accuracy on classification of thyroid follicular lesions is also investigated "quantitatively" under the same experimental condition, to evaluate the applicability of the methods. Thirteen different segmentation approaches are compared in terms of not only errors in nuclei segmentation and delineation, but also their impact on the performance of system to classify thyroid follicular lesions using different metrics (e.g., diagnostic accuracy, sensitivity, specificity, etc.). Extensive experiments have been conducted on a total of 204 digitized thyroid biopsy specimens. Our study demonstrates that significant diagnostic errors can be avoided using more advanced segmentation approaches. We believe that this comprehensive comparative study serves as a reference point and guide for developers and practitioners in choosing an appropriate automatic segmentation technique adopted for building automated systems for specifically classifying follicular thyroid lesions. © 2014 International Society for Advancement of Cytometry.
NASA Astrophysics Data System (ADS)
Wentz, Robert; Manduca, Armando; Fletcher, J. G.; Siddiki, Hassan; Shields, Raymond C.; Vrtiska, Terri; Spencer, Garrett; Primak, Andrew N.; Zhang, Jie; Nielson, Theresa; McCollough, Cynthia; Yu, Lifeng
2007-03-01
Purpose: To develop robust, novel segmentation and co-registration software to analyze temporally overlapping CT angiography datasets, with an aim to permit automated measurement of regional aortic pulsatility in patients with abdominal aortic aneurysms. Methods: We perform retrospective gated CT angiography in patients with abdominal aortic aneurysms. Multiple, temporally overlapping, time-resolved CT angiography datasets are reconstructed over the cardiac cycle, with aortic segmentation performed using a priori anatomic assumptions for the aorta and heart. Visual quality assessment is performed following automatic segmentation with manual editing. Following subsequent centerline generation, centerlines are cross-registered across phases, with internal validation of co-registration performed by examining registration at the regions of greatest diameter change (i.e. when the second derivative is maximal). Results: We have performed gated CT angiography in 60 patients. Automatic seed placement is successful in 79% of datasets, requiring either no editing (70%) or minimal editing (less than 1 minute; 12%). Causes of error include segmentation into adjacent, high-attenuating, nonvascular tissues; small segmentation errors associated with calcified plaque; and segmentation of non-renal, small paralumbar arteries. Internal validation of cross-registration demonstrates appropriate registration in our patient population. In general, we observed that aortic pulsatility can vary along the course of the abdominal aorta. Pulsation can also vary within an aneurysm as well as between aneurysms, but the clinical significance of these findings remain unknown. Conclusions: Visualization of large vessel pulsatility is possible using ECG-gated CT angiography, partial scan reconstruction, automatic segmentation, centerline generation, and coregistration of temporally resolved datasets.
Zimmerman, Dale L; Fang, Xiangming; Mazumdar, Soumya; Rushton, Gerard
2007-01-10
The assignment of a point-level geocode to subjects' residences is an important data assimilation component of many geographic public health studies. Often, these assignments are made by a method known as automated geocoding, which attempts to match each subject's address to an address-ranged street segment georeferenced within a streetline database and then interpolate the position of the address along that segment. Unfortunately, this process results in positional errors. Our study sought to model the probability distribution of positional errors associated with automated geocoding and E911 geocoding. Positional errors were determined for 1423 rural addresses in Carroll County, Iowa as the vector difference between each 100%-matched automated geocode and its true location as determined by orthophoto and parcel information. Errors were also determined for 1449 60%-matched geocodes and 2354 E911 geocodes. Huge (> 15 km) outliers occurred among the 60%-matched geocoding errors; outliers occurred for the other two types of geocoding errors also but were much smaller. E911 geocoding was more accurate (median error length = 44 m) than 100%-matched automated geocoding (median error length = 168 m). The empirical distributions of positional errors associated with 100%-matched automated geocoding and E911 geocoding exhibited a distinctive Greek-cross shape and had many other interesting features that were not capable of being fitted adequately by a single bivariate normal or t distribution. However, mixtures of t distributions with two or three components fit the errors very well. Mixtures of bivariate t distributions with few components appear to be flexible enough to fit many positional error datasets associated with geocoding, yet parsimonious enough to be feasible for nascent applications of measurement-error methodology to spatial epidemiology.
Unsupervised Segmentation of Head Tissues from Multi-modal MR Images for EEG Source Localization.
Mahmood, Qaiser; Chodorowski, Artur; Mehnert, Andrew; Gellermann, Johanna; Persson, Mikael
2015-08-01
In this paper, we present and evaluate an automatic unsupervised segmentation method, hierarchical segmentation approach (HSA)-Bayesian-based adaptive mean shift (BAMS), for use in the construction of a patient-specific head conductivity model for electroencephalography (EEG) source localization. It is based on a HSA and BAMS for segmenting the tissues from multi-modal magnetic resonance (MR) head images. The evaluation of the proposed method was done both directly in terms of segmentation accuracy and indirectly in terms of source localization accuracy. The direct evaluation was performed relative to a commonly used reference method brain extraction tool (BET)-FMRIB's automated segmentation tool (FAST) and four variants of the HSA using both synthetic data and real data from ten subjects. The synthetic data includes multiple realizations of four different noise levels and several realizations of typical noise with a 20% bias field level. The Dice index and Hausdorff distance were used to measure the segmentation accuracy. The indirect evaluation was performed relative to the reference method BET-FAST using synthetic two-dimensional (2D) multimodal magnetic resonance (MR) data with 3% noise and synthetic EEG (generated for a prescribed source). The source localization accuracy was determined in terms of localization error and relative error of potential. The experimental results demonstrate the efficacy of HSA-BAMS, its robustness to noise and the bias field, and that it provides better segmentation accuracy than the reference method and variants of the HSA. They also show that it leads to a more accurate localization accuracy than the commonly used reference method and suggest that it has potential as a surrogate for expert manual segmentation for the EEG source localization problem.
Finger muscle attachments for an OpenSim upper-extremity model.
Lee, Jong Hwa; Asakawa, Deanna S; Dennerlein, Jack T; Jindrich, Devin L
2015-01-01
We determined muscle attachment points for the index, middle, ring and little fingers in an OpenSim upper-extremity model. Attachment points were selected to match both experimentally measured locations and mechanical function (moment arms). Although experimental measurements of finger muscle attachments have been made, models differ from specimens in many respects such as bone segment ratio, joint kinematics and coordinate system. Likewise, moment arms are not available for all intrinsic finger muscles. Therefore, it was necessary to scale and translate muscle attachments from one experimental or model environment to another while preserving mechanical function. We used a two-step process. First, we estimated muscle function by calculating moment arms for all intrinsic and extrinsic muscles using the partial velocity method. Second, optimization using Simulated Annealing and Hooke-Jeeves algorithms found muscle-tendon paths that minimized root mean square (RMS) differences between experimental and modeled moment arms. The partial velocity method resulted in variance accounted for (VAF) between measured and calculated moment arms of 75.5% on average (range from 48.5% to 99.5%) for intrinsic and extrinsic index finger muscles where measured data were available. RMS error between experimental and optimized values was within one standard deviation (S.D) of measured moment arm (mean RMS error = 1.5 mm < measured S.D = 2.5 mm). Validation of both steps of the technique allowed for estimation of muscle attachment points for muscles whose moment arms have not been measured. Differences between modeled and experimentally measured muscle attachments, averaged over all finger joints, were less than 4.9 mm (within 7.1% of the average length of the muscle-tendon paths). The resulting non-proprietary musculoskeletal model of the human fingers could be useful for many applications, including better understanding of complex multi-touch and gestural movements.
Finger Muscle Attachments for an OpenSim Upper-Extremity Model
Lee, Jong Hwa; Asakawa, Deanna S.; Dennerlein, Jack T.; Jindrich, Devin L.
2015-01-01
We determined muscle attachment points for the index, middle, ring and little fingers in an OpenSim upper-extremity model. Attachment points were selected to match both experimentally measured locations and mechanical function (moment arms). Although experimental measurements of finger muscle attachments have been made, models differ from specimens in many respects such as bone segment ratio, joint kinematics and coordinate system. Likewise, moment arms are not available for all intrinsic finger muscles. Therefore, it was necessary to scale and translate muscle attachments from one experimental or model environment to another while preserving mechanical function. We used a two-step process. First, we estimated muscle function by calculating moment arms for all intrinsic and extrinsic muscles using the partial velocity method. Second, optimization using Simulated Annealing and Hooke-Jeeves algorithms found muscle-tendon paths that minimized root mean square (RMS) differences between experimental and modeled moment arms. The partial velocity method resulted in variance accounted for (VAF) between measured and calculated moment arms of 75.5% on average (range from 48.5% to 99.5%) for intrinsic and extrinsic index finger muscles where measured data were available. RMS error between experimental and optimized values was within one standard deviation (S.D) of measured moment arm (mean RMS error = 1.5 mm < measured S.D = 2.5 mm). Validation of both steps of the technique allowed for estimation of muscle attachment points for muscles whose moment arms have not been measured. Differences between modeled and experimentally measured muscle attachments, averaged over all finger joints, were less than 4.9 mm (within 7.1% of the average length of the muscle-tendon paths). The resulting non-proprietary musculoskeletal model of the human fingers could be useful for many applications, including better understanding of complex multi-touch and gestural movements. PMID:25853869
Uehara, Erica; Deguchi, Tetsuo
2017-12-07
We show that the average size of self-avoiding polygons (SAPs) with a fixed knot is much larger than that of no topological constraint if the excluded volume is small and the number of segments is large. We call it topological swelling. We argue an "enhancement" of the scaling exponent for random polygons with a fixed knot. We study them systematically through SAP consisting of hard cylindrical segments with various different values of the radius of segments. Here we mean by the average size the mean-square radius of gyration. Furthermore, we show numerically that the topological balance length of a composite knot is given by the sum of those of all constituent prime knots. Here we define the topological balance length of a knot by such a number of segments that topological entropic repulsions are balanced with the knot complexity in the average size. The additivity suggests the local knot picture.
NASA Astrophysics Data System (ADS)
Uehara, Erica; Deguchi, Tetsuo
2017-12-01
We show that the average size of self-avoiding polygons (SAPs) with a fixed knot is much larger than that of no topological constraint if the excluded volume is small and the number of segments is large. We call it topological swelling. We argue an "enhancement" of the scaling exponent for random polygons with a fixed knot. We study them systematically through SAP consisting of hard cylindrical segments with various different values of the radius of segments. Here we mean by the average size the mean-square radius of gyration. Furthermore, we show numerically that the topological balance length of a composite knot is given by the sum of those of all constituent prime knots. Here we define the topological balance length of a knot by such a number of segments that topological entropic repulsions are balanced with the knot complexity in the average size. The additivity suggests the local knot picture.
Interactive segmentation of tongue contours in ultrasound video sequences using quality maps
NASA Astrophysics Data System (ADS)
Ghrenassia, Sarah; Ménard, Lucie; Laporte, Catherine
2014-03-01
Ultrasound (US) imaging is an effective and non invasive way of studying the tongue motions involved in normal and pathological speech, and the results of US studies are of interest for the development of new strategies in speech therapy. State-of-the-art tongue shape analysis techniques based on US images depend on semi-automated tongue segmentation and tracking techniques. Recent work has mostly focused on improving the accuracy of the tracking techniques themselves. However, occasional errors remain inevitable, regardless of the technique used, and the tongue tracking process must thus be supervised by a speech scientist who will correct these errors manually or semi-automatically. This paper proposes an interactive framework to facilitate this process. In this framework, the user is guided towards potentially problematic portions of the US image sequence by a segmentation quality map that is based on the normalized energy of an active contour model and automatically produced during tracking. When a problematic segmentation is identified, corrections to the segmented contour can be made on one image and propagated both forward and backward in the problematic subsequence, thereby improving the user experience. The interactive tools were tested in combination with two different tracking algorithms. Preliminary results illustrate the potential of the proposed framework, suggesting that the proposed framework generally improves user interaction time, with little change in segmentation repeatability.
Shack-Hartmann Phasing of Segmented Telescopes: Systematic Effects from Lenslet Arrays
NASA Technical Reports Server (NTRS)
Troy, Mitchell; Chanan, Gary; Roberts, Jennifer
2010-01-01
The segments in the Keck telescopes are routinely phased using a Shack-Hartmann wavefront sensor with sub-apertures that span adjacent segments. However, one potential limitation to the absolute accuracy of this technique is that it relies on a lenslet array (or a single lens plus a prism array) to form the subimages. These optics have the potential to introduce wavefront errors and stray reflections at the subaperture level that will bias the phasing measurement. We present laboratory data to quantify this effect, using measured errors from Keck and two other lenslet arrays. In addition, as part of the design of the Thirty Meter Telescope Alignment and Phasing System we present a preliminary investigation of a lenslet-free approach that relies on Fresnel diffraction to form the subimages at the CCD. Such a technique has several advantages, including the elimination of lenslet aberrations.
Tălu, Stefan
2013-07-01
The purpose of this paper is to determine a quantitative assessment of the human retinal vascular network architecture for patients with diabetic macular edema (DME). Multifractal geometry and lacunarity parameters are used in this study. A set of 10 segmented and skeletonized human retinal images, corresponding to both normal (five images) and DME states of the retina (five images), from the DRIVE database was analyzed using the Image J software. Statistical analyses were performed using Microsoft Office Excel 2003 and GraphPad InStat software. The human retinal vascular network architecture has a multifractal geometry. The average of generalized dimensions (Dq) for q = 0, 1, 2 of the normal images (segmented versions), is similar to the DME cases (segmented versions). The average of generalized dimensions (Dq) for q = 0, 1 of the normal images (skeletonized versions), is slightly greater than the DME cases (skeletonized versions). However, the average of D2 for the normal images (skeletonized versions) is similar to the DME images. The average of lacunarity parameter, Λ, for the normal images (segmented and skeletonized versions) is slightly lower than the corresponding values for DME images (segmented and skeletonized versions). The multifractal and lacunarity analysis provides a non-invasive predictive complementary tool for an early diagnosis of patients with DME.
Change in over-refraction after scleral lens settling on average corneas.
Bray, Chelsea; Britton, Stephanie; Yeung, Debby; Haines, Lacey; Sorbara, Luigina
2017-07-01
The purpose of this study was to determine the change in over-refraction, if any, after a scleral lens settled on the eye for 6-8 h. Sixteen patients of varying refractive errors and normal corneal curvatures (measured with Pentacam ™ Oculus) were fitted with trial Mini-Scleral Design (MSD) scleral lenses (15.8 mm diameter) in one eye. The sagittal depths of the scleral lenses were selected by adding 350 μm to the corneal sagittal heights measured at a chord length of 15 mm with the Visante ™ optical coherence tomographer (OCT) anterior segment scans and picking the closest available trial lens in the set. Initial measurements were taken 30 min after lens insertion and included an auto-refraction, subjective refraction, and best sphere refraction over the contact lens. Visual acuities and Visante ™ OCT anterior segment scans were also taken. These measurements were repeated after 6-8 h of lens wear. Over the trial wearing period, the average change in the spherical component of the over-refraction was +0.06 D (S.D. 0.17) (p = 0.16). The average change in cylinder was +0.04 D (S.D. 0.19) (p = 0.33). The average absolute change in axis was 1.06° (S.D. 12.11) (p = 0.74). The average change in best sphere was +0.13 ± 0.30 D (p = 0.12). There was no significant change in visual acuity with the best sphere over-refraction over the 6-8 h wearing period. There was a significant change in central corneal clearance over the wearing period of 83 μm (S.D. 22) (p < 0.0001). Despite a significant change in the central corneal clearance due to thinning of the fluid reservoir as the scleral lens settled (an average decrease of 83 μm after wearing the lenses for 6-8 h), there was not a statistically significant change in the subjective over-refraction (sphere, cylinder, and axis) or best sphere or visual acuity. This study has confirmed that there is no link between reduction in central corneal clearance and change in over-refraction for average corneas. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Development of automatic visceral fat volume calculation software for CT volume data.
Nemoto, Mitsutaka; Yeernuer, Tusufuhan; Masutani, Yoshitaka; Nomura, Yukihiro; Hanaoka, Shouhei; Miki, Soichiro; Yoshikawa, Takeharu; Hayashi, Naoto; Ohtomo, Kuni
2014-01-01
To develop automatic visceral fat volume calculation software for computed tomography (CT) volume data and to evaluate its feasibility. A total of 24 sets of whole-body CT volume data and anthropometric measurements were obtained, with three sets for each of four BMI categories (under 20, 20 to 25, 25 to 30, and over 30) in both sexes. True visceral fat volumes were defined on the basis of manual segmentation of the whole-body CT volume data by an experienced radiologist. Software to automatically calculate visceral fat volumes was developed using a region segmentation technique based on morphological analysis with CT value threshold. Automatically calculated visceral fat volumes were evaluated in terms of the correlation coefficient with the true volumes and the error relative to the true volume. Automatic visceral fat volume calculation results of all 24 data sets were obtained successfully and the average calculation time was 252.7 seconds/case. The correlation coefficients between the true visceral fat volume and the automatically calculated visceral fat volume were over 0.999. The newly developed software is feasible for calculating visceral fat volumes in a reasonable time and was proved to have high accuracy.
Preston, Jonathan L; Hull, Margaret; Edwards, Mary Louise
2013-05-01
To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost 4 years later. Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 (years;months) and were followed up at age 8;3. The frequency of occurrence of preschool distortion errors, typical substitution and syllable structure errors, and atypical substitution and syllable structure errors was used to predict later speech sound production, PA, and literacy outcomes. Group averages revealed below-average school-age articulation scores and low-average PA but age-appropriate reading and spelling. Preschool speech error patterns were related to school-age outcomes. Children for whom >10% of their speech sound errors were atypical had lower PA and literacy scores at school age than children who produced <10% atypical errors. Preschoolers who produced more distortion errors were likely to have lower school-age articulation scores than preschoolers who produced fewer distortion errors. Different preschool speech error patterns predict different school-age clinical outcomes. Many atypical speech sound errors in preschoolers may be indicative of weak phonological representations, leading to long-term PA weaknesses. Preschoolers' distortions may be resistant to change over time, leading to persisting speech sound production problems.
Statistical properties of Fourier-based time-lag estimates
NASA Astrophysics Data System (ADS)
Epitropakis, A.; Papadakis, I. E.
2016-06-01
Context. The study of X-ray time-lag spectra in active galactic nuclei (AGN) is currently an active research area, since it has the potential to illuminate the physics and geometry of the innermost region (I.e. close to the putative super-massive black hole) in these objects. To obtain reliable information from these studies, the statistical properties of time-lags estimated from data must be known as accurately as possible. Aims: We investigated the statistical properties of Fourier-based time-lag estimates (I.e. based on the cross-periodogram), using evenly sampled time series with no missing points. Our aim is to provide practical "guidelines" on estimating time-lags that are minimally biased (I.e. whose mean is close to their intrinsic value) and have known errors. Methods: Our investigation is based on both analytical work and extensive numerical simulations. The latter consisted of generating artificial time series with various signal-to-noise ratios and sampling patterns/durations similar to those offered by AGN observations with present and past X-ray satellites. We also considered a range of different model time-lag spectra commonly assumed in X-ray analyses of compact accreting systems. Results: Discrete sampling, binning and finite light curve duration cause the mean of the time-lag estimates to have a smaller magnitude than their intrinsic values. Smoothing (I.e. binning over consecutive frequencies) of the cross-periodogram can add extra bias at low frequencies. The use of light curves with low signal-to-noise ratio reduces the intrinsic coherence, and can introduce a bias to the sample coherence, time-lag estimates, and their predicted error. Conclusions: Our results have direct implications for X-ray time-lag studies in AGN, but can also be applied to similar studies in other research fields. We find that: a) time-lags should be estimated at frequencies lower than ≈ 1/2 the Nyquist frequency to minimise the effects of discrete binning of the observed time series; b) smoothing of the cross-periodogram should be avoided, as this may introduce significant bias to the time-lag estimates, which can be taken into account by assuming a model cross-spectrum (and not just a model time-lag spectrum); c) time-lags should be estimated by dividing observed time series into a number, say m, of shorter data segments and averaging the resulting cross-periodograms; d) if the data segments have a duration ≳ 20 ks, the time-lag bias is ≲15% of its intrinsic value for the model cross-spectra and power-spectra considered in this work. This bias should be estimated in practise (by considering possible intrinsic cross-spectra that may be applicable to the time-lag spectra at hand) to assess the reliability of any time-lag analysis; e) the effects of experimental noise can be minimised by only estimating time-lags in the frequency range where the sample coherence is larger than 1.2/(1 + 0.2m). In this range, the amplitude of noise variations caused by measurement errors is smaller than the amplitude of the signal's intrinsic variations. As long as m ≳ 20, time-lags estimated by averaging over individual data segments have analytical error estimates that are within 95% of the true scatter around their mean, and their distribution is similar, albeit not identical, to a Gaussian.
San José, Verónica; Bellot-Arcís, Carlos; Tarazona, Beatriz; Zamora, Natalia; O Lagravère, Manuel
2017-01-01
Background To compare the reliability and accuracy of direct and indirect dental measurements derived from two types of 3D virtual models: generated by intraoral laser scanning (ILS) and segmented cone beam computed tomography (CBCT), comparing these with a 2D digital model. Material and Methods One hundred patients were selected. All patients’ records included initial plaster models, an intraoral scan and a CBCT. Patients´ dental arches were scanned with the iTero® intraoral scanner while the CBCTs were segmented to create three-dimensional models. To obtain 2D digital models, plaster models were scanned using a conventional 2D scanner. When digital models had been obtained using these three methods, direct dental measurements were measured and indirect measurements were calculated. Differences between methods were assessed by means of paired t-tests and regression models. Intra and inter-observer error were analyzed using Dahlberg´s d and coefficients of variation. Results Intraobserver and interobserver error for the ILS model was less than 0.44 mm while for segmented CBCT models, the error was less than 0.97 mm. ILS models provided statistically and clinically acceptable accuracy for all dental measurements, while CBCT models showed a tendency to underestimate measurements in the lower arch, although within the limits of clinical acceptability. Conclusions ILS and CBCT segmented models are both reliable and accurate for dental measurements. Integration of ILS with CBCT scans would get dental and skeletal information altogether. Key words:CBCT, intraoral laser scanner, 2D digital models, 3D models, dental measurements, reliability. PMID:29410764
The algorithm study for using the back propagation neural network in CT image segmentation
NASA Astrophysics Data System (ADS)
Zhang, Peng; Liu, Jie; Chen, Chen; Li, Ying Qi
2017-01-01
Back propagation neural network(BP neural network) is a type of multi-layer feed forward network which spread positively, while the error spread backwardly. Since BP network has advantages in learning and storing the mapping between a large number of input and output layers without complex mathematical equations to describe the mapping relationship, it is most widely used. BP can iteratively compute the weight coefficients and thresholds of the network based on the training and back propagation of samples, which can minimize the error sum of squares of the network. Since the boundary of the computed tomography (CT) heart images is usually discontinuous, and it exist large changes in the volume and boundary of heart images, The conventional segmentation such as region growing and watershed algorithm can't achieve satisfactory results. Meanwhile, there are large differences between the diastolic and systolic images. The conventional methods can't accurately classify the two cases. In this paper, we introduced BP to handle the segmentation of heart images. We segmented a large amount of CT images artificially to obtain the samples, and the BP network was trained based on these samples. To acquire the appropriate BP network for the segmentation of heart images, we normalized the heart images, and extract the gray-level information of the heart. Then the boundary of the images was input into the network to compare the differences between the theoretical output and the actual output, and we reinput the errors into the BP network to modify the weight coefficients of layers. Through a large amount of training, the BP network tend to be stable, and the weight coefficients of layers can be determined, which means the relationship between the CT images and the boundary of heart.
Ross, James D.; Cullen, D. Kacy; Harris, James P.; LaPlaca, Michelle C.; DeWeerth, Stephen P.
2015-01-01
Three-dimensional (3-D) image analysis techniques provide a powerful means to rapidly and accurately assess complex morphological and functional interactions between neural cells. Current software-based identification methods of neural cells generally fall into two applications: (1) segmentation of cell nuclei in high-density constructs or (2) tracing of cell neurites in single cell investigations. We have developed novel methodologies to permit the systematic identification of populations of neuronal somata possessing rich morphological detail and dense neurite arborization throughout thick tissue or 3-D in vitro constructs. The image analysis incorporates several novel automated features for the discrimination of neurites and somata by initially classifying features in 2-D and merging these classifications into 3-D objects; the 3-D reconstructions automatically identify and adjust for over and under segmentation errors. Additionally, the platform provides for software-assisted error corrections to further minimize error. These features attain very accurate cell boundary identifications to handle a wide range of morphological complexities. We validated these tools using confocal z-stacks from thick 3-D neural constructs where neuronal somata had varying degrees of neurite arborization and complexity, achieving an accuracy of ≥95%. We demonstrated the robustness of these algorithms in a more complex arena through the automated segmentation of neural cells in ex vivo brain slices. These novel methods surpass previous techniques by improving the robustness and accuracy by: (1) the ability to process neurites and somata, (2) bidirectional segmentation correction, and (3) validation via software-assisted user input. This 3-D image analysis platform provides valuable tools for the unbiased analysis of neural tissue or tissue surrogates within a 3-D context, appropriate for the study of multi-dimensional cell-cell and cell-extracellular matrix interactions. PMID:26257609
Improve threshold segmentation using features extraction to automatic lung delimitation.
França, Cleunio; Vasconcelos, Germano; Diniz, Paula; Melo, Pedro; Diniz, Jéssica; Novaes, Magdala
2013-01-01
With the consolidation of PACS and RIS systems, the development of algorithms for tissue segmentation and diseases detection have intensely evolved in recent years. These algorithms have advanced to improve its accuracy and specificity, however, there is still some way until these algorithms achieved satisfactory error rates and reduced processing time to be used in daily diagnosis. The objective of this study is to propose a algorithm for lung segmentation in x-ray computed tomography images using features extraction, as Centroid and orientation measures, to improve the basic threshold segmentation. As result we found a accuracy of 85.5%.
Ingram, W Scott; Yang, Jinzhong; Wendt, Richard; Beadle, Beth M; Rao, Arvind; Wang, Xin A; Court, Laurence E
2017-08-01
To assess the influence of non-rigid anatomy and differences in patient positioning between CT acquisition and endoscopic examination on endoscopy-CT image registration in the head and neck. Radiotherapy planning CTs and 31-35 daily treatment-room CTs were acquired for nineteen patients. Diagnostic CTs were acquired for thirteen of the patients. The surfaces of the airways were segmented on all scans and triangular meshes were created to render virtual endoscopic images with a calibrated pinhole model of an endoscope. The virtual images were used to take projective measurements throughout the meshes, with reference measurements defined as those taken on the planning CTs and test measurements defined as those taken on the daily or diagnostic CTs. The influence of non-rigid anatomy was quantified by 3D distance errors between reference and test measurements on the daily CTs, and the influence of patient positioning was quantified by 3D distance errors between reference and test measurements on the diagnostic CTs. The daily CT measurements were also used to investigate the influences of camera-to-surface distance, surface angle, and the interval of time between scans. Average errors in the daily CTs were 0.36 ± 0.61 cm in the nasal cavity, 0.58 ± 0.83 cm in the naso- and oropharynx, and 0.47 ± 0.73 cm in the hypopharynx and larynx. Average errors in the diagnostic CTs in those regions were 0.52 ± 0.69 cm, 0.65 ± 0.84 cm, and 0.69 ± 0.90 cm, respectively. All CTs had errors heavily skewed towards 0, albeit with large outliers. Large camera-to-surface distances were found to increase the errors, but the angle at which the camera viewed the surface had no effect. The errors in the Day 1 and Day 15 CTs were found to be significantly smaller than those in the Day 30 CTs (P < 0.05). Inconsistencies of patient positioning have a larger influence than non-rigid anatomy on projective measurement errors. In general, these errors are largest when the camera is in the superior pharynx, where it sees large distances and a lot of muscle motion. The errors are larger when the interval of time between CT acquisitions is longer, which suggests that the interval of time between the CT acquisition and the endoscopic examination should be kept short. The median errors found in this study are comparable to acceptable levels of uncertainty in deformable CT registration. Large errors are possible even when image alignment is very good, indicating that projective measurements must be made carefully to avoid these outliers. © 2017 American Association of Physicists in Medicine.
Ward, W K; Engle, J M; Branigan, D; El Youssef, J; Massoud, R G; Castle, J R
2012-08-01
Because declining glucose levels should be detected quickly in persons with Type 1 diabetes, a lag between blood glucose and subcutaneous sensor glucose can be problematic. It is unclear whether the magnitude of sensor lag is lower during falling glucose than during rising glucose. Initially, we analysed 95 data segments during which glucose changed and during which very frequent reference blood glucose monitoring was performed. However, to minimize confounding effects of noise and calibration error, we excluded data segments in which there was substantial sensor error. After these exclusions, and combination of data from duplicate sensors, there were 72 analysable data segments (36 for rising glucose, 36 for falling). We measured lag in two ways: (1) the time delay at the vertical mid-point of the glucose change (regression delay); and (2) determination of the optimal time shift required to minimize the difference between glucose sensor signals and blood glucose values drawn concurrently. Using the regression delay method, the mean sensor lag for rising vs. falling glucose segments was 8.9 min (95%CI 6.1-11.6) vs. 1.5 min (95%CI -2.6 to 5.5, P<0.005). Using the time shift optimization method, results were similar, with a lag that was higher for rising than for falling segments [8.3 (95%CI 5.8-10.7) vs. 1.5 min (95% CI -2.2 to 5.2), P<0.001]. Commensurate with the lag results, sensor accuracy was greater during falling than during rising glucose segments. In Type 1 diabetes, when noise and calibration error are minimized to reduce effects that confound delay measurement, subcutaneous glucose sensors demonstrate a shorter lag duration and greater accuracy when glucose is falling than when rising. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.
A spline-based non-linear diffeomorphism for multimodal prostate registration.
Mitra, Jhimli; Kato, Zoltan; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Sidibé, Désiré; Ghose, Soumya; Vilanova, Joan C; Comet, Josep; Meriaudeau, Fabrice
2012-08-01
This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Wavefront Control and Image Restoration with Less Computing
NASA Technical Reports Server (NTRS)
Lyon, Richard G.
2010-01-01
PseudoDiversity is a method of recovering the wavefront in a sparse- or segmented- aperture optical system typified by an interferometer or a telescope equipped with an adaptive primary mirror consisting of controllably slightly moveable segments. (PseudoDiversity should not be confused with a radio-antenna-arraying method called pseudodiversity.) As in the cases of other wavefront- recovery methods, the streams of wavefront data generated by means of PseudoDiversity are used as feedback signals for controlling electromechanical actuators of the various segments so as to correct wavefront errors and thereby, for example, obtain a clearer, steadier image of a distant object in the presence of atmospheric turbulence. There are numerous potential applications in astronomy, remote sensing from aircraft and spacecraft, targeting missiles, sighting military targets, and medical imaging (including microscopy) through such intervening media as cells or water. In comparison with prior wavefront-recovery methods used in adaptive optics, PseudoDiversity involves considerably simpler equipment and procedures and less computation. For PseudoDiversity, there is no need to install separate metrological equipment or to use any optomechanical components beyond those that are already parts of the optical system to which the method is applied. In Pseudo- Diversity, the actuators of a subset of the segments or subapertures are driven to make the segments dither in the piston, tilt, and tip degrees of freedom. Each aperture is dithered at a unique frequency at an amplitude of a half wavelength of light. During the dithering, images on the focal plane are detected and digitized at a rate of at least four samples per dither period. In the processing of the image samples, the use of different dither frequencies makes it possible to determine the separate effects of the various dithered segments or apertures. The digitized image-detector outputs are processed in the spatial-frequency (Fourier-transform) domain to obtain measures of the piston, tip, and tilt errors over each segment or subaperture. Once these measures are known, they are fed back to the actuators to correct the errors. In addition, measures of errors that remain after correction by use of the actuators are further utilized in an algorithm in which the image is phase-corrected in the spatial-frequency domain and then transformed back to the spatial domain at each time step and summed with the images from all previous time steps to obtain a final image having a greater signal-to-noise ratio (and, hence, a visual quality) higher than would otherwise be attainable.
Shahedi, Maysam; Cool, Derek W; Romagnoli, Cesare; Bauman, Glenn S; Bastian-Jordan, Matthew; Gibson, Eli; Rodrigues, George; Ahmad, Belal; Lock, Michael; Fenster, Aaron; Ward, Aaron D
2014-11-01
Three-dimensional (3D) prostate image segmentation is useful for cancer diagnosis and therapy guidance, but can be time-consuming to perform manually and involves varying levels of difficulty and interoperator variability within the prostatic base, midgland (MG), and apex. In this study, the authors measured accuracy and interobserver variability in the segmentation of the prostate on T2-weighted endorectal magnetic resonance (MR) imaging within the whole gland (WG), and separately within the apex, midgland, and base regions. The authors collected MR images from 42 prostate cancer patients. Prostate border delineation was performed manually by one observer on all images and by two other observers on a subset of ten images. The authors used complementary boundary-, region-, and volume-based metrics [mean absolute distance (MAD), Dice similarity coefficient (DSC), recall rate, precision rate, and volume difference (ΔV)] to elucidate the different types of segmentation errors that they observed. Evaluation for expert manual and semiautomatic segmentation approaches was carried out. Compared to manual segmentation, the authors' semiautomatic approach reduces the necessary user interaction by only requiring an indication of the anteroposterior orientation of the prostate and the selection of prostate center points on the apex, base, and midgland slices. Based on these inputs, the algorithm identifies candidate prostate boundary points using learned boundary appearance characteristics and performs regularization based on learned prostate shape information. The semiautomated algorithm required an average of 30 s of user interaction time (measured for nine operators) for each 3D prostate segmentation. The authors compared the segmentations from this method to manual segmentations in a single-operator (mean whole gland MAD = 2.0 mm, DSC = 82%, recall = 77%, precision = 88%, and ΔV = - 4.6 cm(3)) and multioperator study (mean whole gland MAD = 2.2 mm, DSC = 77%, recall = 72%, precision = 86%, and ΔV = - 4.0 cm(3)). These results compared favorably with observed differences between manual segmentations and a simultaneous truth and performance level estimation reference for this data set (whole gland differences as high as MAD = 3.1 mm, DSC = 78%, recall = 66%, precision = 77%, and ΔV = 15.5 cm(3)). The authors found that overall, midgland segmentation was more accurate and repeatable than the segmentation of the apex and base, with the base posing the greatest challenge. The main conclusions of this study were that (1) the semiautomated approach reduced interobserver segmentation variability; (2) the segmentation accuracy of the semiautomated approach, as well as the accuracies of recently published methods from other groups, were within the range of observed expert variability in manual prostate segmentation; and (3) further efforts in the development of computer-assisted segmentation would be most productive if focused on improvement of segmentation accuracy and reduction of variability within the prostatic apex and base.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, A; Bednarz, B
Purpose: To develop an ultrasound learning-based tracking algorithm with the potential to provide real-time motion traces of anatomy-based fiducials that may aid in the effective delivery of external beam radiation. Methods: The algorithm was developed in Matlab R2015a and consists of two main stages: reference frame selection, and localized block matching. Immediately following frame acquisition, a normalized cross-correlation (NCC) similarity metric is used to determine a reference frame most similar to the current frame from a series of training set images that were acquired during a pretreatment scan. Segmented features in the reference frame provide the basis for the localizedmore » block matching to determine the feature locations in the current frame. The boundary points of the reference frame segmentation are used as the initial locations for the block matching and NCC is used to find the most similar block in the current frame. The best matched block locations in the current frame comprise the updated feature boundary. The algorithm was tested using five features from two sets of ultrasound patient data obtained from MICCAI 2014 CLUST. Due to the lack of a training set associated with the image sequences, the first 200 frames of the image sets were considered a valid training set for preliminary testing, and tracking was performed over the remaining frames. Results: Tracking of the five vessel features resulted in an average tracking error of 1.21 mm relative to predefined annotations. The average analysis rate was 15.7 FPS with analysis for one of the two patients reaching real-time speeds. Computations were performed on an i5-3230M at 2.60 GHz. Conclusion: Preliminary tests show tracking errors comparable with similar algorithms at close to real-time speeds. Extension of the work onto a GPU platform has the potential to achieve real-time performance, making tracking for therapy applications a feasible option. This work is partially funded by NIH grant R01CA190298.« less
NASA Astrophysics Data System (ADS)
Schlueter, S.; Sheppard, A.; Wildenschild, D.
2013-12-01
Imaging of fluid interfaces in three-dimensional porous media via x-ray microtomography is an efficient means to test thermodynamically derived predictions on the relationship between capillary pressure, fluid saturation and specific interfacial area (Pc-Sw-Anw) in partially saturated porous media. Various experimental studies exist to date that validate the uniqueness of the Pc-Sw-Anw relationship under static conditions and with current technological progress direct imaging of moving interfaces under dynamic conditions is also becoming available. Image acquisition and subsequent image processing currently involves many steps each prone to operator bias, like merging different scans of the same sample obtained at different beam energies into a single image or the generation of isosurfaces from the segmented multiphase image on which the interface properties are usually calculated. We demonstrate that with recent advancements in (i) image enhancement methods, (ii) multiphase segmentation methods and (iii) methods of structural analysis we can considerably decrease the time and cost of image acquisition and the uncertainty associated with the measurement of interfacial properties. In particular, we highlight three notorious problems in multiphase image processing and provide efficient solutions for each: (i) Due to noise, partial volume effects, and imbalanced volume fractions, automated histogram-based threshold detection methods frequently fail. However, these impairments can be mitigated with modern denoising methods, special treatment of gray value edges and adaptive histogram equilization, such that most of the standard methods for threshold detection (Otsu, fuzzy c-means, minimum error, maximum entropy) coincide at the same set of values. (ii) Partial volume effects due to blur may produce apparent water films around solid surfaces that alter the specific fluid-fluid interfacial area (Anw) considerably. In a synthetic test image some local segmentation methods like Bayesian Markov random field, converging active contours and watershed segmentation reduced the error in Anw associated with apparent water films from 21% to 6-11%. (iii) The generation of isosurfaces from the segmented data usually requires a lot of postprocessing in order to smooth the surface and check for consistency errors. This can be avoided by calculating specific interfacial areas directly on the segmented voxel image by means of Minkowski functionals which is highly efficient and less error prone.
De Menezes, Marcio; Cerón-Zapata, Ana Maria; López-Palacio, Ana Maria; Mapelli, Andrea; Pisoni, Luca; Sforza, Chiarella
2016-01-01
To assess a three-dimensional (3D) stereophotogrammetric method for area delimitation and evaluation of the dental arches of children with unilateral cleft lip and palate (UCLP). Obtained data were also used to assess the 3D changes occurring in the maxillary arch with the use of orthopedic therapy prior to rhinocheiloplasty and before the first year of life. Within the collaboration between the Università degli Studi di Milano (Italy) and the University CES of Medellin (Colombia), 96 palatal cast models obtained from neonatal patients with UCLP were analyzed using a 3D stereophotogrammetric imaging system. The area of the minor and greater cleft segments on the digital dental cast surface were delineated by the visualization tool of the stereophotogrammetric software and then examined. "Trueness" of the measurements, as well as systematic and random errors between operators' tracings ("precision") were calculated. The method gave area measurements close to true values (errors lower than 2%), without systematic measurement errors for tracings by both interoperators and intraoperators (P > .05). Statistically significant differences (P < .05) were noted for alveolar segment and time. Maxillary segments have the potential for growth during presurgical orthopedic treatment in the early neonatal period. The cleft segment delimitation on digital dental casts and area measurements by the 3D stereophotogrammetric system revealed an accurate (true and precise) method for evaluating the stone casts of newborn patients with UCLP.
Post processing for offline Chinese handwritten character string recognition
NASA Astrophysics Data System (ADS)
Wang, YanWei; Ding, XiaoQing; Liu, ChangSong
2012-01-01
Offline Chinese handwritten character string recognition is one of the most important research fields in pattern recognition. Due to the free writing style, large variability in character shapes and different geometric characteristics, Chinese handwritten character string recognition is a challenging problem to deal with. However, among the current methods over-segmentation and merging method which integrates geometric information, character recognition information and contextual information, shows a promising result. It is found experimentally that a large part of errors are segmentation error and mainly occur around non-Chinese characters. In a Chinese character string, there are not only wide characters namely Chinese characters, but also narrow characters like digits and letters of the alphabet. The segmentation error is mainly caused by uniform geometric model imposed on all segmented candidate characters. To solve this problem, post processing is employed to improve recognition accuracy of narrow characters. On one hand, multi-geometric models are established for wide characters and narrow characters respectively. Under multi-geometric models narrow characters are not prone to be merged. On the other hand, top rank recognition results of candidate paths are integrated to boost final recognition of narrow characters. The post processing method is investigated on two datasets, in total 1405 handwritten address strings. The wide character recognition accuracy has been improved lightly and narrow character recognition accuracy has been increased up by 10.41% and 10.03% respectively. It indicates that the post processing method is effective to improve recognition accuracy of narrow characters.
Quantitative assessment of 12-lead ECG synthesis using CAVIAR.
Scherer, J A; Rubel, P; Fayn, J; Willems, J L
1992-01-01
The objective of this study is to assess the performance of patient-specific segment-specific (PSSS) synthesis in QRST complexes using CAVIAR, a new method of the serial comparison for electrocardiograms and vectorcardiograms. A collection of 250 multi-lead recordings from the Common Standards for Quantitative Electrocardiography (CSE) diagnostic pilot study is employed. QRS and ST-T segments are independently synthesized using the PSSS algorithm so that the mean-squared error between the original and estimated waveforms is minimized. CAVIAR compares the recorded and synthesized QRS and ST-T segments and calculates the mean-quadratic deviation as a measure of error. The results of this study indicate that estimated QRS complexes are good representatives of their recorded counterparts, and the integrity of the spatial information is maintained by the PSSS synthesis process. Analysis of the ST-T segments suggests that the deviations between recorded and synthesized waveforms are considerably greater than those associated with the QRS complexes. The poorer performance of the ST-T segments is attributed to magnitude normalization of the spatial loops, low-voltage passages, and noise interference. Using the mean-quadratic deviation and CAVIAR as methods of performance assessment, this study indicates that the PSSS-synthesis algorithm accurately maintains the signal information within the 12-lead electrocardiogram.
Preston, Jonathan L.; Hull, Margaret; Edwards, Mary Louise
2012-01-01
Purpose To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost four years later. Method Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 and followed up at 8;3. The frequency of occurrence of preschool distortion errors, typical substitution and syllable structure errors, and atypical substitution and syllable structure errors were used to predict later speech sound production, PA, and literacy outcomes. Results Group averages revealed below-average school-age articulation scores and low-average PA, but age-appropriate reading and spelling. Preschool speech error patterns were related to school-age outcomes. Children for whom more than 10% of their speech sound errors were atypical had lower PA and literacy scores at school-age than children who produced fewer than 10% atypical errors. Preschoolers who produced more distortion errors were likely to have lower school-age articulation scores. Conclusions Different preschool speech error patterns predict different school-age clinical outcomes. Many atypical speech sound errors in preschool may be indicative of weak phonological representations, leading to long-term PA weaknesses. Preschool distortions may be resistant to change over time, leading to persisting speech sound production problems. PMID:23184137
A two-stage method for microcalcification cluster segmentation in mammography by deformable models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arikidis, N.; Kazantzi, A.; Skiadopoulos, S.
Purpose: Segmentation of microcalcification (MC) clusters in x-ray mammography is a difficult task for radiologists. Accurate segmentation is prerequisite for quantitative image analysis of MC clusters and subsequent feature extraction and classification in computer-aided diagnosis schemes. Methods: In this study, a two-stage semiautomated segmentation method of MC clusters is investigated. The first stage is targeted to accurate and time efficient segmentation of the majority of the particles of a MC cluster, by means of a level set method. The second stage is targeted to shape refinement of selected individual MCs, by means of an active contour model. Both methods aremore » applied in the framework of a rich scale-space representation, provided by the wavelet transform at integer scales. Segmentation reliability of the proposed method in terms of inter and intraobserver agreements was evaluated in a case sample of 80 MC clusters originating from the digital database for screening mammography, corresponding to 4 morphology types (punctate: 22, fine linear branching: 16, pleomorphic: 18, and amorphous: 24) of MC clusters, assessing radiologists’ segmentations quantitatively by two distance metrics (Hausdorff distance—HDIST{sub cluster}, average of minimum distance—AMINDIST{sub cluster}) and the area overlap measure (AOM{sub cluster}). The effect of the proposed segmentation method on MC cluster characterization accuracy was evaluated in a case sample of 162 pleomorphic MC clusters (72 malignant and 90 benign). Ten MC cluster features, targeted to capture morphologic properties of individual MCs in a cluster (area, major length, perimeter, compactness, and spread), were extracted and a correlation-based feature selection method yielded a feature subset to feed in a support vector machine classifier. Classification performance of the MC cluster features was estimated by means of the area under receiver operating characteristic curve (Az ± Standard Error) utilizing tenfold cross-validation methodology. A previously developed B-spline active rays segmentation method was also considered for comparison purposes. Results: Interobserver and intraobserver segmentation agreements (median and [25%, 75%] quartile range) were substantial with respect to the distance metrics HDIST{sub cluster} (2.3 [1.8, 2.9] and 2.5 [2.1, 3.2] pixels) and AMINDIST{sub cluster} (0.8 [0.6, 1.0] and 1.0 [0.8, 1.2] pixels), while moderate with respect to AOM{sub cluster} (0.64 [0.55, 0.71] and 0.59 [0.52, 0.66]). The proposed segmentation method outperformed (0.80 ± 0.04) statistically significantly (Mann-Whitney U-test, p < 0.05) the B-spline active rays segmentation method (0.69 ± 0.04), suggesting the significance of the proposed semiautomated method. Conclusions: Results indicate a reliable semiautomated segmentation method for MC clusters offered by deformable models, which could be utilized in MC cluster quantitative image analysis.« less
3D automatic anatomy segmentation based on iterative graph-cut-ASM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xinjian; Bagci, Ulas; Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Building 10 Room 1C515, Bethesda, Maryland 20892-1182
2011-08-15
Purpose: This paper studies the feasibility of developing an automatic anatomy segmentation (AAS) system in clinical radiology and demonstrates its operation on clinical 3D images. Methods: The AAS system, the authors are developing consists of two main parts: object recognition and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale) information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM (IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability ofmore » the GC method. The presented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed previously in Chen et al.[Proc. SPIE, 7259, 72590C1-72590C-8 (2009)]. The proposed methods are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female) of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus, tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated separately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size) error. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV PC with a 3.4 GHZ CPU machine. Results: The recognition accuracies in terms of translation, rotation, and scale error over all organs are about 8 mm, 10 deg. and 0.03, and over all foot bones are about 3.5709 mm, 0.35 deg. and 0.025, respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and FPVF is 93.01% and 0.22%, and all foot bones for all subjects are 93.75% and 0.28%, respectively. While the delineations for the four organs can be accomplished quite rapidly with average of 78 s, the delineations for the five foot bones can be accomplished with average of 70 s. Conclusions: The experimental results showed the feasibility and efficacy of the proposed automatic anatomy segmentation system: (a) the incorporation of shape priors into the GC framework is feasible in 3D as demonstrated previously for 2D images; (b) our results in 3D confirm the accuracy behavior observed in 2D. The hybrid strategy IGCASM seems to be more robust and accurate than ASM and GC individually; and (c) delineations within body regions and foot bones of clinical importance can be accomplished quite rapidly within 1.5 min.« less
3D automatic anatomy segmentation based on iterative graph-cut-ASM
Chen, Xinjian; Bagci, Ulas
2011-01-01
Purpose: This paper studies the feasibility of developing an automatic anatomy segmentation (AAS) system in clinical radiology and demonstrates its operation on clinical 3D images.Methods: The AAS system, the authors are developing consists of two main parts: object recognition and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale) information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM (IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. The presented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed previously in Chen et al. [Proc. SPIE, 7259, 72590C1–72590C-8 (2009)]. The proposed methods are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female) of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus, tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated separately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size) error. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV PC with a 3.4 GHZ CPU machine.Results: The recognition accuracies in terms of translation, rotation, and scale error over all organs are about 8 mm, 10° and 0.03, and over all foot bones are about 3.5709 mm, 0.35° and 0.025, respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and FPVF is 93.01% and 0.22%, and all foot bones for all subjects are 93.75% and 0.28%, respectively. While the delineations for the four organs can be accomplished quite rapidly with average of 78 s, the delineations for the five foot bones can be accomplished with average of 70 s.Conclusions: The experimental results showed the feasibility and efficacy of the proposed automatic anatomy segmentation system: (a) the incorporation of shape priors into the GC framework is feasible in 3D as demonstrated previously for 2D images; (b) our results in 3D confirm the accuracy behavior observed in 2D. The hybrid strategy IGCASM seems to be more robust and accurate than ASM and GC individually; and (c) delineations within body regions and foot bones of clinical importance can be accomplished quite rapidly within 1.5 min. PMID:21928634
Integrated segmentation of cellular structures
NASA Astrophysics Data System (ADS)
Ajemba, Peter; Al-Kofahi, Yousef; Scott, Richard; Donovan, Michael; Fernandez, Gerardo
2011-03-01
Automatic segmentation of cellular structures is an essential step in image cytology and histology. Despite substantial progress, better automation and improvements in accuracy and adaptability to novel applications are needed. In applications utilizing multi-channel immuno-fluorescence images, challenges include misclassification of epithelial and stromal nuclei, irregular nuclei and cytoplasm boundaries, and over and under-segmentation of clustered nuclei. Variations in image acquisition conditions and artifacts from nuclei and cytoplasm images often confound existing algorithms in practice. In this paper, we present a robust and accurate algorithm for jointly segmenting cell nuclei and cytoplasm using a combination of ideas to reduce the aforementioned problems. First, an adaptive process that includes top-hat filtering, Eigenvalues-of-Hessian blob detection and distance transforms is used to estimate the inverse illumination field and correct for intensity non-uniformity in the nuclei channel. Next, a minimum-error-thresholding based binarization process and seed-detection combining Laplacian-of-Gaussian filtering constrained by a distance-map-based scale selection is used to identify candidate seeds for nuclei segmentation. The initial segmentation using a local maximum clustering algorithm is refined using a minimum-error-thresholding technique. Final refinements include an artifact removal process specifically targeted at lumens and other problematic structures and a systemic decision process to reclassify nuclei objects near the cytoplasm boundary as epithelial or stromal. Segmentation results were evaluated using 48 realistic phantom images with known ground-truth. The overall segmentation accuracy exceeds 94%. The algorithm was further tested on 981 images of actual prostate cancer tissue. The artifact removal process worked in 90% of cases. The algorithm has now been deployed in a high-volume histology analysis application.
A Method for the Evaluation of Thousands of Automated 3D Stem Cell Segmentations
Bajcsy, Peter; Simon, Mylene; Florczyk, Stephen; Simon, Carl G.; Juba, Derek; Brady, Mary
2016-01-01
There is no segmentation method that performs perfectly with any data set in comparison to human segmentation. Evaluation procedures for segmentation algorithms become critical for their selection. The problems associated with segmentation performance evaluations and visual verification of segmentation results are exaggerated when dealing with thousands of 3D image volumes because of the amount of computation and manual inputs needed. We address the problem of evaluating 3D segmentation performance when segmentation is applied to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate experimental imaging and geometrical criteria, and map them into computationally efficient segmentation algorithms that can be applied to a very large number of z-stacks. This is an alternative approach to considering existing segmentation methods and evaluating most state-of-the-art algorithms. We designed a methodology for 3D segmentation performance characterization that consists of design, evaluation and verification steps. The characterization integrates manual inputs from projected surrogate “ground truth” of statistically representative samples and from visual inspection into the evaluation. The novelty of the methodology lies in (1) designing candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from probability distribution estimates of candidate segmentations, and (3) minimizing human labor needed to create surrogate “truth” by approximating z-stack segmentations with 2D contours from three orthogonal z-stack projections and by developing visual verification tools. We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The cells reside on 10 different types of biomaterial scaffolds, and are stained for actin and nucleus yielding 128 460 image frames (on average 125 cells/scaffold × 10 scaffold types × 2 stains × 51 frames/cell). After constructing and evaluating six candidates of 3D segmentation algorithms, the most accurate 3D segmentation algorithm achieved an average precision of 0.82 and an accuracy of 0.84 as measured by the Dice similarity index where values greater than 0.7 indicate a good spatial overlap. A probability of segmentation success was 0.85 based on visual verification, and a computation time was 42.3 h to process all z-stacks. While the most accurate segmentation technique was 4.2 times slower than the second most accurate algorithm, it consumed on average 9.65 times less memory per z-stack segmentation. PMID:26268699
Lee, Joshua K; Nordahl, Christine W; Amaral, David G; Lee, Aaron; Solomon, Marjorie; Ghetti, Simona
2015-11-01
Volumetric assessments of the hippocampus and other brain structures during childhood provide useful indices of brain development and correlates of cognitive functioning in typically and atypically developing children. Automated methods such as FreeSurfer promise efficient and replicable segmentation, but may include errors which are avoided by trained manual tracers. A recently devised automated correction tool that uses a machine learning algorithm to remove systematic errors, the Automatic Segmentation Adapter Tool (ASAT), was capable of substantially improving the accuracy of FreeSurfer segmentations in an adult sample [Wang et al., 2011], but the utility of ASAT has not been examined in pediatric samples. In Study 1, the validity of FreeSurfer and ASAT corrected hippocampal segmentations were examined in 20 typically developing children and 20 children with autism spectrum disorder aged 2 and 3 years. We showed that while neither FreeSurfer nor ASAT accuracy differed by disorder or age, the accuracy of ASAT corrected segmentations were substantially better than FreeSurfer segmentations in every case, using as few as 10 training examples. In Study 2, we applied ASAT to 89 typically developing children aged 2 to 4 years to examine relations between hippocampal volume, age, sex, and expressive language. Girls had smaller hippocampi overall, and in left hippocampus this difference was larger in older than younger girls. Expressive language ability was greater in older children, and this difference was larger in those with larger hippocampi, bilaterally. Overall, this research shows that ASAT is highly reliable and useful to examinations relating behavior to hippocampal structure. © 2015 Wiley Periodicals, Inc.
Li, Guang; Wei, Jie; Huang, Hailiang; Gaebler, Carl Philipp; Yuan, Amy; Deasy, Joseph O
2015-12-01
To automatically estimate average diaphragm motion trajectory (ADMT) based on four-dimensional computed tomography (4DCT), facilitating clinical assessment of respiratory motion and motion variation and retrospective motion study. We have developed an effective motion extraction approach and a machine-learning-based algorithm to estimate the ADMT. Eleven patients with 22 sets of 4DCT images (4DCT1 at simulation and 4DCT2 at treatment) were studied. After automatically segmenting the lungs, the differential volume-per-slice (dVPS) curves of the left and right lungs were calculated as a function of slice number for each phase with respective to the full-exhalation. After 5-slice moving average was performed, the discrete cosine transform (DCT) was applied to analyze the dVPS curves in frequency domain. The dimensionality of the spectrum data was reduced by using several lowest frequency coefficients ( f v ) to account for most of the spectrum energy (Σ f v 2 ). Multiple linear regression (MLR) method was then applied to determine the weights of these frequencies by fitting the ground truth-the measured ADMT, which are represented by three pivot points of the diaphragm on each side. The 'leave-one-out' cross validation method was employed to analyze the statistical performance of the prediction results in three image sets: 4DCT1, 4DCT2, and 4DCT1 + 4DCT2. Seven lowest frequencies in DCT domain were found to be sufficient to approximate the patient dVPS curves ( R = 91%-96% in MLR fitting). The mean error in the predicted ADMT using leave-one-out method was 0.3 ± 1.9 mm for the left-side diaphragm and 0.0 ± 1.4 mm for the right-side diaphragm. The prediction error is lower in 4DCT2 than 4DCT1, and is the lowest in 4DCT1 and 4DCT2 combined. This frequency-analysis-based machine learning technique was employed to predict the ADMT automatically with an acceptable error (0.2 ± 1.6 mm). This volumetric approach is not affected by the presence of the lung tumors, providing an automatic robust tool to evaluate diaphragm motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yiting; Dong, Bin; Wang, Bing
Purpose: Effective and accurate segmentation of the aortic valve (AV) from sequenced ultrasound (US) images remains a technical challenge because of intrinsic factors of ultrasound images that impact the quality and the continuous changes of shape and position of segmented objects. In this paper, a novel shape-constraint gradient Chan-Vese (GCV) model is proposed for segmenting the AV from time serial echocardiography. Methods: The GCV model is derived by incorporating the energy of the gradient vector flow into a CV model framework, where the gradient vector energy term is introduced by calculating the deviation angle between the inward normal force ofmore » the evolution contour and the gradient vector force. The flow force enlarges the capture range and enhances the blurred boundaries of objects. This is achieved by adding a circle-like contour (constructed using the AV structure region as a constraint shape) as an energy item to the GCV model through the shape comparison function. This shape-constrained energy can enhance the image constraint force by effectively connecting separate gaps of the object edge as well as driving the evolution contour to quickly approach the ideal object. Because of the slight movement of the AV in adjacent frames, the initial constraint shape is defined by users, with the other constraint shapes being derived from the segmentation results of adjacent sequence frames after morphological filtering. The AV is segmented from the US images by minimizing the proposed energy function. Results: To evaluate the performance of the proposed method, five assessment parameters were used to compare it with manual delineations performed by radiologists (gold standards). Three hundred and fifteen images acquired from nine groups were analyzed in the experiment. The area-metric overlap error rate was 6.89% ± 2.88%, the relative area difference rate 3.94% ± 2.63%, the average symmetric contour distance 1.08 ± 0.43 mm, the root mean square symmetric contour distance 1.37 ± 0.52 mm, and the maximum symmetric contour distance was 3.57 ± 1.72 mm. Conclusions: Compared with the CV model, as a result of the combination of the gradient vector and neighborhood shape information, this semiautomatic segmentation method significantly improves the accuracy and robustness of AV segmentation, making it feasible for improved segmentation of aortic valves from US images that have fuzzy boundaries.« less
Accuracy of measurement in electrically evoked compound action potentials.
Hey, Matthias; Müller-Deile, Joachim
2015-01-15
Electrically evoked compound action potentials (ECAP) in cochlear implant (CI) patients are characterized by the amplitude of the N1P1 complex. The measurement of evoked potentials yields a combination of the measured signal with various noise components but for ECAP procedures performed in the clinical routine, only the averaged curve is accessible. To date no detailed analysis of error dimension has been published. The aim of this study was to determine the error of the N1P1 amplitude and to determine the factors that impact the outcome. Measurements were performed on 32 CI patients with either CI24RE (CA) or CI512 implants using the Software Custom Sound EP (Cochlear). N1P1 error approximation of non-averaged raw data consisting of recorded single-sweeps was compared to methods of error approximation based on mean curves. The error approximation of the N1P1 amplitude using averaged data showed comparable results to single-point error estimation. The error of the N1P1 amplitude depends on the number of averaging steps and amplification; in contrast, the error of the N1P1 amplitude is not dependent on the stimulus intensity. Single-point error showed smaller N1P1 error and better coincidence with 1/√(N) function (N is the number of measured sweeps) compared to the known maximum-minimum criterion. Evaluation of N1P1 amplitude should be accompanied by indication of its error. The retrospective approximation of this measurement error from the averaged data available in clinically used software is possible and best done utilizing the D-trace in forward masking artefact reduction mode (no stimulation applied and recording contains only the switch-on-artefact). Copyright © 2014 Elsevier B.V. All rights reserved.
Hu, Peijun; Wu, Fa; Peng, Jialin; Bao, Yuanyuan; Chen, Feng; Kong, Dexing
2017-03-01
Multi-organ segmentation from CT images is an essential step for computer-aided diagnosis and surgery planning. However, manual delineation of the organs by radiologists is tedious, time-consuming and poorly reproducible. Therefore, we propose a fully automatic method for the segmentation of multiple organs from three-dimensional abdominal CT images. The proposed method employs deep fully convolutional neural networks (CNNs) for organ detection and segmentation, which is further refined by a time-implicit multi-phase evolution method. Firstly, a 3D CNN is trained to automatically localize and delineate the organs of interest with a probability prediction map. The learned probability map provides both subject-specific spatial priors and initialization for subsequent fine segmentation. Then, for the refinement of the multi-organ segmentation, image intensity models, probability priors as well as a disjoint region constraint are incorporated into an unified energy functional. Finally, a novel time-implicit multi-phase level-set algorithm is utilized to efficiently optimize the proposed energy functional model. Our method has been evaluated on 140 abdominal CT scans for the segmentation of four organs (liver, spleen and both kidneys). With respect to the ground truth, average Dice overlap ratios for the liver, spleen and both kidneys are 96.0, 94.2 and 95.4%, respectively, and average symmetric surface distance is less than 1.3 mm for all the segmented organs. The computation time for a CT volume is 125 s in average. The achieved accuracy compares well to state-of-the-art methods with much higher efficiency. A fully automatic method for multi-organ segmentation from abdominal CT images was developed and evaluated. The results demonstrated its potential in clinical usage with high effectiveness, robustness and efficiency.
Image based Monte Carlo Modeling for Computational Phantom
NASA Astrophysics Data System (ADS)
Cheng, Mengyun; Wang, Wen; Zhao, Kai; Fan, Yanchang; Long, Pengcheng; Wu, Yican
2014-06-01
The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verfication of the models for Monte carlo(MC)simulation are very tedious, error-prone and time-consuming. In addiation, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling by FDS Team (Advanced Nuclear Energy Research Team, http://www.fds.org.cn). The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients(Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection.
Scholtz, Jan-Erik; Wichmann, Julian L; Kaup, Moritz; Fischer, Sebastian; Kerl, J Matthias; Lehnert, Thomas; Vogl, Thomas J; Bauer, Ralf W
2015-03-01
To evaluate software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine on CT in terms of accuracy, potential for time savings and workflow improvement. 77 patients (28 women, 49 men, mean age 65.3±14.4 years) with known or suspected spinal disorders (degenerative spine disease n=32; disc herniation n=36; traumatic vertebral fractures n=9) underwent 64-slice MDCT with thin-slab reconstruction. Time for automatic labeling of the thoracolumbar spine and reconstruction of double-angulated axial images of the pathological vertebrae was compared with manually performed reconstruction of anatomical aligned axial images. Reformatted images of both reconstruction methods were assessed by two observers regarding accuracy of symmetric depiction of anatomical structures. In 33 cases double-angulated axial images were created in 1 vertebra, in 28 cases in 2 vertebrae and in 16 cases in 3 vertebrae. Correct automatic labeling was achieved in 72 of 77 patients (93.5%). Errors could be manually corrected in 4 cases. Automatic labeling required 1min in average. In cases where anatomical aligned axial images of 1 vertebra were created, reconstructions made by hand were significantly faster (p<0.05). Automatic reconstruction was time-saving in cases of 2 and more vertebrae (p<0.05). Both reconstruction methods revealed good image quality with excellent inter-observer agreement. The evaluated software for automatic labeling and anatomically aligned, double-angulated axial image reconstruction of the thoracolumbar spine on CT is time-saving when reconstructions of 2 and more vertebrae are performed. Checking results of automatic labeling is necessary to prevent errors in labeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qiang; Niu, Sijie; Yuan, Songtao
Purpose: In clinical research, it is important to measure choroidal thickness when eyes are affected by various diseases. The main purpose is to automatically segment choroid for enhanced depth imaging optical coherence tomography (EDI-OCT) images with five B-scans averaging. Methods: The authors present an automated choroid segmentation method based on choroidal vasculature characteristics for EDI-OCT images with five B-scans averaging. By considering the large vascular of the Haller’s layer neighbor with the choroid-sclera junction (CSJ), the authors measured the intensity ascending distance and a maximum intensity image in the axial direction from a smoothed and normalized EDI-OCT image. Then, basedmore » on generated choroidal vessel image, the authors constructed the CSJ cost and constrain the CSJ search neighborhood. Finally, graph search with smooth constraints was utilized to obtain the CSJ boundary. Results: Experimental results with 49 images from 10 eyes in 8 normal persons and 270 images from 57 eyes in 44 patients with several stages of diabetic retinopathy and age-related macular degeneration demonstrate that the proposed method can accurately segment the choroid of EDI-OCT images with five B-scans averaging. The mean choroid thickness difference and overlap ratio between the authors’ proposed method and manual segmentation drawn by experts were −11.43 μm and 86.29%, respectively. Conclusions: Good performance was achieved for normal and pathologic eyes, which proves that the authors’ method is effective for the automated choroid segmentation of the EDI-OCT images with five B-scans averaging.« less
Dependency of Optimal Parameters of the IRIS Template on Image Quality and Border Detection Error
NASA Astrophysics Data System (ADS)
Matveev, I. A.; Novik, V. P.
2017-05-01
Generation of a template containing spatial-frequency features of iris is an important stage of identification. The template is obtained by a wavelet transform in an image region specified by iris borders. One of the main characteristics of the identification system is the value of recognition error, equal error rate (EER) is used as criterion here. The optimal values (in sense of minimizing the EER) of wavelet transform parameters depend on many factors: image quality, sharpness, size of characteristic objects, etc. It is hard to isolate these factors and their influences. The work presents an attempt to study an influence of following factors to EER: iris segmentation precision, defocus level, noise level. Several public domain iris image databases were involved in experiments. The images were subjected to modelled distortions of said types. The dependencies of wavelet parameter and EER values from the distortion levels were build. It is observed that the increase of the segmentation error and image noise leads to the increase of the optimal wavelength of the wavelets, whereas the increase of defocus level leads to decreasing of this value.
Structure-Specific Statistical Mapping of White Matter Tracts
Yushkevich, Paul A.; Zhang, Hui; Simon, Tony; Gee, James C.
2008-01-01
We present a new model-based framework for the statistical analysis of diffusion imaging data associated with specific white matter tracts. The framework takes advantage of the fact that several of the major white matter tracts are thin sheet-like structures that can be effectively modeled by medial representations. The approach involves segmenting major tracts and fitting them with deformable geometric medial models. The medial representation makes it possible to average and combine tensor-based features along directions locally perpendicular to the tracts, thus reducing data dimensionality and accounting for errors in normalization. The framework enables the analysis of individual white matter structures, and provides a range of possibilities for computing statistics and visualizing differences between cohorts. The framework is demonstrated in a study of white matter differences in pediatric chromosome 22q11.2 deletion syndrome. PMID:18407524
Liu, An-An; Li, Kang; Kanade, Takeo
2012-02-01
We propose a semi-Markov model trained in a max-margin learning framework for mitosis event segmentation in large-scale time-lapse phase contrast microscopy image sequences of stem cell populations. Our method consists of three steps. First, we apply a constrained optimization based microscopy image segmentation method that exploits phase contrast optics to extract candidate subsequences in the input image sequence that contains mitosis events. Then, we apply a max-margin hidden conditional random field (MM-HCRF) classifier learned from human-annotated mitotic and nonmitotic sequences to classify each candidate subsequence as a mitosis or not. Finally, a max-margin semi-Markov model (MM-SMM) trained on manually-segmented mitotic sequences is utilized to reinforce the mitosis classification results, and to further segment each mitosis into four predefined temporal stages. The proposed method outperforms the event-detection CRF model recently reported by Huh as well as several other competing methods in very challenging image sequences of multipolar-shaped C3H10T1/2 mesenchymal stem cells. For mitosis detection, an overall precision of 95.8% and a recall of 88.1% were achieved. For mitosis segmentation, the mean and standard deviation for the localization errors of the start and end points of all mitosis stages were well below 1 and 2 frames, respectively. In particular, an overall temporal location error of 0.73 ± 1.29 frames was achieved for locating daughter cell birth events.
Textural feature calculated from segmental fluences as a modulation index for VMAT.
Park, So-Yeon; Park, Jong Min; Kim, Jung-In; Kim, Hyoungnyoun; Kim, Il Han; Ye, Sung-Joon
2015-12-01
Textural features calculated from various segmental fluences of volumetric modulated arc therapy (VMAT) plans were optimized to enhance its performance to predict plan delivery accuracy. Twenty prostate and twenty head and neck VMAT plans were selected retrospectively. Fluences were generated for each VMAT plan by summations of segments at sequential groups of control points. The numbers of summed segments were 5, 10, 20, 45, 90, 178 and 356. For each fluence, we investigated 6 textural features: angular second moment, inverse difference moment, contrast, variance, correlation and entropy (particular displacement distances, d = 1, 5 and 10). Spearman's rank correlation coefficients (rs) were calculated between each textural feature and several different measures of VMAT delivery accuracy. The values of rs of contrast (d = 10) with 10 segments to both global and local gamma passing rates with 2%/2 mm were 0.666 (p <0.001) and 0.573 (p <0.001), respectively. It showed rs values of -0.895 (p <0.001) and 0.727 (p <0.001) to multi-leaf collimator positional errors and gantry angle errors during delivery, respectively. The number of statistically significant rs values (p <0.05) to the changes in dose-volumetric parameters during delivery was 14 among a total of 35 tested parameters. Contrast (d = 10) with 10 segments showed higher correlations to the VMAT delivery accuracy than did the conventional modulation indices. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
OCT image segmentation of the prostate nerves
NASA Astrophysics Data System (ADS)
Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.
2009-08-01
The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. In this study, 2-D OCT images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. Three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The features were segmented using a nearestneighbor classifier. N-ary morphological post-processing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058 +/- 0.019.
The use of fundamental frequency for lexical segmentation in listeners with cochlear implants.
Spitzer, Stephanie; Liss, Julie; Spahr, Tony; Dorman, Michael; Lansford, Kaitlin
2009-06-01
Fundamental frequency (F0) variation is one of a number of acoustic cues normal hearing listeners use for guiding lexical segmentation of degraded speech. This study examined whether F0 contour facilitates lexical segmentation by listeners fitted with cochlear implants (CIs). Lexical boundary error patterns elicited under unaltered and flattened F0 conditions were compared across three groups: listeners with conventional CI, listeners with CI and preserved low-frequency acoustic hearing, and normal hearing listeners subjected to CI simulations. Results indicate that all groups attended to syllabic stress cues to guide lexical segmentation, and that F0 contours facilitated performance for listeners with low-frequency hearing.
NASA Astrophysics Data System (ADS)
Hu, Xiaoqian; Tao, Jinxu; Ye, Zhongfu; Qiu, Bensheng; Xu, Jinzhang
2018-05-01
In order to solve the problem of medical image segmentation, a wavelet neural network medical image segmentation algorithm based on combined maximum entropy criterion is proposed. Firstly, we use bee colony algorithm to optimize the network parameters of wavelet neural network, get the parameters of network structure, initial weights and threshold values, and so on, we can quickly converge to higher precision when training, and avoid to falling into relative extremum; then the optimal number of iterations is obtained by calculating the maximum entropy of the segmented image, so as to achieve the automatic and accurate segmentation effect. Medical image segmentation experiments show that the proposed algorithm can reduce sample training time effectively and improve convergence precision, and segmentation effect is more accurate and effective than traditional BP neural network (back propagation neural network : a multilayer feed forward neural network which trained according to the error backward propagation algorithm.
Why segmentation matters: experience-driven segmentation errors impair “morpheme” learning
Finn, Amy S.; Hudson Kam, Carla L.
2015-01-01
We ask whether an adult learner’s knowledge of their native language impedes statistical learning in a new language beyond just word segmentation (as previously shown). In particular, we examine the impact of native-language word-form phonotactics on learners’ ability to segment words into their component morphemes and learn phonologically triggered variation of morphemes. We find that learning is impaired when words and component morphemes are structured to conflict with a learner’s native-language phonotactic system, but not when native-language phonotactics do not conflict with morpheme boundaries in the artificial language. A learner’s native-language knowledge can therefore have a cascading impact affecting word segmentation and the morphological variation that relies upon proper segmentation. These results show that getting word segmentation right early in learning is deeply important for learning other aspects of language, even those (morphology) that are known to pose a great difficulty for adult language learners. PMID:25730305
NASA Astrophysics Data System (ADS)
Sharma, Prabhat Kumar
2016-11-01
A framework is presented for the analysis of average symbol error rate (SER) for M-ary quadrature amplitude modulation in a free-space optical communication system. The standard probability density function (PDF)-based approach is extended to evaluate the average SER by representing the Q-function through its Meijer's G-function equivalent. Specifically, a converging power series expression for the average SER is derived considering the zero-boresight misalignment errors in the receiver side. The analysis presented here assumes a unified expression for the PDF of channel coefficient which incorporates the M-distributed atmospheric turbulence and Rayleigh-distributed radial displacement for the misalignment errors. The analytical results are compared with the results obtained using Q-function approximation. Further, the presented results are supported by the Monte Carlo simulations.
Patient-specific cardiac phantom for clinical training and preprocedure surgical planning.
Laing, Justin; Moore, John; Vassallo, Reid; Bainbridge, Daniel; Drangova, Maria; Peters, Terry
2018-04-01
Minimally invasive mitral valve repair procedures including MitraClip ® are becoming increasingly common. For cases of complex or diseased anatomy, clinicians may benefit from using a patient-specific cardiac phantom for training, surgical planning, and the validation of devices or techniques. An imaging compatible cardiac phantom was developed to simulate a MitraClip ® procedure. The phantom contained a patient-specific cardiac model manufactured using tissue mimicking materials. To evaluate accuracy, the patient-specific model was imaged using computed tomography (CT), segmented, and the resulting point cloud dataset was compared using absolute distance to the original patient data. The result, when comparing the molded model point cloud to the original dataset, resulted in a maximum Euclidean distance error of 7.7 mm, an average error of 0.98 mm, and a standard deviation of 0.91 mm. The phantom was validated using a MitraClip ® device to ensure anatomical features and tools are identifiable under image guidance. Patient-specific cardiac phantoms may allow for surgical complications to be accounted for preoperative planning. The information gained by clinicians involved in planning and performing the procedure should lead to shorter procedural times and better outcomes for patients.
LOGISMOS-B for primates: primate cortical surface reconstruction and thickness measurement
NASA Astrophysics Data System (ADS)
Oguz, Ipek; Styner, Martin; Sanchez, Mar; Shi, Yundi; Sonka, Milan
2015-03-01
Cortical thickness and surface area are important morphological measures with implications for many psychiatric and neurological conditions. Automated segmentation and reconstruction of the cortical surface from 3D MRI scans is challenging due to the variable anatomy of the cortex and its highly complex geometry. While many methods exist for this task in the context of the human brain, these methods are typically not readily applicable to the primate brain. We propose an innovative approach based on our recently proposed human cortical reconstruction algorithm, LOGISMOS-B, and the Laplace-based thickness measurement method. Quantitative evaluation of our approach was performed based on a dataset of T1- and T2-weighted MRI scans from 12-month-old macaques where labeling by our anatomical experts was used as independent standard. In this dataset, LOGISMOS-B has an average signed surface error of 0.01 +/- 0.03mm and an unsigned surface error of 0.42 +/- 0.03mm over the whole brain. Excluding the rather problematic temporal pole region further improves unsigned surface distance to 0.34 +/- 0.03mm. This high level of accuracy reached by our algorithm even in this challenging developmental dataset illustrates its robustness and its potential for primate brain studies.
Aging and the Visual Perception of Motion Direction: Solving the Aperture Problem.
Shain, Lindsey M; Norman, J Farley
2018-07-01
An experiment required younger and older adults to estimate coherent visual motion direction from multiple motion signals, where each motion signal was locally ambiguous with respect to the true direction of pattern motion. Thus, accurate performance required the successful integration of motion signals across space (i.e., accurate performance required solution of the aperture problem) . The observers viewed arrays of either 64 or 9 moving line segments; because these lines moved behind apertures, their individual local motions were ambiguous with respect to direction (i.e., were subject to the aperture problem). Following 2.4 seconds of pattern motion on each trial (true motion directions ranged over the entire range of 360° in the fronto-parallel plane), the observers estimated the coherent direction of motion. There was an effect of direction, such that cardinal directions of pattern motion were judged with less error than oblique directions. In addition, a large effect of aging occurred-The average absolute errors of the older observers were 46% and 30.4% higher in magnitude than those exhibited by the younger observers for the 64 and 9 aperture conditions, respectively. Finally, the observers' precision markedly deteriorated as the number of apertures was reduced from 64 to 9.
A soft kinetic data structure for lesion border detection.
Kockara, Sinan; Mete, Mutlu; Yip, Vincent; Lee, Brendan; Aydin, Kemal
2010-06-15
The medical imaging and image processing techniques, ranging from microscopic to macroscopic, has become one of the main components of diagnostic procedures to assist dermatologists in their medical decision-making processes. Computer-aided segmentation and border detection on dermoscopic images is one of the core components of diagnostic procedures and therapeutic interventions for skin cancer. Automated assessment tools for dermoscopic images have become an important research field mainly because of inter- and intra-observer variations in human interpretations. In this study, a novel approach-graph spanner-for automatic border detection in dermoscopic images is proposed. In this approach, a proximity graph representation of dermoscopic images in order to detect regions and borders in skin lesion is presented. Graph spanner approach is examined on a set of 100 dermoscopic images whose manually drawn borders by a dermatologist are used as the ground truth. Error rates, false positives and false negatives along with true positives and true negatives are quantified by digitally comparing results with manually determined borders from a dermatologist. The results show that the highest precision and recall rates obtained to determine lesion boundaries are 100%. However, accuracy of assessment averages out at 97.72% and borders errors' mean is 2.28% for whole dataset.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.
Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used tomore » guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation results significantly (p < 0.01) based on DSC (6.72%) and SD of contour-to-contour distances (0.08 cm) and decreased the 95% confidence intervals of the bladder volume differences. Moreover, expanding the shape model improved the segmentation results significantly (p < 0.01) based on DSC and SD of contour-to-contour distances. Conclusions: This patient-specific shape model based automatic bladder segmentation method on CBCT is accurate and generic. Our segmentation method only needs two pretreatment imaging data sets as prior knowledge, is independent of patient gender and patient treatment position and has the possibility to manually adapt the segmentation locally.« less
[Microsurgical anatomy importance of A1-anterior communicating artery complex].
Monroy-Sosa, Alejandro; Pérez-Cruz, Julio César; Reyes-Soto, Gervith; Delgado-Hernández, Carlos; Macías-Duvignau, Mario Alberto; Delgado-Reyes, Luis
2013-01-01
The anterior cerebral artery originates from the bifurcation of the internal carotid artery lateral to the optic chiasm, then joins with its contralateral counterpart via the anterior communicating artery. A1-anterior communicating artery complex is the most frequent anatomical variants and is the major site of aneurysms between 30 to 37%. Know the anatomy microsurgical, variants anatomical and importance of complex precommunicating segment-artery anterior communicating in surgery neurological of the pathology vascular, mainly aneurysms, in Mexican population. The study was performed in 30 brains injected. Microanatomy was studied (length and diameter) of A1-anterior communicating artery complex and its variants. 60 segments A1, the average length of left side was 11.35 mm and 11.84 mm was right. The average diameter of left was 1.67 mm and the right was 1.64 mm. The average number of perforators on the left side was 7.9 and the right side was 7.5. Anterior communicating artery was found in 29 brains of the optic chiasm, its course depended on the length of the A1 segment. The average length of the segment was 2.84 mm, the average diameter was 1.41 mm and the average number of perforators was 3.27. A1-anterior communicating artery complex variants were found in 18 (60%) and the presence of two blister-like aneurysms. It is necessary to understand the A1-anterior communicating artery complex microanatomy of its variants to have a three-dimensional vision during aneurysm surgery.
NASA Astrophysics Data System (ADS)
Söderberg, Per G.; Malmberg, Filip; Sandberg-Melin, Camilla
2017-02-01
The present study aimed to elucidate if comparison of angular segments of Pigment epithelium central limit- Inner limit of the retina Minimal Distance, measured over 2π radians in the frontal plane (PIMD-2π) between visits of a patient, renders sufficient precision for detection of loss of nerve fibers in the optic nerve head. An optic nerve head raster scanned cube was captured with a TOPCON 3D OCT 2000 (Topcon, Japan) device in one early to moderate stage glaucoma eye of each of 13 patients. All eyes were recorded at two visits less than 1 month apart. At each visit, 3 volumes were captured. Each volume was extracted from the OCT device for analysis. Then, angular PIMD was segmented three times over 2π radians in the frontal plane, resolved with a semi-automatic algorithm in 500 equally separated steps, PIMD-2π. It was found that individual segmentations within volumes, within visits, within subjects can be phase adjusted to each other in the frontal plane using cross-correlation. Cross correlation was also used to phase adjust volumes within visits within subjects and visits to each other within subjects. Then, PIMD-2π for each subject was split into 250 bundles of 2 adjacent PIMDs. Finally, the sources of variation for estimates of segments of PIMD-2π were derived with analysis of variance assuming a mixed model. The variation among adjacent PIMDS was found very small in relation to the variation among segmentations. The variation among visits was found insignificant in relation to the variation among volumes and the variance for segmentations was found to be on the order of 20 % of that for volumes. The estimated variances imply that, if 3 segmentations are averaged within a volume and at least 10 volumes are averaged within a visit, it is possible to estimate around a 10 % reduction of a PIMD-2π segment from baseline to a subsequent visit as significant. Considering a loss rate for a PIMD-2π segment of 23 μm/yr., 4 visits per year, and averaging 3 segmentations per volume and 3 volumes per visit, a significant reduction from baseline can be detected with a power of 80 % in about 18 months. At higher loss rate for a PIMD-2π segment, a significant difference from baseline can be detected earlier. Averaging over more volumes per visit considerably decreases the time for detection of a significant reduction of a segment of PIMD-2π. Increasing the number of segmentations averaged per visit only slightly reduces the time for detection of a significant reduction. It is concluded that phase adjustment in the frontal plane with cross correlation allows high precision estimates of a segment of PIMD-2π that imply substantially shorter followup time for detection of a significant change than mean deviation (MD) in a visual field estimated with the Humphrey perimeter or neural rim area (NRA) estimated with the Heidelberg retinal tomograph.
Lung lobe modeling and segmentation with individualized surface meshes
NASA Astrophysics Data System (ADS)
Blaffert, Thomas; Barschdorf, Hans; von Berg, Jens; Dries, Sebastian; Franz, Astrid; Klinder, Tobias; Lorenz, Cristian; Renisch, Steffen; Wiemker, Rafael
2008-03-01
An automated segmentation of lung lobes in thoracic CT images is of interest for various diagnostic purposes like the quantification of emphysema or the localization of tumors within the lung. Although the separating lung fissures are visible in modern multi-slice CT-scanners, their contrast in the CT-image often does not separate the lobes completely. This makes it impossible to build a reliable segmentation algorithm without additional information. Our approach uses general anatomical knowledge represented in a geometrical mesh model to construct a robust lobe segmentation, which even gives reasonable estimates of lobe volumes if fissures are not visible at all. The paper describes the generation of the lung model mesh including lobes by an average volume model, its adaptation to individual patient data using a special fissure feature image, and a performance evaluation over a test data set showing an average segmentation accuracy of 1 to 3 mm.
Testing and Calibration of Phase Plates for JWST Optical Simulator
NASA Technical Reports Server (NTRS)
Gong, Qian; Chu, Jenny; Tournois, Severine; Eichhorn, William; Kubalak, David
2011-01-01
Three phase plates were designed to simulate the JWST segmented primary mirror wavefront at three on-orbit alignment stages: coarse phasing, intermediate phasing, and fine phasing. The purpose is to verify JWST's on-orbit wavefront sensing capability. Amongst the three stages, coarse alignment is defined to have piston error between adjacent segments being 30 m to 300 m, intermediate being 0.4 m to 10 m, and fine is below 0.4 m. The phase plates were made of fused silica, and were assembled in JWST Optical Simulator (OSIM). The piston difference was realized by the thickness difference of two adjacent segments. The two important parameters to phase plates are piston and wavefront errors. Dispersed Fringe Sensor (DFS) method was used for initial coarse piston evaluation, which is the emphasis of this paper. Point Diffraction Interferometer (PDI) is used for fine piston and wavefront error. In order to remove piston's 2 pi uncertainty with PDI, three laser wavelengths, 640nm, 660nm, and 780nm, are used for the measurement. The DHS test setup, analysis algorithm and results are presented. The phase plate design concept and its application (i.e. verifying the JWST on-orbit alignment algorithm) are described. The layout of JWST OSIM and the function of phase plates in OSIM are also addressed briefly.
A three stage sampling model for remote sensing applications
NASA Technical Reports Server (NTRS)
Eisgruber, L. M.
1972-01-01
A conceptual model and an empirical application of the relationship between the manner of selecting observations and its effect on the precision of estimates from remote sensing are reported. This three stage sampling scheme considers flightlines, segments within flightlines, and units within these segments. The error of estimate is dependent on the number of observations in each of the stages.
Interactive 3D segmentation using connected orthogonal contours.
de Bruin, P W; Dercksen, V J; Post, F H; Vossepoel, A M; Streekstra, G J; Vos, F M
2005-05-01
This paper describes a new method for interactive segmentation that is based on cross-sectional design and 3D modelling. The method represents a 3D model by a set of connected contours that are planar and orthogonal. Planar contours overlayed on image data are easily manipulated and linked contours reduce the amount of user interaction.1 This method solves the contour-to-contour correspondence problem and can capture extrema of objects in a more flexible way than manual segmentation of a stack of 2D images. The resulting 3D model is guaranteed to be free of geometric and topological errors. We show that manual segmentation using connected orthogonal contours has great advantages over conventional manual segmentation. Furthermore, the method provides effective feedback and control for creating an initial model for, and control and steering of, (semi-)automatic segmentation methods.
NASA Astrophysics Data System (ADS)
Hopp, T.; Zapf, M.; Ruiter, N. V.
2014-03-01
An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.
Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.
2013-01-01
When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cekresolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek obtained from the iterative two-stage method also improved predictive performance of the individual models and model averaging in both synthetic and experimental studies.
Google Earth elevation data extraction and accuracy assessment for transportation applications
Wang, Yinsong; Zou, Yajie; Henrickson, Kristian; Wang, Yinhai; Tang, Jinjun; Park, Byung-Jung
2017-01-01
Roadway elevation data is critical for a variety of transportation analyses. However, it has been challenging to obtain such data and most roadway GIS databases do not have them. This paper intends to address this need by proposing a method to extract roadway elevation data from Google Earth (GE) for transportation applications. A comprehensive accuracy assessment of the GE-extracted elevation data is conducted for the area of conterminous USA. The GE elevation data was compared with the ground truth data from nationwide GPS benchmarks and roadway monuments from six states in the conterminous USA. This study also compares the GE elevation data with the elevation raster data from the U.S. Geological Survey National Elevation Dataset (USGS NED), which is a widely used data source for extracting roadway elevation. Mean absolute error (MAE) and root mean squared error (RMSE) are used to assess the accuracy and the test results show MAE, RMSE and standard deviation of GE roadway elevation error are 1.32 meters, 2.27 meters and 2.27 meters, respectively. Finally, the proposed extraction method was implemented and validated for the following three scenarios: (1) extracting roadway elevation differentiating by directions, (2) multi-layered roadway recognition in freeway segment and (3) slope segmentation and grade calculation in freeway segment. The methodology validation results indicate that the proposed extraction method can locate the extracting route accurately, recognize multi-layered roadway section, and segment the extracted route by grade automatically. Overall, it is found that the high accuracy elevation data available from GE provide a reliable data source for various transportation applications. PMID:28445480
The error analysis of Lobular and segmental division of right liver by volume measurement.
Zhang, Jianfei; Lin, Weigang; Chi, Yanyan; Zheng, Nan; Xu, Qiang; Zhang, Guowei; Yu, Shengbo; Li, Chan; Wang, Bin; Sui, Hongjin
2017-07-01
The aim of this study is to explore the inconsistencies between right liver volume as measured by imaging and the actual anatomical appearance of the right lobe. Five healthy donated livers were studied. The liver slices were obtained with hepatic segments multicolor-infused through the portal vein. In the slices, the lobes were divided by two methods: radiological landmarks and real anatomical boundaries. The areas of the right anterior lobe (RAL) and right posterior lobe (RPL) on each slice were measured using Photoshop CS5 and AutoCAD, and the volumes of the two lobes were calculated. There was no statistically significant difference between the volumes of the RAL or RPL as measured by the radiological landmarks (RL) and anatomical boundaries (AB) methods. However, the curves of the square error value of the RAL and RPL measured using CT showed that the three lowest points were at the cranial, intermediate, and caudal levels. The U- or V-shaped curves of the square error rate of the RAL and RPL revealed that the lowest value is at the intermediate level and the highest at the cranial and caudal levels. On CT images, less accurate landmarks were used to divide the RAL and RPL at the cranial and caudal layers. The measured volumes of hepatic segments VIII and VI would be less than their true values, and the measured volumes of hepatic segments VII and V would be greater than their true values, according to radiological landmarks. Clin. Anat. 30:585-590, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Google Earth elevation data extraction and accuracy assessment for transportation applications.
Wang, Yinsong; Zou, Yajie; Henrickson, Kristian; Wang, Yinhai; Tang, Jinjun; Park, Byung-Jung
2017-01-01
Roadway elevation data is critical for a variety of transportation analyses. However, it has been challenging to obtain such data and most roadway GIS databases do not have them. This paper intends to address this need by proposing a method to extract roadway elevation data from Google Earth (GE) for transportation applications. A comprehensive accuracy assessment of the GE-extracted elevation data is conducted for the area of conterminous USA. The GE elevation data was compared with the ground truth data from nationwide GPS benchmarks and roadway monuments from six states in the conterminous USA. This study also compares the GE elevation data with the elevation raster data from the U.S. Geological Survey National Elevation Dataset (USGS NED), which is a widely used data source for extracting roadway elevation. Mean absolute error (MAE) and root mean squared error (RMSE) are used to assess the accuracy and the test results show MAE, RMSE and standard deviation of GE roadway elevation error are 1.32 meters, 2.27 meters and 2.27 meters, respectively. Finally, the proposed extraction method was implemented and validated for the following three scenarios: (1) extracting roadway elevation differentiating by directions, (2) multi-layered roadway recognition in freeway segment and (3) slope segmentation and grade calculation in freeway segment. The methodology validation results indicate that the proposed extraction method can locate the extracting route accurately, recognize multi-layered roadway section, and segment the extracted route by grade automatically. Overall, it is found that the high accuracy elevation data available from GE provide a reliable data source for various transportation applications.
A semi-automatic method for left ventricle volume estimate: an in vivo validation study
NASA Technical Reports Server (NTRS)
Corsi, C.; Lamberti, C.; Sarti, A.; Saracino, G.; Shiota, T.; Thomas, J. D.
2001-01-01
This study aims to the validation of the left ventricular (LV) volume estimates obtained by processing volumetric data utilizing a segmentation model based on level set technique. The validation has been performed by comparing real-time volumetric echo data (RT3DE) and magnetic resonance (MRI) data. A validation protocol has been defined. The validation protocol was applied to twenty-four estimates (range 61-467 ml) obtained from normal and pathologic subjects, which underwent both RT3DE and MRI. A statistical analysis was performed on each estimate and on clinical parameters as stroke volume (SV) and ejection fraction (EF). Assuming MRI estimates (x) as a reference, an excellent correlation was found with volume measured by utilizing the segmentation procedure (y) (y=0.89x + 13.78, r=0.98). The mean error on SV was 8 ml and the mean error on EF was 2%. This study demonstrated that the segmentation technique is reliably applicable on human hearts in clinical practice.
Improved segmentation of occluded and adjoining vehicles in traffic surveillance videos
NASA Astrophysics Data System (ADS)
Juneja, Medha; Grover, Priyanka
2013-12-01
Occlusion in image processing refers to concealment of any part of the object or the whole object from view of an observer. Real time videos captured by static cameras on roads often encounter overlapping and hence, occlusion of vehicles. Occlusion in traffic surveillance videos usually occurs when an object which is being tracked is hidden by another object. This makes it difficult for the object detection algorithms to distinguish all the vehicles efficiently. Also morphological operations tend to join the close proximity vehicles resulting in formation of a single bounding box around more than one vehicle. Such problems lead to errors in further video processing, like counting of vehicles in a video. The proposed system brings forward efficient moving object detection and tracking approach to reduce such errors. The paper uses successive frame subtraction technique for detection of moving objects. Further, this paper implements the watershed algorithm to segment the overlapped and adjoining vehicles. The segmentation results have been improved by the use of noise and morphological operations.
Ernst, Dominique; Köhler, Jürgen
2013-01-21
We provide experimental results on the accuracy of diffusion coefficients obtained by a mean squared displacement (MSD) analysis of single-particle trajectories. We have recorded very long trajectories comprising more than 1.5 × 10(5) data points and decomposed these long trajectories into shorter segments providing us with ensembles of trajectories of variable lengths. This enabled a statistical analysis of the resulting MSD curves as a function of the lengths of the segments. We find that the relative error of the diffusion coefficient can be minimized by taking an optimum number of points into account for fitting the MSD curves, and that this optimum does not depend on the segment length. Yet, the magnitude of the relative error for the diffusion coefficient does, and achieving an accuracy in the order of 10% requires the recording of trajectories with about 1000 data points. Finally, we compare our results with theoretical predictions and find very good qualitative and quantitative agreement between experiment and theory.
Foveal Curvature and Asymmetry Assessed Using Optical Coherence Tomography.
VanNasdale, Dean A; Eilerman, Amanda; Zimmerman, Aaron; Lai, Nicky; Ramsey, Keith; Sinnott, Loraine T
2017-06-01
The aims of this study were to use cross-sectional optical coherence tomography imaging and custom curve fitting software to evaluate and model the foveal curvature as a spherical surface and to compare the radius of curvature in the horizontal and vertical meridians and test the sensitivity of this technique to anticipated meridional differences. Six 30-degree foveal-centered radial optical coherence tomography cross-section scans were acquired in the right eye of 20 clinically normal subjects. Cross sections were manually segmented, and custom curve fitting software was used to determine foveal pit radius of curvature using the central 500, 1000, and 1500 μm of the foveal contour. Radius of curvature was compared across different fitting distances. Root mean square error was used to determine goodness of fit. The radius of curvature was compared between the horizontal and vertical meridians for each fitting distance. There radius of curvature was significantly different when comparing each of the three fitting distances (P < .01 for each comparison). The average radii of curvature were 970 μm (95% confidence interval [CI], 913 to 1028 μm), 1386 μm (95% CI, 1339 to 1439 μm), and 2121 μm (95% CI, 2066 to 2183) for the 500-, 1000-, and 1500-μm fitting distances, respectively. Root mean square error was also significantly different when comparing each fitting distance (P < .01 for each comparison). The average root mean square errors were 2.48 μm (95% CI, 2.41 to 2.53 μm), 6.22 μm (95% CI, 5.77 to 6.60 μm), and 13.82 μm (95% CI, 12.93 to 14.58 μm) for the 500-, 1000-, and 1500-μm fitting distances, respectively. The radius of curvature between the horizontal and vertical meridian radii was statistically different only in the 1000- and 1500-μm fitting distances (P < .01 for each), with the horizontal meridian being flatter than the vertical. The foveal contour can be modeled as a sphere with low curve fitting error over a limited distance and capable of detecting subtle foveal contour differences between meridians.
Luo, Xiongbiao
2014-06-01
Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model was designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0-10 min(-1). The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xiongbiao, E-mail: xiongbiao.luo@gmail.com
2014-06-15
Purpose: Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. Methods: The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model wasmore » designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. Results: The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0–10 min{sup −1}. The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. Conclusions: An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.« less
Towards Automatic Image Segmentation Using Optimised Region Growing Technique
NASA Astrophysics Data System (ADS)
Alazab, Mamoun; Islam, Mofakharul; Venkatraman, Sitalakshmi
Image analysis is being adopted extensively in many applications such as digital forensics, medical treatment, industrial inspection, etc. primarily for diagnostic purposes. Hence, there is a growing interest among researches in developing new segmentation techniques to aid the diagnosis process. Manual segmentation of images is labour intensive, extremely time consuming and prone to human errors and hence an automated real-time technique is warranted in such applications. There is no universally applicable automated segmentation technique that will work for all images as the image segmentation is quite complex and unique depending upon the domain application. Hence, to fill the gap, this paper presents an efficient segmentation algorithm that can segment a digital image of interest into a more meaningful arrangement of regions and objects. Our algorithm combines region growing approach with optimised elimination of false boundaries to arrive at more meaningful segments automatically. We demonstrate this using X-ray teeth images that were taken for real-life dental diagnosis.
The Wasatch fault zone, utah—segmentation and history of Holocene earthquakes
NASA Astrophysics Data System (ADS)
Machette, Michael N.; Personius, Stephen F.; Nelson, Alan R.; Schwartz, David P.; Lund, William R.
The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. We have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a -1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of <0.5 mm a -1 recurrence intervals of ≥10,000 years and average lengths of about 20 km. Surface-faulting events on each of the medial segments of the WFZ formed 2-4-m-high scarps repeatedly during the Holocene; latest Pleistocene (14-15 ka) deposits commonly have scarps as much as 15-20 m in height. Segments identified from paleoseismological studies of other major late Quaternary normal faults in the northern Basin and Range province are 20-25 km long, or about half of that proposed for the medial segments of the WFZ. Paleoseismological records for the past 6000 years indicate that a major surface-rupturing earthquake has occurred along one of the medial segments about every 395 ± 60 years. However, between about 400 and 1500 years ago, the WFZ experienced six major surface-rupturing events, an average of one event every 220 years, or about twice as often as expected from the 6000-year record. This pattern of temporal clustering is similar to that of the central Nevada—eastern California Seismic Belt in the western part of the Basin and Range province, where 11 earthquakes of M > 6.5 have occurred since 1860. Although the time scale of the clustering is different—130 years vs 1100 years—we consider the central Nevada—eastern California Seismic Belt to be a historic analog for movement on the WFZ during the past 1500 years. We have found no evidence that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval. In particular, the Brigham City segment (the northernmost medial segment) has not ruptured in the past 3600 years—a period that is about three times longer than this segment's average recurrence interval during the early and middle Holocene. Although the WFZ's seismological record is one of relative quiescence, a comparison with other historic surface-rupturing earthquakes in the region suggests that earthquakes having moment magnitudes of 7.1-7.4 (or surface-wave magnitudes of 7.5-7.7)—each associated with tens of kilometers of surface rupture and several meters of normal dip slip—have occurred about every four centuries during the Holocene and should be expected in the future.
McCalpin, J.P.; Nishenko, S.P.
1996-01-01
The chronology of M>7 paleoearthquakes on the central five segments of the Wasatch fault zone (WFZ) is one of the best dated in the world and contains 16 earthquakes in the past 5600 years with an average repeat time of 350 years. Repeat times for individual segments vary by a factor of 2, and range from about 1200 to 2600 years. Four of the central five segments ruptured between ??? 620??30 and 1230??60 calendar years B.P. The remaining segment (Brigham City segment) has not ruptured in the past 2120??100 years. Comparison of the WFZ space-time diagram of paleoearthquakes with synthetic paleoseismic histories indicates that the observed temporal clusters and gaps have about an equal probability (depending on model assumptions) of reflecting random coincidence as opposed to intersegment contagion. Regional seismicity suggests that for exposure times of 50 and 100 years, the probability for an earthquake of M>7 anywhere within the Wasatch Front region, based on a Poisson model, is 0.16 and 0.30, respectively. A fault-specific WFZ model predicts 50 and 100 year probabilities for a M>7 earthquake on the WFZ itself, based on a Poisson model, as 0.13 and 0.25, respectively. In contrast, segment-specific earthquake probabilities that assume quasi-periodic recurrence behavior on the Weber, Provo, and Nephi segments are less (0.01-0.07 in 100 years) than the regional or fault-specific estimates (0.25-0.30 in 100 years), due to the short elapsed times compared to average recurrence intervals on those segments. The Brigham City and Salt Lake City segments, however, have time-dependent probabilities that approach or exceed the regional and fault specific probabilities. For the Salt Lake City segment, these elevated probabilities are due to the elapsed time being approximately equal to the average late Holocene recurrence time. For the Brigham City segment, the elapsed time is significantly longer than the segment-specific late Holocene recurrence time.
Bennett, Jerry M.; Cortes, Peter M.
1985-01-01
The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios. PMID:16664367
Bennett, J M; Cortes, P M
1985-09-01
The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios.
Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT.
Zhang, Li; Buitendijk, Gabriëlle H S; Lee, Kyungmoo; Sonka, Milan; Springelkamp, Henriët; Hofman, Albert; Vingerling, Johannes R; Mullins, Robert F; Klaver, Caroline C W; Abràmoff, Michael D
2015-05-01
To evaluate the validity of a novel fully automated three-dimensional (3D) method capable of segmenting the choroid from two different optical coherence tomography scanners: swept-source OCT (SS-OCT) and spectral-domain OCT (SD-OCT). One hundred eight subjects were imaged using SS-OCT and SD-OCT. A 3D method was used to segment the choroid and quantify the choroidal thickness along each A-scan. The segmented choroidal posterior boundary was evaluated by comparing to manual segmentation. Differences were assessed to test the agreement between segmentation results of the same subject. Choroidal thickness was defined as the Euclidian distance between Bruch's membrane and the choroidal posterior boundary, and reproducibility was analyzed using automatically and manually determined choroidal thicknesses. For SS-OCT, the average choroidal thickness of the entire 6- by 6-mm2 macular region was 219.5 μm (95% confidence interval [CI], 204.9-234.2 μm), and for SD-OCT it was 209.5 μm (95% CI, 197.9-221.0 μm). The agreement between automated and manual segmentations was high: Average relative difference was less than 5 μm, and average absolute difference was less than 15 μm. Reproducibility of choroidal thickness between repeated SS-OCT scans was high (coefficient of variation [CV] of 3.3%, intraclass correlation coefficient [ICC] of 0.98), and differences between SS-OCT and SD-OCT results were small (CV of 11.0%, ICC of 0.73). We have developed a fully automated 3D method for segmenting the choroid and quantifying choroidal thickness along each A-scan. The method yielded high validity. Our method can be used reliably to study local choroidal changes and may improve the diagnosis and management of patients with ocular diseases in which the choroid is affected.
The Wasatch fault zone, utah-segmentation and history of Holocene earthquakes
Machette, M.N.; Personius, S.F.; Nelson, A.R.; Schwartz, D.P.; Lund, W.R.
1991-01-01
The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. We have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a-1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of 6.5 have occurred since 1860. Although the time scale of the clustering is different-130 years vs 1100 years-we consider the central Nevada-eastern California Seismic Belt to be a historic analog for movement on the WFZ during the past 1500 years. We have found no evidence that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval. In particular, the Brigham City segment (the northernmost medial segment) has not ruptured in the past 3600 years-a period that is about three times longer than this segment's average recurrence interval during the early and middle Holocene. Although the WFZ's seismological record is one of relative quiescence, a comparison with other historic surface-rupturing earthquakes in the region suggests that earthquakes having moment magnitudes of 7.1-7.4 (or surface-wave magnitudes of 7.5-7.7)-each associated with tens of kilometers of surface rupture and several meters of normal dip slip-have occurred about every four centuries during the Holocene and should be expected in the future. ?? 1991.
The random coding bound is tight for the average code.
NASA Technical Reports Server (NTRS)
Gallager, R. G.
1973-01-01
The random coding bound of information theory provides a well-known upper bound to the probability of decoding error for the best code of a given rate and block length. The bound is constructed by upperbounding the average error probability over an ensemble of codes. The bound is known to give the correct exponential dependence of error probability on block length for transmission rates above the critical rate, but it gives an incorrect exponential dependence at rates below a second lower critical rate. Here we derive an asymptotic expression for the average error probability over the ensemble of codes used in the random coding bound. The result shows that the weakness of the random coding bound at rates below the second critical rate is due not to upperbounding the ensemble average, but rather to the fact that the best codes are much better than the average at low rates.
Patient-individualized boundary conditions for CFD simulations using time-resolved 3D angiography.
Boegel, Marco; Gehrisch, Sonja; Redel, Thomas; Rohkohl, Christopher; Hoelter, Philip; Doerfler, Arnd; Maier, Andreas; Kowarschik, Markus
2016-06-01
Hemodynamic simulations are of increasing interest for the assessment of aneurysmal rupture risk and treatment planning. Achievement of accurate simulation results requires the usage of several patient-individual boundary conditions, such as a geometric model of the vasculature but also individualized inflow conditions. We propose the automatic estimation of various parameters for boundary conditions for computational fluid dynamics (CFD) based on a single 3D rotational angiography scan, also showing contrast agent inflow. First the data are reconstructed, and a patient-specific vessel model can be generated in the usual way. For this work, we optimize the inflow waveform based on two parameters, the mean velocity and pulsatility. We use statistical analysis of the measurable velocity distribution in the vessel segment to estimate the mean velocity. An iterative optimization scheme based on CFD and virtual angiography is utilized to estimate the inflow pulsatility. Furthermore, we present methods to automatically determine the heart rate and synchronize the inflow waveform to the patient's heart beat, based on time-intensity curves extracted from the rotational angiogram. This will result in a patient-individualized inflow velocity curve. The proposed methods were evaluated on two clinical datasets. Based on the vascular geometries, synthetic rotational angiography data was generated to allow a quantitative validation of our approach against ground truth data. We observed an average error of approximately [Formula: see text] for the mean velocity, [Formula: see text] for the pulsatility. The heart rate was estimated very precisely with an average error of about [Formula: see text], which corresponds to about 6 ms error for the duration of one cardiac cycle. Furthermore, a qualitative comparison of measured time-intensity curves from the real data and patient-specific simulated ones shows an excellent match. The presented methods have the potential to accurately estimate patient-specific boundary conditions from a single dedicated rotational scan.
Dao, Duy; Salehizadeh, S M A; Noh, Yeonsik; Chong, Jo Woon; Cho, Chae Ho; McManus, Dave; Darling, Chad E; Mendelson, Yitzhak; Chon, Ki H
2017-09-01
Motion and noise artifacts (MNAs) impose limits on the usability of the photoplethysmogram (PPG), particularly in the context of ambulatory monitoring. MNAs can distort PPG, causing erroneous estimation of physiological parameters such as heart rate (HR) and arterial oxygen saturation (SpO2). In this study, we present a novel approach, "TifMA," based on using the time-frequency spectrum of PPG to first detect the MNA-corrupted data and next discard the nonusable part of the corrupted data. The term "nonusable" refers to segments of PPG data from which the HR signal cannot be recovered accurately. Two sequential classification procedures were included in the TifMA algorithm. The first classifier distinguishes between MNA-corrupted and MNA-free PPG data. Once a segment of data is deemed MNA-corrupted, the next classifier determines whether the HR can be recovered from the corrupted segment or not. A support vector machine (SVM) classifier was used to build a decision boundary for the first classification task using data segments from a training dataset. Features from time-frequency spectra of PPG were extracted to build the detection model. Five datasets were considered for evaluating TifMA performance: (1) and (2) were laboratory-controlled PPG recordings from forehead and finger pulse oximeter sensors with subjects making random movements, (3) and (4) were actual patient PPG recordings from UMass Memorial Medical Center with random free movements and (5) was a laboratory-controlled PPG recording dataset measured at the forehead while the subjects ran on a treadmill. The first dataset was used to analyze the noise sensitivity of the algorithm. Datasets 2-4 were used to evaluate the MNA detection phase of the algorithm. The results from the first phase of the algorithm (MNA detection) were compared to results from three existing MNA detection algorithms: the Hjorth, kurtosis-Shannon entropy, and time-domain variability-SVM approaches. This last is an approach recently developed in our laboratory. The proposed TifMA algorithm consistently provided higher detection rates than the other three methods, with accuracies greater than 95% for all data. Moreover, our algorithm was able to pinpoint the start and end times of the MNA with an error of less than 1 s in duration, whereas the next-best algorithm had a detection error of more than 2.2 s. The final, most challenging, dataset was collected to verify the performance of the algorithm in discriminating between corrupted data that were usable for accurate HR estimations and data that were nonusable. It was found that on average 48% of the data segments were found to have MNA, and of these, 38% could be used to provide reliable HR estimation.
Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijuan; Duran, Adam; Gonder, Jeffrey
This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other threemore » as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.« less
Kocsis, E; Trus, B L; Steer, C J; Bisher, M E; Steven, A C
1991-08-01
We have developed computational techniques that allow image averaging to be applied to electron micrographs of filamentous molecules that exhibit tight and variable curvature. These techniques, which involve straightening by cubic-spline interpolation, image classification, and statistical analysis of the molecules' curvature properties, have been applied to purified brain clathrin. This trimeric filamentous protein polymerizes, both in vivo and in vitro, into a wide range of polyhedral structures. Contrasted by low-angle rotary shadowing, dissociated clathrin molecules appear as distinctive three-legged structures, called "triskelions" (E. Ungewickell and D. Branton (1981) Nature 289, 420). We find triskelion legs to vary from 35 to 62 nm in total length, according to an approximately bell-shaped distribution (mu = 51.6 nm). Peaks in averaged curvature profiles mark hinges or sites of enhanced flexibility. Such profiles, calculated for each length class, show that triskelion legs are flexible over their entire lengths. However, three curvature peaks are observed in every case: their locations define a proximal segment of systematically increasing length (14.0-19.0 nm), a mid-segment of fixed length (approximately 12 nm), and a rather variable end-segment (11.6-19.5 nm), terminating in a hinge just before the globular terminal domain (approximately 7.3 nm diameter). Thus, two major factors contribute to the overall variability in leg length: (1) stretching of the proximal segment and (2) stretching of the end-segment and/or scrolling of the terminal domain. The observed elasticity of the proximal segment may reflect phosphorylation of the clathrin light chains.
Chuang, Kai Jen; Coull, Brent A.; Zanobetti, Antonella; Suh, Helen; Schwartz, Joel; Stone, Peter H.; Litonjua, Augusto; Speizer, Frank E.; Gold, Diane R.
2009-01-01
Background The association of particulate matter (PM) with cardiovascular morbidity and mortality is well documented. PM-induced ischemia is considered a potential mechanism linking PM to adverse cardiovascular outcomes. Methods and Results In a repeated-measures study including 5,979 observations on 48 patients aged 43–75 years, we investigated associations of ambient pollution with ST-segment level changes averaged over half-hour periods, measured in the modified V5 position by 24-hr Holter electrocardiogram monitoring. Each patient was observed up to 4 times within one year after a percutaneous intervention for myocardial infarction, acute coronary syndrome without infarction, or stable coronary artery disease without acute coronary syndrome. Elevation in fine particles (PM2.5) and black carbon (BC) levels predicted depression of half-hour averaged ST-segment levels. An interquartile increase in the previous 24-h mean BC level was associated with a 1.50-fold increased in risk of ST-segment depression ≥0.1 mm (95% CI: 1.19, 1.89) and a −0.031 mm (95% CI: −0.042, −0.019) decrease in half-hour averaged ST-segment level (continuous outcome). Effects were greatest within the first month after hospitalization, and for patients with myocardial infarction during hospitalization or with diabetes. Conclusions ST-segment depression is associated with increased exposure to PM2.5 and BC in cardiac patients. The risk of pollution-associated ST-segment depression may be greatest in those with myocardial injury in the first month after the cardiac event. PMID:18779445
Estimation of open water evaporation using land-based meteorological data
NASA Astrophysics Data System (ADS)
Li, Fawen; Zhao, Yong
2017-10-01
Water surface evaporation is an important process in the hydrologic and energy cycles. Accurate simulation of water evaporation is important for the evaluation of water resources. In this paper, using meteorological data from the Aixinzhuang reservoir, the main factors affecting water surface evaporation were determined by the principal component analysis method. To illustrate the influence of these factors on water surface evaporation, the paper first adopted the Dalton model to simulate water surface evaporation. The results showed that the simulation precision was poor for the peak value zone. To improve the model simulation's precision, a modified Dalton model considering relative humidity was proposed. The results show that the 10-day average relative error is 17.2%, assessed as qualified; the monthly average relative error is 12.5%, assessed as qualified; and the yearly average relative error is 3.4%, assessed as excellent. To validate its applicability, the meteorological data of Kuancheng station in the Luan River basin were selected to test the modified model. The results show that the 10-day average relative error is 15.4%, assessed as qualified; the monthly average relative error is 13.3%, assessed as qualified; and the yearly average relative error is 6.0%, assessed as good. These results showed that the modified model had good applicability and versatility. The research results can provide technical support for the calculation of water surface evaporation in northern China or similar regions.
Wang, Hongzhi; Yushkevich, Paul A.
2013-01-01
Label fusion based multi-atlas segmentation has proven to be one of the most competitive techniques for medical image segmentation. This technique transfers segmentations from expert-labeled images, called atlases, to a novel image using deformable image registration. Errors produced by label transfer are further reduced by label fusion that combines the results produced by all atlases into a consensus solution. Among the proposed label fusion strategies, weighted voting with spatially varying weight distributions derived from atlas-target intensity similarity is a simple and highly effective label fusion technique. However, one limitation of most weighted voting methods is that the weights are computed independently for each atlas, without taking into account the fact that different atlases may produce similar label errors. To address this problem, we recently developed the joint label fusion technique and the corrective learning technique, which won the first place of the 2012 MICCAI Multi-Atlas Labeling Challenge and was one of the top performers in 2013 MICCAI Segmentation: Algorithms, Theory and Applications (SATA) challenge. To make our techniques more accessible to the scientific research community, we describe an Insight-Toolkit based open source implementation of our label fusion methods. Our implementation extends our methods to work with multi-modality imaging data and is more suitable for segmentation problems with multiple labels. We demonstrate the usage of our tools through applying them to the 2012 MICCAI Multi-Atlas Labeling Challenge brain image dataset and the 2013 SATA challenge canine leg image dataset. We report the best results on these two datasets so far. PMID:24319427
A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology.
Kumar, Neeraj; Verma, Ruchika; Sharma, Sanuj; Bhargava, Surabhi; Vahadane, Abhishek; Sethi, Amit
2017-07-01
Nuclear segmentation in digital microscopic tissue images can enable extraction of high-quality features for nuclear morphometrics and other analysis in computational pathology. Conventional image processing techniques, such as Otsu thresholding and watershed segmentation, do not work effectively on challenging cases, such as chromatin-sparse and crowded nuclei. In contrast, machine learning-based segmentation can generalize across various nuclear appearances. However, training machine learning algorithms requires data sets of images, in which a vast number of nuclei have been annotated. Publicly accessible and annotated data sets, along with widely agreed upon metrics to compare techniques, have catalyzed tremendous innovation and progress on other image classification problems, particularly in object recognition. Inspired by their success, we introduce a large publicly accessible data set of hematoxylin and eosin (H&E)-stained tissue images with more than 21000 painstakingly annotated nuclear boundaries, whose quality was validated by a medical doctor. Because our data set is taken from multiple hospitals and includes a diversity of nuclear appearances from several patients, disease states, and organs, techniques trained on it are likely to generalize well and work right out-of-the-box on other H&E-stained images. We also propose a new metric to evaluate nuclear segmentation results that penalizes object- and pixel-level errors in a unified manner, unlike previous metrics that penalize only one type of error. We also propose a segmentation technique based on deep learning that lays a special emphasis on identifying the nuclear boundaries, including those between the touching or overlapping nuclei, and works well on a diverse set of test images.
Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning.
Xu, Zhoubing; Burke, Ryan P; Lee, Christopher P; Baucom, Rebeccah B; Poulose, Benjamin K; Abramson, Richard G; Landman, Bennett A
2015-08-01
Abdominal segmentation on clinically acquired computed tomography (CT) has been a challenging problem given the inter-subject variance of human abdomens and complex 3-D relationships among organs. Multi-atlas segmentation (MAS) provides a potentially robust solution by leveraging label atlases via image registration and statistical fusion. We posit that the efficiency of atlas selection requires further exploration in the context of substantial registration errors. The selective and iterative method for performance level estimation (SIMPLE) method is a MAS technique integrating atlas selection and label fusion that has proven effective for prostate radiotherapy planning. Herein, we revisit atlas selection and fusion techniques for segmenting 12 abdominal structures using clinically acquired CT. Using a re-derived SIMPLE algorithm, we show that performance on multi-organ classification can be improved by accounting for exogenous information through Bayesian priors (so called context learning). These innovations are integrated with the joint label fusion (JLF) approach to reduce the impact of correlated errors among selected atlases for each organ, and a graph cut technique is used to regularize the combined segmentation. In a study of 100 subjects, the proposed method outperformed other comparable MAS approaches, including majority vote, SIMPLE, JLF, and the Wolz locally weighted vote technique. The proposed technique provides consistent improvement over state-of-the-art approaches (median improvement of 7.0% and 16.2% in DSC over JLF and Wolz, respectively) and moves toward efficient segmentation of large-scale clinically acquired CT data for biomarker screening, surgical navigation, and data mining. Copyright © 2015 Elsevier B.V. All rights reserved.
Random Vibration Analysis of the Tip-tilt System in the GMT Fast Steering Secondary Mirror
NASA Astrophysics Data System (ADS)
Lee, Kyoung-Don; Kim, Young-Soo; Kim, Ho-Sang; Lee, Chan-Hee; Lee, Won Gi
2017-09-01
A random vibration analysis was accomplished on the tip-tilt system of the fast steering secondary mirror (FSM) for the Giant Magellan Telescope (GMT). As the FSM was to be mounted on the top end of the secondary truss and disturbed by the winds, dynamic effects of the FSM disturbances on the tip-tilt correction performance was studied. The coupled dynamic responses of the FSM segments were evaluated with a suggested tip-tilt correction modeling. Dynamic equations for the tip-tilt system were derived from the force and moment equilibrium on the segment mirror and the geometric compatibility conditions with four design parameters. Statically stationary responses for the tip-tilt actuations to correct the wind-induced disturbances were studied with two design parameters based on the spectral density function of the star image errors in the frequency domain. Frequency response functions and root mean square values of the dynamic responses and the residual star image errors were numerically calculated for the off-axis and on-axis segments of the FSM. A prototype of on-axis segment of the FSM was developed for tip-tilt actuation tests to confirm the ratio of tip-tilt force to tip-tilt angle calculated from the suggested dynamic equations of the tip-tilt system. Tip-tilt actuation tests were executed at 4, 8 and 12 Hz by measuring displacements of piezoelectric actuators and reaction forces acting on the axial supports. The derived ratios of rms tip-tilt force to rms tip-tilt angle from tests showed a good correlation with the numerical results. The suggested process of random vibration analysis on the tip-tilt system to correct the wind-induced disturbances of the FSM segments would be useful to advance the FSM design and upgrade the capability to achieve the least residual star image errors by understanding the details of dynamics.
Yu, Kai; Shi, Fei; Gao, Enting; Zhu, Weifang; Chen, Haoyu; Chen, Xinjian
2018-01-01
Optic nerve head (ONH) is a crucial region for glaucoma detection and tracking based on spectral domain optical coherence tomography (SD-OCT) images. In this region, the existence of a “hole” structure makes retinal layer segmentation and analysis very challenging. To improve retinal layer segmentation, we propose a 3D method for ONH centered SD-OCT image segmentation, which is based on a modified graph search algorithm with a shared-hole and locally adaptive constraints. With the proposed method, both the optic disc boundary and nine retinal surfaces can be accurately segmented in SD-OCT images. An overall mean unsigned border positioning error of 7.27 ± 5.40 µm was achieved for layer segmentation, and a mean Dice coefficient of 0.925 ± 0.03 was achieved for optic disc region detection. PMID:29541497
Segmentation-free image processing and analysis of precipitate shapes in 2D and 3D
NASA Astrophysics Data System (ADS)
Bales, Ben; Pollock, Tresa; Petzold, Linda
2017-06-01
Segmentation based image analysis techniques are routinely employed for quantitative analysis of complex microstructures containing two or more phases. The primary advantage of these approaches is that spatial information on the distribution of phases is retained, enabling subjective judgements of the quality of the segmentation and subsequent analysis process. The downside is that computing micrograph segmentations with data from morphologically complex microstructures gathered with error-prone detectors is challenging and, if no special care is taken, the artifacts of the segmentation will make any subsequent analysis and conclusions uncertain. In this paper we demonstrate, using a two phase nickel-base superalloy microstructure as a model system, a new methodology for analysis of precipitate shapes using a segmentation-free approach based on the histogram of oriented gradients feature descriptor, a classic tool in image analysis. The benefits of this methodology for analysis of microstructure in two and three-dimensions are demonstrated.
NASA Astrophysics Data System (ADS)
N'Diaye, Mamadou; Choquet, Elodie; Egron, Sylvain; Pueyo, Laurent; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Elliot, Erin; Wallace, J. Kent; Hugot, Emmanuel; Marcos, Michel; Ferrari, Marc; Long, Chris A.; Anderson, Rachel; DiFelice, Audrey; Soummer, Rémi
2014-08-01
We present a new high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The testbed was designed to enable a wide range of studies of the effects of such telescope geometries, with primary mirror segmentation, central obstruction, and spiders. The associated diffraction features in the point spread function make high-contrast imaging more challenging. In particular the testbed will be compatible with both AFTA-like and ATLAST-like aperture shapes, respectively on-axis monolithic, and on-axis segmented telescopes. The testbed optical design was developed using a novel approach to define the layout and surface error requirements to minimize amplitude induced errors at the target contrast level performance. In this communication we compare the as-built surface errors for each optic to their specifications based on end-to-end Fresnel modelling of the testbed. We also report on the testbed optical and optomechanical alignment performance, coronagraph design and manufacturing, and preliminary first light results.
Acquisition of Malay word recognition skills: lessons from low-progress early readers.
Lee, Lay Wah; Wheldall, Kevin
2011-02-01
Malay is a consistent alphabetic orthography with complex syllable structures. The focus of this research was to investigate word recognition performance in order to inform reading interventions for low-progress early readers. Forty-six Grade 1 students were sampled and 11 were identified as low-progress readers. The results indicated that both syllable awareness and phoneme blending were significant predictors of word recognition, suggesting that both syllable and phonemic grain-sizes are important in Malay word recognition. Item analysis revealed a hierarchical pattern of difficulty based on the syllable and the phonic structure of the words. Error analysis identified the sources of errors to be errors due to inefficient syllable segmentation, oversimplification of syllables, insufficient grapheme-phoneme knowledge and inefficient phonemic code assembly. Evidence also suggests that direct instruction in syllable segmentation, phonemic awareness and grapheme-phoneme correspondence is necessary for low-progress readers to acquire word recognition skills. Finally, a logical sequence to teach grapheme-phoneme decoding in Malay is suggested. Copyright © 2010 John Wiley & Sons, Ltd.
Stanford, Tyman E; Bagley, Christopher J; Solomon, Patty J
2016-01-01
Proteomic matrix-assisted laser desorption/ionisation (MALDI) linear time-of-flight (TOF) mass spectrometry (MS) may be used to produce protein profiles from biological samples with the aim of discovering biomarkers for disease. However, the raw protein profiles suffer from several sources of bias or systematic variation which need to be removed via pre-processing before meaningful downstream analysis of the data can be undertaken. Baseline subtraction, an early pre-processing step that removes the non-peptide signal from the spectra, is complicated by the following: (i) each spectrum has, on average, wider peaks for peptides with higher mass-to-charge ratios ( m / z ), and (ii) the time-consuming and error-prone trial-and-error process for optimising the baseline subtraction input arguments. With reference to the aforementioned complications, we present an automated pipeline that includes (i) a novel 'continuous' line segment algorithm that efficiently operates over data with a transformed m / z -axis to remove the relationship between peptide mass and peak width, and (ii) an input-free algorithm to estimate peak widths on the transformed m / z scale. The automated baseline subtraction method was deployed on six publicly available proteomic MS datasets using six different m/z-axis transformations. Optimality of the automated baseline subtraction pipeline was assessed quantitatively using the mean absolute scaled error (MASE) when compared to a gold-standard baseline subtracted signal. Several of the transformations investigated were able to reduce, if not entirely remove, the peak width and peak location relationship resulting in near-optimal baseline subtraction using the automated pipeline. The proposed novel 'continuous' line segment algorithm is shown to far outperform naive sliding window algorithms with regard to the computational time required. The improvement in computational time was at least four-fold on real MALDI TOF-MS data and at least an order of magnitude on many simulated datasets. The advantages of the proposed pipeline include informed and data specific input arguments for baseline subtraction methods, the avoidance of time-intensive and subjective piecewise baseline subtraction, and the ability to automate baseline subtraction completely. Moreover, individual steps can be adopted as stand-alone routines.
Liver segmentation from CT images using a sparse priori statistical shape model (SP-SSM).
Wang, Xuehu; Zheng, Yongchang; Gan, Lan; Wang, Xuan; Sang, Xinting; Kong, Xiangfeng; Zhao, Jie
2017-01-01
This study proposes a new liver segmentation method based on a sparse a priori statistical shape model (SP-SSM). First, mark points are selected in the liver a priori model and the original image. Then, the a priori shape and its mark points are used to obtain a dictionary for the liver boundary information. Second, the sparse coefficient is calculated based on the correspondence between mark points in the original image and those in the a priori model, and then the sparse statistical model is established by combining the sparse coefficients and the dictionary. Finally, the intensity energy and boundary energy models are built based on the intensity information and the specific boundary information of the original image. Then, the sparse matching constraint model is established based on the sparse coding theory. These models jointly drive the iterative deformation of the sparse statistical model to approximate and accurately extract the liver boundaries. This method can solve the problems of deformation model initialization and a priori method accuracy using the sparse dictionary. The SP-SSM can achieve a mean overlap error of 4.8% and a mean volume difference of 1.8%, whereas the average symmetric surface distance and the root mean square symmetric surface distance can reach 0.8 mm and 1.4 mm, respectively.
Time and Memory Efficient Online Piecewise Linear Approximation of Sensor Signals.
Grützmacher, Florian; Beichler, Benjamin; Hein, Albert; Kirste, Thomas; Haubelt, Christian
2018-05-23
Piecewise linear approximation of sensor signals is a well-known technique in the fields of Data Mining and Activity Recognition. In this context, several algorithms have been developed, some of them with the purpose to be performed on resource constrained microcontroller architectures of wireless sensor nodes. While microcontrollers are usually constrained in computational power and memory resources, all state-of-the-art piecewise linear approximation techniques either need to buffer sensor data or have an execution time depending on the segment’s length. In the paper at hand, we propose a novel piecewise linear approximation algorithm, with a constant computational complexity as well as a constant memory complexity. Our proposed algorithm’s worst-case execution time is one to three orders of magnitude smaller and its average execution time is three to seventy times smaller compared to the state-of-the-art Piecewise Linear Approximation (PLA) algorithms in our experiments. In our evaluations, we show that our algorithm is time and memory efficient without sacrificing the approximation quality compared to other state-of-the-art piecewise linear approximation techniques, while providing a maximum error guarantee per segment, a small parameter space of only one parameter, and a maximum latency of one sample period plus its worst-case execution time.
Freeway travel speed calculation model based on ETC transaction data.
Weng, Jiancheng; Yuan, Rongliang; Wang, Ru; Wang, Chang
2014-01-01
Real-time traffic flow operation condition of freeway gradually becomes the critical information for the freeway users and managers. In fact, electronic toll collection (ETC) transaction data effectively records operational information of vehicles on freeway, which provides a new method to estimate the travel speed of freeway. First, the paper analyzed the structure of ETC transaction data and presented the data preprocess procedure. Then, a dual-level travel speed calculation model was established under different levels of sample sizes. In order to ensure a sufficient sample size, ETC data of different enter-leave toll plazas pairs which contain more than one road segment were used to calculate the travel speed of every road segment. The reduction coefficient α and reliable weight θ for sample vehicle speed were introduced in the model. Finally, the model was verified by the special designed field experiments which were conducted on several freeways in Beijing at different time periods. The experiments results demonstrated that the average relative error was about 6.5% which means that the freeway travel speed could be estimated by the proposed model accurately. The proposed model is helpful to promote the level of the freeway operation monitoring and the freeway management, as well as to provide useful information for the freeway travelers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CARR,R.; CORNACCHIA,M.; EMMA,P.
The Visible-Infrared SASE Amplifier (VISA) FEL is an experimental device designed to show Self Amplified Spontaneous Emission (SASE) to saturation in the visible light energy range. It will generate a resonant wavelength output from 800--600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is the first SASE FEL designed to reach saturation, and its diagnostics will provide important checks of theory. This paper includes a description of the VISA undulator, the magnet measuring and shimming system, and the alignment strategy. VISA will have a 4 m pure permanent magnet undulatormore » comprising four 99 cm segments, each with 55 periods of 18 mm length. The undulator has distributed focusing built into it, to reduce the average beta function of the 70--85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walkoff or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, the authors expect to be able to control trajectory walkoff to less than {+-}50 pm per field gain length.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, R.; Cornacchia, M.; Emma, P.
The Visible-Infrared SASE Amplifier (VISA) FEL is an experimental device designed to show Self Amplified Spontaneous Emission (SASE) to saturation in the visible light energy range. It will generate a resonant wavelength output from 800--600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is the first SASE FEL designed to reach saturation, and its diagnostics will provide important checks of theory. This paper includes a description of the VISA undulator, the magnet measuring and shimming system, and the alignment strategy. VISA will have a 4 m pure permanent magnet undulatormore » comprising four 99 cm segments, each with 55 periods of 18 mm length. The undulator has distributed focusing built into it, to reduce the average beta function of the 70--85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walkoff, or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, the authors expect to be able to control trajectory walkoff to less than {+-}50 {micro}m per field gain length.« less
Zhou, Jinghao; Yan, Zhennan; Lasio, Giovanni; Huang, Junzhou; Zhang, Baoshe; Sharma, Navesh; Prado, Karl; D'Souza, Warren
2015-12-01
To resolve challenges in image segmentation in oncologic patients with severely compromised lung, we propose an automated right lung segmentation framework that uses a robust, atlas-based active volume model with a sparse shape composition prior. The robust atlas is achieved by combining the atlas with the output of sparse shape composition. Thoracic computed tomography images (n=38) from patients with lung tumors were collected. The right lung in each scan was manually segmented to build a reference training dataset against which the performance of the automated segmentation method was assessed. The quantitative results of this proposed segmentation method with sparse shape composition achieved mean Dice similarity coefficient (DSC) of (0.72, 0.81) with 95% CI, mean accuracy (ACC) of (0.97, 0.98) with 95% CI, and mean relative error (RE) of (0.46, 0.74) with 95% CI. Both qualitative and quantitative comparisons suggest that this proposed method can achieve better segmentation accuracy with less variance than other atlas-based segmentation methods in the compromised lung segmentation. Published by Elsevier Ltd.
Superpixel-based segmentation of muscle fibers in multi-channel microscopy.
Nguyen, Binh P; Heemskerk, Hans; So, Peter T C; Tucker-Kellogg, Lisa
2016-12-05
Confetti fluorescence and other multi-color genetic labelling strategies are useful for observing stem cell regeneration and for other problems of cell lineage tracing. One difficulty of such strategies is segmenting the cell boundaries, which is a very different problem from segmenting color images from the real world. This paper addresses the difficulties and presents a superpixel-based framework for segmentation of regenerated muscle fibers in mice. We propose to integrate an edge detector into a superpixel algorithm and customize the method for multi-channel images. The enhanced superpixel method outperforms the original and another advanced superpixel algorithm in terms of both boundary recall and under-segmentation error. Our framework was applied to cross-section and lateral section images of regenerated muscle fibers from confetti-fluorescent mice. Compared with "ground-truth" segmentations, our framework yielded median Dice similarity coefficients of 0.92 and higher. Our segmentation framework is flexible and provides very good segmentations of multi-color muscle fibers. We anticipate our methods will be useful for segmenting a variety of tissues in confetti fluorecent mice and in mice with similar multi-color labels.
A Segment Level Study of Defense Industry Capital Investment.
1985-12-01
examines the econcinic factors that are influencial for encouraging capital investment in the defense industry. A group of candidate variables are...and disguises useful information that is available from the data. The reduced average data for first year group included 130 segments from 34...individually against capital expendi- Ie tures, using the averaged data for the same first year group , the coef- ficient was positive. This indicates
Automatic co-segmentation of lung tumor based on random forest in PET-CT images
NASA Astrophysics Data System (ADS)
Jiang, Xueqing; Xiang, Dehui; Zhang, Bin; Zhu, Weifang; Shi, Fei; Chen, Xinjian
2016-03-01
In this paper, a fully automatic method is proposed to segment the lung tumor in clinical 3D PET-CT images. The proposed method effectively combines PET and CT information to make full use of the high contrast of PET images and superior spatial resolution of CT images. Our approach consists of three main parts: (1) initial segmentation, in which spines are removed in CT images and initial connected regions achieved by thresholding based segmentation in PET images; (2) coarse segmentation, in which monotonic downhill function is applied to rule out structures which have similar standardized uptake values (SUV) to the lung tumor but do not satisfy a monotonic property in PET images; (3) fine segmentation, random forests method is applied to accurately segment the lung tumor by extracting effective features from PET and CT images simultaneously. We validated our algorithm on a dataset which consists of 24 3D PET-CT images from different patients with non-small cell lung cancer (NSCLC). The average TPVF, FPVF and accuracy rate (ACC) were 83.65%, 0.05% and 99.93%, respectively. The correlation analysis shows our segmented lung tumor volumes has strong correlation ( average 0.985) with the ground truth 1 and ground truth 2 labeled by a clinical expert.
Liao, Xiaolei; Zhao, Juanjuan; Jiao, Cheng; Lei, Lei; Qiang, Yan; Cui, Qiang
2016-01-01
Background Lung parenchyma segmentation is often performed as an important pre-processing step in the computer-aided diagnosis of lung nodules based on CT image sequences. However, existing lung parenchyma image segmentation methods cannot fully segment all lung parenchyma images and have a slow processing speed, particularly for images in the top and bottom of the lung and the images that contain lung nodules. Method Our proposed method first uses the position of the lung parenchyma image features to obtain lung parenchyma ROI image sequences. A gradient and sequential linear iterative clustering algorithm (GSLIC) for sequence image segmentation is then proposed to segment the ROI image sequences and obtain superpixel samples. The SGNF, which is optimized by a genetic algorithm (GA), is then utilized for superpixel clustering. Finally, the grey and geometric features of the superpixel samples are used to identify and segment all of the lung parenchyma image sequences. Results Our proposed method achieves higher segmentation precision and greater accuracy in less time. It has an average processing time of 42.21 seconds for each dataset and an average volume pixel overlap ratio of 92.22 ± 4.02% for four types of lung parenchyma image sequences. PMID:27532214
Towards online iris and periocular recognition under relaxed imaging constraints.
Tan, Chun-Wei; Kumar, Ajay
2013-10-01
Online iris recognition using distantly acquired images in a less imaging constrained environment requires the development of a efficient iris segmentation approach and recognition strategy that can exploit multiple features available for the potential identification. This paper presents an effective solution toward addressing such a problem. The developed iris segmentation approach exploits a random walker algorithm to efficiently estimate coarsely segmented iris images. These coarsely segmented iris images are postprocessed using a sequence of operations that can effectively improve the segmentation accuracy. The robustness of the proposed iris segmentation approach is ascertained by providing comparison with other state-of-the-art algorithms using publicly available UBIRIS.v2, FRGC, and CASIA.v4-distance databases. Our experimental results achieve improvement of 9.5%, 4.3%, and 25.7% in the average segmentation accuracy, respectively, for the UBIRIS.v2, FRGC, and CASIA.v4-distance databases, as compared with most competing approaches. We also exploit the simultaneously extracted periocular features to achieve significant performance improvement. The joint segmentation and combination strategy suggest promising results and achieve average improvement of 132.3%, 7.45%, and 17.5% in the recognition performance, respectively, from the UBIRIS.v2, FRGC, and CASIA.v4-distance databases, as compared with the related competing approaches.
Uribe, Juan S; Myhre, Sue Lynn; Youssef, Jim A
2016-04-01
A literature review. The purpose of this study was to review lumbar segmental and regional alignment changes following treatment with a variety of minimally invasive surgery (MIS) interbody fusion procedures for short-segment, degenerative conditions. An increasing number of lumbar fusions are being performed with minimally invasive exposures, despite a perception that minimally invasive lumbar interbody fusion procedures are unable to affect segmental and regional lordosis. Through a MEDLINE and Google Scholar search, a total of 23 articles were identified that reported alignment following minimally invasive lumbar fusion for degenerative (nondeformity) lumbar spinal conditions to examine aggregate changes in postoperative alignment. Of the 23 studies identified, 28 study cohorts were included in the analysis. Procedural cohorts included MIS ALIF (two), extreme lateral interbody fusion (XLIF) (16), and MIS posterior/transforaminal lumbar interbody fusion (P/TLIF) (11). Across 19 study cohorts and 720 patients, weighted average of lumbar lordosis preoperatively for all procedures was 43.5° (range 28.4°-52.5°) and increased 3.4° (9%) (range -2° to 7.4°) postoperatively (P < 0.001). Segmental lordosis increased, on average, by 4° from a weighted average of 8.3° preoperatively (range -0.8° to 15.8°) to 11.2° at postoperative time points (range -0.2° to 22.8°) (P < 0.001) in 1182 patient from 24 study cohorts. Simple linear regression revealed a significant relationship between preoperative lumbar lordosis and change in lumbar lordosis (r = 0.413; P = 0.003), wherein lower preoperative lumbar lordosis predicted a greater increase in postoperative lumbar lordosis. Significant gains in both weighted average lumbar lordosis and segmental lordosis were seen following MIS interbody fusion. None of the segmental lordosis cohorts and only two of the 19 lumbar lordosis cohorts showed decreases in lordosis postoperatively. These results suggest that MIS approaches are able to impact regional and local segmental alignment and that preoperative patient factors can impact the extent of correction gained (preserving vs. restoring alignment). 4.
Aquino, Arturo; Gegundez-Arias, Manuel Emilio; Marin, Diego
2010-11-01
Optic disc (OD) detection is an important step in developing systems for automated diagnosis of various serious ophthalmic pathologies. This paper presents a new template-based methodology for segmenting the OD from digital retinal images. This methodology uses morphological and edge detection techniques followed by the Circular Hough Transform to obtain a circular OD boundary approximation. It requires a pixel located within the OD as initial information. For this purpose, a location methodology based on a voting-type algorithm is also proposed. The algorithms were evaluated on the 1200 images of the publicly available MESSIDOR database. The location procedure succeeded in 99% of cases, taking an average computational time of 1.67 s. with a standard deviation of 0.14 s. On the other hand, the segmentation algorithm rendered an average common area overlapping between automated segmentations and true OD regions of 86%. The average computational time was 5.69 s with a standard deviation of 0.54 s. Moreover, a discussion on advantages and disadvantages of the models more generally used for OD segmentation is also presented in this paper.
Feedback controlled optics with wavefront compensation
NASA Technical Reports Server (NTRS)
Breckenridge, William G. (Inventor); Redding, David C. (Inventor)
1993-01-01
The sensitivity model of a complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's exit pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.
Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.
Karasawa, Ken'ichi; Oda, Masahiro; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Chu, Chengwen; Zheng, Guoyan; Rueckert, Daniel; Mori, Kensaku
2017-07-01
Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. Copyright © 2017 Elsevier B.V. All rights reserved.
Eyben, Florian; Weninger, Felix; Lehment, Nicolas; Schuller, Björn; Rigoll, Gerhard
2013-01-01
Without doubt general video and sound, as found in large multimedia archives, carry emotional information. Thus, audio and video retrieval by certain emotional categories or dimensions could play a central role for tomorrow's intelligent systems, enabling search for movies with a particular mood, computer aided scene and sound design in order to elicit certain emotions in the audience, etc. Yet, the lion's share of research in affective computing is exclusively focusing on signals conveyed by humans, such as affective speech. Uniting the fields of multimedia retrieval and affective computing is believed to lend to a multiplicity of interesting retrieval applications, and at the same time to benefit affective computing research, by moving its methodology "out of the lab" to real-world, diverse data. In this contribution, we address the problem of finding "disturbing" scenes in movies, a scenario that is highly relevant for computer-aided parental guidance. We apply large-scale segmental feature extraction combined with audio-visual classification to the particular task of detecting violence. Our system performs fully data-driven analysis including automatic segmentation. We evaluate the system in terms of mean average precision (MAP) on the official data set of the MediaEval 2012 evaluation campaign's Affect Task, which consists of 18 original Hollywood movies, achieving up to .398 MAP on unseen test data in full realism. An in-depth analysis of the worth of individual features with respect to the target class and the system errors is carried out and reveals the importance of peak-related audio feature extraction and low-level histogram-based video analysis.
Eyben, Florian; Weninger, Felix; Lehment, Nicolas; Schuller, Björn; Rigoll, Gerhard
2013-01-01
Without doubt general video and sound, as found in large multimedia archives, carry emotional information. Thus, audio and video retrieval by certain emotional categories or dimensions could play a central role for tomorrow's intelligent systems, enabling search for movies with a particular mood, computer aided scene and sound design in order to elicit certain emotions in the audience, etc. Yet, the lion's share of research in affective computing is exclusively focusing on signals conveyed by humans, such as affective speech. Uniting the fields of multimedia retrieval and affective computing is believed to lend to a multiplicity of interesting retrieval applications, and at the same time to benefit affective computing research, by moving its methodology “out of the lab” to real-world, diverse data. In this contribution, we address the problem of finding “disturbing” scenes in movies, a scenario that is highly relevant for computer-aided parental guidance. We apply large-scale segmental feature extraction combined with audio-visual classification to the particular task of detecting violence. Our system performs fully data-driven analysis including automatic segmentation. We evaluate the system in terms of mean average precision (MAP) on the official data set of the MediaEval 2012 evaluation campaign's Affect Task, which consists of 18 original Hollywood movies, achieving up to .398 MAP on unseen test data in full realism. An in-depth analysis of the worth of individual features with respect to the target class and the system errors is carried out and reveals the importance of peak-related audio feature extraction and low-level histogram-based video analysis. PMID:24391704
Combining forecast weights: Why and how?
NASA Astrophysics Data System (ADS)
Yin, Yip Chee; Kok-Haur, Ng; Hock-Eam, Lim
2012-09-01
This paper proposes a procedure called forecast weight averaging which is a specific combination of forecast weights obtained from different methods of constructing forecast weights for the purpose of improving the accuracy of pseudo out of sample forecasting. It is found that under certain specified conditions, forecast weight averaging can lower the mean squared forecast error obtained from model averaging. In addition, we show that in a linear and homoskedastic environment, this superior predictive ability of forecast weight averaging holds true irrespective whether the coefficients are tested by t statistic or z statistic provided the significant level is within the 10% range. By theoretical proofs and simulation study, we have shown that model averaging like, variance model averaging, simple model averaging and standard error model averaging, each produces mean squared forecast error larger than that of forecast weight averaging. Finally, this result also holds true marginally when applied to business and economic empirical data sets, Gross Domestic Product (GDP growth rate), Consumer Price Index (CPI) and Average Lending Rate (ALR) of Malaysia.
Autonomous surgical robotics using 3-D ultrasound guidance: feasibility study.
Whitman, John; Fronheiser, Matthew P; Ivancevich, Nikolas M; Smith, Stephen W
2007-10-01
The goal of this study was to test the feasibility of using a real-time 3D (RT3D) ultrasound scanner with a transthoracic matrix array transducer probe to guide an autonomous surgical robot. Employing a fiducial alignment mark on the transducer to orient the robot's frame of reference and using simple thresholding algorithms to segment the 3D images, we tested the accuracy of using the scanner to automatically direct a robot arm that touched two needle tips together within a water tank. RMS measurement error was 3.8% or 1.58 mm for an average path length of 41 mm. Using these same techniques, the autonomous robot also performed simulated needle biopsies of a cyst-like lesion in a tissue phantom. This feasibility study shows the potential for 3D ultrasound guidance of an autonomous surgical robot for simple interventional tasks, including lesion biopsy and foreign body removal.
NASA Astrophysics Data System (ADS)
Destrez, Raphaël.; Albouy-Kissi, Benjamin; Treuillet, Sylvie; Lucas, Yves
2015-04-01
Computer aided planning for orthodontic treatment requires knowing occlusion of separately scanned dental casts. A visual guided registration is conducted starting by extracting corresponding features in both photographs and 3D scans. To achieve this, dental neck and occlusion surface are firstly extracted by image segmentation and 3D curvature analysis. Then, an iterative registration process is conducted during which feature positions are refined, guided by previously found anatomic edges. The occlusal edge image detection is improved by an original algorithm which follows Canny's poorly detected edges using a priori knowledge of tooth shapes. Finally, the influence of feature extraction and position optimization is evaluated in terms of the quality of the induced registration. Best combination of feature detection and optimization leads to a positioning average error of 1.10 mm and 2.03°.
Xu, Yupeng; Yan, Ke; Kim, Jinman; Wang, Xiuying; Li, Changyang; Su, Li; Yu, Suqin; Xu, Xun; Feng, Dagan David
2017-01-01
Worldwide, polypoidal choroidal vasculopathy (PCV) is a common vision-threatening exudative maculopathy, and pigment epithelium detachment (PED) is an important clinical characteristic. Thus, precise and efficient PED segmentation is necessary for PCV clinical diagnosis and treatment. We propose a dual-stage learning framework via deep neural networks (DNN) for automated PED segmentation in PCV patients to avoid issues associated with manual PED segmentation (subjectivity, manual segmentation errors, and high time consumption).The optical coherence tomography scans of fifty patients were quantitatively evaluated with different algorithms and clinicians. Dual-stage DNN outperformed existing PED segmentation methods for all segmentation accuracy parameters, including true positive volume fraction (85.74 ± 8.69%), dice similarity coefficient (85.69 ± 8.08%), positive predictive value (86.02 ± 8.99%) and false positive volume fraction (0.38 ± 0.18%). Dual-stage DNN achieves accurate PED quantitative information, works with multiple types of PEDs and agrees well with manual delineation, suggesting that it is a potential automated assistant for PCV management. PMID:28966847
Xu, Yupeng; Yan, Ke; Kim, Jinman; Wang, Xiuying; Li, Changyang; Su, Li; Yu, Suqin; Xu, Xun; Feng, Dagan David
2017-09-01
Worldwide, polypoidal choroidal vasculopathy (PCV) is a common vision-threatening exudative maculopathy, and pigment epithelium detachment (PED) is an important clinical characteristic. Thus, precise and efficient PED segmentation is necessary for PCV clinical diagnosis and treatment. We propose a dual-stage learning framework via deep neural networks (DNN) for automated PED segmentation in PCV patients to avoid issues associated with manual PED segmentation (subjectivity, manual segmentation errors, and high time consumption).The optical coherence tomography scans of fifty patients were quantitatively evaluated with different algorithms and clinicians. Dual-stage DNN outperformed existing PED segmentation methods for all segmentation accuracy parameters, including true positive volume fraction (85.74 ± 8.69%), dice similarity coefficient (85.69 ± 8.08%), positive predictive value (86.02 ± 8.99%) and false positive volume fraction (0.38 ± 0.18%). Dual-stage DNN achieves accurate PED quantitative information, works with multiple types of PEDs and agrees well with manual delineation, suggesting that it is a potential automated assistant for PCV management.
Brown, H G; Shibata, N; Sasaki, H; Petersen, T C; Paganin, D M; Morgan, M J; Findlay, S D
2017-11-01
Electric field mapping using segmented detectors in the scanning transmission electron microscope has recently been achieved at the nanometre scale. However, converting these results to quantitative field measurements involves assumptions whose validity is unclear for thick specimens. We consider three approaches to quantitative reconstruction of the projected electric potential using segmented detectors: a segmented detector approximation to differential phase contrast and two variants on ptychographical reconstruction. Limitations to these approaches are also studied, particularly errors arising from detector segment size, inelastic scattering, and non-periodic boundary conditions. A simple calibration experiment is described which corrects the differential phase contrast reconstruction to give reliable quantitative results despite the finite detector segment size and the effects of plasmon scattering in thick specimens. A plasmon scattering correction to the segmented detector ptychography approaches is also given. Avoiding the imposition of periodic boundary conditions on the reconstructed projected electric potential leads to more realistic reconstructions. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
Liu, Kun; Liu, Tao; Shibata, Kyoko; Inoue, Yoshio; Zheng, Rencheng
2009-12-11
A new method using a double-sensor difference based algorithm for analyzing human segment rotational angles in two directions for segmental orientation analysis in the three-dimensional (3D) space was presented. A wearable sensor system based only on triaxial accelerometers was developed to obtain the pitch and yaw angles of thigh segment with an accelerometer approximating translational acceleration of the hip joint and two accelerometers measuring the actual accelerations on the thigh. To evaluate the method, the system was first tested on a 2 degrees of freedom mechanical arm assembled out of rigid segments and encoders. Then, to estimate the human segmental orientation, the wearable sensor system was tested on the thighs of eight volunteer subjects, who walked in a straight forward line in the work space of an optical motion analysis system at three self-selected speeds: slow, normal and fast. In the experiment, the subject was assumed to walk in a straight forward way with very little trunk sway, skin artifacts and no significant internal/external rotation of the leg. The root mean square (RMS) errors of the thigh segment orientation measurement were between 2.4 degrees and 4.9 degrees during normal gait that had a 45 degrees flexion/extension range of motion. Measurement error was observed to increase with increasing walking speed probably because of the result of increased trunk sway, axial rotation and skin artifacts. The results show that, without integration and switching between different sensors, using only one kind of sensor, the wearable sensor system is suitable for ambulatory analysis of normal gait orientation of thigh and shank in two directions of the segment-fixed local coordinate system in 3D space. It can then be applied to assess spatio-temporal gait parameters and monitoring the gait function of patients in clinical settings.
Dispersed Fringe Sensing Analysis - DFSA
NASA Technical Reports Server (NTRS)
Sigrist, Norbert; Shi, Fang; Redding, David C.; Basinger, Scott A.; Ohara, Catherine M.; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.; Spechler, Joshua A.
2012-01-01
Dispersed Fringe Sensing (DFS) is a technique for measuring and phasing segmented telescope mirrors using a dispersed broadband light image. DFS is capable of breaking the monochromatic light ambiguity, measuring absolute piston errors between segments of large segmented primary mirrors to tens of nanometers accuracy over a range of 100 micrometers or more. The DFSA software tool analyzes DFS images to extract DFS encoded segment piston errors, which can be used to measure piston distances between primary mirror segments of ground and space telescopes. This information is necessary to control mirror segments to establish a smooth, continuous primary figure needed to achieve high optical quality. The DFSA tool is versatile, allowing precise piston measurements from a variety of different optical configurations. DFSA technology may be used for measuring wavefront pistons from sub-apertures defined by adjacent segments (such as Keck Telescope), or from separated sub-apertures used for testing large optical systems (such as sub-aperture wavefront testing for large primary mirrors using auto-collimating flats). An experimental demonstration of the coarse-phasing technology with verification of DFSA was performed at the Keck Telescope. DFSA includes image processing, wavelength and source spectral calibration, fringe extraction line determination, dispersed fringe analysis, and wavefront piston sign determination. The code is robust against internal optical system aberrations and against spectral variations of the source. In addition to the DFSA tool, the software package contains a simple but sophisticated MATLAB model to generate dispersed fringe images of optical system configurations in order to quickly estimate the coarse phasing performance given the optical and operational design requirements. Combining MATLAB (a high-level language and interactive environment developed by MathWorks), MACOS (JPL s software package for Modeling and Analysis for Controlled Optical Systems), and DFSA provides a unique optical development, modeling and analysis package to study current and future approaches to coarse phasing controlled segmented optical systems.
Consistency-based rectification of nonrigid registrations
Gass, Tobias; Székely, Gábor; Goksel, Orcun
2015-01-01
Abstract. We present a technique to rectify nonrigid registrations by improving their group-wise consistency, which is a widely used unsupervised measure to assess pair-wise registration quality. While pair-wise registration methods cannot guarantee any group-wise consistency, group-wise approaches typically enforce perfect consistency by registering all images to a common reference. However, errors in individual registrations to the reference then propagate, distorting the mean and accumulating in the pair-wise registrations inferred via the reference. Furthermore, the assumption that perfect correspondences exist is not always true, e.g., for interpatient registration. The proposed consistency-based registration rectification (CBRR) method addresses these issues by minimizing the group-wise inconsistency of all pair-wise registrations using a regularized least-squares algorithm. The regularization controls the adherence to the original registration, which is additionally weighted by the local postregistration similarity. This allows CBRR to adaptively improve consistency while locally preserving accurate pair-wise registrations. We show that the resulting registrations are not only more consistent, but also have lower average transformation error when compared to known transformations in simulated data. On clinical data, we show improvements of up to 50% target registration error in breathing motion estimation from four-dimensional MRI and improvements in atlas-based segmentation quality of up to 65% in terms of mean surface distance in three-dimensional (3-D) CT. Such improvement was observed consistently using different registration algorithms, dimensionality (two-dimensional/3-D), and modalities (MRI/CT). PMID:26158083
A patient-specific segmentation framework for longitudinal MR images of traumatic brain injury
NASA Astrophysics Data System (ADS)
Wang, Bo; Prastawa, Marcel; Irimia, Andrei; Chambers, Micah C.; Vespa, Paul M.; Van Horn, John D.; Gerig, Guido
2012-02-01
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Robust, reproducible segmentations of MR images with TBI are crucial for quantitative analysis of recovery and treatment efficacy. However, this is a significant challenge due to severe anatomy changes caused by edema (swelling), bleeding, tissue deformation, skull fracture, and other effects related to head injury. In this paper, we introduce a multi-modal image segmentation framework for longitudinal TBI images. The framework is initialized through manual input of primary lesion sites at each time point, which are then refined by a joint approach composed of Bayesian segmentation and construction of a personalized atlas. The personalized atlas construction estimates the average of the posteriors of the Bayesian segmentation at each time point and warps the average back to each time point to provide the updated priors for Bayesian segmentation. The difference between our approach and segmenting longitudinal images independently is that we use the information from all time points to improve the segmentations. Given a manual initialization, our framework automatically segments healthy structures (white matter, grey matter, cerebrospinal fluid) as well as different lesions such as hemorrhagic lesions and edema. Our framework can handle different sets of modalities at each time point, which provides flexibility in analyzing clinical scans. We show results on three subjects with acute baseline scans and chronic follow-up scans. The results demonstrate that joint analysis of all the points yields improved segmentation compared to independent analysis of the two time points.
Chan, Kahei; Hersh, Peter S
2017-02-01
To evaluate the efficacy of removal and relocation of intracorneal ring segments for improving outcomes in treatment of keratoconus and corneal ectasia. This is a retrospective case series conducted at a cornea and refractive surgery subspecialty practice setting. Patients with previous insertion of 2 intracorneal ring segments underwent surgical removal and repositioning of segments because of unsatisfactory visual and topographic outcomes. The principal outcomes included uncorrected and corrected visual acuities, manifest refraction, topography-derived maximum keratometry (Kmax), inferior-superior topography power difference (I - S), and higher-order aberration profile derived from wavefront analysis. Three patients are presented in this case series. Uncorrected visual acuity improved in all eyes by an average of 2.75 lines. Corrected visual acuity improved in 2 eyes and remained unchanged in 1 eye. Refractive astigmatism decreased in all patients by an average of 2.50 D. Kmax decreased by an average of 1.43 D. All patients had improvement in the I - S value with a mean decrease of 5.13 D. Topography-guided repositioning and/or replacement of corneal ring segments can result in improved topographic, optical, and visual outcomes in patients in whom the initial result is suboptimal. In these cases, a single segment repositioned beneath the cone resulted in an improved outcome. Analysis of corneal topography can guide the surgeon in treatment planning and can suggest patients in whom such an effort will be rewarded with better results.
Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lau, Steven; Lu, Weiguo; Yan, Yulong; Jiang, Steve B; Zhen, Xin; Timmerman, Robert; Nedzi, Lucien; Gu, Xuejun
2017-01-01
Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.
NASA Astrophysics Data System (ADS)
Datteri, Ryan; Asman, Andrew J.; Landman, Bennett A.; Dawant, Benoit M.
2014-03-01
Multi-atlas registration-based segmentation is a popular technique in the medical imaging community, used to transform anatomical and functional information from a set of atlases onto a new patient that lacks this information. The accuracy of the projected information on the target image is dependent on the quality of the registrations between the atlas images and the target image. Recently, we have developed a technique called AQUIRC that aims at estimating the error of a non-rigid registration at the local level and was shown to correlate to error in a simulated case. Herein, we extend upon this work by applying AQUIRC to atlas selection at the local level across multiple structures in cases in which non-rigid registration is difficult. AQUIRC is applied to 6 structures, the brainstem, optic chiasm, left and right optic nerves, and the left and right eyes. We compare the results of AQUIRC to that of popular techniques, including Majority Vote, STAPLE, Non-Local STAPLE, and Locally-Weighted Vote. We show that AQUIRC can be used as a method to combine multiple segmentations and increase the accuracy of the projected information on a target image, and is comparable to cutting edge methods in the multi-atlas segmentation field.
Computer simulation of storm runoff for three watersheds in Albuquerque, New Mexico
Knutilla, R.L.; Veenhuis, J.E.
1994-01-01
Rainfall-runoff data from three watersheds were selected for calibration and verification of the U.S. Geological Survey's Distributed Routing Rainfall-Runoff Model. The watersheds chosen are residentially developed. The conceptually based model uses an optimization process that adjusts selected parameters to achieve the best fit between measured and simulated runoff volumes and peak discharges. Three of these optimization parameters represent soil-moisture conditions, three represent infiltration, and one accounts for effective impervious area. Each watershed modeled was divided into overland-flow segments and channel segments. The overland-flow segments were further subdivided to reflect pervious and impervious areas. Each overland-flow and channel segment was assigned representative values of area, slope, percentage of imperviousness, and roughness coefficients. Rainfall-runoff data for each watershed were separated into two sets for use in calibration and verification. For model calibration, seven input parameters were optimized to attain a best fit of the data. For model verification, parameter values were set using values from model calibration. The standard error of estimate for calibration of runoff volumes ranged from 19 to 34 percent, and for peak discharge calibration ranged from 27 to 44 percent. The standard error of estimate for verification of runoff volumes ranged from 26 to 31 percent, and for peak discharge verification ranged from 31 to 43 percent.
Gu, Yuhua; Kumar, Virendra; Hall, Lawrence O; Goldgof, Dmitry B; Li, Ching-Yen; Korn, René; Bendtsen, Claus; Velazquez, Emmanuel Rios; Dekker, Andre; Aerts, Hugo; Lambin, Philippe; Li, Xiuli; Tian, Jie; Gatenby, Robert A; Gillies, Robert J
2012-01-01
A single click ensemble segmentation (SCES) approach based on an existing “Click&Grow” algorithm is presented. The SCES approach requires only one operator selected seed point as compared with multiple operator inputs, which are typically needed. This facilitates processing large numbers of cases. Evaluation on a set of 129 CT lung tumor images using a similarity index (SI) was done. The average SI is above 93% using 20 different start seeds, showing stability. The average SI for 2 different readers was 79.53%. We then compared the SCES algorithm with the two readers, the level set algorithm and the skeleton graph cut algorithm obtaining an average SI of 78.29%, 77.72%, 63.77% and 63.76% respectively. We can conclude that the newly developed automatic lung lesion segmentation algorithm is stable, accurate and automated. PMID:23459617
Global Radius of Curvature Estimation and Control System for Segmented Mirrors
NASA Technical Reports Server (NTRS)
Rakoczy, John M. (Inventor)
2006-01-01
An apparatus controls positions of plural mirror segments in a segmented mirror with an edge sensor system and a controller. Current mirror segment edge sensor measurements and edge sensor reference measurements are compared with calculated edge sensor bias measurements representing a global radius of curvature. Accumulated prior actuator commands output from an edge sensor control unit are combined with an estimator matrix to form the edge sensor bias measurements. An optimal control matrix unit then accumulates the plurality of edge sensor error signals calculated by the summation unit and outputs the corresponding plurality of actuator commands. The plural mirror actuators respond to the actuator commands by moving respective positions of the mixor segments. A predetermined number of boundary conditions, corresponding to a plurality of hexagonal mirror locations, are removed to afford mathematical matrix calculation.
NASA Astrophysics Data System (ADS)
Chen, Jingyun; Palmer, Samantha J.; Khan, Ali R.; Mckeown, Martin J.; Beg, Mirza Faial
2009-02-01
We apply a recently developed automated brain segmentation method, FS+LDDMM, to brain MRI scans from Parkinson's Disease (PD) subjects, and normal age-matched controls and compare the results to manual segmentation done by trained neuroscientists. The data set consisted of 14 PD subjects and 12 age-matched control subjects without neurologic disease and comparison was done on six subcortical brain structures (left and right caudate, putamen and thalamus). Comparison between automatic and manual segmentation was based on Dice Similarity Coefficient (Overlap Percentage), L1 Error, Symmetrized Hausdorff Distance and Symmetrized Mean Surface Distance. Results suggest that FS+LDDMM is well-suited for subcortical structure segmentation and further shape analysis in Parkinson's Disease. The asymmetry of the Dice Similarity Coefficient over shape change is also discussed based on the observation and measurement of FS+LDDMM segmentation results.
On-sky performance of the Zernike phase contrast sensor for the phasing of segmented telescopes.
Surdej, Isabelle; Yaitskova, Natalia; Gonte, Frederic
2010-07-20
The Zernike phase contrast method is a novel technique to phase the primary mirrors of segmented telescopes. It has been tested on-sky on a unit telescope of the Very Large Telescope with a segmented mirror conjugated to the primary mirror to emulate a segmented telescope. The theoretical background of this sensor and the algorithm used to retrieve the piston, tip, and tilt information are described. The performance of the sensor as a function of parameters such as star magnitude, seeing, and integration time is discussed. The phasing accuracy has always been below 15 nm root mean square wavefront error under normal conditions of operation and the limiting star magnitude achieved on-sky with this sensor is 15.7 in the red, which would be sufficient to phase segmented telescopes in closed-loop during observations.
Jha, Abhinav K.; Kupinski, Matthew A.; Rodríguez, Jeffrey J.; Stephen, Renu M.; Stopeck, Alison T.
2012-01-01
In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both accuracy and precision. We also propose consistency checks for this evaluation technique. PMID:22713231
Anatomy guided automated SPECT renal seed point estimation
NASA Astrophysics Data System (ADS)
Dwivedi, Shekhar; Kumar, Sailendra
2010-04-01
Quantification of SPECT(Single Photon Emission Computed Tomography) images can be more accurate if correct segmentation of region of interest (ROI) is achieved. Segmenting ROI from SPECT images is challenging due to poor image resolution. SPECT is utilized to study the kidney function, though the challenge involved is to accurately locate the kidneys and bladder for analysis. This paper presents an automated method for generating seed point location of both kidneys using anatomical location of kidneys and bladder. The motivation for this work is based on the premise that the anatomical location of the bladder relative to the kidneys will not differ much. A model is generated based on manual segmentation of the bladder and both the kidneys on 10 patient datasets (including sum and max images). Centroid is estimated for manually segmented bladder and kidneys. Relatively easier bladder segmentation is followed by feeding bladder centroid coordinates into the model to generate seed point for kidneys. Percentage error observed in centroid coordinates of organs from ground truth to estimated values from our approach are acceptable. Percentage error of approximately 1%, 6% and 2% is observed in X coordinates and approximately 2%, 5% and 8% is observed in Y coordinates of bladder, left kidney and right kidney respectively. Using a regression model and the location of the bladder, the ROI generation for kidneys is facilitated. The model based seed point estimation will enhance the robustness of kidney ROI estimation for noisy cases.
Automatic detection and quantitative analysis of cells in the mouse primary motor cortex
NASA Astrophysics Data System (ADS)
Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui
2014-09-01
Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-μm voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.
Implications of segment mismatch for influenza A virus evolution
White, Maria C.; Lowen, Anice C.
2018-01-01
Influenza A virus (IAV) is an RNA virus with a segmented genome. These viral properties allow for the rapid evolution of IAV under selective pressure, due to mutation occurring from error-prone replication and the exchange of gene segments within a co-infected cell, termed reassortment. Both mutation and reassortment give rise to genetic diversity, but constraints shape their impact on viral evolution: just as most mutations are deleterious, most reassortment events result in genetic incompatibilities. The phenomenon of segment mismatch encompasses both RNA- and protein-based incompatibilities between co-infecting viruses and results in the production of progeny viruses with fitness defects. Segment mismatch is an important determining factor of the outcomes of mixed IAV infections and has been addressed in multiple risk assessment studies undertaken to date. However, due to the complexity of genetic interactions among the eight viral gene segments, our understanding of segment mismatch and its underlying mechanisms remain incomplete. Here, we summarize current knowledge regarding segment mismatch and discuss the implications of this phenomenon for IAV reassortment and diversity. PMID:29244017
Pancreas and cyst segmentation
NASA Astrophysics Data System (ADS)
Dmitriev, Konstantin; Gutenko, Ievgeniia; Nadeem, Saad; Kaufman, Arie
2016-03-01
Accurate segmentation of abdominal organs from medical images is an essential part of surgical planning and computer-aided disease diagnosis. Many existing algorithms are specialized for the segmentation of healthy organs. Cystic pancreas segmentation is especially challenging due to its low contrast boundaries, variability in shape, location and the stage of the pancreatic cancer. We present a semi-automatic segmentation algorithm for pancreata with cysts. In contrast to existing automatic segmentation approaches for healthy pancreas segmentation which are amenable to atlas/statistical shape approaches, a pancreas with cysts can have even higher variability with respect to the shape of the pancreas due to the size and shape of the cyst(s). Hence, fine results are better attained with semi-automatic steerable approaches. We use a novel combination of random walker and region growing approaches to delineate the boundaries of the pancreas and cysts with respective best Dice coefficients of 85.1% and 86.7%, and respective best volumetric overlap errors of 26.0% and 23.5%. Results show that the proposed algorithm for pancreas and pancreatic cyst segmentation is accurate and stable.